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Chapter 9
Applications of Decentralised Sliding Mode
Control to Multimachine Power Systems

In this chapter, a robust stabilization problem for multimachine power systems is
considered using only output information. The power system is formed from an
interconnected set of lower order systems through a network transmission which
is nonlinear and has an associated nonlinear bound. Under some mild conditions,
a decentralized sliding mode control scheme is developed. Simulation results for a
3-machine power system are presented to show the effectiveness of the proposed
method.

9.1 Introduction

With the development of scientific technology, the demand for electrical energy
has increased greatly. Various complex power systems have been built to satisfy
this demand. These systems are often modelled as dynamic equations composed
of the interconnection of a set of lower-dimensional subsystems through a network
transmission.

The complexity of the multimachine power system comes from its high dimen-
sionality (if there are more generators), strong nonlinearity (each motor behaves
nonlinearly) and strong interconnection between the subsystems (all the generators
usually interact with each other), which makes traditional linear centralized control
schemes difficult and sometimes impossible to implement. In fact, multimachine
power systems are often widely distributed in space, and thus the information trans-
fer among subsystems may be very difficult due to high cost, or even impossible
due to practical limitations. These factors motivate the development of decentral-
ized control which can avoid such shortcomings.

Power systems have played an important role in the practical world and many
stabilizing control schemes have been proposed for such systems. In [115], using
modern geometric methods, Lu and Sun proposed a nonlinear control scheme for
a multimachine power system. However, the approach is based on a mathematical
model with fixed structure and without uncertainty. Wang et al [193] studied a class
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290 9 Applications of Decentralised Sliding Mode Control to Multimachine Power Systems

of single machine systems, which was later extended to multimachine power sys-
tems in [192].

Decentralized control is an effective approach for the control of large-scale inter-
connected systems (see, for example [221, 213]), and many authors have success-
fully applied these techniques to multimachine power systems. Based on estimated
states, a decentralized control strategy is presented for multimachine power systems
in [20]. Recently, robust decentralized controllers have been designed for multi-
machine systems in [71] exploiting the systems lower-triangular structure. In [71],
however, parametric uncertainty is not considered and only matched interconnec-
tions are dealt with. Xie et al [202] have developed a control scheme to deal with
parametric uncertainty using LMIs. However, it should be pointed out that in all
these results it is required that the interconnections are bounded by linear functions
of the norm of the system state. Furthermore the uncertainty structure is not used
in the control design, which may result in unnecessary conservatism. All the results
mentioned above [20, 71, 202] are state variable based.

However, usually, all the system state variables are not fully available. Some-
times it may be possible to use an observer to estimate unknown states, but unfor-
tunately, this approach not only requires more hardware resources, but also makes
the dimension of the corresponding closed-loop system increase greatly. This may
cause further difficulties, especially for large-scale power systems and thus it should
be avoided if possible. Therefore, it is pertinent to study decentralized control for
multimachine power systems using static output feedback.

In this chapter, as in previous work [202, 114], only the excitation control prob-
lem for multimachine power systems is considered. Not only are nonlinear intercon-
nections considered, parametric disturbances are dealt with as well. Furthermore,
the interconnections are allowed to be nonlinear and have nonlinear bounds. Mis-
matched uncertain interconnections are dealt with and parametric uncertainties in
the direct axis transient short circuit time constants, which affect the subsystem in-
put distribution matrix, are considered. By using the approach outlined in Section
2.5, an output sliding surface is synthesized which has stable sliding dynamics when
the system is restricted to the surface. The approach used in this chapter is practi-
cal when compared with previous theoretical output feedback sliding mode control
strategies which require some strong geometric conditions on the nominal subsys-
tems. A robust decentralized sliding mode controller is proposed, using only sys-
tem output information, such that the system can reach the sliding surface in a finite
time. Robustness is enhanced by using the sliding mode technique and conservatism
is reduced by fully using system output information and the available structure of
the uncertainties.

The proposed approach can deal with interconnection terms and parametric dis-
turbances with large magnitude. It also allows significant nonlinearity to be present
in the interconnection terms. Furthermore, the obtained results hold in a large region
of the origin if the control gain is high enough. This allows the operating point of
the multimachine power system to vary to satisfy different load demands. Finally,
simulation results of a three-machine power system are presented to illustrate the
control scheme.
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9.2 Dynamical Model for Multimachine Power Systems

The exciter is one of the main control systems which directly affect the performance
of multimachine power systems. It can be approximately depicted by Figure 9.1.

Fig. 9.1 Excitation System

The classical model of power systems was given by Bergen [9] (see e.g. Section
1.5.5). Based on the model in Bergen [9], multimachine power systems consisting
of N synchronous generators interconnected through a transmission network can be
modelled, as in [192, 71, 202, 114], by:

ẋi = (Ai +∆Ai)xi +(Bi +∆Bi)v f i +Mi(x)+∆Mi(x) (9.1)
yi = Cixi, i = 1,2, . . . ,N (9.2)

where x = col(x1,x2, · · · ,xN) with

xi = col(xi1,xi2,xi3) := col
(
δi−δi0,ωi,Pei−Pmi0

)
for i= 1,2, . . . ,N; v f i ∈R and yi ∈Rpi are the input and the output of the i-th subsys-
tems respectively; Ci ∈ Rpi×3 with pi ≤ 3 is the system output matrix ; Mi(x) is the
interconnection term; and ∆Mi(x) includes the network transmission disturbance,
the torque disturbance acting on the rotating shaft, the electromagnetic disturbances
entering the excitation winding and other unstructural uncertainties.

The nominal system and input distribution matrices are

Ai =

0 1 0
0 − Di

2Hi
− ω0

2Hi

0 0 − 1
T ′doi

 , Bi =

 0
0
1

T ′doi

 (9.3)
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The uncertainty is described by

∆Ai =

0 0 0
0 0 0
0 0 θi

 , ∆Bi =

 0
0
−θi

 (9.4)

where
θi =

1
T ′doi
− 1

T ′doi +∆T ′doi
(9.5)

The interconnection term is given as

Mi(x) =

 0
0

Φi(x)

 (9.6)

where

Φi(x) = E ′qi

N

∑
j=1

Ė ′q jBi j sin(δi−δ j)−E ′qi

N

∑
j=1

E ′q jBi j cos(δi−δ j)ω j, (9.7)

The input control variables are

v f i = IqiKciu f i− (xdi− x′di)IqiIdi−Pmi0−T ′doiQeiωi (9.8)

where u f i is the actual input of the amplifier of the i-th generator for i = 1,2, . . . ,N.
The physical meanings of all the symbols used above are shown in Appendix E.1.

In this work, Pmi = Pmi0 = constant since only excitation control is considered.
It should be noted that direct feedback linearisation compensation for the power
system representation has been used to obtain the system model (9.1)–(9.2) as de-
scribed in [192]. The feedback transformation (9.8) is nonsingular since IqiKci ̸= 0
for a generator working in the normal region.

From the work in [71]:

|Φi(x)| ≤
N

∑
j=1

(
γ I

i j|sinδ j|+ γ II
i j |ω j|

)
, (9.9)

where the constants γ I
i j and γ II

i j are defined by

γ I
i j =

4
|T ′do j|min

|Pei|max (9.10)

γ II
i j = |Qei|max (9.11)

Therefore, for i = 1,2, · · · ,N

∥Mi(x)∥ = |Φi(x)| ≤
N

∑
j=1

(
γ I

i j|sinx j1|+ γ II
i j |x j2|

)
. (9.12)
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Remark 9.1. From (9.7) and (9.12) it is observed that the interconnections Mi(x) are
nonlinear and their bounds also take nonlinear forms instead of constants as in the
work described in [71]. By using the nonlinear bounds, a control scheme with less
conservatism will be presented.

9.3 Sliding Motion Analysis and Control Design

In this section, a sliding surface will be synthesized using the approach proposed by
Edwards and Spurgeon [39, 40]. Then, under some mild conditions, the stability of
the sliding mode dynamics is analysed and a decentralized output feedback sliding
mode control strategy is proposed to guarantee that the system (9.1)–(9.2) can reach
the sliding surface in finite time and remain on it thereafter.

9.3.1 Basic assumptions

In this section, some basic assumptions are imposed on the system (9.1)–(9.2).

Assumption 9.1. The matrices Ci and Bi satisfy CiBi ̸= 0 for i = 1,2, . . . ,N.

From Section 2.6, it follows that Assumption 9.1 implies that there exists a non-
singular linear coordinate transformation such that the triple (Ai,Bi,Ci) with respect
to the new coordinates has the structure

Ãi =

[
Ãi1 Ãi2

Ãi3 Ãi4

]
, B̃i =

[
0
b̃i

]
, C̃i =

[
0 C̃i2

]
(9.13)

where Ãi1 ∈ R2×2, b̃i ∈ R and C̃i2 ∈ Rpi×pi for i = 1,2, . . . ,N. Furthermore b̃i ̸= 0
and det(C̃i2) ̸= 0.

Assumption 9.2. The triple (Ãi1, Ãi2,Ξi) is output feedback stabilisable where the
matrix pair (Ãi1, Ãi2) is given by (9.13) and the matrix Ξi =:

[
0(pi−1)×(ni−pi) Ipi−1

]
for i = 1,2, . . . ,N.

Under Assumptions 9.1 and 9.2, Edwards and Spurgeon [39, 40] show that there
exists a coordinate transformation xi 7→ zi = Tixi where

Ti =

[
I 0

−KiΞi I

]
such that in the new coordinates system (Ai,Bi,Ci) has the following structure[

Ai1 Ai2
Ai3 Ai4

]
,

[
0
bi

]
,
[
0 Ci2

]
(9.14)
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where Ai1 = Ãi1− Ãi2KiΞi is stable, bi ̸= 0 and Ci2 ∈ Rpi×pi is nonsingular.

Remark 9.2. Assumptions 9.1 and 9.2 are limitations on the isolated nominal sub-
systems. They ensure the existence of the output sliding surface. Notably, Assump-
tion 9.2 requires (Ãi1, Ãi2,Ξi) instead of (Ai,Bi,Ci) to be output feedback stabilis-
able. This is in contrast with other output feedback control results for interconnected
systems (see, for example [205, 221]). It should be emphasized that all the matrices
in (9.13) and (9.14) can be obtained directly from (Ai,Bi,Ci) using the algorithm
given in [39, 40].

Assumption 9.3. There exist positive constants αi < 1 and known continuous func-
tions βi j(x j) such that

|T ′doiθi| ≤ αi (9.15)

∥∆Mi(x)∥ ≤
N

∑
j=1

βi j(x j)∥x j∥. (9.16)

for i, j = 1,2, . . . ,N.

Remark 9.3. Assumption 9.3 is a limitation on the uncertainties that can be tolerated
by the system. From the work in [202, 114], these assumptions are fundamental and
reasonable. The structural requirement on the interconnection bounds in (9.16) is not
essential because it can be easily extended to a more general case (see for example
[222]).

9.3.2 Stability of sliding motion

Based on the assumptions above, the stability of the sliding mode is analysed in
this section. Suppose Assumptions 9.1 and 9.2 are satisfied. From Section 2.6, there
exist matrices

Fi =
[

K1 1
]
C̃−1

i2 (9.17)

such that for i = 1,2, . . . ,N the system

ẋi = Aixi +Biv f i

when restricted to
FiCixi = 0

is stable, where FiCixi = 0 is called the switching surface. Consider the composite
sliding surface for the interconnected system (9.1)–(9.2) as

S(x) = 0 (9.18)

with S(x) =: col(S1(x1),S2(x2), . . .SN(xN)) and
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Si(xi) = FiCixi = Fiyi (9.19)

where the Fi can be obtained from the algorithm given in [39, 40]. Next the sta-
bility of the system (9.1)–(9.2) when restricted to the sliding surface (9.18) will be
considered.

From the structure of ∆Ai in (9.4), it follows that

Ti∆AiT−1
i zi = Ti

 0
0

θixi3

= (TiBi)T ′doiθi(Pei−Pmi0). (9.20)

In the new coordinates z = col(z1,z2, . . . ,zN), system (9.1)–(9.2) has the following
form

żi =

[
Ai1 Ai2

Ai3 Ai4

]
zi +

[
0
bi

](
(1−T ′doiθi)v f i +θiT ′doi(Pei−Pmi0)

+T ′doiΦi(x)
)
+Ti∆Mi(x) (9.21)

yi =
[
0 Ci2

]
zi, i = 1,2, . . . ,N, (9.22)

where Ai1 is stable, bi ̸= 0 and Ci2 ∈ Rpi×pi is nonsingular with

Fi
[
0pi×(ni−pi) Ci2

]
=
[
01×2 fi

]
(9.23)

where fi ̸= 0 is a real constant.
Since Ai1 is stable for i = 1, . . .N, for any Λi > 0, the following Lyapunov equa-

tion has a unique solution Πi > 0 such that

Aτ
i1Πi +ΠiAi1 =−Λi, i = 1,2, . . . ,N. (9.24)

For convenience, partition

Ti =:
[

Ti1
Ti2

]
, T−1

i =:
[
Wi1 Wi2

]
(9.25)

where Ti1 ∈ R2×3 and Wi1 ∈ R3×2. Then, system (9.21)–(9.22) can be rewritten as

żi1 = Ai1zi1 +Ai2zi2 +Ti1∆Mi(T−1z) (9.26)

żi2 = Ai3zi1 +Ai4zi2 +(1−T ′doiθi)v f i +θiT ′doi∆Pei

+T ′doiΦi(x)+Ti2∆Mi(T−1z) (9.27)

yi =
[
0 Ci2

]
zi, i = 1,2, . . . ,N (9.28)

where T−1 =: diag
{

T−1
1 ,T−1

2 , . . . ,T−1
N

}
, zi1 ∈ R2 and zi2 ∈ R. Now, consider the

sliding surface (9.19) in the new coordinate system. From (9.23),
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Fi
[
0 Ci2

]
zi = fizi2

and since fi ̸= 0 it follows that the sliding surface (9.18) becomes

zi2 = 0, i = 1,2, . . . ,N. (9.29)

When system (9.26)-(9.28) is restricted to the sliding surface (9.29), it has the fol-
lowing form

żi1 = Ai1zi1 +Ti1∆Mi(Wz1), i = 1,2, . . . ,N (9.30)

where z1 =: col(z11,0,z21,0, . . . ,zN1,0), and W =: diag{W11,0,W21,0, . . . ,WN1,0}.

Theorem 9.1. For system (9.1)–(9.2), suppose Assumptions 9.1-9.3 are satisfied.
Then, the sliding mode is asymptotically stable if there exists a domain Ω ⊂
RN×(n−m) including the origin, such that

Lτ +L > 0

in Ω \{0} where L ∈ RN×N is given element-wise by

Li j =

{
λmin(Λi)−2∥ΠiTi1∥∥Wi1∥βii(Wi1zi1,0), i = j

−2∥ΠiTi1∥∥Wj1∥βi j(Wj1z j1,0), i ̸= j

where Πi and Λi are defined in (9.24), and λmin(·) denotes the minimum eigenvalue
of the matrix for i, j = 1,2 . . . ,N.

Proof: From the analysis above, all that needs to be proved is that system (9.30) is
asymptotically stable. For system (9.30), consider the Lyapunov function candidate

V =
N

∑
i=1

(zi1)
τ Πizi1

The time derivative of V along the trajectories of system (9.30) is given by

V̇ |(9.30) =
N

∑
i=1

{
− (zi1)

τ Λizi1 +2(zi1)
τ ΠiTi1∆Mi(Wz1)

}
(9.31)

where (9.24) is used to obtain the first term in the bracket. From Assumption 9.3

V̇ ≤
N

∑
i=1

{
−λmin(Λi)∥zi1∥2 +2∥zi1∥∥ΠiTi1∥

N

∑
j=1
∥∆Mi(Wz1)∥

}
≤ −

N

∑
i=1

λmin(Λi)∥zi1∥2 +2
N

∑
i=1

{
∥zi1∥∥ΠiTi1∥

N

∑
j=1

βi j(Wj1z j1,0)∥Wj1∥∥z j1∥
}
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= −
N

∑
i=1

{
λmin(Λi)−2βii(Wi1zi1,0)∥ΠiTi1∥∥Wi1∥

}
∥zi1∥2

+2
N

∑
i=1

N

∑
j=1
j ̸=i

βi j(Wj1z j1,0)∥ΠiTi1∥∥Wj1∥∥zi1∥∥z j1∥

= −1
2
[
∥z11∥ ∥z21∥ · · · ∥zN1∥

]
(Lτ +L)


∥z11∥
∥z21∥

...
∥zN1∥

 (9.32)

Then, the conclusion follows since Lτ +L > 0 for col(z11,z21, . . . ,zN1) ∈Ω \{0}. #
It should be emphasised that in Theorem 9.1, Lτ + L > 0 only depends on the

partial state variables zi1 instead of the entire state variables zi (actually xi). This is
in contrast with the work [221, 205, 222]. As such, this result is less conservative.

Theorem 9.1 presents a condition under which the sliding mode dynamics is
asymptotically stable. The next objective is to design a decentralized output feed-
back sliding mode control law such that the system state is driven to and maintained
on the sliding surface.

9.3.3 Sliding mode control synthesis

Traditionally, the reachability condition (see for example [40, 182]) is described by

Sτ(t)Ṡ(t)< 0

for small scale systems with switching function S(t). However, for the intercon-
nected system (9.1)–(9.2), the corresponding condition is described by

N

∑
i=1

Sτ
i (xi)Ṡi(xi)

∥Si(xi)∥
< 0 (9.33)

where Si(xi) is defined by (9.19). For details see [74]. This condition is called com-
posite reachability condition for interconnected systems.

From (9.12) and (9.16), for i = 1,2, . . . ,N

∥Mi(x)+∆Mi(x)∥ ≤
N

∑
j=1

(
γ I

i j|sinx j1|+ γ II
i j |x j2|

)
+

N

∑
j=1

βi j(x j)∥x j∥

=:
N

∑
j=1

ηi j(x j) (9.34)
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In order to fully use system output information, consider the output matrix Ci. Com-
paring system (9.1)–(9.2) with (9.21)–(9.22), it follows that

Ci =
[
0 Ci2

]
Ti =Ci2

[
0 Ipi

]
Ti, i = 1,2, . . . ,N. (9.35)

where Ci2 is nonsingular and satisfies (9.23). Splitting Tixi into two components
(Tixi)1 ∈ R(3−pi) and (Tixi)2, it follows that

xi = T−1
i Tixi = T−1

i

[
(Tixi)1
(Tixi)2

]
= T−1

i

[
(Tixi)1
C−1

i2 yi

]
(9.36)

Further, let

FiCiAiT−1
i =:

[
ϒi1 ϒi2

]
(9.37)

FiCi

[
0

T−1
i,3

]
=:
[
Γi1 Γi2

]
(9.38)

where T−1
i,3 denotes the 3rd row of the matrix T−1

i , ϒi1 ∈ R1×(3−pi) and Γi1 ∈
R1×(3−pi) for i = 1,2, . . . ,N. Since

FiCiBi = FiCiT−1
i TiBi = Fi

[
0 Ci2

][0
bi

]
=
[
0 fi
][0

bi

]
= fibi

it follows that FiCiBi is nonsingular due to fi ̸= 0 and bi ̸= 0 for i = 1,2, . . . ,N.
The objective is to satisfy the composite reachability condition (9.33). Consider

system (9.1)–(9.2) in the domain D =: D1 ×D2 × ·· · ×DN where Di ∈ R3 and
explicitly

Di =:
{

xi | xi ∈ R3, ∥(Tixi)1∥ ≤ µi
}
, i = 1,2, . . . ,N (9.39)

for some positive constant µi.
Then, the following control law is proposed for i = 1,2, · · · ,N

v f i =−
1

1−αi
(FiCiBi)

−1sign(Fiyi)
[
∥ϒi2C−1

i2 yi∥+
αi

T ′doi
∥Γi2C−1

i2 yi∥+ ki(yi)
]

(9.40)

where sign(·) represents the signum function, Fi is defined by (9.19) and can be
designed by the approach in [39, 40], αi is determined by Assumption 9.3, and
ki(yi) ≥ 0 is a control gain to be designed later. Obviously, the control law (9.40)
depends only on system outputs and is decentralized.

Theorem 9.2. Consider the nonlinear interconnected system (9.1)–(9.2). Under As-
sumptions 9.1-9.3, the decentralized sliding mode control (9.40) drives the system
(9.1)–(9.2) to the composite sliding surface (9.18) and maintains a sliding motion
in the domain D if the control gain function ki(yi) satisfies
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ki(yi)>

(
∥ϒi1∥+

αi

T ′doi
∥Γi1∥

)
µi +

N

∑
j=1
∥FjC j∥η ji(xi) (9.41)

where Fi and η ji are determined by (9.19) and (9.34) respectively for i , j =
1,2, . . . ,N and D is defined by (9.39).

Proof: It is necessary to prove that the composite reachability condition (9.33) is
satisfied.

From (9.19), (9.37), (9.38) and the structures of Bi and ∆Bi, the sliding mode
dynamics of the system (9.1)–(9.2) can be described by

Ṡi(xi) = FiCi(Ai +∆Ai)xi +FiCi(Bi +∆Bi)v f i +FiCi [Mi(x)+∆Mi(x)]

= (ϒi1 +θiΓi1)(Tixi)1 +(ϒi2 +θiΓi2)C−1
i2 yi +FiCiBi

(
1−θiT ′doi

)
v f i

+FiCi [Mi(x)+∆Mi(x)] (9.42)

for i = 1,2 . . . ,N. Substituting (9.40) into (9.42), it follows that

N

∑
i=1

Sτ
i (xi)Ṡi(xi)

∥Si(xi)∥

=
N

∑
i=1

(Fiyi)
τ

∥Fiyi∥

{
(ϒi2 +θiΓi2)C−1

i2 yi−
1−θiT ′doi

1−αi
sign(Fiyi)

(
∥ϒi2C−1

i2 yi∥

+
αi

T ′doi
∥Γi2C−1

i2 yi∥
)
+(ϒi1 +θiΓi1)(Tixi)1 +FiCi [Mi(x)+∆Mi(x)]

−
1−θiT ′doi

1−αi
sign(Fiyi)ki(yi)

}
(9.43)

From Assumption 9.3,

1−θiT ′doi ≥ 1−
∣∣θiT ′doi

∣∣≥ 1−αi > 0. (9.44)

Then, for i = 1,2, . . . ,N
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(Fiyi)
τ

∥Fiyi∥

{
(ϒi2 +θiΓi2)C−1

i2 yi−
1−θiT ′doi

1−αi
sign(Fiyi)

(
∥ϒi2C−1

i2 yi∥

+
αi

T ′doi
∥Γi2C−1

i2 yi∥
)}

=
(Fiyi)

τ

∥Fiyi∥
(
ϒi2C−1

i2 yi +θiΓi2C−1
i2 yi

)
−

1−θiT ′doi
1−αi

(
∥ϒi2C−1

i2 yi∥

+
αi

T ′doi
∥Γi2C−1

i2 yi∥
)

≤ ∥ϒi2C−1
i2 yi∥+ |θi|∥Γi2C−1

i2 yi∥−∥ϒi2C−1
i2 yi∥−

αi

T ′doi
∥Γi2C−1

i2 yi∥

=

(
|θi|−

αi

T ′doi

)
∥Γi2C−1

i2 yi∥

≤ 0, (9.45)

and from (9.34)

(Fiyi)
τ

∥Fiyi∥

{
(ϒi1 +θiΓi1)(Tixi)1 +FiCi [Mi(x)+∆Mi(x)]

−
1−θiT ′doi

1−αi
sign(Fiyi)ki(yi)

}
=

(Fiyi)
τ

∥Fiyi∥

[
(ϒi1 +θiΓi1)(Tixi)1 +FiCi [Mi(x)+∆Mi(x)]

]
−

1−θiT ′doi
1−αi

ki(yi)

≤
(
∥ϒi1∥+

αi

T ′doi
∥Γi1∥

)
∥(Tixi)1∥+∥FiCi∥∥Mi(x)+∆Mi(x)∥− ki(yi)

≤
(
∥ϒi1∥+

αi

T ′doi
∥Γi1∥

)
∥(Tixi)1∥+∥FiCi∥

N

∑
j=1

ηi j(x j)− ki(yi) (9.46)

where (9.44) is used to establish the first inequality.
Now, substituting (9.45) and (9.46) into (9.43), in the domain D

N

∑
i=1

Sτ
i (xi)Ṡi(xi)

|Si(xi)|

≤
N

∑
i=1

{(
∥ϒi1∥+

αi

T ′doi
∥Γi1∥

)
µi +∥FiCi∥

N

∑
j=1

ηi j(x j)− ki(yi)

}

=
N

∑
i=1

{[(
∥ϒi1∥+

αi

T ′doi
∥Γi1∥

)
µi +

N

∑
j=1
∥FjC j∥ηi j(xi)

]
− ki(yi)

}
. (9.47)

Then, if ki(yi) is chosen to satisfy (9.41), it follows that in the domain D

N

∑
i=1

Sτ
i (xi)Ṡi(xi)

|Si(xi)|
< 0.
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Hence, the result follows. #

Remark 9.4. It should be noted that inequality (9.41) can be satisfied globally only
in some specific cases. However, it can always be satisfied in the arbitrarily large
domain D with µi < ∞ for i = 1,2, . . . ,N if the control gain ki(yi) is sufficiently
high. In fact, one conservative choice of ki(yi) is

ki(yi)>
(
∥ϒi1∥+

αi

T ′doi
∥Γi1∥

)
µi +

N

∑
j=1
∥FjC j∥max

xi∈Di

{
η ji
(
(Tixi)1,C−1

i2 yi
)}

for i = 1,2, . . . ,N.

Remark 9.5. From the analysis above, it is observed that there is no special require-
ment on the interconnections Mi(xi) for i = 1,2, . . . ,N. Only their bounds are as-
sumed to be known. This shows that the approach is applicable to the multimachine
power system which has high nonlinearity and coupling.

Remark 9.6. From (9.8) and (9.40), the designed excitation control for the original
multimachine power system is as follows

u f i = −
1

IqiKci

[
1

1−αi
(FiCiBi)

−1sign(Fiyi)
(
∥ϒi2C−1

i2 yi∥

+
αi

T ′doi
∥Γi2C−1

i2 yi∥+ ki(yi)
)
+(xdi− x′di)IqiIdi +Pmi0

+T ′doiQeiωi

]
, i = 1,2, . . . ,N. (9.48)

Remark 9.7. According to sliding mode control theory, Theorems 9.1 and 9.2 show
that the closed loop system resulting from the designed control law (9.48) and sys-
tem (9.1)–(9.2) is asymptotically stable. Moreover, under Assumptions 9.1-9.3, the
multimachine power system is globally stabilized by (9.48) if for i, j = 1,2, . . . ,N,

i) LT +L > 0 is satisfied globally;
ii) ϒi1 = 0 and Γi1 = 0;
iii)ηi j(xi) is bounded by a function of yi.

9.4 Simulation on Three Machine Power Systems

Consider the three-machine power system shown in Figure 9.2 where the generator
3 is an infinite busbar being used as a reference.

This system is also called the two-machine infinite bus power system (see [71]).
The simulation parameters listed in Appendix E.2 are chosen as in [71, 202]. Then
it follows that

|Pe1|max = |Qe1|max = 1.4, |Pe2|max = |Qe2|max = 1.5
|T ′do1|min = 6.21s, |T ′do2|min = 7.614s
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Fig. 9.2 A three-machine power system

As in [202], take
∆T ′doi = 0.1T ′doi

for i= 1,2. With the chosen value of ∆T ′doi, it follows that equation (9.15) is satisfied
for

α1 = α2 = 0.1

In addition, assume

∥∆M1∥= ∥∆M2∥ ≤ (x13−0.0025x11)
2∥x1∥2 +0.006∥x2∥

Then, from (9.1)

A1 =

0 1 0
0 −0.625 −39.27
0 0 −0.1449

 , B1 =

 0
0

0.1449

 , C1 =

[
0 0 1
1 0 0

]

and

A2 =

0 1 0
0 −0.2941 −30.8
0 0 −0.1256

 , B2 =

 0
0

0.1256

 , C2 =

[
0 0 1
1 0 0

]

where C1 and C2 are assumed to be the system output matrices.
Obviously, Assumption 9.1 is satisfied. Let
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K1 =−0.0025, K2 =−0.0008

Then according to the algorithm given by Edwards and Spurgeon [39, 40], it can be
verified that Assumption 9.2 is satisfied, and the appropriate transformation matrices
(9.25) are given by

T1 =

[
T11
T12

]
=

 0 1 0
1 0 0

−0.0025 0 1

 , T2 =

[
T21
T22

]
=

 0 1 0
1 0 0

−0.0008 0 1


and consequently

W11 =

 0 1.0000
1.0000 0

0 0.0025

 , W21 =

 0 1.0000
1.0000 0

0 0.0008


In the new zi coordinate system the special representation of the triple in (9.14) takes
the form [

A11 A12

A13 A14

]
=

 −0.6250 −0.0982 −39.27
1.0000 0 0
−0.0025 −0.0004 −0.1449


[

A21 A22

A23 A24

]
=

 −0.2941 −0.0246 −30.8000
1.0000 0 0
−0.0008 −0.0001 −0.1256


and

C12 =

[
0.0025 1

1 0

]
C22 =

[
0.0008 1

1 0

]

The associated switching functions matrices from (9.17) are

F1 =
[
1 −0.0025

]
, F2 =

[
1 −0.0008

]
Choosing Λ1 = I2, Λ2 = 0.1I2 and solving the Lyapunov equations (9.24) yields

Π1 =

[
8.9466 5.0916
5.0916 4.0608

]

and

Π2 =

[
7.0810 2.0325
2.0325 0.7720

]
Since in the sliding surface
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x13−0.0025x11 = 0

it is easy to observe that

β11(W11z11,0) = 0, and β21(W11z11,0) = 0

and further

β12(W21z21,0) = 0.006, and β22(W21z21,0) = 0.006

By direct computation,

L+Lτ =

[
2.0000 −0.1458
−0.1458 0.0157

]
> 0

Then, from Theorem 9.1 the designed sliding mode is globally asymptotic stable.
By Theorem 9.2, the 3-machine power system is stabilized by the control law

v f 1(y1) = −
1

0.9×0.1449
sign(y11−0.0025y12)

(
0.1449|y11|

+
1
69
|y11−0.0025y12|+ k1(y1)

)
(9.49)

v f 2(y2) = −
1

0.9×0.1256
sign(y21−0.0008y22)

(
0.1256|y21|

+
10
796
|y21−0.0008y22|+ k2(y2)

)
(9.50)

where

k1(y1) = 2.9025µ1 +1.8036|siny12|+(y11−0.0025y12)(y2
11 + y2

12 +µ2
1 )+0.5,

k2(y2) = 2.9008µ2 +1.471|siny22|+0.012
√

y2
21 + y2

22 +µ2
2 +0.5.

The original control signals u f 1 and u f 2 can be obtained from (9.48).
For simulation purposes, let

µ1 = µ2 = 5

The operating point is chosen as

δ10 = 60.98o, δ20 = 58.62o

ω10 = ω20 = 0 r/s, Pm10 = 1.1 p.u., Pm20 = 1.0 p.u.

Simulation results with initial conditions x0 = (0.05,−0.5,0.3,0.1,2,0.4) are pre-
sented in Figure 9.3 to verify that the results are effective as it is expected.
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Fig. 9.3 The time responses of the three-machine power system under control (9.49)–(9.50)

9.5 Summary

This chapter has presented a sliding mode control strategy to stabilize multimachine
power systems using only static output feedback. A composite sliding surface is
formed at first and then, a decentralized control scheme is synthesized which guar-
antees the reachability condition for the whole interconnected system. The devel-
oped results are convenient for practical design due to their static output feedback
nature. It allows large matched uncertainty and nonlinearities in the interconnection
terms. Simulation shows that the results are effective and valuable.


