
MODEL CONSTRUCTION, EVOLUTION, AND USE
IN TESTING OF SOFTWARE SYSTEMS

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By
Pablo Lamela Seijas

December 2017

Abstract

The ubiquity of software places emphasis on the need for techniques that allow us
to ensure that software behaves as we expect it to behave. The most widely-used
approach to ensuring software quality is unit testing, but this is arguably not a
very efficient solution, since each test only checks that the software behaves as
expected in one single scenario.

There exist more advanced techniques, like property-based testing, model-
checking, and formal verification, but they usually rely on properties, models,
and specifications. One source of friction faced by testers that want to use these
advanced techniques is that they require the use of abstraction and, as humans,
we tend to find it more difficult to think of abstract specifications than to think
of concrete examples.

In this thesis, we study how to make it easier to create models that can be used
for testing software. In particular, we research the creation of reusable models,
ways of automating the generalisation of code and models, and ways of automating
the generation of models from legacy unit tests and execution traces.

As a result, we provide techniques for generating tests from state machine
models, techniques for inferring parametrised state machines from code, and refac-
torings that automate the introduction of abstraction for property-based testing
models and code in general. All these techniques are illustrated with concrete
examples and with open-source implementations that are publicly available.

ii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Simon J. Thompson,
who always knows what to do, for giving me this opportunity, for sharing his
wisdom with me, and for being so patient during all these years (which I am sure
has been necessary many times).

Secondly, I would like to thank my parents, for their support, for keeping my
feet on the ground, and for being a constant reference in this roller-coaster.

Thirdly, I would also like to thank participants in the Prowess project, for
sharing their knowledge with me; meetings were very enlightening and it was a
privilege to participate in such a diverse and knowledgeable community.

Specially, I would like to thank Dr. Miguel Ángel Francisco Fernández and Dr.
Laura M. Castro Souto, in addition to having contributed in many ways (some of
which are mentioned throughout this thesis), our discussions over video-conference
were the foundation of James and, by extension, of the parametrised automaton.

I would also like to give a special mention to our colleagues from the University
of Sheffield: Dr. Kirill Bogdanov, Dr. Ramsay Taylor, and Prof. John Derrick. It
is thanks to them that I know most of what I know about state machine inference,
and their ideas have probably influenced this thesis more than I am aware of.

Thanks to my examiners: Dr. Dominic Orchard, Dr. Neil Walkinshaw, and
Prof. Joe Armstrong; and to my yearly review examiners: Dr. Stefan Kahrs and
Dr. Eerke Boiten, for the interesting discussions, and for making this thesis better.

I also want to thank Dr. Huiqing Li, for her help and advice, for being a role
model, and because her work has proven a solid foundation and inspiration.

I would like to thank my house-mates Dr. Olaf Chitil and Dr. Leishi Zhang,
for welcoming me in their lovely house during all this time.

Finally, I would like to thank all my friends and family for their support; and
I apologise in advance to everybody that I may have forgotten to mention.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Testing . 1
1.2 Models . 2
1.3 Simplifying model creation . 3
1.4 System under test . 4
1.5 Property-based Testing . 5

1.5.1 Models and property-based testing 6
1.6 Control and data flow . 7
1.7 Summary . 8
1.8 Contributions . 9

1.8.1 Software contributions . 10

2 Background 12
2.1 Erlang . 12

2.1.1 Variables and atoms . 13
2.1.2 Block expressions . 13
2.1.3 Preprocessor directives and macros 13

iv

2.1.4 Meta-programming . 14
2.1.5 Frequency server . 15

2.2 Finite State Machine . 16
2.3 State merging FSM inference . 17

2.3.1 Blue-Fringe algorithm . 18
2.3.2 K-tails algorithm . 20

2.4 QuickCheck . 20
2.4.1 QuickCheck eqc_statem 21
2.4.2 QuickCheck eqc_fsm . 23

2.5 Graphviz and dot . 24
2.6 Design patterns . 24

2.6.1 Template pattern . 25
2.6.2 Façade pattern . 25

3 Modelling components 27
3.1 Contributions . 28

3.1.1 Software contributions . 28
3.2 Background . 29

3.2.1 Representational State Transfer (REST) 29
3.2.1.1 REST vs CRUD 29

3.2.2 JSON . 30
3.2.3 XML . 31
3.2.4 JVMTI . 31

3.3 Universal interface . 32
3.3.1 REST assumptions . 33
3.3.2 Practical difficulties of REST in HTTP 34

3.4 Systems under test . 35
3.4.1 Storage Room . 36
3.4.2 Google Tasks . 36

3.5 Collection model . 36
3.5.1 Locating resources . 37
3.5.2 Functions of the model . 39
3.5.3 Finite-state machine . 44
3.5.4 Generators and JSON . 46

v

3.6 Using the model in practice . 49
3.6.1 Discovering by testing . 50

3.6.1.1 The existence of a trash 50
3.6.1.2 The representation of PATCH 51
3.6.1.3 Interpretation of mandatory fields 51

3.6.2 The façade pattern . 52
3.7 Chapter conclusion . 52

4 Differences and generalisation 54
4.1 Contributions . 55

4.1.1 Software contributions . 56
4.2 Background . 56

4.2.1 Erlang behaviours . 56
4.2.2 ets and dets . 58
4.2.3 Wrangler . 59

4.2.3.1 Built-in refactorings 59
4.2.3.2 Inspection tools 59
4.2.3.3 Extension mechanisms 59

4.2.4 Statechum . 60
4.2.4.1 PLTSDiff . 60
4.2.4.2 Synapse . 61

4.3 Source parametrisation . 61
4.3.1 Interactive refactoring . 62

4.3.1.1 Basic refactorings and transformations 63
4.3.1.2 Behaviour extraction 65
4.3.1.3 Behaviour inlining 66
4.3.1.4 Example . 67

4.3.2 Integrated refactoring . 72
4.3.2.1 Tree mapping . 74
4.3.2.2 Cluster construction 77
4.3.2.3 Cluster linking 80
4.3.2.4 Extra considerations 83

4.3.3 Wrangler usage . 90
4.3.4 Case study . 91

vi

4.3.4.1 Frequency server 92
4.3.4.2 ets and dets tables 93

4.3.5 Integrated approach as aid in unification 98
4.3.6 Discussion . 102

4.4 Model parametrisation . 103
4.4.1 Variants and configurations 104
4.4.2 Experiment structure . 105
4.4.3 Deallocation behaviour . 105
4.4.4 Allocation behaviour . 108
4.4.5 Number of initial frequencies 108

4.5 Chapter conclusions . 112

5 Combining control and data 114
5.1 Contributions . 116

5.1.1 Software contributions . 118
5.2 Instrumentation . 118

5.2.1 Static and dynamic approaches 119
5.2.1.1 Static approaches 119
5.2.1.2 Dynamic approaches 119
5.2.1.3 Our approach . 120

5.2.2 Data and control flow . 120
5.2.2.1 Data flow . 120
5.2.2.2 Control flow . 121

5.3 Architecture of the approach . 122
5.3.1 JUnit and JVM . 122
5.3.2 JVMTI agent and JNI . 122
5.3.3 Erlang server . 123
5.3.4 GraphViz and QuickCheck models 123

5.3.4.1 GraphViz . 124
5.3.4.2 QuickCheck FSM 124

5.3.5 Feedback . 124
5.4 Model construction . 124

5.4.1 Common flow graph . 125
5.4.2 Merging process . 127

vii

5.5 Example . 136
5.5.1 Interpreting the model . 136
5.5.2 The model is more general 139

5.6 Test generation . 139
5.6.1 Building a eqc_fsm model 139
5.6.2 Generation of tests . 144

5.7 Pilot study . 147
5.7.1 Results of the pilot study 148

5.7.1.1 Number of tests required as input 149
5.7.1.2 Additional effort required to obtain useful models 149
5.7.1.3 Number of new tests generated 150
5.7.1.4 Number of bugs revealed 150
5.7.1.5 Time and computational resources required . . . 151
5.7.1.6 Developer evaluation 151

5.7.2 Second run . 151
5.8 Limitations . 154

5.8.1 Technical limitations . 155
5.8.2 Conceptual limitations . 155
5.8.3 Control tracking workaround 156

5.9 Lessons learned . 157
5.9.1 Implicit relationships . 157
5.9.2 Classification of traces . 158
5.9.3 State inference for objects 159

5.10 Chapter conclusions . 160

6 Recovering soundness 161
6.1 Contributions . 163

6.1.1 Software contributions . 164
6.2 Parametrised automaton formal definition 164

6.2.1 Input format . 164
6.2.1.1 Alphabet . 164
6.2.1.2 Symbol . 165
6.2.1.3 Parametrised trace 165
6.2.1.4 Example . 166

viii

6.2.2 Parametrised automata . 166
6.2.2.1 Possible sources 166
6.2.2.2 Possible source combinations 167
6.2.2.3 Parametrised automata 168
6.2.2.4 Example . 168

6.2.3 Run . 170
6.2.3.1 Execution state 170
6.2.3.2 Execution state transition algorithm 173
6.2.3.3 Example . 175

6.3 Inference algorithm . 176
6.3.1 Dependency rewriting . 177

6.3.1.1 Pointing to last usage 177
6.3.2 APTA generation . 178
6.3.3 State merging . 180

6.3.3.1 Difference from Blue-Fringe 180
6.3.3.2 Merging procedure 182
6.3.3.3 Solving non-determinism 182
6.3.3.4 Example . 183

6.3.4 Transition merging . 184
6.3.4.1 Semantics and restrictions 186
6.3.4.2 Transition non-determinism 187
6.3.4.3 General approach 189
6.3.4.4 Updating the formal model 189
6.3.4.5 Example . 189
6.3.4.6 Frequency server 189

6.4 Soundness . 193
6.5 Chapter conclusions . 196

7 Related Work 198
7.1 Testing web services . 198
7.2 Modelling differences . 199

7.2.1 Source parametrisation . 199
7.2.1.1 IntelliJ IDEA . 200
7.2.1.2 Automatic generalisation 200

ix

7.2.1.3 Clone detection and elimination 201
7.2.1.4 Remodularisation 201

7.2.2 Model parametrisation . 202
7.3 Modelling control and data . 202

8 Conclusions 205
8.1 Generalisation . 205

8.1.1 Components . 205
8.1.2 Comparison . 206
8.1.3 State merging . 206

8.2 Models . 206
8.3 Future work . 207

8.3.1 Components . 208
8.3.2 Comparison . 208
8.3.3 State merging . 208

Bibliography 210

A Frequency server base implementation 222

B Frequency server web service main parts 225

C JUnit tests by Interoud Innovation 231

D James eqc_fsm for Freq Server 239

x

List of Tables

1 Influence of the minimum common cluster size parameter 95
2 Effect of lower and upper K on 2 run of pilot study 131
3 Diagram symbol legend . 137
4 Colour legend for method nodes outline 138
5 Distribution of postconditions in tests generated 152
6 Distribution of methods that produce HTTP requests 153
7 Manual evaluation of interest for first 30 tests 153
8 Manual evaluation of positive or negative testing 153
9 Legend for parametrised automaton diagrams 171

xi

List of Figures

1 Example prefix tree acceptor . 18
2 Possible state machine for the state of the stop-watch model . . . 23
3 Example of template design pattern 25
4 Example of façade design pattern 26
5 FSM for collection model . 44
6 Representation of model and façade over Storage Room 53
7 Initial code . 67
8 Quasi-behaviour definition and instance after extraction 68
9 Behaviour definition and instance after adjustments 69
10 Alternative adjustments for generalisation 1 70
11 Alternative adjustments for generalisation 2 70
12 Result of inlining . 71
13 Result of removing spurious parameters 72
14 Example input for the integrated refactoring 74
15 Result of applying the integrated refactoring to Figure 14 75
16 Example of pair of nodes with contiguous mapping 77
17 Tree matching and cluster construction 78
18 Example of linking . 81
19 Example of fragmentation by horizontal border 84
20 Example solution to fragmentation 85
21 Example of exported variables and result combined 87
22 Output of our refactoring for modules in Figure 21 88
23 Original version of similar functions to be unified 99
24 Result of unifying the functions 101
25 Modifications for noop deallocation 106
26 Both deallocation behaviours side by side 107

xii

27 Differences between cannot and noop deallocation 107
28 Modifications for lifo allocation 108
29 Both allocation behaviours side by side 109
30 Differences between smallf and lifo allocation 109
31 Modifications for configuration with 3 available frequencies 110
32 Behaviour for 3 frequencies: {3, cannot, lifo} 111
33 Differences between 2 and 3 available frequencies 111
34 Frequency server state machine with data and control flow 115
35 Architecture of James . 122
36 Example of abstracted out code 126
37 Example of external code included because of dependencies 128
38 Merging algorithm base function pseudo-code 132
39 Equivalent subtree initialisation pseudo-code 133
40 Example subtree data type pseudo-code 133
41 Equivalent subtree search pseudo-code 134
42 Diagram extracted by James from the Frequency server 140
43 Slice of diagram displaying exceptional behaviour 141
44 Chicken and egg problem in data generation 143
45 Diagram representation of test generated by James 145
46 Example of test generated by James 146
47 Representation of example parametrised automaton 172
48 APTA tree as it would be generated by Blue-Fringe 179
49 APTA tree as generated by the parametrised algorithm 181
50 State machine after state merging process 185
51 State machine after transition merging process 190
52 Parametrised automaton for finite Frequency server 192
53 Parametrised automaton for infinite Frequency server 194
54 Linked model diagram . 259

xiii

Chapter 1

Introduction

During the last few decades, we have become increasingly dependent on software.
We are aware of its presence in obvious places like in smart-phones, ATMs, and
check-out machines; but the list is even longer for software that has sneaked
into appliances that we traditionally tend to think of as being analogue, like
cars, airplanes, microwaves, televisions, elevators, and even inside some of our
passports. Because of this, the need for some pieces of software to behave as
expected is critical: errors in source code may translate into a lot of frustration,
huge economic loses, or worse (Lyu et al. 1996).

1.1 Testing

The most common way of ensuring software complies with our expectations is
through the use of testing. Testing allows us to compare the behaviour of a system
to our expectations of it; by considering a particular experiment, carrying out the
experiment both in our mental model of the system and in the actual system,
and comparing both results. When made concrete, each of these experiments is
called a test case and can be usually thought of as a set of inputs, and a set of
expectations about the result of running the system on those inputs (executing
the test case).

In particular, the most common type of test are unit tests. Unit tests are tests
targeted at a single component of a system (or unit). When tests are aimed at
checking the interactions of several different components they are called integration
tests.

1

CHAPTER 1. INTRODUCTION 2

When we execute a test case, if the results of the execution do not comply
with the expectations described by the test case, we can conclude that, either we
have found an error in the system (a bug), an error in the test case (an incorrect
test case), or an error in our mental model. We can use this information to fix
the error. Testing increases our confidence in the system, since it increases the
likelihood of it conforming to our expectations; and we can always repeat the
process (Walkinshaw, Derrick and Guo 2009) until we are confident enough.

The entity we use as reference to decide whether a test is correct or not is also
called an oracle1. In the case when the reference is a mental model, we consider
the oracle to be a human oracle; but we can also use other kinds of oracle, for
example, we can use models, or other implementations.

1.2 Models

Following Dijkstra’s famous dictum2, unit tests have a limited effectiveness. They
can only cover a finite and predefined set of scenarios, and they are also costly
to write. Techniques like model-checking, formal verification, and property-based
testing, have proved to be more powerful and effective than unit testing. Nev-
ertheless, all of these techniques require users to specify some kind of model or
property of the system. Independently of the cost required for checking the equiv-
alence or conformity between the system and the formal specification, the problem
of transferring our mental model into some formal specification remains.

The concept of “model” is quite broad and it can range from a brief incomplete
specification to a detailed description of a system. In this work, we use the words
specification and model interchangeably; but, often, the word “model” implies a
particular representation format or methodology, whereas “specification” is seen
as more general.

In the case of software, writing specifications can be seen as similar to writing
programs. In fact, some of the models presented in this work are represented as
code; and, in many cases, it is possible to transform specifications automatically
into programs (more or less efficiently) through specific compilers or through ma-
chine learning (by using supervised learning we can train an AI system to produce

1https://en.wikipedia.org/wiki/Oracle_(software_testing) [last accessed 13-09-17]
2“Testing shows the presence, not the absence of bugs.” (Naur and Randell 1969)

https://en.wikipedia.org/wiki/Oracle_(software_testing)

CHAPTER 1. INTRODUCTION 3

an output that minimises an error function). On the other hand, and for the same
reason, writing specifications also suffers from the same problem as writing pro-
grams (the problem we are trying to solve): we can make mistakes while writing
them.

That is not to say it does not make sense to write properties, specifications, or
models. At the very least, they are useful in that they provide redundancy, that
is, it is harder to make the same error twice, especially if the process for creating
them is different. But this realization gives us insight about important properties
that models must have. We can imagine they must be:

• Simple: the simpler they are, the harder it will be to make mistakes while
creating them, the easier it will be to understand them, and the more likely
we will be to spot errors when looking at them.

• Different from the implementation: they must provide a different perspective
to the one provided by the implementation, otherwise we lose redundancy.
If we use the same perspective to create both the model and the implemen-
tation then we will be more likely to make the same mistakes in both.

• Flexible: they must have enough expressive power to represent whatever we
want to represent (this tends to trade-off with simplicity).

• Modifiable: we must be able to modify the model easily whenever we find
there is an error in it, or if we change our mind about how the system must
behave.

In the end, we look for consistency between a model and a system: an inconsis-
tency can reveal an error either in the model or in the system.

1.3 Simplifying model creation

The use of models for system validation is more efficient than the use of tests
because they are more expressive (as we said, a test can only represent a particular
scenario). But the creation of models is harder and more error prone, since it is
harder for humans to think about abstractions than about concrete examples.
Because of this, in this thesis we focus on making the task of creating models
easier. With that aim, we explore three main approaches:

CHAPTER 1. INTRODUCTION 4

• Component reuse, applied to web services, in Chapter 3.

• Example comparison and parametrisation, applied to source-code and de-
terministic finite automata, in Chapter 4.

• Model inference, in Chapters 5 and 6.

Another common theme throughout this thesis is that it explores different mech-
anisms for abstraction and generalisation. Chapter 3 studies how to model the
behaviour of a type of component generically, so that the model can be reused for
various web services. Chapter 4 illustrates how to generalise commonalities auto-
matically, between pairs of similar models and between pairs of similar implemen-
tations. And Chapters 5 and 6 build upon existing regular inference techniques to
improve their ability to automate the creation of models from examples of their
behaviour. By regular inference we mean the inference of finite-state machines
(FSMs) that represent regular languages (usually from examples of words in the
language and, in some cases, also words not in the language).

1.4 System under test

In order to be able to think generically about a system that we want to model or
test, it is useful to define an interface to articulate some assumptions that we can
use to interact with the system.

All experiments in this thesis treat the system under test (SUT) as if it were
a black-box, this way we avoid relying on implementation details of the SUT.
Whenever we try an approach that relies on the existence of some “source code”,
we use code from models or tests of the system (not the code from the actual
system).

Nevertheless, we often use knowledge about their implementation in order to
guide the generation of tests and the active inference of models. Furthermore, we
usually require systems under test to have three important properties:

• Stateful: we focus on modelling systems that have state. One of the most
basic examples of stateful systems is the electronic flip-flop: even if you know
what the current inputs to the flip-flop are, you cannot predict the outputs
of the flip-flop without knowing its internal state or the previous inputs (the

CHAPTER 1. INTRODUCTION 5

input history). There is work on inference of properties for functions that
pays attention only to their inputs and outputs (Claessen, Smallbone and
Hughes 2010; Ernst et al. 2007), but this type of analysis is out of the scope
of this thesis. We will not try to find specific properties encoded on inputs
but properties about the way different inputs affect the state of the system.

• Deterministic: we assume that, for equal inputs, the response of the system
will always be the same.

• Resettable: knowing that a system is deterministic does not make any differ-
ence if we cannot check what might have happened if we had used a different
input instead. Thus, we also require knowing in advance an action or set
of actions that, when carried out, are guaranteed to bring the system under
test to its original state.

The last two properties do not lose generality, we can theoretically wrap any non-
deterministic software system into a virtual machine that is deterministic and
can be reset – we can use a software that emulates the architecture where the
non-deterministic software was supposed to run and, since we have control over
the emulator, we can record the initial state and every source of non-determinism
and replay it at will. Thus, with some additional effort and complexity, we can
potentially apply our approaches to any software over which we have a minimum
amount of control.

On the other hand, many of the techniques described in this thesis will be
ineffective for stateless systems, and for parts of systems that rely heavily on
structure and abstract properties about the inputs. It is open to future work to
combine the work in this thesis with stateless techniques.

1.5 Property-based Testing

We have mentioned that models can be used for several validation techniques.
But, in this work, we focus on property-based testing: generation of random tests
from properties (in our case from models).

In QuickCheck style (see Section 2.4 on page 20), property-based testing is
done through two components:

CHAPTER 1. INTRODUCTION 6

• Generators – produce random data that can be used as input for the system
under test (SUT). Generators can often be created automatically from type
definitions but, in cases where input is complex and we are only interested
in small subsets of it, we can also define them manually to obtain a higher
probability of “interesting” inputs.

• Properties – are “predicates” (usually functions written in terms of the out-
put, and possibly the input, of the SUT) that decide whether a generic test
succeeds or not. Properties must be necessary but not necessarily sufficient,
in other words: they may not convey the complete semantics of a system.
Several complementary properties can be combined in order to obtain a
better “coverage” of the semantics of the system.

For example, if we want to test a function that is supposed to reverse a list, we
can write:

• a generator that produces random lists with random elements as input (for
example, random numbers);

• a property that checks that applying the function twice to any input pro-
duced by the generator will produce the same input as a result:

reverse(reverse(Input)) == Input

The previous property would not be sufficient since, for example, applying the
identity function twice will also give the input back. But it would be necessary,
since reversing a list twice necessarily produces the original list.

In general, the system can be tested automatically by using the generators to
produce an input, then executing the system under test with the generated input
(in some way), and then checking whether property holds for the obtained output
and, possibly, the input (see Section 2.4 on page 20).

1.5.1 Models and property-based testing

In property-based testing, models can be used as a way of expressing some aspects
of properties and generators. These are useful, for example, if the system under
test (SUT) has an internal state. We can still see input to such a system as a series

CHAPTER 1. INTRODUCTION 7

of calls, but it is easier to create a model of its internal state separately, define how
to generate the calls depending on the state, and model the interactions between
the state and the different calls and results instead. This is what eqc_statem

and eqc_fsm modules in QuickCheck do (see Sections 2.4.1 and 2.4.2 on pages
21 and 23).

1.6 Control and data flow

Through out this thesis, we often make reference to the concepts of control and
data flow.

Control flow When we talk about control flow, we are making reference to how
the order of events or actions in a system affects its state. For example, if we first
put a glass under a tap, open the tap, close the tap, and then remove the glass
from under the tap; we get a different result than if we open the tap, close the
tap, put the glass under the tap, and then remove the glass from under the tap.

In particular, we usually talk about control flow in the way it is represented
by a deterministic finite automaton, that is, we assume there are a number of
states in which the system can be, and we describe control flow as the transitions
of the system from one state to another triggered by some event or action. When
talking about the control flow of a program, we usually mean the order in which
the different methods, functions, or operations are executed or evaluated.

Data flow When we talk about data flow, we are making reference to how
information propagates throughout a system. For example, when ordering food
in a restaurant, the waiter may ask the client about the order, the client may
communicate the order to the waiter, then the waiter may communicate the order
to the chef, then the waiter may communicate the bill to the client, the client may
communicate the intention to pay to the bank through a debit card transaction,
the bank may communicate the validity of the payment to the waiter, and the
waiter may confirm the transaction by giving the client a receipt.

In particular, we usually talk about data flow in the way it is represented by
a data-dependency graph. When talking about the data flow of a program we

CHAPTER 1. INTRODUCTION 8

usually refer to how the result of function calls is passed as a parameter (or other
mechanisms) to other function calls.

1.7 Summary

In this thesis we will discuss the following topics:

• In Chapter 2, we present previous work upon which this thesis builds.

• In Chapter 3, we study how to make model creation easier by creating
reusable components. In particular, we create a reusable FSM model for
a “collection component” and we apply it to two different production web
services: Storage Room and Google Tasks. The “collection component” is an
idiom that is used to represent a set (or collection) of resources, for example:
a blog can be seen as a collection of posts.

• In Chapter 4, we study how to find commonalities between pairs of specific
models with the aim of creating more general meta-models and to support
the evolution of models. We do that by comparing similar models and
isolating their similarities and differences. We follow two approaches:

– In Section 4.3 (on page 61), we try to automate the introduction of
abstraction, both by combining smaller refactorings and by helping the
user identify commonalities between the structure of two modules and
how to abstract them out.

– In Section 4.4 (on page 103), we describe a series of experiments where
we compare the FSM models of different configurations for a particular
system and we analyse how these changes affect the behaviour of the
system.

• In Chapter 5, we study new ways of obtaining general models from determin-
istic unit tests, by combining control and data flow information extracted
from legacy JUnit tests and we illustrate our new mechanisms with exam-
ples from our implementation James (a tool that extracts models from JUnit
tests and generates new tests from the extracted models). We also show how
to use those models to generate new JUnit tests automatically.

CHAPTER 1. INTRODUCTION 9

• In Chapter 6, we refine the inference techniques from Chapter 5 to construct
a new type of model (the parametrised state machine) that is built as an ex-
tension to the FSM model. We also describe a sound algorithm for inferring
such a model in terms of its similarities with the algorithm Blue-Fringe.

• In Chapter 7, we present work that is related to our work as reported in this
thesis.

• In Chapter 8, we comment on our conclusions and suggest some ideas for
future work.

• In Appendix A, we provide the base code for the Frequency server, used in
Chapter 4.

• In Appendix B, we present the classes that implement the main functionality
of the web service version of the Frequency server, used in Chapter 5.

• In Appendix C, we include the source code of the tests provided by Interoud
Innovation for the Frequency server web service, used in Chapter 5.

• In Appendix D, we present the main parts of the eqc_fsm model generated
by James, resulting from work described in Chapter 5.

1.8 Contributions

The main contributions of this thesis are:

• A general model for representing the behaviour of the collection components
(Section 3.5 on page 36).

• A technique for applying the model for collection components to web services
that follow the REST architectural-style (Section 3.6 on page 49).

• Insights from two independent examples that illustrate how to adapt the
model for collection components to real web services (Section 3.6 on page 49).

• A set of refactorings and techniques for automating the abstraction of com-
mon behaviour in concrete implementations with examples (Section 4.3 on
page 61).

CHAPTER 1. INTRODUCTION 10

• Study, through experiments, of the effect of different configurations on the
state machine representation of the behaviour of a system (Section 4.4 on
page 103).

• Insight on one of the causes of state explosion in regular inference (Sec-
tion 4.5 on page 112).

• An approach based on regular inference for modelling data and control flow
of a system from an existing test suite (Section 5.4 on page 124).

• A technique for using models with data and control to generate new tests
(Section 5.6 on page 139).

• A pilot study that evaluates the effectiveness of the technique for generating
new tests (Section 5.7 on page 147).

• The formal definition of an extension to the regular automaton model (called
parametrised automaton) that allows direct representation of symbol param-
eter dependency (Section 6.2 on page 164).

• An informal explanation of how to extend the Blue-Fringe algorithm to learn
parametrised automata (Section 6.3 on page 176).

1.8.1 Software contributions

• As part of the experiments carried out during Chapter 3, I contributed to
the inets module of the standard library of Erlang by adding support for
the method PATCH. This contribution can be seen in the pull request3, which
was accepted for inclusion in the maint branch. The maint branch contains
small changes and is used for minor revisions, the master branch includes
everything that is added to the maint branch4.

• I have implemented all the new refactorings described in Section 4.3 (on
page 61) and are now part of Wrangler’s API5; but there are some refactor-
ings described in Section 4.3 that already existed previous to this work (this

3https://github.com/erlang/otp/pull/917 [last accessed 05-07-17]
4https://github.com/erlang/otp/wiki/Branches [last accessed 04-10-17]
5https://github.com/RefactoringTools/wrangler/pull/69 [last accessed 03-08-17]

https://github.com/erlang/otp/pull/917
https://github.com/erlang/otp/wiki/Branches
https://github.com/RefactoringTools/wrangler/pull/69

CHAPTER 1. INTRODUCTION 11

is explicitly specified when describing the particular refactorings), and there
are some pre-existent generic parts of Wrangler and EDoc (Carlsson 2009),
that I reused when implementing the refactorings. The input and results of
the case studies have also been published in the examples folder of Wran-
gler. And the main refactorings have been added to the menu [Wrangler >
Refactor > Behaviour Refactorings] of Wrangler’s GUI for Emacs.

• As part of the development of the refactorings described in Section 4.3 (on
page 61), I also contributed with small improvements to Wrangler, like the
deletion from export declarations of functions removed by transformations
done using the DSL and concrete syntax6.

• As part of the work in Chapter 5, I implemented the whole of James, whose
source code is publicly available at (Lamela Seijas and Thompson 2014).

• In order to test James previous to the pilot study, I implemented a web
service version of the Frequency server, whose source-code is available in
(Lamela Seijas 2014b) and partially in Appendix B, together with some
examples of tests for the web service version of the Frequency server that
were not used in the pilot study (Lamela Seijas 2014a). Note that there also
exists a separate set of tests for the web service version of the Frequency
server which were implemented by Interoud Innovation, whose source-code
is available in (Francisco 2014a) and also in Appendix C.

• In order to automate the feedback between James and the system under test,
I implemented a Java Erlang Bridge interface that was used to automatically
classify the tests generated by James during the second run of the pilot study
(Lamela Seijas 2014c).

• I implemented prototypes in Haskell for the inference and classification al-
gorithms described in Chapter 6, and their source is publicly available at
(Lamela Seijas and Thompson 2016b).

6https://github.com/RefactoringTools/wrangler/pull/69/commits/
595496649c118c935a4af302a0b5ac91ec6aa13f [last accessed 12-09-17]

https://github.com/RefactoringTools/wrangler/pull/69/commits/595496649c118c935a4af302a0b5ac91ec6aa13f
https://github.com/RefactoringTools/wrangler/pull/69/commits/595496649c118c935a4af302a0b5ac91ec6aa13f

Chapter 2

Background

In this chapter, we provide some background information about previous work
that may not necessarily be similar to the work presented in this thesis, but is,
nevertheless, useful in order to understand it, since it represents the foundation
upon which it is built. The reader may safely skip part or all of the sections in this
chapter if they are already familiar with their contents. In addition, the following
chapters have references to the sections in this chapter, so it should be safe to
“read it lazily”, by delaying the reading of each section until needed.

Throughout this chapter, we will briefly introduce Erlang (in Section 2.1), finite
state machines (in Section 2.2), regular inference (in Section 2.3), QuickCheck (in
Section 2.4), Graphviz (in Section 2.5), and the design patterns used throughout
this thesis (in Section 2.6).

2.1 Erlang

Most of the code discussed in this thesis was written using Erlang (Armstrong
2007; Cesarini and Thompson 2009). Erlang is a strict, dynamically typed, func-
tional programming language with support for higher-order functions, pattern
matching, concurrency, distribution, fault-tolerance, and dynamic code reload-
ing. Erlang’s data types include atoms, numbers, and process identifiers, and the
compound data types tuple, list, and, more recently, map (Ericsson AB 1999).

Structured data such as trees can be represented through the use of compound
data types. Additionally, Erlang’s preprocessor provides a mechanism to define
records at compile time. Erlang records behave like tuples during runtime, but

12

CHAPTER 2. BACKGROUND 13

allow developers to give identifiers to their elements. The use of records simplifies
maintenance of code that uses them, since their elements are accessed by name
instead of by position (as is the case with tuples).

Variables in Erlang are single assignment and most of the features of the
language are side-effect free, but side-effects are possible through, for example,
the use of built-in functions (BIFs) and concurrency primitives.

In the following sections, we briefly introduce some features of Erlang and
related systems that are useful in order to understand the rest of this thesis.

2.1.1 Variables and atoms

In Erlang, atoms represent a distinguished value, which is immutable and simply
stands for itself. The only permissible operations on atoms are checks for equality,
inequality, and ordering. Erlang uses syntax to distinguish between atoms and
variables: if it starts with a small letter it is an atom, if it starts with a capital
letter or an underscore then it is a variable (unless it only consists of an underscore,
in that case it is just a way of ignoring a value). An exception to this rule is when
the name is enclosed in single quotes; for example: ’Foo’ represents the atom
called Foo, not the variable called Foo.

2.1.2 Block expressions

A sequence of expressions can be grouped in a block, in a way that the block can
be placed wherever a single expression can. This is done by surrounding them
with the keywords begin and end. The value of the block of expressions is given
by the value of the last expression in the block, but previous expressions can be
used for their side-effects and because bindings created in previous expressions
can be used inside the block.

2.1.3 Preprocessor directives and macros

Erlang allows the use of some directives that are resolved by the preprocessor
during compilation. Some of the most common ones include:

• define directive can be used to create new macros.

CHAPTER 2. BACKGROUND 14

• include and include_lib directives inline the contents of the file passed
as a parameter to them.

• Conditional directives: ifdef, ifndef, else, and endif, allow the inclusion
or omission of a part of the code depending on whether a particular macro
has been defined at some point before in the code, analogously to their C
counterparts.

In addition to the ones defined through the use of directives, there exists a number
of predefined macros, but here we will only consider one:

• ?MODULE macro is replaced by the name of the module when preprocessing
its source.

2.1.4 Meta-programming

In the context of programming languages, meta-programming refers to the ability
of programs to treat themselves (or other programs) as data1; this ability, in some
cases, can allow a program to modify itself in execution time. The ability of a
program to modify itself makes it harder to predict what it can do. In the general
case, refactoring tools, when applied to programs that modify themselves, do not
have a decidable way of statically guaranteeing that a particular modification of
the source of a program will not have any effect on its behaviour.

Even if we assume that the program is sandboxed (isolated from its operating
system and other programs), some programming languages provide mechanisms
that:

• Allow programs to inspect their own structure (reflection).

• Allow programs to dynamically decide their own control flow (meta-calls).
For example, the name of the target function may be determined by a string
which, in turn, may depend on the result of an arbitrary computation.

Erlang allows both reflection and meta-calls. Erlang allows both of these func-
tionalities through the use of BIFs (Built-In Functions) including:

1https://en.wikipedia.org/wiki/Metaprogramming [last accessed 03-10-17]

https://en.wikipedia.org/wiki/Metaprogramming

CHAPTER 2. BACKGROUND 15

• apply/2 and apply/3 – which together with list_to_atom/1, allow the
execution of arbitrary functions that may be anonymous or their name may
not necessarily be known at compilation time.

• module_info/0 – allows to inspect a compiled module for exported func-
tions.

In addition, qualified function calls can be parametrised with variables, so the
target module can potentially be defined at runtime; typically, function names
and module names are specified through atoms. For example, the call foo:bar()
is static (to the function bar in the module foo), but the call Foo:bar(), is
dynamic, and the target module depends on the value of the variable Foo.

2.1.5 Frequency server

Throughout the whole thesis (with exception of Chapter 3), we use Frequency
server as a common case study. Frequency server is a toy example extracted from
the book (Cesarini and Thompson 2009). It simulates a “spectrum management”
system that allows clients to allocate and deallocate frequencies while ensuring
that each frequency is allocated by at most one client at a time.

The Frequency server API provides four commands:

• start/0 – Has no parameters and starts the server unless it is already
running; if it is already running it produces an exception.

• stop/0 – Has no parameters and stops the server if it is running; if it is not
running it produces an exception. When the server is stopped all occupied
frequencies are marked as free.

• allocate/0 – Has no parameters, it returns a free frequency (expressed as
a number), and marks it as occupied. It returns an error if there are no free
frequencies, and it produces an exception if the server is not running.

• deallocate/1 – Takes as its only parameter a frequency (expressed as a
number) and marks it as free. It produces an exception if the server is not
running.

CHAPTER 2. BACKGROUND 16

The original source code of the Frequency server can be found in the book (Cesarini
and Thompson 2009), a slightly modified version can be found in Appendix A.
As part of this work, I have developed a web service version of it in Java (which
we use as an example in Chapter 5), the most representative parts of the source
code for the implementation of the web service can be found in Appendix B, and
the full source code of the web service is available at (Lamela Seijas 2014b).

2.2 Finite State Machine

A finite state machine (FSM) is a model (Hopcroft, Motwani and Ullman 2006)
that can be used, for example: for design and validation of digital circuits, for
lexical analysis, for search in large bodies of text, and for verification of systems
like communication protocols. More generally, an FSM is a formalism that can
be used to classify strings over a given alphabet (or set of symbols). The set of
all languages that can be classified by an FSM is called regular languages.

In general, in this thesis, when we talk about FSMs we usually refer to a specific
type of FSM called deterministic finite automaton (DFA). A DFA is formally
defined as a “five-tuple” (Q,Σ, δ, q0, F) where:

1. Q is a finite set of states.

2. Σ is a finite set of input symbols.

3. δ : Q × Σ → Q is a transition function that takes as argument a state and
an input symbol and returns a state. Usually transitions are represented as
arcs between states that have the labels (input symbols) on the arcs.

4. q0 is a start state (or initial state), which must be one of the states in Q

(q0 ∈ Q).

5. F is a set of final or accepting states, which must be a subset of Q (F ⊆ Q).

For deciding whether a string (a sequence of symbols) is accepted by a DFA we run
it. We start with the initial state (q0) and apply the transition function δ to both
the state and the first symbol of the string we want to classify. Then, we apply
the transition function δ again to the state resulting of the previous application
together with the second symbol of the string, and we repeat the process until

CHAPTER 2. BACKGROUND 17

we have applied the transition function to the last symbol of the string. If the
resulting state belongs to F then we say the DFA accepts the string.

Whereas the notion of accepting state is appropriate for talking about which
“strings” belong to a language, when using DFAs to model software we may refer
to states as normal or failing instead. In those cases, we will consider sequences of
events instead of sequences of symbols or “strings” and we may refer to sequences
of events as traces. We will also use a set of failing states instead of a set of
accepting states, and thus we will consider a positive trace any trace represented
by the DFA that does not go through any failing state, and we will consider a
negative traces any trace that ends in a failing state. We will usually not consider
traces that go through a failing state and then continue, since a failing state will
typically stop the execution of the system; as a consequence, failing states will be
sinks, which in turn allows us to merge all failing states into one without altering
the meaning of the DFA.

2.3 State merging FSM inference

The inference algorithms used in this thesis are based on two main existing regu-
lar learning state-merging algorithms: Blue-Fringe (Lang, Pearlmutter and Price
1998), and k-tails (Biermann and Feldman 1972). Regular learning tries to find
an FSM that represents a given regular language, usually from examples of words
that belong to that language (or traces).

In general, state-merging algorithms start by creating a prefix tree acceptor
(PTA) that accepts all the traces provided as input to the algorithm. A PTA is an
FSM structured as a tree (in particular a trie) that contains all the traces provided
as input to the algorithm. In a PTA, every state represents a prefix of the traces
accepted, every distinct prefix is represented by a unique state, and the ancestor of
each state represents the same prefix but without the last symbol; the root of the
PTA represents the empty prefix. For example, in Figure 1 we show a PTA that
accepts the words “seal”, “seam”, “star”, “starry”, “state”, “static”, “steam”, “step”,
and “team”. Note that it is not necessary to store the whole prefix in each state,
only the last symbol, since the path from the root to the node contains the rest
of the prefix. Also note that, when using state merging, we usually store symbols
in the transitions instead of in the nodes, this way, if symbols represent events,

CHAPTER 2. BACKGROUND 18

s

t

e

t

a

l

m

a

e

r

t

r y

e

i
c

a

p m
e

a

m

Figure 1: Example prefix tree acceptor

we can relate the states of the FSM to the states of the system.
Optionally, the PTA can be augmented with words that do not belong to the

language and then it is considered an augmented prefix tree acceptor (APTA). In
this thesis, we represent words that do not belong to the language by labelling
the state representing the whole trace in the APTA as “negative state”.

After obtaining a PTA or an APTA, the automaton is generalised by merg-
ing states (or tree nodes) considered equivalent. Different algorithms may have
different strategies for deciding which states to merge and when. In particular,
Blue-Fringe and k-tails differ precisely in this strategy, and in that k-tails begins
with a PTA and Blue-Fringe begins with an APTA.

2.3.1 Blue-Fringe algorithm

The Blue-Fringe algorithm (Lang, Pearlmutter and Price 1998) starts with an
APTA, and iteratively chooses two states and merges them until no more states
can be merged.

Merging a pair of nodes A and B consists of:

• Pointing the destination of incoming transitions of the state A to the state

CHAPTER 2. BACKGROUND 19

B.

• Pointing the source of outgoing transitions of the state A to the state B.

• Removing the state A.

• Removing the redundant transitions in and out of the node B.

• Resolving ambiguous outgoing transitions of node B (transitions that are
equal but go to different nodes from node B) by recursively merging the
destination of all pairs of ambiguous transitions.

The score for merging a pair of nodes is defined as:

• If the nodes are mergeable: the number of overlapping nodes among the
subtrees that have each of the nodes as a root.

• If the nodes are unmergeable: their score for merging is considered -1.

The pair of nodes to merge is chosen through the following procedure:

• We consider three types of nodes for which the following invariants hold:

– Red nodes:

∗ Red nodes form a connected graph.

∗ Any pair of two red nodes is unmergeable.

– Blue nodes:

∗ All non-red children of red nodes are considered blue nodes.

∗ Blue nodes are roots of isolated trees.

– Non coloured:

∗ Any node that is not red nor blue is considered uncoloured.

• We start by setting the root of the APTA tree to red.

• We repeatedly do the first of the following actions that can be done and has
not been done already:

– Compute the score for merging a pair of one red and one blue node.

CHAPTER 2. BACKGROUND 20

– Promote a blue node to red if it is unmergeable with any red node.

– Merge the pair of one red and one blue nodes that has the highest score.

The process finishes when all nodes have been promoted to red.
Even though this description of the Blue-Fringe algorithm is based on (Lang,

Pearlmutter and Price 1998), which is very concise, we have learned many of the
details about Blue-Fringe from the description provided in (Dupont et al. 2008),
which is in our view more detailed.

2.3.2 K-tails algorithm

The k-tails algorithm (Biermann and Feldman 1972) is based on an equivalence
relation called Nerode’s equivalence, that implies that given any regular language,
strings can be classified into a finite number of equivalence classes. The equiva-
lence class to which a string belongs is given by the set of all “extensions” (strings)
that when appended to the string will produce another string that belongs to the
regular language (words with the same set of valid “extensions” belong to the same
equivalence class).

In k-tails algorithm, this equivalence relation is modified to consider only ex-
tensions that have at most length k (for some k). The algorithm takes a set of
examples of the language to infer and a positive constant k, it generates a PTA,
and then it merges states that are equivalent according to the modified equivalence
relation.

If the available input traces “sufficiently characterize” some regular language,
and if k is “appropriately adjusted”, the method is guaranteed to find a machine
that produces the language (Biermann and Feldman 1972).

2.4 QuickCheck

QuickCheck is a tool that aids the use of property-based testing (see Section 1.5 on
page 5). At the time of writing, there is an open-source version of QuickCheck for
Haskell (Claessen and Hughes 2011) and a commercial version for Erlang, main-
tained by QuviQ (Arts et al. 2006); throughout the work described in this thesis
we have used both of them. From now on, whenever we talk about QuickCheck

CHAPTER 2. BACKGROUND 21

in this paper we mean QuviQ’s QuickCheck, except in Chapter 6, where we mean
QuickCheck for Haskell instead. PropEr (Papadakis and Sagonas 2011) is an open-
source property-based testing tool for Erlang that was inspired by QuickCheck and
covers a number of its use cases; it also supports the creation of generators from
type declarations.

In general, QuickCheck takes a term that represents a property (that may be
defined by using the API provided by QuickCheck) and it tries to return a counter
example that falsifies the property by trying random inputs, in the case of Erlang
it is possible for this process to produce side-effects too.

Properties can be defined as functions, and random inputs are generated by
a special type of term called a generator. In the case of QuickCheck for Haskell,
generators can, in some cases, be created automatically by using the parameter
types of the function to test; in both versions of QuickCheck it is possible to define
custom generators by combining existing ones.

In the Erlang version of QuickCheck, by using the eqc_statem and eqc_fsm

modules, users can describe stateful systems by providing a state machine instead
of a property, we look at this in more detail in the rest of this section.

2.4.1 QuickCheck eqc_statem

The eqc_statem module (eqc_statem 2004) allows users to describe the prop-
erties of a stateful system by describing part of the behaviour of the system using
an abstraction of its state. Thus, the model defines how the different commands
affect the abstraction of the state, and provides predictions and properties on the
inputs and outputs of the commands for particular executions of the system.

For example, if we want to model a stop-watch, we could define a state that
has the following fields:

• is_counting – a boolean that indicates whether the stop-watch is timing
something or not.

• is_zero – a boolean that indicates whether the counter of the stop-watch
is in its initial value (no time has passed).

• lap – a time-stamp that stores when the last lap was completed.

CHAPTER 2. BACKGROUND 22

And then we may define a series of commands (or transitions), for example: we
can define a transition start_counting, that can occur when the stop-watch is
in clear state and the user presses the start/stop button. Roughly speaking, we
could define start_counting by implementing the following callbacks:

• precondition (when can the command be used?): is_counting must be
false, is_zero must be true, and lap must be empty.

• command (how do we cause the transition on the SUT?): we press the
start/stop button in the stop_watch.

• postcondition (what do we know about the system afterwards?): after
pressing the start/stop button, the time in the display of the stop-watch
increases from its previous value.

• next_state (how do we update the state of the model?): we change the
value of is_counting to true and is_zero to false.

By defining a number of events like start_counting, we would eventually obtain
a model of the stop-watch that describes its supposed behaviour.

We have omitted and simplified some details for the sake of clarity; they can be
found in the documentation of QuviQ’s QuickCheck (QuickCheck documentation
2006). But, in general, the model is implemented as a series of callbacks.

It is worth mentioning that, initially, QuickCheck generates test cases (se-
quences of commands or transitions) symbolically. Because of this, neither the
precondition nor next_state callbacks must rely on the concrete results pro-
duced by the SUT, but on the state representation. After a valid symbolic test
case has been generated, its commands are executed against the SUT (by using the
command callback) and the postconditions are checked against the actual result
produced by the SUT.

The moment a postcondition fails, or the SUT crashes, QuickCheck will try to
find the smallest sequence of commands that fails (this process is called shrinking),
and it will report it as a counterexample (showing that the model and the SUT
are behaving in an inconsistent manner).

CHAPTER 2. BACKGROUND 23

zero reset/lap

counting

start/stop

paused

start/stop

showing_lap & counting

reset/lap

reset/lap

start/stop

reset/lap

showing_lap & paused

start/stop

reset/lap

start/stop

Figure 2: Possible state machine for the state of the stop-watch model

2.4.2 QuickCheck eqc_fsm

The eqc_fsm module (eqc_fsm 2006) provides roughly the same functionality
as eqc_statem, but it has a different way of representing the SUT: part of the
state is represented through an FSM, and the transitions that can be applied are
constrained by the FSM. Since the state machine is finite, the possible values for
this part of the state must be specified in advance and there must be a finite
number of them. In exchange for this extra requirement, eqc_fsm allows the user
to generate weights for transitions automatically (in order to improve the coverage
of the tests generated) and to generate a graphical representation of the FSM and
weights in the model.

Returning to the example of the stop-watch, we could define the state in terms
of the FSM shown in Figure 2. We can imagine that, if we use the eqc_statem

model, the state “showing_lap & paused” will not be explored as often as other
states by the tests generated by QuickCheck, since the number of paths of a
given length that reach it is smaller (the shortest is: start/stop, reset/lap,
and start/stop). By providing the full state machine, QuickCheck is able to

CHAPTER 2. BACKGROUND 24

generate weights for transitions automatically, in order to compensate for this
effect.

2.5 Graphviz and dot

Graphviz is a set of open-source graph visualisation software tools. Graphviz
consists of several tools that generate different types of graphs from descriptions
written in a domain specific text language (Graphviz 1999).

Throughout this thesis we have made extensive use of the dot tool and many
of the figures in this dissertation have been directly generated by it. dot is dis-
tributed as part of the Graphviz suite and specialises in “hierarchical” or layered
drawings of directed graphs.

Graphviz tools automatically calculate appropriate layouts for graphs and al-
low the rendering of these in many formats, including: pdf, svg, png, and direct
display to an X11 compatible server.

2.6 Design patterns

Design patterns are reusable solutions to common problems (Vlissides et al. 1995).
When working on this thesis we have encountered problems that have been doc-
umented before together with their solutions and, when possible, we have tried
to reuse existing tested solutions. This approach allows us to spend more time
in the problem we are trying to solve, and less time in those problems that have
been solved already. In particular, there exists a series of design patterns that are
used in programming and system design, often in an object-oriented context. We
have used at least two of these patterns (namely template and façade patterns),
and in this section we briefly introduce them in the context of Erlang.

There also exist design patterns specific to Erlang OTP2 that define how to
structure Erlang code in terms of processes, modules, and directories; but we will
not be covering those in this thesis. Nevertheless, it is worth noting that the
Erlang OTP behaviour pattern is similar to the template pattern, even though
Erlang behaviours are used to model processes instead of arbitrary code; for that

2http://erlang.org/doc/design_principles/des_princ.html [last accessed 04-10-17]

http://erlang.org/doc/design_principles/des_princ.html

CHAPTER 2. BACKGROUND 25

 specific_part1/0

 specific_part2/0

 read_input_in_mandarin

 print_output_in_mandarin

-module

-export

specific_part1

specific_part2

 (variant2).

 ([,

]).

 () ->

 ().

 () ->

 ().

 (algorithm).

 ([]).

 () ->

 (),

 (),

 : (),

 (),

 : (),

 ().

-module

-export

algorithm

 algorithm/1

 initialise_algorithm

 step1_of_algorithm

 specific_part1

 step2_of_algorithm

 specific_part2

 clean_up

 Variant

 Variant

 Variant

 specific_part1/0

 specific_part2/0

 read_input_in_english

 print_output_in_english

-module

-export

specific_part1

specific_part2

 (variant1).

 ([,

]).

 () ->

 ().

 () ->

 ().

Main algorithm Variant 1 Variant 2

Figure 3: Example of template design pattern

reason, in Chapter 4, we use the infrastructure provided by Erlang behaviours to
implement the template pattern.

2.6.1 Template pattern

The template pattern allows us to provide several alternatives for steps of an
algorithm, while still describing the common parts and the main structure of the
algorithm in a single place, as well as to choose between the different alternatives
at runtime.

In object-oriented languages, template pattern is often implemented by insert-
ing calls to virtual methods of the superclass that contain the parts of the algo-
rithm that vary, these calls represent the “gaps” to fill in the algorithm variants.
Subclasses that represent the different variants can establish their own content for
the “gaps” by implementing or overriding the virtual methods. In Erlang, an anal-
ogous design can be achieved by using calls whose target module is dynamically
qualified (see Figure 3).

In the example (Figure 3), we can see that the algorithm takes the module
implementing the variant as a parameter, and variants only need to implement
the parts of the algorithm that are not generic.

2.6.2 Façade pattern

The façade pattern allows us to use a simple interface to control a more compli-
cated one (Freeman et al. 2004). This is sometimes done by creating a class or
module that has a simple interface representing the high-level functionality we
are interested in, and this class or module implements the high-level functionality

CHAPTER 2. BACKGROUND 26

 (user).

 ([]).

 () ->
 : (),
 (7200),
 : ().

-module

-export

watch_movie

 watch_movie/0

 facade play_movie
 sleep
 facade clean_up

 play_movie/0
 clean_up/0

 lights dim
 tv turn_on
 dvd insert_dvd
 tv set_aux_mode
 dvd play

clean_up() ->
 dvd eject
 closet store_dvd
 tv turn_off
 lights turn_on

-module

-export

play_movie

clean_up

 (facade).

 ([,
]).

 () ->
 : (),
 : (),
 : (),
 : (),
 : ().

 () ->
 : (),
 : (),
 : (),
 : ().

User Façade

Closet

Lights

TV

DVD

Figure 4: Example of façade design pattern

in terms of low-level functionality which may be more complex and specific (see
Figure 4).

In the example (Figure 4), we can see that the facade module provides a
simple interface that combines a series of calls to several systems, and allows the
module user to describe the algorithm in terms of higher level calls.

Chapter 3

Modelling components

The first way through which we can make the creation of models easier is by reuse.
Reuse is something that is taken for granted in the creation of software, but not so
much in testing, especially in the creation of models. There exist generic testing
and modelling frameworks, but it is hard to find libraries of tests suites that can
be composed to create bigger test suites; or libraries of meta-models that can be
composed to form bigger models.

But there are patterns (see design patterns in Section 2.6 on page 24), and
there are reusable components. For example, REST architectural style (see Sec-
tion 3.2.1) encourages the reuse of standardised components and microformats
(Richardson, Amundsen and Ruby 2013).

Thus, in this chapter, we experiment with reusing models for components. In
particular, we have chosen to model CRUD behaviour (see Section 3.2.1.1) of web
services that follow the architectural style REST, that is, RESTful web services
(see Section 3.2.1).

The reason why we thought in the first place that REST and CRUD would
allow us to automate testing is that they provide a series of pre-established re-
quirements and restrictions.

In general, restrictions translate into:

• Common behaviour – behaviour whose tests and models can potentially be
reused between different systems.

• Common assumptions – that allow models to be defined on a higher level
(since some aspects are already assumed), and thus in a more concise way.

27

CHAPTER 3. MODELLING COMPONENTS 28

• Common constraints – that offer “properties” that conforming systems must
satisfy (and thus we can and should test). Because the constraints are
common, we should also be able to reuse this testing effort (Chakrabarti
and Kumar 2009).

In this section, we give some examples of these aspects, but the work in this chapter
is focused on modelling the behaviour of collections in REST web services.

3.1 Contributions

In this chapter, we provide three main contributions:

• We describe a reusable FSM model for a reusable component, namely, the
CRUD behaviour of a collection component in web services that follow the
REST architectural-style.

• We show a technique for adapting the model to different scenarios.

• We present two examples that illustrate how the technique can be applied for
adapting the model to two unrelated web services by writing small adaptors.

We also describe how, during our experiments, our models helped us learn about
implementation details, previously unknown to us, about the two web services we
used as targets.

The ideas described in this chapter are based on the ones presented in the
paper (Lamela Seijas, Li and Thompson 2013). I contributed (both to the paper
and to this chapter) with the execution of all the experiments and with most of
the work on writing; co-authors of the paper Huiqing Li and Simon Thompson
contributed with ideas, suggestions, guidance, advice, revisions, and editing.

3.1.1 Software contributions

As part of the experiments carried out during this chapter, I contributed to the
inets module of the standard library of Erlang by adding support for the method
PATCH. This contribution can be seen in the pull request1, which was accepted for
inclusion in the maint branch.

1https://github.com/erlang/otp/pull/917 [last accessed 05-07-17]

https://github.com/erlang/otp/pull/917

CHAPTER 3. MODELLING COMPONENTS 29

3.2 Background

In this section, we describe previously existing work upon which this chapter
builds.

3.2.1 Representational State Transfer (REST)

Representational State Transfer (or REST) is an architectural style described
by Roy Fielding in his doctoral dissertation (Fielding 2000). REST provides
a series of principles for design of distributed systems that aim to encourage a
series of properties, the main of which are: performance, scalability, simplicity,
modifiability, visibility, portability, and reliability. The principles supported by
the REST architectural style reflect the fundamentals that guided the design of
the HTTP protocol, but the construction of web services that use HTTP does
not guarantee that these will still follow the REST guidelines, thus, those web
services that are considered to follow the REST architectural style are considered
“RESTful”.

Because REST is a radical perspective, which has been highly influential, the
terms “REST” and “RESTful” have become overused buzzwords, and despite the
fact that the original principles identified by Fielding in his thesis (Fielding 2000)
are clear and unambiguous, there is controversy about what is and is not a REST-
ful system in practice; see Fielding’s blog post REST APIs must be hypertext-
driven (Fielding 2008) for an example.

3.2.1.1 REST vs CRUD

CRUD stands for create, read, update, and delete, which are the most common
functions of persistent storage (Heller 2007). These functions can, for example, be
found in SQL databases (as the statements CREATE, SELECT, INSERT, and DELETE),
and can be mapped to four common HTTPmethods (POST, GET, PUT, and DELETE).

REST does not imply nor is limited to CRUD behaviour. REST web services
are usually built on top of the HTTP protocol, but even though four of the most
common HTTP methods (POST, GET, PUT, and DELETE) can straightforwardly
be mapped to the four CRUD actions, REST principles are not limited to, nor
necessarily require, the usage of these methods.

CHAPTER 3. MODELLING COMPONENTS 30

3.2.2 JSON

JavaScript Object Notation (JSON) is a text-based format for exchanging semi-
structured information. It is designed so that it is human readable, simple, and can
be easily parsed with JavaScript, since JSON structures can directly be interpreted
as a subset of JavaScript’s expression language.

Basically, a JSON text is a semi-structured value composed using the 6 data
types possible; 4 simple, and 2 composite:

• Simple:

– Strings: strings of characters are enclosed in double quotes, they may
include escape characters, for example: "this is a string\n".

– Numbers: representation of a numeric value, it may be integer, float-
ing point, or in scientific notation, for example: -2017, 2.718, and
6.022e23.

– Boolean: one of the literals true or false.

– null: is a literal that represents the absence of information.

• Composite:

– Objects: are dictionaries between strings and JSON values of any type,
they are represented by a list of pairs enclosed in curly brackets, for
example:

{

"grapes": 12,

"null": null,

"string": "this is a string\n"

}

– Arrays: are ordered lists of JSON values separated by commas and
enclosed in square brackets, for example:

[-2017, "string", { "grapes": 12 }]

CHAPTER 3. MODELLING COMPONENTS 31

The different types of JSON can be nested arbitrarily.
JSON is probably, together with XML (see Section 3.2.3), one of the most

common ways of representing data among web services. A detailed specification
of JSON can be found in (RFC 7159 2014).

3.2.3 XML

Extensible Markup Language (XML) is a text-based format, subset of SGML, for
exchanging semi-structured information. It is designed to be straightforward to
use over the Internet, multi-purpose, human readable, and easy to read and write
by programs (W3 XML 2008).

XML is probably, together with JSON (see Section 3.2.2), one of the most
common ways of representing data among web services. In this context, XML is
extensively used as part of the Simple Object Access Protocol (SOAP).

3.2.4 JVMTI

JVM-TI (2006) is a standard interface that allows external tools to analyse and
control the state of applications that run in a JVM (Java Virtual Machine). This
is done through the creation of a dynamic library or JVMTI agent that can
be passed as a parameter to the JVM, or by setting the environment variable
_JAVA_OPTIONS.

A carefully designed JVMTI agent is able to observe the execution of Java code
without changing the result of the execution. Because it runs transparently, it has
the ability to observe any Java execution seamlessly, regardless of the framework
or configuration used to execute them (for example: ant, maven).

JVMTI agents can request to be notified whenever a set of events occur during
the execution of a Java program, such as when a method is entered or exited, or
when the garbage collector is called. The Java Native Interface (JNI) can be used
to call arbitrary Java methods from within the JVMTI callbacks, which allows
the use of reflection and meta-calls, and could also be used to alter the behaviour
of the target program.

Another advantage of using JVMTI is that it is a standard that may be im-
plemented by different JVMs. This allows our approach to work potentially in
different Java environments too.

CHAPTER 3. MODELLING COMPONENTS 32

3.3 Universal interface

In order for software to be testable, it needs to have clearly defined interfaces.
When testing RESTful web services we get two advantages inherently:

• RESTful web services are expected to have a well-defined interface.

• The interfaces for RESTful web services are expected to be interoperable.
Neither the implementation language of the server and client, nor the op-
erative system in which they run, should be an obstacle in their ability to
interoperate.

But because we have a protocol in the middle (in the case of REST web services
it is usually HTTP), the size and complexity of the code of web services and,
thus, the testing effort needed, are higher than in the case of traditional libraries
because:

• We must test the constraints of the protocol supporting access to the ser-
vices; in our case this is the REST architectural style implemented over
HTTP.

• We have to use sockets or other intermediate libraries which add complexity
to the system and, consequently, to the tests.

• Web services are usually exposed to a more hostile environment – the Inter-
net – so they need to be tested for safety against malformed or maliciously
constructed requests, for example: injection attacks, DoS (Denial of Service)
attacks.

• Web services may be accessed from very diverse environments and contexts,
because of this, it is often necessary that they support many different con-
figurations and standards (for example: encodings and subtle variations in
protocols).

By providing reusable test models we can prevent the user from having to worry
about generic low level details like socket usage, HTTP request formats, and even
reduce the effort required by protocols like OAuth. Even though this is not covered
in this thesis, it would also be possible to create generators that systematically test

CHAPTER 3. MODELLING COMPONENTS 33

for known vulnerabilities like SQL injection or buffer overrun, by testing whether
injecting exploits in the different fields causes anomalous behaviour on the SUT
(Kieyzun et al. 2009).

3.3.1 REST assumptions

The REST architectural style suggests that resources must be identified by unique
URIs, that a RESTful web service must be self-documenting, and that resources
must be interconnected through hyperlinks. Theoretically, it should be possible
for a machine to automatically discover a web service just by following hyperlinks
from its base URL (Richardson, Amundsen and Ruby 2013).

In HTTP, different actions on resources are encoded as different HTTP meth-
ods, for example: actions related to retrieving a representation of a resource can
be achieved through the method GET and actions related to deleting the repre-
sentation of a resource can be achieved through the method DELETE. In addition,
popular methods have well-established properties (RFC 2616 1999), for example:
a GET request should not modify the state of the server (from the point of view of
the client), and a PUT request should be idempotent (the same PUT request should
only modify the state of the server once, even if it is received several times in a
row).

With this kind of constraint we can already imagine it should be possible to
create reusable software that will, for example, check for:

• Broken links.

• Responses with status code 500; we know a priori that these correspond to
unexpected behaviour (RFC 2616 1999).

• Illegal modifications of the visible state of the server (for example: as a
result of a GET request).

• Idempotency of the relevant methods (like PUT and DELETE).

• Or even basic expected functionality of methods (for example: is a resource
accessible after sending it a DELETE request?).

CHAPTER 3. MODELLING COMPONENTS 34

In practice, resource representation and functionality may change slightly from one
web service to another, and implementing only the commonalities is not straight-
forward. Nevertheless, there exists a relatively small number of standard formats
that are used by a big part of web services, for example: XML (see Section 3.2.3
on page 31) and JSON (see Section 3.2.2 on page 30); there also exists a number
of broadly used design patterns that are used in web services, for example: RSS
and Atom (Richardson, Amundsen and Ruby 2013).

3.3.2 Practical difficulties of REST in HTTP

In practice, there are also technical and bureaucratic difficulties that may prevent
HTTP web services from being purely “RESTful” and that may push web service
designers into workarounds that may be considered to break the REST principles.
One clear example of this kind of workaround could be seen in Ruby on Rails, as
pointed out by Martin Heller in his post (Heller 2007): “[...] Rails uses JavaScript
to generate a dynamic form with a hidden field named _method, and sets the value
of the field to delete. When a Rails application receives a form with a _method

parameter, it causes the parameter value to override the real HTTP method verb”.
Using this work-around, Ruby on Rails avoided the incompatibility with browsers
that did not implement the DELETE method at the time.

The usage of a small number of standardised methods for most scenarios is
a design decision of REST that is aimed at promoting interoperability between
systems (Fielding 2000). In the case of HTTP this is clearly observable from the
small number of methods defined by the (RFC 2616 1999) and (RFC 5789 2010).

It is possible to define new methods for new actions (Richardson, Amundsen
and Ruby 2013). But, in practice, using custom HTTP methods is impractical:
many tools and programs do not support methods that are not standard, this
often pushes web service designers to fall-back on the POST (or even GET) method
for actions that are not represented by standard methods.

We faced this problem when testing the PATCH method (which is standard
but a recent addition to RFC, see RFC 5789 2010): the library we used for our
experiments (inets from the Erlang OTP distribution) did not support PATCH at
the moment of the experiments. In our case, the Erlang OTP team accepted my

CHAPTER 3. MODELLING COMPONENTS 35

contribution to the inets library2, which solved the problem for us, but we can
imagine adding new methods to a tool would be harder to justify in cases where
the method is not supported by a standard (ad-hoc methods).

Note that this limitation does not only apply to libraries, but also potentially
affects intermediate servers like proxies and firewalls, which would directly limit
the usability of the web services affected.

There are at least two “RESTful” ways of approaching this limitation that do
not require adding new methods to the standard:

• One is to create resources that represent actions: instead of using a method
PURCHASE we can create a type or resource that represents a purchase (in the
“noun” sense of the word), and the action would be triggered by the creation
of this kind of resource. One downside of this solution is that it may require
the creation of a large number of small resources for the implementation of
trivial actions.

• Another solution is to let actions be triggered by “fields” (in some sense)
in the resource representations, (see the example of the trash and deleted

attributes in Section 3.6.1.1 on page 50).

In any case, actions defined in any of these ways will still not be understood by
most systems unless their behaviour is described by standardised mime-types or
microformats, but at least they will not foreseeably reduce interoperability.

3.4 Systems under test

In order to validate the models we will describe in this chapter, we have used two
different and independent web services: Google Tasks and Storage Room. We
have chosen these web services for several reasons, some of them are:

• Both provided an API that was described as RESTful by its documentation.

• In both cases, the API was accessible free of charge (subject to some usage
restrictions).

• Both were well documented.
2https://github.com/erlang/otp/pull/917 [last accessed 05-07-17]

https://github.com/erlang/otp/pull/917

CHAPTER 3. MODELLING COMPONENTS 36

• Both clearly implement the collection component in some form.

In this section, we describe both web services briefly.

3.4.1 Storage Room

Storage Room (Storage Room 2010) was a service that offered content manage-
ment for web and mobile applications. Its web interface allowed users to define
and maintain a data model, and data could be added, removed, and modified
through the use of a RESTful JSON API that was generated automatically from
the data model. The experiments described in this chapter were aimed at testing
the RESTful JSON API.

Since the beginning of 2015, Storage Room has been replaced by Contentful
(Contentful 2013) and is no longer available (Konietzke 2013).

3.4.2 Google Tasks

Google Tasks3 is a service that allows users to keep track of lists of items and to
cross-out items in those lists easily. This system can be used, for example, to keep
a to-do list or a shopping list. Google Tasks can be accessed in a number of ways,
for example, through the own web application of Google Tasks, through Gmail,
through Google Calendar, and directly or indirectly through the API of Google
Tasks4.

3.5 Collection model

In this section, we describe an FSM model for the collection pattern that we have
applied to both Google Tasks and Storage Room (see Section 3.4). The model
relies on four of the most broadly used methods defined by the HTTP protocol:

• GET – is used to retrieve a resource and should be safe (it should not produce
side effects),

3https://support.google.com/mail/answer/106237 [last accessed 05-07-17]
4https://developers.google.com/google-apps/tasks/ [last accessed 05-07-17]

https://support.google.com/mail/answer/106237
https://developers.google.com/google-apps/tasks/

CHAPTER 3. MODELLING COMPONENTS 37

• DELETE – is used to delete a resource and should be idempotent (sending
several identical DELETE requests should have the same side-effects than
sending only one),

• PUT – is used to change the contents of a resource (it should be idempotent),

• POST – is used to create a new resource in a collection (it does not need to
be neither safe nor idempotent).

In addition, for Google Tasks API, we also modelled the method PATCH:

• PATCH – is used to modify the contents of a resource partially (it does not
need to be neither safe nor idempotent).

The PATCH method allows us to send only the parts of the resource representation
that we want to modify, while PUT expects a complete representation.

It is worth mentioning that, because URLs represent arbitrary resources, HTTP
methods may have side-effects (in other words: they may affect more resource rep-
resentations than the one represented by the target URL, and potentially more
things than resource representations, for example: posting an order in the web
service of an online shop could result in a decrease of the balance of your bank
account).

Side-effects are difficult to predict and, in the case of real world side-effects,
they are usually undesirable when testing. For these reasons, in this chapter, we
will not address these kinds of unrelated side-effects. We will still address those
side-effects that are intrinsic to the CRUD behaviour of HTTP methods, like the
creation, elimination, and update of resource representations. Future work may
extend the models described here to reflect side-effects. Nevertheless, the models
that we study in the following chapters will consider local side-effects to some
extent.

3.5.1 Locating resources

As we said earlier, it should be possible to discover the functionality of REST web
services and the URL of their resources by following hyperlinks from an initial
base URL (Richardson, Amundsen and Ruby 2013). Because of this, it should

CHAPTER 3. MODELLING COMPONENTS 38

not be necessary to make any assumptions about the location (the URLs) of the
resources in a web service.

Nevertheless, in our implementation we assume, for simplicity, that collections
are organised hierarchically, in other words: resources contained within a collection
will be represented with a URL that has the URL of the collection as prefix. Thus,
our implementation takes two URLs as parameters (where we use “[...]” to mark
the places where we have omitted text for clarity):

• The URL of the collection resource, for example:
http://restsr [...] collections/book_collection

• A base URL prefix for the entries of the collection (resources contained in
the collection), for example:
http://restsr [...] collections/book_collection/entries

And we assume that the URL of every entry in the collection will be the result of
appending a slash (“/”) and the identifier of the resource to the base URL prefix,
for example:

http://restsr [...] book_collection/entries/Cinderella

http://restsr [...] book_collection/entries/Hansel_and_Gretel

http://restsr [...] book_collection/entries/Snow_White

...

The reason for these assumptions is that it seems that RESTful web services
tend to follow them (for example, in addition to Google Tasks and Storage Room,
it is also true for at least some parts of the REST API provided by PayPal5

and by GitHub6) and, while finding hyperlinks in HTML is straightforward, in
other formats (like in our case JSON) there is no wide consensus about how to
represent them (even though there exist some standards for it they do not seem
to be followed as often as our assumptions). Thus, we considered that relying on
this mechanism would have made our models less portable in practice.

5https://developer.paypal.com/docs/api/ [last accessed 06-07-17]
6https://developer.github.com/v3/ [last accessed 06-07-17]

https://developer.paypal.com/docs/api/
https://developer.github.com/v3/

CHAPTER 3. MODELLING COMPONENTS 39

3.5.2 Functions of the model

With all these assumptions in mind, we can define a generic model for a collection
of resources in a similar way to how we would model a database table: each entry
of the collection would correspond to a row in the database table, SELECT would
be implemented by GET, INSERT would be implemented by POST, UPDATE would
be implemented by either PUT or PATCH, and DELETE would be implemented by
DELETE.

In our model, we define six operations, five correspond to the CRUD operations
for the elements of the collection, and one for listing the elements of the collection
itself. For listing the elements of the collection itself, we use the function list().
In practice, list() uses the same HTTP method as get() (that is: the GET

method) but targets the URL of the collection instead of the URL of a resource.
In the rest of this section, we illustrate the actions of the proposed model,

their signatures, and how they are mapped to HTTP requests. We present them
in the form:

function(Parameter1, [...], ParameterN) -> Result

In these examples, we use books as hypothetical resources and their titles as
keys; but, in real systems, keys may be arbitrary hashes or indexes. Both in the
examples and in the two systems we tested, the resources are represented using
JSON (see Section 3.2.2 on page 30), but they could potentially be represented in
any other format instead.

For describing the functions of our model, we use the following format:
function_name(Arg1, Arg2, ..., ArgN) -> Result

Where function_name is the name of the function, the comma separated list
in parenthesis represents the arguments that each function takes, and Result is
an Erlang pattern that demonstrates the structure of the result in normal condi-
tions (no errors are produced). We use syntax similar to the one used in Erlang
because we implemented our model in Erlang. We also include ellipsis “[...]”
for simplicity, they are not part of Erlang nor JSON but they are a meta notation
that indicates that we have omitted part of the text of the example.

The functions of our model are:

• get(Key) -> {ok, Entry} – Retrieves the entry with key Key. For exam-
ple:

CHAPTER 3. MODELLING COMPONENTS 40

get("Cinderella") ->

{ok, " {

[...]

title: 'Cinderella';

author: 'Charles Perrault'

[...]

} "}

The calls to get/1 are translated into GET HTTP requests to the URL of
the entry with key Key:

GET [...]/book_collection/entries/Cinderella

get/1 returns {error, not_found} if the entry does not exist.

• delete(Key) -> ok – Removes the entry with key Key. For example:

delete("Cinderella") -> ok

The calls to delete/1 are translated into DELETE HTTP requests to the
URL of the entry with key Key:

DELETE [...]/book_collection/entries/Cinderella

delete/1 returns {error, not_found} if the entry does not exist.

• post(Entry) -> Key – Adds the entry represented Entry to the collection
and returns the key used to store it. For example:

post(" {

[...]

title: 'Cinderella';

author: 'Charles Perrault'

[...]

} ") -> "Cinderella"

The calls to post/1 are translated into POST HTTP requests to the base
URL prefix of the entries of the collection:

CHAPTER 3. MODELLING COMPONENTS 41

POST [...]/book_collection/entries

{

[...]

title: 'Cinderella';

author: 'Charles Perrault'

[...]

}

• put(Key, NewEntry) -> ok – Replaces the representation of the entry with
key Key with NewEntry. For example:

put("Cinderella",

" {

[...]

title: 'Cinderella Man';

author: 'Ron Howard'

[...]

} ") -> ok

The calls to put/2 are translated into PUT HTTP requests to the URL of
the entry with key Key.

PUT [...]/book_collection/entries/Cinderella

{

[...]

title: 'Cinderella Man';

author: 'Ron Howard'

[...]

}

put/2 returns {error, not_found} if the entry does not exist.

• patch(Key, RepPatch) -> ok – Updates the representation of the entry
with key Key by following the changes represented in the patch RepPatch

(in the case of Google Tasks API we used a partial representation of the
resource to modify, that is: a representation that only contains the fields
that changed). For example:

CHAPTER 3. MODELLING COMPONENTS 42

patch("Cinderella",

" {

author: 'Brothers Grimm'

} ") -> ok

The calls to patch/2 are translated into PATCH HTTP requests to the URL
of the entry with key Key.

PATCH [...]/book_collection/entries/Cinderella

{

author: 'Brothers Grimm'

}

patch/2 returns {error, not_found} if the entry does not exist.

• list() -> [{Key, Value}] – Returns a list with all the pairs of keys and
entries in the collection, (in our implementation, a list of tuples). For ex-
ample:

list() ->

[{"Cinderella", "{ title: [...] }"},

{"Hansel_and_Gretel", "{ title: [...] }"},

[...]

{"Snow_White", "{ title: [...] }"}]

The calls to list/0 are translated into GET HTTP requests to the base URL
prefix of the entries of the collection:

GET [...]/book_collection/entries

Example

Since the number of requests we were allowed to issue to the real web services
in our experiments was limited, we first implemented a simplified version of our
idealised CRUD behaviour to test our model. We now provide a simple example of
usage of this implementation in order to illustrate the behaviour described above:

CHAPTER 3. MODELLING COMPONENTS 43

1> model:start_link().

{ok,<0.33.0>}

2> HashCinderella = model:post("Cinderella").

"fe3d73ebe0045732f200d90b"

3> model:get(HashCinderella).

{ok,"Cinderella"}

4> model:list().

[{"fe3d73ebe0045732f200d90b", "Cinderella"}]

5> model:delete(HashCinderella).

ok

6> model:delete(HashCinderella).

{error,not_found}

7> model:get(HashCinderella).

{error,not_found}

8> model:list().

[]

9> model:stop().

ok

10> q().

ok

Note that the hexadecimal code in this example corresponds to the Key, and the
string "Cinderella" corresponds to the Entry. For clarity, we have used a very
short Entry, but entries will often be long strings containing the representation of
each resource in a format like JSON (see Section 3.2.2 on page 30) or XML (see
Section 3.2.3 on page 31).

As we stated earlier, this behaviour is very similar to the one that could
be found in a database, because of that, one of our two test models follows a
very similar approach to the one presented by (Castro and Arts 2011) for testing
databases, but in our case we use a different version of QuickCheck’s eqc_statem
(the grouped version, see Section 2.4.1 on page 21). In the next section, we also
refine the model through the introduction of an FSM which allowed us to write
a second test model using QuickCheck’s eqc_fsm module (see Section 2.4.2 on
page 23).

CHAPTER 3. MODELLING COMPONENTS 44

EC EN

NC NN

empty_trash

empty_trash

get_del
put_del
del_del

del_last

post_norm
get_norm
get_del
put_norm
put_del
del_norm
del_del

post_norm
get_norm
put_norm

empty_trash

post_first del_last post_first

empty_trash

del_norm

Figure 5: FSM for collection model

3.5.3 Finite-state machine

With the aim of simplifying the preconditions of each command in the model
and providing a visual way of checking its correctness, we have developed an
abstraction of the methods described in Section 3.5.2 that can be represented in
the form of an FSM.

In addition to these advantages, using an FSM allows us to rewrite the model
using QuickCheck’s eqc_fsm module (see Section 2.4.2 on page 23). Using this
behaviour has some advantages of its own: one important example is that it allows
QuickCheck to compute weights for transitions automatically, in a way that states
of the model have a better coverage when it is used for generating random tests.

Figure 5, shows the graphical representation of the FSM model, the rest of this
section describes the meaning of its states and transitions. We have decided to not
include the transitions corresponding to the method PATCH since, from the point
of view of the FSM, both the PUT and PATCH methods have the same transitions
(adding them to the diagram would only have made it more confusing).

The FSM described in this section reflects the existence of a “trash” or “recy-
cling bin” that contains the entries that have been deleted. We discovered this

CHAPTER 3. MODELLING COMPONENTS 45

aspect thanks to failing tests generated using our first version of the model that
did not include a trash, (more information on how we used the initial model to
discover this behaviour can be found in Section 3.6.1 on page 50).

The FSM has four states (we use the word “normal” to refer to entries that
have not been “trashed”):

• EC – Empty & Canonical – No entries are stored (nor trashed, nor normal).

• NC – Non-empty & Canonical – There are normal entries, but trash is empty.

• NN – Non-empty & Non-canonical – Both normal and trashed entries exist.

• EN – Empty & Non-canonical – There are only trashed entries.

The model adds a theoretical method “empty_trash” and divides the five HTTP
methods into more specific transitions. Some of these additional divisions are
necessary in order to keep the FSM model in Figure 5 deterministic, others are just
convenient because they simplify the implementation of the model (they separate
concerns and not all the functionality for every method is used in every state).
For example, if del_norm and del_last were both del, we would have two del

transitions departing from NC that go to two different states (namely EN and
NN):

• GET – Retrieves an existing entry.

– get_norm – Retrieves a normal entry.

– get_del – Retrieves a trashed entry.

• DELETE – Trashes an existing entry.

– del_last – Trashes the last remaining normal entry.

– del_norm – Trashes one normal entry when there are several.

– del_del – Tries to trash an already trashed entry (does nothing).

• POST – Creates a new entry.

– post_first – Creates the first normal entry.

– post_norm – Creates an additional normal entry.

CHAPTER 3. MODELLING COMPONENTS 46

• PUT – Replaces an existing entry with another one.

– put_norm – Replaces a normal entry.

– put_del – Replaces a trashed entry.

• PATCH (analogous to PUT) – Modifies part of an existing entry.

– patch_norm – Modifies a normal entry.

– patch_del – Modifies a trashed entry.

• empty_trash – Removes definitely all trashed entries. This command is
not an API method neither in Storage Room nor in Google Tasks, but we
include it for completion.

Note that the transitions with suffix “_del” and the transition “empty_trash” are
not part of the original model but a result of adapting the model to the behaviour
observed both in Storage Room and Google Tasks (see Section 3.6.1 on page 50).

3.5.4 Generators and JSON

In order to test that the implementations comply with the model we described, we
need to be able to provide the system with entries. In property-based testing (see
Section 1.5 on page 5), inputs are usually created by artefacts called generators.
Generators model possible inputs for the system and can be used to automatically
generate sets of random inputs. In the case of Storage Room and Google Tasks,
the entries must be defined by using JSON (see Section 3.2.2 on page 30). Thus,
we need a way to make JSON generators that comply with the constraints of each
target web service.

Of course, we could directly write a function that generates the JSON strings
that we need in each case, but since JSON is a popular standard, it would be useful
to have a general way of generating random JSON (that follows some particular
system constraints), for reuse in other systems.

Our solution was to establish a series of keywords, tags or “hooks” within the
JSON language so that we can easily transform examples of valid JSON into
“JSON templates” that are more general; this idea is inspired by the way JSP is
used as a template for HTML, or how PHP is embedded.

CHAPTER 3. MODELLING COMPONENTS 47

This way of inserting “hooks” in JSON documents is foreseeably more readable
and easier to maintain than trying to create a hybrid between JSON and another
programming language, and, since we do not break the rules of the JSON language,
we can reuse existing JSON parsers to interpret documents with “hooks” (we do
not need to make our own parser).

The tags or “hooks” are used to specify which kind of generator should be
placed where within the JSON template:

• bool() – This tag is replaced by either “true” or “false”. It is implemented
by the built-in QuickCheck generator bool/0.

• string() – This tag is replaced with a random string (represented as a
binary in Erlang) of visible characters (including spaces). It is implemented
as the following QuickCheck generator:

?LET(String, list(choose(32, 127)), list_to_binary(String));

• nonempty_string() – This tag is replaced with a random string (repre-
sented as a binary in Erlang) with at least one character and a first character
that is printable. It is implemented as the following QuickCheck generator:

nonempty_string_gen() ->

?LET(String,

[choose(33, 126)|list(choose(32, 126))],

list_to_binary(String));

we found out that when marking a field as a required string in Storage
Room it was necessary for it to have at least one visible character (see
Section 3.6.1.3 on page 51).

• optional() – If a JSON element %EL% is replaced by the following snippet:

{ "optional": %EL% }

The JSON produced by this generator may or may not contain the element
%EL%. If the element replaced by this snippet is the value of a JSON object,
the key of this value will be removed from the object too (see example below).
This mechanism allows us to define optional arguments (see example at the
end of this section).

CHAPTER 3. MODELLING COMPONENTS 48

More complicated tags could be defined easily but these were enough for our
experiments.

Example

One example of JSON document (representing information about a review on a
book) that we could store using a hypothetical web service could look as follows:

{

"entry": {

"name": "Insensitive comment",

"liked_it": false,

"was_read": false,

"ideas": [

"boring",

"ugly",

"unintersting",

"disappointing",

"tedious"

],

"comment": "I don't like the book at all."

}

}

If we make a few changes (by using the hooks described above) we can trans-
form it into a template generator like follows:

{

"entry": {

"name": "nonempty_string()",

"liked_it": "bool()",

"was_read": { "optional()": "bool()" },

"ideas": [

"nonempty_string()",

"nonempty_string()",

{ "optional()": "nonempty_string()" },

CHAPTER 3. MODELLING COMPONENTS 49

{ "optional()": "nonempty_string()" },

{ "optional()": "nonempty_string()" }

],

"comment": "nonempty_string()",

}

}

Note that the key was_read is optional, but only the value is marked as such.
This is because otherwise we would potentially get JSON whose semantics are
defined as “unpredictable” by (RFC 7159 2014), as shown in the next example:

{

"name": "nonempty_string()",

"optional()": { "liked_it()": "bool()" },

"optional()": { "was_read()": "bool()" },

}

The previous JSON snippet is unpredictable, as described in the (RFC 7159
2014), because it has the same key “optional()” several times in one object (the
root object), and objects act as dictionaries in JavaScript, so it does not make
sense for a single key to have two different values.

3.6 Using the model in practice

The first attempts at modelling a system can easily disagree with the implementa-
tion, either because of a bug in the model, because of a bug in the implementation,
or because each follows a different interpretation of a higher level specification
which is ambiguous. This situation may require refinement of the model, but it
could also be deliberately used as a way to adapt a generic model (this can be
done automatically to a certain extent), or to learn about the implementation. If
we want to adapt our model to different web services, we usually need to account
for context-specific aspects like representation formats, location of resources, and
internal conventions. In this section, we report on some of the adjustments made
and the techniques that we used in order to apply our model to Storage Room
and Google Tasks in practice.

CHAPTER 3. MODELLING COMPONENTS 50

3.6.1 Discovering by testing

In our experiments, our preconception of the system turned out to disagree with
the actual implementations in a number of aspects. We illustrate some of those
aspects in the rest of this section.

3.6.1.1 The existence of a trash

The most fundamental difference we found was that, while executing the command
DELETE in our original model would result in the definitive elimination of a resource
representation, that was not the case in Storage Room nor in Google Tasks. We
found this discrepancy when testing Storage Room (which sets an attribute called
trash in the resource to true), but we observed analogous behaviour in Google
Tasks (which adds an attribute called deleted to tasks when they are deleted).

When executing our initial model against Storage Room, we eventually got
the following output:

Shrinking...........(11 times)

[{set,{var,5},{call,dbtest,post,

[{struct, [ENTRY_1]}]}},

{set,{var,7},{call,dbtest,delete,[{var,5}]}},

{set,{var,11},{call,dbtest,get,[{var,5}]}}]

dbtest:post({struct, [ENTRY_1]}) ->

"5190fa9b0f66027a4900046e"

dbtest:delete("5190fa9b0f66027a4900046e") -> ok

dbtest:get("5190fa9b0f66027a4900046e") ->

{ok, {struct, [ENTRY_1]}}

Reason: {postcondition, false}

Where we have replaced the JSON representation of the entry with the literal
“ENTRY_1” for clarity. We can see that QuickCheck has found a counter-example
and through shrinking found a reduced trace, which in this case is minimal, and
produces the error: post, delete, get. It is clear that the discrepancy occurs
whenever we fetch an entry that we have already deleted (the result that Stor-
age Room produces continues to be a tuple with the atom ok and the entry),

CHAPTER 3. MODELLING COMPONENTS 51

which goes against our initial expectations and model. The model described in
Section 3.5.3 (on page 44) already reflects the refined behaviour.

3.6.1.2 The representation of PATCH

One particularity of the way Google Tasks API uses PATCH, that we found during
our experiments is that it expects partial JSON documents as the body of PATCH
requests. In fact, the (RFC 5789 2010) does not specify which format must be
used with PATCH, but the (RFC 6902 2013) describes a format (with the media
type “application/json-patch+json”) that can be used to describe the differences
between two JSON documents (in analogous way to how a patch generated by the
diff tool would for arbitrary text documents) and it seems designed to be used
with PATCH method.

The use of partial JSON as done in Google Tasks API is dependent on the
semantics of the particular context, because omitting a part of a JSON dictionary
could mean that the entry omitted was omitted to signal deletion or may just be for
conciseness. Nevertheless, the format chosen by Google Tasks API is appropriate
because it is intuitive; in fact, it was the one we used in our first attempt (our first
guess, because the choice is not documented). The fact that our default choice of
a format for the PATCH method is not generic is probably an indicator that it may
be too early to make any conclusions or generalisations about the use in practice
of the method PATCH.

3.6.1.3 Interpretation of mandatory fields

Storage Room allows the definition of a schema for resources, and this allows
users to define the expected type of fields and some other constraints. One of
these constraints is the optionality of the fields (whether a resource must have a
field or not).

When experimenting with these constraints and generators we found out that
an empty string, or a string with only spaces, was not valid as the value of fields
that were declared as mandatory (non-optional). This motivated the current
definition of the generator nonempty_string() in Section 3.5.4 (on page 46).

CHAPTER 3. MODELLING COMPONENTS 52

3.6.2 The façade pattern

Each specific web service organises information differently. Even if both our web
services use JSON, different systems use it differently. In the case of Storage
Room, the structure of resources can be modified and, thus, meta-data is marked
with the “@” symbol; whereas in the case of Google Tasks we know beforehand
which fields will be returned, so this is not necessary.

In any case, we need an adapter that abstracts out everything but the CRUD
collection behaviour we want to test, because we want the model to be independent
from the interface that controls the web service. We have achieved this by using
the façade pattern (see Section 2.6.2 on page 25) as shown in Figure 6, together
with specific generators for each web service.

From the point of view of the user of the façade (for either Storage Room or
Google Tasks), the web services behave the same as the mock, thus, the same
model can be used to test both. The main job of the façade is to take care
of authentication (which is done through a token in Storage Room and through
OAuth in Google Tasks), to translate the error messages into a uniform format7,
and to correctly format the requests (which may require specific formatting and
specific headers for the HTTP requests issued to work as expected).

3.7 Chapter conclusion

In this chapter, we have shown how reuse can be applied to models too, in order
to make the creation of models easier. In particular, we have shown how a generic
model of the collection component can be adapted to work in two different con-
texts (the web services provided by Storage Room and Google Tasks). What we
presented in this chapter is just an example, we can imagine there is potential
to create a high-level framework that models a system by joining models of com-
ponents as a jig-saw puzzle, which would make creating a testing skeleton much
easier, but for that to make sense it would be necessary to be able to generalise
many different types of components.

7The error codes used for each situation vary and in the case of the error “Service Unavailable”
returned by Google Tasks, it may be solved just by waiting a moment and resending the request,
so we do not really want to return an error directly

CHAPTER 3. MODELLING COMPONENTS 53

Client

POST

return

"51113a390f66021f7d0019bc"

{
 entry: {
 title: "Little Red Riding Hood",
 author: {
 url: "50f2f9640f660277e0001b88"
 },
 isbn: "9780836249019"
 }
}

Storage Room

POST

return
{
 entry: {
 @type: "Book",
 @url: "51113a390f66021f7d0019bc",
 @version: 1,
 @trash: false,
 title: "Little Red Riding Hood",
 author: {
 @type: "Author",
 url: "50f2f9640f660277e0001b88"
 },
 isbn: "9780836249019"
 }
}

{
 entry: {
 title: "Little Red Riding Hood",
 author: {
 url: "50f2f9640f660277e0001b88"
 },
 isbn: "9780836249019"
 }
}

Facade

Model

Figure 6: Representation of model and façade over Storage Room

While the creation of reusable meta-models clearly makes the creation of in-
stances of those meta-models easier; the creation of the meta-models themselves is
actually harder than the creation of normal models. Can we at least create meta-
models automatically from specific models? Making it easier to generalise models
would foreseeably also make the evolution of models easier, since generalisation
disentangles the common parts from the specific parts, and makes changing the
specific parts easier.

In Chapter 4, we try to compare concrete models to locate their general parts,
with the aim of automating the creation of general models from specific ones. We
will both look at the similarities and differences between the implementations of
the models, and at the similarities and differences between the abstract behaviour
of the models (expressed as FSMs).

Chapter 4

Differences and generalisation

Generalisation is a broadly adopted mechanism for reusing development effort, an
example of this are reusable software libraries, which provide generic functionality
that is reused across different projects.

Test models, like software, can also benefit from generalisation, since general-
ising allows us to reuse testing effort by allowing the same model to test similar
systems, similar parts of systems, or similar versions of systems. Additionally,
property-based testing can be seen as a generalisation of a set (finite or infinite)
of unit tests, since property-based models can be used to generate many unit
tests. Thus, in our goal of automating the transition from testing to property-
based testing, it seems natural to research the process of generalisation and to try
to automate it.

In Chapter 3, we have already explored the application of manual generali-
sation to reduce the effort required for testing web services. But generalisation
requires development effort and does not provide new functionality, thus, gener-
alisation, despite being beneficial, is not without cost.

In this chapter, we study mechanisms for automating the process of generalisa-
tion, both looking at the source code (Section 4.3 on page 61) and at the abstract
behaviour of implementations through the use of their FSM representation (Sec-
tion 4.4 on page 103). But first, in Section 4.2, we present some existing work
that is necessary to understand the work described in this section.

54

CHAPTER 4. DIFFERENCES AND GENERALISATION 55

4.1 Contributions

The main contributions of this chapter are as follows:

• The definition of incremental interactive refactorings that aid the introduc-
tion and elimination of Erlang behaviours; these are defined in terms of
simpler refactorings and transformations, and through the use of Wrangler’s
API and DSL (see Section 4.2.3.3 on page 60).

• A methodology for using the new interactive refactoring together with al-
ready existing refactorings for abstracting existing code by introducing a new
Erlang behaviour, and the reverse process that inlines a behaviour instance
in a behaviour definition.

• The definition of a complex integrated refactoring that, given a pair of similar
modules and a partial mapping that identifies syntactically equal nodes,
automatically abstracts their common code by introducing a new Erlang
Behaviour; for an explanation of what we mean by syntactically equal nodes
see Section 4.3.2.1 (on page 74).

• Validation and comparison of the interactive and integrated refactorings in
two case studies.

• Validation of the design and implementation of Wrangler’s API and DSL.

• Experiments that show the effect of different changes in the configuration of
a system to the representation of its behaviour as an FSM.

• Insight on the causes of one type of state explosion in FSMs.

The ideas described in this chapter are based on two papers:
The work described in Section 4.3 has been published in (Lamela Seijas and

Thompson 2016a). I contributed (both to the paper and to Section 4.3) with
the execution of all the experiments and with most of the work on writing; co-
author Simon Thompson contributed with ideas, suggestions, guidance, advice,
revisions, and editing. The work in Section 4.3 is built upon the pre-existing work
on Wrangler, carried out mainly by Huiqing Li and Simon Thompson.

The work described in Section 4.4 is based on the work presented at Erlang
Workshop 2014 (Lamela Seijas et al. 2014). I contributed (both to the paper and

CHAPTER 4. DIFFERENCES AND GENERALISATION 56

to Section 4.4) with the experiments, with the writing of the description of the
experiments, and with insights from the result; co-authors Ramsay Taylor, Kirill
Bogdanov, contributed with the design and development of Statechum, PLTSDiff,
and Synapse (see Section 4.2.4 on page 60), and helped us understand how to use
them, the theory behind them, and the initial set-up; co-authors Simon Thompson
and John Derrick contributed with guidance, coordination, evaluation, and advice;
and all authors contributed with ideas, suggestions, revisions, and editing.

4.1.1 Software contributions

I have implemented all the refactorings described in this chapter and added them
to Wrangler’s API1; some generic parts of Wrangler and EDoc (Carlsson 2009),
and some refactorings from Wrangler, existed previous to this work and I reused
them (we explicitly indicate which refactorings existed previous to this work when
we describe them later in this section). The input and results of the case studies
have also been published in the examples folder of Wrangler. And the main
refactorings have been added to the menu [Wrangler > Refactor > Behaviour
Refactorings] of Wrangler’s GUI for Emacs.

As part of the development of the refactorings described in this section, I also
contributed with small improvements to Wrangler, like the deletion from export
declarations of functions removed by transformations done using the DSL and
concrete syntax2.

4.2 Background

In this section, we describe existing work upon which this chapter builds.

4.2.1 Erlang behaviours

Erlang behaviours are a standard Erlang programming convention which allows
the formalization of a design pattern for a process. According to the Erlang
documentation3, behaviours are a way of generalising processes: “The idea is to

1https://github.com/RefactoringTools/wrangler/pull/69 [last accessed 03-08-17]
2https://github.com/RefactoringTools/wrangler/pull/69/commits/

595496649c118c935a4af302a0b5ac91ec6aa13f [last accessed 12-09-17]
3http://erlang.org/doc/design_principles/des_princ.html [last accessed 04-10-17]

https://github.com/RefactoringTools/wrangler/pull/69
https://github.com/RefactoringTools/wrangler/pull/69/commits/595496649c118c935a4af302a0b5ac91ec6aa13f
https://github.com/RefactoringTools/wrangler/pull/69/commits/595496649c118c935a4af302a0b5ac91ec6aa13f
http://erlang.org/doc/design_principles/des_princ.html

CHAPTER 4. DIFFERENCES AND GENERALISATION 57

divide the code for a process in a generic part (a behaviour module) and a specific
part (a callback module)”.

In this thesis, we use the terms “behaviour” and “Erlang behaviour” to refer to
the mechanism that allows this generalisation. Unlike in the previous definition,
we do not restrict ourselves to its application to processes, but we use it as means
for parametrisation of arbitrary source code at module level. We also consider
that a behaviour is composed of two parts: a behaviour definition (often called
“behaviour module”) and one or more behaviour instances (often called “callback
module”).

In this section, we provide partial examples with only the parts specific to
behaviours, but a simple complete example of their usage can be found in Figure 15
on page 75, and a real industrial example can be found in the module gen_server
of the Erlang OTP source distribution.

A behaviour definition is an Erlang module that defines a series of callbacks
that its behaviour instances must implement. This can be done in one of two ways:

• By adding callback declarations to the behaviour definition. A callback

declaration is a directive that describes both the name of an expected call-
back and its type signature, for example:

-callback terminate(

Reason :: (normal | shutdown | {shutdown, term()} |

term()),

State :: term()) -> term().

• By implementing the behaviour_info/1 function in the behaviour defini-
tion. This function, when passed the atom callbacks as parameter, must
return a list of tuples with the name and arity of the expected callbacks.
For example:

behaviour_info(callbacks) ->

[{init, 1}, {handle_call, 3}, {handle_cast, 2},

{handle_info, 2}, {terminate, 2}, {code_change, 3}];

behaviour_info(_) -> undefined.

CHAPTER 4. DIFFERENCES AND GENERALISATION 58

The work in this thesis only considers the variant that uses behaviour_info/1

function because, at the time of writing, there is limited support for callback

declarations by the abstract syntax tools from the standard Erlang distribution,
in particular by the erl_prettypr module.

A behaviour instance is an Erlang module that provides a concrete im-
plementation for the callbacks defined by the behaviour definition. Behaviour
instances should contain among their headers a declaration that specifies which
behaviour definitions they implement, in the form:

-behaviour(gen_server).

where gen_server is the name of the module containing the behaviour defini-
tion.

There is nothing preventing a module from being instance of more than one
behaviour definition but, at the time of writing, the compiler shows a warning if a
behaviour instance implements behaviour definitions that require callbacks with
the same name and arity.

4.2.2 ets and dets

ets and dets are Erlang built-in term storage APIs (ets 1997; dets 1997). They
both have a mostly similar interface and provide almost constant access time to
the data. The main difference between ets and dets is that ets stores data in
RAM memory while dets allows storage in files.

We have used these APIs for the case study in the Chapter 4 because:

• dets is a substantial piece of open source Erlang software, in use in a number
of production systems built using Erlang

• Previous to this work, there already existed a QuickCheck model for dets,
shipped as part of the QuickCheck distribution. The model provides auto-
matic validation of the result of the refactorings we carry out as part of the
pilot study.

• Some parts of dets can be compared to ets, since their interfaces are similar.

As part of this thesis, we have adapted the existing QuickCheck dets model for
the ets system, in order to have two similar models to compare.

CHAPTER 4. DIFFERENCES AND GENERALISATION 59

4.2.3 Wrangler

The Wrangler tool for Erlang (Li and Thompson 2006; Li et al. 2008) has three
parts: a set of built-in refactorings, a set of inspection tools, and a set of extension
mechanisms. In this thesis, we use and extend Wrangler’s refactoring capabilities.
Refactoring is the process of changing the structure of a program without changing
what it does (Thompson and Li 2013).

Source code transformations (which from now on we will call just transforma-
tions), as opposed to refactorings, may change the behaviour of a program; but
several transformations can be combined to form a refactoring.

Wrangler also provides a GUI for both Emacs editor and Eclipse. The refactor-
ings implemented as part of this thesis are both accessible from Emacs and from
the programmatic API. In this thesis, we describe the input of the refactorings as
seen from the Emacs GUI.

4.2.3.1 Built-in refactorings

Wrangler includes a series of built-in refactorings (Thompson and Li 2013) for
Erlang programs. These include refactorings for structure, such as renaming,
function extraction, and function generalisation; refactorings for concurrency and
parallelism; and refactorings supporting unit testing and property-based testing.

4.2.3.2 Inspection tools

In order to help users identify the parts of systems that require refactoring, Wran-
gler includes a set of inspection tools. These range from “local” scale symptoms to
larger scale properties such as the existence of duplicate code or clone detection
(Li and Thompson 2009) and module structure problems like inter-module cyclic
dependencies.

4.2.3.3 Extension mechanisms

Wrangler also provides mechanisms for adapting to specific situations and for ex-
tending itself through two extension mechanisms: an API for user defined refac-
torings, and a domain-specific language.

CHAPTER 4. DIFFERENCES AND GENERALISATION 60

API for user-defined refactorings The API for user-defined refactorings (Li
and Thompson 2011) allows new refactorings to be written from scratch without
using Erlang’s abstract representation. This is possible thanks to the inclusion of
a “template” language that allows transformations to be written using the concrete
syntax of Erlang.

Domain-specific language Another approach to creating new refactorings is
to use Wrangler’s domain-specific language (DSL). Wrangler’s DSL gives users
the ability to define complex refactorings by combining simpler ones, to specify
the user interaction required, to define transactional behaviour, and to describe
classes of refactorings with a single statement (for example: rename all functions
named likeThis to functions named like_this).

4.2.4 Statechum

Statechum is a framework written in Java that implements a number of regular
grammar inference algorithms and allows users to visualise, analyse, and com-
pare state machines, as well as reverse-engineer them from examples (Bogdanov,
Walkinshaw and Taylor 2007). Statechum allows both active and passive infer-
ence, it can take as input a set of traces (examples), interactively issue queries
and generate a diagram based on the answers, or use LTL constraints to answer
queries automatically. The output is usually a state machine that is displayed
graphically by the tool and can be rearranged interactively by using mouse and
keyboard.

4.2.4.1 PLTSDiff

Statechum implements (among others) the algorithm PLTSDiff (as described in
Bogdanov and Walkinshaw 2009), that allows users to create a “diff” state-machine
from two similar ones. The algorithm tries to find a maximal mapping between
both state-machines and highlights the nodes and transitions that have to be
added or deleted to go from one of the input state-machines to the other.

CHAPTER 4. DIFFERENCES AND GENERALISATION 61

4.2.4.2 Synapse

Synapse provides an interface for using FSM and EFSM learning tools from Erlang
(Taylor 2013). The current version of Synapse allows:

• The inference of state machines from traces. Given a valid set of positive
and negative traces, Synapse produces a state machine that accepts and
rejects them respectively.

• The inference of a “diff” state machine from two state machines. Given
two state machines produced by Synapse, Synapse produces a “diff” state
machine that shows the differences between them.

• The visualisation of both state machines and “diff” state machines. Given
a state machine or “diff” state machine produced by Synapse, it can be
visualised by using its own API.

• The automatic reverse engineering of Erlang modules. The combination of
Synapse and Statechum allows users to use Erlang modules as oracles, that
way the user does not need to provide any examples or traces; the values to
try are inferred by using the type specifications provided by running Typer4

on the module provided.

In Chapter 4, we use Synapse to apply Statechum algorithms to different con-
figuration of the Erlang’s Frequency server implementation (see Section 2.1.5 on
page 15).

4.3 Source parametrisation

In addition to promoting effort saving through reuse, generalisation helps reduce
code replication within software implementations. While some code replication
might have a sound reason for its existence (Cordy 2003; Kapser and Godfrey
2006), in general, it is detrimental in several ways: it increases the compilation
time, it increases the size of the source code and executables and, more critically,
it increases the cost of maintenance and the probability of bugs being propagated
during maintenance (Monden et al. 2002).

4http://erlang.org/doc/man/typer.html [last accessed 21-09-17]

http://erlang.org/doc/man/typer.html

CHAPTER 4. DIFFERENCES AND GENERALISATION 62

As stated by (Pierce 2002) “Each significant piece of functionality in a pro-
gram should be implemented in just one place in the source code. Where similar
functions are carried out by distinct pieces of code, it is generally beneficial to
combine them into one by abstracting out the parts that vary”.

In this section, we explore the automation of the generalisation of source code
through the introduction of Erlang behaviours (see Section 4.2.1 on page 56). In
particular, we study two alternative approaches: an interactive set of refactorings
and a fully automated (integrated version), and we compare the advantages and
disadvantages of both approaches.

We have chosen Erlang for our experiments since it is often used for imple-
menting state machine models of systems under test. In many application areas,
system variants are prevalent, and so multiple models are developed, which differ
in some aspects of behaviour but share overall structure as well as most aspects
of behaviour. In such situations, it is desirable to develop parametric models, and
the work reported here supports building parametric models from two existing
concrete variants.

Even though the techniques described in this section have been implemented
in Erlang, they could be easily adapted to other languages, since they rely on
artefacts that are not exclusive to Erlang. For example, in the case of Java,
interfaces or superclasses could be used instead of Erlang behaviours. In fact,
the interactive approach reuses refactorings that are already available in other
mainstream languages. However, the integrated approach, as described here, relies
on the target language being dynamically typed.

4.3.1 Interactive refactoring

In this section, we present the interactive approach to code generalisation. In
particular, we present a series of refactorings and transformations that automate
the task of creating and inlining Erlang behaviour instances (see Sections 4.3.1.2
and 4.3.1.3).

These refactorings were implemented in terms of simpler refactorings and
transformations (some existing and some new) that were composed using Wran-
gler’s DSL for composite refactorings (see Section 4.2.3.3 on page 60). For this

CHAPTER 4. DIFFERENCES AND GENERALISATION 63

reason, we describe the “main” refactorings by first explaining the “simpler” refac-
torings and transformations, and then explaining how they are used from the
“main” refactorings.

The “simpler” refactorings and transformations were implemented mainly using
Wrangler’s callback interface for user-defined refactorings (see Section 4.2.3.3 on
page 60), but some of the “simpler” refactorings used by the inlining refactoring
were implemented as new internal extensions to Wrangler.

The main functionality described in this section can be summarised as follows:
extraction of a single Erlang behaviour instance from either an existing function
or an expression, and unfolding or inlining of a single behaviour instance against
its behaviour definition.

In Section 4.3.1.1 we cover the elementary refactorings and transformations
used through the rest of the section. We cover the actual implementation of
extraction and inlining in Sections 4.3.1.2 and 4.3.1.3 respectively. Finally, Sec-
tion 4.3.1.4 presents an example of both extraction and inlining using iterative
refactorings.

4.3.1.1 Basic refactorings and transformations

Interactive refactorings are implemented using Wrangler’s DSL, which allows the
construction of composite refactorings in terms of smaller ones. In this section,
we provide an overview of the primitive refactorings and transformations that are
used as basis for the construction of the refactorings described in Sections 4.3.1.2
and 4.3.1.3:

• Copy module: This is a new refactoring based on the existing refactoring
Rename module and, as such, it was implemented as a new primitive refac-
toring. It creates a renamed copy of a module. Additionally, it can take
a list of potentially dependent modules as input. If a list is provided, the
refactoring updates the references of the modules in the list to point to the
new copy of the module, the rest of modules remain unchanged (pointing to
the original module).

• Create behaviour instance file: This is a new transformation implemented
through Wrangler’s API for user-defined refactorings. It takes one module
name for the new behaviour instance and the name of an existing module

CHAPTER 4. DIFFERENCES AND GENERALISATION 64

to be used as behaviour definition (the last one is assumed to be the current
module when using the transformation from the GUI).

– it creates the module if it does not exist,

– it adds a behaviour declaration to the new module that sets the second
module provided as input as behaviour definition.

• Add function to behaviour_info/1 : This functionality is implemented as
two new alternative user-defined refactorings:

– Add function to behaviour_info – takes a function name and its ar-
ity and adds it to behaviour_info/1 as a single tuple of the form
{FunctionName, Arity}.

– Add function name to behaviour_info – takes a function name and adds
a tuple to behaviour_info/1 for each of the functions in the module
that have that name (in other words: independently of their arity).

Both refactorings create the behaviour_info/1 function if it does not exist
and add it to the export declaration.

• Remove behaviour declaration: This is a new transformation implemented
through Wrangler’s API for user-defined refactoring. It removes the imple-
mentation of the behaviour_info/1 function and deletes its entry from the
export declaration.

• Instantiate calls: This is a new transformation implemented through Wran-
gler’s API for user-defined refactoring. It searches for calls with dynamic
module qualifier that target the functions enumerated in behaviour_info/1,
and it modifies those calls so that they point statically to a target module
given as a parameter to the refactoring.

• Move Function to Another Module: This refactoring was already part of
Wrangler. It takes a function and moves it and its dependencies (in the
current module) to a different module while ensuring that all the references
affected are updated to the new location. It will also add the functions to
the export declaration if necessary.

CHAPTER 4. DIFFERENCES AND GENERALISATION 65

• Function Extraction: This refactoring was already part of Wrangler. It
takes an expression or sequence of expressions and moves them to become
the body of a new function. A call to the new function is inserted in the
place where the expressions were originally.

4.3.1.2 Behaviour extraction

The automation of behaviour extraction is provided through two alternative “main”
refactorings: Expression to behaviour instance and Function to behaviour instance.
The difference between them is that Expression to behaviour instance takes an
expression and applies Function Extraction to it, while Function to behaviour
instance takes a function directly.

In both cases, the functionality selected is abstracted as a new behaviour call-
back and its implementation is moved to the target module (that is: the module
provided as argument to the refactoring) that becomes a behaviour instance of
the current module (the original module of the function).

In addition to the expression or function to abstract, both refactorings take
as input a target module name (for use as behaviour instance) and, in the case
of Expression to behaviour instance, a name for the new function that will be
created.

Internally, both are composite refactorings implemented using the Wrangler
DSL and they call the following individual refactorings and transformations (that
we already described in Section 4.3.1.1) in order:

1. Create behaviour instance file – creates the behaviour instance (that is: the
target module) if it does not exist and adds the behaviour declaration if it
does not have it.

2. Function Extraction (only for Expression to behaviour instance) – moves the
selected expression to a new function in the same module.

3. Add function to behaviour_info – adds the function (either provided by the
user or extracted in the previous step) to the list of callbacks to implement
by behaviour instances (that is: the list defined by behaviour_info/1 in
the behaviour declaration).

CHAPTER 4. DIFFERENCES AND GENERALISATION 66

4. Move Function to Another Module – moves the implementation of the func-
tion to the behaviour instance.

After calling either of these refactorings, a new behaviour instance has been cre-
ated (if it did not already exist) and the current module has become a behaviour
definition. These refactorings can be executed multiple times, using other func-
tions and expressions as target, in order to add a series of functions as callbacks
to the behaviour.

But there is still one desirable thing to do: the calls of the behaviours generated
by previous refactorings still need to be generalised somehow, for example: a
call at this point still looks like server:start() where server is the name of
a concrete behaviour instance. If we want the new behaviours to use several
instances, we must be able to choose which behaviour instance to use at a given
time, for example: we may want calls to be of the form Instance:start(),
where Instance is a variable that contains the name of the behaviour instance
to use. This can be fixed in several ways (see Adjustments for generalisation in
Section 4.3.1.4).

We decided not to automate the generalisation of calls since there are multiple
possible alternatives whose suitability depends on the context.

4.3.1.3 Behaviour inlining

As part of this work, we have also developed a refactoring for carrying out the
reverse process: behaviour inlining or unfolding. This refactoring combines the
specific code in a behaviour instance with a copy of the generic code in its behaviour
definition. A copy is made in order to ensure that other potential behaviour
instances keep working.

The behaviour inlining process is supported by the composite refactoring Un-
fold behaviour instance. This refactoring takes a behaviour instance and the name
of the output module to contain the inlined instance.

Internally, Unfold behaviour instance was implemented using the Wrangler
DSL and calls the following individual refactorings and transformations in order:

1. Copy module – copies the behaviour definition to the output module updat-
ing only the references from the selected behaviour instance.

CHAPTER 4. DIFFERENCES AND GENERALISATION 67

-module(operation).

-export([get_op_result /2]).

operation(A, B) -> A + B.

get_op_result(A, B) -> {ok, operation(A, B)}.

Figure 7: Initial code

2. Instantiate calls (optional step) – finds the dynamic calls that have function
names matching the ones in the list of callbacks (that is: the list defined
by behaviour_info/1) and instantiates them to point statically to the be-
haviour instance.

3. Move function – moves the functions from the behaviour instance to the new
copy of the behaviour definition (the output module).

4. Remove behaviour declaration – removes the behaviour_info/1 function
from the new copy of the behaviour definition (the output module).

We already mentioned that there are several ways of generalising function calls
so that they can point to any behaviour instance. Step 2 (Instantiate calls) aims
to reverse the process of generalising function calls, but it is approximate; it
instantiates dynamic calls that have the same names than the behaviour callbacks,
but there is nothing preventing a dynamic call from having the same name as a
behaviour callback, being dynamic, and still not being a behaviour callback. If
this was ever the case, our refactoring would produce incorrect results.

On the other hand, in some cases, step 2 will not be necessary at all, depending
on which mechanism was used for generalisation. For both of these reasons, the
step is left as optional.

4.3.1.4 Example

In this section, we show, through an example, how to apply the refactorings
and transformations described in Sections 4.3.1.2 and 4.3.1.3 to the creation and
inlining of Erlang behaviours.

We start the process with a module called operation, shown in Figure 7.

CHAPTER 4. DIFFERENCES AND GENERALISATION 68

-module(operation).

-export([get_op_result /2,
behaviour_info /1]).

behaviour_info(callbacks) ->
[{operation , 2}];

behaviour_info(_Other) -> undefined.

get_op_result(A, B) ->
{ok , sum:operation(A,B)}.

-module(sum).

-behaviour(operation).

-export([operation /2]).

operation(A, B) ->
A + B.

Figure 8: Quasi-behaviour definition and instance after extraction

Creating a behaviour from scratch. In our example, the code that we
want to place in a behaviour instance is already in a separate function, namely
operation/2. Because of this, we selected operation/2 and applied Function to
behaviour instance refactoring.

If, instead, the function get_op_result/2 was defined as follows:

get_op_result(A, B) -> {ok, A + B}.

We could achieve the same result by selecting A + B, applying the refactoring
Expression to behaviour instance, and answering “operation” when asked about
the name for the new callback.

In any case, the refactoring will ask us for the name of the “Destination module”
which in our case we called sum.

The refactoring will make a behaviour definition (see Section 4.2.1 on page 56)
out of the module operation by adding a behaviour_info/1 function with the
tuple {operation, 2} in it. A new module sum will be created to implement
the operation behaviour with the function or expression selected as the callback
operation/2. The result of the refactoring is shown in Figure 8.

Adjustments for generalisation. Arguably, the “behaviour” created up to
now may not be actually considered a “proper” behaviour since the call inside
get_op_result/2 to function operation/2 has the module sum hard-coded, which
makes it not reusable (whereas behaviours are supposed to be reusable). We can-
not use the generated behaviour definition together with new behaviour instances,
for example, a module division: we would not be able to make get_op_result/2
use the callback operation/2 of that module.

CHAPTER 4. DIFFERENCES AND GENERALISATION 69

-module(operation).

-export([behaviour_info /1]).

-export([get_op_result /3]).

behaviour_info(callbacks) ->
[{operation , 2}];

behaviour_info(_Other) ->
undefined.

get_op_result(A, B, Op) ->
{ok , Op:operation(A, B)}.

-module(sum).

-behaviour(operation).

-export([operation /2]).

-export([get_op_result /2]).

operation(A, B) -> A + B.

get_op_result(A,B) ->
operation:get_op_result(A,B,sum).

Figure 9: Behaviour definition and instance after adjustments

One way of addressing this limitation starts by applying Generalise Function
Definition refactoring to the atom sum in get_op_result/2, this will create a
new function get_op_result/3, which takes the target behaviour instance mod-
ule name as a parameter. In order to make the behaviour definition completely
generic, it is usually desirable to also apply Move Function to Another Module
refactoring twice: once to move get_op_result/2 to module sum, and once to
bring get_op_result/3 back to module operation. This procedure will leave us
with the generalised version shown in Figure 9.

Note that, by doing adjustments in this way, we have moved part of the con-
crete interface, that was originally available in the module operation, to the in-
stance sum. The behaviour is preserved because the other places in the code of the
hypothetical project, where the original function operation:get_op_result/2

was used, will now point to sum:get_op_result/2. In module operation, we
now have a generic version get_op_result/3, that takes the name of the specific
instance to use as an extra parameter.

Alternative adjustments for generalisation. Adding a parameter is not the
only way of generalising behaviour instance calls.

If the behaviour to use can be decided at compilation time, we may generalise
it through the use of a macro (see Figure 10). If the behaviour represents a server,
like is the case of gen_server, the name of the behaviour instance module can be
stored in the state of the server or in the process dictionary (see Figure 11).

Both alternatives avoid the need to introduce a new parameter. In exchange,

CHAPTER 4. DIFFERENCES AND GENERALISATION 70

-module(operation).

-define(INSTANCE , sum).

-export([get_op_result /2, behaviour_info /1]).

behaviour_info(callbacks) -> [{operation , 2}];
behaviour_info(_Other) -> undefined.

get_op_result(A, B) -> {ok, ?INSTANCE:operation(A, B)}.

Figure 10: Alternative adjustments for generalisation 1

-module(operation).

-export([get_op_result /2, behaviour_info /1]).

-export([set_instance /1]).

behaviour_info(callbacks) -> [{operation , 2}];
behaviour_info(_Other) -> undefined.

set_instance(Instance) -> put(instance_name , Instance).

get_op_result(A, B) -> {ok, (get(instance_name)):operation(A,B)}.

Figure 11: Alternative adjustments for generalisation 2

CHAPTER 4. DIFFERENCES AND GENERALISATION 71

-module(opsum).

-export([get_op_result /3]).
-export([get_op_result /2]).
-export([operation /2]).

get_op_result(A,B,Op) -> {ok , operation(A, B)}.

get_op_result(A,B) -> get_op_result(A,B,sum).

operation(A, B) -> A + B.

Figure 12: Result of inlining

the first approach requires the decision to be taken at compilation time (which
is not always possible), and the second approach takes advantage of side effects
(which may lead to an increased difficulty in error debugging).

These scenarios illustrate the fact that there is no one “correct” workflow for
behaviour introduction. What we have done in this chapter is to provide a minimal
workflow: new functionality can be created easily through Wrangler’s extension
mechanisms (see Section 4.2.3.3 on page 59); in particular, through Wrangler’s
DSL, existing refactorings can be combined in order to create new functionalities
that are appropriate for each context (as the interactive refactorings themselves
demonstrate).

Inlining a behaviour instance. We can revert the process of behaviour in-
troduction by calling the refactoring Unfold behaviour instance from a behaviour
instance. The refactoring prompts the user for a name to give to the output
module (in our example we inline the module sum from Figure 9 and use the non-
existent module opsum as output). We are then asked about whether we want to
point all dynamically qualified callbacks to opsum (in our case we answered yes,
in order to revert the adjustments for generalisation). The result of executing the
refactoring was the module opsum shown in Figure 12.

Removing spurious parameters. We can see that both get_op_result/2

and get_op_result/3 in Figure 12 behave as the original code, but the function
get_op_result/3 has a spurious parameter (that is: Op). If we compile opsum

we will get a warning for this reason.

CHAPTER 4. DIFFERENCES AND GENERALISATION 72

-module(opsum).

-export([get_op_result /2, operation /2]).

get_op_result(A,B) -> {ok , operation(A, B)}.

operation(A, B) -> A + B.

Figure 13: Result of removing spurious parameters

In order to obtain cleaner code, we can apply Wrangler’s Unfold function
application refactoring to inline the application of get_op_result/3 into its only
usage in get_op_result/2 and then we can remove get_op_result/3 (together
with its export declaration).

By doing this we will obtain the code shown in Figure 13, which is almost
equivalent to the original one from Figure 7 (on page 67).

4.3.2 Integrated refactoring

The integrated refactoring assumes a slightly different scenario: one where we
already have replication and we want to introduce abstraction to eliminate it. At
this point, we must make an additional effort to find the commonalities between
the two pieces and unify them, which can be a hard and error prone process
(Tsantalis, Mazinanian and Krishnan 2015).

By having a mechanism that allows us to abstract the commonalities between
two modules automatically, in addition to reducing the likelihood of introducing
mistakes when we find ourselves in this situation, we allow for an easier approach
for creating abstractions that exploit existing heuristics; in particular: the heuris-
tic that tells us that it is easier to work with examples than with abstractions
(Holmes and Langford 1976), and the heuristic that tells us that it is easier to
modify than to create from scratch (Miller 1991). For example, we can create
one example, make a copy of it, modify the copy, and then use an automated
refactoring to abstract out the replication.

In this section, we therefore study a mechanism that we called the integrated
approach, that works precisely in this way. It takes two similar modules and a
partial mapping. The partial mapping must identify pairs of nodes, one in each
AST, which are syntactically equal; we define what we mean by syntactically

CHAPTER 4. DIFFERENCES AND GENERALISATION 73

equal nodes in Section 4.3.2.1. Given these two similar modules and partial map-
ping, our algorithm abstracts commonalities automatically by using the template
pattern (see Section 2.6.1 on page 25) implemented as an Erlang Behaviour (see
Section 4.2.1 on page 56). The algorithm is completely automated, it does not
require any human intervention.

This way, the commonalities (given by the mapping) are moved to the be-
haviour definition, while the specific parts of the two modules (that is: parts that
have no correspondence in the other module) remain in their original modules, and
the two original modules become behaviour instances that implement the newly
created behaviour definition.

Note that the approach is the opposite to that of the interactive approach
in that we move away the generic parts instead of the specific ones (in any case
the result is having the generic parts separated from the specific ones). The
integrated approach also differs from the interactive approach in that, while the
latter is implemented in terms of simpler refactorings, the former is implemented
at a low level. It would probably be possible to express some of the aspects of
the integrated refactoring in terms of simpler ones, but we chose to use a more
“holistic” approach because the integrated refactoring affects the whole structure
of the module and makes use of several complex and ad-hoc data structures for
the combined processing of the different parts.

In addition to the general objective of abstracting out generic parts, the refac-
toring satisfies several properties (assuming there are no bugs in the implementa-
tion or errors in the design):

• The behaviour instances generated must comply with a common interface
(in other words: both implement the same number of callbacks, and the
callbacks must have the same name and number of arguments in both in-
stances)

• The external interface and the behaviour of the original modules, as observed
from that interface, must remain the same after the refactoring (other ex-
ternal modules that call the original modules should not be able to notice
the refactoring).

• No conditional statements must be introduced. Control flow must be pre-
served through the insertion of functions and function calls.

CHAPTER 4. DIFFERENCES AND GENERALISATION 74

-module(sum).

-export([sum/2]).

sum(A, B) ->
{ok , A + B}.

-module(division).

-export([division /2]).

division(_A , 0) ->
error;

division(A, B) ->
{ok , A / B}.

Figure 14: Example input for the integrated refactoring

For example, if we run the integrated refactoring on the modules from Figure 14
with a mapping that maps the atom ok and the tuple in one version to the atom
ok and the tuple in the other, we obtain the modules in Figure 15. The example
in Figure 15 was actually generated automatically from the modules in Figure 14
by our implementation of the integrated refactoring available as part of Wrangler
(see Section 4.2.3 on page 59).

The algorithm behind the refactoring takes two similar modules and a tree
mapping (which we describe in more detail in Section 4.3.2.1) and has two main
phases: cluster construction, that groups the contiguous commonalities and moves
them to the new behaviour definition module (Section 4.3.2.2), and cluster linking,
that restores the control flow by linking the pieces together with function calls in
a way that the original behaviour is preserved (Section 4.3.2.3).

4.3.2.1 Tree mapping

The algorithm takes as input two modules and one partial mapping that identifies
syntactically equal nodes in their two ASTs. The work in this thesis does not
study how to find a good partial mapping between the ASTs of the input mod-
ules. A good option would be to use a mapping derived from the minimal edit
script including “move” operations (“move” operations and untouched nodes can
be translated to mappings between the two ASTs, and additions and deletions
can be left unmapped); but this has been claimed to be an NP-complete problem
(Falleri et al. 2014).

For our experiments, examples, and for our implementation distributed as part
of Wrangler, we use the tree matching algorithm from Al-Ekram, Adma and Baysal
(2005) and, while this algorithm and our refactoring combined provide a useful
tool already (we validate its usability in Section 4.3.4 on page 91), it would be

CHAPTER 4. DIFFERENCES AND GENERALISATION 75

-module(sum).

-export([sum/2]).

-export([callback_1 /2]).

-behaviour(operation).

sum(A, B) ->
operation:common_1(

?MODULE , A, B).

callback_1(A, B) ->
A + B.

-module(division).

-export([division /2]).

-export([callback_1 /2]).

-behaviour(operation).

division(_A , 0) ->
error;

division(A, B) ->
operation:common_1(

?MODULE , A, B).

callback_1(A, B) ->
A / B.

-module(operation).

-export([behaviour_info /1, common_1 /3]).

behaviour_info(callbacks) -> [{callback_1 , 2}];
behaviour_info(_Other) -> undefined.

common_1(Module , A, B) ->
{ok , Module:callback_1(A, B)}.

Figure 15: Result of applying the integrated refactoring to Figure 14

CHAPTER 4. DIFFERENCES AND GENERALISATION 76

possible to choose and develop other mechanisms for finding a mapping that may
be more appropriate in certain circumstances. In particular, we have found some
more recent and heavily tuned algorithms that might have been more appropriate
for our approach (Falleri et al. (2014); Fluri et al. (2007)), but we have not used
them because, due to their complexity, reimplementing them would have been
much more costly, and in the cases where there exist public implementations of
them, they are written in different languages, which would have made integrating
these implementations more difficult and cumbersome.

Syntactically equal AST nodes Independently of the mechanism we use to
obtain a mapping, we must define what we mean by two AST nodes being syn-
tactically equal.

We use three simple criteria:

• If we compare a pair of leaf nodes, we just compare the literal representation
of the nodes after removing irrelevant information like comments and layout.
This way, two variables or two atoms are considered syntactically equal if
and only if their names match.

• If we compare a pair of parent nodes, we simply check that they have the
same type and the same number of children. This way, two list constructors
of the same length are considered syntactically equal independently of their
elements, but a tuple and a list of the same length, or two lists of different
lengths, are not.

• If we compare a leaf node and a parent node we can directly conclude that
they are not syntactically equal.

We can represent the mapping as a set of arrows between both trees. In Figure 17a
(on page 78) we show what a possible tree mapping representation would look like,
where nodes with the same name are considered syntactically equal.

Another consideration about the mapping used as input is that, even though
it is not a precondition of the integrated refactoring, results benefit considerably
from the mapping supplied being as close to an isomorphism as possible (in other
words: the relative position of a node in one tree should be similar to the position
of its image in the other tree and there should be as few discontinuities in the

CHAPTER 4. DIFFERENCES AND GENERALISATION 77

Figure 16: Example of pair of nodes with contiguous mapping

mapping as possible), the more discontinuities in the mapping, the higher the
number of callbacks it will be necessary to introduce.

4.3.2.2 Cluster construction

The first step is to create groups of subtrees or clusters that we can use undivided.
We do this in two stages: first we try to create maximal common clusters, and then
we iteratively reduce them so that frontiers between clusters can be represented as
terms or Erlang function calls, (in other words: so that clusters can be extracted
as functions).

Creating common clusters. The tree mapping relates the common (syntac-
tically equal) nodes of the ASTs of both input modules. In order to find common
subtrees, we only have to traverse one of the ASTs and group all those nodes that
have a contiguous mapping.

Given a pair of nodes a and b from the same tree where b is the nth child of
a, we say a and b are contiguous if and only if: the parent of the projection of b

CHAPTER 4. DIFFERENCES AND GENERALISATION 78

(a) Example of mapping (b) Example of clusters

Figure 17: Tree matching and cluster construction

is identical to the projection of a and the projection of b is the nth child of the
projection of a, or if both a and b have no projection. In Figure 16 we show an
example to illustrate the concept of nodes with contiguous mapping.

We call the relationship between a parent node and a child node in the same
tree a link. After defining contiguous mapping we can define a frontier link to be
any link between two nodes of which, at least one has a mapping, but which are
not contiguous in term of their mappings. Frontier links are important because
they define where clusters begin and end. In the same way, the set of frontier
links that have one of their nodes in a given cluster forms its frontier.

In Figure 17b, we show how the mapping from Figure 17a could be clustered,
where frontier links (links that are not contiguous in terms of their mapping)
and cluster mappings (mappings between clusters that are syntactically equal)
are both represented using dashed arrows.

Readjusting the frontier links. Before moving the common clusters to the
new module, we must make sure that it makes sense from the point of view of the
target language, in other words, we must check that the frontier links are valid
candidates for function extraction. There are several reasons why this may not
be the case, the most common ones are:

CHAPTER 4. DIFFERENCES AND GENERALISATION 79

• The target cluster of a frontier link may not represent an expression. Other
types of Erlang terms (for example: patterns) cannot be the body of a
function.

• It may be syntactically incorrect to introduce a function call at that position
(in the parent cluster). For example, we cannot introduce a function call in
the header of a function.

• It may occur that variables defined in the child cluster are used from outside
of it. Because creating a function will also create a new scope, the variables
defined inside cannot be used outside (they are not visible). Nevertheless,
there are ways around this limitation, for example, it is possible to “export”
variables out of the scope by passing them as result of the function and using
pattern-matching around the function call.

In principle, if we try to extract functions in places where frontiers are not valid
candidates, the result will either produce compilation errors or behave differently
from the original code (both of them undesirable properties for refactorings). But
we can add exceptions to the validation as long as we can create a post-processing
mechanism that fixes the problems (we do this to solve some readability problems,
see Section 4.3.2.4 on page 83). On the other hand, we can add unnecessary extra
rules if that helps us increase readability of the final code.

If we find that some frontier links are invalid, we can move them by removing
the mapping of nodes at the borders of common clusters and recalculating. The
trade-off of this procedure is that, when used, it prevents replicated code from
being generalised. In the worst case scenario, we will fallback to having no common
clusters and that would leave the input modules as they were originally.

We take as basic principle that, if necessary, we can have code common to both
instances replicated in both the behaviour instances, but we cannot have code
unique to one of the behaviour instances in the behaviour definition. We could do
so by adding conditional expressions, but that would make future extension of the
behaviour (the creation of new instances for the generated behaviour definition)
more difficult, and it may add unnecessary complexity to the resulting code.

Common clusters and unmatched clusters. Once we have decided which
nodes will form the common clusters, we move them to the new module as top-level

CHAPTER 4. DIFFERENCES AND GENERALISATION 80

functions, and we remove their nodes from the ASTs of the input modules.
The remaining contiguous nodes form what we call the “unmatched clusters”.
At this point, we have two kinds of cluster:

• The common clusters represent code that was present in both of the original
ASTs. Each common cluster will translate into a function in the output
behaviour definition. We call these functions common functions.

• The unmatched clusters represent code that was only in one of the original
ASTs (or was common to both but there was no mapping between both
versions). Each unmatched cluster will become a function in one of the
output behaviour instances. Those of the functions that are not linked to
the root of one of the original modules will become callbacks, and they will
be part of the list of functions to be implemented by the behaviour instances.

4.3.2.3 Cluster linking

At this point, we know which code goes in which module, but we probably have
several pieces of code (clusters) that are disconnected from each other. The linking
process is in charge of restoring the control flow (at the frontiers of the clusters)
so that the behaviour instances behave like the original input modules. This is
achieved through the introduction of function calls and, in order to do this we
must assign names to each cluster.

In Figure 18 we show how the example from Figure 17 on page 78 would be
divided into modules and linked. The dashed node I in Version 2 is the rendering
of an indirection cluster. Indirection clusters are explained later in this section.

As we mentioned before, we need to ensure that the list of callbacks for both
nodes is the same. With this aim, we start by naming pairs of clusters that have
a common parent cluster. We find them by visiting every lower frontier link of
the common clusters. We can find the child clusters by following the hierarchy of
their leaf nodes in their original ASTs.

We know that, for each lower frontier link in a common cluster (that is: for
each link that starts in the cluster and goes to a different cluster) we necessarily
have two alternative child clusters (since nodes in the common clusters are the
result of merging two nodes from two different ASTs). We also know that these
two child clusters are not the same cluster (since otherwise they would have been

CHAPTER 4. DIFFERENCES AND GENERALISATION 81

Figure 18: Example of linking

merged with the parent cluster). But we cannot assume that both child clusters
are unmatched; it is possible that one or both of the child clusters are also common.
This is because the frontier between clusters may be due to a discontinuity in the
mapping, rather than to unmatched code.

For example, a node a and its parent b may both have an image (or pre-image)
in the mapping and still belong to different clusters if the image of b is not the
parent of the image of a, or if the image of a is in a different position in the child
list of the image of b. We can observe this in Figure 17b (on page 78), where
node G is parent of node C (in Version 2), and both have mappings; but they still
belong to different common clusters.

Indirection clusters. Considering that, potentially, the input modules may
have very different structures, it is possible that at some point we will find that
we cannot give both alternative children (corresponding to each of the instances)
the same name, since we may have already named one or both of the children
differently. If that is the case, we create “indirection clusters” in either or both
sides that we cannot name as desired. Indirection clusters are just top-level nodes
that are rendered as a function with a function call as its only body. Of course,
we want to minimise the use of indirection clusters, since they add complexity to
the code.

For example, in the case of the cluster that contains the node I from Figure 17b
(on page 78), we would ideally want to name its function the same as the cluster
containing the node C, since they are both children of G. We know the content of

CHAPTER 4. DIFFERENCES AND GENERALISATION 82

the node G is going to be in a single place (the behaviour definition, since it has
a mapping); thus, we want the function call that links G with C and I to be the
same, and for that we need C and I to have the same function name (otherwise we
would need two function calls). But because the cluster containing C is a common
cluster, this is not possible. That is why, in Version 2 of Figure 18, we have
created an indirection cluster that has the same name (I), with the only purpose
of redirecting the execution to the cluster containing C in common.

We are assuming, in the diagram in Figure 18, that each subtree made of
round nodes in each module (or version) represents a single function that has the
name of the root node. The ASTs of the output modules will obviously be normal
trees with a single root, but we consider the AST of each separate function for
simplicity, and we combine the different trees in each module into a single one at
the end of the process.

When creating indirection functions there is also the non-trivial problem of
finding appropriate names for the arguments, since the original function may
use patterns and may have different names for each variable in each clause. We
addressed this problem by reusing the solution implemented in the Erlang program
documentation generator EDoc (Carlsson 2009). EDoc provides an elaborate
algorithm with a series of heuristics that allows it to determine a name for the
arguments of each function. In addition to looking at the names of variables
when they exist, EDoc also checks the spec declarations when available, and also
analyses composite patterns of several types in arguments, like match expressions,
records, lists, and infix operators. In some cases, EDoc may fail to find anything
that looks like a name for the argument and, in those cases (as a last resort),
EDoc will generate a unique name starting with the letter “X” and ending with a
number. This can be observed in the example of the Frequency Server pilot study
(Section 4.3.4.1 on page 92).

Ensuring common arities. In Erlang, a call is considered different from an-
other one if it has a different name or different number of arguments. Through
indirection clusters we can make sure that alternative calls have the same name,
but we also need to make sure that they have the same number of parameters
in both behaviour instances. We do this by combining the parameter sequences
of both alternatives. We add common parameters only once, and then we add

CHAPTER 4. DIFFERENCES AND GENERALISATION 83

unmatched parameters of both sides. This gives us functions that have arity at
most the sum of the arities of the functions combined, but the number of extra
parameters depends on the extent to which the names of the parameters of the
functions merged match each other.

Since the unmatched parameters are only used by one of the alternatives, in
the opposite side we will use dummy values for those parameters, and we will
prefix them with an underscore to avoid unused warnings. These dummy values
will not cause a difference in the behaviour because they will not be used, and
they are easy to generate thanks to the dynamic typing of Erlang, (we can simply
use an atom like none or undefined).

We can see an example of this later in Figure 24 on page 101: the callback_4/3
function has three parameters but only the first is used in the left version, and
only the last two are used in right version; on the other hand the common
function common_1/4 is called using the atom none for the last two parame-
ters from prop_dets/0, and using the atom none for the second parameter from
prop_parallel/0.

4.3.2.4 Extra considerations

The integrated behaviour extraction refactoring subsumes several simpler refactor-
ings and transformations, and, thus, some considerations applied to these simpler
refactorings are also applicable to the integrated behaviour extraction. The main
simpler refactorings implied by the integrated behaviour extraction refactoring
are: function extraction and function module migration (that is: moving one
function from one module to another). But, there are some considerations that
are specific to this refactoring as well. In this section, we comment on some of
these issues (both general and particular).

Combining sibling functions. The naïve approach for dividing ASTs trans-
lates horizontal borders between clusters into sequences of calls to functions with
one expression each. By horizontal borders we mean frontier links that depart
from one or more sibling nodes that belong to the same cluster but go to nodes
that belong to other clusters. These calls can usually be merged into a single one,
removing the need to “export” and pass variables among them.

In order to solve this problem without affecting the main part of the algorithm,

CHAPTER 4. DIFFERENCES AND GENERALISATION 84

Figure 19: Example of fragmentation by horizontal border

we do a preliminary pass for detecting the places in the ASTs where horizontal
division happens and we introduce blocks begin ... end (see Section 2.1.2 on
page 13) to create a common parent for all of them in the AST. At the end of the
process, we just remove the blocks we created since they are no longer necessary.

For example, the two snippets in Figure 19 would require the creation of two
separate common clusters which would in turn translate into two different common
functions which would have to be called independently (one for step2/0 and one
for step3/0). By introducing a begin ... end block as in Figure 20 we would
only obtain one common cluster.

This artefact ensures that the frontier occurs in a single node and avoids un-
necessary function fragmentation.

Exporting variables in block expressions. The rule for cluster adjustment
about not allowing the creation of frontiers that would require “exporting” vari-
ables, as defined in Section 4.3.2.2 (on page 77), works well by default until we
allow the combination of sibling functions.

For example, if we only have to apply function extraction to single expressions,
whenever the expression is a match expression (for example: Res = 1 + 1), and

CHAPTER 4. DIFFERENCES AND GENERALISATION 85

Figure 20: Example solution to fragmentation

CHAPTER 4. DIFFERENCES AND GENERALISATION 86

if there are variables that would have to be “exported” (in our example it could
be the variable Res), we can only apply function extraction to the right hand
side of the match expression (in our example: 1 + 1; which would leave us with
something like Res = common:common_1()).

On the other hand, if we have a sequence of expressions, the assignment is no
longer at the top of the subtree, thus, we cannot just rearrange the frontiers of
the clusters without reintroducing the fragmentation. Thus, we must “export” the
required variables in some other way.

Our solution consists of:

• adding an expression, to the end of the function extracted, for returning the
“exported” variables in a tuple, and

• adding a match expression surrounding the function calls, in order to extract
the variables from the tuple.

One example of this is the function out:common_1/0 in Figure 22 on page 88.
In general, being able to reduce the number of functions generated gives better
readability, since high fragmentation forces developers to jump through several
functions to understand small bits of functionality, as opposed to looking at a
single fragment which is written consecutively in the code. Arguably, the addition
of extra artifacts also makes it harder to read the extracted functions, but we
consider this effect to be less damaging than fragmentation.

Result and exported variables combined. In some unusual scenarios, it
may happen that both the “exported” variables and the result of the function are
used from outside the function (see the case expression in Figure 21). Since our
solution modifies the result of the function, we would be affecting the behaviour
of the original code.

In order to prevent this from happening, we only create begin ... end blocks
around expressions that either do not include the last instruction of a block or do
not “export” any variables. We do not have to worry about modifying the value
of intermediate sentences in blocks, because we know that these values are also
discarded by the original code.

For example, let us consider the code in Figure 21. Our refactoring extracts
two common functions common_1 and common_2, (see Figure 22). We could, in

CHAPTER 4. DIFFERENCES AND GENERALISATION 87

-module(mod1).

-export([test1/0]).

test1(A) ->
D = case A of

error ->
Error = 1,
Value = 2,
{3, Value}

end ,
{Error , D}.

-module(mod2).

-export([test2/0]).

test2(B) ->
C = case B of

ok ->
Error = 1,
Value = 2,
{3, Value}

end ,
{C, Error}.

Figure 21: Example of exported variables and result combined

principle have extracted a single function since the code:

Error = 1, // in common_1

Value = 2, // in common_1

{3, Value} // in common_2

is common to both the input versions. But there is a conflict. The whole block
“exports” the variable Error, but it returns the tuple {3, Value}.

If we added the variable Error at the end of the function we would be mod-
ifying its result (that is: the value that will be stored in variables D and C in
mod1 and mod2 respectively) and, thus, altering the behaviour of the code. This
is because the value of a block of expressions is the value of the last expression.
Nevertheless, we can modify the return value for common_1 to return the tuple
{Error, Value}.

This is the reason why we extract two functions instead of one. It would still be
possible to use only one function if we, for example, pack both the variable Error
and the result ({3, Value}) into a tuple, we unpack it outside of the function
and then return just {3, Value} as the last expression of the clause of the case
block. Nevertheless, we chose the solution described above because it is generic,
it avoids the creation of new variables, and it is simpler to implement.

There may be more cases where variables are “exported” from nodes that are
not at the root of a subtree. In order to avoid breaking these kinds of frontier
links for which we cannot automatically fix the “exported” variables, we ensure
that common clusters do not “export” any other kinds of variables, by adjusting
them as described in Section 4.3.2.2 (on page 77) .

CHAPTER 4. DIFFERENCES AND GENERALISATION 88

-module(mod1).

-export([test1/0]).

-behaviour(out).

test1(A) ->
D = case A of

error -> {Error , Value} = out:common_1 (),
out:common_2(Value)

end ,
{Error , D}.

-module(mod2).

-export([test2/0]).

-behaviour(out).

test2(B) ->
C = case B of

ok -> {Error , Value} = out:common_1 (),
out:common_2(Value)

end ,
{C, Error}.

-module(out).

-export([behaviour_info /1, common_1/0, common_2 /1]).

behaviour_info(callbacks) -> [];
behaviour_info(_Other) -> undefined.

common_1 () -> Error = 1,
Value = 2,
{Error , Value}.

common_2(Value) -> {3,Value}.

Figure 22: Output of our refactoring for modules in Figure 21

CHAPTER 4. DIFFERENCES AND GENERALISATION 89

With our technique, those unusual cases would introduce a bit of replication
in the result, but in exchange we will still be able to ensure the preservation of
the original behaviour.

Macros and preprocessor directives. Moving a function from one module
to another changes its context, it becomes affected by different directives. These
directives can be conflicting with the directives of the destination module, they can
include conditional directives (ifdef or ifndef), and they can even inline other
files (include or include_lib) that, in turn, may contain additional directives
too.

There is no easy universal solution for adjusting the directives so that the
functions moved do not change behaviour. We opted for a compromise solution
that will probably work most of the time: we copy all the individual directives
on which the code of the function that we move depends. But because moving
individual directives that are contained inside a conditional directive block may
alter their behaviour, if the directives on which the function depends are inside a
conditional directive block we copy the whole block instead.

Function migration artefact. The header of a function is mainly composed
of patterns and guards (which do not accept function calls), because of this it
is complicated to split the header of a function in parts, even if it has common
patterns or even whole common clauses.

In cases where a function that exists in both versions has the same number of
clauses and the same header for every clause in both versions, we can always move
the whole function to the common module. Then, in order to keep the interface
of the instance module unchanged we just insert an “indirection function”, that
is: a function that has the same name and arguments as the original function,
but instead of the same body it just has a call to the original function in its new
location.

Function arity collision. Another consideration when moving functions is that
there must not exist any function with the same name and arity in the destination
module. In our case, this is mitigated by the fact that our destination module is
new and, as such, there are no previous existing functions.

CHAPTER 4. DIFFERENCES AND GENERALISATION 90

But we need to add one extra argument to some functions because, common
functions, at some point, may need to call the unmatched modules back. Because
the target module is only known at execution time, we pass the name of the
module as a parameter (this can be seen in function common_1 in Figure 15 on
page 75).

This is not a problem for generated common functions, since every common

function is generated with a unique suffix number. But it is a potential problem
for functions we move as part of the Function migration artefact, they may also
need an extra argument, and they may clash with another function moved by the
Function migration artefact that:

• has the same name,

• has the same number of arguments plus one, and

• does not need an extra argument (because it does not call any other functions
in the behaviour instance).

When this is the case, we need to generate, for one of the clashing functions, a new
name that is unique (this can be done, for example, by adding a number at the
end of the name), and to rename the function and all its references accordingly.

4.3.3 Wrangler usage

The work we have presented throughout Section 4.3 (on page 61) can be under-
stood, to a large extent, in terms of smaller existing refactorings, as illustrated by
the steps that form the interactive refactoring. Because of that, we have been able
to reuse a lot of functionality that was already available in Wrangler. In particu-
lar, the refactorings that assist the interactive manipulation of Erlang behaviours
have been implemented by using Wrangler’s DSL for composite refactorings.

Several of the primitive refactorings, used by the new composite refactorings,
already existed prior to this work. Some new refactorings and transformations
were created through the use of the API for user-defined refactorings. For this
reason, the work described in this chapter validates the effectiveness of Wrangler’s
DSL for extending the applicability of Wrangler.

But even some new primitive refactorings created as internal extensions to
Wrangler during the course of this work were based on existing ones (in particular,

CHAPTER 4. DIFFERENCES AND GENERALISATION 91

the new copy module refactoring was based on the previously existing rename
module refactoring).

The refactoring for integrated behaviour extraction was implemented in its
entirety as an internal extension to Wrangler, but both the internal infrastructure
and the refactoring API were used extensively. This support allowed the new
implementations to inherit properties like code layout and comment preservation.

Low-level mechanisms provided by Wrangler, like the categorisation of AST
nodes, or the module information extraction, saved a lot of effort in the imple-
mentation of the integrated refactoring.

Finally, Wrangler refactorings have been extensively tested in production set-
tings. Reusing these mechanisms gives our implementation an increased level of
safety and reliability that would be very costly to achieve for an implementation
from scratch.

4.3.4 Case study

In order to evaluate the refactorings implemented as part of this work, we have
tried both behaviour extraction techniques (interactive and integrated) on two
QuickCheck models with two variants each:

• models for testing the Frequency server (see Section 2.1.5 on page 15); and

• models for testing ets and dets term storage libraries (see Section 4.2.2

on page 58).

This case study aim at validating the proof of concept, as well as being realistic
enough to highlight some limitations in our approach in practice. The reader can
easily rerun these experiments since the full source code of the examples and the
results of the case study are available in the examples folder of the GitHub repos-
itory of Wrangler at https://github.com/RefactoringTools/wrangler. This
repository also contains the source of Wrangler, which includes the implementa-
tions of all the refactorings described in this chapter as of release 1.2.

The only runtime issue we found during the experiments was an error when
applying the interactive technique to extract a small piece of code that contained
the macro ?BUG_INSERT_NEW, which is defined inside a conditional block defined

https://github.com/RefactoringTools/wrangler

CHAPTER 4. DIFFERENCES AND GENERALISATION 92

through preprocessor directives in ets_eqc.erl. We solved the problem by man-
ually copying the macro definition to the destination module (the behaviour in-
stance), and then the interactive refactoring worked as expected. The integrated
refactoring did not require to manually copy the macro, it automatically copied
the whole conditional macro block.

4.3.4.1 Frequency server

For the Frequency server, the integrated approach worked as expected since the
difference between both variants is very small and localised. All the process,
including parametrisation, was done automatically, but some boilerplate code was
introduced.

The interactive approach allowed us to keep the interface of both modules
in the common side, we just had to take one of the modules as starting point
and move the different parts to an instance by using the refactorings. But we
had to find the differences and commonalities manually, and we had to manually
parametrise the name of the instance to use (which we did by introducing a
macro). As we explained in Section 4.3.1.4 (on page 67), other solutions are
possible, but by using a macro we did not need to modify the interface in the
behaviour definition. We also realised that having the interface in the behaviour
definition side (as obtained through the interactive approach) gives in this case a
much more concise solution, because moving it to the behaviour instance would
have implied introducing a lot of boilerplate code (as the solution produced by
the integrated refactoring shows).

In both cases, we only created one small callback.

callback_1(Alloc, Freq) -> not lists:member(Freq,Alloc).

===

callback_1(_Alloc, _Freq) -> false.

However, the integrated approach needed to create 16 indirection functions
for each instance, since, despite it unified most of the source code, it still needs
to preserve the interface of the original modules. On the other hand, the version
generated by the integrated refactoring is parametrised dynamically (as opposed to
statically with a macro). For example, the function precondition/4 was moved
to the common module (full_fsm), but an indirection function was inserted:

CHAPTER 4. DIFFERENCES AND GENERALISATION 93

precondition(From, To, S, Op) ->

full_fsm:precondition(?MODULE, From, To, S, Op).

And we can see that the name of the module was added to the arguments of
the precondition function so that it knows the callback of which module to call:

. . .

precondition(_Module,{state,N},{state,M},{_Free,Alloc},

{call,frequency,deallocate,[Freq]}) when M < N ->

lists:member(Freq,Alloc);

precondition(Module,{state,_N},{state,_M},{_Free,Alloc},

{call,frequency,deallocate,[Freq]}) ->

Module:callback_1(Alloc, Freq);

precondition(_Module,{state,N},{state,M},{[],_Alloc},

{call,frequency,allocate,[]}) when M > N ->

false;

. . .

4.3.4.2 ets and dets tables

For the variants of ets and dets tables, the integrated approach automatically
abstracts an important part of the common code, and the result seemed to be-
have in the same way as the original code when running the tests. But the first
attempt showed that some prior clone removal was convenient in order to reduce
the number of callbacks created by the refactoring. For example, we created a
function to store the name of the table used during the tests (of course, a macro
could have been used instead):

table_name() -> ets_table.

===

table_name() -> dets_table.

However, even after clone removal, some of the callbacks generated by the
integrated approach – despite being correct – may arguably be hard to understand
for humans, since they do not carry any clear meaning, and they do not have
meaningful names.

CHAPTER 4. DIFFERENCES AND GENERALISATION 94

One clear example is the following snippet extracted from the result of the
initial run of the integrated refactoring during the ets and dets case study.

common_17(Module) -> [{Module:callback_36(),

Module:callback_37()}].

The integrated algorithm found that the list with a tuple was common to both
ets and dets, but none of the elements of the tuple is common.

The example was extracted from when we ran the integrated refactoring con-
figured to discard common clusters that have 3 or fewer nodes, because an AST
of that size is very unlikely to be a meaningful match. But we can increase this
limit if we get too many callbacks: in the case of the ets and dets models we
tried several values, and in the end set the value to 7, since it got rid of most
meaningless callbacks and produced an output that we could understand more or
less easily (without having to alternate between the three modules many times
to see what had happened). Increasing the limit further would progressively re-
move common functions (and, as a consequence, callbacks) until the result of the
refactoring become the same as the input and no redundancy would be abstracted
out.

For a later run of the integrated refactoring (whose results are published in
the examples directory of the Wrangler distribution), we also made some ad-hoc
modifications to the matching algorithm in order to obtain a better mapping, since
the mapping is not part of the contributions of this section, nor is it a target of the
case study. Note that the ad-hoc modifications are not part of the implementation
that has been published as part of Wrangler (since they may be detrimental in
the general case, and since they make the matching algorithm quite inefficient).

In order to give an idea of the effect of the minimum common cluster size,
we have executed the integrated refactoring in the ets and dets example for
minimum common cluster sizes from 1 to 20 nodes (this time using the published
implementation of the matching algorithm). The statistics about the results can
be seen in Table 1. Note that if the mapping used had been the same, we would
have expected the number of common functions to decrease, and the number of
callbacks to be increasing; but the reason that this is not the case is that the
matching algorithm was implemented in a non-deterministic way.

CHAPTER 4. DIFFERENCES AND GENERALISATION 95

Minimum common
cluster size in nodes

Number of common
functions

Number of callbacks
per instance

1 26 36
2 19 32
3 17 23
4 16 22
5 13 25
6 14 21
7 11 23
8 10 20
9 11 24
10 11 22
11 7 18
12 6 21
13 6 16
14 4 15
15 5 17
16 2 13
17 2 13
18 2 13
19 2 13
20 3 15

Table 1: Influence of the minimum common cluster size parameter

CHAPTER 4. DIFFERENCES AND GENERALISATION 96

Using the ad-hoc matching algorithm and discarding common clusters of 7 or
fewer nodes, a better result was generated for the precondition/4 function:

precondition(From,_To,S,{call,_,open_file,[_,[{type,T}]]}) ->

lists:member(S#state.type,[undefined,T])

andalso From==init_state;

precondition(_From,_To,_S,{call,_,insert_new,_}) ->

?BUG_INSERT_NEW;

precondition(_From,_To,_S,{call,_,_,_}) ->

true.

===

precondition(From,_To,S,{call,_,open_file,[_,[{type,T}]]}) ->

lists:member(S#state.type,[undefined,T])

andalso (From==init_state orelse ?BUG_OPEN_FILE);

precondition(_From,_To,_S,{call,_,insert_new,_}) ->

?BUG_INSERT_NEW;

precondition(_From,_To,_S,{call,_,_,_}) ->

true.

The whole function was moved to the common module except for the conflict-
ing part:

precondition(Module,From,_To,S,{call,_,open_file,[_,[{type,T}]]}) ->

lists:member(S#state.type,[undefined,T])

andalso

Module:callback_13(From);

precondition(_Module,_From,_To,_S,{call,_,insert_new,_}) ->

?BUG_INSERT_NEW;

precondition(_Module,_From,_To,_S,{call,_,_,_}) ->

true.

And an indirection function and the conflicting part was kept as a callback in
the original modules:

precondition(From, To, S, X4) ->

common:precondition(?MODULE, From, To, S, X4).

CHAPTER 4. DIFFERENCES AND GENERALISATION 97

callback_13(From) -> From == init_state.

===

precondition(From, To, S, X4) ->

common:precondition(?MODULE, From, To, S, X4).

callback_13(From) -> From == init_state orelse ?BUG_OPEN_FILE.

Different heuristics could be used to discard meaningless common functions,
clone detection and elimination functionality of Wrangler already allows the user
to parametrise certain metrics to decide which clones to remove. But this choice
may not be either a matter of the number of nodes in the common functions or the
size of the code generated, but of the meaning of the code in the particular context,
which is harder to measure. We may decide to not combine two atoms, despite
their being syntactically equivalent, because they may mean different things. For
example, we may have in both input modules the number 32 and in one module
it may mean kilograms and in other centimetres; or we may have two atoms with
the same name refer both to a function and to a module name. In both these
examples, it would probably not make sense to combine both equal instances
into the same function. Since these aspects are difficult to measure, we suggest
reengineering the system to allow users to make the choice.

Another issue we found is that the matching algorithm creates crossed map-
pings (in other words: it maps two nodes to what should be each other’s image
in the opposite AST) between methods that are similar. Crossed mapping occurs
when two parts of the ASTs are structurally similar within each of the modules;
we usually prefer to abstract out functionality that has the same or similar func-
tionality and intention, often this corresponds to code that is structurally similar,
but not always. Fortunately, these crossed mappings are quite easy to spot in the
result after labelling the callbacks with their calling functions.

One effective solution for crossed mappings is to remove the structural sim-
ilarities before applying the integrated refactoring. They can also be used as
warning signs of replication existing in the code we are trying to synchronise. In
Section 4.3.5 (on page 98), we show an example of two pieces of code that caused
cross mapping (extracted from the pilot study on ets and dets), and we describe
how using the integrated refactoring on the conflicting bits (as it is currently

CHAPTER 4. DIFFERENCES AND GENERALISATION 98

implemented) can help us find and isolate instances of structural replication.
The integrated refactoring (when configured to discard common clusters of 6 or

fewer nodes) moved 9 functions to the behaviour definition, created 14 callbacks
and 12 common functions, but also created 9 indirection functions to preserve
the interface of the original modules. When using the iterative approach, we
started with all the functions of one version in the common module, and we moved
approximately 11 functions to the instance. Later we had to manually compare
the instance to the other version in order to create the other instance.

When choosing the clusters manually, we often defaulted to moving complete
functions unless the changes were very localised, in those cases we created func-
tions for individual expressions. Again, the results of the manual version can be
more concise because we unified both interfaces and parametrised them with a
macro.

4.3.5 Integrated approach as aid in unification

We described in the pilot study with ets and dets that replication within each of
the input modules for the integrated approach makes it difficult for the mapping
algorithm to obtain the right mapping. But the integrated refactoring has proven
useful to help remove this replication, and after doing that, the mapping algorithm
does a better job.

In this section, we illustrate how our refactoring helps us merge two similar
functions. Let us consider the two functions extracted from the dets model in
Figure 23. We realised that these two functions had many commonalities because
the integrated refactoring mismatched them when trying to pair them with their
syntactically equal counterparts in the ets model.

It is easy to see that there are many commonalities between both, but their
structures are quite different. Abstracting out their commonalities is not trivial,
and could easily lead to making a mistake. Thus, we applied the integrated
refactoring to try to obtain a template for their combined function. In practice,
in order to achieve this we had to move each function to a different module (this
suggests that it would be a good idea to implement this refactoring for pairs of
functions in addition to pairs of modules).

CHAPTER 4. DIFFERENCES AND GENERALISATION 99

prop_dets () ->
?FORALL(Cmds , more_commands (3,commands (? MODULE)),
?TRAPEXIT(

begin
dets:close(dets_table),
file_delete(dets_table),
{H,S,Res} = run_commands (?MODULE , Cmds),
?WHENFAIL(

io:format("History:␣~p\nState:␣~p\nRes:␣~p\n",[H,S,Res]),
aggregate(command_names(Cmds), Res == ok))

end)).

prop_parallel () ->
fails(

?FORALL(Attempts , ?SHRINK(1,[100]),
?FORALL({Seq ,Par}, parallel_commands (? MODULE),
?ALWAYS(Attempts ,
?TIMEOUT (1000,
begin
[dets:close(dets_table)
|| _ <- "abcdefghijkl"],

file_delete(dets_table),
{H,ParH ,Res} = run_parallel_commands (?MODULE ,{Seq ,Par}),
?WHENFAIL(
io:format("History:␣~p\nParallel:␣~p\n\nRes:␣~p\n",

[H,ParH ,Res]),
collect(
length(Par),
aggregate([length(P) || P <- Par],
collect(
length([ok

|| P <- Par ,
{set ,_,{call ,_,open_file ,_}} <- P]),

Res == ok))))
end))))).

Figure 23: Original version of similar functions to be unified (after removing the
comments and some redundant parenthesis).

CHAPTER 4. DIFFERENCES AND GENERALISATION 100

On the first run, the integrated approach produces (among others) the follow-
ing pair of callbacks:

callback_1(S, _ParH) -> S.

callback_1(_S, ParH) -> ParH.

Which tells us that S and ParH may be two variables with different names that
are used in the same way (and indeed they are, so we rename ParH to S). This is not
necessarily always the case, because two variables that are used interchangeably
in one place may not be used interchangeably in another place.

We also observed that there is one subtle difference in the style of the code
that surrounds the call to the common_1 function preventing it from also including
that code (common_1 unifies the calls to the function dets:close(dets_table),
see below), common_1 is inside a list comprehension that makes it execute several
times in one side, and it is by itself on the other:

common:common_1(),

file_delete(dets_table),

[common:common_1() || <- "abcdefghijkl"],

file_delete(dets_table),

We can, for example, replace the first occurrence to have the same structure
without altering its behaviour by writing it like:

[dets:close(dets_table) || <- "a"],

In Figure 24, we can see the result of running the refactoring on the two
functions after making these two modifications. We probably do not want to
leave the functions like this; for functions that have small body we may want to
pass them as parameters instead. But we now have a starting point where the
hard task of finding the differences has been done for us.

The phenomenon we have seen here: that, in order for a substantial trans-
formation to be applied, there needs to be a degree of manual support before
and after the main transformation; is common to many refactoring scenarios. We
have also seen this phenomenon, for example, in clone detection Li and Thompson
(2009).

CHAPTER 4. DIFFERENCES AND GENERALISATION 101

p
r
o
p
_
d
e
t
s
()

-
>

?
F
O
R
A
L
L
(
Cm

ds
,

m
o
r
e
_
c
o
m
m
a
n
d
s
(3

,
c
o
m
m
a
n
d
s
(?

M
O
D
U
L
E
)
)
,

?
T
R
A
P
E
X
I
T
(

c
o
m
m
o
n
:
c
o
m
m
o
n
_
1
(?

M
O
D
U
L
E
,
Cm

ds
,
no

ne
,
n
o
n
e
)
)
)
.

c
a
l
l
b
a
c
k
_
1
(
Cm

ds
,

Re
s
,

_
P
a
r
)

-
>

a
g
g
r
e
g
a
t
e
(
c
o
m
m
a
n
d
_
n
a
m
e
s
(
C
m
d
s
)
,

c
o
m
m
o
n
:
c
o
m
m
o
n
_
2
(
R
e
s
)
)
.

c
a
l
l
b
a
c
k
_
2
()

-
>

"
H
i
s
t
o
r
y
:
␣
~
p
\
n
S
t
a
t
e
:
␣
~
p
\
n
R
e
s
:
␣
~
p
\
n
"
.

c
a
l
l
b
a
c
k
_
3
()

-
>

"
a
"
.

c
a
l
l
b
a
c
k
_
4
(
Cm

ds
,

_P
ar

,
_
S
e
q
)

-
>

r
u
n
_
c
o
m
m
a
n
d
s
(?

M
O
D
U
L
E
,
C
m
d
s
)
.

p
r
o
p
_
p
a
r
a
l
l
e
l
()

-
>

f
a
i
l
s
(

?
F
O
R
A
L
L
(
A
t
t
e
m
p
t
s
,?

S
H
R
I
N
K
(1

,
[
1
0
0
]
)
,

?
F
O
R
A
L
L
(
{
Se

q
,
P
a
r
}
,

p
a
r
a
l
l
e
l
_
c
o
m
m
a
n
d
s
(?

M
O
D
U
L
E
)
,

?
A
L
W
A
Y
S
(
A
t
t
e
m
p
t
s
,

?
T
I
M
E
O
U
T
(
1
0
0
0
,

(
c
o
m
m
o
n
:
c
o
m
m
o
n
_
1
(?

M
O
D
U
L
E
,
no

ne
,
Pa

r
,
S
e
q
)
)
)
)
)
)
)
.

c
a
l
l
b
a
c
k
_
1
(
_
C
m
d
s
,

Re
s
,

P
a
r
)

-
>

c
o
l
l
e
c
t
(
l
e
n
g
t
h
(
P
a
r
)
,

a
g
g
r
e
g
a
t
e
(
[
l
e
n
g
t
h
(
P
)

||
P

<
-

P
a
r
]
,

c
o
l
l
e
c
t
(

l
e
n
g
t
h
(

[
ok

||
P

<
-

Pa
r
,

{
se

t
,
_
,
{
ca

ll
,
_
,
o
p
e
n
_
f
i
l
e
,
_
}
}

<
-

P
]
)
,

c
o
m
m
o
n
:
c
o
m
m
o
n
_
2
(
R
e
s
)
)
)
)
.

c
a
l
l
b
a
c
k
_
2
()

-
>

"
H
i
s
t
o
r
y
:
␣
~
p
\
n
P
a
r
a
l
l
e
l
:
␣
~
p
\
n
\
n
R
e
s
:
␣
~
p
\
n
"
.

c
a
l
l
b
a
c
k
_
3
()

-
>

"
a
b
c
d
e
f
g
h
i
j
k
l
"
.

c
a
l
l
b
a
c
k
_
4
(
_
C
m
d
s
,

Pa
r
,

S
e
q
)

-
>

r
u
n
_
p
a
r
a
l
l
e
l
_
c
o
m
m
a
n
d
s
(?

M
O
D
U
L
E
,
{
Se

q
,
P
a
r
}
)
.

c
o
m
m
o
n
_
1
(
M
o
d
u
l
e
,

Cm
ds

,
Pa

r
,

S
e
q
)

-
>

[
d
e
t
s
:
c
l
o
s
e
(
d
e
t
s
_
t
a
b
l
e
)

||
_

<
-
M
o
d
u
l
e
:
c
a
l
l
b
a
c
k
_
3
()

]
,

M
o
d
u
l
e
:
f
i
l
e
_
d
e
l
e
t
e
(
d
e
t
s
_
t
a
b
l
e
)
,

{
H
,
S
,
R
e
s
}

=
M
o
d
u
l
e
:
c
a
l
l
b
a
c
k
_
4
(
Cm

ds
,

Pa
r
,

S
e
q
)
,

?
W
H
E
N
F
A
I
L
(
io

:
f
o
r
m
a
t
(
M
o
d
u
l
e
:
c
a
l
l
b
a
c
k
_
2
()

,
[
H
,
S
,
R
e
s
]
)
,

M
o
d
u
l
e
:
c
a
l
l
b
a
c
k
_
1
(
Cm

ds
,

Re
s
,

P
a
r
)
)
.

c
o
m
m
o
n
_
2
(
R
e
s
)

-
>

R
e
s

==
ok

.

F
ig
ur
e
24

:
R
es
ul
t
of

un
ify

in
g
th
e
fu
nc
ti
on

s
fr
om

F
ig
ur
e
23

(a
ft
er

re
m
ov

in
g
re
du

nd
an

t
pa

re
nt
he

si
s
an

d
co
m
m
en
ts
).

CHAPTER 4. DIFFERENCES AND GENERALISATION 102

4.3.6 Discussion

The last example of the pilot study suggests that the final decision of what common
code would be convenient to abstract should be left to the user. Currently the
implementation of the integrated refactoring tries to extract all the pieces of code
that have more than one node in their AST.

Better heuristics could be used based on the size of the code before and after
the abstraction, or on the number of children the subtree has. But, heuristics are
probably not enough, since what must be abstracted out seems to depend mainly
on the semantics.

For example, it may be interesting to abstract a single common atom if when-
ever we want to change that atom it will only make sense to change it in all the
instances, in other words, the atom has a general meaning. The inverse is also
true, we may have a big replicated piece of code that just happens to be common
to both approaches but is just a coincidence.

We can see this clearly if we look at etymology: the words “cypress” and
“spree” both have the substring “pre”, but it is, as far as we know, a coincidence,
abstracting “pre” in this case would only make things confusing. On the other
hand, “preface” and “preview” also share the substring “pre”, but this time we
know it is not a coincidence; in both words it means “before”. In code, this occurs
often when we have values that happen to have a similar structure, as we have
seen with common_17/1 shown in Section 4.3.4.2 (on page 93).

In conclusion, the interactive approach allows for a more customised and
clear division of matched and unmatched parts, but requires more manual work;
whereas the automated version requires almost no work, but does not always do
what is desired.

One idea for future work would be to add a visual “mapping editor” to the
integrated solution, in order to give the choice of what to abstract to the user
while keeping the rest of the process fully automated. Automatic parametrisation
could be applied to the interactive approach, but that would require a more global
approach instead of an iterative one.

CHAPTER 4. DIFFERENCES AND GENERALISATION 103

4.4 Model parametrisation

In Section 4.3, we have studied how to model the differences and similarities
between implementations by looking at their code. But two systems do not need
to be implemented similarly in order to behave similarly, and we may not have
access to their source-code (as is usually the case with web services, for example).
In addition, source parametrisation does not allow us to compare implementations
when their source code is very different, since it is based on finding commonalities.

Having a way to understand the differences in behaviour between different
systems can help us make better choices when selecting between several alter-
natives, and it can help users and developers understand the effect of different
configurations of the system.

If we want to model differences in behaviour we must have a way of representing
(a model) that is independent of the implementation. Ideally the representation
will be the same for any two implementations that exhibit the same behaviour
when presented with the same inputs.

In this section, we present a series of experiments that study the effect of
different configurations of a system in their behaviour as represented by a finite-
state machine (FSM) model.

The experiments described in this section were carried out using the existing
PLTSDiff algorithm (see Section 4.2.4.1 on page 60) and the “Automatic Inference
of Erlang Module Behaviour” technique (Taylor, Bogdanov and Derrick 2013),
as implemented in the combination of the regular inference tool Statechum (see
Section 4.2.4 on page 60) and the Synapse interface for Erlang (see Section 4.2.4.2
on page 61). These tools take a working Erlang implementation and automatically
exercise its API and generate an FSM model of its behaviour; alternatively, they
take two FSMs and produce a “diff FSM” that shows the differences between both.
The contribution presented here is not the tools (which existed previously to our
work), but their application to the Frequency server. In particular, we compare
four different configurations of the Frequency server example (see Section 2.1.5 on
page 15).

CHAPTER 4. DIFFERENCES AND GENERALISATION 104

4.4.1 Variants and configurations

We use four different configurations of the Frequency server as target for the
experiments. The source-code for the base configuration (that is: the configuration
we use as reference for comparison) is provided in Appendix A. The three other
variants are produced by introducing small modifications to the source of the base
configuration in Appendix A. For clarity, we present these variants in the form of
small patches distributed throughout the rest of the chapter.

In Section 2.1.5 (on page 15), we have already given a brief specification of the
expected behaviour of the Frequency server. But this specification is not detailed
enough to describe the exact behaviour of the system; in fact all the variants used
here conform to the specification. For generating the variants we have considered
the following three aspects:

1. Number of initial frequencies : How many frequencies can be allocated by
clients? We could consider there are infinite frequencies, even though that
is probably not the case in real life. In this work, in order to keep models
small, we consider two possibilities with few frequencies:

(a) 2 initial frequencies: represented with numerals 10 and 11.

(b) 3 initial frequencies: represented with numerals 10, 11 and 12.

2. Behaviour in case of illegal deallocate : What should be the behaviour of
the server when a client tries to deallocate a frequency that is not allocated?

(a) cannot: the server throws an exception.

(b) noop: the server does nothing, but acts as with a normal deallocation.

3. Order of allocation: If there are several frequencies available, which fre-
quency should be allocated first?

(a) smallf: the server always allocates the frequency represented by the
smallest number from the ones available.

(b) lifo: the server stores the free frequencies in a stack, the frequency
at the top of the stack is always allocated first. At the beginning, the
frequencies with smaller numerals are closer to the top of the stack.

CHAPTER 4. DIFFERENCES AND GENERALISATION 105

For simplicity, we represent combinations of these configurations as an Erlang
tuple with the form {NumFrequencies, DeallocationMode, AllocationMode},
for example: {3, cannot, lifo}. The base implementation we use in this work
(source-code provided in Appendix A) implements the configuration {2, cannot,

smallf}.

4.4.2 Experiment structure

Through the rest of the chapter, we show the result of three different experiments
(one per configuration). In each of the experiments we compare two variants,
that is: the base variant ({2, cannot, smallf}), and an alternative variant,
which is different from the base variant in exactly one of the configuration aspects
described in Section 4.4.1 (on page 104).

For each configuration, we ran StateChum through Synapse for inferring an
FSM. And, for each experiment, we show:

• the patch that shows the modifications we did to the base code in order to
obtain the alternative configuration,

• the state-machines generated by StateChum for both of the configurations
being compared, and

• the diff state-machine generated by PLTSDiff, that highlights the differences
between both state-machines.

4.4.3 Deallocation behaviour

Let us first compare the two deallocation behaviours. The base implementa-
tion ({2, cannot, smallf}) throws an exception when we try to deallocate a
frequency that is not allocated. Figure 25 shows how to modify the base imple-
mentation to ignore invalid deallocate calls instead (configuration {2, noop,

smallf}).
In Figure 26 (on page 107), we can see the FSMs inferred by StateChum for

both alternatives of deallocation behaviour. The labels on the transitions contain
the function that produces the transition, the list of arguments the function takes,
and the result, separated by commas.

CHAPTER 4. DIFFERENCES AND GENERALISATION 106

deallocate({Free , Allocated}, Freq) ->
{value ,{Freq ,Pid}} = lists:keysearch(Freq ,1, Allocated),
unlink(Pid),
NewAllocated = lists:keydelete(Freq ,1, Allocated),
{[Freq|Free], NewAllocated}.
case lists:keysearch(Freq ,1,Allocated) of

{value ,{Freq ,Pid}} ->
unlink(Pid),
NewAllocated = lists:keydelete(Freq ,1, Allocated),
{[Freq|Free], NewAllocated};

_ -> {Free , Allocated}
end.

Figure 25: Modifications for noop deallocation

The states in the models are labelled with numbers preceded by the letter ’P’
(which stands for positive), the negative states and the transitions that would
lead to a negative state (transitions that produce an exception) are omitted from
the diagrams for clarity.

The state in the middle, shaped like a star, is the initial state. We can see
that, in all diagrams, every call to stop/0 ends on the initial state. The other
four states represent all the possible combinations of available frequencies that
can occur (considering we can only have a maximum of two allocated frequencies
at any given time).

If we look carefully, we can identify the state that has no allocated frequencies
at the end of the start/0 transition (labelled P1001), we can also identify the state
with no free frequencies as the one that has the self-transition with allocate/0
that has return value {error, no_frequencies}.

The diagrams in Figure 26 are difficult to compare because the equivalent
states are placed differently. But in the diagram produced by PLTSDiff, shown in
Figure 27, we can clearly see that the difference between both diagrams is simply
that the noop configuration has self-transitions for the deallocations that would
fail (deallocations of frequencies which are not allocated), whereas the cannot

configuration does not have any because they produce an exception (and negative
states are omitted).

CHAPTER 4. DIFFERENCES AND GENERALISATION 107

(a) Base: {2, cannot, smallf} (b) Alternative: {2, noop, smallf}

Figure 26: Both deallocation behaviours side by side

Figure 27: Differences between cannot and noop deallocation

CHAPTER 4. DIFFERENCES AND GENERALISATION 108

loop(Frequencies) ->
receive

{request , Pid , allocate} ->
{NewFrequencies , Reply} = allocate(sortfreqs(Frequencies),

Pid),
{NewFrequencies , Reply} = allocate(Frequencies , Pid),

...

sortfreqs({Freqs , Allocated}) ->
{lists:sort(Freqs), Allocated}.

Figure 28: Modifications for lifo allocation

4.4.4 Allocation behaviour

Let us now compare the two different allocation implementations. We use the
base configuration {2, cannot, smallf} as an example of a configuration that
allocates smaller frequencies first, and {2, cannot, lifo} as an example of an
implementation of last in first out allocation. The patch applied to the base config-
uration for obtaining the lifo configuration is shown in Figure 28. And Figure 29
shows the FSMs inferred by StateChum for both implementations displayed side
by side.

We have already discussed the base configuration in Section 4.4.3. We can
see that the lifo configuration has five states (instead of four) in addition to the
initial state. The extra state (P1024) corresponds to the extra ordering of the
frequencies in the stack when both are free, that is: 11 on top of 10. We can
see that P1024 and P1001 are equivalent except in that, from P1024, allocate/0
produces 11 instead of 10.

The diagram produced by PLTSDiff (in Figure 30) shows it more clearly, the
state P1024 is an alternative to P1001 that occurs when we deallocate both of the
frequencies in ascending order (first 10 and then 11).

4.4.5 Number of initial frequencies

Finally, let us see the effect on the FSM model of increasing the number of avail-
able frequencies. We use the base configuration {2, cannot, smallf} as an
example with two available frequencies, and we use the same configuration with
three available frequencies {3, cannot, smallf} as alternative. The patch for

CHAPTER 4. DIFFERENCES AND GENERALISATION 109

(a) Base: {2, cannot, smallf} (b) Alternative: {2, cannot, lifo}

Figure 29: Both allocation behaviours side by side

Figure 30: Differences between smallf and lifo allocation

CHAPTER 4. DIFFERENCES AND GENERALISATION 110

Frequencies = {get_frequencies (), []},
loop(Frequencies).

% Hard Coded
get_frequencies () -> [10,11,12].
get_frequencies () -> [10,11].

%% The client Functions

stop() -> call(stop).
allocate () -> call(allocate).
deallocate(Freq) -> call({deallocate , Freq}).

Figure 31: Modifications for configuration with 3 available frequencies

generating the configuration with three frequencies is shown in Figure 31.
We can guess that even though the order of deallocations does not matter,

since we use smallf allocation in both cases, we will have many more states
because of the added frequency.

Indeed, as it can be seen in Figure 32 the FSM for the configuration {3,

cannot, smallf} has 9 states: 23 = 8 states to represent all the combinations
of allocation and deallocation of the three frequencies, and the initial state. This
time we have omitted the FSM of the base configuration for clarity.

We can see that the FSM for the configuration {3, cannot, smallf} is al-
ready a bit less practical and more difficult to read, even if it can still be under-
stood if analysed carefully. But we can see that the increase in the number of
states is exponential to the number of available frequencies, and we can foresee
that FSMs generated would quickly become impractical if we keep increasing the
number.

The diagram generated by PLTSDiff (shown in Figure 33) does however give
us some interesting insights. On the one hand, we can see directly that the five
states in the middle are almost unchanged (we know because their transitions are
black), except for the start/0 transition, and the transitions that take or return
the number 12.

What is not shown so clearly by the diff diagram is that the outer four states
are almost isomorphic to the original ones too (except for the transitions that take
or return the number 12).

Furthermore, the transitions that allocate and deallocate the new frequency
(12) are used to move between the inner and the outer four states.

CHAPTER 4. DIFFERENCES AND GENERALISATION 111

Figure 32: Behaviour for 3 frequencies: {3, cannot, lifo}

Figure 33: Differences between 2 and 3 available frequencies

CHAPTER 4. DIFFERENCES AND GENERALISATION 112

These patterns show us the source of the state explosion: the introduction
of a new frequency produces a new dimension that a finite-state machine is only
able to represent by duplicating part of the state space. This patterns suggest a
solution: we must find a different way of reflecting an increase on the number of
frequencies that is independent of the behaviour of each frequency.

4.5 Chapter conclusions

In this chapter, we have studied automatic mechanisms for generalising from ex-
amples. The main insight from the experiments in this chapter is that generali-
sation follows from the abstraction of commonalities: we can generalise code by
looking at patterns in the syntax, we can generalise state machines by merging
states that are equal (or similar), and in the next chapters we will see how we can
further generalise state machines by finding patterns in data usage, not only in
control.

Source parametrisation. In Section 4.3 (on page 61), we have studied the
automation of source code parametrisation. We have seen that deciding what to
abstract depends on the semantics of the code and, thus, benefits from some level
of user interaction. But we have also seen that the process of modifying the code
can be automated to a large extent, that the automation of the process consists
of refactorings and transformations that, in their majority, already exist, and we
have obtained some insight that could be used in the future for the development
of new tools and refactorings.

Nevertheless, source parametrisation is only applicable to the generalisation
of versions of software that are implemented similarly and in the same language.
We can indeed use the work presented to aid the development of parametrised
test models but, in order to better understand the evolution of systems and their
behaviour, we must look at implementation-independent models rather than their
source code.

Model parametrisation. The finite state models studied in Section 4.4 (on
page 103) are implementation-independent and can be used directly for test gen-
eration. But in Section 4.4.5 (on page 108), we have seen that the combination of

CHAPTER 4. DIFFERENCES AND GENERALISATION 113

independent stateful subsystems (independent frequencies) can lead to an expo-
nential increase in the number of states of FSMs if we model them as one single
system.

We have also seen that, in some cases, the state explosion phenomenon presents
itself as near-replication of “sub-state-machines”. The existence of this near-
replication or parallelism between “sub-state-machines” gives us a clue of what
we can do to adapt this way of representing behaviour (state machines) so that
we avoid state explosion for at least some scenarios.

In Chapters 5 and 6, we study alternative ways of representing systems that
attenuate this kind of state explosion by introducing explicit information about
data flow in our models, with the ultimate aim of obtaining a representation
mechanism that is more scalable and applicable to practical, real-life examples.

Chapter 5

Combining control and data

In Chapters 3 and 4 we have studied several ways of reducing the effort necessary
to obtain models for use in testing. In both chapters, we have used FSM models
to represent the behaviour of a simple system (that is: the Frequency server).

Reusing and parametrising can indeed reduce the effort required for testing
systems. But manually writing test suites is still costly and only targets a finite
set of scenarios (the ones described by the test suite).

Property-based testing (see Section 1.5 on page 5) allows the generation of
an arbitrary number of tests, thus, this technique potentially allows to achieve
higher coverage by writing tests that contain less code. Nevertheless, writing
general properties and models is often more challenging than writing individual
examples.

In this chapter, we show how existing unit tests can be leveraged to provide
more testing value through inferring a model for the system from the tests, and by
using the inferred model to generate new tests. There has been effort in the past
for aiding testers and developers to use property-based testing by automating the
process of inferring arbitrary properties from working implementations (Claessen,
Smallbone and Hughes 2010). In this chapter, we analyse how to automate the
transition from unit testing to property-based testing of stateful systems (in par-
ticular web services), by instrumenting the execution of existing test suites (in
particular JUnit test suites), by using the information obtained to generate mod-
els for the tested system, and by using such models for automatically generating
new tests.

These three processes combined allow us to assist testers and developers in

114

CHAPTER 5. COMBINING CONTROL AND DATA 115

Figure 34: Frequency server state machine with data and control flow

the creation of tests, by automatically extending existing test suites. This can
potentially augment the number of scenarios covered and reduce the effort required
to create an arbitrarily large number of tests without having to design abstract
properties manually. Because the procedure described in this chapter generates
new tests by creating and using an FSM QuickCheck model (see Section 2.4.2 on
page 23), this technique can also be potentially used as an aid for the migration
from unit tests to property-based test models, since the models generated can be
used as a template.

Through the mechanisms described in this chapter, we also try to address the
problem of state explosion when we try to model systems that are composed of
several subsystems. We achieve this by combining control flow and data flow in
the same model, in contrast to most other work in this area.

For example, we already saw in Section 4.4.5 (on page 108) how increasing
the number of frequencies near-doubled the number of states of an FSM inferred
from the Frequency server. By adding data flow we can create a diagram that is
independent of the number of frequencies (see Figure 34). We have coloured the
traditional control transitions found in FSMs in brown, and we have added black
arrows to represent data flow. In the example, data flow says that the output of
allocate can be used as input to deallocate.

CHAPTER 5. COMBINING CONTROL AND DATA 116

James The work described in this chapter has been implemented as the James
tool, whose source code is publicly available (see reference: Lamela Seijas and
Thompson 2014). James is a tool that aims at generating new tests for web
services from existing JUnit tests. James transparently instruments the execution
of existing JUnit tests and uses the information obtained to generate a visual
model that can be rendered through the tool Graphviz (see Section 2.5 on page 24)
and a QuickCheck FSM model (see Section 2.4.2 on page 23) that when executed
produces new tests in the style of the tests provided as input.

The techniques described here and their implementation (the James tool) are
both targeted to web services, since the nodes in the diagrams are grouped in
subgraphs depending on the URL and method of the HTTP requests issued by
the part of the tests they represent (see Section 5.2.2.2 on page 121). However,
the main ideas presented here should be straightforward to apply to other types
of API, (for example, the API of a dynamic library), as long as the system under
test (SUT) is tested like a black-box and has a well defined interface. In fact, in
Chapter 6 we study an inference algorithm, similar to the one used in this chapter,
from a more formal perspective that does not make assumptions about the SUT
being a web service.

Overview In the following sections, we enumerate the contributions of this
chapter (Section 5.1), we explain our approach to instrumenting JUnit tests (Sec-
tion 5.2), we describe the architecture of our implementation (Section 5.3), we
provide a process for constructing models that combine data and control flow
(Section 5.4) together with an example of its application to the Frequency server
(Section 5.5), we overview how property-based models can be constructed to gen-
erate new tests (Section 5.6), we present the results of a pilot study that evaluates
our approach and implementation (Section 5.7), we discuss the limitations of the
approach (Section 5.8), we reflect on the lessons learned (Section 5.9), and in
Section 5.10 we conclude.

5.1 Contributions

In this chapter, we show how existing unit tests can be leveraged to provide more
testing value through the inference of a model from existing tests. We make four

CHAPTER 5. COMBINING CONTROL AND DATA 117

specific contributions:

• We define a new approach to inferring an state machine model for a system,
extended with data flow information, from an existing unit test suite and a
working implementation of the system. The extended state machine com-
bines both data flow and control flow information; existing approaches have
tended to use just one of these.

• We show how to derive potential new test cases for the system under test
automatically from the inferred model. New tests are generated from the
model through the use of QuickCheck property-based testing (PBT) tool
(see Section 2.4 on page 20).

• We provide a mechanism by which approximate QuickCheck models for Java
systems can be inferred automatically, thus allowing the rapid development
of PBT models from existing test suites. These models are approximate
in the sense that they do not necessarily represent the precise behaviour of
the system (not even for the scenarios provided as input to the inference
algorithm), but they will usually present a similar or identical behaviour for
some of the scenarios.

• We present a pilot study in which we apply our approach to generate new
tests for an existing industrial system. Our work aims to extract models
that represent both successful and failing behaviour of a target web service.
The tests generated during the pilot study helped developers of the system
find a previously unknown bug in the implementation.

The techniques described in this chapter have been implemented in the James
tool. The source code of James is publicly available (Lamela Seijas and Thompson
2014).

The work in this chapter is based on the paper (Lamela Seijas, Thompson and
Francisco 2016), the deliverable (Lamela Seijas, Thompson and Francisco 2012),
Task 2.2 in (Arts et al. 2015), and a paper submitted for publication in a special
issue of the Software Quality Journal. Part of the work described here has also
been presented at UCAAT 2015 and at UKSCC 2015.

The pilot study in this chapter (including the second run) was carried out in
collaboration with Miguel Ángel Francisco who also wrote the original report of

CHAPTER 5. COMBINING CONTROL AND DATA 118

the pilot study in Task 2.2 of (Arts et al. 2015); excerpts of this report have been
included in this chapter. In addition, both Miguel Ángel Francisco and Simon
Thompson contributed with ideas, suggestions, guidance, advice, revisions, and
editing. Laura M. Castro Souto also participated in the initial discussions about
the design of James, and contributed with ideas and advice.

I contributed to this work with the code of the implementation of James, de-
bugging and support during the experiments, most of the writing of the description
of the system and techniques, and the summarisation and editing of the contents
of the report about the pilot study.

5.1.1 Software contributions

As part of the work in related to this chapter:

• I implemented the whole of James, whose source is available at (Lamela
Seijas and Thompson 2014). A web service version of the Frequency server
is available in (Lamela Seijas 2014b) and partially in Appendix B.

• I wrote some examples of tests for the web service version of the Frequency
server that were not used in the pilot study (Lamela Seijas 2014a). Note
that there also exists a separate set of tests for the web service version
of the Frequency server which were implemented by Interoud Innovation,
whose source code is available in (Francisco 2014a) and also in Appendix C.

• I implemented a Java Erlang Bridge interface that was used to automatically
classify the tests generated by James during the second run of the pilot study
(Lamela Seijas 2014c).

5.2 Instrumentation

In this section, we study how our implementation (the James tool) gathers the
information necessary to generate models from existing JUnit tests and a working
implementation of the system under test.

CHAPTER 5. COMBINING CONTROL AND DATA 119

5.2.1 Static and dynamic approaches

Most tools that extract information from existing software fall into one or both of
two big categories: static and dynamic. In this section, we briefly discuss some of
their advantages and disadvantages, and describe our preferred approach in this
spectrum.

5.2.1.1 Static approaches

An approach is usually considered static if it analyses the software without execut-
ing it1. One advantage of static approaches is that they usually gather information
about software that is generic and relevant for any execution, since they do not
rely on particular executions. On the other hand, there are some aspects of soft-
ware that, for an static approach, are undecidable in the general case like, for
example, termination (halting problem).

Static approaches usually analyse the source code of software, but in some
cases they can target compiled versions of it instead (for example: bytecode or
machine code). One advantage of targeting source code is that it tends to contain
more information about the artefacts used by the developer, which may indicate
high level intentions.

Unfortunately, the number of mature libraries that are available for Java source
manipulation, and support the whole language, is small. The most popular ones
focus on bytecode, which may already lose some information2 about the structure
of the code (due to optimisations), comments, and potentially variable names.
Nevertheless, in the case of Java, little information is lost by compiling (specially
if debugging information is enabled at compilation time).

5.2.1.2 Dynamic approaches

Dynamic approaches analyse the way in which a working piece of software executes
by introducing logging mechanisms or by probing it during its execution.

Having to execute the code has the advantage of providing (and the disad-
vantage of requiring) real values for parameters and variables. In the case of

1https://en.wikipedia.org/wiki/Static_program_analysis [last accessed 14-08-17]
2https://stackoverflow.com/questions/30262635/is-any-information-lost-when-

compiling-to-a-class-and-decompiling-back [last accessed 14-08-17]

https://en.wikipedia.org/wiki/Static_program_analysis
https://stackoverflow.com/questions/30262635/is-any-information-lost-when-compiling-to-a-class-and-decompiling-back
https://stackoverflow.com/questions/30262635/is-any-information-lost-when-compiling-to-a-class-and-decompiling-back

CHAPTER 5. COMBINING CONTROL AND DATA 120

deterministic unit tests, a single execution will often reveal all the scenarios that
are being tested. And these tests provide a valid starting point for the creation
of new ones.

On the other hand, using a dynamic approach requires a working implemen-
tation. The requirement of having a working implementation in a test generation
tool prevents its applicability from partial systems and test-driven development,
since they require tests to be created before a working implementation exists. But
this problem can be addressed through the use of mocking (Svenningsson et al.
2014).

5.2.1.3 Our approach

For this work, we have chosen a mainly dynamic approach that relies on the JVM
Tool Interface (or JVMTI see Section 3.2.4 on page 31). JVMTI allows tools that
use it to get information at execution time and even modify the execution. Nev-
ertheless, some information about the source code can still be obtained through
the API of JVMTI, like the names of methods and classes, and (by combining it
with the use of reflection) the information about annotations (see Section 5.3.2
on page 122).

5.2.2 Data and control flow

The James tool extracts and combines both data and control flow information
into a single model.

5.2.2.1 Data flow

Data flow (Rapps andWeyuker 1985) represents how variables are bound to values,
and how these variables are to be used. Existing JUnit tests provide concrete
examples of how data is used and reused in concrete scenarios. By modifying or
generalising these scenarios, it is likely that we will find new meaningful aspects
to test, some of which may not be tested by the existing test suite.

Even in cases when the modifications to data produce errors, these modifica-
tions may still be useful as “negative test cases”, since almost-valid input can help
us find corner cases (Tsankov, Dashti and Basin 2013). For example, if, when
serialising a request, the unit tests explicitly add quotes surrounding a value, then

CHAPTER 5. COMBINING CONTROL AND DATA 121

the generalisation of the request generation may add quotes in places where they
should not be. This kind of input would potentially help highlight problems like
SQL injection and, thus, improve the security of systems. The application of spe-
cific knowledge about concrete vulnerabilities can be used to alter inputs in ways
that increases the likelihood of finding particular security problems even further
(Kieyzun et al. 2009).

James registers data flow by tracking all the objects that are referenced by
the unit tests and by linking together the methods or functions that produce
them as a result with the ones that take them as parameters. This way we
obtain information about the way in which objects are constructed and used. To
be precise, we must point out that, in addition to the objects that are directly
referenced by the unit tests, we also need to track and include in the model those
objects that are required to create objects that are referenced by the unit tests,
and so on (that is: the transitive closure of references).

In the case of tests targeted at web services, requests are usually composed out
of small pieces of information, like numeric values or dates, which are combined
into bigger structures and then serialised, or directly embedded into templates.

In the same way, responses to requests may be unmarshalled, and the small
pieces that compose them may be checked for correctness through the use of xUnit
assert functions.

5.2.2.2 Control flow

Control flow represents how events affect the state of the system. In particular, we
are interested in the state of the target web service and, thus, we track and model
only the control flow of methods that produce HTTP requests, since they are the
only ones that can possibly affect the state of the web service. Even though we do
not include in the model methods that are not directly called from the tests, we
analyse every method entry and exit, thus, methods that (directly or indirectly)
call methods that produce HTTP requests are also detected.

In order to represent control flow, we link the events (the methods that produce
HTTP requests) in execution order, and links are preserved during the merging
process.

We explain how we identify methods that produce HTTP requests in Sec-
tion 5.8.3 (on page 156).

CHAPTER 5. COMBINING CONTROL AND DATA 122

UNIT

TEST

SUITE

Java

bytecode

JUNIT JVM

JVM-TI

JNI

TARGET WEB SERVICE

JVM-TI

AGENT
socket SERVER

JAMES

QuickCheck

FSM

TEST

MODEL

Erlang

source

graph

.dot
GraphViz

Figure 35: Architecture of James

5.3 Architecture of the approach

In Figure 35, we show the architecture of the James tool and the way it interacts
with the rest of the systems during instrumentation and model creation.

5.3.1 JUnit and JVM

The system takes as input a set of JUnit tests. JUnit tests are Java code that uses
the library JUnit and, like any other Java code, they are compiled into bytecode
and executed by the Java Virtual Machine (JVM). JUnit tests taken as input are
also expected to use a Java library (for example, a socket library or a web client
library) to connect to the web service under test, issue the appropriate requests,
and check that the responses are as expected.

5.3.2 JVMTI agent and JNI

James instruments the execution of the JUnit tests through the use of its JVMTI
agent, which is a dynamic library written in C++. The JVMTI agent uses the
JVMTI (JVM Tool Interface) and JNI (Java Native Interface) APIs to track the

CHAPTER 5. COMBINING CONTROL AND DATA 123

method entry events, method exit events, and every object that is taken as a
parameter or returned by the methods executed.

In order to avoid having to ask the user, James detects where the tests are
automatically. This is achieved by inspecting methods called for JUnit annota-
tions (that is: @Before, @After, @Test) through the use of reflection, accessed
through the JNI. This information is also used for detecting whether methods are
part of the set-up, the clean-up, or the actual tests. Since checking classes for
annotations at each method call slows down the process considerably, we store in
a cache the names of all those classes that do not contain JUnit annotations. In
addition, the JVMTI agent also detects those methods that issue HTTP requests
(see Section 5.8.3 on page 156).

All this information is sent through a socket to the James server, which is
written in Erlang.

5.3.3 Erlang server

The process of instrumentation produces a long list of method calls, most of
which usually do not belong to the tests themselves, but to frameworks (such as
the Apache Ant library), or to the JVM itself.

The Erlang server filters most of the calls that do not belong to the tests, by
using the information about JUnit annotations gathered by the JVMTI Agent.
We also use the annotations to distinguish between method calls that belong to
the set-up and clean-up procedures, and the actual test body.

Calls that produce objects used in the tests, even when these are not part of the
tests themselves, must be tracked too, otherwise James may not have information
to create those objects when the new tests are generated.

5.3.4 GraphViz and QuickCheck models

Once all necessary information from the execution has been gathered, the Erlang
Server can use it to produce a model. This model can be rendered in two ways,
graphically (through the use of dot, part of GraphViz, see Section 2.5 on page 24),
or as a property-based test model (that uses the eqc_fsm module of QuickCheck,
see Section 2.4.2 on page 23). Both models are generated similarly and the initial
parts of the process of generation are identical. In fact, the current version of

CHAPTER 5. COMBINING CONTROL AND DATA 124

James is able to generate simultaneously both models and to create hyperlinks
between the GraphViz and the QuickCheck version.

5.3.4.1 GraphViz

The GraphViz model is a graph representation that can be visualised. It contains
most of the information of the model and can be used for documentation and to
check visually for problems in the tests, the system, or in the instrumentation
process itself. One example of the GraphViz rendering of a model generated by
James can be seen in Figure 42 on page 140.

5.3.4.2 QuickCheck FSM

The QuickCheck eqc_fsm models generated by James, when executed, will print
out JUnit tests that are similar to the ones used as input. eqc_fsm models gen-
erated by our implementation do not issue requests towards the target system
directly, we decided to print the tests generated instead since they are easier to
debug this way, but they can potentially be used as a starting point for migration
to property-based testing.

Part of one example of a QuickCheck eqc_fsm model generated by James from
the Frequency server can be found in Appendix D.

5.3.5 Feedback

Since the QuickCheck eqc_fsm model produces new JUnit tests, we can add those
(after manually reviewing them) to the initial set of tests used as input, and then
we can restart the cycle and potentially obtain a refined version of the model.

This process is limited by the lack of soundness of our inference algorithm. It
is possible that at some point, the algorithm is not able to learn any more. We
study a way to restore soundness in Chapter 6.

5.4 Model construction

In this section, we describe how the information gathered is used to generate a
model. We illustrate the explanation with examples of graphical diagram repre-
sentations generated by James through GraphViz. In Section 5.5 (on page 136),

CHAPTER 5. COMBINING CONTROL AND DATA 125

we analyse in detail a diagram generated for the Frequency server web service
(source-code available in Lamela Seijas 2014b and partially in Appendix B) by
using as input a set of tests provided by Interoud Innovation (available in Fran-
cisco 2014a and Appendix C).

Later in Section 5.6 (on page 139), we explain how test generation is achieved
by relying on the models and ideas described in this section.

5.4.1 Common flow graph

James starts by generating a graph with the calls to methods that were executed
directly from the tests provided as input, these calls are represented as square-
boxed nodes (see Figure 42 on page 140). Later in this section we will explain
how the nodes in the graph are connected.

In principle, we only represent the level of abstraction expressed by the tests;
the model uses the calls that are issued directly from the body of the tests, the
calls done elsewhere are not considered (as long as they do not provide values used
by calls that are issued directly from the body of the tests).

For example, in the following snippet, the only method calls that would have
nodes representing them in the model would be allocateFrequencyResponse

and checkNotRunningError; assertEquals is also called but not directly from
the tests, so it is hidden by the level of abstraction in which the tests are written:

@Test
public void testAllocateNotStarted() throws IOException {

FreqServerResponse allocateFrequencyResponse = allocateFrequency();
checkNotRunningError(allocateFrequencyResponse);

}

private void checkNotRunningError(FreqServerResponse response) {
Assert.assertEquals(ERROR_RESPONSE, response.getState());
Assert.assertEquals(1, response.getError().size());
Assert.assertEquals(ERROR_TYPE_NOT_RUNNING,

response.getError().get(0).getErrorType());
}

The previous code would produce the diagram in Figure 36, where we can see
that assertEquals does not appear (the stopServer node comes from the clean-
up code which we do not show). The advantage of this way of abstraction is that it

CHAPTER 5. COMBINING CONTROL AND DATA 126

Java Interactions

{post,"/freq_server/AllocateFrequency"}

{post,"/freq_server/StopServer"}

checkNotRunningError

allocateFrequency

stopServer

Figure 36: Example of abstracted out code

has already been manually chosen by the testers to represent the scenarios that are
being tested (whoever wrote the tests used as input is indirectly choosing the level
of abstraction for the diagrams). This feature also allows users to remove low-level
details from the model by abstracting them out through function extraction.

But we still try to include calls that are necessary to provide values needed
by other calls already included (independently of their level). For example, in
the following snippet, the function getFrequencyAllocated is not called directly
from the tests, but its result is made accessible and used by them, so the call that
produces it (getFrequencyAllocated) is still included in the diagram as shown
in Figure 37 (on page 128):

Integer freq;

@Test
public void testHypothetical() throws IOException {

FreqServerResponse startServerResponse = startServer();
checkNoErrors(startServerResponse);
FreqServerResponse allocateFrequencyResponse = allocateFrequency();
extractFrequency(allocateFrequencyResponse);
FreqServerResponse deallocateFrequencyResponse = deallocateFrequency(freq);
checkNoErrors(deallocateFrequencyResponse);

}

public void extractFrequency(FreqServerResponse f) throws IOException {

CHAPTER 5. COMBINING CONTROL AND DATA 127

freq = f.getResult().getFrequencyAllocated();
}

In practice, in the implementation available online at the time of writing,
and in the version of James used for the pilot, these hidden calls are not always
included because James is configured to treat traces of depth greater or equal
to two differently. This modification was done to improve speed of execution
of instrumented tests, and to avoid problems when trying to get information of
native Java methods, but it can be easily tweaked if needed. The diagrams in
Figures 36 and 37 were indeed generated by James automatically from the code
provided, after adjusting these parameters.

The nodes are connected using two types of arrows:

• For data flow, gray arrows connect the methods that produce a result (that
is: those that return a value or an object) with those that take the result
as a parameter, or those that use the result as a base object, that is: those
methods that are called “on the object returned”, (the object that can be
referenced through the keyword this from the code of the method). Base
object usage is represented with dashed gray arrows.

• For control flow, brown arrows connect methods that issued HTTP requests,
in the order they were called during the execution of the input tests.

A detailed legend of the different notations used in the GraphViz graphs generated
by James can be found in Table 3 on page 137 and Table 4 on page 138.

5.4.2 Merging process

The process described so far already generates a model, but it is usually too dense
to be useful, because it has too many nodes and arrows, which makes it difficult
to understand; and it does not generalise the scenarios obtained, because it only
represents the scenarios presented by the set of JUnit tests used as input.

The merging process tries to generalise and simplify the graph while keeping
the aspects of the model that give actual information about the general behaviour
of the target system (as opposed to specific behaviour in response to specific
input). This generalisation is achieved by merging paths with the same topology,
similarly to how it is done by the k-tails algorithm (see Section 2.3.2 on page 20).

CHAPTER 5. COMBINING CONTROL AND DATA 128

Java Interactions

{post,"/freq_server/DeallocateFrequency"}

{post,"/freq_server/AllocateFrequency"}

{post,"/freq_server/StopServer"}

{post,"/freq_server/StartServer"}

deallocateFrequency

checkNoErrors stopServer

allocateFrequency

extractFrequency getResult

checkNoErrors

startServer

getFrequencyAllocated

Figure 37: Example of external code included because of dependencies

CHAPTER 5. COMBINING CONTROL AND DATA 129

James searches every subtree in the graph, alternately following the arrows
directly and in reverse. Then it merges the subtrees that contain pairs of methods
with the same topology both in data and in control flow.

Longest subtrees are merged first, down to a minimum length (upper K). All
tails of the graph (leaf and root nodes) are allowed a lower bound (lower K);
the intuition behind “lower K” is that if a pair of longest matching subtrees is
delimited by the end of the graph (has leaf or root nodes), it may be that the lack
of commonalities between both subtrees is due to their small sizes, rather than to
the “states” that they represent being different.

The usage of a constant bound (parameter K) is inspired by the K-Tails algo-
rithm (see Section 2.3.2 on page 20). If we imagine all the possible executions of
a system as a tree, in which each possible input is a different branch, and where
each node represents a different state of the system, we can consider two states
to be equivalent (i.e: the same state) in the tree if their subtrees are isomorphic,
in other words, if the possible executions of the system starting in both states
are the same. In practice, it is not feasible to explore all possible executions of
a system every time we want to decide whether we want to merge two nodes; it
is also impossible if the number of possible executions is infinite. The parameter
K decides how far in the search space we will check before concluding that two
states are equivalent. If we set K to zero, every node will be merged; the bigger
the value of K is, the more conservative the merging process is.

Our merging algorithm uses the idea of bounding the search length with a
parameter to decide which nodes to merge too; but there are three main differences
with the original K-Tails algorithm. First, we do not start with a tree but with
a graph, we have more than one “root node”; in our early experiments, we found
that comparing only the descendants of each node did not produce good results,
thus, our algorithm checks the equality of descendants and ascendants alternately.
Second, we do not have only control flow, but also data flow, and we use the same
parameters lower K and upper K to limit the exploration of both. Lastly, our
nodes have labels, they do not represent states but “method calls”, thus, even for
a lower and upper K of 0, two nodes will never be merged if they have labels (e.g:
they call a method with a different signature). The default values for K in James
(at the time of writing) are: 4 for upper K, and 1 for lower K.

In order to give a sense of the effect of K, in Table 2 (on page 131), we present

CHAPTER 5. COMBINING CONTROL AND DATA 130

statistics of the number of nodes and arcs resulting from running James using
different values of lower and upper K using the data obtained in the second run of
the pilot study. In principle, as we said, increasing either of the lower and upper
K parameters leads to a denser diagram, but there are a series of filters to the
process that may skew the distribution depending on the resulting topology of the
graph. For example, merging a pair of nodes may actually result in more nodes
since extra oneOf nodes may have to be created (as described in the legend for
oneOf nodes in Table 3 on page 137).

In Figures 38, 39, 40 and 41 (on pages 132, 133, 133 and 134 respectively), we
present an approximate pseudocode description of the merging algorithm.

The merging_algorithm function in Figure 38 (on page 132) shows how we
first search for pairs of subtrees longer than upper K, and if we fail we search for
subtrees longer than lower K but with the requirement that both subtrees in the
pair must be maximal (represented by the boolean taken as last parameter by
find_best_pair and find_best_pair_rec). The actual merging of isomorphic
subtrees (carried out in the pseudo-code by the function merge_pair) is basically
done by taking each pair of one node in one side of the isomorphism and its image,
moving all the incoming and outgoing arrows from one of the nodes to the other
and deleting the orphan node. Nevertheless, oneOf nodes may have to be created
to group the data or control flow arrows corresponding to the different parameters
(as described in the legend for oneOf nodes in Table 3 on page 137).

In Figure 40 (on page 133) we present a possible way of storing the abstract
data type tree. The data type tree represents a subtree in the model graph that
we explore by using breath first search; because the graph may have loops, we will
not explore those nodes that are already in a higher (closer to the root) level of
the subtree. Each subtree also has a direction (either “upwards” or “downwards”,
which specifies whether they will follow the arrows directly or inversely when
expanded). Expanding a subtree will take all the leaf nodes (the ones in the last
level) and follow the arrows that are incoming or outgoing (depending on the
direction), the nodes at the other end of the arrows will become the new last level
of the subtree (except those that are in the subtree already).

The find_best_pair function in Figure 39 (on page 133) implements the
initialisation phase of the algorithm for finding candidate trees to merge. First, it
creates two singleton subtrees for every node (one with direction “upwards” and

CHAPTER 5. COMBINING CONTROL AND DATA 131

a
a

a
a

a
a
a
a

Lo
w
er

KU
pp

er
K

1
2

3
4

5
6

7
8

9
10

1
14

5/
26

4
14

9/
27

4
15

0/
28

1
15

1/
28

5
15

2/
28

4
15

2/
28

4
15

2/
28

4
15

1/
28

5
15

1/
28

5
15

1/
28

5
2

–
17

2/
32

2
17

5/
34

1
17

1/
34

1
17

6/
35

0
17

6/
35

0
17

6/
35

0
17

1/
34

0
17

1/
34

0
17

1/
34

0
3

–
–

39
4/

77
5

43
0/

85
4

43
5/

87
9

43
5/

87
9

43
5/

87
9

43
4/

87
6

43
4/

87
6

43
4/

87
6

4
–

–
–

50
2/

95
2

50
7/

98
5

50
7/

98
5

50
7/

98
5

51
0/

99
2

51
0/

99
2

51
0/

99
2

5
–

–
–

–
51

0/
99

2
51

0/
99

2
51

0/
99

2
51

0/
99

2
51

0/
99

2
51

0/
99

2
6

–
–

–
–

–
49

7/
97

9
49

7/
97

9
49

7/
97

9
49

7/
97

9
49

7/
97

9
7

–
–

–
–

–
–

49
6/

98
0

49
6/

98
0

49
6/

98
0

49
6/

98
0

8
–

–
–

–
–

–
–

48
3/

97
0

48
3/

97
0

48
3/

97
0

9
–

–
–

–
–

–
–

–
48

3/
97

0
48

3/
97

0
10

–
–

–
–

–
–

–
–

–
48

3/
97

0

Ta
bl
e
2:

E
ffe

ct
of

lo
w
er

an
d
up

pe
r
K

on
2n

d
ru
n
of

pi
lo
t
st
ud

y
(n
od

es
/a

rc
s)

CHAPTER 5. COMBINING CONTROL AND DATA 132

void merging_algorithm(Int bigK, Int smallK, Graph model) {
while (true) {
Maybe<Pair<Tree, Tree>> best_pair :=

find_best_pair(bigK, model, false)
if (best_pair == Nothing) {
best_pair := find_best_pair(smallK, model, true)
if (best_pair == Nothing) {
return

} else {
model.merge_pair(best_pair.getContents())

}
} else {
model.merge_pair(best_pair.getContents())

}
}

}

Figure 38: Merging algorithm base function pseudo-code

one with direction “downwards”). Then we search for the longest pair of equivalent
subtrees and (if they are at least min_tree_depth deep) we return them for the
merging_algorithm function to merge them.

The find_best_pair_rec function in Figure 41 (on page 134) implements
the algorithm that finds the best candidates to merge. It iteratively expands the
subtrees and filters the unique ones, until there are no more subtrees. When
this happens we recover the last batch of surviving subtrees and choose one of
the deepest. When in strict_mode we also need to ensure that the remaining
subtrees are maximal.

Inspired by the algorithm Blue-Fringe (that relies on the classification of traces
into positive and negative for the detection of equivalent states, see Section 2.3.1
on page 18), we classify methods that issue HTTP requests into “normal” and
“erroneous” according to whether they produce values used by method calls whose
name contains the keywords error or fail.

We combined ideas from Blue-Fringe and k-tails because we start with a graph
instead of a tree (like a PTA or APTA), so it was not clear in principle that Blue-
Fringe would prevent the graph from over-merging (over-generalising). Because we
cannot merge nodes with different names (to be precise nodes that have methods
with different signatures), it turns out that often it is not necessary to specify a
minimum bound (K parameters) in order to obtain a useful diagram.

CHAPTER 5. COMBINING CONTROL AND DATA 133

Maybe<Pair<Tree, Tree>> find_best_pair(Int min_tree_depth,
Graph model,
Boolean strict_mode) {

List<Node> node_list := model.get_nodes()
List<Tree> tree_list := [];
for each node in node_list {
tree_list.add(create_tree_starting_in(node, "upwards"))
tree_list.add(create_tree_starting_in(node, "downwards"))

}
Maybe<Pair<Tree, Tree>> best_pair :=

find_best_pair_rec(tree_list, model, strict_mode)
if (best_pair == Nothing) {
return best_pair

} else if (best_pair.getContents().first().tree_depth >= min_tree_depth) {
return best_pair

} else {
return Nothing

}
}

Figure 39: Equivalent subtree initialisation pseudo-code

struct Tree {
Node[][] nodes_in_each_level, // except loops
Node nodes_reached, // union of nodes_in_each_level
Int tree_depth, // number of levels of the tree
Direction direction // one of "upwards" or "downwards"

}

Figure 40: Example subtree data type pseudo-code

CHAPTER 5. COMBINING CONTROL AND DATA 134

Maybe<Pair<Tree, Tree>> find_best_pair_rec(List<Tree> tree_candidates,
Graph model,
Boolean strict_mode) {

List<List<Tree>> grouped_tree_list :=
group_isomorphic_trees(tree_candidates);

List<List<Tree>> repeated_tree_list :=
filter_out_unique_trees(grouped_tree_list);

if (repeated_tree_list IS EMPTY) {
return Nothing

} else {
List<Pair<Tree, Tree>> next_level = [];
for each tree_list in repeated_tree_list {

List<Tree> tree_list_copy = clone(tree_list)
for each tree in tree_list_copy {

expandTree(tree)
}
Maybe<Pair<Tree, Tree>> best_pair :=

find_best_pair_rec(tree_list_copy, model, strict_mode)
if (best_pair != Nothing) {
next_level.add(best_pair.getContents())

}
}
if (next_level IS EMPTY) {
if (strict_mode) {

// We remove those trees that can be expanded
remove_trees_not_maximal(repeated_tree_list)

}
if (repeated_tree_list IS EMPTY) {
return Nothing

} else {
return Something(get_first_pair_of_trees(

get_sublist_with_deepest_trees(
repeated_tree_list)))

} else {
return maybe_deepest_tree_pair(next_level)

}
}

}

Figure 41: Equivalent subtree search pseudo-code

CHAPTER 5. COMBINING CONTROL AND DATA 135

One difference between models generated by James and FSMs is that the algo-
rithm in James stores events (in our case method calls) in the nodes, as opposed
to normal regular state machines that often store events in transitions and nodes
represent states (this is also one difference with the work in Chapter 6, where
we store events in transitions, and nodes represent states). Models produced by
James do not have transitions as such, they are implicit in the control flow, meth-
ods in the nodes can be seen as producing a transition in the system when they are
executed. This is similar to the difference in the way Mealy and Moore machines
encode output data: Mealy machines output is associated to inputs and states and
visual representations usually include output as part of the transitions, whereas
Moore machines encode output in terms of the state only, and visual representa-
tions usually include the output as part of the state; see (Mealy 1955) and (Moore
1956).

We decide whether a node that issues an HTTP request is expected to produce
an error by looking at the nodes that receive its data flow because usually these
nodes contain assertions that check whether the response is an error message, so
the type of assertion determines the type of the method (this can be observed
in the example shown in Figure 42 on page 140). If we used a proxy, we could
detect errors by looking at the status code of responses to HTTP requests (since
responses whose status code starts with 4 or 5 represent client and server errors
respectively). We could potentially obtain this information through the JVMTI
agent but, like when obtaining the target URLs for requests, the solution would
probably be dependent on the specific approach used by the tests to connect to
the web service (the particular library used).

In addition to the constraints described before, nodes labelled as “normal” are
never merged with nodes labelled as “erroneous”, data arrows are never merged
with control arrows, and data arrows are never merged with other data arrows
that provide values for a different parameter. Two parameters are considered
different if they have different positions (in the list of parameters/arguments) or
because they have different Java type.

Since we merge only subgraphs of a minimum depth, it is likely that all the
sequences merged have the same or similar semantics. The merging process pro-
duces new connections and loops between nodes, both in the data and the control
flow.

CHAPTER 5. COMBINING CONTROL AND DATA 136

In order to make the diagram clearer, we group together, in the same sub-
graph, methods that issue HTTP requests to the same URL and with the same
HTTP method. Nodes that hang from these nodes and do not receive values from
methods that produce different HTTP requests are also included in the same sub-
graph. We include these nodes too because, in our experience, they tend to be
related (they are the ones that unmarshall the result or check that the results are
as expected).

5.5 Example

In this section, we discuss in detail the result of applying the model inference
process of James to a toy example test suite: a set of JUnit tests targeted at
a web service version of the Frequency server (see Section 2.1.5 on page 15). I
implemented the web service version of the Frequency server in Java; the full
source-code is available at (Lamela Seijas 2014b) and partially in Appendix B.
The JUnit tests used as input were developed by an independent party (Interoud
Innovation), and can be found in Appendix C and online at (Francisco 2014a).

The full graphical diagram extracted by James is presented in Figure 42 (on
page 140), and part of the QuickCheck eqc_fsm model extracted by James is
provided in Appendix D.

5.5.1 Interpreting the model

With a quick look to the model (Figure 42 on page 140), we can see that there are
four different types of requests (grouped in four subgraphs): allocateFrequency,
startServer, deallocateFrequency, and stopServer. These correspond di-
rectly to the four operations that the Frequency server accepts (see Section 2.1.5
on page 15).

We can see that all of them have their normal version (white background) and
their failing version (pink background). Additionally, both deallocateFrequency

and stopServer have a version with red outline, since they are used in the clean-
up procedure.

Even though this is not displayed in the diagram, we can deduce that the
normal startServer method is initial (it can be the first to be called), because it

CHAPTER 5. COMBINING CONTROL AND DATA 137

checkNotRunningError

Negative instance classes
Calls with keywords like “error” or “fail”, and calls that
produce values used by them are considered erroneous, and
painted pink.

hasNext next

Methods, @Test, @Before, and @After
The outline of rectangular nodes represents the places where
the command was found, see Table 4 on the next page. A
single node may appear in several places since it may be the
result of merging several nodes.
Arrows
Data flow is represented with grey arrows. Arrows connect
the methods that produce an object as result with methods
that take it as a parameter.
Dashed Arrows
Whenever an object produced as result of a method is used
as base object of another method, (that is: the this object
of the method), the data flow relationship is represented
with a dashed grey arrow.
Brown Arrows
Control flow is represented through brown arrows. These are
created following the order in which the methods were
originally executed in the input unit tests.
Loop highlighting

Loops in control flow are represented with thicker arrows.

oneOf

oneOf diamonds
oneOf nodes group together several converging arrows of the
same type that provide alternative data or control flow (that
can be used interchangeably). Because a method may take
several arguments, we use oneOf nodes to distinguish
between the data flow arrows for each different argument.

{post,"/freq_server/StopServer"}

HTTP request grouping (subgraphs)
Methods that are related to an HTTP request targeted at a
same URL and that use the same HTTP method are
grouped in subgraphs surrounded by a black rectangle. The
tuple in the rectangle denotes the method and URL used.

assertNotNull

Double outline
Static methods are denoted with double outline. Thus,
methods with double outline should not have incoming
dashed arrows.

Table 3: Diagram symbol legend

CHAPTER 5. COMBINING CONTROL AND DATA 138

@Before @Test @After Outline colour
No No No Grey
Yes No No Green
No Yes No Blue
No No Yes Red
Yes Yes No Teal
No Yes Yes Purple
Yes No Yes Yellow
Yes Yes Yes Black

Table 4: Colour legend for method nodes outline

does not have incoming brown arrows (control flow), but this is not a necessary
condition, there may be other initial states (internally, information about initial
states is stored, but this is not displayed in the diagrams).

We can also see that there is data flow from the normal allocateFrequency
method to the deallocateFrequency methods, this represents that the result of
allocateFrequency can be used as a parameter to deallocateFrequency. This
can be seen more clearly in the detail show in Figure 43 (on page 141).

In Figure 43 (on page 141), we can see that it is possible to extract the result of
the call allocateFrequency by calling getResult and then getFrequencyAllocated,
and this value can be passed directly as a parameter to deallocateFrequency.
But if we pass the frequency to deallocateFrequency a second time it will pro-
duce an error (highlighted by the pink background of deallocateFrequency).
The model also tells us that another way of producing a deallocation error is by
using the integer 0 as parameter for deallocateFrequency, this is always true
because the integers used internally to represent frequencies are bigger than 10.

At this point, the reader may wonder how does the model know whether the
frequency used in the first deallocateFrequency is the same as the one used in
the second deallocateFrequency if allocateFrequency was called several times.
Unfortunately, the models produced by James cannot represent this difference,
which is one of the reasons why they lack soundness, we study a possible solution
to this problem in Chapter 6.

CHAPTER 5. COMBINING CONTROL AND DATA 139

5.5.2 The model is more general

One example of how the model is more general than the input tests is made
obvious by the fact that our web service implementation of the Frequency server
has a limit on the number of frequencies that can be allocated at the same time,
but this limit was not explored by the existing unit tests. An implementation
that allowed an arbitrary number of frequencies to be allocated would still pass
the tests, despite its behaviour being different.

Nevertheless, a random test generator (see Section 5.6) that would randomly
traverse the control flow of our model (shown in Figure 42) could try to allocate
enough frequencies to do so, since there exists a control loop around the allocation
command. At some point the server would return an error and the assertion
checkNoErrors would fail.

5.6 Test generation

Using the approach presented in Section 5.4 (on page 124), we are able to build
a comprehensive model of a system from a set of JUnit tests. Assuming that
the tests make a sensible exploration of the SUT, then it is possible, not only to
construct a graphical model of the system (as shown in Section 5.5 on page 136),
but also to construct a QuickCheck FSM model for the SUT (see Section 2.4.2 on
page 23) that will generate new tests for the system when executed.

In Section 5.5, we have seen examples of how some possible sequences of
method calls are represented in the graphical model. The QuickCheck FSM
models generated by James are analogous to the graphical ones, but represent
the information programmatically. In this section, we describe how the elements
of the model (and the graphical representation) correspond to the elements of
QuickCheck FSMs generated by James.

5.6.1 Building a eqc_fsm model

A QuickCheck eqc_fsm model can be built by translating the different elements
of the model or diagram:

1. The state transitions of the QuickCheck eqc_fsm model can be defined to

CHAPTER 5. COMBINING CONTROL AND DATA 140

Ja
v
a

In
te

ra
ct

io
n
s

{
p
o
st

,"
/f

re
q
_
se

rv
er

/S
to

p
S

er
v
er

"}

{
p
o
st

,"
/f

re
q
_
se

rv
er

/D
ea

ll
o
ca

te
F

re
q
u
en

cy
"}

{
p
o
st

,"
/f

re
q
_
se

rv
er

/S
ta

rt
S

er
v
er

"}
{
p
o
st

,"
/f

re
q
_
se

rv
er

/A
ll

o
ca

te
F

re
q
u
en

cy
"}

h
as

N
ex

t

as
se

rt
T

ru
e

{
in

te
g
er

,0
}

n
ew

 j
av

a.
la

n
g
.I

n
te

g
er

o
n
eO

f

d
ea

ll
o
ca

te
F

re
q
u
en

cy

o
n
eO

f

d
ea

ll
o
ca

te
F

re
q
u
en

cy

o
n
eO

f

st
o
p
S

er
v
er

o
n
eO

f

al
lo

ca
te

F
re

q
u
en

cy

it
er

at
o
r

n
ex

t

n
ew

 j
av

a.
u
ti

l.
A

rr
ay

L
is

t

n
ew

 j
av

a.
u
ti

l.
A

rr
ay

L
is

t

g
et

F
re

q
u
en

cy
A

ll
o
ca

te
d

d
ea

ll
o
ca

te
F

re
q
u
en

cy

eq
u
al

s
o
n
eO

f

g
et

R
es

u
lt

ch
ec

k
N

o
tR

u
n
n
in

g
E

rr
o
r

ch
ec

k
N

o
E

rr
o
rs

st
o
p
S

er
v
er

st
o
p
S

er
v
er

ch
ec

k
N

o
E

rr
o
rs

ch
ec

k
N

o
tA

ll
o
ca

te
d
E

rr
o
r

ch
ec

k
N

o
tR

u
n
n
in

g
E

rr
o
r

ch
ec

k
N

o
E

rr
o
rs

ch
ec

k
N

o
tA

lr
ea

d
y
S

ta
rt

ed
E

rr
o
r

st
ar

tS
er

v
er

st
ar

tS
er

v
er

g
et

R
es

u
lt

ch
ec

k
N

o
E

rr
o
rs g
et

F
re

q
u
en

cy
A

ll
o
ca

te
d

as
se

rt
N

o
tN

u
ll

ch
ec

k
N

o
tR

u
n
n
in

g
E

rr
o
r

al
lo

ca
te

F
re

q
u
en

cy

F
ig
ur
e
42

:
D
ia
gr
am

ex
tr
ac
te
d
by

Ja
m
es

fr
om

th
e
Fr
eq
ue
nc
y
se
rv
er

CHAPTER 5. COMBINING CONTROL AND DATA 141

{integer,0}

new java.lang.Integer

oneOf

deallocateFrequency

allocateFrequency

getFrequencyAllocated

deallocateFrequency

oneOf

getResult

Figure 43: Slice of diagram displaying exceptional behaviour

match the control flow (including looping behaviour), given by the brown
links in the visualisations.

2. Data flow indicates how we can create generators that call each other (pos-
sibly with recursion), and how the values produced by these generators can
be used as parameters for calls in the control flow.

3. The combination of data flow and control flow gives an indication of the
values that need to be stored as part of the state data of the QuickCheck
eqc_fsm model. For example, Figure 43 shows how the result of an invo-
cation of the method allocateFrequency can be stored in state data in
order to be reused as a parameter for a posterior invocation of the method
deallocateFrequency.
Our implementation preemptively stores results for each method call pre-
viously executed, and it obtains the values required by each method by
randomly choosing between reusing the results already generated or by gen-
erating new ones by issuing the required calls to the appropriate methods.

CHAPTER 5. COMBINING CONTROL AND DATA 142

4. Similarly to the way values required are generated, we include generators for
postconditions that follow data flow directly within each subgraph. These
will produce the postconditions in terms of the result of the method execu-
tions from the control flow.

In order to guarantee termination of the generators, we must bind their recursion
with a strictly decreasing number. This can be done by computing, for each node,
the minimum depth (distance to the top of the graph), and by ensuring that
we eventually force the data generation process to follow a path with a strictly
decreasing depth.

In methods with several parameters, the depth must include the minimum
depths for all parameters (since a path that decreases the depth of the data flow
path required to generate of one parameter may increase the depth of the data
flow path required to generate another parameter).

For example, in Figure 44, we can see that produceHeat is a constructor and,
thus, has depth 0; we could then conclude, if we calculate depth as the minimum,
that eggHatches has depth 1, and that chickenLaysEgg has depth 2, whereas
protoChickenLaysEgg has obviously depth 3. If we use this way of computing
depths to guide test generation, we will arrive to the wrong conclusion that if we
want to find a finite way of constructing an “egg”, the choice marked by the oneOf
node should resolve to chickenLaysEgg, which would cause an infinite loop in
the process. This problem illustrates that the depth of both chickenLaysEgg and
eggHatches nodes should actually be established as infinite.

It is worth noting that the problem may not have a solution if we consider
an arbitrary model. But the fact that the model was extracted from an actual
execution guarantees that there exists a solution, since the values were indeed
created somehow in the unit tests provided as input (this is one advantage of
using a dynamic approach).

For this particular example, James created the following data generator for
the oneOf diamond:

args_for(Size, _WhatToReturn, State, "diamond13o15") ->

?LAZY((oneof([args_for_op(Size, return, State, "11")] ++

[args_for_op(Size - 1, return, State, "17")

|| Size > 0])));

CHAPTER 5. COMBINING CONTROL AND DATA 143

Java Interactions

oneOf

eggHatches

produceHeat

chickenLaysEgg

evolution

protoChickenLaysEgg

bigBang

amoebaCreated

Figure 44: Chicken and egg problem in data generation

CHAPTER 5. COMBINING CONTROL AND DATA 144

The oneof function is a QuickCheck primitive than randomly chooses one of
the elements of the list provided. args_for_op function is just a wrapper function
for args_for (in the same way args_for is a generator for nodes like the diamond
node), the call with the label "11" corresponds to the node protoChickenLaysEgg,
the call with the label "17" corresponds to the node chickenLaysEgg, and the
label "diamond13o15" corresponds to the oneOf diamond. The Size parameter
is used by QuickCheck to determine the size of the elements generated, a higher
Size value represents a bigger value. We can see that the created generator de-
creases the value of Size every time we choose the method chickenLaysEgg, and
it will not include the option chickenLaysEgg when Size is 0, thus guaranteeing
termination.

Appendix D shows how the function args_for/4 fits with the rest of the
eqc_fsm model.

5.6.2 Generation of tests

The QuickCheck eqc_fsm models generated as described in Section 5.6.1 are anal-
ogous to the diagrams that we can visualise. In Figure 45 we can see the visual
representation of part of the internal structure used to generate a QuickCheck
eqc_fsm model for the Frequency server web service, and overlayed in black and
gray we see the traversal QuickCheck did to generate the test in Figure 46.

Tests can be generated through the following steps:

1. The graph is traversed randomly through the control path, from the entry
star through the brown arrows, with optional looping behaviour. Each node
in this path (hereafter step) represents a call (HTTP request) to the API.

2. For each step, we generate the parameters required by following data flow
arrows in reverse (possibly reusing values from previous steps), as shown (in
Figure 45) by the green arrows.

3. Optionally, for each step, we generate postconditions by traversing the data
flow in the direction of the arrows within the subgraph.

Since the model represents the behaviour of the target web service, it should not
raise any (intended) exceptions. The results returned by the web service can be

CHAPTER 5. COMBINING CONTROL AND DATA 145

Java Interactions

{post,"/freq_server/StopServer"}

{post,"/freq_server/StartServer"} {post,"/freq_server/AllocateFrequency"}

{post,"/freq_server/DeallocateFrequency"}

Entry

8 - startServer 180 - allocateFrequency

252 - deallocateFrequency

37 - stopServer

40 - stopServer

43 - checkNotRunningError

13 - checkNotAlreadyStartedError

10 - startServer

oneOf

oneOf

140 - equals

70 - checkNoErrors

130 - assertNotNull

182 - checkNotRunningError126 - getResult

128 - getFrequencyAllocated

120 - allocateFrequency

209 - getResult

213 - deallocateFrequency

211 - getFrequencyAllocated

oneOf

"280 - {integer,0}"

281 - new java.lang.Integer

256 - checkNotAllocatedError 217 - checkNoErrors314 - checkNotRunningError

Step 1

Step 2

Step 3Step 4

Figure 45: Diagram representation of test generated by James

classified as positive or negative depending on whether they represent an error or
a normal result.

Generated QuickCheck eqc_fsm models, when run, print new JUnit test cases
that can, after manual review, be added to the original suite. Manual review
is necessary because some of the tests generated may have wrong postconditions,
execute invalid commands, or test irrelevant aspects of the system; a test generated
may fail because the test is wrong, not necessarily because the system is wrong;
ultimately, it is up to the user (or up to some other authoritative oracle) to decide
which behaviour is right (this is called the oracle problem Harman et al. 2013).

Once the generated tests have been suitably reviewed, it is possible to rerun
the extraction process on the extended test suite and, thus, potentially generate a
refined model of the system. This iterative refinement approach has been used in
the past for model inference (Walkinshaw, Derrick and Guo 2009), and is similar
to the CEGAR approach used in model checking (Clarke et al. 2000).

Unfortunately, tests generated may not necessarily be correct, not even for
scenarios that have already been classified (see the discussion on soundness in the
introduction of Chapter 6). The example test generated provided in Figure 46 is
actually incorrect, some of the postcondition like:

// Postcondition: 2

CHAPTER 5. COMBINING CONTROL AND DATA 146

FreqServerResponse var1 = this.startServer ();
FreqServerResponse var2 = this.allocateFrequency ();
// Postcondition: 1
this.checkNoErrors(var2);
// Postcondition: 2
Result var4 = var2.getResult ();
Integer var5 = var4.getFrequencyAllocated ();
Result var6 = var2.getResult ();
Integer var7 = var6.getFrequencyAllocated ();
boolean var8 = var5.equals(var7);
// Postcondition: 3
Result var9 = var2.getResult ();
Integer var10 = var9.getFrequencyAllocated ();
junit.framework.Assert.assertNotNull(var10);
// End of postconditions
Integer var12 = var6.getFrequencyAllocated ();
FreqServerResponse var13 = this.deallocateFrequency(var12);
// Postcondition: 1
this.checkNoErrors(var13);
// End of postconditions
int var15 = 0;
Integer var16 = new Integer(var15);
FreqServerResponse var17 = this.deallocateFrequency(var16);
// Postcondition: 1
this.checkNotAllocatedError(var17);
// Postcondition: 2
this.checkNotRunningError(var17);
// End of postconditions

Figure 46: Example of test generated by James (without package qualifiers)

CHAPTER 5. COMBINING CONTROL AND DATA 147

this.checkNotRunningError(var17);

will fail, and this issue needs to be solved manually.

5.7 Pilot study

In order to validate our approach, we have carried out a pilot study where we
applied James to the administration web service of the system VoDKATV, de-
veloped by Interoud Innovation (Francisco 2014b). VoDKATV is an IPTV/OTT
middleware that provides end-users with multimedia services through different
devices such as a TV (through a set-top-box), a PC, a tablet, etc. The system
is composed of several components that are integrated through the use of web
services.

In particular, VoDKATV provides a web service used by administration appli-
cations to configure the VoDKATV platform; it allows applications to create users,
set prices, configure channel lists, etc. This web service is invoked via HTTP or
HTTPS (depending on the specific deployment), and returns data in XML format.
Previous to the pilot study, there existed some manually written JUnit test cases
targeted at this web service, and some of those were used as input for the James
tool during the pilot.

By using the approach explained in this chapter, we were able to generate a
diagram representing the execution of a JUnit test suite. New test cases were
generated automatically from that execution, and the generated tests allowed the
developers of the platform to find a previously unknown bug in the implementation
of the web service. In the rest of this section, we present the results of the pilot
study; the original report can be found in Arts et al. (2015).

Previous to the pilot study, four research questions were agreed by the whole
team, and six measurements were established to try to answer the four questions.

The four questions were:

A Is it technically feasible to augment Java test suites by inferring new
tests from existing test suites?

B Is the process of inferring new tests from Java test suites feasible from
a business point of view: can the process be accomplished at a cost
appropriate to the improvement in tests?

CHAPTER 5. COMBINING CONTROL AND DATA 148

C Do the inferred tests effectively augment the existing tests? This can
be shown by discovering new faults in the system under tests?

D Is the method assessed as accurate, quality enhancing and useful by
the developers involved in the pilot study?

The six measurements were:

1. Number of tests in a unit test suite needed for the automatic extraction of
useful test models [answers question A].

2. Number of additional (i.e. previously non-existent) tests cases needed for the
automatic extraction of useful models (i.e. manually added by developers
so that the extraction process can generate a useful test model) [answers
questions A and B].

3. Number of new test cases added to test suite by means of the extracted
models (automatic test suite enhancement) [answers question A].

4. Number of bugs revealed by means of the extracted models [answers question
C].

5. Time and computational resources needed to infer and generate the models
(scalability) [answers question B].

6. Developers’ rating (0-10) of accuracy, quality and usefulness of the extracted
models, compared to previously existing unit test suites [answers question
D].

5.7.1 Results of the pilot study

During the pilot study, the James tool and, by extension, the approach described
in this chapter, were tested for technical feasibility, viability from the business
point of view, and for accuracy and effectiveness of the generated tests.

Using the 28 existing tests of VoDKATV, we used James to generate a model
which is too big to include in this thesis (the model generated on one of the
attempts consisted of 163 nodes, 311 arrows, and 12 subgraphs), and we generated
a series of tests that were used to answer the questions of the pilot study

CHAPTER 5. COMBINING CONTROL AND DATA 149

5.7.1.1 Number of tests required as input

One threat to validity of our approach was the potential number of existing tests
required as input. A large number could translate into the need of additional
testing effort (which is precisely one of the problems that the approach tries to
address). In turn, the need for additional effort could translate into reduced
viability from the business point of view. During the pilot, James was able to
generate new tests even from a single input test case, even though in this case the
tests generated were not very diverse.

For example, from a test that created and deleted a room, James was able to
generate a negative test that deleted a non-existent room.

5.7.1.2 Additional effort required to obtain useful models

Similarly, even after confirming that the number of tests required for James to
work is small, it still was a threat to validity the possibility that the effort required
for the results to be useful would be disproportionate.

During the pilot, the initial set of 28 tests available was enough to produce
a model considered “useful” for the 20 target operations tested. Thus, it was
not necessary to add any extra tests. Nevertheless, it was necessary to adapt
the existing JUnit test suite in order for James to produce the expected results
(mainly due to the limitations described in Section 5.8 on page 154).

In particular:

• It was necessary to encapsulate some functions, by making the tests more
high level.

• Results improved after rewriting methods to avoid side effects, by rewriting
some parts to use a pure functional style.

• Developers unfolded one aspect of the set-up into the tests so that generated
tests were more accurate.

These adaptations responded to problems either in the model or in the test gen-
eration. For example, because James issued errors when generating a model (for
example, from tests that contained unsupported features), because James gener-
ated tests with methods that we did not want the generated tests to have (for

CHAPTER 5. COMBINING CONTROL AND DATA 150

example, methods that generate debug information), or because we wanted cer-
tain procedures to be treated equally (merged) or treated differently (not merged)
in the resulting model.

5.7.1.3 Number of new tests generated

In order for the approach to be useful, it must generate a significant number of
new tests that explore new aspects that were not explored by the existing ones.
During the pilot, James was able to generate thousands of JUnit test cases. Some
of these tests where generated several times, but future experiments showed that
replication could be addressed easily through the inclusion of the QuickCheck
macro ?ONCEONLY in the eqc_fsm model, which keeps track of generated tests and
tells QuickCheck not to issue tests that have already been generated before.

Some test were generated by James that exercised behaviours not considered
in the original JUnit test suite, for example:

• Deleting existing and non-existing rooms in the same call to deleteRooms.

• Deleting duplicated rooms in the same call.

• Trying to update rooms that do not exist.

• Trying to create a device in a room that does not exist.

• Trying to create two devices with the same MAC address.

5.7.1.4 Number of bugs revealed

A good measure of the usefulness of the approach is the number of errors that it
helps discover.

During the pilot, James helped developers to find one wrong behaviour. When
the operation that deletes a device was invoked with an empty device identifier, it
produced a NullPointerException, instead of returning a “required field” error
as expected.

CHAPTER 5. COMBINING CONTROL AND DATA 151

5.7.1.5 Time and computational resources required

The original suite took between 2.8 and 3.5 seconds to execute, whereas the in-
strumented test suite took between 70 and 100 seconds. The generation of the
model took James an additional 20 to 25 seconds to complete.

5.7.1.6 Developer evaluation

The developer of the tests was asked to comment and rate James tool on a scale
of 0 to 10 for accuracy, quality, and usefulness. In summary, the assessment was:

• Accuracy: 4
“[. . .] James generates thousands of new JUnit test cases, some of them
test aspects that are not taken into account in the original JUnit test suite.
However, there are many other test cases that are wrong because they try
to test something in a wrong way (they make no sense and they fail even
though the implementation of the SUT behaves as expected for the test
scenario), [. . .]”

• Quality: 7
“The new test cases generated by James follow the same style and guidelines
used in the original Java code [. . .] hence we consider that the quality of
the new test cases in terms of source code quality is similar to the original
[. . .] the variable names used in the new test cases [. . .] makes the new test
cases harder to read.”

• Usefulness: 8
“Using James [. . .] helped to identify some situations that had not been
tested before [. . .] the structure of the original JUnit test suite had to be
modified slightly [. . .]”

5.7.2 Second run

In successive reviews of this work and thesis, we have been asked to provide more
information that we did not collect during the first pilot study. For this reason,
we recently reran (as faithfully as possible) the same experiments carried out
during the first pilot study, but this time recorded more information and used the

CHAPTER 5. COMBINING CONTROL AND DATA 152

aaaaaaaaaaaa

All
postconditions

Postconditions
that pass 0 1 2 3 TOTAL

TESTS

0 3 0 0 0 3
1 151 25 0 0 176
2 720 591 29 0 1340
3 157 584 161 31 933
4 0 0 18 16 34
5 0 0 251 244 495
6 0 0 118 107 225
TOTAL TESTS 1031 1200 577 398 3206

Table 5: Distribution of postconditions in tests generated

most recent version of James available instead. In this subsection, we present a
summary of the extra data collected.

For the second run, we executed James on the same 28 tests (adapted to James
from scratch), and generated a model.

This time, we manually connected the model to VoDKATV by using the JEB
interface (Lamela Seijas 2014c). The modified model (at test generation time)
checked the tests generated against VoDKATV before outputting them, and com-
mented out those parts of the tests that produced exceptions. This mechanism
ensured that tests output by the model passed.

Using this mechanism, the model generated by James generated 10,000 random
tests of which 3,206 were unique and, thus, were output by the model.

By analysing the 3,206 output tests (including their commented out lines) we
obtained the following data.

In Table 5 we show the distribution of postconditions generated in tests and
the amount of passing postconditions in each case. Cells with grey background
indicate tests that pass directly, without commenting out any instruction, 88 in
total. In our experiments, except for the postconditions (assertions or calls to
methods that execute one or more assertions), none of the normal instructions in
the test generated raised any exceptions; thus, all generated failing tests were due
to failing postconditions.

In Table 6 we show how many methods in each test issue HTTP requests
in the tests generated, and the average number of methods, postconditions, and

CHAPTER 5. COMBINING CONTROL AND DATA 153

Number of
HTTP methods

per test
Number
of tests

Average
number of
methods
per test

Average
number of

postconditions
per test

Average
number of
instructions
per test

0 3 1.0000 0.0000 1.0000
1 126 6.7143 1.6349 11.3571
2 568 9.8380 1.9701 14.8908
3 1417 12.8574 3.2519 19.8483
4 717 17.0181 3.3710 26.8745
5 263 21.5247 3.4144 34.2167
6 80 25.7375 3.3375 41.4625
7 31 30.2903 3.1613 48.9032
9 1 33.0000 3.0000 48.0000

TOTAL 3206 14.2077 2.9994 22.1978

Table 6: Distribution of methods that produce HTTP requests

Classification Matching tests
1 interesting part 10
2 interesting parts 2

Both interesting and not 8
Only non-interesting parts 9

TOTAL 30

Table 7: Manual evaluation of interest for first 30 tests

Classification Matching tests
Negative tests 13
Positive tests 5

Both positive and negative 3
Non-interesting tests 9

TOTAL 30

Table 8: Manual evaluation of positive or negative testing

CHAPTER 5. COMBINING CONTROL AND DATA 154

instructions per test.
The first 30 tests generated during the second run were also classified by the

developer of the original tests using the following criteria (see Table 7):

• Interesting parts of a test are those that have postconditions that check what
they do.

• Uninteresting parts of a test are those that do things but do not check the
result (or not correctly).

• A test with both means that it has both interesting and uninteresting parts.

• A test with neither means that the test does nothing to the SUT.

All this is done while ignoring those postconditions that produce exceptions, and,
thus, if we consider that the SUT is correct, they all represent wrong postcondi-
tions (the proportion of these failing postconditions is already detailed in Table 5).

Additionally, the tests that had at least one interesting part were classified
manually into the following categories (see Table 8):

• Positive tests: for example, a room is created and the postcondition checks
that the creation was successful, or a room is deleted and the postcondition
checks that the deletion was successful.

• Negative tests: for example, an attempt is made to delete a non-existent
device or to create a room with incorrect data, and the postconditions checks
that the result is an error.

5.8 Limitations

There are some limitations to our approach, some of them are derived from the
technologies used (technical limitations) but could be circumvented if a large
amount of development effort was applied; others are intrinsic to our approach
(conceptual limitations) and would require considerable changes to it.

CHAPTER 5. COMBINING CONTROL AND DATA 155

5.8.1 Technical limitations

In Java, some variables have primitive types (for example: int, char, boolean),
all of these can be replaced by wrapper classes (for example: Integer, Character,
Boolean), but using them is less efficient. One limitation derived from the shallow
use of JVMTI is that primitives cannot be tracked. And the same problem exists
for operators like + or &&, which are treated differently from normal methods by
the JVMTI.

Our current implementation attempts to track primitives by linking observa-
tions of the same value. This works fine if all the primitives that are observed
have different values, but this is quite unlikely to happen, specially because there
are some primitives that are reused frequently with different intentions; primitives
like true, false, and 0. In addition, it is not possible for our implementation to
trace the use of primitives through operators.

The solution suggested by the documentation of the JVMTI (JVM-TI 2006),
is to use dynamic bytecode modification. It would be theoretically possible to use
this mechanism to, for example, replace primitives with objects and operators with
methods. But, because James was built as a prototype, we bypassed the problem
by replacing primitives manually previous to the instrumentation process.

In addition, some artefacts used in Java code are translated into compiler-
generated methods, and some methods are implemented natively. There are some
kinds of information (like information about local variables) that JVMTI API
does not always provide for some of these methods.

Even for normal methods, the amount of information that can be retrieved
directly through the use of JVMTI API depends on whether the code was compiled
with debug information.

In our aim to obtain a more versatile tool, we chose to use ways of extracting
information that rely on JVMTI methods that, in our experiments, worked inde-
pendently of whether Java code was compiled with debug information enabled.

5.8.2 Conceptual limitations

As we described in Section 5.2.2.2 (on page 121), in our approach, control flow
is only tracked for methods that issue HTTP requests, since they are the ones
that can modify the state of the target web service. This means that the model

CHAPTER 5. COMBINING CONTROL AND DATA 156

will not consider the consequences of side-effects that are produced by the rest of
methods. Those methods cannot modify the state of the web service, but they
can modify and depend on the local state of the client that is running them.

If the tests used as input contain local side-effects, the models produced by
James may be inaccurate. In Chapter 6, we study a way of redesigning the
inference algorithm described in this chapter so that it acknowledges the possible
side-effects caused by any method, while still representing, in a single model, the
interactions between control and data flow.

Another problem, which is generic to dynamic approaches – already reported
in previous research (Lo et al. 2011) – is the large number of traces produced by
dynamic instrumentation, which causes the analysis of relatively small test suites
to require a substantial amount of memory and, thus, slows down the process
considerably. This problem is mitigated by a careful early filtering of the traces
collected as mentioned in Section 5.3.3 (on page 123).

Finally, analysing the data flow can be a problem by itself when it is not
explicit. While, in Section 5.8.1, we talked about the difficulty to track primitives
as opposed to tracking objects, there is a semantic aspect to it: even if all the
values were objects, we may still have two equal objects that refer to the same
thing in the real world, for example: two objects for the number 10may be created
separately and still both be used to represent the frequency channel number 10.
On the other hand, the two instances of number 10 may represent different things,
like the floor number 10 of a building. In those cases, our algorithm has no easy
way of knowing whether those equal values refer to the same thing, or maybe, for
example, one refers to the floor on which the program is running.

Fortunately, it is usually considered a good practice to declare “objects” and
“values” that refer to the same thing together as constants, so that information
is usually present in programs. Nevertheless, it must probably be the user who
provides (one way or another) the flow information, in Chapter 6 we directly
assume the user provides it as part of the input.

5.8.3 Control tracking workaround

The task of identifying methods that issue HTTP requests could be carried out by
ensuring that all traffic goes through a proxy and letting the proxy communicate

CHAPTER 5. COMBINING CONTROL AND DATA 157

this information in a synchronised way to the JVMTI agent. Nevertheless, this
approach would add extra complexity to the implementation and would potentially
require a context switch between the JVMTI agent and the proxy for each method
call, and this would introduce a delay that would slow down the whole process
considerably.

Instead, we use the JVMTI agent directly to detect Java methods that we know
produce HTTP requests, this is a small overhead since we already needed to track
all the methods’ entry and exit events to retrieve the information about control and
data flow anyway. In our experiments, we have set the agent to detect the meth-
ods openConnection and setRequestMethod from the class HttpURLConnection.
Other target systems may use different methods to produce HTTP requests, but
James can be easily adjusted to detect those instead.

5.9 Lessons learned

In this section, we present some concrete insights from the pilot study about
weaknesses, potential future improvements, and areas for future research.

5.9.1 Implicit relationships

During the pilot study we observed that there was a relationship between groups
of instances that had an intrinsic relationship among them: they had to be used
together in certain function calls in order for the calls to be correct.

For example, in one of the tests used as input during the pilot study we could
find the following sequence of calls:

String inputXml1 = generateRoomXML(roomId1 , description1 ,

tagTreeNodeId1);

String resultCreate1 = createRoom(inputXml1);

checkThatRoomWasCreated(inputXml1 , roomId1 , description1 ,

tagTreeNodeId1 , resultCreate1);

We can see that there is a relationship between the values stored in the vari-
ables roomId1, description1, and tagTreeNodeId1: they all correspond to the
same physical room. Because of this relationship, it would most likely not make
sense to change any of the three parameters in either of the function calls.

CHAPTER 5. COMBINING CONTROL AND DATA 158

Unfortunately, James cannot infer this relationship, and randomly choosing
the parameters for checkThatRoomWasCreated so that all of them correspond
to the same room, even if we only have only created two rooms, would have a
probability of one out of 24 = 16. And this number only grows exponentially
when we increase the number of calls in the tests generated.

This particular choice of parameters is due to the existence of what we could
call an “implicit object”, the room, with a set of attributes that have a special
meaning when used together. This kind of relationship is relatively simple and we
could potentially come up with ways of detecting it, but we can imagine there could
exist very complicated relationships between values (or objects) that are far from
obvious to guess, for example: one method could have a different effect depending
on whether it is passed a room with a prime number of devices associated.

In order to produce more meaningful tests, it would be necessary to detect
these implicit relationships and consider them when generating new tests. Of
course, it is still interesting to generate wrong implicit relationships for negative
testing, but the proportion of positive cases should be comparable to the pro-
portion of negative cases, and it would be desirable to be able to predict the
classification of generated tests accurately.

Alternatively, we can delegate the task of managing implicit relations to testers
and developers, by assuming that there exist abstractions that hide them, or by
assuming they are all explicit (for example, by assuming there are unique explicit
identifiers for everything).

5.9.2 Classification of traces

As mentioned in Section 5.4, James classifies methods into two categories:

• Positive – those that are expected to represent normal behaviour of the
system.

• Negative – those that exercise unexpected behaviour of the system, for ex-
ample: in the face of wrong or malformed input. Our implementation used
the strings like “fail” and “error” as heuristic.

We assume that tests provided pass, thus, we do not consider execution time errors
in the tests. Tests that fail could straightforwardly be considered as negative tests,

CHAPTER 5. COMBINING CONTROL AND DATA 159

but this is not very useful in the case of web services, since we try to find errors
in the target web service, not on the side of the client.

In the pilot and, for example, in the step 4 of Figure 45 on page 145, we
could see that responses for different types of error were checked differently, with
separate assertions. The current approach tries to merge all the failing nodes
together and, because of this, tests generated may have several assertions that are
contradictory.

As a consequence, we could already see that the example generated test shown
in Figure 46 on page 146 checks the same result value for two contradictory asser-
tions checkNotAllocatedError and checkNotRunningError. The same problem
may potentially occur with positive assertions.

These results suggest that future work could classify tests into an arbitrary
number of categories, instead of only two.

5.9.3 State inference for objects

The current version of James uses control flow to represent the state of the server.
But this approach is not used for inferring the state of anything in the client.
One possibility would be to also record the control flow of methods that do not
issue HTTP requests, in order to model the state information of the client as well.
But this would probably lead to intricate, hard to read diagrams, as we saw in
Section 4.4 on page 103.

A better alternative could be to track state for objects or classes separately,
instead of the system as a whole. Several different approaches for modelling the
state of objects have been explored in the past (Henkel and Diwan 2003; Yuan and
Xie 2005; Xie and Notkin 2004). Nevertheless, it would be necessary to coordinate
the state of the objects in the model through the use of guards or messages.

Chapter 6 explores this idea by presenting a formalism inspired by the idea of
representing the state of different objects separately, but synchronisation is done
through the combination of the different models into a single one, similarly to how
it is done in this chapter, but with an extra care to preserve soundness.

CHAPTER 5. COMBINING CONTROL AND DATA 160

5.10 Chapter conclusions

In this chapter, we have presented a set of techniques to generate useful models
that combine information from both data and control flow, and for using these
models to generate new tests. These techniques have been implemented in the
James tool and, even though further validation would be required in order to say
whether the approach is effective in practice or whether other approaches would
be preferable, we have seen an example of their application to an industrial system
that both suggests:

• That the techniques described here may be useful to help find bugs.

• That there are both technical and theoretical limitations to them; in partic-
ular, we highlighted its lack of soundness, which limits its accuracy.

We have also illustrated the techniques with examples from specific executions of
James and examples extracted from the pilot study.

But the experiments also show how by combining control and data flow we
can obtain more expressive models, and open the door to a more modular per-
spective for modelling systems. In Chapter 6 we explore this perspective from
a slightly more formal point of view, by paying more attention to the accuracy
of the inference algorithm and abstracting away from the context of its applica-
tion, that is: we will not discuss any more about web services, JUnit, JVMTI, or
instrumentation; instead we will focus on the traces and the models.

Chapter 6

Recovering soundness

In Chapter 5, we have seen how combining control and data flow can increase the
expressiveness of our models, by allowing smaller models to represent larger state
spaces. But, the merging algorithm described in Chapter 5 does not guarantee
that the model generated predicts the behaviour of the system correctly with
respect to the examples given as input.

For example, we can provide the inference algorithm a test that fails, and the
inference algorithm may produce a model that generates the exact same tests and
still expects it to succeed. We say that an inference algorithm is sound if it is
guaranteed to produce models that conform with all available information (if a
set of traces is provided as input, the resulting model must be able to correctly
classify at least all the traces in that set).

It is worth discussing this claim; it is not obvious that James is not sound:

• On the one hand, considering that James only records control flow for the
target web service, it would not be hard to find an example in which the
order of the methods called from the client affects the classification of the
test (whether it is positive or negative). Since James does not record the
order in which the methods are called, the model produced by such examples
would be non-deterministic and thus unable to classify the test provided as
input.

• On the other hand, let us assume that the methods called from the client are
referentially transparent except for the issue of HTTP requests to the server.
Then, we might be able to argue that James is sound given a big enough

161

CHAPTER 6. RECOVERING SOUNDNESS 162

value for both K parameters, since such a value will prevent any merging.
But, in that case, for the inference algorithm to be useful, we would need to
show that there exists a value of K for which James generalises enough (while
at the same time preserving soundness). For k-tails, there exist proofs that
show that the inferred machine is minimal under some assumptions. We
have not proven that for the merging algorithm in James; and we have not
proven that such a proof is impossible either.

• All these details make it very difficult to reason about the relationship be-
tween the ability to obtain a concise state machine and the ability to cor-
rectly classify inputs of the merging algorithm of James (regulated by the
parameter K). For that reason, in this chapter, we describe a model and
algorithm that does not depend on a parameter K, but rather, it tries to
merge as many states and transitions as possible without losing soundness.

Soundness is important because its absence makes it harder to iteratively refine
models:

• Incorrect tests that are generated are not guaranteed to be new, although
this can potentially be prevented just by keeping track of the tests generated.

• The models inferred are, in principle, unable to represent some aspects of
the system: that is, no amount of learning would keep the models from
generating certain kinds of incorrect tests.

For these reasons, before starting to implement the inference algorithm presented
in this chapter, we wrote a property that states that the model inferred from a set
of traces correctly classifies all the strings from which it was inferred, given the pro-
viso that inputs are valid according to the definition provided in Section 6.2.1 (on
page 164), and we tested this property in QuickCheck for Haskell (see Section 2.4
on page 20), by evaluating it for sets of randomly generated traces. Throughout
this chapter, when we talk about QuickCheck we mean QuickCheck for Haskell.

Of course, it can be argued that testing does not guarantee that the property is
true for all inputs (there can still be bugs in the implementation), but it makes it
much more likely that we will find out if the property is broken by a fundamental
flaw in the design of the algorithm. Formal verification of the property is left to
future work.

CHAPTER 6. RECOVERING SOUNDNESS 163

Glass and bottle. We will illustrate the definitions in this chapter by using
traces of a hypothetical system. This is not a real system, but we did define a
model that is included as part of the source code of the implementation in Haskell
(Lamela Seijas and Thompson 2016b). It is not necessary to use the model to run
the examples shown in this chapter, the traces provided are enough to generate
the diagram; the model was just used for preparing the examples.

The hypothetical system just consists of five possible actions or operations:

1. createBottle - Produces a closed bottle.

2. createGlass - Produces an empty glass.

3. openBottle - Takes a closed bottle and produces an open bottle.

4. closeBottle - Takes an open bottle and produces a closed bottle.

5. fillGlassUsingBottle - Takes a glass and an open bottle.

For simplicity, we do not consider what would happen if we fill a glass twice, or
if the bottle is empty; those aspects are irrelevant regarding the examples in this
chapter. But we assume that an arbitrary number of glasses and bottles can be
created, and that fillGlassUsingBottle cannot be applied to a closed bottle.

As a case study, we will use two versions of the Frequency Server, similar to
the implementation described in Section 2.1.5 (on page 15).

6.1 Contributions

In this chapter, we present a formalised model similar to the one presented in
Chapter 5, and we informally describe a sound inference algorithm to learn the
model from examples of traces. We do this by extending the FSM model and the
Blue-Fringe inference algorithm (see Section 2.3.1 on page 18) respectively.

In particular, we formally describe:

• parametrised automaton, as an extension of the regular automaton that al-
lows symbols to include parameters.

• The format that input traces of parametrised automata must have in order
to be considered valid.

CHAPTER 6. RECOVERING SOUNDNESS 164

• The algorithm that a parametrised automaton uses to run valid input traces
and classify them.

Later, we informally present an inference algorithm for parametrised automata
in terms of its differences with the Blue-Fringe inference algorithm for regular
automata (see Section 2.3.1 on page 18). We illustrate the whole inference process
by showing the inference from a set of four traces and diagrams of the model at
each step.

The work presented in this chapter has not been published at the time of
writing this thesis. I contributed with the design of the technique, the implemen-
tation, and most of the writing. The supervisor of this thesis, Simon Thompson
contributed with ideas, suggestions, guidance, advice, revisions, and editing.

6.1.1 Software contributions

I have implemented prototypes in Haskell of the inference and classification al-
gorithms described in this chapter, and their source code is available at (Lamela
Seijas and Thompson 2016b).

6.2 Parametrised automaton formal definition

In this section, we describe a new formalism that we call parametrised automaton,
which extends regular automata by modifying the concept of symbol to include
parameters that reference previous symbols in the trace and can be used to de-
scribe the data flow when used for representing software systems. Accordingly,
this modification forces us to define parametrised alternatives for the concepts of
trace, automaton, and run.

6.2.1 Input format

A parametrised automaton takes as input a parametrised trace or word. In this
section, we formally define parametrised trace.

6.2.1.1 Alphabet

An alphabet is a finite set of labels Σ = {l1, l2, . . . , ln}.

CHAPTER 6. RECOVERING SOUNDNESS 165

6.2.1.2 Symbol

For any d ∈ N, we call symbols of order d (written as symd) the set of all possible
symbols that can be used in the position d of a trace or word. Formally, we define
symd as the set of 2-tuples (l, p) where:

• l is a label of the alphabet: l ∈ Σ

• p is a parameter list defined by a finite sequence of natural numbers p =

〈p1, p2, . . . , pn〉 such that:

– ∀i.pi ∈ N0, parameters represent the index of a previous symbol in
the trace, starting with zero (which represents the first symbol of the
trace).

– ∀i.pi ≥ 0 ∧ pi < d − 1, only symbols earlier in the trace can be repre-
sented.

– ∀i∀j.i 6= j ⇒ pi 6= pj, every parameter must reference a different
previous symbol in the trace.

The reason why we do not allow several parameters in the same symbol to be
equal is that we want to track the last place in which a value was used at any
given point in the trace. We do so by storing in which parameter of which symbol
it was last used, but if it was used in several parameters simultaneously we would
have to track several last usages and it would considerably complicate the whole
algorithm and representation. The convenience of having this constraint in the
input will become clearer after looking at the dependency rewriting (Section 6.3.1
on page 177) and the parametrised automaton representation (Section 6.2.2) later
in this chapter.

6.2.1.3 Parametrised trace

In order to be valid, a parametrised input trace or word is a finite sequence of
symbols 〈s1, s2, . . . , sn〉 such that:

∀i ∈ [1, n] .si ∈ symi

For clarity, we represent the empty sequence 〈〉 as ε.

CHAPTER 6. RECOVERING SOUNDNESS 166

6.2.1.4 Example

Given the following alphabet:

Σ = 〈createBottle, createGlass, openBottle, fillGlassUsingBottle〉

A possible valid trace would be:

t1 = 〈(createBottle, ε) , (createGlass, ε) , (openBottle, 〈0〉) ,
(fillGlassUsingBottle, 〈1, 0〉)〉

This would be an invalid trace:

t2 = 〈(createBottle, ε) , (createGlass, ε) , (openBottle, 〈2〉)〉

Since the third symbol (openBottle, 〈2〉) does not belong to sym3 (it belongs
to symn where n ≥ 4). This restriction is defined because the parameter “2”
would refer to the result of the symbol (openBottle, 〈2〉) itself, whereas it should
point to a symbol that is earlier in the trace.

Another invalid trace would be:

t3 = 〈(createBottle, ε) , (createGlass, ε) , (fillGlassUsingBottle, 〈0, 0〉)〉

Since the third symbol (fillGlassUsingBottle, 〈0, 0〉) has two parameters
that are equal in its parameter list, and it would require the model to incorporate
the concept of “cloning” a value, which would foreseeably be more complicated.
In the model, as it is defined currently, values are stored on a single place at all
times.

6.2.2 Parametrised automata

In this section, we present a formal definition for parametrised automata.

6.2.2.1 Possible sources

We have seen that, on traces, symbols depend on previous symbols. This is repre-
sented by the numbers in their parameters. Analogously, we allow transitions in

CHAPTER 6. RECOVERING SOUNDNESS 167

parametrised automata to depend on other transitions.
We first start by defining what a transition can depend on, that is: what a

source for a dependency can be. Thus, given a set of transitions T , we define the
set of possible sources of T , represented as ST , as follows:

ST =
{

(o, p)| o ∈ T ∧ p ⊆ N0 ∧ |p| ≤ 1
}

The elements of ST represent possible sources for parameters obtained from
other transitions.

• o is the source transition.

• p is a list that may either be empty or have exactly one element:

– If p is the empty list (p = ∅), the source represents the “result” of the
source transition.

– If p has exactly one element|p| = 1, the only element of p represents
the parameter number (the position in the sequence of parameters) to
use from the source transition (where 0 represents the first parameter).

– The model is invalid if p has more than one element (|p| > 1).

For example, (2, ∅) represents a value produced by the transition with iden-
tifier 2. (3, {1}) represents a value used as a second parameter (parameter
number 2) by transition with identifier 3.

6.2.2.2 Possible source combinations

A transition can depend on several sources. In fact, each parameter of a transition
can depend on more than one source (it must depend on at least one). Thus, we
define a source combination as a sequence of sets of sources, where the first set of
the sequence defines the possible sources for the first parameter, the second set of
the sequence defines the possible sources for the second parameter, and so on. . .

Formally, given a set of transitions T , the set of all possible source combinations
of T , represented as SCT , is defined as:

SCT = {〈s1, s2, . . . , sn〉| ∀i.si ⊆ ST ∧ si 6= ∅}

CHAPTER 6. RECOVERING SOUNDNESS 168

where ST is the set of possible sources of T , as defined in Section 6.2.2.1.

6.2.2.3 Parametrised automata

Now we can define a parametrised automaton as a 6-tuple (Q, T,Σ, δ, q0, N) where:

• Q is a finite set of states.

• T is a finite set of transition identifiers.

• Σ is an alphabet as defined in Section 6.2.1.1 (on page 164).

• δ is the transition function index:

δ = T → Q× Σ× SCT ×Q

where the first element of the image of the δ function represents the source
state of the transition, and the last element of the image of δ represents the
destination state of the transition. SCT is the set of possible source combinations
of T , as defined in Section 6.2.2.2.

• q0 is the initial state, q0 ∈ Q

• N is the set of failing states, N ⊆ Q

6.2.2.4 Example

The parametrised automaton represented in Figure 47 on page 172 (legend in
Table 9 on page 171) can be formalised as follows:

• Q = {S,E} – These represent the two states of the automaton: S repre-
sents the initial state (represented as a yellow start in the diagram), and E
represents the error state (represented as a red pentagon in the diagram).

• T = {1, 2, 3, 4, 5, 6} – These are just identifiers for the different transition.
Transition identifiers are not shown in the diagram.

• Σ = {createBottle, createGlass, openBottle, closeBottle,
fillGlassUsingBottle} – These are all the different labels that tran-

sitions can have. They are represented by brown round nodes in the diagram.

CHAPTER 6. RECOVERING SOUNDNESS 169

• δ is the following function:

T Q× Σ× SCT ×Q

1 (S, createBottle, ε, S)

2 (S, createGlass, ε, S)

3 (S, closeBottle, 〈{(5, {0})}〉 , S)

4 (S, fillGlassUsingBottle, 〈{(2, ∅)} , {(1, ∅) , (3, {0})}〉 , E)

5 (S, openBottle, 〈{(1, ∅) , (3, {0})}〉 , S)

6 (S, fillGlassUsingBottle, 〈{(2, ∅)} , {(5, {0})}〉 , S)

δ maps the transition identifiers to the transition information. Transitions
are represented in the diagram as brown arrows that go between states and
have a brown round node with the label in the middle; in the formal no-
tation, the first and last elements of the image of δ function represent the
source state and the target state of each transition respectively. The round
labels in the middle of transitions also have incoming and outgoing black ar-
rows that represent parameter dependencies between transitions; parameter
dependencies are the ones represented between angle brackets in the formal
notation. For example, the transition number 6 is the one at the top of the
diagram, labelled fillGlassUsingBottle, that starts at the initial state,
S, (star shaped) and goes to the same initial state, S. We can see in the
formal definition that the transition takes two parameters:

– The first parameter (or parameter 0), {(2, ∅)}, comes from transition
2 (createGlass) and takes the result (∅) , this is represented by the
black arrow that says “ReturnVal as param: 0”.

– The second parameter (or parameter 1), {(5, {0})}, comes from transi-
tion 5 (openBottle) and takes the value used as its first parameter (or
parameter 0), this is represented by the black arrow that says “Param-
Num 0 as param: 1”.

• q0 = S – This indicates which of the states in Q represents the initial state,
in our example it is the state S.

CHAPTER 6. RECOVERING SOUNDNESS 170

• N = {E} – This indicates which subset of states in Q represent erroneous
states, in our example it is just the state E.

Another example, we can see that:

δ(4) = (S, fillGlassUsingBottle, 〈{(2, ∅)} , {(1, ∅) , (3, {0})}〉 , E)

this means that there is a transition with identifier 4 from state S (the ini-
tial state) to state E (the failing state) that can be run with a symbol labelled
“fillGlassUsingBottle”, that has an unused result of createGlass as first pa-
rameter (from transition with identifier 2), and has as second parameter either
an unused result from createBottle (from transition with identifier 1) or a value
whose last use was as first parameter (parameter 0) of closeBottle (from tran-
sition with identifier 3).

6.2.3 Run

Given a valid trace t and a parametrised automaton a, there are four possible
results of a running t: accept, reject, undefined, indeterminate. A parametrised
automaton is considered deterministic iff there is no valid trace that, when run,
will produce the result indeterminate.

6.2.3.1 Execution state

The result of the run is determined by iteratively parsing the input trace t and
updating the execution state, starting with the initial execution state.

The execution state of a parametrised automaton a = (Q, T,Σ, δ, q0, N) can
be defined by a 4-tuple (q, e, v, r) where:

• q is the current state where q ∈ Q

• e is the current position in the trace starting with 0 (that is: the number of
symbols that have been processed already) where e ∈ N0

• v is the collection of values that can be used as parameters where v ⊆ ST×N0

(it is represented by a set that contains the sources created and not used
paired with the position in the trace where they were created or last used)

CHAPTER 6. RECOVERING SOUNDNESS 171

START

Initial state
The initial state q0 is represented with a

yellow star labelled START. It is the state in
which every run begins.

ERROR!

Failing/erroneous state
Failing or erroneous states N are

represented with a red pentagon with
double outline labelled ERROR!. There could

be several failing states but we usually
merge them so that only one is left.

4

Normal state
Every state in Q that is not the initial state
or a failing/erroneous state is represented

with a blue diamond labelled with a
number.

fillGlassUsingBottle (...)

Transition
Transitions δ are represented as brown

arrows that go from one state to another.
The arrows have an elliptical node in the
middle which is labelled with the label of
the symbol they accept and “(...)”, but
this node is part of the transition (not to be

confused with a state node).

ReturnVal
as

param: 0

Parameter dependency
Sources for parameters SCT are represented
through black arrows labelled with the type
of source (ReturnVal or ParamNum X) and
the parameter position in which the source

is used (as param: X)

Table 9: Legend for parametrised automaton diagrams

CHAPTER 6. RECOVERING SOUNDNESS 172

fillGlassUsingBottle (...)

START

openBottle (...)

closeBottle (...)

fillGlassUsingBottle (...)

createGlass (...)createBottle (...)

ParamNum 0
as

param: 1

ParamNum 0
as

param: 0

ParamNum 0
as

param: 0

ParamNum 0
as

param: 1

ERROR!

ReturnVal
as

param: 0

ReturnVal
as

param: 0

ReturnVal
as

param: 0

ReturnVal
as

param: 1

Figure 47: Representation of example parametrised automaton

CHAPTER 6. RECOVERING SOUNDNESS 173

• r is the unparsed part of the input trace t. r is represented as a suffix of the
input trace sequence t, but it may not necessarily be a valid trace itself.

Initial execution state At the beginning of the process of the automaton
a = (Q, T,Σ, δ, q0, N) running the trace t, the execution state is initialised to:

(q0, 0, ∅, t)

That is, the initial state of the automaton, the position 0 in the trace, an
empty collection of values, and the whole trace remaining.

Rejection execution state If at any point during the run, the current state q
becomes a failing state, that is: q ∈ N , then we say the result of the run is reject.

Acceptance execution state If the trace is not rejected and the unparsed part
of the input trace r becomes empty, that is: r = ε, then we say the result of the
run is accept.

6.2.3.2 Execution state transition algorithm

Given a trace or trace suffix r, which is a non-empty sequence, where r =

〈α, β, . . .〉, in order to parse the first symbol α where α = (l, p) such thatα ∈ symn

for some n and where p is a list of parameter list where p = 〈p1, p2, . . . , pn〉, we
must find a triple (f, s, ls) where:

• f is a transition identifier f ∈ T

• ls is a possible source combination ls ∈ SCT where ls = 〈ls1, ls2, . . . , lsn〉
such that:

– |ls| = |p|– the parameter list of the symbol to be processed and the
sequence of possible sources must have equal length.

– δ(f) = (q, l, ls, q′) for some destination state q′– the list has to belong
to a transition that has the same label as the symbol we are trying to
parse (l), and has to start in the current state (q) but the target state
(q′) can be any state.

CHAPTER 6. RECOVERING SOUNDNESS 174

Note that ls is a sequence of sets, each set represents possible sources for
a parameter, thus we still need to choose which element in each set to use
(which source for each parameter), s represents that choice.

• s is a choice of sources that corresponds to the sequence ls, where s =

〈(sp1, o1) , (sp2, o2) , . . . , (spn, on)〉, such that:

– |s| = |ls|– the choices of sources and the sequence of sets of possible
sources must have equal length (one element per parameter).

– ∀i.spi ∈ lsi – the first element of each tuple in s is one of the sources
in ls.

– ∀i. (spi, oi) ∈ v – for each parameter, we pick a value o that must be
stored in source sp, v is part of the execution state and establishes
which values are in which sources at any moment of the execution.

– ∀i.pi = oi – the value o represents at which position in the trace the
value was created, this identifies the value uniquely (there may be sev-
eral values in the same source, but they were necessarily created at
different points in the trace). This is the way the trace specifies which
value is being used and must match.

– ∀i∀j.i 6= j ⇒ (oi 6= oj) – we cannot use the same value more than once
in the same symbol (because that would duplicate it).

Undefined transition If there is not such triple (f, s, ls) then we say the result
of the run is undefined.

Non-determinism If there are several possible triples (f, s, ls) (independently
of whether they lead to the same destination state q′ or not) then we say the result
of the run is indeterminate.

Normal transition If there is exactly one triple (f, s, ls) we update the execu-
tion state as follows:

• the current state is set to q′

• the current position in the trace is increased by one: e′ = e+ 1

CHAPTER 6. RECOVERING SOUNDNESS 175

• the values used (specified by the sequence s) are moved to the transition
used, and a new result value is generated. We update the storage v to reflect
this, where s̃ is the set of elements of the sequence s, (v\s̃) is the storage
without the used values, si = (spi, oi) is the ith element of the sequence s,
{((f, {i}) , oi)| i ∈ [0, |s̃|)} are the parameters used (which we store in the
transition f), and ((f, ∅) , e) is the new result value:

v′ = (v\s̃) ∪ {((f, {i}) , oi)| i ∈ [0, |s̃|)} ∪ {((f, ∅) , e)}

• the first element is removed from the unparsed part r′ = 〈β, . . .〉

6.2.3.3 Example

Let us consider a run of the following trace by the automaton described in Sec-
tion 6.2.2.4 (on page 168):

t1 = 〈(createBottle, ε) , (createGlass, ε) , (openBottle, 〈0〉) ,
(fillGlassUsingBottle, 〈1, 0〉)〉

We first start with the initial execution state:

x0 = (S, 0, ∅, t1)

The execution would go through the following iterations:

q e v r

S 0 ∅ 〈(createBottle, ε) , . . .〉
S 1 {((1, ∅) , 0)} 〈(createGlass, ε) , . . .〉
S 2 {((1, ∅) , 0) , ((2, ∅) , 1)} 〈(openBottle, 〈0〉) , . . .〉
S 3 {((5, {0}) , 0) , ((2, ∅) , 1) , ((5, ∅) , 2)} 〈(fillGlassUsingBottle, 〈1, 0〉)〉

S 4
{((6, {1}) , 0) , ((6, {0}) , 1) ,

((5, ∅) , 2) , ((6, ∅) , 3)}
ε

Because q is not a failing state and r is empty we can conclude that the result
of the run is accept.

But if we remove the third symbol from the trace:

CHAPTER 6. RECOVERING SOUNDNESS 176

t2 = 〈(createBottle, ε) , (createGlass, ε) , (fillGlassUsingBottle, 〈1, 0〉)〉

The execution would go through the following iterations:

q e v r

S 0 ∅ 〈(createBottle, ε) , . . .〉
S 1 {((1, ∅) , 0)} 〈(createGlass, ε) , . . .〉
S 2 {((1, ∅) , 0) , ((2, ∅) , 1)} 〈(fillGlassUsingBottle, 〈1, 0〉)〉

F 3
{((4, {1}) , 0) , ((4, {0}) , 1) ,

((4, ∅) , 2)}
ε

This time q is a failing state so we can conclude that the result of the run is
reject.

6.3 Inference algorithm

In this section, we informally describe an inference algorithm that generalises
Blue-Fringe algorithm (see Section 2.3.1 on page 18). Blue-Fringe is a particular
case of the algorithm described in this section, in which every symbol has exactly
zero parameters.

Blue-Fringe, and by extension our algorithm, takes as input a set of traces
classified as positive or negative. These traces are generally used to represent valid
and invalid behaviours of software systems respectively. For illustrative purposes,
we will assume that symbols represent function calls in a program execution, and
that parameter dependencies represent the use of the results of previous function
calls as parameters (data flow), but traces could represent other kinds of events
too.

Because a negative trace indicates erroneous behaviour, if a trace is negative
then all extensions of that trace (other traces that have it as a prefix) must be
negative as well. Therefore, we only consider minimal negative traces.

Our algorithm consists of four steps that must be carried out sequentially:
dependency rewriting, APTA generation, state merging, and transition merging.

CHAPTER 6. RECOVERING SOUNDNESS 177

6.3.1 Dependency rewriting

The first step is to rewrite the parameter dependencies for the transitions. The
rewritten notation presented in this section is more flexible than the input no-
tation presented in Section 6.2.1 (on page 164), thus the input notation is more
convenient to describe the constraints of valid input (it is canonical and its struc-
ture already makes some invalid inputs impossible to represent). The rewritten
notation is more appropriate for the algorithm itself, since the algorithm obtains
values from the place where they were last used, and the rewritten notation de-
scribes symbols in terms of their last usage. In fact, with the rewritten notation
we do not need to modify the APTA generation part of the algorithm, we can use
the same approach as blue-fringe.

6.3.1.1 Pointing to last usage

The rewriting consists in replacing the numbers that represent the parameter
dependencies that have already been used earlier in the trace with pointers to the
place where they were last used. If we consider again the trace:

t1 = 〈(createBottle, ε) , (createGlass, ε) , (openBottle, 〈0〉) ,
(fillGlassUsingBottle, 〈1, 0〉)〉

After rewriting we would obtain:

[createBottle [], createGlass [], openBottle [ReturnVal 0],

fillGlassUsingBottle [ReturnVal 1, ParamNum 0 of 2]]

where ReturnVal N represents the result value of the symbol in position N

(would be written as (N, ∅) in source notation, see Section 6.2.2.1 on page 166)
and ParamNum N of M represents the value last used as the parameter in position
N of the symbol in position M (would be written as (M, {N}) in source notation).

This new notation reflects the effect of passing values as parameters to symbols,
for example: the effect of using the result of createBottle as parameter of the
symbol fillGlassUsingBottle (parameter 1) is different if the same result, as is
the case, has previously been used as parameter of openBottle (the input format
does not explicitly represent this dependency).

CHAPTER 6. RECOVERING SOUNDNESS 178

There is no way of representing alternative sources in this notation, because it
will only be used to represent input traces; to represent parametrised automata
we will use the formal notation defined in Section 6.2 (on page 164).

6.3.2 APTA generation

The next step is generating an APTA tree (or augmented prefix tree acceptor, see
Section 2.3 on page 17). We construct a prefix tree where branches are annotated
with the symbols of the rewritten input traces, including the parameters, in the
same way it is done by the Blue-Fringe algorithm (see Section 2.3.1 on page 18).
The last node of each negative trace will be marked as a failing state and all failing
states will be merged together at the end of the APTA generation.

In order to illustrate the process, we will consider an input set with two pos-
itive traces (t+1 and t+2) and two negative traces (t−3 and t−4), all written in input
notation:

t+1 = 〈(createBottle, ε) , (createGlass, ε) , (openBottle, 〈0〉) ,
(fillGlassUsingBottle, 〈1, 0〉)〉

t+2 = 〈(createBottle, ε) , (createGlass, ε) , (openBottle, 〈0〉) , (closeBottle, 〈0〉) ,
(openBottle, 〈0〉) , (fillGlassUsingBottle, 〈1, 0〉)〉

t−3 = 〈(createBottle, ε) , (createBottle, ε) , (createGlass, ε) , (openBottle, 〈0〉) ,
(fillGlassUsingBottle, 〈2, 1〉)

t−4 = 〈(createBottle, ε) , (createGlass, ε) , (openBottle, 〈0〉) , (closeBottle, 〈0〉) ,
(fillGlassUsingBottle, 〈1, 0〉)

By applying the Blue-Fringe algorithm directly to the rewritten input traces
we would get a diagram like the one in Figure 48.

Note that the numbering used for dependencies (in the parameters of the sym-
bols) depends on the original traces. If we reordered the symbols or inserted new
ones in the traces we would have to update the parameters to preserve their mean-
ing. Introducing loops in our model will effectively allow us to insert new symbols
in the middle of traces, thus, in order to avoid losing dependency information
when introducing loops, we must give transitions a unique identifier and rewrite
all parameters in terms of those.

CHAPTER 6. RECOVERING SOUNDNESS 179

E
R

R
O

R
!

1
0

fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
[R

et
u
rn

V
al

 2
,
R

et
u
rn

V
al

 1
]

9 o
p
en

B
o
tt

le
[R

et
u
rn

V
al

 0
]

3 cr
ea

te
G

la
ss

[]

87 fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
[R

et
u
rn

V
al

 1
,
P

ar
am

N
u
m

 0
 o

f
4
]

6

fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
[R

et
u
rn

V
al

 1
,
P

ar
am

N
u
m

 0
 o

f
3
]

o
p
en

B
o
tt

le
[P

ar
am

N
u
m

 0
 o

f
3
]

4 cl
o
se

B
o
tt

le
[P

ar
am

N
u
m

 0
 o

f
2
]

5

fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
[R

et
u
rn

V
al

 1
,
P

ar
am

N
u
m

 0
 o

f
2
]

2

o
p
en

B
o
tt

le
[R

et
u
rn

V
al

 0
]

1

cr
ea

te
B

o
tt

le
[]

cr
ea

te
G

la
ss

[]

S
T

A
R

T

cr
ea

te
B

o
tt

le
[]

F
ig
ur
e
48

:
A
P
TA

tr
ee

as
it
w
ou

ld
be

ge
ne
ra
te
d
by

B
lu
e-
Fr
in
ge

CHAPTER 6. RECOVERING SOUNDNESS 180

To avoid having several numberings, from now on, in the graphical represen-
tations of parametrised state machines, we will illustrate parameter dependencies
as black arrows between transitions; internally, in the implementation, we use
one numbering for transitions (represented as T in our formal notation) and one
numbering for states (represented as Q in our formal notation). By replacing the
numbers in the parameters of the symbols with black arrows that point to the
corresponding transitions, we obtain a diagram like the one in Figure 49.

In order to be able to draw arrows to and from transitions, we write the sym-
bol name inside a brown elliptical node in the middle of the transition arrows
(the brown arrows). These nodes do not represent states of the parametrised au-
tomaton, but are part of the transition representation itself (just a representation
artefact).

To make this clearer, we draw both the transition nodes and the transitions in
the same colour (brown), and the actual nodes that represent states are drawn in
blue, are diamond shaped, and have a number on them (except the starting state
which we represent as a yellow star with the label START on it, and the failing
state, which we represent as a red pentagon with double outline and the label
ERROR!).

6.3.3 State merging

Next step is to merge potentially equivalent states, similarly to how it is done by
the Blue-Fringe algorithm (see Section 2.3.1 on page 18).

6.3.3.1 Difference from Blue-Fringe

The difference with the Blue-Fringe algorithm is that we need to slightly redefine
what we mean when we say two symbols or transitions are different. We will
consider two transitions to be different if any of the following conditions apply:

• They have different names (different symbol names or labels).

• They have a different number of parameters.

• For any particular parameter (for example: second parameter), each of the
transitions depends on transitions that have different identifiers (in other
words: they depend on different transitions).

CHAPTER 6. RECOVERING SOUNDNESS 181

fillGlassUsingBottle (...)

ERROR!

openBottle (...)

10

createGlass (...)

ReturnVal
as

param: 0

9

fillGlassUsingBottle (...)

8

openBottle (...)

ParamNum 0
as

param: 1
7

fillGlassUsingBottle (...)

closeBottle (...)

ParamNum 0
as

param: 0

ParamNum 0
as

param: 1
6

fillGlassUsingBottle (...)

5

openBottle (...)

ParamNum 0
as

param: 0

ParamNum 0
as

param: 1
4

createBottle (...)

ReturnVal
as

param: 1

3

createGlass (...)

ReturnVal
as

param: 0

ReturnVal
as

param: 0

ReturnVal
as

param: 0

2

createBottle (...)

ReturnVal
as

param: 0

ReturnVal
as

param: 0

1

START

Figure 49: APTA tree as generated by the parametrised algorithm

CHAPTER 6. RECOVERING SOUNDNESS 182

6.3.3.2 Merging procedure

APTA generation is a conservative initial approach that will create lots of states,
but in most cases several of these states will actually be equivalent and represent
the same state of the system. We want states in the model that represent equiv-
alent states of the system to be represented by the same state in the graph, and
we achieve this by merging them.

The state merging process tries to reduce the number of states by iteratively
merging the states that are indistinguishable by using the available information.
We will only assume that two states are not equivalent if one of the following is
true:

• One is the failing state and the other one is not.

• Both states are normal, but both are a source of equal (that is: not different)
transitions that bring us to a pair of states that are not equivalent.

Note that we assume as an invariant that no transitions depart from a negative
state since we only consider minimal negative traces and we never merge the
negative state with a normal one. For simplicity, we start by merging all negative
states into one, and we refer to it as “the negative state”.

For merging two nodes and choosing which nodes to merge first we use the
same procedure from Blue-Fringe, described in Section 2.3.1 (on page 18), were
transitions are considered different following the criteria defined in Section 6.3.3.1
(on page 180).

The process finishes when no more nodes can be merged, that is: all nodes
remaining in the model are unmergeable according to the criteria defined in Sec-
tion 2.3.1 (on page 18).

6.3.3.3 Solving non-determinism

We already defined the concept of unmergeable nodes when we talked about Blue-
Fringe (see Section 2.3.1 on page 18). Unmergeable nodes are those that, if merged,
would produce non-determinism that, in order to be solved would force us to merge
a positive and a negative state.

There is non-determinism whenever two equal transitions that depart from the
same state have the same dependencies (at this point still one per parameter), and

CHAPTER 6. RECOVERING SOUNDNESS 183

go to two different states.
The existence of non-determinism is undesirable since checking whether a trace

is accepted by a non-deterministic state machine is more expensive in terms of
both space and execution time. For this reason, whenever we introduce non-
determinism, we immediately try to resolve it by merging the alternative destina-
tion states of the conflicting transitions.

This process can end in two ways, either:

1. We eventually remove all the instances of non-determinism.

2. At some point, we will be forced to merge a normal state with the failing
state (which we cannot do since we know they are not equivalent). If this
happens, we will roll-back the whole chain of mergers, and mark the pair of
nodes that triggered the chain of mergers as unmergeable.

The state machine resulting from the process is guaranteed to be deterministic,
since the APTA tree was deterministic, every chain of merges is initiated from a
point where the state machine is deterministic, and we roll-back chains of merges
whenever they introduce non-determinism.

6.3.3.4 Example

The result of applying the state merging process to the tree in Section 6.3.2 (on
page 178) is shown in Figure 50 (on page 185).

We can see that the initial state (represented by a star), and the failing state
(represented by a red pentagon) are the only ones remaining.

This is not always the case, but when it happens it means that the state of the
values used as parameters (that can be seen as objects) is enough to explain the
observed behaviour of the system, in other words: it is not necessary to consider a
global state in order to understand the system. A global state would be necessary
if there were, for example, global variables or implicit relationships between the
different values (as in the case of implicit object, described in Section 5.9.1 on
page 157).

Nevertheless, we can see that if we consider the data flow (the dependencies
represented as black arrows) there are no loops, black arrows always go downwards
in the graph.

CHAPTER 6. RECOVERING SOUNDNESS 184

Data flow can be seen as the representation of the “state” of the different
“objects”. The initial “state” of an “object” would be represented by its constructor
transition, where a constructor transition is one that does not have any incoming
black arrows, like createGlass and createBottle.

If we start from a constructor transition, and we follow the data flow, we
find the transitions that use the “objects” generated by the constructor. These
transitions can be seen as forming embedded PTAs for each object, where each
transition is an event that occurs to the object. These embedded PTAs overlap
since there are transitions that affect several objects. For example, if we start
from createBottle, we can get to openBottle, and then to closeBottle; or we
can get directly to fillGlassUsingBottle. If we start from createGlass, the
only transition we can obtain is fillGlassUsingBottle.

The logical step now would be to generalise these embedded PTAs so that we
introduce loops in the data flow, and we obtain a more general behaviour. We
can do this by merging equivalent transitions in a similar way to how we merged
equivalent states during the state merging process (Section 6.3.3 on page 180). We
can quickly see that there are some transitions that do the same thing and are,
nevertheless, replicated. For example, if we look at the two transitions labelled
openBottle, we can see that one takes the result of createBottle and one takes
the result of closeBottle. But both have the same effect and both go from the
start state to itself; there does not seem to be any reason why they could not
be represented as one single transition with two alternative sources. Indeed, we
will see that the result of merging transitions produces a model with only one
openBottle transition.

In Section 6.3.4 we describe in more detail how to decide whether two transi-
tions are equivalent and how to merge them when they are.

6.3.4 Transition merging

The reason for both state merging and transition merging is generalisation: APTA
trees accept all the positive traces and reject all the negative traces provided as
input, but they will not classify any positive traces that are not prefixes of the
traces taken as input (the result of running them will be indeterminate). The
APTA tree by itself just stores the provided traces. For there to be actual learning,

CHAPTER 6. RECOVERING SOUNDNESS 185

fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
 (

 .
..
)

E
R

R
O

R
!

fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
 (

 .
..
)

S
T

A
R

T

o
p
en

B
o
tt

le
 (

 .
..
)

fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
 (

 .
..
)

cl
o
se

B
o
tt

le
 (

 .
..
)

fi
ll

G
la

ss
U

si
n
g
B

o
tt

le
 (

 .
..
)

o
p
en

B
o
tt

le
 (

 .
..
)

cr
ea

te
G

la
ss

 (
 .
..
)

cr
ea

te
B

o
tt

le
 (

 .
..
)

P
ar

am
N

u
m

 0
a
s

p
ar

am
:

1

P
ar

am
N

u
m

 0
a
s

p
ar

am
:

0

P
ar

am
N

u
m

 0
a
s

p
ar

am
:

1

P
ar

am
N

u
m

 0
a
s

p
ar

am
:

0

P
ar

am
N

u
m

 0
a
s

p
ar

am
:

1

R
et

u
rn

V
al

a
s

p
ar

am
:

0

R
et

u
rn

V
al

a
s

p
ar

am
:

0

R
et

u
rn

V
al

a
s

p
ar

am
:

0

R
et

u
rn

V
al

a
s

p
ar

am
:

0

R
et

u
rn

V
al

a
s

p
ar

am
:

1

R
et

u
rn

V
al

a
s

p
ar

am
:

0

F
ig
ur
e
50

:
St
at
e
m
ac
hi
ne

af
te
r
st
at
e
m
er
gi
ng

pr
oc
es
s

CHAPTER 6. RECOVERING SOUNDNESS 186

the model needs to be able to make predictions for unobserved inputs, and we
achieve this by creating loops in the transitions and parameter dependencies (data
flow).

If we think about merging both openBottle transitions in Figure 50, we see
that the source of their first parameter (parameter 0), is different: one comes
from the result of createBottle, and the other one comes from being used as a
parameter by closeBottle, thus, according to the third rule in the list of rules
that we outlined in Section 6.3.3.1 (on page 180), both transitions are different.

In order to merge both openBottle transitions, we need to be able to have
one transition that has two alternative sources for the same parameter. This
seems simple in this case, but allowing for more than one possibility in each
parameter has some implications in the general case, and it makes checking for
non-determinism more difficult.

For example, imagine we model the win function in the rock-paper-scissors
game, where two players simultaneously choose one item each and the winner
is selected depending on the items chosen according to the following rules: pa-
per beats rock, rock beats scissors, and scissors beats paper. If both play-
ers choose the same item the game ends in draw. We can consider that both
win(scissors, paper) and win(paper, rock) are normal transitions, but we
cannot merge both to form win(scissors or paper, paper or rock) since that
would imply also win(scissors, rock), which is incorrect. But if we have
a function win_or_draw, we can merge win_or_draw(scissors, paper) and
win_or_draw(paper, paper) to form win_or_draw(scissors or paper, paper).

6.3.4.1 Semantics and restrictions

It is thus necessary for us to specify a more general semantics and representation
for transitions that allows for several alternative sources to be used as parameters:

• Each parameter will contain a non-empty list of distinct alternative sources.

• We will consider that a symbol in a trace exercises a transition only if it uses
as source, for each parameter, one of the alternatives listed by the transition
for that parameter.

• Each time a transition t1 is traversed, we will consider that a value is pro-
duced and accumulated in the transition. When, at some point, another

CHAPTER 6. RECOVERING SOUNDNESS 187

transition t2 that depends on t1 is traversed, it will remove/use the accu-
mulated value on t1, and accumulate it in the slot of that parameter of t2
instead. For example, when traversing a state machine, we are not allowed
to obtain the following sequence of rewritten symbols (rewritten as described
in Section 6.3.1 on page 177):

createBottle [], openBottle [ReturnValue 0],

openBottle [ReturnValue 0]

second openBottle does not have any value to use. If we were to represent
the behaviour of opening the bottle twice we should do it by using a trace
like the following:

createBottle [], openBottle [ReturnValue 0],

openBottle [ParamNum 0 of 1]

Note that, for example, if we traverse createBottle twice before using its result,
we may have two values stored in the same node at the same time, this just means
that we can use either of them. But this does not cause non-determinism about
the result of which instance of createBottle to use in a particular trace since
the input format specifies exactly which instance to use.

If our transition merging algorithm iteratively merges pairs of transitions that
have the same source and destination state, and it does not introduce non-
determinism in terms of the new semantics, our state machine will still fit the
input data provided and, thus, the inference algorithm will remain sound.

Analogously to state merging, if merging a pair of transitions produces non-
determinism, there is still a chance that we can solve the non-determinism by
merging the conflicting transitions. Otherwise, we roll-back the chain of mergers.

6.3.4.2 Transition non-determinism

Under the new semantics, we say that two transitions belong to the same source-
group if all of the following conditions apply:

• They depart from the same node.

• They have the same label (or symbol name).

CHAPTER 6. RECOVERING SOUNDNESS 188

• They have the same number of parameters.

Two transitions that belong to the same source-group will produce non-determinism
if, for each of the parameter positions (for example: second parameter), there is
at least one common source within the alternatives of both of the transitions. For
example:

• win_or_draw(scissors or paper, paper) and win_or_draw(paper, paper

or rock) would produce non-determinism (we would not know to which
transition assign traces that contain win_or_draw(paper, paper)).

• win_or_draw(scissors or paper, paper) and win_or_draw(paper, rock)

would not produce non-determinism (we can decide based on the last pa-
rameter).

Thus, merging two transitions can produce non-determinism, not only in their
source state but also in the transitions that depend on the values produced by
each of the merged transitions (the transitions that have them as a parameter
source).

In other words, we can guarantee that non-determinism is not introduced if we
make sure that for all transitions in the same source-group: each of the transitions
in the group has at least one parameter position for which the transition only
contains alternatives that are unique for that parameter position in the group.

For example, in the following set of symbols that belong to transitions in the
same source-group:

• valid_options(a or b, a, a)

• valid_options(c, a, b)

• valid_options(c, b, a)

we know there cannot be non-determinism because:

1. The first trace has both a and b as unique elements in the 1st parameter.

2. The second trace has b as unique element in the 3rd parameter.

3. The third trace has b as unique element in the 2nd parameter.

CHAPTER 6. RECOVERING SOUNDNESS 189

6.3.4.3 General approach

Since merging a single pair of transitions may produce non-determinism with the
transitions in the same group, our implementation recalculates the potential tran-
sitions that can be merged after merging each pair. Currently, our only heuristic
when choosing which transitions to merge first is to start with the constructors
(transitions that have no parameter dependencies).

It is left for future work to research more efficient ways of ordering transition
merging.

6.3.4.4 Updating the formal model

In terms of the formal model, given two transitions with identifiers a and b such
that δ(a) = (q, l, 〈sa,1, sa,2, . . . , sa,n〉 , q′) and δ(b) = (q, l, 〈sb,1, sb,2, . . . , sb,n〉 , q′).
The result of merging both transitions will be a new model in which, in its tran-
sition function index δ′, there is a transition with identifier c that is defined as
δ′(c) = (q, l, 〈sa,1 ∪ sb,1, sa,2 ∪ sb,2, . . . , sa,n ∪ sb,n〉 , q′), and where the original tran-
sitions with identifiers a and b are not defined (unless, of course, the identifier c
is equal to a or equal b). The set T must also be updated to reflect exactly the
preimages of δ′ that are defined.

6.3.4.5 Example

Figure 51 shows the result of applying transition merging to the state machine
from Section 6.3.3 (on page 180).

We can see that all duplicate transitions have been merged except for the
ones labelled fillGlassUsingBottle. The reason why these were not merged is
that they have different destination states, one loops on the initial state, and the
other one goes to the failing state. The algorithm has also detected equivalences
between using the result of createBottle and using the result of closeBottle.

6.3.4.6 Frequency server

The Frequency server, as implemented in previous sections, does not benefit from
the data abstraction provided by the parametrised automaton. This is due to the
implicit state overlapping between the global state of the Frequency server itself
and the state of each frequency with respect to the server (whether it is allocated

CHAPTER 6. RECOVERING SOUNDNESS 190

fillGlassUsingBottle (...)

START

openBottle (...)

closeBottle (...)

fillGlassUsingBottle (...)

createGlass (...)createBottle (...)

ParamNum 0
as

param: 1

ParamNum 0
as

param: 0

ParamNum 0
as

param: 0

ParamNum 0
as

param: 1

ERROR!

ReturnVal
as

param: 0

ReturnVal
as

param: 0

ReturnVal
as

param: 0

ReturnVal
as

param: 1

Figure 51: State machine after transition merging process

CHAPTER 6. RECOVERING SOUNDNESS 191

or not by it). When the Frequency server is turned off, all frequencies change state
to deallocated, but because the stop transition does not take any frequencies as
parameter, the only way for our parametrised automaton to represent this is by
creating a new state, and by using fresh frequencies every time; this interpretation
would lead to a parametrised automaton that has infinite states, which is much
worse than what we get by using normal FSM inference (or, equivalently, by not
specifying any data dependencies in the traces).

In practise, we can see the call to stop as implying a series of calls to deallocate.
If we decouple stop and deallocate, we can think of a hypothetical Frequency
server in which stop does not forget about the frequencies allocated, and in this
scenario our inference algorithm can, indeed, infer a finite parametrised automa-
ton. In Figure 52, we can see what a parametrised automaton for the alternative
Frequency server with two frequencies looks like (without the negative transitions
and state). We obtained this automaton by taking a set of traces chosen man-
ually and then iteratively carried out the following two steps, using the Haskell
implementation provided in (Lamela Seijas and Thompson 2016b):

1. Classify the traces using the model implementation (available as the function
freqServerUTL in the module Inference of the implementation). Use the
inference algorithm to generate a parametrised automaton from the classified
available traces.

2. Generate a random traversal of the parametrised automaton and check
whether the classification given by the current parametrised automaton
matches the classification given by our model implementation for it:

• If the classification is different, add the last traversal to the list of traces
and continue on step 1.

• If the classification is the same, continue on step 2 with a different
random traversal. If this branch is taken many times in a row then we
stop and use the current parametrised automaton as result.

We can see that:

• START state is stopped and has no frequencies allocated.

• State 1 is running and has no frequencies are allocated.

CHAPTER 6. RECOVERING SOUNDNESS 192
st

ar
t

(
..

.
)

2

st
o

p
 (

 .
..

)
al

lo
ca

te
 (

 .
..

)

d
ea

ll
o
ca

te
 (

 .
..
)

6

R
et

u
rn

V
al

a
s

p
ar

am
:

0

d
ea

ll
o
ca

te
 (

 .
..
)

R
et

u
rn

V
al

a
s

p
ar

am
:

0

4

1
st

o
p

 (
 .

..
)

al
lo

ca
te

 (
 .

..
)R

et
u
rn

V
al

a
s

p
ar

am
:

0

R
et

u
rn

V
al

a
s

p
ar

am
:

0

st
ar

t
(

..
.

)

st
o

p
 (

 .
..

)

S
T

A
R

T

st
ar

t
(

..
.

)

9

F
ig
ur
e
52

:
P
ar
am

et
ri
se
d
au

to
m
at
on

fo
r
fin

it
e
Fr
eq
ue
nc
y
se
rv
er

CHAPTER 6. RECOVERING SOUNDNESS 193

• State 2 is running and has one frequencies allocated.

• State 4 is running and has two frequencies allocated.

• State 6 is stopped and has one frequency allocated.

• State 9 is stopped and has two frequencies allocated.

The diagram generated (Figure 52) does not seem to be much simpler than the
ones we obtained for the two frequency configurations of the real Frequency server
implementation in Section 4.4 (on page 103). But, curiously, we can obtain a very
simple model if we remove the frequency limit on the Frequency server implemen-
tation and use the same procedure. The same Frequency server implementation
when configured for allowing the allocation of an arbitrarily big number of fre-
quencies produces the parametrised automaton in Figure 53.

Arguably, even though we can justify the manual decoupling of the behaviour
of stop and deallocate, we may want to model a system in which stop cannot
occur if there are any allocated frequencies. This would not necessarily require
an infinite number of states with the model as it is defined in this chapter, but it
would require at least as many states as frequencies, which makes it impossible
to get a model for the general case with an arbitrary number of frequencies. This
suggests that future work may want to add new types of data dependencies, in
particular, an “inverse dependency” type, that can only be satisfied if a normal
dependency of the same type would be impossible to satisfy. In our example, an
“inverse dependency” could be used from allocate to stop to describe that there
cannot be frequencies stored in allocate before calling stop successfully.

6.4 Soundness

We have mentioned that the soundness of our approach has been tested (Lamela
Seijas and Thompson 2016b) through the use of a QuickCheck property (using
QuickCheck for Haskell), this property:

• generates a random set of input traces (both positive and negative),

• infers a parametrised automata from the set of inputs (using the algorithm),

CHAPTER 6. RECOVERING SOUNDNESS 194

deallocate (...)

1

stop (...) allocate (...)

START

start (...)

ReturnVal
as

param: 0

Figure 53: Parametrised automaton for infinite Frequency server

CHAPTER 6. RECOVERING SOUNDNESS 195

• picks one of the inputs,

• checks that the chosen input is classified correctly by the inferred automaton.

This property also checks indirectly that the algorithm produces automata that
are deterministic for the traces that are given as input.

Ideally, we could use a proof assistant to verify that this property holds for
every input, and, additionally, that the inferred automaton is deterministic for
any input (independently of whether it was provided to the inference algorithm
as input), but we leave that to future work.

However, we will sketch how the soundness proof could be approached. We
foresee that it could be done through the following steps:

• Implementation of the inference algorithm. This is provided already (Lamela
Seijas and Thompson 2016b), but it could be reimplemented in a way that
is easier to verify.

• Implementation of a total function that takes an input trace and an automa-
ton, and returns whether: the trace is accepted, the trace is rejected, the
trace is not considered by the automaton, or there exists non-determinism in
the automaton that affects the evaluation of the trace. This is also provided
already (Lamela Seijas and Thompson 2016b).

• We can verify that the soundness property holds for the APTA. This should
be straightforward since an APTA is just a recursive data structure that
stores the trace information in the input format (also known as a trie).

• Then, we can verify that the state merging process does not introduce non-
determinism nor loses information about the traces provided to the inference
algorithm.

– We know it does not introduce non-determinism because, at each step,
it looks for non-determinism, and it either solves it or rolls back. So it
should not be possible for there to be non-determinism at the end of
the process.

– In the same way, we can intuitively see that it does not lose information
because no nodes from the APTA tree are deleted, they are only merged

CHAPTER 6. RECOVERING SOUNDNESS 196

with nodes that are equivalent, thus the traversals that were possible
before a merger are also possible after it.

• Finally, we can verify that the transition merging process does not introduce
non-determinism nor loses information about the traces provided to the
inference algorithm. This seems to be the case since the process:

– takes pairs of transitions that go between the same pair of states,

– aims to combine them into transitions that subsume them (thus, the
information from both the original pair of transitions is contained in
the transition resulting from the merger),

– and it rolls back whenever two transitions of the result are detected to
produce non-determinism.

There are many details in this sketch that we have not discussed but are necessary
for the soundness of the approach: like the requirement for all parameters to be
different, or the uniqueness of the values used as a parameter. But we hope the
previous overview gives confidence on the soundness of the algorithm and provides
insight on how the proof could be approached.

6.5 Chapter conclusions

In this chapter, we have studied an alternative approach that tries to address one
of the causes of state explosion by augmenting the notion of regular state machine
and adapting the existing regular inference algorithm Blue-Fringe to work with
the new definition.

Throughout this chapter, we have shown how to apply the ideas explored in
Chapter 5 without losing soundness, and we have given some new evidence of the
formal feasibility of adding parameters to symbols, and combining control and
data flow in state machines.

The approach presented in this chapter has not been validated in practice
(by using industrial examples), in the way it was done for the one presented in
Chapter 5. This is mainly due to time constraints in the development of this
thesis.

CHAPTER 6. RECOVERING SOUNDNESS 197

We acknowledge that the approach presented in this chapter may not be more
convenient in practice than less precise approaches (like James or fuzz testing),
since it still suffers from some kinds of state explosion, and it surely is not as
efficient as it could be. But it is valuable in that it shows how we can obtain
richer models without losing soundness or learnability.

Thus, future work should push the flexibility of the model further, to get
rid of state explosions definitely without losing soundness nor learnability. If we
manage to do that, the resulting system will necessarily be practical, if not for test
generation from legacy tests, then maybe for reverse engineering, for generation
of documentation, or even for automatic programming.

Chapter 7

Related Work

Throughout the previous chapters, we have covered several aspects of model infer-
ence, testing, and refactoring. In Chapter 2, we have covered the work on which
this thesis rests, since it was necessary for its understanding. In this chapter, we
look at previous existing work that exposes alternative or similar ideas to the ones
presented here.

7.1 Testing web services

In Chapter 3 we studied the reuse of testing components by focussing on modelling
one particular abstract aspect of web services. This work is by no means the first
or only attempt to test or automate the testing of web services or REST web
services.

Regarding REST web services, there exist several approaches aimed at ensuring
the quality and RESTfulness of web services. This is the case of Test-the-REST
(Chakrabarti and Kumar 2009), which provides a mechanism for specifying and
validating test cases. In addition, there have been approaches aimed at validating
the RESTfulness of web services by focussing on their connectedness (Chakrabarti
and Rodriquez 2010) and by using temporal logic and model checking (Klein and
Namjoshi 2011).

On the other hand, property-based testing has been used in the past for testing
SOAP web services in an automated way.

(Lampropoulos and Sagonas 2012) shows a way to create properties to test
SOAP services by using WSDL descriptors. Their method generates a set of

198

CHAPTER 7. RELATED WORK 199

simple properties without the need of human intervention, and then they use
these properties as a template for writing more complex ones.

Despite the fact that WSDL descriptors are a de facto standard for SOAP web
services, they are rarely present in REST web services. For this reason we have
used a different approach for the elaboration of generators. Nevertheless, (Lam-
propoulos and Sagonas 2012) describe a method for building custom generators
for XML (see Section 3.2.3 on page 31) from XML Schemas. A similar approach
could be used for JSON (see Section 3.2.2 on page 30) as an alternative to the
mechanism used in this work.

Haskell QuickCheck has been used for SOAP web service testing (Zhang, Fu
and Qian 2010), and automatic approaches for testing non-RESTful web services
using both FSMs (Andrews, Offutt and Alexander 2005) and EFSMs (Keum et al.
2006) have been described in previous work.

(Lastres Guerrero 2012) describes the application of property-based testing
(in particular QuickCheck eqc_statem) to a specific REST web service called
Wriaki. Both the approaches describe a property-based model for testing REST
web services. Our model in Chapter 3 differs in that we have used eqc_fsm in
addition to eqc_statem, and that we reused it in two different web services and
provide a technique for adapting it.

7.2 Modelling differences

In Chapter 4, we studied how to parametrise test models and software, in terms
of their source and behaviour.

7.2.1 Source parametrisation

There exist many refactoring tools that aid the generalisation and parametrisation
of code, one example is the Function Extraction refactoring included in Wrangler,
prior to this work. Our integrated approach can be used (together with a tree
matching algorithm) to suggest how such a generalisation can take place; it does
not just provide a transformation that can be used manually.

CHAPTER 7. RELATED WORK 200

7.2.1.1 IntelliJ IDEA

We can consider that the creation of behaviours in Erlang is conceptually equiv-
alent to the creation of a superclass in Java, and IntelliJ IDEA (Jet Brains 2001)
provides a refactoring called “extract superclass”, in particular with the option
“rename the original class so that it becomes an implementation for the newly
created superclass”, that conceptually achieves a similar aim to the interactive
approach described in Section 4.3.1 (on page 62).

Nevertheless, unlike the refactorings described here, the IntelliJ IDEA refactor-
ing only rearranges the methods and fields of the original class, without actually
modifying their code or content (it does not do any function extraction).

In addition to this fundamental difference, the interactive refactoring differs
from the IntelliJ IDEA refactoring in that it can be applied incrementally, and in
that it is implemented and described in high-level, through Wrangler’s DSL, (thus
demonstrating how complex refactorings can be built in terms of smaller ones).

The integrated approach, described in Section 4.3.2 (on page 72), differs from
IntelliJ IDEA in that it takes two similar modules instead of one single module,
and in that (when combined with a tree matching algorithm) it automatically
searches for similarities in the code and automatically abstracts them out, leaving
in the original modules those parts that are specific to them. Thus, while the aim
of the refactoring is the same (that is: creating an abstraction), the process in
the integrated approach has more to do with clone elimination than with IntelliJ
IDEA’s refactoring.

7.2.1.2 Automatic generalisation

The work that is most similar to our integrated approach (described in Sec-
tion 4.3.2 on page 72) is (Chawathe et al. 1996), which strongly inspired this
work and applies tree comparison to the detection of differences between LATEX
documents, and generates a LATEX file whose output highlights those differences.
Obviously, this work was also inspired by the PLTSDiff work (Bogdanov and
Walkinshaw 2009) also presented in Section 4.2.4.1 (on page 60).

Tree comparison has been researched extensively (Bille 2005), in big part tar-
geted at XML (Peters 2005). The nature of XML is quite different to the one
of Erlang, but they both share the use of nested structures and semi-structured

CHAPTER 7. RELATED WORK 201

data.

7.2.1.3 Clone detection and elimination

Although fundamentally different, our integrated approach has commonalities
with clone detection and elimination. Both try to find repeated code patterns
and to abstract them to a single function. Our integrated approach is different in
that it tries to map the structure of two particular modules.

There is an extensive literature on software clones: (Roy and Cordy 2007)
surveys work in the area up to 2007, and there is also a regular International
Workshop on Software Clones. Existing work on software clones places an em-
phasis on clone identification, analysis, and classification (Kapser and Godfrey
2003), as well as on the evolution and tracking of clones.

7.2.1.4 Remodularisation

The refactorings for the introduction of behaviours described in this thesis are
also related to the extensively researched topic of remodularisation (Hall 2013;
Seng et al. 2005; Wiggerts 1997; Mitchell and Mancoridis 2006), in that both
approaches aim to rearrange existing code in order to put related parts together
and, thus, make maintenance easier.

Nevertheless, remodularisation often studies ways of reorganising functions
in modules that are related semantically; that is, it analyses the relation between
functions and tries to cluster similar functions by moving them to the same module
in a way that a particular heuristic is optimised.

Our integrated refactoring also looks for similarities and puts them together;
but those similarities are syntactic similarities, and the integrated refactoring does
not only put similarities together in the same module, but it also combines them
in such a way that replication is removed and only one instance remains.

On the other hand, remodularisation often targets whole systems (all functions
in a system), and usually treats functions as indivisible units (it does not try to
divide functions); whereas our approach targets very specific parts of the systems
(one or two modules selected by the user, or even a single function), and may
reorganise the internal structure of existing functions and create new ones.

For all these reasons, the approach carried out by the refactorings presented

CHAPTER 7. RELATED WORK 202

in this thesis can be seen as complementary to most approaches that would be
classified as remodularisation. However, previous to this thesis, Wrangler already
provides a series of inspection and refactoring mechanisms that support remodu-
larisation in the traditional sense, by aiding users on the detection an elimination
of “modularity smells” (Li and Thompson 2010).

7.2.2 Model parametrisation

Regarding model parametrisation, this thesis contributes the case study described
in Section 4.4 (on page 103); the PLTSDiff algorithm and tool existed previous to
this work and, thus, we do not review state-machine comparison algorithms. Such
a survey can be found in the original paper of the PLTSDiff algorithm (Bogdanov
and Walkinshaw 2009).

State-machine comparison has been used in the past with different purposes.
In (Walkinshaw and Bogdanov 2013), the authors compare the language accuracy
and structural accuracy of two inference algorithms, in order to get an insight into
their strengths and weaknesses.

7.3 Modelling control and data

In Chapter 5, we studied how to combine control and data flow information in
our test models to obtain flexibility, and in Chapter 6 we found a sound way of
inferring them.

There have been many previous approaches to specification extraction. (Pradel
and Gross 2009; Dallmeier et al. 2006; Marchetto, Tonella and Ricca 2008), model
the expected use of interfaces by focussing on the order in which commands are
usually executed (control flow). One limitation of these approaches is that they
do not usually infer how to create the parameters that the commands require.

There exist many approaches to regular inference in the literature, and we
have already presented some of them in Chapter 2.

There have been previous attempts to combine data and control, but previous
approaches usually rely on data representation, either for clustering (Berg, Jonsson
and Raffelt 2006), or by inferring invariants for parameters and then using them
to disambiguate the commands in FSMs (Lorenzoli, Mariani and Pezzè 2006;

CHAPTER 7. RELATED WORK 203

Shahbaz, Li and Groz 2007).
These approaches have limited effectiveness when inferring complex proper-

ties, or arbitrary semi-structured data, and they do not take advantage of the
dependency information provided by legacy unit tests. On the other hand, these
approaches have the advantage of being suitable for black-box interfaces.

Our approach abstracts away from particular values of the data parametrised,
relying instead on how the data is generated and used by actions within the
system: parameters are treated as black boxes.

There has also been some work on inference of richer models like Visibly Push-
down Automaton (Isberner 2015), EFSM (Walkinshaw, Taylor and Derrick 2016;
Cassel et al. 2016), and context-free grammars (Wyard 1993; Javed et al. 2004);
the most ambitious approaches often rely to certain extent on general techniques
like machine learning, evolutionary programming, and SMT-solvers.

In (Biermann and Krishnaswamy 1976), the authors present an interactive
system for inferring programs from examples of their execution, but it depends
on the details of the actual algorithm to infer (users must specify the conditions
considered when branching, the organisation of the algorithm in functions, and
recursive calls).

The work implemented on Strawberry tool (Bertolino et al. 2009) is probably
the most similar approach to the one presented in Chapter 5, it also models control
and data flow information for extracting specifications of web services, and uses
testing to verify conformance.

However, in Strawberry, control flow is inferred from data flow, whereas our
approach extracts data and control information simultaneously. Our approach
can do this because it takes examples of execution as input, whereas Strawberry
takes a WSDL and examples of input data. Chapter 6 goes further by formally
defining an extension to the FSM model.

It can be argued that the use of concrete data content in models can make
them easier to understand. But abstracting it out allows us to apply our approach
to parameters that cannot be serialised, or that have a representation that is too
lengthy or complicated.

Test generation The main topic researched in Chapters 5 and 6 is not test
generation but model inference. Nevertheless, in Chapter 5, we talk about how to

CHAPTER 7. RELATED WORK 204

create models that generate tests, even though the actual test generation is done
by QuickCheck, which is a tool existing previous to this work. Chapter 6 does not
talk about test generation. Even though this thesis does not contribute much in
the realm of test generation, it does present a framework that, as a whole, aims to
generate new tests, and there has been many approaches in the past to generating
new tests, to extending existing unit tests suites, and to using models to generate
tests; thus, it is worth looking at existing work on test generation. We present
a brief overview of some representative approaches that are similar to ours, and
we describe how they differ. A much more extensive survey on test generation
techniques and the use of oracles can be found in (Harman et al. 2013).

One of the reasons why our approach differs from others is in that many are
stateless, they consider tests as input-output relations. As we mentioned, James
is targeted at stateful systems, so it models side-effects and sequences of events
whereas, for example, (Harder, Mellen and Ernst 2003), produces specifications
in terms of the inputs in a broad sense.

Sequences of events can also be considered inputs, but a general approach
would foreseeably be less effective for finding invariants in such an structured
input; in the case of Daikon (Ernst et al. 2007), it would require a specific algebra
(invariant building blocks), whereas James is designed for sequences of events.

Another difference with (Harder, Mellen and Ernst 2003) is that models con-
structed by James depend on the way the JUnit tests used as input are written,
whereas the approach described by (Harder, Mellen and Ernst 2003) does not
necessarily depend on the tests used as input, in fact, it does not require any tests
at all.

Regarding stateless test generation, there is also a big literature about tech-
niques like fuzzing (Sutton, Greene and Amini 2007), and the use of symbolic
execution for test generation (Păsăreanu and Visser 2009).

There are other approaches which are also stateful, like Randoop (Pacheco
and Ernst 2007) and model-based testing techniques (Dias Neto et al. 2007);
they often rely on the existence of an existing specification or annotations. Other
approaches like (Fraser and Arcuri 2011) are guided by other criteria like coverage,
those (and many other approaches) usually differ from ours in that they require
constraint solving, which in the case of boolean conditions, is an NP-complete
problem (SAT), and is undecidable for some constraints.

Chapter 8

Conclusions

The ability of software to behave correctly in response to a variety of different
inputs makes it convenient to use but also hard to build correctly. In this thesis,
we have studied different ways of using generalisation and models to improve our
confidence that software systems behave in the way we expect them to behave.
We have also tried to automate this generalisation process and we have seen that
one of the greatest difficulties for doing it correctly is imposed by the requirement
of knowledge about semantics and the broader context of the system in question.

8.1 Generalisation

Throughout this work we have studied three main approaches to generalising
models:

• Manual creation of reusable components for testing.

• Comparison of examples and parametrisation of differences.

• Inference of state machines through the detection of equivalent states (in
particular the state of instances of subsystems).

8.1.1 Components

We have shown that, in the same way that common software functionality can be
generalised in reusable libraries, testing effort can be reused in the form of abstract
models. This opens the door for potential frameworks that allow a modular way

205

CHAPTER 8. CONCLUSIONS 206

of testing, which would both save effort and potentially increase the effectiveness
of tests.

8.1.2 Comparison

One natural way of generalising is by looking at examples and finding common
patterns and differences. In Chapter 4 we did this in a very concrete way for both
source code and FSMs. As a result, we obtained useful tools that aid the process
of generalisation while programming, and, through our experiments, we obtained
insight into how subsystems cause replication on state machines and, thus, how
to address it.

8.1.3 State merging

Finally, we dedicated two chapters to adding flexibility to state machine models
with the aim of addressing one type of state explosion. The state merging idea,
upon which we have built our approaches, also relies on finding commonalities:
states that are common (equivalent). Our work aimed at finding commonalities
in subsystems, represented through dependencies in symbols.

We have both obtained an informal approach that has proven to be useful in
practice even though it is not formally sound; and a more formal approach that
shows that adding flexibility by merging control and data flow does not necessarily
sacrifice either learnability or soundness.

8.2 Models

The concept of model or specification is very broad, and we have discussed that
it could even be considered to include the implementations themselves. To make
it clearer, at the beginning of this thesis we established a series of properties
that a good model should have, namely: simplicity, redundancy, flexibility, and
modifiability.

We have aimed to adhere to these properties throughout the thesis, both by
building upon existing broadly accepted models that already show these proper-
ties, and by working on improving them directly:

CHAPTER 8. CONCLUSIONS 207

• Simplicity: we have consistently tried to simplify models by making them
smaller and concise. We have done this by allowing systems to be modelled
at a higher level (through the use of components, Chapter 3), by automating
the removal of redundancies (Section 4.3 on page 61), and by avoiding state
explosion (Chapters 5 and 6).

• Redundancy: the creation of testing components (Chapter 3) could po-
tentially allow users to reuse testing effort from other users, this would
intrinsically provide them with an independent interpretation on how the
components should behave. On the other hand, if we infer models from
examples (Chapters 5 and 6) or specially from an oracle, we necessarily will
be inheriting some information from them; but inferred models shown in
this thesis still give users an alternative perspective that can be validated
visually, this already provides some redundancy.

• Flexibility: Chapters 5 and 6 are mainly about increasing the expressiveness
of state machine models through the combination of control and data flow.
Section 4.3 (on page 61) shows how to automatically make code flexible
(by parametrising its varying parts), and in particular how to automatically
make QuickCheck models more flexible.

• Modifiable: on the one hand, we can argue that automating the generation
of models already makes it easier to change them, since a new model can
be generated with less human intervention and replace the old one with
little effort. But additionally, we have seen how changes to a model can
be parametrised automatically, this directly makes models able to adapt to
change by making them more general.

8.3 Future work

In this section, we conclude by writing down our thoughts on how the work done
here could be continued, extended, and improved in the future.

CHAPTER 8. CONCLUSIONS 208

8.3.1 Components

The work on components presented here models a very specific (although com-
monly used) behaviour of web services. In order to obtain a flexible testing frame-
work, two approaches suggest themselves:

• More components must be modelled. This is made much easier if standards
exist for the implementation of those models. REST and HTTP already go a
long way to homogenise the interface of web services, but similar components
and their interfaces are still implemented quite differently among different
web services.

• Coordination between components must be modelled. The components by
themselves are less useful than combined, and in order to test their interac-
tions (integration testing) we must be able to model them.

8.3.2 Comparison

We have presented a series of refactorings which require different levels of user in-
teraction and aid users on the necessary process of generalisation of source code.
Future work could find ways of allowing the user to choose what code to gener-
alise and how, for example: by function extraction or by function generalisation;
in particular, the ability of comparing specific functions (as opposed to whole
modules) has proven convenient.

In general, future work may analyse the work of developers in order to find
new fundamental refactorings that act as blocks and can be composed into bigger
refactorings, and also new ways of combining them.

Regarding the comparison of state machines, it would be now possible to cre-
ate an alternative of the PLTSDiff algorithm that works with parametrised state
machines.

8.3.3 State merging

We have already used QuickCheck for Haskell to validate the soundness of our
inference algorithm for parametrised state machines, but it would be desirable to
also obtain a formal proof and to validate it through a proof assistant, this would

CHAPTER 8. CONCLUSIONS 209

give us more confidence, and it may also give us new insights about how we can
make it even more flexible without losing soundness.

During our experiments with the inference algorithm we have made several
modifications to the implementation with the aim of improving its efficiency, but
a careful study could probably find many more improvements. In the same line,
future work could also study how to update existing parametrised state machines
with new input traces more efficiently (without having to rebuild the whole state
machine from scratch).

It would also be useful in practice to have instrumentation mechanisms (in
the same way that James has) that would allow users to transform unit tests into
parametrised traces. In addition, it would be interesting to have an easy mecha-
nism to compare and synchronise parametrised state models with the systems they
model, as done in (Arts, Lamela Seijas and Thompson 2011) with Blue-Fringe.

Parametrised state machines can indeed help reduce some kinds of state explo-
sion and allow us to model systems that would be impossible to model by using
“regular” FSMs. Nevertheless, they still suffer from other kinds of state explosion,
like that caused by implicit relationships between different values.

One possible improvement that would give parametrised state machines flexi-
bility would be to allow a new kind of parameter dependency (which we may call
“dependency unsatisfiability requirement”) that, instead of reusing a value from a
source, it requires the source to be empty in order for the transition to be valid (in
other words: it would be satisfiable whenever a normal dependency would not).
For example, we could imagine a stop transition for the Frequency server that is
only valid if no frequencies are allocated at a given time (this could be represented
with a “dependency unsatisfiability requirement” that points to the result of the
allocate transition).

It is left to future work to explore these and other kinds of dependencies, and
to find out how they can be learned automatically without losing soundness.

Bibliography

Al-Ekram, R., Adma, A. and Baysal, O. (2005). diffX: an algorithm to detect
changes in multi-version XML documents. In Proceedings of the 2005 conference
of the Centre for Advanced Studies on Collaborative research, IBM Press, pp.
1–11. 4.3.2.1

Andrews, A. A., Offutt, J. and Alexander, R. T. (2005). Testing web applications
by modeling with FSMs. Software & Systems Modeling, 4(3), pp. 326–345. 7.1

Armstrong, J. (2007). Programming Erlang: software for a concurrent world.
Pragmatic Bookshelf. 2.1

Arts, T., Lamela Seijas, P. and Thompson, S. (2011). Extracting quickcheck spec-
ifications from eunit test cases. In Proceedings of the 10th ACM SIGPLAN
workshop on Erlang, ACM, pp. 62–71. 8.3.3

Arts, T. et al. (2006). Testing telecoms software with quviq QuickCheck. In ER-
LANG ’06: Proceedings of the 2006 ACM SIGPLAN workshop on Erlang, New
York, NY, USA: ACM, pp. 2–10. 2.4

Arts, T. et al. (2015). D6.5 – Pilots in property based testing, preliminary version
– Pilot report #5. http://www.prowessproject.eu/wp-content/uploads/

2012/10/D6.5_final.pdf, [last accessed 17-01-17]. 5.1, 5.7

Berg, T., Jonsson, B. and Raffelt, H. (2006). Regular inference for state machines
with parameters. In International Conference on Fundamental Approaches to
Software Engineering, Springer, pp. 107–121. 7.3

Bertolino, A. et al. (2009). Automatic synthesis of behavior protocols for compos-
able web-services. In Proceedings of the the 7th joint meeting of the European

210

http://www.prowessproject.eu/wp-content/uploads/2012/10/D6.5_final.pdf
http://www.prowessproject.eu/wp-content/uploads/2012/10/D6.5_final.pdf

BIBLIOGRAPHY 211

software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ACM, pp. 141–150. 7.3

Biermann, A. W. and Feldman, J. A. (1972). On the Synthesis of Finite-State
Machines from Samples of their Behavior. IEEE Transaction on Computers,
21. 2.3, 2.3.2

Biermann, A. W. and Krishnaswamy, R. (1976). Constructing programs from
example computations. IEEE Transactions on Software Engineering, (3), pp.
141–153. 7.3

Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical
computer science, 337(1), pp. 217–239. 7.2.1.2

Bogdanov, K. and Walkinshaw, N. (2009). Computing the structural difference
between state-based models. In 2009 16th Working Conference on Reverse En-
gineering, IEEE, pp. 177–186. 4.2.4.1, 7.2.1.2, 7.2.2

Bogdanov, K., Walkinshaw, N. and Taylor, R. (2007). StateChum. http://

statechum.sourceforge.net/ [last accessed 14-09-16]. 4.2.4

Carlsson, R. (2009). Edoc – the erlang program documentation generator. http:
//erlang.org/doc/man/edoc.html, [last accessed 03-08-17]. 1.8.1, 4.1.1, 4.3.2.3

Cassel, S. et al. (2016). Active learning for extended finite state machines. Formal
Aspects of Computing, 28(2), pp. 233–263. 7.3

Castro, L. M. and Arts, T. (2011). Testing Data Consistency of Data-Intensive
Applications Using QuickCheck. Electr Notes Theor Comput Sci, 271, pp. 41–
62. 3.5.2

Cesarini, F. and Thompson, S. (2009). Erlang Programming. O’Reilly Media, Inc.
2.1, 2.1.5

Chakrabarti, S. K. and Kumar, P. (2009). Test-the-rest: An approach to test-
ing restful web-services. In Future Computing, Service Computation, Cogni-
tive, Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD’09. Com-
putation World:, IEEE, pp. 302–308. 3, 7.1

http://statechum.sourceforge.net/
http://statechum.sourceforge.net/
http://erlang.org/doc/man/edoc.html
http://erlang.org/doc/man/edoc.html

BIBLIOGRAPHY 212

Chakrabarti, S. K. and Rodriquez, R. (2010). Connectedness testing of restful
web-services. In Proceedings of the 3rd India software engineering conference,
ACM, pp. 143–152. 7.1

Chawathe, S. S. et al. (1996). Change detection in hierarchically structured infor-
mation. In ACM SIGMOD Record, vol. 25, ACM, pp. 493–504. 7.2.1.2

Claessen, K. and Hughes, J. (2011). QuickCheck: a lightweight tool for random
testing of Haskell programs. Acm sigplan notices, 46(4), pp. 53–64. 2.4

Claessen, K., Smallbone, N. and Hughes, J. (2010). Guessing formal specifications
using testing. In Tests and Proofs: 4th International Conference, TAP 2010,
Málaga, Spain, July 1-2, 2010, Proceedings, vol. 6143, Springer, p. 6. 1.4, 5

Clarke, E. et al. (2000). Counterexample-Guided Abstraction Refinement, Berlin,
Heidelberg: Springer Berlin Heidelberg. pp. 154–169. 5.6.2

Contentful (2013). Contentful. https://www.contentful.com/, [last accessed 05-
07-17]. 3.4.1

Cordy, J. R. (2003). Comprehending Reality: Practical Barriers to Industrial
Adoption of Software Maintenance Automation. In Proceedings of the 11th IEEE
International Workshop on Program Comprehension, IEEE Computer Society.
4.3

Dallmeier, V. et al. (2006). Mining object behavior with ADABU. In Proceedings
of the 2006 international workshop on Dynamic systems analysis, ACM, pp.
17–24. 7.3

Dias Neto, A. C. et al. (2007). A survey on model-based testing approaches: a
systematic review. In Proceedings of the 1st ACM international workshop on
Empirical assessment of software engineering languages and technologies: held
in conjunction with the 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE) 2007, ACM, pp. 31–36. 7.3

Dupont, P. et al. (2008). The QSM algorithm and its application to software
behavior model induction. Applied Artificial Intelligence, 22. 2.3.1

https://www.contentful.com/

BIBLIOGRAPHY 213

Ericsson AB (1999). Erlang/OTP documentation. http://www.erlang.org/doc,
[last accessed 19-10-16]. 2.1

Ernst, M. D. et al. (2007). The daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1), pp. 35–45. 1.4, 7.3

Falleri, J.-R. et al. (2014). Fine-grained and accurate source code differencing.
In Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering, ACM, pp. 313–324. 4.3.2.1

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Soft-
ware Architectures. Phd thesis, University of California. 3.2.1, 3.3.2

Fielding, R. T. (2008). REST APIs must be hypertext-driven. http:

//roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven,
[last accessed 13-04-15]. 3.2.1

Fluri, B. et al. (2007). Change distilling: Tree differencing for fine-grained source
code change extraction. Software Engineering, IEEE Transactions on, 33(11).
4.3.2.1

Francisco, M. Á. (2014a). Frequency Server Tests by Interoud Innovation. https:
//github.com/palas/freq_server_test_ma [last accessed 14-09-16]. 1.8.1,
5.1.1, 5.4, 5.5

Francisco, M. Á. (2014b). VoDKATV Case Study slides (PROWESS Mid-term
workshop). http://www.prowessproject.eu/wp-content/uploads/2014/05/

interoud_vodkatv_intro.pdf, [last accessed 23-01-17]. 5.7

Fraser, G. and Arcuri, A. (2011). Evosuite: automatic test suite generation for
object-oriented software. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering,
ACM, pp. 416–419. 7.3

Freeman, E. et al. (2004). Head First Design Patterns: A Brain-Friendly Guide.
" O’Reilly Media, Inc.". 2.6.2

Graphviz (1999). Graphviz - Graph Visualization Software. http:

//www.graphviz.org, [last accessed 24-10-16]. 2.5

http://www.erlang.org/doc
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://github.com/palas/freq_server_test_ma
https://github.com/palas/freq_server_test_ma
http://www.prowessproject.eu/wp-content/uploads/2014/05/interoud_vodkatv_intro.pdf
http://www.prowessproject.eu/wp-content/uploads/2014/05/interoud_vodkatv_intro.pdf
http://www.graphviz.org
http://www.graphviz.org

BIBLIOGRAPHY 214

Hall, M. J. (2013). Improving Software Remodularisation. Ph.D. thesis, University
of Sheffield. 7.2.1.4

Harder, M., Mellen, J. and Ernst, M. D. (2003). Improving test suites via op-
erational abstraction. In Proceedings of the 25th international conference on
Software engineering, IEEE Computer Society, pp. 60–71. 7.3

Harman, M. et al. (2013). A comprehensive survey of trends in oracles for software
testing. University of Sheffield, Department of Computer Science, Tech Rep CS-
13-01. 5.6.2, 7.3

Heller, M. (2007). REST and CRUD: the Impedance Mismatch. http:

//www.infoworld.com/article/2640739/application-development/rest-

and-crud--the-impedance-mismatch.html, [last accessed 19-10-16]. 3.2.1.1,
3.3.2

Henkel, J. and Diwan, A. (2003). Discovering algebraic specifications from Java
classes. In European Conference on Object-Oriented Programming, Springer, pp.
431–456. 5.9.3

Holmes, V. t. and Langford, J. (1976). Comprehension and recall of abstract and
concrete sentences. Journal of Verbal Learning and Verbal Behavior, 15(5), pp.
559–566. 4.3.2

Hopcroft, J. E., Motwani, R. and Ullman, J. D. (2006). Automata theory, lan-
guages, and computation. International Edition, 24. 2.2

Isberner, M. (2015). Foundations of active automata learning: an algorithmic
perspective. Ph.D. thesis. 7.3

Javed, F. et al. (2004). Context-free grammar induction using genetic program-
ming. In Proceedings of the 42nd annual Southeast regional conference, ACM,
pp. 404–405. 7.3

Jet Brains (2001). Extract Superclass. https://www.jetbrains.com/idea/help/
extract-superclass.html, [last accessed 02-11-16]. 7.2.1.1

JVM-TI (2006). JVM Tool Interface. http://docs.oracle.com/javase/7/docs/
platform/jvmti/jvmti.html, [last accessed 13-04-15]. 3.2.4, 5.8.1

http://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
http://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
http://www.infoworld.com/article/2640739/application-development/rest-and-crud--the-impedance-mismatch.html
https://www.jetbrains.com/idea/help/extract-superclass.html
https://www.jetbrains.com/idea/help/extract-superclass.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

BIBLIOGRAPHY 215

Kapser, C. and Godfrey, M. W. (2003). Toward a taxonomy of clones in source
code: A case study. In ELISA workshop, p. 67. 7.2.1.3

Kapser, C. and Godfrey, M. W. (2006). “Clones Considered Harmful” Considered
Harmful. In Proc. Working Conf. Reverse Engineering (WCRE). 4.3

Keum, C. et al. (2006). Generating test cases for web services using extended finite
state machine. In IFIP International Conference on Testing of Communicating
Systems, Springer, pp. 103–117. 7.1

Kieyzun, A. et al. (2009). Automatic creation of sql injection and cross-site script-
ing attacks. In Software Engineering, 2009. ICSE 2009. IEEE 31st International
Conference on, IEEE, pp. 199–209. 3.3, 5.2.2.1

Klein, U. and Namjoshi, K. S. (2011). Formalization and automated verification
of RESTful behavior. In International Conference on Computer Aided Verifica-
tion, Springer, pp. 541–556. 7.1

Konietzke, S. (2013). From StorageRoom to Contentful. https:

//www.contentful.com/blog/2013/06/23/storageroom-to-contentful/,
[last accessed 05-07-2017]. 3.4.1

Lamela Seijas, P. (2014a). Frequency Server Tests. https://github.com/palas/
freq_server_test [last accessed 12-09-17]. 1.8.1, 5.1.1

Lamela Seijas, P. (2014b). Frequency Server Web Service. https://github.com/
palas/freq_server [last accessed 19-12-16]. 1.8.1, 2.1.5, 5.1.1, 5.4, 5.5

Lamela Seijas, P. (2014c). Java Erlang Bridge. https://github.com/palas/jeb
[last accessed 29th June 2017]. 1.8.1, 5.1.1, 5.7.2

Lamela Seijas, P., Li, H. and Thompson, S. (2013). Towards property-based testing
of RESTful web services. In Proceedings of the twelfth ACM SIGPLAN workshop
on Erlang, ACM, pp. 77–78. 3.1

Lamela Seijas, P. and Thompson, S. (2014). James. https://github.com/palas/
james [last accessed 14-09-16]. 1.8.1, 5, 5.1, 5.1.1

https://www.contentful.com/blog/2013/06/23/storageroom-to-contentful/
https://www.contentful.com/blog/2013/06/23/storageroom-to-contentful/
https://github.com/palas/freq_server_test
https://github.com/palas/freq_server_test
https://github.com/palas/freq_server
https://github.com/palas/freq_server
https://github.com/palas/jeb
https://github.com/palas/james
https://github.com/palas/james

BIBLIOGRAPHY 216

Lamela Seijas, P. and Thompson, S. (2016a). Identifying and introducing inter-
faces and callbacks using wrangler. In Proceedings of the 28th Symposium on the
Implementation and Application of Functional Programming Languages, ACM,
p. 11. 4.1

Lamela Seijas, P. and Thompson, S. (2016b). Parametrised Inference. https:
//github.com/palas/detparaminf, [last accessed 29-12-16]. 1.8.1, 6, 6.1.1,
6.3.4.6, 6.4

Lamela Seijas, P., Thompson, S. and Francisco, M. (2012). D2.3 Property
extraction. http://www.prowessproject.eu/wp-content/uploads/2012/10/

Prowess_D2-3.pdf, [last accessed 17-01-17]. 5.1

Lamela Seijas, P., Thompson, S. and Francisco, M. Á. (2016). Model extraction
and test generation from JUnit test suites. In Proceedings of the 11th Interna-
tional Workshop on Automation of Software Test, ACM, pp. 8–14. 5.1

Lamela Seijas, P. et al. (2014). Synapse: automatic behaviour inference and im-
plementation comparison for Erlang. In Proceedings of the Thirteenth ACM
SIGPLAN workshop on Erlang, ACM, pp. 73–74. 4.1

Lampropoulos, L. and Sagonas, K. (2012). Automatic WSDL-guided Test Case
Generation for PropEr Testing of Web Services. arXiv preprint arXiv:12106110.
7.1

Lang, K. J., Pearlmutter, B. A. and Price, R. A. (1998). Results of the abbadingo
one DFA learning competition and a new evidence-driven state merging algo-
rithm. In International Colloquium on Grammatical Inference, Springer, pp.
1–12. 2.3, 2.3.1

Lastres Guerrero, R. (2012). Testing a distributed Wiki web application with
QuickCheck. 7.1

Li, H. and Thompson, S. (2006). The open source refactoring tool for Er-
lang. http://www.cs.kent.ac.uk/projects/wrangler/, [last accessed 19-10-
16]. 4.2.3

Li, H. and Thompson, S. (2009). Clone detection and removal for Erlang/OTP
within a refactoring environment. In Proceedings of the 2009 ACM SIGPLAN

https://github.com/palas/detparaminf
https://github.com/palas/detparaminf
http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D2-3.pdf
http://www.prowessproject.eu/wp-content/uploads/2012/10/Prowess_D2-3.pdf
http://www.cs.kent.ac.uk/projects/wrangler/

BIBLIOGRAPHY 217

workshop on Partial evaluation and program manipulation, ACM, pp. 169–178.
4.2.3.2, 4.3.5

Li, H. and Thompson, S. (2010). Refactoring support for modularity maintenance
in erlang. In Source Code Analysis and Manipulation (SCAM), 2010 10th IEEE
Working Conference on, IEEE, pp. 157–166. 7.2.1.4

Li, H. and Thompson, S. (2011). A User-extensible Refactoring Tool for Erlang
Programs. University of Kent, Tech Rep. 4.2.3.3

Li, H. et al. (2008). Refactoring with Wrangler, updated. In ACM SIGPLAN
Erlang Workshop, vol. 2008. 4.2.3

Lo, D. et al. (2011). Mining Software Specifications: Methodologies and Applica-
tions. CRC Press. 5.8.2

Lorenzoli, D., Mariani, L. and Pezzè, M. (2006). Inferring state-based behavior
models. In Proceedings of the 2006 international workshop on Dynamic systems
analysis, ACM, pp. 25–32. 7.3

Lyu, M. R. et al. (1996). Handbook of software reliability engineering. IEEE com-
puter society press CA. 1

Marchetto, A., Tonella, P. and Ricca, F. (2008). State-based testing of Ajax web
applications. In 2008 1st International Conference on Software Testing, Verifi-
cation, and Validation, IEEE, pp. 121–130. 7.3

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell Labs
Technical Journal, 34(5), pp. 1045–1079. 5.4.2

Miller, H. W. (1991). Information technology: Creation or evolution? Journal of
Systems Management, 42(4), p. 23. 4.3.2

Mitchell, B. S. and Mancoridis, S. (2006). On the automatic modularization of
software systems using the bunch tool. IEEE Transactions on Software Engi-
neering, 32(3), pp. 193–208. 7.2.1.4

Monden, A. et al. (2002). Software Quality Analysis by Code Clones in Industrial
Legacy Software. In METRICS ’02, Washington, DC, USA. 4.3

BIBLIOGRAPHY 218

Moore, E. F. (1956). Gedanken-experiments on sequential machines. Automata
Studies: Annals of Mathematics Studies Number 34, (34), p. 129. 5.4.2

Naur, P. and Randell, B. (1969). Software Engineering: Report on a conference
sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th
to 11th October 1968. Nato. 2

Pacheco, C. and Ernst, M. D. (2007). Randoop: feedback-directed random testing
for java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion, ACM, pp. 815–816.
7.3

Papadakis, M. and Sagonas, K. (2011). A proper integration of types and func-
tion specifications with property-based testing. In Proceedings of the 10th ACM
SIGPLAN workshop on Erlang, ACM, pp. 39–50. 2.4

Păsăreanu, C. S. and Visser, W. (2009). A survey of new trends in symbolic
execution for software testing and analysis. International Journal on Software
Tools for Technology Transfer (STTT), 11(4), pp. 339–353. 7.3

Peters, L. (2005). Change detection in XML trees: a survey. In 3rd Twente Student
Conference on IT. 7.2.1.2

Pierce, B. C. (2002). Types and programming languages. MIT press. 4.3

Pradel, M. and Gross, T. R. (2009). Automatic generation of object usage spec-
ifications from large method traces. In Automated Software Engineering, 2009.
ASE’09. 24th IEEE/ACM International Conference on, IEEE, pp. 371–382. 7.3

QuickCheck documentation (2006). Quviq’s QuickCheck documentation. http:
//quviq.com/documentation/eqc/, [last accessed 21-02-17]. 2.4.1

Rapps, S. and Weyuker, E. J. (1985). Selecting software test data using data
flow information. IEEE transactions on software engineering, (4), pp. 367–375.
5.2.2.1

RFC 2616 (1999). Hypertext Transfer Protocol – HTTP/1.1. https://

tools.ietf.org/html/rfc2616, [last accessed 13-04-15]. 3.3.1, 3.3.2

http://quviq.com/documentation/eqc/
http://quviq.com/documentation/eqc/
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616

BIBLIOGRAPHY 219

RFC 5789 (2010). PATCH Method for HTTP. https://tools.ietf.org/html/
rfc5789, [last accessed 13-04-15]. 3.3.2, 3.6.1.2

RFC 6902 (2013). JavaScript Object Notation (JSON) Patch. https://

tools.ietf.org/html/rfc6902, [last accessed 13-04-15]. 3.6.1.2

RFC 7159 (2014). The JavaScript Object Notation (JSON) Data Interchange For-
mat. https://tools.ietf.org/html/rfc7159, [last accessed 13-04-15]. 3.2.2,
3.5.4

Richardson, L., Amundsen, M. and Ruby, S. (2013). RESTful Web APIs. O’Reilly
Media, Inc. 3, 3.3.1, 3.3.2, 3.5.1

Roy, C. K. and Cordy, J. R. (2007). A survey on software clone detection research.
Queen’s School of Computing TR, 541(115), pp. 64–68. 7.2.1.3

Seng, O. et al. (2005). Search-based improvement of subsystem decompositions.
In Proceedings of the 7th annual conference on Genetic and evolutionary com-
putation, ACM, pp. 1045–1051. 7.2.1.4

Shahbaz, M., Li, K. and Groz, R. (2007). Learning and integration of parameter-
ized components through testing. In Testing of Software and Communicating
Systems, Springer, pp. 319–334. 7.3

Storage Room (2010). Storage Room. http://storageroomapp.com, [last accessed
13-03-15]. 3.4.1

Sutton, M., Greene, A. and Amini, P. (2007). Fuzzing: brute force vulnerability
discovery. Pearson Education. 7.3

Svenningsson, J. et al. (2014). An expressive semantics of mocking. In In-
ternational Conference on Fundamental Approaches to Software Engineering,
Springer, pp. 385–399. 5.2.1.2

Taylor, R. (2013). Synapse. https://github.com/ramsay-t/Synapse [last ac-
cessed 14-09-16]. 4.2.4.2

Taylor, R., Bogdanov, K. and Derrick, J. (2013). Automatic inference of erlang
module behaviour. In International Conference on Integrated Formal Methods,
Springer, pp. 253–267. 4.4

https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7159
http://storageroomapp.com
https://github.com/ramsay-t/Synapse

BIBLIOGRAPHY 220

dets (1997). detsmanual. http://www.erlang.org/doc/man/dets.html, [last ac-
cessed 19-10-16]. 4.2.2

eqc_fsm (2006). eqc_fsm documentation. http://quviq.com/documentation/

eqc/eqc_fsm.html, [last accessed 26-10-16]. 2.4.2

eqc_statem (2004). eqc_statem documentation. http://quviq.com/

documentation/eqc/eqc_statem.html, [last accessed 26-10-16]. 2.4.1

ets (1997). ets manual. http://www.erlang.org/doc/man/ets.html, [last ac-
cessed 19-10-16]. 4.2.2

Thompson, S. and Li, H. (2013). Refactoring tools for functional languages. Jour-
nal of Functional Programming, 23(3). 4.2.3, 4.2.3.1

Tsankov, P., Dashti, M. T. and Basin, D. (2013). Semi-valid input coverage for
fuzz testing. In Proceedings of the 2013 International Symposium on Software
Testing and Analysis, ACM, pp. 56–66. 5.2.2.1

Tsantalis, N., Mazinanian, D. and Krishnan, G. P. (2015). Assessing the refactora-
bility of software clones. IEEE Transactions on Software Engineering, 41(11),
pp. 1055–1090. 4.3.2

Vlissides, J. et al. (1995). Design patterns: Elements of reusable object-oriented
software. Reading: Addison-Wesley, 49(120), p. 11. 2.6

W3 XML (2008). W3 XML Specification. https://www.w3.org/TR/xml/, [last ac-
cessed 21-10-16]. 3.2.3

Walkinshaw, N. and Bogdanov, K. (2013). Automated comparison of state-based
software models in terms of their language and structure. ACM Transactions
on Software Engineering and Methodology (TOSEM), 22(2), p. 13. 7.2.2

Walkinshaw, N., Derrick, J. and Guo, Q. (2009). Iterative refinement of reverse-
engineered models by model-based testing. In International Symposium on For-
mal Methods, Springer, pp. 305–320. 1.1, 5.6.2

Walkinshaw, N., Taylor, R. and Derrick, J. (2016). Inferring extended finite
state machine models from software executions. Empirical Software Engineer-
ing, 21(3), pp. 811–853. 7.3

http://www.erlang.org/doc/man/dets.html
http://quviq.com/documentation/eqc/eqc_fsm.html
http://quviq.com/documentation/eqc/eqc_fsm.html
http://quviq.com/documentation/eqc/eqc_statem.html
http://quviq.com/documentation/eqc/eqc_statem.html
http://www.erlang.org/doc/man/ets.html
https://www.w3.org/TR/xml/

BIBLIOGRAPHY 221

Wiggerts, T. A. (1997). Using clustering algorithms in legacy systems remodu-
larization. In Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on, IEEE, pp. 33–43. 7.2.1.4

Wyard, P. (1993). Context free grammar induction using genetic algorithms. In
Grammatical Inference: Theory, Applications and Alternatives, IEE Colloquium
on, IET, pp. P11–1. 7.3

Xie, T. and Notkin, D. (2004). Automatic extraction of sliced object state ma-
chines for component interfaces. In Proc. 3rd Workshop on Specification and
Verification of Component-Based Systems, pp. 39–46. 5.9.3

Yuan, H. and Xie, T. (2005). Automatic extraction of abstract-object-state ma-
chines based on branch coverage. In Proc. 1st International Workshop on Re-
verse Engineering To Requirements at WCRE 2005 (RETR 2005), pp. 5–11.
5.9.3

Zhang, Y., Fu, W. and Qian, J. (2010). Automatic testing of web services in haskell
platform. Journal of Computational Information Systems, 6(9), pp. 2859–2867.
7.1

Appendix A

Frequency server base
implementation

frequency.erl

%% Code from

%% Erlang Programming

%% Francecso Cesarini and Simon Thompson

%% O'Reilly, 2008

%% http://oreilly.com/catalog/9780596518189/

%% http://www.erlangprogramming.org/

%% (c) Francesco Cesarini and Simon Thompson

%% Modified by: Pablo Lamela on Dec 2013

-module(frequency).

-export([start/0, stop/0, allocate/0, deallocate/1]).

-export([init/0]).

%% These are the start functions used to

%% create and initialize the server.

start() ->

register(frequency, spawn(frequency, init, [])).

222

APPENDIX A. FREQUENCY SERVER BASE IMPLEMENTATION 223

init() ->

process_flag(trap_exit, true),

Frequencies = {get_frequencies(), []},

loop(Frequencies).

% Hard Coded

get_frequencies() -> [10,11].

%% The client Functions

stop() -> call(stop).

allocate() -> call(allocate).

deallocate(Freq) -> call({deallocate,Freq}).

%% We hide all message passing and the

%% message protocol in a functional

%% interface.

call(Message) -> frequency ! {request, self(), Message},

receive

{reply, Reply} -> Reply

end.

reply(Pid, Message) -> Pid ! {reply, Message}.

loop(Frequencies) ->

receive

{request, Pid, allocate} ->

{NewFrequencies, Reply} =

allocate(sortfreqs(Frequencies), Pid),

reply(Pid, Reply),

loop(NewFrequencies);

APPENDIX A. FREQUENCY SERVER BASE IMPLEMENTATION 224

{request, Pid, {deallocate,Freq}} ->

NewFrequencies = deallocate(Frequencies, Freq),

reply(Pid, ok),

loop(NewFrequencies);

{'EXIT', Pid, _Reason} ->

NewFrequencies = exited(Frequencies, Pid),

loop(NewFrequencies);

{request, Pid, stop} ->

reply(Pid, ok)

end.

sortfreqs({Freqs, Allocated}) -> {lists:sort(Freqs), Allocated}.

allocate({[], Allocated}, _Pid) ->

{{[], Allocated}, {error, no_frequencies}};

allocate({[Freq|Frequencies], Allocated}, Pid) ->

link(Pid),

{{Frequencies,[{Freq,Pid}|Allocated]}, {ok,Freq}}.

deallocate({Free, Allocated}, Freq) ->

{value,{Freq,Pid}} = lists:keysearch(Freq,1,Allocated),

unlink(Pid),

NewAllocated=lists:keydelete(Freq,1, Allocated),

{[Freq|Free], NewAllocated}.

exited({Free, Allocated}, Pid) ->

case lists:keysearch(Pid,2,Allocated) of

{value,{Freq,Pid}} ->

NewAllocated = lists:keydelete(Freq,1, Allocated),

{[Freq|Free],NewAllocated};

false -> {Free,Allocated}

end.

Appendix B

Frequency server web service main
parts

GenericServerImpl.java

/**
* Created: 2014-05-25
*/

package eu.prowessproject.freq_server.state.impl;

import eu.prowessproject.freq_server.state.IFreqServerImpl;
import eu.prowessproject.freq_server.state.IFreqServerStateImpl;
import eu.prowessproject.freq_server.state.exceptions.AlreadyStarted;
import eu.prowessproject.freq_server.state.exceptions.NoFrequenciesAvailable;
import eu.prowessproject.freq_server.state.exceptions.NotAllocated;
import eu.prowessproject.freq_server.state.exceptions.NotRunning;

public class GenericServerImpl implements IFreqServerImpl {

protected static final
int INITIAL_FREQUENCIES [] = {10, 11, 12, 13, 14};

private IFreqServerStateImpl freqServerState;
private GenericServerImpl parent;

protected GenericServerImpl()
{

225

APPENDIX B. FREQUENCY SERVER WEB SERVICE MAIN PARTS 226

}

public GenericServerImpl(IFreqServerStateImpl freqServerState) {
this.changeStateInternal(freqServerState);

}

private void setParent(GenericServerImpl parent)
{

this.parent = parent;
}

private void changeStateInternal(IFreqServerStateImpl freqServerState) {
this.freqServerState = freqServerState;
if (freqServerState instanceof GenericServerImpl) {

((GenericServerImpl) this.freqServerState).setParent(this);
} else {

throw new RuntimeException("States must extend " +
GenericServerImpl.class.getSimpleName());

}
}

protected void changeState(IFreqServerStateImpl freqServerState) {
this.parent.changeStateInternal(freqServerState);

}

@Override
public void start() throws AlreadyStarted {

freqServerState.start_impl();
}

@Override
public void stop() throws NotRunning {

freqServerState.stop_impl();
}

@Override
public Integer allocate() throws NoFrequenciesAvailable, NotRunning {

return freqServerState.allocate_impl();
}

APPENDIX B. FREQUENCY SERVER WEB SERVICE MAIN PARTS 227

@Override
public void deallocate(Integer frequency) throws NotAllocated, NotRunning {

freqServerState.deallocate_impl(frequency);
}

}

APPENDIX B. FREQUENCY SERVER WEB SERVICE MAIN PARTS 228

StoppedServerStateImpl.java

/**
* Created: 2014-05-25
*/

package eu.prowessproject.freq_server.state.impl;

import eu.prowessproject.freq_server.state.IFreqServerStateImpl;
import eu.prowessproject.freq_server.state.exceptions.AlreadyStarted;
import eu.prowessproject.freq_server.state.exceptions.NoFrequenciesAvailable;
import eu.prowessproject.freq_server.state.exceptions.NotAllocated;
import eu.prowessproject.freq_server.state.exceptions.NotRunning;

public class StoppedServerStateImpl
extends GenericServerImpl implements IFreqServerStateImpl {

@Override
public void start_impl() throws AlreadyStarted {

this.changeState(new RunningServerStateImpl());
}

@Override
public void stop_impl() throws NotRunning {

throw new NotRunning();
}

@Override
public Integer allocate_impl() throws NoFrequenciesAvailable, NotRunning {

throw new NotRunning();
}

@Override
public void deallocate_impl(Integer frequency)

throws NotAllocated, NotRunning
{

throw new NotRunning();
}

}

APPENDIX B. FREQUENCY SERVER WEB SERVICE MAIN PARTS 229

RunningServerStateImpl.java

/**
* Created: 2014-05-25
*/

package eu.prowessproject.freq_server.state.impl;

import java.util.HashSet;
import java.util.LinkedList;
import java.util.NoSuchElementException;
import java.util.Queue;

import eu.prowessproject.freq_server.state.IFreqServerStateImpl;
import eu.prowessproject.freq_server.state.exceptions.AlreadyStarted;
import eu.prowessproject.freq_server.state.exceptions.NoFrequenciesAvailable;
import eu.prowessproject.freq_server.state.exceptions.NotAllocated;
import eu.prowessproject.freq_server.state.exceptions.NotRunning;

public class RunningServerStateImpl
extends GenericServerImpl implements IFreqServerStateImpl {

private Queue<Integer> freeFrequencies = new LinkedList<Integer>();
private HashSet<Integer> allocatedFrequencies = new HashSet<Integer>();

RunningServerStateImpl() {
for (int freq : INITIAL_FREQUENCIES) {

freeFrequencies.add(freq);
}

}

@Override
public void start_impl() throws AlreadyStarted {

throw new AlreadyStarted();
}

@Override
public void stop_impl() throws NotRunning {

this.changeState(new StoppedServerStateImpl());
}

@Override

APPENDIX B. FREQUENCY SERVER WEB SERVICE MAIN PARTS 230

public Integer allocate_impl() throws NoFrequenciesAvailable, NotRunning {
try {

Integer allocatedFreq = freeFrequencies.remove();
allocatedFrequencies.add(allocatedFreq);
return allocatedFreq;

} catch (NoSuchElementException e) {
throw new NoFrequenciesAvailable();

}
}

@Override
public void deallocate_impl(Integer frequency)

throws NotAllocated, NotRunning
{

if (allocatedFrequencies.contains(frequency)) {
allocatedFrequencies.remove(frequency);
freeFrequencies.add(frequency);

} else {
throw new NotAllocated();

}
}

}

Appendix C

JUnit tests by Interoud Innovation

FreqServerTest.java

/**
* Copyright (c) 2014, Miguel Ángel Francisco Fernández
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

231

APPENDIX C. JUNIT TESTS BY INTEROUD INNOVATION 232

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Created: 2014-08-04
*/
package com.interoud.freqserver.test;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;

import javax.xml.bind.JAXB;

import junit.framework.Assert;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import com.interoud.freqserver.test.parser.FreqServerResponse;
import com.interoud.util.net.HTTPUtils;

@SuppressWarnings("restriction")
public class FreqServerTest {

private static final String BASEURL = "http://localhost:8080/freq_server/";
private static final String OK_RESPONSE = "OK";
private static final String ERROR_RESPONSE = "ERROR";
private static final String ERROR_TYPE_ALREADY_STARTED = "ALREADY_STARTED";
private static final String ERROR_TYPE_NOT_RUNNING = "NOT_RUNNING";
private static final String ERROR_TYPE_NOT_ALLOCATED = "NOT_ALLOCATED";

/*
* List of allocated frequencies
*/
private Collection<Integer> allocatedFrequencies;

APPENDIX C. JUNIT TESTS BY INTEROUD INNOVATION 233

@Before
public void setUp() throws IOException {

allocatedFrequencies = new ArrayList<Integer>();
}

@After
public void tearDown() throws IOException {

/*
* Deallocate all frequencies and stop the server
*/
Collection<Integer> frequencies =

new ArrayList<Integer>(allocatedFrequencies);
for(Integer frequency : frequencies) {

deallocateFrequency(frequency);
}

stopServer();
}

/* ===
* Tests
* ===*/
@Test
public void testStart() throws IOException {

FreqServerResponse startServerResponse = startServer();
checkNoErrors(startServerResponse);

}

@Test
public void testStop() throws IOException {

startServer();
FreqServerResponse stopServerResponse = stopServer();
checkNoErrors(stopServerResponse);

}

@Test
public void testStartTwice() throws IOException {

startServer();
FreqServerResponse startServerResponse = startServer();
checkNotAlreadyStartedError(startServerResponse);

}

APPENDIX C. JUNIT TESTS BY INTEROUD INNOVATION 234

@Test
public void testStopTwice() throws IOException {

startServer();
stopServer();
FreqServerResponse stopServerResponse = stopServer();
checkNotRunningError(stopServerResponse);

}

@Test
public void testAllocate() throws IOException {

startServer();
FreqServerResponse allocateFrequencyResponse = allocateFrequency();
checkNoErrors(allocateFrequencyResponse);
Assert.assertNotNull(

allocateFrequencyResponse.getResult().getFrequencyAllocated());
}

@Test
public void testAllocateTwice() throws IOException {

startServer();
FreqServerResponse allocateFrequencyResponse1 = allocateFrequency();
checkNoErrors(allocateFrequencyResponse1);
Assert.assertNotNull(

allocateFrequencyResponse1.getResult().getFrequencyAllocated());

FreqServerResponse allocateFrequencyResponse2 = allocateFrequency();
checkNoErrors(allocateFrequencyResponse2);
Assert.assertNotNull(

allocateFrequencyResponse2.getResult().getFrequencyAllocated());

Assert.assertTrue(
!allocateFrequencyResponse1.getResult().getFrequencyAllocated()

.equals(allocateFrequencyResponse2.getResult()
.getFrequencyAllocated()));

}

@Test
public void testAllocateNotStarted() throws IOException {

FreqServerResponse allocateFrequencyResponse = allocateFrequency();

APPENDIX C. JUNIT TESTS BY INTEROUD INNOVATION 235

checkNotRunningError(allocateFrequencyResponse);
}

@Test
public void testDeallocate() throws IOException {

startServer();
FreqServerResponse allocateFrequencyResponse = allocateFrequency();
Integer allocatedFrequency =

allocateFrequencyResponse.getResult().getFrequencyAllocated();

FreqServerResponse deallocateFrequencyResponse =
deallocateFrequency(allocatedFrequency);

checkNoErrors(deallocateFrequencyResponse);
}

@Test
public void testDeallocateTwice() throws IOException {

startServer();
FreqServerResponse allocateFrequencyResponse = allocateFrequency();
Integer allocatedFrequency =

allocateFrequencyResponse.getResult().getFrequencyAllocated();

deallocateFrequency(allocatedFrequency);

FreqServerResponse deallocateFrequencyResponse =
deallocateFrequency(allocatedFrequency);

checkNotAllocatedError(deallocateFrequencyResponse);
}

@Test
public void testDeallocateNotExistingFrequency() throws IOException {

startServer();

FreqServerResponse deallocateFrequencyResponse =
deallocateFrequency(new Integer(0));

checkNotAllocatedError(deallocateFrequencyResponse);
}

@Test
public void testDeallocateNotStarted() throws IOException {

FreqServerResponse deallocateFrequencyResponse =

APPENDIX C. JUNIT TESTS BY INTEROUD INNOVATION 236

deallocateFrequency(new Integer(0));
checkNotRunningError(deallocateFrequencyResponse);

}

/* ===
* Check responses
* ===*/
private void checkNoErrors(FreqServerResponse response) {

Assert.assertEquals(OK_RESPONSE, response.getState());
Assert.assertTrue(response.getError().isEmpty());

}

private void checkNotAlreadyStartedError(FreqServerResponse response) {
Assert.assertEquals(ERROR_RESPONSE, response.getState());
Assert.assertEquals(1, response.getError().size());
Assert.assertEquals(ERROR_TYPE_ALREADY_STARTED,

response.getError().get(0).getErrorType());
}

private void checkNotRunningError(FreqServerResponse response) {
Assert.assertEquals(ERROR_RESPONSE, response.getState());
Assert.assertEquals(1, response.getError().size());
Assert.assertEquals(ERROR_TYPE_NOT_RUNNING,

response.getError().get(0).getErrorType());
}

private void checkNotAllocatedError(FreqServerResponse response) {
Assert.assertEquals(ERROR_RESPONSE, response.getState());
Assert.assertEquals(1, response.getError().size());
Assert.assertEquals(ERROR_TYPE_NOT_ALLOCATED,

response.getError().get(0).getErrorType());
}

/* ===
* API operations
* ===*/
private FreqServerResponse startServer() throws IOException {

return httpPost(BASEURL + "StartServer");
}

private FreqServerResponse stopServer() throws IOException {

APPENDIX C. JUNIT TESTS BY INTEROUD INNOVATION 237

return httpPost(BASEURL + "StopServer");
}

private FreqServerResponse allocateFrequency() throws IOException {
FreqServerResponse response = httpPost(BASEURL + "AllocateFrequency");
if(response.getResult() != null &&

response.getResult().getFrequencyAllocated() != null) {
allocatedFrequencies.add(

response.getResult().getFrequencyAllocated());
}
return response;

}

private FreqServerResponse deallocateFrequency(Integer frequency)
throws IOException

{
String body = null;
if(frequency != null) {

body = frequency.toString();
}
FreqServerResponse response =

httpPost(BASEURL + "DeallocateFrequency", body);
if(OK_RESPONSE.equals(response.getState())) {

allocatedFrequencies.remove(frequency);
}
return response;

}

/* ===
* Utilities
* ===*/
private FreqServerResponse httpPost(String url) throws IOException {

return httpPost(url, null);
}

private FreqServerResponse httpPost(String url, String body)
throws IOException

{
String result = HTTPUtils.doPost(url, body, new Integer(5000),

new Integer(5000));
return JAXB.unmarshal(new ByteArrayInputStream(result.getBytes()),

APPENDIX C. JUNIT TESTS BY INTEROUD INNOVATION 238

FreqServerResponse.class);
}

}

Appendix D

James eqc_fsm for Freq Server

In this appendix, we provide part of the code of an eqc_fsm generated by James
for the Frequency server, from the tests provided by Interoud Innovation (see
Appendix C).

The eqc_fsm model is composed of:

• Two modules that are provided as part of James and are generic (they
provide a patch that modifies the model so that it prints the tests generated):
iface.erl and utils.erl

• Four modules that were generated by James:

– iface_eqc.erl – Contains the callbacks for the eqc_fsm model, it
describes the FSM embedded in the control flow of the model.

– iface_check.erl – Obtains the identifiers for the nodes that have the
postconditions for a given node.

– iface_dep.erl – Resolves the data flow for a node, by creating a
nested symbolic call structure.

– iface_used_dep.erl – Resolves data flow for postconditions. It solves
data flow up to a node in the control flow.

• A diagram (Figure 54 on page 259) that is linked to the code generated (it
provides a map to understand the numbering of the states in the code).

239

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 240

iface.erl (template provided)

%%%---
%%% @author Pablo Lamela <P.Lamela-Seijas@kent.ac.uk>
%%% @doc
%%% Example of target interface for eqc fsm
%%% @end
%%% Created : 13 Nov 2014 by Pablo Lamela Seijas
%%%---
-module(iface).
-export([callback/3, actual_callback/5, evaluate/2]).

-include_lib("eqc/include/eqc.hrl").

% Callback dummy iface
callback({SymState, RawState}, Code, P) ->

{SymSuperState, SymSubState} =
case SymState of

empty -> {1, utils:initial_state_sym()};
{N, M} -> {N, M}

end,
{call, iface, evaluate,
[Code|?LET(Params, P,

begin
UpSymState = utils:update_symsubstate(Params, SymSubState),
?LET({CheckParams, UpSymState2},

?SIZED(Size, utils:add_checks(Size, Code, UpSymState)),
[{{SymSuperState + 1, UpSymState2}, RawState,
[Params|CheckParams]}])

end)]}.

evaluate(_, {_SymState, RawState, [Params|Checks]}) ->
{RawSuperState, RawSubState} =

case RawState of
empty -> io:format("~n"),

{1, utils:initial_state_raw()};
{N, M} -> {N, M}

end,
[_Result, NewRawSubState|_Inter] =

lists:reverse(eqc_symbolic:eval(
utils:serialise_trace_with_state(RawSubState, Params))),

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 241

{FinalRawSubState, _} =
lists:foldr(fun evaluate_checks/2, {NewRawSubState, 1}, Checks),

case Checks of
[] -> ok;
_ -> io:format("// End of postconditions~n")

end,
{RawSuperState + 1, FinalRawSubState}.

evaluate_checks(Param, {RawState, N}) ->
io:format("// Postcondition: ~p~n", [N]),
[_Result, NewRawSubState|_Inter] =

lists:reverse(eqc_symbolic:eval(
utils:serialise_trace_with_state(RawState, Param))),

{NewRawSubState, N + 1}.

actual_callback(State, Code, WhatToReturn, Info, []) ->
{NewState, Result} = actual_callback(State, Code, Info, []),
case WhatToReturn of

return -> {NewState, Result}
end;

actual_callback(State, Code, WhatToReturn, Info, {This, Params}) ->
{NewState, Result} = actual_callback(State, Code, Info, {This, Params}),
case WhatToReturn of

return -> {NewState, Result};
this -> {NewState, This};
{param, N} -> {NewState, lists:nth(N, Params)}

end.
actual_callback(State, Code, #{obj_info := #{},

type := Type,
value := Value}, []) ->

Num = utils:get_num_var_raw(State),
Result = case Type of

null -> {jvar, Num, is_null};
_ -> {jvar, Num}

end,
io:format("~s ~s = ~p;~n", [type_to_java(Type),

name_for({Result, no_cast}), Value]),
{utils:add_all_params_to_state_raw(Code, State, [Result]), Result};

actual_callback(State, Code, #{class_signature := ClassSignature,
method_name := "<init>",

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 242

method_signature := Signature},
{static, ParamList}) ->

Result = {jvar, utils:get_num_var_raw(State)},
io:format("~s ~s = new ~s(~s);~n",

[class_to_normal_notation(ClassSignature),
name_for({Result, no_cast}),
class_to_normal_notation(ClassSignature),
mk_param_list(ParamList,Signature)]),

{utils:add_all_params_to_state_raw(Code, State,
[Result, static | ParamList]), Result};

actual_callback(State, Code, #{class_signature := ClassSignature,
method_name := Name,
method_signature := Signature},

{static, ParamList}) ->
Result = {jvar, utils:get_num_var_raw(State)},
Ret = return_from_sig(Signature),
case Ret of

"void" -> io:format("~s.~s(~s);~n",
[class_to_normal_notation(ClassSignature),
Name, mk_param_list(ParamList,Signature)]);

_ -> io:format("~s ~s = ~s.~s(~s);~n",
[Ret,
name_for({Result, no_cast}),
class_to_normal_notation(ClassSignature),
Name, mk_param_list(ParamList,Signature)])

end,
{utils:add_all_params_to_state_raw(Code, State,

[Result, static | ParamList]), Result};
actual_callback(State, Code, #{method_name := Name,

method_signature := Signature},
{This, ParamList}) ->

Result = {jvar, utils:get_num_var_raw(State)},
Ret = return_from_sig(Signature),
case Ret of

"void" -> io:format("~s.~s(~s);~n",
[name_for({This, no_cast}), Name,
mk_param_list(ParamList,Signature)]);

_ -> io:format("~s ~s = ~s.~s(~s);~n",
[Ret, name_for({Result, no_cast}),
name_for({This, no_cast}), Name,
mk_param_list(ParamList,Signature)])

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 243

end,
{utils:add_all_params_to_state_raw(Code, State,

[Result, This | ParamList]), Result};
actual_callback(State, Code, Rec, ParamList) ->

io:format("~nState:~p~nCode:~p~nRec:~p~nParamList:~p~n",
[State, Code, Rec, ParamList]),

Result = {jvar, utils:get_num_var_raw(State)},
io:format("Result: ~p~n~n", [Result]),
{utils:add_all_params_to_state_raw(Code, State, [Result | ParamList]),
Result}.

mk_param_list(ParamList,Signature) ->
list_to_commasep_str(
lists:map(fun name_for/1,

lists:zip(ParamList,
get_param_types(Signature)))).

get_param_types([$(|List]) -> get_param_types(List);
get_param_types([$)|_]) -> [];
get_param_types(List) ->

case get_param_types_aux(List) of
{Result, RemList} -> [Result|get_param_types(RemList)]

end.

get_param_types_aux([$L|Rest]) ->
{Class, [_|Remaining]} = lists:splitwith(diffrom($;), Rest),
{class_to_normal_notation([$L|Class] ++ ";"), Remaining};

get_param_types_aux([$[|Rest]) ->
{_, Remaining} = get_param_types_aux(Rest),
{null, Remaining}; % We return null because arrays are not implemented

get_param_types_aux([Char|Rest]) ->
{class_to_normal_notation([Char]), Rest}.

return_from_sig(String) ->
class_to_normal_notation(tl(lists:dropwhile(diffrom($)), String))).

diffrom(Char) -> fun (T) -> Char =/= T end.

type_to_java(integer) -> "int";
type_to_java(float) -> "float";

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 244

type_to_java(double) -> "double";
type_to_java(null) -> "Object";
type_to_java(string) -> "String";
type_to_java(stringBuffer) -> "java.lang.StringBuffer";
type_to_java(stringBuilder) -> "java.lang.StringBuilder";
type_to_java(class) -> "Class<?>";
type_to_java(boolean) -> "boolean";
type_to_java(char) -> "char";
type_to_java(short) -> "short";
type_to_java(long) -> "long".

name_for({this, _}) -> "this";
name_for({{jvar, Num, is_null}, Cast}) when Cast =/= no_cast ->

"(" ++ Cast ++ ") var" ++ integer_to_list(Num);
name_for({{jvar, Num}, _}) -> "var" ++ integer_to_list(Num);
name_for({{jvar, Num, is_null}, _}) -> "var" ++ integer_to_list(Num).

class_to_normal_notation([]) -> [];
class_to_normal_notation([$B]) -> "byte";
class_to_normal_notation([$C]) -> "char";
class_to_normal_notation([$D]) -> "double";
class_to_normal_notation([$F]) -> "float";
class_to_normal_notation([$I]) -> "int";
class_to_normal_notation([$J]) -> "long";
class_to_normal_notation([$S]) -> "short";
class_to_normal_notation([$Z]) -> "boolean";
class_to_normal_notation([$V]) -> "void";
class_to_normal_notation([$L|Rest]) -> class_to_normal_notation_aux(Rest).
class_to_normal_notation_aux(";") -> [];
class_to_normal_notation_aux([$/|Rest]) ->

[$.|class_to_normal_notation_aux(Rest)];
class_to_normal_notation_aux([Char|Rest]) ->

[Char|class_to_normal_notation_aux(Rest)].

list_to_commasep_str(L) -> lists:flatten(list_to_commasep_str_aux(L)).
list_to_commasep_str_aux([]) -> "";
list_to_commasep_str_aux([H|[]]) -> [io_lib:format("~s", [H])];
list_to_commasep_str_aux([H|T]) ->

[io_lib:format("~s, ", [H])|list_to_commasep_str_aux(T)].

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 245

utils.erl (template provided)

%%%---
%%% @author Pablo Lamela <P.Lamela-Seijas@kent.ac.uk>
%%% @doc
%%% Utils needed by the eqc suites generated
%%% @end
%%% Created : 11 Nov 2014 by Pablo Lamela Seijas
%%%---
-module(utils).

-include_lib("eqc/include/eqc.hrl").

-export([serialise_trace_with_state/2, update_symsubstate/2,
initial_state_sym/0, add_result_to_state_sym/2,
get_instances_of_sym/4, get_num_var_sym/1,
initial_state_raw/0, add_all_params_to_state_raw/3,
get_instance_of_raw/3, get_instance_of_raw_aux/3,
get_num_var_raw/1, add_checks/3, control_add/3,
used_and_res/1, used_and_fix/2, used_or/1, remove_result_tag/1,
add_weights/3, normalise_weights/1, set_weights/2]).

% Symbolic state accessors
initial_state_sym() -> {1, dict:new()}.
add_result_to_state_sym(Code, {N, Dict}) ->

{N + 1, dict:update(Code, fun (Old) -> [N|Old] end, [N], Dict)}.
get_instances_of_sym(Code, WhatToReturn, {_N, Dict}, _RawState) ->

case dict:find(Code, Dict) of
{ok, List} -> [{jcall, ?MODULE, get_instance_of_raw_aux,

[WhatToReturn, Entry]} || Entry <- List];
error -> []

end.
get_last_instance_num_of_sym(Code, {_N, Dict}) ->

case dict:find(Code, Dict) of
{ok, List} -> lists:max(List);
error -> 0

end.
get_num_var_sym({N, _}) -> N.
% Raw state accessors
initial_state_raw() -> {1, dict:new()}.

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 246

add_all_params_to_state_raw(_Code, {N, Dict}, Result) ->
{N + 1, dict:store(N, Result, Dict)}.

get_instance_of_raw(Code, WhatToReturn, {_N, Dict}) ->
lists:nth(case WhatToReturn of

return -> 1;
this -> 2;
{param, N} -> 2 + N

end, dict:fetch(Code, Dict)).
get_instance_of_raw_aux(RawState, WhatToReturn, Code) ->

{RawState, get_instance_of_raw(Code, WhatToReturn, RawState)}.
get_num_var_raw({N, _}) -> N.

control_add(State, WhatToReturn, Code) ->
case utils:get_instances_of_sym(Code, WhatToReturn, State, dummy) of
[] -> error;
List -> {ok, oneof(List)}

end.

used_and_fix(_Def, error) -> error;
used_and_fix(Def, _Res) -> {ok, Def}.
used_and_res({This, List}) ->

case used_and_res(place_static(This, List)) of
error -> error;
Else -> replace_static(This, Else)

end;
used_and_res(List) when is_list(List) ->

try used_and_aux(List) of
Res -> Res

catch
has_error -> error

end.
place_static(static, List) -> List;
place_static(Else, List) -> [Else|List].
replace_static(static, List) -> {static, List};
replace_static(_Else, [This|List]) -> {This, List}.

used_and_aux([error|_]) -> throw(has_error);
used_and_aux([{ok, El}|Rest]) -> [El|used_and_aux(Rest)];
used_and_aux([]) -> [].

used_or(List) ->

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 247

case remove_result_tag(List) of
[] -> error;
Else -> {ok, frequency(Else)}

end.

remove_result_tag([{ok, Sth}|Rest]) -> [Sth|remove_result_tag(Rest)];
remove_result_tag([error|Rest]) -> remove_result_tag(Rest);
remove_result_tag([]) -> [].

add_weights(_State, _Node, error) -> error;
add_weights(State, Node, {ok, Val}) ->

Weight = get_last_instance_num_of_sym(Node, State),
{ok, {Weight, Val}}.

normalise_weights(List) ->
SrtList = lists:sort(fun weight_sort_criteria/2, List),
{Ok, Errors} = lists:splitwith(fun is_ok/1, SrtList),
{NotZero, Zero} = lists:splitwith(fun is_not_zero/1, Ok),
NormalisedNotZero = normalise_not_zero(NotZero),
BiasedZero = bias_zero(Zero),
NormalisedNotZero ++ BiasedZero ++ Errors.

weight_sort_criteria(error, _) -> false;
weight_sort_criteria(_, error) -> true;
weight_sort_criteria({ok, {0, _}}, _) -> false;
weight_sort_criteria(_, {ok, {0, _}}) -> true;
weight_sort_criteria({ok, {N, _}}, {ok, {M, _}}) when N =< M -> false;
weight_sort_criteria(_, _) -> true.

is_ok({ok, _}) -> true;
is_ok(_) -> false.

is_not_zero({ok, {0, _}}) -> false;
is_not_zero(_) -> true.

normalise_not_zero(List) ->
Elems = length(List),
ZippedList = lists:zip(lists:reverse(lists:seq(1, Elems)), List),
[{ok, {((Pos * 10) div Elems) + 30, Val}} || {Pos, {ok, {_, Val}}}

<- ZippedList].

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 248

bias_zero(List) ->
[{ok, {10, Val}} || {ok, {0, Val}} <- List].

add_checks(Size, Code, SymSubState) ->
?LET(Checks,

remove_result_tag(
[iface_used_dep:used_args_for(Size, SymSubState, return, Check)
|| Check <- iface_check:checks_for(Code), Check =/= Code]),

begin
NewSymSubState = lists:foldr(fun update_symsubstate/2,

SymSubState, Checks),
{Checks, NewSymSubState}

end).

serialise_trace_with_state(State, Trace) ->
{{STrace, _}, {_, _}} = serialise_trace_with_state_aux(Trace, {1, State}),
STrace.

serialise_trace_with_state_aux({jcall, Mod, Fun, Args}, {AccIn, State}) ->
{ArgsRes, {InnerAcc, PreState}} =

lists:mapfoldl(fun serialise_trace_with_state_aux/2,
{AccIn, State}, Args),

{ReqArgs, SymArgs} = lists:unzip(ArgsRes),
IA = fun (X) -> InnerAcc + X end,
IAV = fun (X) -> {var, IA(X)} end,
{{lists:concat(ReqArgs)
++ [{set, IAV(0), {call, Mod, Fun, [PreState|SymArgs]}},

{set, IAV(1), {call, erlang, element, [1, IAV(0)]}},
{set, IAV(2), {call, erlang, element, [2, IAV(0)]}}],

IAV(2)},
{IA(3), IAV(1)}};

serialise_trace_with_state_aux(Else, Acc) when is_tuple(Else) ->
{{ReqRes, SymRes}, NewAcc} =

serialise_trace_with_state_aux(tuple_to_list(Else), Acc),
{{ReqRes, list_to_tuple(SymRes)}, NewAcc};

serialise_trace_with_state_aux(Else, Acc) when is_list(Else) ->
{ElsRes, NewAcc} =

lists:mapfoldl(fun serialise_trace_with_state_aux/2, Acc, Else),
{ReqEls, SymEls} = lists:unzip(ElsRes),
{{lists:concat(ReqEls), SymEls}, NewAcc};

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 249

serialise_trace_with_state_aux(Else, Acc) -> {{[], Else}, Acc}.

update_symsubstate({jcall, _Mod, actual_callback, Args}, State) ->
PreState = lists:foldl(fun update_symsubstate/2, State, Args),
utils:add_result_to_state_sym(hd(Args), PreState);

update_symsubstate(Else, Acc) when is_tuple(Else) ->
update_symsubstate(tuple_to_list(Else), Acc);

update_symsubstate(Else, Acc) when is_list(Else) ->
lists:foldl(fun update_symsubstate/2, Acc, Else);

update_symsubstate(_Else, Acc) -> Acc.

set_weights(N, List) -> [{N, El} || El <- List].

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 250

iface_eqc.erl (generated by James)

-module(iface_eqc).

-include_lib("eqc/include/eqc.hrl").

-include_lib("eqc/include/eqc_fsm.hrl").

-compile(export_all).

initial_state() -> state_init.

state_init(State) ->
[{state_33,
callback(State, "33",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"33"))))},
{state_240,
callback(State, "240",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"240"))))},
{state_172,
callback(State, "172",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"172"))))}].

state_203(State) ->
[{state_240,
callback(State, "240",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"240"))))}].

state_172(_) -> [].

state_342(State) ->
[{state_38,
callback(State, "38",

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 251

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"38"))))}].

state_10(_) -> [].

state_240(_) -> [].

state_38(_) -> [].

state_33(State) ->
[{state_342,
callback(State, "342",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"342"))))},
{state_240,
callback(State, "240",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"240"))))},
{state_196,
callback(State, "196",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"196"))))},
{state_10,
callback(State, "10",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"10"))))}].

state_196(State) ->
[{state_203,
callback(State, "203",

?SIZED(Size,
(iface_dep:args_for(Size div 10, return, State,

"203"))))},
{state_196,
callback(State, "196",

?SIZED(Size,

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 252

(iface_dep:args_for(Size div 10, return, State,
"196"))))}].

precondition(_From, _To, _S, _) -> true.

initial_state_data() -> {empty, empty}.

next_state_data(_From, _To, _S, RawState,
{call, iface, evaluate,
[_, {SymState, _OldRawState, _Params}]}) ->

{SymState, RawState}.

postcondition(_From, state_error, _S, _Call, R) ->
case R of
{'EXIT', _} -> true;
_ -> false

end;
postcondition(_From, _To, _S,

{call, iface, evaluate,
[_, {_SymState, _OldRawState, _Params}]},
R) ->

case R of
{'EXIT', _} -> false;
_ -> true

end.

prop_iface() ->
?FORALL(Cmds, (commands(?MODULE)),

begin
{_History, S, Res} = run_commands(?MODULE, Cmds),
cleanup(S),
Res == ok

end).

callback(X1, X2, X3) ->
catch iface:callback(X1, X2, X3).

cleanup(_S) -> none.

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 253

iface_check.erl (generated by James)

-module(iface_check).

-include_lib("eqc/include/eqc.hrl").

-compile(export_all).

checks_for("122") ->
checks_for("124") ++ checks_for("134");

checks_for("203") -> checks_for("207");
checks_for("41") -> ["41"];
checks_for("320") -> ["320"];
checks_for("172") -> checks_for("174");
checks_for("66") -> ["66"];
checks_for("345") -> ["345"];
checks_for("13") -> ["13"];
checks_for("207") -> ["207"];
checks_for("342") -> checks_for("345");
checks_for("10") -> checks_for("13");
checks_for("240") ->

checks_for("298") ++ checks_for("244");
checks_for("120") -> checks_for("122");
checks_for("38") -> checks_for("41");
checks_for("134") -> ["134"];
checks_for("244") -> ["244"];
checks_for("124") -> ["124"];
checks_for("174") -> ["174"];
checks_for("33") -> checks_for("320");
checks_for("298") -> ["298"];
checks_for("196") ->

checks_for("120") ++ checks_for("66").

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 254

iface_dep.erl (generated by James)

Omitted parts marked with “...”.

-module(iface_dep).

-include_lib("eqc/include/eqc.hrl").

-compile(export_all).

args_for_op(Size, WhatToReturn, {empty, empty} = State,
Code) ->

?LAZY((args_for(Size, WhatToReturn, State, Code)));
args_for_op(Size, WhatToReturn,

{{_, SymState}, RawState} = State, Code) ->
case utils:get_instances_of_sym(Code, WhatToReturn,

SymState, RawState)
of

[] -> args_for(Size, WhatToReturn, State, Code);
List ->

?LAZY((frequency(utils:set_weights(3, List) ++
utils:set_weights(1,

[args_for(Size, WhatToReturn,
State, Code)]))))

end.

args_for(_Size, WhatToReturn, _State, "266") ->
{jcall, iface, actual_callback,
["266", WhatToReturn,
#{obj_info => #{}, type => integer, value => 0}, []]};

args_for(_Size, _WhatToReturn, _State,
"diamond329o185") ->

?LAZY((oneof([])));
args_for(Size, _WhatToReturn, State,

"diamond240o297") ->
?LAZY((oneof([args_for_op(Size, return, State, "293")]

++
[args_for_op(Size - 1, return, State, "201")
|| Size > 0])));

args_for(_Size, _WhatToReturn, _State,
"diamond147o85") ->

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 255

?LAZY((oneof([])));

. . .

args_for(Size, WhatToReturn, State, "41") ->
{jcall, iface, actual_callback,
["41", WhatToReturn,
#{class_signature =>

"Lcom/interoud/freqserver/test/FreqServerTest;",
http_request => no, is_dynamic => true,
method_name => "checkNotRunningError",
method_signature =>

"(Lcom/interoud/freqserver/test/parser/FreqSer"
"verResponse;)V",

params => [object], return => void, this => object},
{args_for_op(Size, return, State, "167"),
[args_for_op(Size, return, State, "38")]}]};

. . .

args_for(Size, WhatToReturn, State, "196") ->
{jcall, iface, actual_callback,
["196", WhatToReturn,
#{class_signature =>

"Lcom/interoud/freqserver/test/FreqServerTest;",
http_request =>

{post, "/freq_server/AllocateFrequency"},
is_dynamic => true, method_name => "allocateFrequency",
method_signature =>

"()Lcom/interoud/freqserver/test/parser/FreqSe"
"rverResponse;",

params => [], return => object, this => object},
{args_for_op(Size, return, State, "167"), []}]}.

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 256

iface_used_dep.erl (generated by James)

Omitted parts marked with “...”.

-module(iface_used_dep).

-compile(export_all).

used_args_for(_Size, State, WhatToReturn, "203") ->
utils:control_add(State, WhatToReturn, "203");

used_args_for(_Size, State, WhatToReturn, "172") ->
utils:control_add(State, WhatToReturn, "172");

used_args_for(_Size, State, WhatToReturn, "147") ->
utils:control_add(State, WhatToReturn, "147");

used_args_for(_Size, State, WhatToReturn, "10") ->
utils:control_add(State, WhatToReturn, "10");

used_args_for(_Size, State, WhatToReturn, "342") ->
utils:control_add(State, WhatToReturn, "342");

used_args_for(_Size, State, WhatToReturn, "240") ->
utils:control_add(State, WhatToReturn, "240");

used_args_for(_Size, State, WhatToReturn, "38") ->
utils:control_add(State, WhatToReturn, "38");

used_args_for(_Size, State, WhatToReturn, "329") ->
utils:control_add(State, WhatToReturn, "329");

used_args_for(_Size, State, WhatToReturn, "33") ->
utils:control_add(State, WhatToReturn, "33");

used_args_for(_Size, State, WhatToReturn, "196") ->
utils:control_add(State, WhatToReturn, "196");

used_args_for(_Size, _State, WhatToReturn, "266") ->
{ok,
{jcall, iface, actual_callback,
["266", WhatToReturn,
#{obj_info => #{}, type => integer, value => 0}, []]}};

used_args_for(_Size, _State, _WhatToReturn, "diamond329o185") -> error;
used_args_for(Size, State, _WhatToReturn, "diamond240o297") ->

utils:used_or(
utils:normalise_weights(
[utils:add_weights(State,

Node,
used_args_for(NewSize,

State,

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 257

WhatToReturn,
Node))

|| {NewSize, WhatToReturn, Node} <- [{Size, return, "293"}]
++ [{Size - 1, return, "201"} || Size > 0]]));

used_args_for(_Size, _State, _WhatToReturn, "diamond147o85") -> error;
used_args_for(_Size, _State, _WhatToReturn, "diamond240o242") -> error;
used_args_for(_Size, _State, _WhatToReturn, "diamond196o65") -> error;

. . .

used_args_for(Size, State, WhatToReturn, "41") ->
case utils:control_add(State, WhatToReturn, "41") of

error ->
Params = {used_args_for(Size, State, return, "167"),

[used_args_for(Size, State, return, "38")]},
CParams = utils:used_and_res(Params),
utils:used_and_fix(
{jcall, iface, actual_callback,
["41", WhatToReturn,
#{class_signature =>

"Lcom/interoud/freqserver/test/FreqServerTest;",
http_request => no, is_dynamic => true,
method_name => "checkNotRunningError",
method_signature =>

"(Lcom/interoud/freqserver/test/parser/"
"FreqServerResponse;)V",
params => [object], return => void,
this => object},

CParams]},
CParams);

Else -> Else
end;

. . .

used_args_for(Size, State, WhatToReturn, "66") ->
case utils:control_add(State, WhatToReturn, "66") of

error ->
Params = {used_args_for(Size, State, return, "167"),

[used_args_for(Size, State, return, "196")]},
CParams = utils:used_and_res(Params),

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 258

utils:used_and_fix(
{jcall, iface, actual_callback,
["66", WhatToReturn,
#{class_signature =>

"Lcom/interoud/freqserver/test/FreqServerTest;",
http_request => no, is_dynamic => true,
method_name => "checkNoErrors",
method_signature =>

"(Lcom/interoud/freqserver/test/parser/"
"FreqServerResponse;)V",
params => [object], return => void,
this => object},

CParams]},
CParams);

Else -> Else
end;

. . .

used_args_for(Size, State, WhatToReturn, "199") ->
case utils:control_add(State, WhatToReturn, "199") of

error ->
Params = {used_args_for(Size, State, return, "196"),

[]},
CParams = utils:used_and_res(Params),
utils:used_and_fix(
{jcall, iface, actual_callback,
["199", WhatToReturn,
#{class_signature =>

"Lcom/interoud/freqserver/test/parser/"
"FreqServerResponse;",
http_request => no, is_dynamic => true,
method_name => "getResult",
method_signature =>

"()Lcom/interoud/freqserver/test/parser/Result;",
params => [], return => object,
this => object},

CParams]},
CParams);

Else -> Else
end.

APPENDIX D. JAMES EQC_FSM FOR FREQ SERVER 259

Ja
va

 In
te

ra
ct

io
ns

{p
os

t,"
/fr

eq
_s

er
ve

r/D
ea

llo
ca

te
Fr

eq
ue

nc
y"

}
{p

os
t,"

/fr
eq

_s
er

ve
r/S

to
pS

er
ve

r"
}

{p
os

t,"
/fr

eq
_s

er
ve

r/S
ta

rtS
er

ve
r"

}
{p

os
t,"

/fr
eq

_s
er

ve
r/A

llo
ca

te
Fr

eq
ue

nc
y"

}

20
3

- d
ea

llo
ca

te
Fr

eq
ue

nc
y

20
7

- c
he

ck
N

oE
rr

or
s

di
am

on
d

32
9o

18
5

di
am

on
d

24
0o

24
2

14
7

- d
ea

llo
ca

te
Fr

eq
ue

nc
y

di
am

on
d

14
7o

85
24

0
- d

ea
llo

ca
te

Fr
eq

ue
nc

y

24
4

- c
he

ck
N

ot
A

llo
ca

te
dE

rr
or

29
8

- c
he

ck
N

ot
Ru

nn
in

gE
rr

or

32
0

- c
he

ck
N

oE
rr

or
s

13
 -

ch
ec

kN
ot

A
lre

ad
yS

ta
rte

dE
rr

or

10
 -

sta
rtS

er
ve

r

33
 -

sta
rtS

er
ve

r

34
2

- s
to

pS
er

ve
r

di
am

on
d

19
6o

65

41
 -

ch
ec

kN
ot

Ru
nn

in
gE

rr
or

34
5

- c
he

ck
N

oE
rr

or
s

38
 -

sto
pS

er
ve

r

32
9

- s
to

pS
er

ve
r

22
1

- n
ew

 o
rg

.ju
ni

t.i
nt

er
na

l.r
un

ne
rs

.m
od

el
.R

efl
ec

tiv
eC

al
la

bl
e

16
7

- r
un

5
- n

ew
 ja

va
.u

til
.A

rr
ay

Li
st

16
 -

ne
w

 ja
va

.u
til

.A
rr

ay
Li

st

20
 -

ha
sN

ex
t

13
7

- a
ss

er
tT

ru
e

18
 -

ite
ra

to
r

81
 -

ne
xt

29
3

- n
ew

 ja
va

.la
ng

.In
te

ge
r

di
am

on
d

24
0o

29
7

20
1

- g
et

Fr
eq

ue
nc

yA
llo

ca
te

d

13
4

- e
qu

al
s

17
0

- s
et

U
p

21
9

- t
ea

rD
ow

n
17

2
- a

llo
ca

te
Fr

eq
ue

nc
y

66
 -

ch
ec

kN
oE

rr
or

s
17

4
- c

he
ck

N
ot

Ru
nn

in
gE

rr
or

19
6

- a
llo

ca
te

Fr
eq

ue
nc

y

"2
66

 -
{i

nt
eg

er
,0

}"
19

9
- g

et
Re

su
lt

12
2

- g
et

Fr
eq

ue
nc

yA
llo

ca
te

d

12
4

- a
ss

er
tN

ot
N

ul
l

12
0

- g
et

Re
su

lt

F
ig
ur
e
54

:
Li
nk

ed
m
od

el
di
ag

ra
m

