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Abstract

In massive multiple input multiple output (MIMO) systems, major challenges

are present due to the large number of active antennas and radio frequency (RF)

chains, such as increased power consumption and computation complexity. Trans-

mit antenna selection (TAS) is being investigated as a solution to tackle these chal-

lenges. In this thesis, a dynamic transmit antenna selection technique is proposed

which can maximize the sum rate of a multiuser (MU)-MIMO communication sys-

tem. In order to satisfy the objective, the number of transmit antennas required

is determined by remodeling it as a binary Knapsack Problem (KP) and then

extending to a Multiple KP (MKP) for MU-MIMO. Furthermore, an improve-

ment in the decision making is also proposed with the introduction of a flexible

decision criteria, whilst reducing the structure of the MKP to resemble that of a

single binary KP. Additionally, comparisons of the KP based algorithms are done

with two low complexity techniques, which are the sequential selection algorithm

and random selection algorithm. Results show that the KP based techniques out-

perform these low complexity techniques. The modified binary KP algorithm is

also superior to that of the MKP, as it is not sensitive to solving as binary knap-

sack sub-problems. The proposed technique has good performance for different

antenna selection measures and is suitable to ensure communication efficiency in

future wireless communication systems.
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Chapter 1

Introduction

1.1 Motivation

Mobile communication has become intertwined with our daily lives and is slowly

becoming officially recognized as an essential service. This is due to an exponential

increase in the demand of the users. Mobile/wireless networks are under constant

pressure to ensure customer satisfaction as these data demands are constantly

increasing. Therefore, it is expected that in future networks the number of si-

multaneous users will be imperative, as wireless connectivity increases [1, 2]. The

fifth Generation (5G) communications has been scheduled for commercialization

in 2020 to ensure customer satisfaction as data demands are rapidly increasing

[2]. In Fig. 1.1, the International Telecommunications Union (ITU) points out the

requirements of International Mobile Telephone (IMT)-2020 known as 5G, with a

comparison to IMT-Advanced known as 4G.

1
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Figure 1.1: Enhancement of key capabilities from IMT-Advanced to IMT-2020 [1]

Fig. 1.1 illustrates the key requirements defined by the ITU. Some of these

evaluation criterion of IMT-2020 contains the following performance measures:

peak data rate, peak spectral efficiency, user experienced data rate, average spec-

tral efficiency, area traffic capacity, low latency, connection density, energy effi-

ciency, reliability, mobility, bandwidth, support of wide range of services, spectrum

flexibility.

Enhanced mobile broadband has been identified to be intrensic in the 5G

standardization process [3], where some of its key components are highly variable

and/or higher data rates, and deployment and coverage. The aim of 5G wire-

less technology is to enable gigabit data rates, improved coverage, low latency,

and increased connectivity. However, in order to achieve higher data rates and
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improvements in capacity, advanced techniques are required. Some of these tech-

nological solutions that are important components for enabling higher data rates

point towards the enhancement of the radio interface, such as advanced wave-

forms, modulation and coding, and multiple access schemes.

Approaches for enhanced spectral efficiency can be achieved via advances in

physical layer techniques, spatial processing, and improvements on the network

side through network densification. One key technique is to enable better spec-

trum utilization of the frequency bands, as there are large blocks of spectrum

available in higher frequency bands. Another is the deployment of antenna ar-

rays in a wireless system to improve coverage and spectral efficiency for wireless

communications.

1.2 Critical 5G Wireless Technologies

Figure 1.2: Radio Frequency Bands
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1.2.1 Millimeter wave

As wireless communications market penetration continues to expand, the cur-

rent microwave spectrum has become crowded. Current wireless communications

operate in the 300 MHz to 3 GHz range [4, 5], as these bands were extremely

favorable due to their propagation characteristics [6]. However, due to the limited

spectrum, investigations into millimeter wave (mmWave) bands aim towards a

solution. mmWave frequiences are within the 30 to 300 GHz range, and promise

significant capacity increases over current cellular networks [7], and have demon-

strated to achieve gigabit-per-second data rates. Researchers are studying ad-

vanced techniques which can effectively exploit the high frequency spectrum, such

as mmWave to fulfill these data demands [8].

1.2.2 Multiantenna Techniques

Multiantenna techniques enable wireless systems to exploit the spatial dimensions

to enhance reliability and/or spatial multiplexing of multiple data streams [9].

MIMO

This technique is called multiple input multiple output (MIMO) by having antenna

arrays at the transmitter and/or receiver. MIMO offers diversity, multiplexing

gain [10] and power gains [11], which improves the reliability, supports the spatial

multiplexing of both single and multiple users, and increases the energy efficiency

through beamforming techniques. MIMO has been included in current wireless

standards with a limited number of antennas (two to eight antennas), and has

proved satisfactory for current demands. However, there is significant research

interest in massive MIMO, in order to meet future data demands . Massive

MIMO is the deployment of a large number of antennas, typically in the tens

to hundreds. Massive MIMO offers many benefits such as better reliability of
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the wireless link, higher data rates, and a better trade off between energy and

spectral efficiency, when compared to conventional MIMO technology. Therefore,

the crafting of massive MIMO may require considerable architectural changes,

particularly in the design at the base stations, which leads to new deployments

scenarios [6].

Distributed Antenna Systems

Distributed antenna systems (DAS) are used to extend coverage area [12], improve

spectral efficiency and reduce overall transmit power by reducing the distance be-

tween the transmitter and the receiver. DAS was originally an indoor technique

[13], later it was adopted in outdoor systems. In outdoor DAS, antennas are geo-

graphically dispersed within a coverage area [14]. Each antenna array is connected

to a baseband unit (BBU) through high-speed backhaul links, which enables co-

herent processing of the signal transmitted from the arrays [15]. Similar to MIMO,

DAS can serve single or multiple users in the same time resource. Therefore, this

arrangement can be called distributed MIMO [16, 17].
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Figure 1.3: Massive MIMO deployments

Figure 1.3 depicts the different large scale multiantenna array deployments

currently investigated: linear antenna arrays, planar antenna arrays, volumetric

antenna arrays, and distributed antenna arrays. As shown in Figure 1.3, a large

number of antennas could be dispersed within a cell, commonly referred to as large-

scale distributed MIMO, or centrally deployed at a base station (BS), commonly

referred to as massive MIMO.
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1.3 Challenges of mmWave MIMO

The combination of mmWave and massive MIMO is welcomed as they provide

critical relief to current wireless communications. mmWave proves to alleviate

the over-crowding problem as it provides additional spectrum, and is a key en-

abler of massive MIMO. Massivie MIMO is invaluable as it provides large array

gains [18, 19], which can combat the high pathloss suffered by mmWaves. However

this combination presents many challenges [20], such as computational complexity

and increased power consumption. While the use of massive MIMO allows for a

reduction in transmit power, the number of radio-frequency (RF) chains becomes

an issue. Therefore, power consumption becomes evident, since radio-frequency

(RF) chains are accountable for 50- 80% of total power consumption [21], and

they increase in proportion to the number of antennas[22, 23].

The energy efficiency (EE) is an important design criterion, considering the

benefits from mmWave MIMO. In order to enhance EE, energy consumption

should be considered in the overall design. Therefore, minimizing the number

of RF chains at the BS is an attractive strategy. Much work has gone into re-

ducing RF chains, such as hybrid beamforming and antenna selection. Hybrid

beamforming structures have been proposed, with a limited number of RF chains

which is much smaller than the number of antenna elements [23, 24]. Antenna

selection reduces the number of RF chains by selecting a subset of antennas MS

out of M BS antennas based on a predefined criteria, such power or rate. As

the number of RF chains is reduced from M to MS in AS systems, this results

in reduced circuit power. The EE of a transmission can be improved by both re-

ducing RF transmit power and saving circuit power. Therefore to enhance energy

efficiency, the variation characteristics of different users can be exploited, such as

each user’s individual rate requirements.
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Scaling up the number of antennas in a MIMO system to improve the perfor-

mance of wireless transmission must be accompanied with increasing the number

of RF components. However, deploying more RF components will lead to an in-

crease in the total power consumption in the system. Therefore, to cope with this

problem, antenna selection (AS) technology comes to reduce the cost and com-

plexity of MIMO architecture, while keeping most of its benefits. Considerable

algorithms based on technical and mathematical concepts have been proposed to

achieve either transmit or receive antenna selection or joint transmit/receive an-

tenna selection. Our research concerns with transmit antenna selection (TAS) for

MIMO systems.

1.4 Contribution of Thesis

The objective of this thesis is to study communication efficient methods for 5G

mmWave wireless communications in the downlink multiuser (MU-MIMO), con-

sidering TAS with per-antenna power constraint and per-user SINR constraint.

We propose communication efficient optimization solutions for mmWave wireless

communication systems with massive MIMO. The contributions of this thesis are

summarized as follows:

• The BS communication efficiency which includes satisfying the variable rate

requirement and minimum power consumption of the RF chains, and the

sum rate maximization for a fixed transmit power has be formulated as

an optimization problem for 5G wireless communication systems employing

mmWave massive MIMO.

• Considering the combinatorial nature of this optimization objective problem,

a suboptimal solution is proposed to enable communication efficiency of the

system using the binary knapsack (KP) algorithm.
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• To reduce the cost and complexity of the RF circuitry, the EE is maximized

with the minimum number of RF circuitry by minimizing the consumed

energy.

• A low complexity alternative for interference mitigation has been proposed

to reduce the impact of multiuser interference on the system’s performance.

It is important to remove interference between antenna subsets as this can

severely degrade the performance of a transmission.

1.5 Structure of Thesis

This remainder of this thesis is organized as follows:

• Chapter 2 presents mmWave frequencies and the challenges associated with

propagation for wireless transmission in 5G. It discusses the various multi-

antenna techniques and channel capacity. It provides an overview of MIMO

systems for wirless communications and the techniques to transmit data.

It covers the concepts of mmWave transmissions and challenges. The prin-

ciples of MIMO communications are discussed. Then the combination of

mmWave and massive MIMO is presented. The advantages and challenges

are covered.

• Chapter 3 gives the mmWave MIMO architecture and system model. A mas-

sive MIMO channel model is developed to determine the channel between

the BS and the UE for us to study the antenna selection problem. The

antenna array is also presented. It studies the impact of mmWave propaga-

tion along with beamforming. Antenna array processing via beam pattern

analysis is also illustrated.

• Chapter 4 studies TAS for single user mmWave wireless systems.In this

thesis, a transmit antenna selection algorithm is developed which satisfies a
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quality of service (QoS) for a given user. TAS to find the minimum number

of BS transmit antennas required is studied. The impacts of the number of

antennas selected for a desired QoS is analyzed.

• Chapter 5 studies multiuser TAS for mmWave MU-MIMO. TAS for power

minimization in massive MIMO is studied. Also the massive MIMO rate

maximization problem for a fixed power requirement in relation to the sub-

set size is studied. The impact of assigning individual subsets per user is

presented. It also compares other low complexity algorithms for TAS. The

impacts of power consumption and energy efficiency gains are analyzed,

along with iterference suppression.

• Chapter 6 gives the conclusions of this thesis and presents possible future

work.



Chapter 2

mmWave MIMO: Literature

Review

2.1 Introduction

This chapter provides background information on mmWave propagation charac-

teristics. The propagation of mmWaves are unique due to its short wavelength,

and it is important to understand these fundamental characteristics to develop

signal processing techniques for transmission in the mmWave bands. The Friis

formula for free space path loss (FSPL) is described to show the dependence on

the carrier frequency and distance, which clarifies the requirements of mmWave

systems. Then, a description of the blockage effects on mmWave which is more

severe when compared to lower frequencies due to the poor diffraction and high

penetration loss, and the effects of weather and atmospheric conditions are de-

scribed.

11
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2.2 mmWave

The signal processing of mmWave is of significant interest [4], due to the different

propagation environments, which presents new challenges when compared to sub-6

GHz wireless communication systems. The major drawback of mmWave propaga-

tion is the high path loss due to higher carrier frequencies of 30-300 GHz. With the

lack of commercial activity, but some unregulated systems currently operating in

a fragment of this band, attention has now shifted towards this underutilized spec-

trum [25, 26, 27]. However, mmWave propagation models are still maturing with

extensive measurements but there are few analytic models [28, 29, 30]. Therefore,

the propagation characteristics of mmWave frequencies are of significant concern,

due to its high sensitivity and vulnerability to obstacles in its path.

2.2.1 mmWave Path Loss

The free space path loss (FSPL) can be used to predict the radio frequency (RF)

attenuation over distance for transmission, which is inversely proportional to the

square of the carrier frequency, this relationship is given by

Pr = PtGrGt

(
λ

4πd

)2

, (2.1)

where Pt is the transmit power, Pr is the received power, d is the relative distance

between the transmitter (Tx) and the receiver (Rx), λ is the wavelength, and

Gt and Gr are the transmit and receive gains. Therefore, (2.1) implies that the

pathloss increases inversely with the wavelength squared. To properly evaluate

the performance of wireless communication systems, it is critical to understand

the propagation environment. However, all propagation losses other than FSPL

are not included in this term.
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Figure 2.1: Free space path loss for mmWave frequencies

2.2.2 Atmospheric and Weather Losses

The FSPL model describes only part of the signal attenuation. Signals can expe-

rience additional path losses along the propagation path within the atmosphere.

Atmospheric gaseous losses for mmWave transmission are due to oxygen molecule

and/or water vapor adsorption. This oxygen or water vapor absorption result in

band limited high attenuation causing signals to have shorter propagation dis-

tances. Rain is another concern regarding mmWave propagation, since raindrops

are roughly the same size as the radio wavelengths.



CHAPTER 2. MMWAVE MIMO: LITERATURE REVIEW 14

50 100 150 200 250 300 350 400

Frequency (GHz)

10-3

10-2

10-1

100

101

102

A
tm

os
ph

er
ic

 G
as

 A
tte

nu
at

io
n 

(d
B

/k
m

)

Figure 2.2: Atmospheric and molecular absorption at mmWave frequencies

Figure 2.2 illustrates the propagation loss due to atmospheric gases varies with

the frequency, according to ITU model in [31]. It can be seen that signals interact

with particles in the air and lose energy along the propagation path. The 57− 64

GHz band is an oxygen absorption peak, and the 164− 200 GHz band is a water

vapor absorption peak. Nevertheless, beyond those absorption peaks, the spectral

regions of mmWave are not heavily affected by gaseous losses.

Additional losses at mmWave frequencies can be attributed to reflection, which

greatly depends on the material and surface. Reflection reduces the range of

mmWave, but it enables non-line-of-sight (NLOS) communication. mmWaves suf-

fer from high penetration losses as the signals do not penetrate solid materials

well, as compared to lower frequencies which can penetrate most buildings easily.

There are high levels of attenuation for certain building materials such as brick

and concrete, which reduces the chances of outdoor to indoor communication at
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mmWave. However, some signals might reach inside the buildings through glass

windows and wood doors. Foliage losses for mmWaves are significant and can be

a limiting impairment for propagation in some cases. An empirical formula to

calculate the propagation through foliage was developed in [32].

2.3 Solution to mmWave Attenuation

It is known that an antenna with a larger aperture has a larger directivity than a

smaller one. Therefore FSPL at mmwave can be accounted for by the decrease in

the effective aperture as the carrier frequency increases. Since the antenna gain

is proportional to the square of the frequency, it was pointed out in [7] that for a

fixed physical aperture size, more antennas can be packed into the same area for

shorter wavelengths. The transmission loss of mmWave is credited to FSPL, due

to the fact that wavelength decreases with the increase in carrier frequency. Since

smaller cell sizes are applied to improve spectral efficiency today [33], the rain

attenuation and atmospheric absorption do not create significant additional path

loss for short propagation distances. mmWave communications can be mainly used

for indoor environments [34], small cell [35] or wireless backhaul [29, 36]. There-

fore, mmWave communications will either be short range or require large antenna

arrays to increase the coverage, leading to the combined benefit of mmWave Mas-

sive MIMO [6].

mmWave frequencies can benefit from multiantenna techniques by increasing

the number of antenna elements to compensate for propagation losses. Along

with smaller cell sizes, since the rain attenuation and atmospheric absorption do

not create significant additional path loss for short propagation distances. The

use of multiantenna techniques, provide diversity and array gain in the wireless

channel. MIMO communication systems are defined by the use of MIMO antennas
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proved satisfactory for previous and current demands by achieving higher spectral

efficiencies in communication systems. Therefore by increasing MIMO, commonly

referred to as massive MIMO, the door is opened for a large variety of features

[18]. MIMO systems typically involve the combination of antenna arrays, signal

processing and wave propagation characteristics.

2.4 Multiantenna Techniques

In this section, a description of the general evolution of wireless communication

systems from single antenna to multiantenna deployments is given. The best way

to increase data rates over a communications link is to increase the overall received

signal power for a given transmit power. An effective method is to increase the

number of transmit and/or receive antennas. MIMO schemes that can attain

benefits such as multiplexing gain, diversity gain, and beamforming gain, whilst

employing low-complexity linear receivers.

2.4.1 Spatial Multiplexing

In spatial multiplexing systems, multiple independent data streams are simultane-

ously transmitted by the multiple transmit antennas, thereby achieving a higher

transmission speed. The basic principle of spatial multiplexing can be summa-

rized as follows. The source bit sequence at the transmitter side is split into

min(MT ,MR) sequences, which are modulated and then transmitted simultane-

ously from the MT transmit antennas, and received with MR receive antennas,

using the same carrier frequency. The number of spatially multiplexing streams

can be determined from the rank of the MIMO channel matrix. At the receiver

side, interference cancellation is employed in order to separate the different trans-

mitted signals.
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2.4.2 Diversity

Diversity techniques are employed in the presence of fading, exploiting the pres-

ence of multiple propagation paths between the transmitter and receiver. This

technique allows the receiver to have several replicas of the same transmitted

signal, while assuming that at least some of them are not severely attenuated.

Diversity gains be achieved by creating independently fading signal replicas in the

time, frequency or spatial domain. Therefore, diversity relies on the signal to be

transferred over several different paths, where multiple versions of the same signal

may be transmitted and/or received and combined at the receiver.

• Transmit Diversity is performed at the transmitter with multiple transmit

antennas transferring the signal over different propagation paths, and is

complicated to perform. Symbols can be spread across the array with the

application of delays [37]. Feedback data from the receiver to the transmitter

can be adapted to take advantage of the multiple signal paths.

• Receive Diversity utilizes multiple receive antennas to attain different ob-

servations of the same signal. These variations can be combined to better

detect the transmitted symbols. Diversity with multiple receive antennas

can be achieved with different combining techniques [38].

2.4.3 Beamforming

Beamforming uses multiple antennas at the base station by focusing energy in

a specific direction in space [39], in order to send or receive the same informa-

tion across all antennas by varying the phase and/or amplitude on each antenna.

Beamforming relies on the knowledge of the channel to exploit the antenna array.

Therefore, if the directions of the different propagation paths are known, then

beamforming techniques can be employed in order to direct beam patterns in the

direction of the specified users. Significant signal-to-noise ratio (SNR) gains can
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be achieved by capitalizing on the antenna array gain when focusing energy in

the direction of a desired user, whilst reducing the energy towards other users.

Also, beamforming can be used in order to reduce the co-channel interference or

multiuser interference. It is an effective technique to reduce interference, increase

coverage, and increase capacity.

2.5 Shannon’s Capacity Formula

The maximum rate at which information can be communicated across a noisy

channel with arbitrary reliability is given by,

C = log2(1 + SNR) bps/Hz (2.2)

Expressing Shannon’s capacity formula for a given channel with a bandwidth B,

the maximum achievable transmission capacity can be expressed as

C = B log2(1 + P

NoB
) bits/s (2.3)

where P is the received signal power and N0 is the noise spectrum, assuming that

the channel is white Gaussian, as the SNR is represented by P/(NoB). These

equations can be adopted in the MIMO configurations.

2.6 MIMO

A MIMO wireless system is a communication link where the transmitter and the

receiver are equipped with multiple antennas. Considering the link between the

transmitter and receiver, in general terms the link can be represented as

rrr = HHHxxx+ nnn (2.4)
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where rrr is the received signal, HHH is the channel between the transmitter and

receiver, xxx is the data transmitted and nnn is the noise within the channel.

2.6.1 SISO to MIMO

A wireless communication link is called single input single output (SISO) when

the number of transmit antennas, M , is equals to one (M = 1), and similarly

at the receiver (N = 1). A single input multiple output (SIMO) configura-

tion has a single antenna at the transmitter and multiple antennas at the re-

ceiver, whereas (M = 1, N > 1). Multiple Input Single Output (MISO) configu-

rations have a multiple transmit antennas transmitter and a single receive antenna,

whereas (M > 1, N = 1). Multiple input multiple output (MIMO) communica-

tions refers to multiple transmit antennas and similarly multiple receive antennas,

hence (M > 1, N > 1).

(a) SISO (b) SIMO

(c) MISO (d) MIMO

Figure 2.3: The figure depicts the different multiantenna configurations

2.6.2 Channel Capacity of SIMO, MISO and MIMO

SISO capacity is given as:

C = log2 (1 + |h|
2

σ2 ) (2.5)



CHAPTER 2. MMWAVE MIMO: LITERATURE REVIEW 20

where hn is the normalized complex gain of the wireless channel.

SIMO capacity is given as:

C = log2 (1 + 1
σ2

N∑
n=1
|hn|2) (2.6)

where hn is the normalized complex channel gain associated with the nth receive

antenna and N is the number of receive antennas.

MISO capacity is given as:

C = log2 (1 + 1
Mσ2

M∑
m=1
|hm|2) (2.7)

where hm is the normalized complex channel gain associated with the mth trans-

mit antenna and M is the number of transmit antennas.

MIMO capacity is given as:

C = log2

(
det

[
IIIN + 1

Mσ2HHHHHH
H

])
(2.8)

where HHH is the (M ×N) channel matrix associated with the N receive antennas

and M is the number of transmit antennas. In (2.8), when there is no channel

knowledge available at the transmitter, the best solution is to divide the power

equally amongst the transmit antennas.

2.6.3 Precoding Techniques

Precoding is a multiantenna technique which supports multi-stream transmis-

sions, and is known as beamforming.Precoding at the transmitter may take one

of several forms, depending on the criterion or the method used to perform the
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precoding. The simplest forms of precoding are linear and based on the following

criteria.

• Maximum Ratio Transmission (MRT) or Hermitian precoding is a simple

low complexity precoder given as

WWWMRT = HHHH (2.9)

This is a low complexity scheme, but more antennas are required at the BS

to achieve a level of performance.

• Zeroforcing (ZF) is an interference mitigation strategy for MU-MIMO sys-

tems. The objective is to design one user’s beamforming vector to be or-

thogonal to other selected users’ channel vectors. The ZF beamforming to

eliminate multiuser interference is given by

WWWZF = HHHH(HHHHHHH)−1 (2.10)

• Minimum Mean Square Error (MMSE) precoding can trade interference

reduction for signal power inefficiency. The MMSE pre-coder is given as

WWWMMSE = HHHH(HHHHHHH + σIII)−1 (2.11)

where σ is the (SNR) at the MS. The MMSE aims to avoid the performance

loss of the ZF precoding, when compared to the ideal channel capacity.

2.6.4 Mulituser MIMO

Multiuser MIMO is of significant interese as most communication systems deal

with multiple users who are sharing the same radio resources. Figure 2.4 illus-

trates a typical MU-MIMO communication environment where a single BS serves
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multiple UEs. Consider the MU-MIMO system as shown in Figure 2.4, the BS

Figure 2.4: Multiuser MIMO system

has M antennas and each UE has N antennas. K independent UEs are served

by the BS, and all data streams to each user should be independent. Therefore

precoding techniques are essential to MU-MIMO transmissions to separate spatial

streams among UEs. The downlink signal model can be represented as

r̄rrk = HHHk

K∑
k=1

WWW kxxxk + nnnk (2.12)

where r̄rrk is the received signal of the kth UE, HHHk is the channel between the BS

and kth UE, xxxk is the data transmitted and nnnk is the noise within the channel.

2.6.5 Mulituser Precoding

In MU-MIMO scenarios, the optimum transmission strategy for the downlink can

be complicated due to the changing the transmit strategy for one user, which

influences the SINR for every other user. The received signal of the receiving UEs

is given by

yyy = HHHWWWxxx+ nnn (2.13)

When a single BS with M antenna elements communicates simultaneously with

K UEs, and assuming that the BS has complete CSI, interference between UEs

can be effectively cancelled. Then, the received signal expressed in (2.12) at the
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kth user can be expanded to

yyyk = HHHkWWW kxxxk +HHHk

∑
j 6=k

WWW jxxxk + nnnk (2.14)

In order to keep these data streams of different UEs apart is achieved by precoding.

The downlink channel between K UEs

H̄HH = [HHH1,HHH2, · · · ,HHHk] (2.15)

From Section 2.6.3, the following precoding matrices for MRT, ZF and MMSE

beamforming are used.

MRT: W̄WW = H̄HH
H (2.16)

ZF: W̄WW = H̄HH
H(H̄HHH̄HHH)−1 (2.17)

MMSE: W̄WW = H̄HH
H(H̄HHH̄HHH + σIII)−1 (2.18)

where

W̄WW = [WWW 1,WWW 2, · · · ,WWW k] (2.19)

For the effective channel matrix in (2.15), interference free transmission can be

achieved when precoding is applied and can be represented as

HHHkWWW j = 0 ∀j 6= k (2.20)

Therefore it can be seen that the beamforming vectors are designed to completely

cancel interference to others.
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2.7 mmWave massive MIMO

2.7.1 Massive MIMO

Massive MIMO is an emerging technology which increases MIMO by orders of

magnitude compared to current state of the art [40]. The main objective is to

reap all the benefits of conventional MIMO but on a much larger scale. Massive

MIMO employs the use of antenna arrays in the range of a few hundred antennas

simultaneously serving many terminals in the same frequency resource. In future

broadband networks, massive MIMO will be energy-efficient, secure, robust, and

efficient in spectrum use. This can be achieved by a massive network densifica-

tion with a significant increase in the number of antennas deployed per area, since

spectral resources are scarce. The aim of massive MIMO is to reap all the ben-

efits of conventional MIMO but on a much larger scale by using antenna arrays

in the range of a few hundred antennas simultaneously serving many terminals in

the same frequency resource [41]. Massive MIMO will be energy efficient, secure,

robust, and efficient in spectrum use. This can be achieved by a massive network

densification with a significant increase in the number of antennas deployed per

area, since spectral resources are scarce.

Massive MIMO first appeared in [41], where the author showed that as the

number of base station antennas grows without bounds, all the effects of uncor-

related noise and fast fading disappear. Also, the use of a large number of excess

BS antennas serving a small number of users, allows for the simplest precoding

techniques to be performed [42]. However, massive MIMO facilitates spatial mul-

tiplexing which relies on the BS having good knowledge of the channel. Two

advantages of massive MIMO are increased capacity and improved energy effi-

ciency. Therefore, more antennas means more degrees-of-freedom (DoF) that the

propagation channel can provide [43]. However the number of antennas cannot
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be infinitely large in a practical system due to size.

Figure 2.5: Sum rate for 10 UEs as the number of transmit antennas increase

Figure 2.5 illustrates the achievable downlink DL sum rates for 10 UEs. The

figure shows the performance of the precoding schemes as the number of antennas

increases. The MRT, ZF and MMSE precoding schemes in Section 2.6.3 are

considered. The MMSE and ZF precoding schemes provide the same sum rates

as the number of transmit antennas, M , increases. However, when M < 20 the

ZF schemes suffers due to not enough DOF compared to the number of UEs.
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2.7.2 mmWave MIMO

mmWave MIMO communications [44] has become one of the most attractive so-

lutions for deployment and coverage in 5G wireless systems [45, 8], which can

benefit from the large array gains [7] of massive MIMO, due to short wavelengths

allowing deployment of dense antenna arrays in small physical spaces [46], since

mmWave propagation is of significant concern [47, 48]. Massive MIMO promises

an order-of-magnitude improvement in data throughput, link reliability, range,

and transmit-energy efficiency [6, 18, 49], where mmWave can benefit from beam-

forming architectures with massive antenna arrays [50].

mmWave communications benefit from beamforming by having large antenna

arrays and an increase in antenna aperture [33], along with a reduction in the

downlink transmit power [51]. Beamforming is a technique used to focus en-

ergy in a specific direction to overcome pathloss [52], and is an efficient tool for

improving both data rates and capacity. Therefore it can be used to combat

the unfavorable effects of pathloss which significantly degrade the performance

of mmWave communication systems. Many beamforming techniques have been

developed by measuring the transmit output power using a variety of methods

for the weighting vector, which ensures that the received signals are combined

together in phase. The main objective of these beamformer techniques was to re-

duce the overall transmit power. However the impact of the RF components were

neglected in the analysis, since the number of RF chains presents a problem [53].
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2.7.3 Energy Efficiency

Energy efficiency in wireless communication techniques typically focus on mini-

mizing the transmission energy only, which is reasonable in traditional wireless

communication systems where the transmission energy is dominant in the total

energy consumption. However in mmWave massive MIMO, the circuit energy con-

sumption is comparable or even dominates the transmission energy. Therefore, a

major concern is the power consumption, in mmWave MIMO systems, is that it

relies on large numbers of antennas, and as the number of antennas increases the

number of RF chains also increase [54]. RF chains are accountable for 50-80% of

total power consumption at the BS [49]. The enhancement of energy efficiency

requires the total energy consumption to be considered in the mmWave circuit

design. Therefore, the energy efficiency of a transmission can be improved by

both reducing RF transmit power and saving circuit power, as the variation char-

acteristic of different users can be exploited for these improvements.

Since the circuit power consumption is now considered, which includes the

energy consumed by all the circuit blocks within the transmission, different ap-

proaches are taken in order to minimize the total energy consumption. Many ar-

chitectures have been investigated for mmWave MIMO throughout literature [55,

35, 56, 22, 11] with SE and EE in mind, such as the digital beamforming and

hybrid analog-digital beamforming. Digital beamforming structures offer a higher

DOF and better performance at the expense of cost and complexity, as it re-

quires separate RF components for each antenna element. Hybrid beamforming

structures have gained interest [36, 57], with a limited number of RF chains [56].

Architectures for connecting the RF chains in the hybrid processing that have been

studied in the literature are fully connected and partially-connected [26, 23, 58].

In the fully connected, each RF chain is connected to all the antenna elements. In

the partially connected only a subset of antenna elements are connected to each
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RF chain.

The partially-connected architecture is more energy efficient and implementation-

friendly since it can reduce the number of required phase shifters without signif-

icant performance loss. In particular, the authors in [57] demonstrate that the

spectral efficiency of the hybrid-connected structure is better than that of the

partially-connected structure and that its spectral efficiency can approach that of

the fully-connected structure with an increase in the number of RF chains. Con-

versely in [59, 60], the authors show that fully digital beamforming can achieve

better EE and still offer a superior performance, which is reinforced by the on-

going development in low-power circuits. Therefore, transmit antenna selection

(TAS) can be employed to reduce overall system complexity in massive MIMO

systems, resulting in an increase spectral efficiency (SE) or energy efficiency (EE).

2.7.4 Communication Efficiency

The deployment of mmWave and massive MIMO presents many challenges. [3]

states that a 5G system should be communication efficient which is a measure

of energy efficiency, and have the ability to be rate adaptive from the same de-

vice. Rate adaption for 5G refers to the flexiblity for both low and high data

transmissions, and energy efficiency refers to the total power saved for a given

transmission. In [61], the authors showed that as the number of base station

antennas increases without bound, the transmit power of each antenna can be re-

duced proportional to the number of antennas. In massive MIMO, low complexity

linear precoders are known to be close to optimal for massive MIMO, illustrated

in Figure 2.5. However, the large number of antennas at the base station (BS)

imposes a high computational complexity and high circuit power consumption. In

efforts to mitigate interference in multi-user MIMO, this high complexity occurs

with the matrix inverse of large matrices and the estimation of all the channels.
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Concerning energy efficiency, there is a fundamental tradeoff between the num-

ber of active antennas, which is associated with circuit power consumption, where

the power consumption scales linearly with the number of antennas [23, 54]. Tra-

ditional communication efficient techniques typically focus on energy efficiency

which is the minimization of the transmit power, which is acceptable when the

transmit power is large and the number of active RF chains is low. However,

for massive MIMO when the transmit power is low, the circuit power consump-

tion can be comparable or dominate the transmit power [62]. Therefore, a low

complexity technique such as transmit antenna selection (TAS) can satisfy these

requirements of 5G.

2.7.5 Transmit Antenna Selection

TAS is well-studied for traditional MIMO systems [54], with a few studies in

mmWave MIMO [63]. TAS is an effective approach to ensure communication

efficiency, saving power by turning off the inactive RF chains to satisfy a rate re-

quirement. However, optimal antenna subsets are found by an exhaustive search

which is impractical for massive MIMO. Therefore, it is critical to develop effec-

tive TAS algorithms for mmWave MIMO. Current studies in TAS mainly focus

on the performance with a fixed number of selected antennas, energy efficiency or

power minimization. The autors in [64] investigated the EE-SE tradeoff for mas-

sive MIMO with TAS. In [63], the authors proposed an iterative antenna selection

algorithm for a mmWave MIMO system exploiting the strong line-of-sight (LoS)

properties for beamforming gains, discrete stochastic approximation was used to

quickly lock onto a near-optimal antenna subset, and [65] considered the uplink

of large-scale MU-MIMO via an alternating optimization method.
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An algorithm that jointly designs the antenna selection and baseband com-

bining at the receiver for mmWave systems was studied in [58]. In [14], AS via

convex optimization is used to determine the optimum antennas for a massively

distributed MIMO system [66], which yields a fractional solution. The authors

in [19] used measured data at 2 GHz to select the highest path gains. One

method of selection relied on the Frobenius Norm of the channel state information

(CSI) [67], which is impractical as it requires re-computation after each antenna

element selection is made. The binary search method was employed in [68], which

is comparable to the sequential selection. In [54], maximum SNR AS for massive

MIMO systems was analyzed, and [69] performed TAS with non-orthogonal mul-

tiple acess (NOMA). In [68, 70, 71, 72], AS was performed resulting in a reduction

in overall power consumption and hardware cost, while investigated EE [73]. The

work in [74] suggested it is possible to increase sum rate by restoring any transmit

antennas that were not selected. However, these works assigned selected anten-

nas to all users, since multiuser (MU)-TAS is complex when associating each user

with its own subset. The authors in [75] presented an algorithm which divides the

total number of antennas into subgroups, then performs TAS on each subgroup.

However this approach reduces the chances of having the best subset, as only the

best antenna or set can be selected from each subgroup.

Research in reconfigurable antennas suggests the potential for fabricating large

antenna arrays and using inexpensive high performance switches to adaptively

select subsets [21], while retaining the advantages of massive MIMO [54, 76]. In

[19], it was proposed to perform TAS using antennas connected to power switches.

Considering the requirements for 5G, antenna subsets for each user offer better

overall solutions. TAS offers the flexibility of assigning antenna subsets per user

to satisfy individual rate or power requirements. TAS reduces power consumption

as EE is dependent on number of active antennas. Currently, there is no efficient
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method to find the global optimal solution other than the exhaustive search.

In this thesis, the combinatorial optimizing problem of TAS is formulated as a

binary knapsack problem (KP), capatilizing on its low complexity to implement as

compared to convex optimization [77, 78, 79]. Binary KPs are non-deterministic

polynomial-time (NP)-hard problems and are one of the most intensively and

widely studied combinatorial optimization problems [77].

Methodology

In this thesis, antenna selection is done accordingly to the channel conditions,

which represents a low-complexity method for determining antenna subsets. First,

TAS was investigated for SU-MIMO based on a specified rate requirement. The

performance of TAS and the number of antennas required against a threshold of

full MIMO performance is investigated. The impact of SNR on selection was also

investigated. Then an extension of TAS into MU-MIMO was done to include sum

rate maximization and rate requirements for individual subset allocation in MU-

TAS. Since MU-TAS is challenging when associating each user by its own subset, a

low complexity method is presented finding a sub-optimal solution. Two variants

for determining subsets are investigated, one variant is the maximum achievable

system sum rate given a fixed number of RF chains which can be related to a

fixed per UE power consumption, and the other is the minimization of total power

consumed by satisfying a predefined rate requirement. Our goal is to improve EE

with flexible and uniform user rates. Conventional approaches of MIMO maximize

rates with a fixed transmit power or minimize transmit power for fixed rates.

However, we factor the impact of the circuit power in the power consumption

with TAS. The number of transmit RF chains at the MIMO transmitter can

be reduced without compromising on the rate requirement using TAS. TAS can

reduce RF hardware complexity, size, and cost. The algorithm determines if any

given user rates can be delivered by simply selecting enough antennas.
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2.8 Summary

The inclusion of mmWave frequencies alleviates the spectrum shortage. However

mmWaves suffer from high pathloss. Therefore by going large with MIMO, a

mmWave system can benefit from large array gains and increased diversity. Fur-

thermore, massive MIMO systems allow for a better performance to be achieved

without the need for additional transmit power or bandwidth. However, the large

number of RF chains required is prohibitively high, and is reflected in the system

complexity, hardware complexity and total power consumption. Therefore, mas-

sive MIMO may require major architectural changes, particularly in the design at

the base stations, which leads to new deployment scenarios. However, TAS can

be employed which reduces the impact associated of having multiple RF chains.

Employing a smaller number of RF chains than the total number of transmit

antennas, can reduce system complexity and total power consumption.



Chapter 3

mmWave System Design

3.1 Introduction

This chapter provides the channel model and tools that will be used in this thesis.

This chapter discusses the capacity gains of the 3D beamforming in mmWave. The

effect of the number of transmit antennas at the BS is based on the antenna array

geometry. The principles for modeling the uniform liner array (ULA) and uniform

rectangular array (URA) geometries are studied. The URA is used to produce

the desired 3D beam. Both the horizontal and vertical element spacings are half

wavelength, which is necessary for this analysis, since it is uniform spacing. A

link budget analysis is given to evaluate the expected performance of the mmWave

MIMO system performance.

33
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Figure 3.1: mmWave MIMO downlink transmission.

Consider the downlink of a 3D-MIMO system as shown in Figure 3.1. The

system consists of a mmWave base station (BS) equipped with M antennas, which

transmit data to K single antenna user equipments (UEs). The BS is equipped

with a planar URA where the total number of transmit antennas M , is denoted

by M = Mh ×Mv, equally spaced elements.

3.2 mmWave Channel Model

The 3D mmWave channel is the geometric based stochastic model as shown in [80,

81, 82]. The channel between the mth BS antenna element and the uth antenna

element for the kth UE is given by

hu,m = αk · e(j 2π
λ

(r̂Trx,k,l·d̄rx,u))e(j 2π
λ

(r̂Ttx,k,l·d̄tx,m)) (3.1)
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where αk is the complex channel gain and is explained as follows,

αk =

Frx,θ(Θk, )

Frx,φ(Θk)


T  e(jΦθθk ) κke

(jΦθφ
k

)

κke
(jΦθφ

k
) e(jΦφφ

k
)


Ftx,θ(Ψk)

Ftx,φ(Ψk)

 , (3.2)

where Frx,θ, Frx,φ, Ftx,θ, and Ftx,φ are field patterns of the receive and transmit

antenna elements in the direction of θ and φ, respectively. Φk = (θk,ZOA, φk,AoA)

and Ψk = (θk,ZOD, φk,AoD). θk,ZOA, θk,ZOD, φk,AoA, and φk,AoD are the zenith

angle of arrival/departure (ZoA/D) and the azimuth angle of arrival/departure

(AoA/D). κk represents cross polarization power ratio. Φθθ, Φθφ, Φφθ and Φφφ are

random initial phases for four different polarization combinations. The terms r̂rx,k
and r̂tx,k are the receiver (rx) and transmitter (tx) spherical unit vectors expressed

in Cartesian coordinates as

r̂i,k =


sin θi,k cosφi,k,

sin θi,k sinφi,k,

cos θi,k


T

for i ∈
[
tx,rx

]
. (3.3)

d̄rx,u and d̄tx,u, in (3.1), are the location vectors of receive and transmit antenna

elements, respectively. Therefore, the miltiple input single output (MISO) channel

vector for the kth user is given by

hhhk =
[
hk,1 hk,2 · · · hk,m

]T
. (3.4)

3.2.1 Array Geometry & Steering

The antenna array steering vectors, at the UE aaar(θrk, φrk) and the BS aaat(θtk, φtk), only

depend on each antenna array’s geometry. Assuming that all the array elements

are isotropic sources, the beam patterns can be described by their array factors.
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Uniform Linear Array (ULA)

The steering matrix is defined based on the antenna array’s geometry and is

therefore independent of the antenna element properties. A uniform linear array

(ULA) is an easy case to illustrate, where a plane wave departing at angle θ has a

different phase at each of the elements but the same amplitude. The array factor

of the ULA with M elements, is given by

AF =
M−1∑
n=0

ejnψi (3.5)

where ψi defines the array’s orientation, and can be represented as follows:

ψi =



βdx sin θ cosφ d along x axis, when i = x

βdy sin θ sinφ d along y axis, when i = y

βdz cos θ d along z axis, when i = z.

β = 2π/λ, d is the inter-element spacing, and λ represents the wavelength of the

mmWave system. The array vector of the ULA, aaa(θ), is represented as

aaa(θ) =
[
1 ejψi · · · ej(M−1)ψi

]T
(3.6)

Uniform Rectangular Array (URA)

The uniform rectangular array (URA) given in Figure 3.2, enables the beamform-

ing system’s ability to scan in three-dimensional (3D) space. The array factor

of the uniform rectangular array (URA) in Figure 3.2, in the azimuth (az) and
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Figure 3.2: Uniform Rectangular Array (URA)

elevation (el) directions which are in (y-z) plane, and is given by

AF (θ, φ) = AFaz × AFel

=
L−1∑
l=0

ejlψaz ×
N−1∑
n̄=0

ejnψel

=
L−1∑
l=0

N−1∑
n=0

ej(lψaz+nψel) (3.7)

where L and N are the number of elements in the azimuth and elevation directions,

respectively. The URA steering vector can be extracted from the array factor

taking the form

aaa(θ, φ) = [1, · · · , ej(ψaz+ψel), · · · , ej((L−1)ψaz+(N−1)ψel)]T . (3.8)
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3.3 Signal Model

The signal vector transmitted by the BS antenna array with beamforming can be

defined as

x̄̄x̄x =
K∑
k=1

uuukxxxk, (3.9)

where uuuk represents the beamforming vector and x̄k represents the data symbol

to be transmitted to the kth user. The following approach is adopted to find the

beamformer weights. The BS beamformer weights uuuk are designed to maximize

the signal to noise ratio (SNR) at the kth user, and can be expressed as

uuuk = aaak(θ, φ)√
aaak(θ, φ)Taaak(θ, φ)

. (3.10)

In a single user scenario, the received signal at the selected kth user is given

as

yk = hhhHk uuukxxxk + nnnk, (3.11)

where hhhk is the channel between the BS and the kth UE, and nnnk is the additive

white Gaussian noise (AWGN) with zero mean and variance σσσ2. From (3.11), the

signal to noise ratio (SNR) experienced by the kth user is given as

µk = |h
hhHk uuuk|2

Mσσσ2
k

. (3.12)

The achievable rate at the kth user is given by

Rk = log2(1 + µk). (3.13)
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3.4 Link Budget Analysis

In a mmWave wireless communications system, it is essential to know the SNR

required to provide a certain level of performance at a specified rate or distance.

Therefore, a satisfactory number of elements must be determined through an anal-

ysis of the system design parameters. Considering (3.11) and the FSPL given in

chapter 2, the impact of the massive MIMO in mmWave frequencies can be stud-

ied.

Here we assume a simple line-of-sight free-space communication link with clear

path between the transmitter and receiver, and a fixed B, applied to a 60 GHz

system with the parameters defined in Table 3.1.

Table 3.1: Link budget Parameters

Spectral Bandwidth 1 GHz
Max radiated power 1 W
Antenna Structure Planar - URA

Horizontal Elements 1, 5, 10, 20
Vertical Elements 1, 5, 10, 20
BS antenna gain 0 dBi
UE antenna gain 0 dBi

BS antenna height 15m
UE antenna height ground plane
Thermal noise, N0 174dBm/Hz

distance 1− 100m
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Figure 3.3: Comparison of single transmit and URA antenna configurations

Combining the parameters defined in (2.1), (2.3) and (3.12), the SE is given by

SE = C

B
= log2 (1 + SNR

M

M∑
m=1
|hm|2), (3.14)

and Figure 3.3 illustrates the achievable SE as the distance between the BS and the

UE increases for different array sizes. It can be seen that as the distance increase

the SE decreases, this is due to the FSPL attenuation of mmWave. A comparison

was done with a single transmit antenna and three different size URAs. The URA

sizes are {5 × 5}, {10 × 10} and {20 × 20}. However the unfavorable effects of

FSPL are diminished as the size of the antenna array increases. The single trans-

mit antenna achieved the lowest SE, whilst the largest {20 × 20}-URA achieved

the highest.
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3.5 Beam Pattern Analysis

It is important to understand the radiation properties of antenna arrays.
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Figure 3.4: Comparison of ULA beam patterns

Figure 3.4 illustrates the beam pattern of two ULAs, the first ULA has eight ele-

ments and the second ULA has twenty elements. It can be observed that the sum

of the lobes, which includes main lobes and side lobes, equals to the total num-

ber of transmit antennas less one. Therefore an antenna array with M transmit

antennas can provide M̄ DOF, where M̄ = M − 1. It can also be observed that

as the number of antennas increases, the beam width of the main lobe decreases,

and the number of side lobes increases.
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(a) (b)

Figure 3.5: Comparison of 3D beamforming single beams. (a) {8× 8}-URA, and
(b){20× 20}-URA .

Figure 3.5 illustrates 3D beam patterns produced by two URAs. The first URA

has 8 elements in the horizontal and 8 elements in the vertical domain. 3D beams

give a good idea of how energy is focused when radiated towards the intended

UE, where the BS has planar arrays. In order to obtain optimal performance for

3D beamforming in a small cell scenario, the number of array antenna elements

should be sufficiently large. It can be observed in Figure 3.5a that the radiation

pattern is lower directivity, this is due to the fact that there is a smaller DoF

in both the horizontal and elevation domains. It can be observed in Figure 3.5b

that the radiation pattern is higher directivity, due to the fact that more energy

is within the main lobe when more elements are deployed.
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3.6 Summary

This chapter studied and applied the principle of beamforming with antenna ar-

rays to mmWave transmissions. A link budget analysis was given to illustrate the

impact of antenna arrays. It showed that as the number of elements increases for

a given transmission distance the SE achieved is better, and comparison is based

on the single antenna model. The antenna’s radiation pattern was investigated

to observe how the energy is focused towards a UE. The URA’s ability to scan

the 3D space was demonstrated. This provides the system model and a general

framework for the following chapters.



Chapter 4

TAS as a Knapsack Problem

4.1 Introduction

This chapter introduces the framework of binary Knapsack Problems (KP). A

TAS algorithm is developed which satisfies a quality of service (QoS) requirement

for a given user. In order to achieve a particular level of QoS, the number of

transmit antennas required is determined by remodeling it as a KP. The smallest

subset of antenna elements is found at the transmitter side to achieve the desired

level of QoS using KP. The KP based TAS algorithm is compared with the low

complexity TAS algorithm known as the sequential selection algorithm (SSA).

44
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4.2 TAS mmWave Fundamentals

Figure 4.1: Transmit antenna selection

As shown in Figure 4.1, the key feature of antenna selection is that there is a

selecting network between L RF chains and M antennas. Based on the channel

state information (CSI), the target of antenna selection is to utilize the selecting

network to select the best subset of antennas out of the total M antennas for data

transmission to maximize the achievable.

The gains of each user’s effective channel can be exploited at the transmitter in

a TAS based on the acquired CSI. Since mmWave propagation is highly sensitive

and vulnerable to obstacles in its path and were investigated in [4, 27, 47, 48].

These works show varying amplitudes across the entire array, demonstrating that

all antennas do not contribute equally. However, it can be observed that assign-

ing a smaller number of antennas can be an effective approach to satisfy a given

requirement, thus saving power through turning off inactive antennas. Therefore,
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transmit antenna selection (TAS) can be employed to reduce system complexity,

resulting in an increase SE or EE, since developing effective TAS schemes is crit-

ical in mmWave MIMO.

4.2.1 Optimal Transmit Antenna Selection

TAS may be considered as the most classical low RF complexity technology for

MIMO systems [83, 84]. TAS schemes tend to select the best MS elements out

of M antennas. However, while this saving tends to come at a small price of

performance loss when compared to having all antennas active, if there is a pre-

determined QoS, there can be a saving in overall power consumption. Optimal

TAS can be found through an exhaustive search, however this involves too much

complexity as it requires
(
M
Ms

)
combinations and is dependent on the total number

of transmit antennas, this becomes impractical especially in the case of massive

MIMO. Therefore, low complexity techniques have been proposed which are sub-

optimal.

TAS via convex optimization was shown to be optimum in [14, 19], which

yields a fractional solution due to the binary relaxation. However, TAS as a KP is

a low complex alternative to TAS via convex optimization which avoids the frac-

tional result which requires a further selection of the largest values found. When

compared to the low complex solution of sequential selection which is optimum

in single user selection, KP can match the performance of SSA. Also it should be

noted that KP based selection does not rely on the sorting of the antenna elements

which makes it practical for antenna selection in massive MIMO systems.
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4.3 Problem Formulation

It is important to determine how many antennas would be required to guarantee

a certain QoS. Also, it is required that each transmit antenna selected is assigned

to a particular user, therefore a Ck can be achieved between

C̃k ≤ Ck ≤ C̄k, (4.1)

where Ck is the required QoS for the kth user, C̃k is the minimum QoS and C̄k

is the maximum QoS which is the full array being active. Let Ck = αkC̄k, where

αk is the threshold value used to achieve a certain level of QoS. The value of αk
varies between C̃k/C̄k and 1, where 1 means that all antenna elements are assigned

to the kth user. For αk = C̃k/C̄k, the minimum number of antenna elements are

selected for the kth user. For an arbitrary value of αk, let us suppose Ms antennas

are selected, then the capacity will be given by

Ck = log2

1 + Pk|hhhkūuuk|2

MSσσσ2
k︸ ︷︷ ︸

qk

, (4.2)

where qk is the SNR requirement of the system. ūuuk is the modified beamforming

vector after antenna element selection, given as

ūuuk = SSSkuuuk, (4.3)

where SSSk represents the selection matrix and is represented as

SSSk = diag [s1, s2, . . . , sm] , (4.4)



CHAPTER 4. TAS AS A KNAPSACK PROBLEM 48

where

sm =


1, if antenna mth element is selected ,

0, otherwise.
(4.5)

diag{} performs the diagonal operation forming the diagonal selection matrix.

The capacity of the system in terms of received SNR, qk, can be expressed as:

qk = 2Ck − 1. (4.6)

In the proposed adaptive antenna selection technique, the number of active trans-

mitting antennas for mmWave MIMO systems changes adaptively according to

the SNR value in the system.

4.4 Transmit Antenna Selection

In order to find the number of transmit antenna elements required, the problem

can be represented as

M∑
m=1

smγm ≤ qk, (4.7)

where γm = |hmum|2 is composed of the channel gain hm and the beamforming

weight um is associated with the mth antenna element. γm is the m antenna

element contribution to SNR and qk is the QoS requirement. The TAS determines

a subset whose total SNR is closest to, without exceeding qk.
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4.4.1 Sequential Selection Algorithm (SSA)

This algorithm uses a sequential selection method to determine the transmit an-

tenna subset [73]. This algorithm sequentially selects antenna elements until the

constraint in (4.1) is met. Antenna elements are added, to an empty set, one by

one in the order that they appear. SSA can be improved by sorting antennas in a

descending order, starting with the best channel conditions to the worst, allowing

the best antennas to be combined satisfying the QoS. However, sorting when M

is large is quite complex.

Algorithm 1 Algorithm for SSA

Input: M , γγγ, q
Output: out

Initialisation :
1: s = zeros(1 to M)
2: i = 0
3: j = 0
4: for m = 1 to M do
5: i = i + γ[m]
6: if (i ≤ q) then
7: s[m] = 1;
8: j = i
9: end if(i ≥ q)

10: end for
11: return s j
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4.5 TAS Knapsack Problem

4.5.1 Standard Knapsack Problem

The classical binary KP [77], consists of packing a subset n of N given items into

a knapsack of capacity constraint c. Each item has an associated profit and a

weight.

maximize
M∑
m=1

pjx̄j (4.8)

subject to
M∑
m=1

wjx̄j ≤ c,

x̄j = 0 or 1, j ∈ J = {1, . . . , j}

A variation of this problem is to minimize (instead of maximize) the profit sum-

mation, under the constraint that the total weight is greater than or equal to a

given value.

4.5.2 TAS Knapsack Problem

TAS problems can be efficiently solved as a knapsack problem. The capacity of

the knapsack can be regarded as the rate or transmit power requirement and the

item types as the antenna contributions to which this resource can be allocated.

In our problem the objective of using binary KP is to select the minimal number

of antennas which exactly fills the knapsack and maximizes capacity.

TAS KP Algorithm

The optimal SSSk can be found by an exhaustive search over all possible combina-

tions which is impractical for mmWave MIMO, due to the extremely large number

of combinations [54]. Binary KP can select the minimal number of antennas which

exactly fills the knapsack satisfying QoS. The TAS problem is now reformulated
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following the the structure of the KP defined in (4.8). The number of selected

antennas depends on the QoS required at a UE, which in our case is the user’s

rate. sm is the binary decision variable, when sm = 1 the m-th antenna element is

selected, and sm = 0 otherwise. In order to find the minimum number of transmit

antenna elements required, (4.7) is reformulated as

maximize
M∑
m=1

γmsm (4.9)

subject to
M∑
m=1

γmsm ≤ qk,

sm = 0 or 1, m ∈M = {1, . . . ,m}

Our Problem (4.9), is a special case of binary KP with equal values and weights,

known as the value independent knapsack problem which is equivalent to the

subset sum problem [77]. A general description of the TAS algorithm is described

as follows.

Algorithm 2 Algorithm for TAS KP

Input: M , γγγ, q
Output: out

Initialisation :
Q[M + 1][q + 1];

2: for m = 0 to M do
for n = 0 to q do

4: if (m = 0 or n = 0) then
Q[m][n] = 0;

6: else if (γ[i− 1] < r) then
Q[m][n] = max([m− 1] +Q[m− 1][n− γ[m− 1]], Q[m− 1][n]))

8: else
Q[m][n] = Q[m− 1][n]

10: end if(i ≥ Q)
n = n+ 1

12: end for
m = m+ 1

14: end for
return Q[M ][q]
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4.5.3 Basic Power Consumption Model

Power consumption is important for characterizing the performance of a TAS

system. Now we describe an approximated power consumption model for the

architecture in Fig. 4.5. A separate RF chain is needed for every active antenna

in practical systems, L = M . The total power consumed at the BS is given by

Ptot = Pdata +MRF(PRF + Pps), (4.10)

where Pdata is the total power consumed to transmit the signal. MRF represents

the number of active RF chains. PRF is the power consumed by an RF chain. Pps

is the power consumed by the phase shifters. From [85], practical values for small

cell transmission are considered, since mmWave is more likely to be applied in

small cells. Therefore, Pdata = 1W , PRF = 250mW and Pps = 1mW. The energy

efficiency is given as the capacity divided by the total power consumed, and can

be written as

η = C

Ptot
, (4.11)

where C denotes the capacity of the system and Ptot is the total power consumed

which is given in (4.10).
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4.5.4 Complexity Analysis

This section provides the complexity evaluation of the transmit antenna selection

algorithms. TAS algorithms select a subset of antennas, Ms, from the total num-

ber of transmit antennas, M . The complexity is evaluated in terms of the required

numbers of multiplications and additions, and is dependent on the number of an-

tennas selected on the BS array.

Table 4.1: Complexity Summary

Algorithm Complexity
Algorithm Additions Multiplications

SSA - unsorted 4Ms − 2 2M2
s + 2Ms

SSA - sorted M2 + 4Ms − 2 M2 + 2M2
s + 2Ms

KP 4Ms − 2 2M2
s + 2Ms

Table 4.1 summarizes and provides the complexity comparison of the KP based

antenna selection and the SSA algorithm, sorted and unsorted. The proposed KP

and the SSA antenna selection algorithms requires (4Ms−2) additions and (2M2
s +

2Ms) multiplications. However, an additional complexity of (M2) computations

is required for the sorting of the antenna elements according to gains.
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4.6 Results

This section discusses the simulations for the achievable capacity of the 3D beam-

forming in a small cell with KP antenna selection. The affect of the threshold is

shown with respect to SNR followed by the comparisons of the SSA (sorted and

unsorted) with the KP algorithm. It is assumed that the BS randomly selects

users, all having similar QoS requirements.
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Figure 4.2: The achievable capacity with KP selection based on the QoS require-
ment in massive MIMO

Figure 4.2 shows the performance of MU-MIMO with 2 users, where the BS

has a 10× 10 URA and each UE has a single receive antenna. Different values of

threshold, α, are compared with SU-MIMO and MU-MIMO. It can be observed

that the capacity of MU-MIMO, Cmin, saturates due to spatial interference. Also

the value of α improves from α = Cmin/Cmax, within the range of 0.5 to 0.9, the
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capacity of the system improves. Therefore, by using single user performance of a

full system as a bench mark, the capacity of the antenna selection using KP can

improve overall system performance.
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Figure 4.3: The achievable capacity for a reference UE with KP in massive MIMO

Figure 4.3 illustrates the performance of KP in MU-MIMO for a reference user. It

can be observed that the capacity of the system improves with the improvement of

SNR. However, the capacity decreases with the number of users. From the figure,

the performance of KP is similar to that of the SSAu and SSAs for the unsorted

SSA and sorted SSA respectively. SSAu performance is better than the SSAs due

to not being sorted.
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Figure 4.4: The Energy Efficiency of TAS for massive MIMO

In Figure 4.4, a comparison the energy efficiency of KP with the SSA was

done. The effects of the transmit power and the number of selected antennas on

the energy efficiency is shown. From the graph it can be observed that the energy

efficiency improves as SNR increases. It is observed that KP has equivalent energy

efficiency with the SSAs and is superior to the SSAu. It can also be observed that

TAS algorithms have a greater energy efficiency when compared to using all the

transmit antennas. Therefore, the KP has good performance in massive MIMO.

These results show that larger antenna subsets decrease the energy efficiency, in

the case of the SSAu.
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Figure 4.5: The achievable capacity with TAS based on the number of antennas
selected (Ms) in massive MIMO

Figure 4.5 shows the performance of SU-MIMO with TAS, where the BS has

a 16× 16 URA and each UE has a single receive antenna. The figure also shows

the capacity performance for different values of SNR, α, as the number of Ms

antennas are selected. From the figure it can be observed that the capacity of KP

and the SSA are in agreement as the Ms antennas are selected. It can be observed

that as Ms increases the capacity of the system improves. However, it can be seen

that the KP does not rely on sorting of the elements like the SSA. Therefore,

by using single user performance as a bench mark, the capacity of the antenna

selection using KP can meet the system requirements, since the SSA finds the

local optimum. The single user scenario aims to show the performance of TAS as

a binary KP.
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Figure 4.6: The Energy Efficiency with TAS based on a QoS requirement

Figure 4.6 shows the performance of EE for α ranging from 1 to 0.7. The

effects of the transmit power and the predetermined QoS requirements on the

energy efficiency are shown. It can be observed that at lower QoS requirements

there is an increase in EE, this occurs due to more antennas being switched off.

Noticeably, at 90% of the full antenna’s performance, it can also be observed that

there is almost 400% increase in EE around 20dB. However, it can be seen that

at high SNR, 50 to 60 dB and low SNR, −10 to 0 dB, the EE are relatively the

same. At low SNR with TAS, the difference in α is negligible and the system will

require roughly the same number of antennas. It can be observed that as the SNR

increases to the high SNR region of 50 to 60 dB, the transmit power dominates

the system, although less antennas are required to satisfy QoS.
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Figure 4.7: The EE and SE trade off for QoS requirements

Figure 4.7 shows the EE and SE trade off for α ranging from 1 to 0.7. It can

be observed in Figure 4.7, that α = 0.7 a larger EE can be achieved, and when

the full array is active or α = 1 a larger SE is achieved. However, as the SE

increases the EE increases for all values of α until an optimum is reached and

then decreases. It can also be observed when 2 < SE < 7.5 the maximum EE is

achieved when α = 0.7. This suggests the further power saving can be achieved

for a fixed SE within a certain region. However, for values of SE > 7.5, the EE

performance decreases towards that of α = 1, and the power savings becomes

negligible. The results illustrate that additional power savings can be gained for

known QoS requirements.
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4.7 Summary

In this chapter the problem of TAS with beamforming for mmWave MIMO was

studied with the objective of finding the best antenna subset for a given QoS,

showing that EE can be significantly increased which EE is proportional to the

number of active transmit antennas. The average rate for a single user was derived

for threshold values and compared against the benchmark of the single user with

all BS antennas active. A comparison of KP with SSA was shown achieving

similar performance, but KP out-performed SSAu in energy efficiency and the

computational complexity is lower than the SSAs. TAS is a viable method for

reducing overall system complexity.



Chapter 5

Multiuser TAS

5.1 Introduction

In this chapter, a low complexity suboptimal transmit antenna selection algo-

rithm for MU-MIMO systems is proposed. The basic idea of most MU-MIMO

approaches is to assign different beams to different users, with baseband digital

processing to suppress inter-user interference. The proposed algorithm determines

the best subsets of antennas from the total antennas available in the base station

for transmission without any special ordering. A comparison of the performance

for MU-TAS with conventional MU-MIMO is given. An evaluation of the com-

munication efficiency of TAS is given.

61
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Figure 5.1: Symbolic representation of MU-MIMO with Full Transmit Antenna
Array.

5.2 MU-MIMO TAS

Consider the downlink of a 3D-MIMO system as shown in Fig. 5.1. The system

consists of a mmWave base station (BS) equipped with M antennas each having

a switch, which transmit data to K single antenna user equipments (UEs). The

switches indicate that the antennas are being switched on or off for selection.

Following the channel model in Chapter 3, the signal model is explained as follows.

5.2.1 Signal Model

The received signal at the kth user is given as

yk = hhhHk uuukxxxk + hhhHk
∑
j 6=k

uuujxxxj + nnnk, (5.1)

where hhhk is the channel between the BS and the kth UE, and nnnk is the additive

white Gaussian noise (AWGN) with zero mean and variance σσσ2. From (5.1), the

signal to interference plus noise ratio (SINR) experienced by the kth user is given



CHAPTER 5. MULTIUSER TAS 63

as

µk = |hhhHk uuuk|2∑
j 6=k |hhhHk uuuj|2 + σσσ2

k

. (5.2)

The achievable rate at the kth user is given by

Rk = log2(1 + µk). (5.3)

The user rate Rk is a nonconvex function with respect to the beamforming vectors

uk.

5.3 Downlink Optimization for Massive MIMO

Systems

Massive MIMO systems seek to satisfy a predetermined QoS for a given power

constraint. For massive MIMO, the formulation of the downlink beamforming

problem is to impose a certain constraint on the received SINR of each user

and minimize the total transmit power (or maximize a rate requirement) sub-

ject to these constraints. These formulations usually provide the connection to

information-theoretical results within the rate region.

5.3.1 Massive MIMO Power Minimization

The power minimization problem of a MU-MIMO downlink under user-specific

constraints when the channel vectors are known at the BS, results in an optimiza-

tion problem and can be written as

minimize
K∑
k=1
‖uuuk‖2 (5.4)

subject to log2(1 + µk) ≥ R̄k
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where ‖uuuk‖2 is the transmit power to be minimized satisfying a given rate require-

ment. The problem (5.4) is a convex optimization problem and can be efficiently

solved.

5.3.2 Massive MIMO Rate Maximization

When there is a fixed radiated power at the BS for a MU-MIMO downlink channel,

the optimization problem can be written as

maximize
K∑
k=1
{log2(1 + µk)} (5.5)

subject to ‖uuuk‖2 ≤ Pk,

where Pk is the transmit power allocated for each UE and solved via convex

optimization.

5.4 Problem Formulation

Our problem of interest is to develop a TAS algorithm which can be dynamic and

can satisfy the requirements of communication efficiency in a 5G system. The

optimal SSSk can be found by an exhaustive search over all possible combinations

which is impractical for mmWave MIMO, due to the extremely large number of

combinations [54]. Therefore it is important to select antennas which satisfy the

desired objective. However, it is required that each transmit antenna selected is

assigned to one UE only. The objective is to develop a TAS algorithm which max-

imizes sum-rate of a mmWave system. In a massive MIMO subject to a transmit

power constraint, antennas can be chosen such that the number of selected anten-

nas meets a certain transmit power requirement. When there is a fixed radiated

power for each UE, at the BS for a MU-MIMO downlink channel, the optimization
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problem can be written as

maximize
K∑
k=1

log2

(
1 + |hhhHk SSSkuuuk|2∑

j 6=k |hhhHk SSSjuuuj|2 + σσσ2
k

)

subject to
M∑
m=1

SSSk = Ms (5.6)

SSSk is the M ×M diagonal selection matrix of the kth UE and is represented as

SSSk =



s1 0 . . . 0

0 s2 0
... . . . ...

0 0 . . . sm


(5.7)

where

sm =


1, if antenna mth element is selected ,

0, otherwise.
(5.8)

s variables represent the binary entries in the diagonal selection matrix. However,

since the variables of sm are binary, the optimization problem is NP-hard. The

optimal SSSk can be found by an exhaustive search over all possible combinations

which is impractical for massive MIMO, due to the large number of combina-

tions [14]. TAS via convex optimization yields a fractional solution and is not

suitable as it can lead to an antenna being assigned to multiple UEs. Therefore

low complexity techniques are of significant interest.

5.5 Low Complexity Transmit Antenna Selec-

tion

There is no efficient method to find the global optimal solution at present. In this

chapter, the problem is addressed in a sub-optimal but low-complexity way. It is
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common practice to reformulate the TAS problem in terms of the SINRs which

is equivalent to (5.3) due to the one-to-one monotonic relationship between Rk

and µk. This relationship makes it possible for TAS algorithms to select transmit

antennas based on the channel gains on a per antenna element basis. Therefore

it is possible to select K subsets containing Ms transmit antenna elements having

the highest powers. This method of TAS is known as the SNR maximization

antenna selection and a brief description is given in the following.

SNR Maximization Antenna Selection

This TAS criterion is based on each antenna element’s contribution to SNR. The

approach is a simple selection process which aims to identify the subset of antennas

with the highest contributions to SNR with a sub-optimal approach [86]. The

problem is given as follows

M = max
Ms

{γ1, γ2, · · · , γm} (5.9)

where max
Ms

identifies the Ms highest values, M is the antenna index subset de-

termined by selection, and Ms is the subset size. γm = |hmum|2 is composed of

the channel gain hm and the beamforming weight um associated with the mth

antenna element. Now, using only the contribution to SNR per antenna element

as the criteria for selection the problem can be represented as

µ̄k =
M∑
m=1

γk,msk,m, (5.10)

where µ̄ is the resultant SNR after TAS is performed. Therefore, it is important

to select antennas which maximize the SNR for a predefined subset. Also, it is

required that each transmit antenna selected is assigned to one UE.
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SNR Matching Antenna Selection

Now, using only the contribution to SNR per antenna element as the criteria for

selection the problem can be represented as

M∑
m=1

sk,mγk,m ≥ qk, (5.11)

where γm is the mth antenna element contribution to SNR and qk is the SINR

requirement. The TAS determines a subset whose total SNR is closest to qk and

can be determinded by

qk = 2Rk − 1. (5.12)

5.5.1 Multiuser Sequential Selection Algorithm

Following the algorithm provided for SSA to determine the transmit antenna

subset, this section extends the SSA to the MU scenario. Now, antenna elements

are sequentially selected until the constraint in (5.10) or (5.11) is met. Starting

with an empty set, antenna elements are added one by one in the order that

they appear. SSA is improved by sorting antennas according to their channel

conditions in a descending order, starting with the best to the worst, allowing the

best antennas to be combined. One condition of extending the sequential selection

method to MU systems for determining the transmit antenna subset, the SSA is

restricted to satisfying one UE at a time. Therefore, antenna elements are selected

locally by each user based on the selection criteria. Starting with one user at a

time, TAS is performed based on the requirements. Once an antenna is selected

it is removed from the available set and cannot be reassigned to any other UEs.
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5.5.2 Multiple Knapsack Problem Algorithm

Considering the MU-MIMO scenario, each antenna element’s SNR contribution

varies according to each user. Therefore, the TAS problem can be formulated in

the form of a Multiple KP and given a set of transmit antennas MT and a set of

K UEs, each with MT channel gains. The aim is to select K disjoint subsets of

antennas so that the total rate of the system is maximum and each subset contains

Ms transmit antenna elements and is assigned to the selected UE. In this case,

the sum-rate maximization problem can be formulated as follows

maximize
K∑
k=1

M∑
m=1

γm,ksm,k (5.13)

subject to
M∑
m=1

sm,k ≤Ms,m ∈M = {1, . . . ,m}

K∑
k=1

sm,k ≤ 1, k ∈ K = {1, . . . , k}

smk = 0 or 1, m ∈M, k ∈ K,

To find the solution, the problem is solved as binary knapsack sub-problems, which

is known as the multiple knapsack problem [77]. For simplicity, the number of RF

chains is equal to the number of antennas for the optimization problem of (5.13).
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5.5.3 Variable Decision MKP Algorithm

Considering the binary MU-KP formulated in (5.13) where a comparison of all

decisions is made before allocating subsets, since it is solved as binary knapsack

sub-problems. Therefore it is possible to reduce the overall complexity of the

MU-KP decision making to that of a single knapsack problem similar to that in

[79]. However, in order to perform this, the channel gain vectors are stacked and

a variable decision making criteria is introduced to the problem. Therefore this

problem can be represented as follows

maximize
N∑
n=1

γ̄ns̄n (5.14)

subject to
K∑
k=1

sn−n̄ + ...+ sn + ...+ sn+n̄ ≤ 1,

N∑
n̄=1

ak,nsn ≤Ms, k ∈ K = {1, . . . , k},

sn = 0 or 1, n ∈ N = {1, . . . , n},

γ̄n represents nth element of the composite vector of channel gains for the stacked

channel matrix, where N = KM . n̄ represents the position of each UE corre-

sponding element of MT positions away. ak,n = 1 if it is included in the antenna

set of the kth UE associated with its position within the stacked channel gains.

The introduction of the variable decision criteria, makes it possible for decisions

made at a particular time to be changed at anytime during the selection process

which improves the flexibility of the decision making in the multiple KP, resulting

in a structure similar to that of a single knapsack. After selection is made in a

singular KP form, the channel selections can be recovered through partitioning

the composite channel vector by associating the channel gains for each selected

UE.
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5.6 Interference Suppression in Proposed TAS

system

Considering the complexity of implementing interference suppression (IS) and TAS

simultaneously, a low complexity method is to allow the BS to perform TAS for all

UEs and IS at the end. This method allows the best subsets to be easily found for

the MU scenario. A practical and simple approach is to employ zero-forcing (ZF)

beamforming (BF) to achieve maximum capacity, nulling interference to other

users [71]. In ZF TAS with Ms select transmit antennas, the BF vector, uk, is

generated based on the user’s channel, hk, satisfying the following condition:

hkuj = 0, ∀ j 6= k (5.15)

where 1 ≤ k and j ≤ K. The IS vectors are designed to completely cancel inter-

ference to others achieving interference free transmission.

In the proposed TAS system, the ZF vector is generated while satisfying (5.15),

but the transmitter needs to determine the IS vector for each UE. Since each UE is

given a different subset, the BS has to design each IS vector according to the selec-

tion matrix Sk. Thus in order to perform IS correctly, the BB generate the channel

of the intended UE, considering the channels of the other UEs, HHH = [hhh1, · · · ,hhhK ]T

where (·)T denotes the transpose of matrix, and hhhk is the M×1 channel vector for

the kth UE. To find the IS vector for the kth UE, the following method is adopted.

Let us partition the channel matrix HHH for the kth UE of interest as

ḦHHk = HHHkSSSk (5.16)

where ḦHHk represents the partitioned channel matrix considering the antennas
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selected for the kth UE and the interference directions to the other UEs. The IS

vector of interest is given by

üuuk = ḧhh
T

k (ḦHHkḦHH
T

k )−1 (5.17)

where ūuuk represents the partitioned beamforming vector of the kth UE subset

with suppression towards the directions of interference for the unintended UEs.

The ZF method is performed on the partitioned channel matrix ḦHHk, by taking

the pseudo-inverse of ḦHHk. Now IS has been performed, the additional vectors

can be ignored from within the matrix for all unintended users of that particular

partition.

5.7 Power Consumption Model

This section introduces the power consumption model for mmWave MIMO com-

munications. The model considers a wireless communication system, where the

BS serves K users at different locations, each receiving an individual stream. In

this section, descriptions of the power consumption models for the two different

structures are given. The BS is equipped with L RF chains and M tightly-packed

antennas. Power consumption is important for characterizing the performance of

wireless communications systems. The power consumed to transmit signals for

the kth UE is the total power radiated by the antenna array at the BS and can

be expressed as

Pk = ‖uuukxk‖2 = ‖uuuk‖2. (5.18)

The basic circuit model is generally composed of the baseband, the RF chains and

the phase shifters. Now an approximated description of the power consumption

model for the architecture in Fig. 5.2 is given. L RF chains and L2M phase
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Figure 5.2: Symbolic representation of MU-MIMO with Full Transmit Antenna
Array.

shifters are used and the circuit power consumption can be expressed as

PFull
tot = Pdata + LPRF + L2MRFPPS, (5.19)

In Fig. 5.3, L RF chains and M phase shifters are connected. However, when TAS

is implemented in a transmission L phase shifters are active, therefore L = MRF .

The total power consumed at the BS is given by

PTAS
tot = Pdata +MRF(PRF + PPS), (5.20)

where Pdata represents the total power consumed to transmit the signal for K UEs.

MRF represents the number of active RF chains. PRF is the power consumed by an

RF chain. PPS is the power consumed by the phase shifters. From [85], practical

values for small cell transmission are considered, since mmWave is more likely

to be applied in small cells. Therefore, Pdata = ∑K
k=1 Pk, PRF = 250mW and

PPS = 1mW. The EE is given as the sum capacity divided by the total power
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Figure 5.3: Symbolic representation of MU-MIMO with Full Switch Transmit
Antenna Selection.

consumed, and can be written as

η = Csum

Ptot
, (5.21)

where Csum = ∑K
k=1Ck denotes the sum capacity of the system and Ptot is the

total power consumed which is given in (5.19) and (5.20). The capacity can be

defined as

Ck = B log2(1 + PL
N0B

µ) (5.22)

where N0 is the noise power spectral density, B represents the channel bandwidth

(in Hertz) and PL is the power of the distance dependent free space path loss

(FSPL).
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5.8 Energy Efficiency Gain of TAS Over MIMO

The EE being a ratio between the rate and power, the EE gain between two

systems can either be the result of a system providing a better rate than the other

system for a fixed transmit power or a lower power consumption for a fixed rate.

Therefore the EE gain can be a result of an increase of spectral efficiency (SE)

or a decrease in consumed power. For the evaluation of EE gain (GEE) of TAS

scheme over full MIMO scheme following [62], the EE gain can is defined as

GEE = ETAS

EMIMO
. (5.23)

Considering an ideal power consumption model, taking into account only the

transmit power, the gain is calculated as

GPCM = PMIMO

PTAS
. (5.24)

5.9 Complexity Analysis

In this section, we provide the complexity evaluation of the TAS algorithms. TAS

algorithms have to select a subset of antennas, Ms, from the total number of

transmit antennas, M and K for the number of selected UEs. The complexity is

evaluated in terms of the required numbers of multiplications and additions. The

complexity is dependent on the number of antennas in a subset of BS transmit

antennas for each UE and the number of UEs in a transmission.

The proposed MKP AS algorithm requires K(KM + 4Ms − 2) number of ad-

ditions and K(KM + 2M2
s + 2Ms) number of multiplications, when K UEs are

selected for transmission. Table 5.1provides the complexity comparison of the KP

based antenna selection and the SSA algorithm. The proposed VD-MKP and the

SSA antenna selection algorithms require K(KM + 4Ms−2) number of additions



CHAPTER 5. MULTIUSER TAS 75

Table 5.1: Multiuser TAS Complexity Summary

Algorithm Complexity
Algorithm Additions Multiplications
Random K(4Ms − 2) K(2M2

s + 2Ms)
SSA K(KM + 4Ms − 2) K(KM + 2M2

s + 2Ms)
MKP K(MMs + 4Ms − 2) K(MMs + 2M2

s + 2Ms)
VD-MKP K(KM + 4Ms − 2) K(KM + 2M2

s + 2Ms)

and K(KM + 2M2
s + 2Ms) number of multiplications. The random antenna se-

lection algorithm requires K(4Ms − 2) number of additions and K(2M2
s + 2Ms)

number of multiplications. However, an additional complexity of KM compu-

tations is required for the sorting of the antenna elements according to gains in

the SSA, and for the stacking of the channel gains in the VD-MKP. The MKP

requires an additional complexity of KMMs for the comparison after solving as

sub KP problems.

5.10 Low complexity Search Space Reduction

Method for TAS systems

Large sets of channel statistics are required in massive MIMO for MU-MIMO,

which is based on the total number of antennas and UEs. Therefore it is possible

to improve the speed of the decision making of TAS algorithms by employing

search space reduction (SSR) techniques. SSR in a TAS system is the removal of

the least contributing antenna elements from the overall selection process. Two

approaches for SSR are proposed, which are detailed as follows:

Criteria 1 selects the first Mk highest SNR antennas for each UE at the trans-

mitter. This criteria is more practical when a small number of antennas or

a small predefined subset size is required, whereas all other elements can be

removed from the selection.
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Criteria 2 selects antennas above a predefined SNR elemental threshold based

on each UE’s given rate requirement. Channel gains for each UE at the

transmitter can be discarded from the overall set, given that they are the

least contributing elements before TAS is performed.

Therefore by employing SSR the subset selections can reach the optimal ob-

jective value faster in TAS, since there would be less elements to select overall.

5.11 Results

This section presents the simulation results for the achievable rates when TAS

is performed as a binary KP. These simulations are conducted for single user

and multi-user scenarios. In the MU scenario the total power Pk for each user

is the same. The effect of the number of selected antennas on the sum rate is

shown along with comparisons of the random selection, SSA and KP based TAS

algorithms. The BS has a 20× 20 URA and each UE has a single receive antenna

and it is assumed that the BS randomly selects users in a Round Robbin fashion.

Round Robin Selection

Allows the BS to pick a subset of K users to transmit to in a Round Robbin

fashion, where at the end of transmitting, all UEs would have received an approx-

imately equal share of transmission time. This scheme requires no feedback infor-

mation from the UEs to the BS. The average sum-capacity of the Round Robbin

scheme is the same for randomly selected users, and it is assumed that the channel

state distributions are independent and identically distributed (i.i.d) for all users.
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Table 5.2: Simulation Parameters

Simulation Settings
Carrier Frequency 60 GHz

Spectral Bandwidth 1 GHz
Max radiated power 1 W
Antenna Structure Planar - URA

Horizontal Elements 20
Vertical Elements 20
Elevation coverage −π

2 ≤ θ ≤ π
2

Azimuth coverage −π
2 ≤ φ ≤ π

2
BS antenna gain 0 dBi
UE antenna gain 0 dBi

BS antenna height 15m
UE antenna height ground plane

UE mobility stationary
Path Loss Model line-of-sight FSPL

min distance 10m
Cell radius 100m

number of receive antennas 1 (MISO)
number of UEs 1 to 10
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Figure 5.4: Sum-rate of the different antenna selection schemes for an increasing
number of BS transmit antennas, K = 4, Ms = 25 : 100
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Figure 5.4 shows the system sum-rate performance versus the number of an-

tennas selected (K × Ms) when SNR = 20dB. From the figure, the proposed

algorithms outperform the SSA algorithm. It can be observed that since the SSA

is restricted to serving one user at a time the sum-rate is affected by the size of a

subset due to one user being served at a time. The SSA can only find the local

optimum for any user in the set of available antennas. Therefore for the SSA as

Ms increases the number of available antennas is impacted as the best antennas

for other users can be removed for other users, which eventually degrades after a

maximum is found. Furthermore, as Ms increases, the performance of the VD-

MKP algorithm constantly increases and avoids degradation when K×Ms > 350.

This means that the proposed algorithm can achieve superior sum-rates. The

result shows that for small numbers of Ms the sum-rates achieved are relatively

agreeable with all the algorithms. As Ms increases the sum-rate increases till

eventually an optimum point is reached then it decreases. Figure 5.4 shows the

sum capacity for three UEs against the number of selected transmit antennas Ms

in a subset for each UE at different SNR values. It is observed that as Ms also

increases the sum capacity increases, and the sum capacity increases with SNR. It

can also be seen that TAS as a binary KP achieves a greater sum capacity when

compared to the SSA. The SSA is restricted to finding the subset for a single UE

at a time. The multiple binary KP does not have that restriction, therefore it can

find the subsets which maximize the overall sum capacity.
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Figure 5.5: The achievable sum capacity with KP based TAS in massive MIMO

Figure 5.5 illustrates the performance of KP in MU-MIMO for three and five

selected UEs. It can be observed that the sum capacity of the system improves

with the improvement of SNR. However, the sum capacity increases with the

number of users. It can be observed that the performance of TAS matches that

of all antennas active. Therefore, it shows that it is possible to assign individual

subsets per UE and match the achievable sum rate of a full array when all antennas

are active.
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Figure 5.6: The Energy Efficiency of TAS for massive MIMO
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Figure 5.6. illustrates the comparison of EE for the TAS algorithms with full

array performance in MU-MIMO. From the figure, it can be observed that the EE

of the system improves with the increasing of SNR. With conventional methods

such as full array, all antennas and associated RF chains are active regardless

of transmit power. It can be observed that the performance of VD-MKP has a

higher EE than MKP. It can be observed that the TAS algorithms can improve

the EE significantly when compared to having all the transmit antennas active.

The dashed blue line represents the EE when all the available antennas within the

array are active regardless of the transmit power. It can be seen that less antenna

elements are required overall by using TAS as when compared to using the full

array for transmission. However, it should be noted that the MKP is restricted to

solving as knapsack sub-problems, by choosing the best combination of knapsack

subsets to maximize SINR, after a pool of possible subsets was created. However,

this affects the overall number of elements selected due to the fact that a various

number of combinations must be made initially. Therefore, VD-MKP has good

performance in massive MIMO systems as it avoids the need to create a pool

and select antennas similarly to a single KP with a slight variation. However, it

can be observed that TAS algorithms can improve the overall EE significantly in

MU-MIMO.
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Figure 5.7: Spectral Efficiency vs Energy Efficiency of TAS for massive MIMO

Figure 5.7. illustrates the EE and SE trade-off for the TAS algorithms and

the full array schemes in MU-MIMO. It can be seen from Figure 5.7 that the

VD-MKP achieves the largest for all cases of SE when 0 ≤ SE ≤ 50 bits/s/Hz.

The good performance of the TAS schemes can be explained by the fact that the

transmit circuit power is dynamically adjusted when antennas are switched on

and off to match the required SE. Moreover as the SE increases the number of

active antennas required also increases for the TAS schemes. Although the system

achieves increased SE, the fixed power consumption due to the transmit circuitry

also increases, resulting in a low EE for the full antenna array. In TAS, the circuit

power consumption due to the number of active antennas is significantly reduced

as antennas are selected to match the SE, which results in increased overall EE

when compared to all antennas in the full MIMO array active.
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Figure 5.8: The achievable sum capacity with KP in massive MIMO

Figure 5.8. shows the performance of KP in MU-MIMO for three selected UEs.

The figure also shows the capacity performance for different thresholds of α and

are compared with the full array sum capacity. Considering the transformation

in (5.12), a threshold, α, was applied resulting in C̄sum = ∑K
k=1 αCk. It can be

observed that the sum capacity can be matched with KP. Also as the value of

α improves within the range of 0.5 to 0.9, the capacity of the system improves.

Therefore by using the performance of a full system as a benchmark, the rate

achieved by antenna selection using TAS can be varied to satisfy a rate requirement

for transmission.
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MIMO

Figure 5.9. investigates the ratio of number of antennas selected compared to

the full set of antennas for fixed rate requirements against the transmit SNR. It

can be seen that as the SNR increases, the number of antennas required decreases.

However it can also be seen that for higher rate requirements more antennas are

required. From this fixed rate analysis it can be observed that more antennas can

be switched which will result in a reduced overall power consumption and increased

EE. Therefore by employing TAS, a system can be communication efficient for 5G

communications.
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Figure 5.10 evaluates the impact of imperfect channel state information (CSI)

on the proposed KP based TAS algorithm. The estimated channel matrix (im-

perfect CSI) Ĥ can be modeled as [85]

Ĥ = ξH+
√

1− ξ2E (5.25)

where Ĥ̂ĤH is the actual channel matrix, ξ ∈ [0, 1] presents the CSI accuracy, and

E is the error matrix with entries following the distribution i.i.d. CN (0, 1). Fig-

ure 5.10 shows the achievable rate comparison for KP based TAS in a mmWave

system, where the perfect CSI and the imperfect CSI with different ξ scenarios are

considered. The effects of imperfect CSI can be observed when ξ = {0.9, 0.7, 0.5}.

The performance of the proposed technique is affected by the errors in the channel

estimation. However, it can be observed that when ξ = 0.9 the performance is

quite close to that of the perfect CSI. Also when the CSI accuracy is quite poor,

80% of the capacity in the perfect CSI scenario can still be achieved.
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Figure 5.11: EE gain by using TAS instead of the full array as a function of the
Rate. (a) PCM considering Pdata only. (b) PCM considering Ptot.
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Figure 5.11 compares the EE gain of TAS scheme over the all antennas active

scheme by considering the theoretical power consumption, where only the transmit

power is taken into account, and then the power consumption with the power

consumed by the RF components. The figure assumes two UEs and illustrates

the performance for the gain of TAS, where each UE is given a fixed rate from 1 to

6 bps/Hz. The effect of the transmit power and the number of selected antennas

on the EE gain is shown. As expected, the gain decreases as the rate requirement

increases in both cases. In Figure 5.11a, it can be seen that TAS is more energy

efficient but when Pdata only is considered in the PCM, the performance gradually

approaches that of the full array. However in Figure 5.11b, when the RF circuitry

power is considered in the PCM a steady performance gain is maintained between

2 to 6 bps/Hz. This performance gain is maintained due to the fact that the RF

power dominates the full array performance as the system approaches its limits.
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Figure 5.12: Energy-Efficiency of the different antenna selection schemes for an
increasing number of active UEs, Ms = 24

A plot of the EE for the system as a function of the number of user equipment

is given in Figure 5.12. The total initial SNR is set as 5-dB, Ms = 40 Mt = 400.

From Figure 5.12, for a fixed Ms per user the benefits of increasing K in terms of

EE eventually saturate, as the number of active antennas eventually dominates

the system for a fixed transmit power. It can be seen from the figure that for

the SSA the EE decreases linearly due to the fact the sum-rate approaches that

of the random selection. Therefore, given the achievable sum-rate and the total

power consumption, the energy efficiency of TAS schemes outperforms that of the

fully-connected array.
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Figure 5.13: Sum Rate of the different antenna selection schemes (Ms = 80, K = 5
and Mt = 400)
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In Figure 5.13, the sum rate versus the total initial transmit power is plot-

ted. As shown in Figure 5.13, the sum rate increases with the transmit power.

The lowest complexity algorithm random selection is worst performing in terms

of sum-rate and the sequential selection offers a better sum-rate. Specifically, the

knapsack algorithms provide better performances as expected, by its decision cri-

teria of selecting antennas satisfying each subset requirement but maximizing the

overall sum-rate. Moreover, the sum rate of the modified KP outperforms that of

the adapted MKP due its flexiblility, which validates the analysis. Furthermore,

if all the antennas are selected at the BS as illustrated in Fig. 5.13,it can be

observed that the sum-rate performance provided by the proposed algorithms are

much higher than that of the SSA and RSA, which verifies the effectiveness of the

proposed TAS approaches. The performances of the SSA and RSA are compara-

ble suggesting that the sum-rate of the SSA is directly impacted by the number of

antennas in a subset and the total number of available antennas at the BS. It can

be seen that the gap between the MKP and the VD-MKP algorithms widens, im-

plying that the VD-MKP is much superior to the MKP and high-quality solution

can be achieved.
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Figure 5.14: Energy-Efficiency of the different antenna selection schemes (Ms =
80, K = 5 and Mt = 400) at 60 GHz

The EE of the different TAS algorithms are illustrated in Fig. 5.14. It can

be observed that the EE increases with the transmit power first, then decreases

rapidly as the power becomes large. It can be observed that increasing the SNR

helps the EE but beyond some point the return is diminishing owing to the loga-

rithmic growth of the systems capacity with power. It can also be observed that

the lowest complexity algorithms random selection and SSA have the worst en-

ergy efficiencies when all the antennas are split equally among all UEs. Also the

VD-MKP has the best EE followed by the MKP, and then the SSA and RSA,

respectively.
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Figure 5.15: Spectral Efficiency versus Energy-Efficiency of the different antenna
selection schemes (Ms = 80, K = 5 and Mt = 400) at 60 GHz

Fig. 5.15. demonstrates the system EE versus SE. A discussion of the relation-

ship between EE and SE of TAS algorithms at mmWave frequency of 60 GHz is

provided. It can be observed from Fig. 5.15. that, there exists a trade-off between

the SE and EE. The figure shows the EE-SE trade-off, indicating the algorithm’s

optimal performance based on the maximal EE for any given SE. Again, the KP

based algorithms have better performances on energy efficiency than the other

TAS algorithms. As expected based on the results from Fig. 5.13 and Fig. 5.14,

the KP based algorithms achieved a much higher EE for the corresponding SE,

considering the SE-EE trade off. It should be noted for the VD-MKP, its peak

EE achieved occurred at a SE of 40 bps/Hz, which is largest SE than that any of

the other TAS algorithms presented.
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(a) Multi-Beam Pattern without interference cancellation
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(b) Multi-Beam Pattern with interference cancellation

Figure 5.16: Radiation patterns of MU-MIMO for TAS Ms = 40 for K = 5
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In Figure 5.16, the beampatterns of the BS array serving K-UEs with a set of

Ms antennas each are plotted. The number of UEs is fixed to K = 5 and Ms = 40

for each subset. The azimuth angles of the UEs are {−20◦, 5◦, 25◦, 15◦,−25◦}

and the corresponding elevation angles of each UE are {−25◦,−5◦, 0◦, 5◦, 15◦},

respectively. However, to make the beam patterns more visually pleasing and

easily understandable, Figure 5.16a and Figure 5.16b illustrate the directivity

of the main lobes via the azimuth and elevation cuts of the beams respectively

after TAS is performed. To showcase the potential of TAS, the beampatterns are

plotted when serving 5 UEs with only 40 antennas using standard beamforming

(BF) and ZF. Figure 5.16a illustrates the normalized power of TAS-BF, when no

IS is preformed. Figure 5.16b. illustrates the normalized power of TAS-ZF when

IS performed. It can be observed that TAS algorithms provide good directivity for

each user. However in Figure 5.16b, it can be observed that when ZF is performed

after TAS, deep nulls are created towards unintended UEs when a main lobe is

directed towards a specific UE. These beam patterns are represented as normalised

power plots for all values of θ and φ, and are useful for visualizing how energy is

radiated towards each UE.
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Figure 5.17: Comparison of MU-MIMO for TAS Ms = 40 for 5-UE. (a) TAS
without interference suppression, and (b) TAS with interference suppression.
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Figure 5.17 compares the performance of TAS-BF and TAS-ZF. The figures

illustrate the cross-correlation of the radiated energy within each beam towards

each UE. The cross-correlation of each beam is a measure of the displacement of

energy of the main lobes relative to that of the side lobes of other main lobes

within the transmission. It should be noted that TAS-BF is TAS without IS and

TAS-ZF is when IS is applied. This analysis considers (5.2) as part of the analysis

to help visualize the impact of the received signals of the main lobes and side lobes

for K-UEs, when each UE is allocated an equal number of Ms antennas. Given

the beam pattern with TAS is a function of

G(θ, φ) =
∣∣∣∣∣
M∑
m=1

sm · am(θ, φ) · um
∣∣∣∣∣ (5.26)

It is now easy to see that the maximum is given by G(θ, φ) = M when a beam

is directed towards an intended user. However considering that TAS is per-

formed, it is important to inspect this maximum without and with IS, for TAS-BF

and TAS-ZF. Therefore when Ms antennas are selected the maximum becomes

Gk(θ, φ) = Ms for the kth UE, where Ms = 40 for these results. Figure 5.17a

illustrates the performance of TAS-BF. It can be observed that the maximum

gain G(θ, φ) ≤ αMs for each UE where α = 0.25, this is because the sum of the

interfering side lobes significantly impact the main lobes. Figure 5.17b illustrates

TAS-ZF, where it can be observed that for any of the main lobes directed towards

their intended UEs that the gain is maximum, Gk(θ, φ) = Ms. It can be seen that

IS completely cancels the interference. Therefore by applying TAS with IS, the

analysis showed that interference between sub-arrays can be reduced and create

multiple beams which can achieve maximum gain that corresponds to the number

of antenna elements in a subset.
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5.12 Summary

The proposed TAS scheme achieves a similar performance as conventional mmWave

MU-MIMO systems. Low complexity schemes are necessary as finding the optimal

selection matrix SSSk can be carried out by an exhaustive search over all possible

combinations. Exhaustive search will be near unachievable for MU-MIMO, due to

the extremely large number of combinations, as complexity exponentially scales

with K UEs. A noticeable result of TAS is that a significant number of trans-

mit antennas can be switched off for a percentage of the total capacity. Results

illustrate that TAS schemes achieve significant gains in communication efficiency.

Simulation results show that the proposed algorithm achieves a superior perfor-

mance compared to other low complexity TAS algorithms.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

In 5G systems, mmWave MIMO is one of the most promising technologies to

provide high data rates. Researchers are investigating digital and hybrid beam-

forming, but such systems are still costly and power hungry due to the large

number of RF chains required to connect the antennas to baseband for efficient

transmissions, regardless of the configuration. The total power consumption of

these architectures poses a problem in 5G systems given the requirement of com-

munication efficiency.

The problem of TAS with beamforming for mmWave MIMO with the objective

of finding the best antenna subset for a given QoS was studied, showing that the

number of transmit antennas can be significantly reduced. The average rate for a

single user was derived for threshold values and compared against the benchmark

of the single user with all BS antennas active. A comparison of KP with SSA was

shown achieving similar performance, but KP out-performed SSAu in energy effi-

ciency and the computational complexity is lower than the SSAs. TAS is a viable

method for reducing overall system complexity, whilst maintaining the QoS with

100
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smaller subsets.

Furthermore, a low complexity design for TAS algorithm was proposed and

analyzed for multiuser scenarios in massive MIMO. A knapsack based antenna

selection technique for MU-MIMO has been proposed. The design goal of this

system was to select antenna subsets per UE which maximizes the total sum

rate of the system. The objective of selecting transmit antennas was to find the

best subset, given the subset constraints. Comparison was done with variable

decision multiple KP (VD-MKP), multiple knapsack (MKP), sequential selection

algorithm (SSA) and random selection. It was concluded that the sum rates of

the binary KPs are higher than that of the low complexity SSA and random se-

lection. Also the VD-MKP outperformed the MKP in all performance measures.

The variable decision criteria of the proposed scheme is more flexible than that of

the MKP. Antenna selection is a viable method in reducing overall system com-

plexity in massive MIMO.

This thesis addressed some of the key challenges of communication efficiency

for 5G systems with the design of TAS systems for mmWave MIMO. It can be

concluded the TAS MIMO provides scalability based on the specific system re-

quirements (i.e. power or rate). Since antenna arrays will be part of any solution

in 5G, TAS provides additional simplicity with appliying more classical beam-

forming techniques, allowing multiuser support and great service to all users. It

should be noted that splitting the multiantenna at the base station into subsets

does not decrease the performance. User specific beams and data are allowed and

propagation is almost always as favorable.
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6.2 Future Works

The work in this thesis provides a platform for TAS which find the best subset on

a per user basis. This thesis assumed a single cell MU-MIMO downlink mmWave

system with single receive antenna UEs. However, this issue can be extended to

cover

• The impact of multiple receive antennas at the UE in mmWave MIMO

networks. Joint transmit and receive antenna selection can be studied. The

EE can be modelled to include the receive power consumption. The will give

a full view of the communication link to determine better communication

efficiency, especially at the UE as lower power consumption is necessary.

• Further analysis in the search space reduction techniques can be done to

more alleviate the complexity of the algorithm as the number of transmit

antennas or UEs increase. The preprocessing of the antenna will help to

remove the least likely antennas to be selected.

For joint transmit and receive antenna selection, the impact of antenna correlation

can be included. Practical antennas signals may be correlated either at the BS

and/or the UE. Therefore it is critical to estimate the performance in non-ideal

scenarios. Hence, investigating these points for antenna selection in mmWave

MIMO, will ensure more communication efficient solutions for 5G wireless sys-

tems.
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