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Abstract 

Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and 

secondary metabolite pathway engineering. The potential of S. venezuelae could be further 

realized by expanding its capability with the introduction of its own in vitro transcription-

translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up 

design of complex gene expression tools, biosensors and protein manufacturing. Herein, 

we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-

extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP 

reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. 

venezuelae TX-TL based on the TetO-TetR repressor system. The aim of this system is to 

provide a host for the homologous production of exotic enzymes from Actinobacteria 

secondary metabolism in vitro.  As an example, we demonstrate the soluble synthesis of a 

selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway. 

  



3 
 

 

1 Introduction 

Streptomyces belongs to the high G+C (%) Actinomycetes soil bacteria and represents the 

leading source of natural antibiotics such as streptomycin and tetracycline [1]. Recently, 

Streptomyces venezuelae, the chloramphenicol producer, has been adopted by synthetic 

biology for its use in metabolic engineering [2], since it is relatively well characterized, has 

strong promoter tools and genome engineering plasmids for integration [3–5]. Whilst it is 

not as characterized as Streptomyces coelicolor A3(2), in contrast, S. venezuelae provides 

significant advantages such as a fast growth (~ TD = 40 min) and no aggregation during 

liquid culture [3]. One potential route for the further development of S. venezuelae and the 

characterization of its genetic parts is the introduction of an in vitro transcription-

translation system (TX-TL). TX-TL has recently been developed as a highly adaptable tool 

for bottom-up synthetic biology and is based on a whole-cell extract [6–9] to synthesize 

recombinant proteins from the chemical building blocks of life. 

 

One potential new application for TX-TL is the direct assembly of natural products from 

biosynthetic genes, as recently pioneered in E. coli TX-TL for the co-synthesis of two large 

(> 100 kDa) non-ribosomal peptide synthetases [10]. Indeed, for expression of genes from 

Streptomyces species, E. coli may not be the ideal host chassis in all cases - e.g. poor codon 

usage, solubility issues, post-translational modification [11] or an absence of exotic 

precursors, such as coenzyme F420 [12]. Moreover, utilizing a host homologous to the 

chosen pathway has previously proved successful for acquiring soluble and active 

pathway enzymes [13], whereas E. coli accumulated only inclusion bodies. Another caveat 

to the use of E. coli is the potential inhibition of TX-TL machinery if the target products 
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possess antimicrobial activities, whereas many Streptomyces species are known to provide 

their own resistance strategies to a variety of antimicrobials [14]. 

 

There is past evidence to suggest that a range of Streptomyces species are suitable for TX-

TL [15,16], however, it is unclear from recent literature what is the true productivity of a 

Streptomyces TX-TL system. TX-TL can provide a tool to rapidly prototype the cellular 

machinery of synthetic biology hosts [17]. Herein, we provide evidence for the 

development of a high-activity S. venezuelae TX-TL system utilizing the kasOp* promoter 

as a standard for cell-extract optimization [18]. In summary, we demonstrate high-yield 

synthesis of up to 1.3 M superfolder GFP (sfGFP), prototype a TetR-TetO gene expression 

tool [19] and synthesise a selection of enzymes from the S. rimosus (ATCC 10970) 

oxytetracycline pathway [20]. 
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2 Materials and methods 

Materials and methods section is provided in Supporting information 
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3 Results  

 

3.1 Optimising a high-activity S. venezuelae cell-extract 

A general protocol for Streptomyces TX-TL was previously developed by Hopwood, Bibb 

and colleagues [21]. Significantly, a number of costly and therefore undesirable 

components are present in this original protocol, such as Staphylococcal nuclease and 

pyruvate kinase. To try a different low-cost strategy, we prepared a S. venezuelae cell-

extract using the original Streptomyces method and tested its activity with a 3-

phosphoglyceric acid (3-PGA) energy buffer derived from E. coli TX-TL [22]. Cell-extracts 

were tested for activity using sfGFP reporter coupled to a high-activity kasOp* promoter. 

 

The process of cell-extract preparation can be divided into five stages in the order of (1) 

cell-growth, (2) washing, (3) sonication, (4) run-off and (5) dialysis. We merged the 

Streptomyces method for stages (1-2) with the E. coli TX-TL methodology for stages (3-5). 

This new protocol provided a significant baseline level of sfGFP fluorescence (154 nM), 

whereas by following the separate protocols on their own, only trace levels of sfGFP 

fluorescence (~5 nM) were observed (data not shown). Next, by focusing on the 

preparation of the cell-extract and the reaction conditions, key variables (Fig. 1A-F) were 

optimised such as cell-lysis by sonication, run-off, dialysis and the concentration of TX-TL 

reaction components including polyethylene glycol (PEG), Mg-glutamate and K-glutamate. 

Each of these single components was varied and assessed during two rounds of parameter 

optimization to establish a streamlined protocol for S. venezuelae TX-TL, providing a 

maximum yield of 1.31 M sfGFP (36 g mL-1), which demonstrated an 8.5-fold increase 

over the original base levels. In brief, a significant gain in activity was observed by varying 

the levels of the molecular crowding agent PEG and Mg-/K-glutamate salt (Fig. 1B, C), 
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whilst the sonication duration did not appear to alter the activity. Dialysis in S30-SC buffer 

was also found to reduce cell-extract activity by 18 %. 

 

3.2 TX-TL protein synthesis requires 20-40 nM of DNA for translation saturation 

The S. venezuelae cell-extracts were active for up to 4 hours of TX-TL batch synthesis. 

Interestingly, the signal intensity of sfGFP in both real-time TX-TL fluorescence and 

Western blot end-point samples demonstrated a proportional increase in sfGFP 

production with plasmid DNA concentration, which saturate between 20-40 nM of DNA in 

three independent batches (Fig. 2A, 2B). For comparison, in E. coli Rosetta TX-TL extracts, 

saturation requires 10-15 nM [17]. In addition, for S. venezuelae TX-TL, the fluorescence 

signal for sfGFP was observed to decay after approximately 4 hours of incubation. This 

also occurred with incubations pre-spiked with purified sfGFP (Supporting information, 

Fig. S2). The signal decay was suspected to be due to host proteases, however, a Western 

blot prepared with anti-GFP primary antibody confirmed that only single full-length sfGFP 

(27 kD) species was present in the extracts (Fig. 2C). A possible explanation for this 

fluorescence decay is non-specific unfolding or aggregation of sfGFP within the cell-

extract. 

 

3.3 TX-TL synthesis of the OxyB, -C, -D, -J, –K and –T enzymes 

To test the ability of S. venezuelae TX-TL to synthesise proteins from secondary 

metabolism, a selection of genes (oxyB, -C, -D, -J, -K and –T) from the S. rimosus 

oxytetracycline pathway [20] were assembled by Golden Gate with a T7 promoter, strong 

RBS and C-terminal His6-tag. In addition, a T7-driven sfGFP (-/+ His6-tag) was used as a 

positive control, with T7 RNA polymerase added to the S. venezuelae extracts to drive 

mRNA synthesis. Interestingly, for all of the oxytetracycline enzymes OxyB –C, D, -J, -K, -T 
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and sfGFP, these were detected by Western blotting as full-length His6-tagged proteins 

(Fig. 2D), ranging in size from 12 kDa (OxyC) to 70 kDa (OxyD). This provided an 

indication of the potential of S. venezuelae TX-TL to synthesise high G+C (%) genes from 

secondary metabolism. In comparison, with E. coli TX-TL, although higher yields (~2-10 

M) of sfGFP and the OxyB, -C, -J, -K and –T proteins were obtained, the OxyD protein 

could not be detected. For further information please refer to Supporting information Fig. 

S3.  

 

3.4 Inducible gene expression with the TetR system 

Utilising the Tn10-derived TetR gene expression tool [19], we introduced a tetO operator 

site immediately downstream of the kasOp* promoter. By assembling this synthetic 

promoter with sfGFP, an anhydrotetracycline (aTC) inducible gene expression tool was 

rapidly prototyped in S. venezuelae TX-TL by utilising purified cognate TetR repressor, aTC 

and the TX-TL reaction components (Fig. 3). Firstly, 20 nM kasOp*-tetO synthetic 

promoter produces 3.5-fold less sfGFP in comparison to the equivalent kasOp*-sfGFP 

control plasmid (20 nM) lacking the tetO operator. Additionally, gene expression from the 

kasOp*-sfGFP plasmid is unaltered with either TetR (5 M) or 1 M aTC, whilst a 26% 

decrease in signal is observed with 10 M aTC. However, in the presence of the tetO 

operator coupled to the kasOp* promoter and sfGFP, a clear switch-off in gene expression 

is observed by titrating an increasing concentration of TetR (1-5 M), which was 

recovered by the presence of aTC (1-10 M). 

 

3.5 Concluding remarks 

Herein, we have developed a S. venezuelae TX-TL system as a new tool for synthetic 

biology. This system demonstrates high-yield synthesis of sfGFP (up to 1.3 M) and a 
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range of enzymes from the oxytetracycline pathway, using a simple and cost-efficient 

protocol for extract preparation. The development of a S. venezuelae TX-TL system 

potentially provides a fast route to obtaining enzymes from Streptomyces secondary 

metabolism using a homologous host for protein folding. Whilst each protein target is 

unique, we will investigate this tool for the synthesis of specialised enzymes that require 

post-translational modification [10,11] or exotic precursors for protein folding, such as 

coenzyme F420 [12]. We will now focus on enhancing this initial S. venezuelae TX-TL 

platform, prototype gene circuits and investigate its use for the characterisation of cryptic 

gene clusters located within the Actinomycetes bacteria [23,24]. 
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Figure 1. A protocol for S. venezuelae TX-TL. (A) Schematic overview of cell-extract 
preparation. Optimisation of (B) Mg-/K-glutamate, (C) PEG, (D) run-off reaction, (E) 
sonication and (F) dialysis conditions, with 10 nM of kasOp*-sfGFP plasmid. Errors bars 
(standard deviation) are representative of three biological and three technical repeats. (G) 
Batch variation between cell-extracts with 40 nM of kasOp*-sfGFP plasmid.  
 
Figure 2. Saturation of S. venezuelae TX-TL occurs at 20-40 nM DNA. (A) Time-course 
reaction with increasing DNA concentration. (B) Saturation curve of end-point samples 
with Extracts A-C. Errors bars (standard deviation) are representative of three technical 
repeats. (C) Western blot of end-point TX-TL samples with mouse anti-GFP primary 
antibody. Lane abbreviations: M, PageRuler Plus (ThermoFisher) and purified His6-sfGFP 
was used as a positive control (29 kDa). (D) Western blot of S. venezuelae and E. coli TX-TL 
of sfGFP and oxytetracycline enzymes. Red star (*) indicates negative synthesis of OxyD in 
E. coli TX-TL. Positive bands are individually cropped, with the original blots and SDS-
PAGE gels shown in Supporting Information Fig. S3. 
 
Figure 3. Synthetic TetO/TetR gene expression in S. venezuelae TX-TL. (A) Plasmid design 
of the kasOp*-tetO synthetic promoter. (B) Purified TetR and aTC was spiked into S. 
venezuelae TX-TL to modulate gene expression. (C) End-point readings of sfGFP with 
varied TetR and aTC concentrations in combination with the kasOp*-tetO-sfGFP plasmid. 
aTC inhibition with (D) kasOp*-sfGFP and (E) kasOp*-tetO-sfGFP. (F) Repression with TetR 
and (G) release with 1 M aTC (non-inhibitory level). Errors bars (standard deviation) are 
representative of three technical repeats. 
 


