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Abstract5

Consider the situation where a given number of facilities are to be located in a convex polygon6

with the objective of maximizing the minimum distance between facilities and a given set of7

communities with the important additional condition that the facilities have to be farther than a8

certain distance from one another. This continuous multiple obnoxious facility location problem,9

which has two variants, is very complex to solve using commercial nonlinear optimizers. We10

propose a mathematical formulation and a heuristic approach based on Voronoi diagrams and11

an optimally solved binary linear program.12

As there are no nonlinear optimization solvers that guarantee optimality, we compare our13

results with a popular multi-start approach using interior point, genetic algorithm (GA), and14

sparse non-linear optimizer (SNOPT) solvers in Matlab. These are state of the art solvers15

for dealing with constrained non linear problems. Each instance is solved using 100 randomly16

generated starting solutions and the overall best is then selected. It was found that the proposed17

heuristic results are much better and were obtained in a fraction of the computer time required18

by the other methods.19

The multiple obnoxious location problem is a perfect example where all-purpose non-linear20

non-convex solvers perform poorly and hence the best way forward is to design and analyze21

heuristics that have the power and the flexibility to deal with such a high level of complexity.22

Key Words: Location; Obnoxious Facilities; Continuous Location; Voronoi Diagrams; Matlab;23

Heuristic; Binary Linear Program.24
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70260-P), in part financed by the European Regional Development Fund (ERDF).

1



1 Introduction25

Suppose that 100 communities are located in a 100 by 100 miles square. 20 obnoxious (e.g., noisy26

or polluting) factories or landfills need to be located in the area. These factories are required to27

be at least D = 16 miles from one another to avoid cumulative nuisance to the communities. The28

objective is to maximize the minimum distance between facilities and communities.29

Figure 1: Configuration of 100 Communities and Some Highest hilltops
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Figure 2: Surface of Distances to the Closest Community

To illustrate the problem consider the randomly generated example problem depicted in Fig-30

ure 1. The surface of the shortest distance to the communities is depicted in Figure 2. There31
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are 202 hilltops. In Figure 1 the five “tallest” hilltops are marked. If a standard non-linear opti-32

mization method is applied from a random starting solution, the process will likely end on hilltops33

depending on the starting solution. There are 2 × 1027 possible selections of different 20 hilltops.34

Intuitively, it is preferred to locate facilities on hilltops as long as the minimum distance of 1635

miles is maintained. We therefore propose a heuristic that selects the best set of hilltops subject36

to the distance constraints. Note that if the locations of the facilities are restricted to hilltops, the37

heuristic solution is optimal. In Section 3.3 we show that the solutions for up to 5 facilities in this38

example are optimal.39

1.1 Literature Review40

Obnoxious location problems involve locating one or more facilities as far as possible from a set41

of communities. Most papers investigate the problem on networks or in discrete space [1, 4, 5,42

6, 7, 16, 38]; location in the interior of a network [7, 14]; location on the plane [10, 20, 32, 39];43

location on the sphere [12]. Applications may include nuisance generated by the facilities such44

as airports, pollution generating industrial facilities, prisons, and others affecting residents living45

in a set of communities. Another type of applications assume that the nuisance is generated by46

the communities and the facilities should be located at locations with minimum nuisance. For47

example, the location of schools or hospitals which require a low noise level caused by a set of48

points or locating a telescope as far as possible from light sources.. In most of these applications49

the nuisance propagates “by air” and not along nework links making the use of Euclidean distances50

appropriate.51

Such models can be formulated in several ways. The most common way is to maximize the52

minimum distance between the facilities and the set of communities [4]. Hansen et al. [20] assume53

that the nuisance caused by communities declines by the square of the distance and suggested to54

minimize the sum of 1
d2

where d is the distance between a community and the facility. Church55

and Meadows [5] suggested to maximize the sum of distances from communities in a network56

environment. Colmenar et al. [6] solved the multiple facilities version of this problem.57

Drezner and Wesolowsky [14] found a location in the interior of a planar network that maximizes58

the minimum distance between the facility and the links of the network. Drezner et al. [7] found59

the best location for a facility in the interior of a planar network minimizing the total nuisance60

generated by the links of the network.61

3



The single facility problem is to find a location for one facility that maximizes the minimum62

distance to a set of n communities. The problem is equivalent to finding the center of the largest63

possible circle that has no communities in its interior. The facility must be located in a bounded64

region. Otherwise, the solution will be at infinity. Shamos and Hoey [32] showed how to optimally65

solve the problem in O(n log n) time using Voronoi Diagrams [30, 34, 37]. The idea of the Voronoi66

diagram is to partition the plane into polygons such that all the points inside a polygon are closest67

to one of the communities. The vertices of these polygons are equally distant to at least three68

communities (and closest to them) or to at least two communities if the Voronoi vertex is on an69

edge of the feasible region. The vertices of the feasible region are also Voronoi vertices that are at70

the minimum distance to at least one community. The circle centered at a Voronoi vertex with a71

radius equal to the distance to the closest community does not have communities in its interior.72

Therefore, the best location for the facility is on one of these vertices. Finding all the vertices is73

done in O(n log n) time and many computer codes are available for finding all the vertices, which74

are known as “Voronoi points” [29, 33].75

The single facility location model suggested by Hansen et al. [20] was optimally solved by76

the “Big Square Small Square” global optimization method which was introduced in [20]. The77

problem was also solved by the effective global optimization method known as “Big Triangle Small78

Triangle” [9]. Another problem that aims to maximize the weighted sum of distances is a special79

case of minimizing the sum of weighted distances with positive and negative weights [13, 25, 36].80

It can be efficiently solved by these global optimization methods, for example, [9].81

Most of the papers mentioned above investigated single facility problems. The only paper82

that ivestigated the planar multi-facility obnoxious facility problem using Euclidean distances is83

[39]. They found the optimal solution by a branch and bound algorithm which can be applied to84

relatively small problems. They solved problems with up to five facilities and 120 demand points.85

In this paper we heuristically solve two variants of the multiple obnoxious facility problem. The86

first variant is maximizing the minimum distance between facilities and communities subject to a87

required minimum distance between facilities. The second variant is maximizing all the distances88

between facilities and communities and between facilities. The distances between facilities can be89

multiplied by a factor to reflect a different weight to the two distance types in the objective function.90

Suppose that a number of communities are located in an area. A required number of obnoxious91

facilities (for example, noisy factories, landfills emmiting odor) need to be located in the area. The92
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objective is to maximize the minimum distance between the communities and the facilities. The93

facilities are required to be at least a given distance from one another to avoid cumulative nuisance94

to the communities. Note that if no separation distance is imposed, the optimal solution is to95

locate all facilities at the center of the largest circle without any communities. Alternatively, the96

distance between facilities is required to be at least the minimum distance between communities97

and facilities multiplied by a given factor.98

The aim of the study is three fold:99

(i) To heuristically solve the two variants of the multiple obnoxious problem in the plane.100

(ii) To effectively incorporate the power of Voronoi vertices with optimally solving a binary linear101

program in a recursive manner.102

(iii) To explore the interior point, GA and SNOPT [17] non-linear optimization solvers in Matlab103

[19] for comparison purposes.104

The rest of the paper is organized as follows. The continuous multiple obnoxious facility location105

problem is presented and its formulation is provided in the next section. This is followed in Section106

3 by our Voronoi-based heuristic using solutions to binary linear programs. The computational107

results are presented in Section 4. A case study of locating obnoxious facilities in Colorado, U.S.A.108

is presented and solved in Section 5 and we conclude the paper with a summary of the results.109

2 The Multiple Obnoxious Facilities Location Problem110

The multiple obnoxious facility location problem is to locate p obnoxious facilities in a convex111

polygon among a set of communities [11, 21, 38, 39]. Additional restrictions are required, otherwise,112

the solution would be to locate all facilities at the optimal single facility location. We wish the113

facilities not to be close to one another because the facilities may affect each other negatively. For114

example, when locating schools or hospitals as far as possible from nuisance causing communities,115

these facilities need to be spread out. When locating airports it does not make sense to locate two116

airports next to one another. In addition, the location of the facilities must be restricted to a finite117

area, otherwise, the solution would be to locate all facilities at infinity.118

Let Ai = (ai, bi) for i = 1, . . . n be the locations of communities, and Xj = (xj , yj) for j =119

1, . . . , p be the unknown locations of the p facilities. We assume that the propagation of the120
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nuisance declines as the Euclidean distances increase.121

Two problems are investigated in this paper:122

Maximin1: Maximize the minimum squared distance between facilities and communities subject123

to a given minimum distance D between facilities [2]. The non-linear programming formula-124

tion is:125

max{ L }

Subject to: (1)

(xj − ai)2 + (yj − bi)2 ≥ L for i = 1, . . . n; j = 1, . . . p

(xi − xj)2 + (yi − yj)2 ≥ D2 for 1 ≤ i < j ≤ p

In addition we need constraints that restrict the facilities’ locations to a convex polygon or126

any region. This formulation has 2p+ 1 variables and np+ p(p−1)
2 constraints in addition to127

the constraints restricting the locations to a region in the plane such as a square.128

Note that it is more convenient to apply squared Euclidean distances in the formulation.129

Maximin2: Maximize the minimum of all distances both between the facilities and communities130

and between facilities [39]. The distances between facilities are equal to the distances between131

communities and facilities multiplied by a given factor α (the squared distance is multiplied by132

α2). Welch et al. [39] allowed for different weights for different facilities. Such a modification133

can be easily accommodated. This problem is formulated as134

max{ L }

Subject to: (2)

(xj − ai)2 + (yj − bi)2 ≥ L for i = 1, . . . n; j = 1, . . . p

(xi − xj)2 + (yi − yj)2 ≥ α2L for 1 ≤ i < j ≤ p

As in Maximin1, we also need constraints that restrict the facilities’ locations to a convex135

polygon or any region. The size of this formulation is the same as the one given in (1).136

The factor α allows flexibilility when facilities are more (or less) obnoxious to each other than137

to communities. A special case of this problem is using α = 1 which entails equal importance given138

to all distances. In Maximin1 the minimum distance between facilities is imposed rather than being139

dependent on the minimum distance between facilities and communities.140
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2.1 Relationship to the p-Dispersion Problem141

The multiple obnoxious facility problems are related to the p-dispersion problem [3, 15, 22]. In the142

p-dispersion problem, a set of potential locations for facilities is given and the objective is to select p143

points out of the potential locations that maximize the minimum distance between facilities. There144

are no communities in the p-dispersion model.145

The p-dispersion location problem in an area is finding locations for p facilities in the area such146

that the minimum distance between pairs of facilities is maximized. The formulation is similar to (1)147

without the first type constraints, because there are no communities in the problem formulation,148

with the objective of maximizing D. The p-dispersion problem in an area [8, 24, 26, 28, 35] is149

equivalent to packing p circles in an area. Heuristic solution approaches by solving the non-linear150

program using all purpose solvers are suggested in [8, 26]. Optimal branch and bound algorithms151

are proposed in [24, 28, 35]. Most results are for circle packing in a square. The best known solutions152

for the p-dispersion in a square are given in http://www.packomania.com/ which reports proven153

optimal solutions for p ≤ 30 and p = 36. Suppose that the optimal solution to the p-dispersion154

problem is D∗. For these values of p, there cannot be a feasible solution to problem Maximin1 if D155

exceeds D∗. Furthermore, if D is close to D∗, there are very few feasible solutions and distances to156

communities become almost irrelevant. This is not in the spirit of obnoxious facilities applications157

where distances to communities are the focus of the problem. We are therefore interested in D158

being considerably smaller than D∗ for the problem to have practical applicability.159

The value of D∗ in a unit square is
√

2 for p = 2 and D∗ declines to about 0.287 for p = 20.160

It is equal to 1
q−1 for p = q2 for an integer q up to p = 36. We therefore selected D = 1√

2p
and161

D = 1√
p which is below D∗, see Table 1.162

3 A Voronoi Based Heuristic Solution Approach163

The problems can be heuristically solved by a multi-start approach solving the non-linear non-164

convex formulations by an optimization software such as those available in Matlab [19]. However,165

these problems have numerous local maxima and it is difficult to escape such local maxima. For166

p = 20 facilities and n = 1000 communitiess there are 4 × 1047 local maxima (some of them167

are infeasible). Even the smallest problem tested in this paper (locating two facilities among 100168

communities) has over 20,000 local maxima. Generating a starting solution close to the “correct”169
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Table 1: p-dispersion Optimal Solutions

p D∗ 1√
2p

Ratio 1√
p Ratio

2 1.414214 0.5000 0.3536 0.7071 0.5000
3 1.035276 0.4082 0.3943 0.5774 0.5577
4 1.000000 0.3536 0.3536 0.5000 0.5000
5 0.707107 0.3162 0.4472 0.4472 0.6325
6 0.600925 0.2887 0.4804 0.4082 0.6794
7 0.535898 0.2673 0.4987 0.3780 0.7053
8 0.517638 0.2500 0.4830 0.3536 0.6830
9 0.500000 0.2357 0.4714 0.3333 0.6667
10 0.421280 0.2236 0.5308 0.3162 0.7506
11 0.398207 0.2132 0.5354 0.3015 0.7572
12 0.388730 0.2041 0.5251 0.2887 0.7426
13 0.366096 0.1961 0.5357 0.2774 0.7576
14 0.348915 0.1890 0.5416 0.2673 0.7660
15 0.341081 0.1826 0.5353 0.2582 0.7570
16 0.333333 0.1768 0.5303 0.2500 0.7500
17 0.306154 0.1715 0.5602 0.2425 0.7922
18 0.300463 0.1667 0.5547 0.2357 0.7845
19 0.289542 0.1622 0.5603 0.2294 0.7923
20 0.286612 0.1581 0.5517 0.2236 0.7802

local maximum is very unlikely.170

Maximin1 is equivalent to finding p empty circles such that the distance between any two circles’171

centers is at least D with the objective of maximizing the radius of the smallest circle. Maximin2172

is similar but the value of D depends on the smallest distance between facilities and communities.173

We propose a heuristic approach that found much better results than solving (1) and (2) directly174

by a non-linear non-convex available procedure, in a much shorter run time. This approach is based175

on selecting p points out of the set of V Voronoi points as potential facilities’ locations.176

It is important to note that even though the heuristic procedures were tested using Euclidean177

distances, they can be used for any distance measure once a Voronoi diagram is available for that178

distance measure.179

We first define and prepare the following structure:180

- All V Voronoi points, intersection points with the sides of the convex polygon and its vertices181

are generated.182

- The distance to the closest community is calculated for each Voronoi point.183

- The Voronoi points are sorted by decreasing order of these distances.184
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- The sorted list of Voronoi points is {Vi} for i = 1, . . . V , with a distance di between Vi and185

its closest community, such that d1 ≥ d2 ≥ . . . ≥ dV .186

- The distance between Voronoi points i and j is Dij .187

It is well known (see for example Okabe et al. [30]) that the number of Voronoi points V is188

around 2n.189

The idea is to find p locations out of the V Voronoi points so that the distances between the190

chosen p Voronoi points are feasible, and the minimum distance to communities is maximized.191

Suppose that the vector of the V Voronoi points is sorted by the distance to the closest community192

(the peaks in Figure 2). Maximizing the shortest distance is equivalent to finding the p feasible193

Voronoi points whose pth index in the sorted vector of distances is minimized. Define the optimal194

pth index as K∗ with the optimal objective function dK∗ .195

Suppose that the first p ≤ K ≤ V Voronoi points are selected. If K ≥ K∗ there is a feasible196

solution to the problem based on these K Voronoi points. On the other hand, if K < K∗ no feasible197

solution exists.198

3.1 Solving Maximin1 Heuristically199

The first p ≤ K ≤ V Voronoi points are selected. K binary variables xi for i = 1, . . . ,K are defined200

with xi equals 1 if Voronoi point i is selected and zero otherwise.201

The following binary linear program solves the problem for a given K. When a feasible solution202

for this K exists, the solution is optimal to selecting p out of the V Voronoi points. Otherwise, if203

there is no feasible solution, the K need to be increased. Define the constants ∆i = d1 − di. Note204

that ∆i ≥ 0 because d1 is the maximum distance.205

Formulation BLP206

Maximize {L}

subject to:
K∑
i=1

xi = p (3)

xi + xj ≤ 1 when Dij < D (4)

L+ xi∆i ≤ d1 for i = 1, . . . ,K (5)

xi ∈ {0, 1}
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When Voronoi point i is not selected (xi = 0), the constraint L + xi∆i ≤ d1 is L ≤ d1 which207

is always satisfied. When Voronoi point i is selected (xi = 1), the constraint reduces to di ≥ L208

and maximizing L results in the combination of p Voronoi points whose minimum distance to209

communities is maximized.210

We suggest two approaches that employ BLP solutions. In Algorithm 1 we solve the problem211

using K = V . In Algorithm 2 we attempt to shorten the run time by solving a sequence of problems212

with smaller values of K in order to reduce the number of constraints in the BLP formulation.213

Algorithm 1: Solve the BLP problem using K = V .214

Algorithm 2:215

1. Select K = Kmin.216

2. Solve the BLP problem.217

3. If there is a solution, stop.218

4. If there is no feasible solution, increase K by q and go to Step 2219

In our implementation we used Kmin = 2p and q = p.220

3.2 Solving Maximin2 Heuristically221

For Maximin2, solving BLP for a given K means replacing D by αdK in the BLP formulation. We222

first present and prove the following two properties.223

Property 1: If there is a feasible solution for BLP using K = K1, i.e. using D = αdK1, there will224

be a feasible solution for every K ≥ K1.225

Proof: Since K ≥ K1, αdK ≤ αdK1 and the feasible solution using K = K1 is also feasible for226

K ≥ K1. 2227

Property 2: If there is no feasible solution for BLP using K = K1, there is no feasible solution228

for every K ≤ K1.229

Proof: If there was a feasible solution for K ≤ K1, there would have been a feasible solution for230

K = K1 by Property 1. 2231

We conclude, by Properties 1 and 2, that up to a certain value of K there are no feasible232

solutions and for all greater values of K there is a feasible solution. The solution is obtained233
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by the solution for the smallest possible K, defined as K∗, that has a feasible solution. The234

objective function, which is the minimum distance between facilities and communities, is dK∗ and235

the distances between facilities are all at least αdK∗ .236

We create a range Kmin ≤ K ≤ Kmax such that for K = Kmin there is no feasible solution237

and for K = Kmax there is a feasible solution. The range is decreased every iteration and once238

Kmax = Kmin + 1, the feasible solution for Kmax is the best (or tied for the best) possible set of p239

locations from the set of V Voronoi points.240

In Algorithm 3 we perform a bisection search on the whole range p ≤ K ≤ V . In algorithm 4 we241

attempt to reduce the run times by narrowing the range for the bisection search and avoid solving242

unnecessarily BLP problems with large values of K. The power and usefullness of incorporating243

neighborhood reduction in the search is shown to be a promising way forward in heuristic search244

design in general [31].245

Algorithm 3:246

1. Set Kmin = p− 1 and Kmax = V . We select Kmin = p− 1 because it is possible that for247

K = p there is a feasible solution.248

2. Set K = 1
2(Kmin + Kmax) rounded down and solve the BLP problem replacing D by249

αdK .250

3. If there is no feasible solution, set Kmin = K and go to Step 4. Otherwise,251

(a) Save this solution and set Kmax = K.252

(b) Find K, the largest index among the Voronoi points in the solution.253

(c) If K ≤ Kmin go to Step 4.254

(d) If K = K go to Step 4. If K < K solve the BLP problem for K = K replacing D255

by αdK and go to Step 3.256

4. If Kmax − Kmin > 1 go to Step 2. Otherwise, choose the solution for K = Kmax and257

stop.258

Note that Step 3c is valid because there is no feasible solution for K by Property 2259

Algorithm 4: Tightening Scheme for Initial Kmin and Kmax260

1. Select K = 2p.261
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2. Solve the BLP problem for this K replacing D by αdK .262

3. If there is no feasible solution, increase K by p and go to Step 2.263

4. Otherwise, set Kmax = K, Kmin = K−p (Kmin = p−1 if K = 2p), and apply Algorithm 3264

from Step 2 with these values of Kmin and Kmax.265

3.3 Properties of the Heuristic Solution266

This approach is a heuristic because the optimal facilities’ locations are not necessarily on hilltops.267

When there are no distance constraints, then the solution is to locate all the facilities at the top268

of the tallest hilltop. When D is very small, the solution is a cluster of p facilities near the tallest269

hilltop as long as the minimum distance to communities does not decrease by much. When D is270

moderately increased, then it is not possible to locate more than one facility in a disk centered at271

any hilltop because the hill is not large enough. Even if the hill is large enough, the facilities must272

be located near the bottom of the hill and the minimum distance to communities (the minimum273

height of the two facilities’ locations) is likely to be too small. It is important to remember that274

the solution is the height of the lowest facility and facilities that are located at higher locations can275

be moved without affecting the value of the objective function.276

It is possible, however, that the optimal solution is not at hilltops. Suppose that two tall277

hilltops, are slightly closer than D to one another. The heuristic procedure cannot select both278

hilltops (it may select only one of them). However, it may be possible to move the facilities located279

at these two hilltops in opposite directions thus attaining a distance of D between them (and280

not violating the distance constraints with other facilities) while reducing slightly the minimum281

distance between the translated two facilities and their closest community (sliding downhill but not282

by much). This may result in a better solution if the minimum distance is still above the heuristic283

objective function. Such a scenario is possible but not likely. Even if it occurs, the heuristic solution284

will not deteriorate much. For example, the heuristic solution for locating p = 20 facilities includes285

the 53rd highest hilltop. If the minimum distance is relaxed and we select among the 46 highest286

hilltops, the objective on hilltops is 2% higher, but the 16 miles distance constraints are violated.287

If the facilities are moved from the hilltops to accommodate the 16 miles distance requirement, the288

objective function cannot improve and may well be worse than the heuristic objective function.289

To illustrate this point we considered a hilltop based on three demand points, see Figure 3. The290

demand points are located at (0, 0), (6, 30), and (27, 9). The Voronoi point inside the triangle is291
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Figure 3: Points Near the Top of a Hill Exceeding a Height of 16
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√

292.5 = 17.103 from all three demand points. The292

area near the Voronoi point for which the height on the hill is greater than 16 is depicted in Figure293

3. Suppose that the distance to another Voronoi point is slightly lower than D and the heuristic294

solution is less than 16. It may be possible to move these two points downhill slightly farther from295

one another to achieve a distance of D between them and if the points remain in the interior of the296

area, the value of the objective function may exceed 16. Such a solution is not on Voronoi points.297

Since the “hills” are steep, see Figure 2, the area of exceeding a lower value is usually small as is298

observed in Figure 3.299

Consider the only instance that SNOPT found a better solution than the Voronoi heuristic.300

The location of p = 4 facilities among n = 100 demand points using D = 0.5 reported in Table301

xx. In Table 3 the distances between the first five Voronoi points are reported. When D ≤ 0.419302

is used, the solution is points 1 (or 2) and points 3,4,5. The objective function for this selection303

is 0.150887. However, this solution violates the D ≥ 0.5 constraints. A better solution was found304

by SNOPT by moving slightly Voronoi points 4 and 5 thus obtaining a distance of 0.5 between305

them. The objective function was reduced by 17% to 0.124590, but this solution is still better than306

using Voronoi point #19 (see Figure 1), which satisfies the D ≥ 0.5 constraints, with the objective307

of 0.114609. This observation may suggest ways to attempt and improve the heuristic approach.308

Such options are discussed in the conclusions section as ideas for future research.309
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It may also be possible that a large area contains no communities and there is only one Voronoi310

point in the area while two or more facilities that are far enough from one another may be located311

there. Note that our algorithm is suited for p << n which is the case in most practical applications.312

For example, if p > V , there must be facilities located at points which are not Voronoi points.313

However such instances require a very small value of D which is not practical.314

Note that in an optimal solution to the original problem a facility cannot be located inside disks315

(on hills) whose di (height) is smaller than dK∗ . If a starting solution for the non-linear optimization316

procedure has facilities on such hills, standard non-linear optimization software will not be able to317

escape to another hill due to the extreme non-convexity of the surface (see for example Figure 2).318

In other words, the procedure has to cross deep “valleys”, which it is not designed to do, and319

eventually will result in an inferior value of the objective function.320

Table 2: The First Five Voronoi Points

i x y di
1 0 0.361453 0.166317
2 0 0.420781 0.158368
3 1 0.257239 0.154282
4 0.802745 1 0.151738
5 0.440903 0.787825 0.150887

Table 3: The Values of Dij

1 2 3 4 5

1 0.000 0.059 1.005 1.026 0.613
2 0.059 0.000 1.013 0.990 0.574
3 1.005 1.013 0.000 0.769 0.771
4 1.026 0.990 0.769 0.000 0.419
5 0.613 0.574 0.771 0.419 0.000

See for example the randomly generated problem with n = 100 communities used in the com-321

putational experiments. The 100 communities in a square are depicted in Figure 1. We also show322

in the same figure the top five Voronoi points which are also given in Table 2. The distances Dij323

between the five Voronoi points are given in Table 3. The values of D used for the p = 2, 3, 4324

instances are D = 1√
2p

= 0.5, 0.408, 0.354, respectively.325

In Figure 2, the five highest Voronoi points are visible. Compare it also with Figure 1. The326
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first two Voronoi points are on the left wall very close to one another, the third one is on the right327

(not so clearly visible), the fourth one is in the far right, and the fifth one is close to the middle.328

Since the distance D12 is small, the heuristic solutions for 2 ≤ p ≤ 4 include either Voronoi329

point 1 or Voronoi point 2 but not both. Voronoi point 3 is added to the p = 2 heuristic solution,330

Voronoi points 3 and 4 are added for p = 3 and Voronoi points 3,4,5 for the p = 4 heuristic solution.331

The heurisic objectives for these p’s are indeed d3, d4, and d5 and K∗ are 3,4, and 5 (see Table 4).332

These solutions are optimal for the original problems because we cannot “separate” Voronoi points333

1 and 2 far enough so that the distance between them will not be less than D. For example, for the334

p = 2 instance the points in the square that are at least a distance d3 from all communities, which335

is the heuristic objective, are Voronoi point 3 and small areas surrounding Voronoi points 1 and 2336

(intersection of the exteriors of circles centered at communities with a radius d3). See also Figure337

3 for an illustration. All other points in the square are closer than d3 to at least one community. If338

there is a solution with a distance greater than d3, the area where facilities can be located does not339

include Voronoi point 3 but the facilities must be located in the interior of the small areas around340

Voronoi points 1 and 2 and none of these points are at least a distance D = 1
2 from one another.341

Theorem 1: The heuristic solution based on Voronoi points is a local maximum.342

Proof: Consider the heuristic solution that includes the Voronoi point VK∗ which determines its343

objective value dK∗ . There may be several Voronoi points tied for this distance. By the construction344

of the Voronoi points, an infinitesimal change in the location of VK∗ cannot increase its minimal345

distance to the closest community. Infinitesimal changes in other Voronoi points which are part of346

the heuristic solution, VK for K ≤ K∗, cannot improve the value of the objective function as well.347

Therefore, any combination of such infinitesimal changes cannot improve the value of the objective348

function even if some Voronoi points are at exactly a distance D from one another. 2349

By Theorem 1 it is clear that if the heuristic solution is used as a starting solution to a non-linear350

optimization software, such software cannot improve it. For illustration purposes, empirical exper-351

iments were conducted using Matlab showing that the heuristic solutions could not be improved352

when they were used as a starting solution, supporting Theorem 1.353
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4 Computational Experiments354

All experiments were run on a virtual server with 16 vCPUs and 128 GB of vRAM. Algorithms 1-4355

were implemented with the OPL and run on IBM’s CPLEX Optimization Studio 12.4 environment.356

We used the default CPLEX MIP solver settings for all four algorithms.357

The non-convex quadratically-constrained (QCP) versions of Maximin1 and Maximin2 problems358

were implemented in Matlab R2016b and solved using the interior-point method and SNOPT [17]359

starting from 100 random solutions. The GA method provided similar but poorer results and360

therefore results using GA are not reported. Unlike in the case of CPLEX, the default settings361

of QCP interior point solver resulted in poor quality solutions and long processing times, so the362

following changes were made: (i) analytical gradients and Hessians were specified for the objective363

function and all non-linear constraints, (ii) scaling was applied to the objective function and all364

constraints and (iii) the maximum number of function evaluations was increased to 50000. The first365

two changes significantly improved the quality of the solutions and solver’s efficiency (run time)366

and the last one prevented the solver from exiting prematurely.367

We experimented with n = 100 and 1000 with p = 2, 3, . . . , 20 for each problem for a total of 76368

instances, each solved by two algorithms and QCP for comparison purposes. We generate random369

locations for communities in a square (for details see the Appendix) that can be easily replicated370

for future comparisons with other methods. The interior point and SNOPT solvers were applied371

in a multi-start approach repeating the process from 100 random starting solutions and the best372

result is reported. We also experimented with n = 100 instances and 1000 starting solutions. The373

results were only slightly better but run times were about 10 times longer and thus these results374

are not reported. For Maximin1 we applied D = 1√
2p

and for Maximin2 we applied α = 2. The375

value of V is 202 for n = 100 and 2002 for n = 1000.376

In tables 4-7 we report:377

1. for the heuristic algorithms: the value of the objective function which is the minimum distance378

between facilities and communities,379

2. for Maximin1: the number of pairs of Voronoi points for which Dij < D (constraints of type380

(4)),381

3. for the heuristic algorithms: the value of K at the optimal solution,382
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4. for Maximin2: the number of BLP applications,383

5. the clock time in seconds,384

6. for QCP we also report the value of the objective function and the percentage of the QCP385

objective below the heuristic objective for both the interior point solver and SNOPT.386

Table 4: Results for Maximin1 n = 100 Instances Using D = 1√
2p

Heuristic Alg. 1 Alg. 2 Interior Point SNOPT
p Obje- † K Time K Time Obje- Time % below Obje- Time % below

ctive (sec.) (sec.) ctive (sec.) Heuristic ctive (sec.) Heuristic

2 0.154282 9,593 3 1.60 3 0.57 0.111489 23.51 27.7% 0.154282 2.66 0.0%
3 0.151738 6,957 4 1.63 4 0.90 0.110094 23.04 27.4% 0.133824 2.52 11.8%
4 0.150887 5,495 5 2.15 5 1.15 0.108818 26.00 27.9% 0.102189 3.50 32.3%
5 0.111488 4,558 21 2.38 21 2.18 0.092668 31.07 16.9% 0.102189 4.77 8.3%
6 0.111488 3,884 21 2.54 21 2.12 0.092668 37.96 16.9% 0.102189 7.15 8.3%
7 0.110668 3,432 22 2.58 22 2.23 0.095394 56.61 13.8% 0.094258 17.27 14.8%
8 0.108818 3,007 25 2.10 25 2.26 0.081280 48.48 25.3% 0.095395 20.20 12.3%
9 0.106636 2,720 26 2.87 26 2.18 0.081276 54.47 23.8% 0.092658 23.33 13.1%
10 0.102189 2,477 32 2.34 32 1.82 0.081271 67.72 20.5% 0.081767 79.07 20.0%
11 0.101100 2,271 36 2.07 36 2.27 0.081278 68.32 19.6% 0.081281 76.49 19.6%
12 0.100538 2,071 39 2.29 39 2.21 0.075754 76.60 24.7% 0.075618 100.21 24.8%
13 0.100538 1,913 39 1.65 39 1.43 0.081280 84.58 19.2% 0.081407 135.11 19.0%
14 0.096482 1,789 46 2.63 46 2.13 0.055635 93.30 42.3% 0.078265 206.78 18.9%
15 0.096482 1,688 46 3.85 46 2.16 0.058284 112.99 39.6% 0.071777 255.66 25.6%
16 0.096482 1,596 46 2.60 46 1.10 0.027046 135.21 72.0% 0.067402 489.99 30.1%
17 0.096482 1,515 46 2.63 46 1.37 0.050588 208.13 47.6% 0.072201 553.38 25.2%
18 0.095394 1,436 49 3.51 49 1.99 0.027046 199.49 71.6% 0.063215 502.35 33.7%
19 0.094537 1,365 51 2.87 51 1.62 0.027045 209.96 71.4% 0.066939 446.24 29.2%
20 0.094259 1,303 53 3.07 53 1.63 0.050265 212.04 46.7% 0.059051 581.34 37.4%

† Constraints of Type (4) for K = V

4.1 Maximin1 Results387

In Table 4 we report results for n = 100 and in Table 5 for n = 1000 by Algorithms 1 and 2, interior388

point and SNOPT for 2 ≤ p ≤ 20. In two cases the value of K at the heuristic solution is not the389

same for both algorithms. This is due to ties between some values of di resulting in different sorted390

vectors of di. The value of the objective function is the same by applying both algorithms.391

We note that for n = 100, the interior point p = 2 best objective is equal to d21, p = 3 objective392

is equal to d22, and the p = 14, 16, 18, 19, 20 objectives are equal to d197 almost at the bottom of the393
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Table 5: Results for Maximin1 n = 1000 Instances Using D = 1√
2p

Heuristic Alg. 1 Alg. 2 Interior Point SNOPT
p Obje- † K Time K Time Obje- Time % below Obje- Time % below

ctive (sec.) (sec.) ctive (sec.) Heuristic ctive (sec.) Heuristic

2 0.060413 978,875 5 176.37 5 23.44 0.032961 166.01 45.4% 0.043710 20.78 27.6%
3 0.048334 718,783 12 71.32 12 22.21 0.032971 250.88 31.8% 0.040716 43.25 15.8%
4 0.048334 569,500 12 89.24 12 21.24 0.031792 466.65 34.2% 0.038923 79.44 19.5%
5 0.048099 473,078 14 49.04 14 23.74 0.027037 880.24 43.8% 0.035011 924.34 27.2%
6 0.048099 405,490 14 47.72 14 21.15 0.021501 1143.16 55.3% 0.039285 1793.50 18.3%
7 0.044364 355,455 29 74.95 29 23.30 0.013620 1477.08 69.3% 0.030422 1693.56 31.4%
8 0.044364 316,529 29 39.43 29 21.66 0.024378 1869.33 45.0% 0.027604 2736.92 37.8%
9 0.044324 284,873 30 37.19 30 21.77 0.010598 2621.13 76.1% 0.027575 5933.92 37.8%
10 0.043385 259,320 36 50.68 36 20.99 0.019381 2881.38 55.3% 0.026487 4878.93 38.9%
11 0.041560 238,634 44 32.04 43 23.22 0.014727 3535.14 64.6% 0.024715 5576.01 40.5%
12 0.041552 220,422 45 60.26 45 22.40 0.012497 4425.06 69.9% 0.023707 5660.69 42.9%
13 0.041193 204,874 49 29.53 49 22.26 0.010614 5601.43 74.2% 0.025258 8140.24 38.7%
14 0.041193 191,432 49 33.50 49 22.32 0.010578 6416.49 74.3% 0.020032 19105.39 51.4%
15 0.039729 179,592 69 29.95 70 22.02 0.010614 9233.43 73.3% 0.023445 1608.35 41.0%
16 0.039664 169,334 72 62.55 72 22.77 0.003796 10958.50 90.4% 0.020939 5546.08 47.2%
17 0.039647 160,236 74 26.84 74 22.80 0.003797 13542.01 90.4% 0.016033 8355.69 59.6%
18 0.039664 152,157 72 38.14 72 24.07 0.010576 15234.95 73.3% 0.021174 11513.74 46.6%
19 0.039647 144,796 73 30.62 73 22.77 0.003797 16269.15 90.4% 0.020433 11902.36 48.5%
20 0.040239 138,098 65 51.09 65 24.30 0.003796 17831.12 90.6% 0.016277 18924.10 59.5%

† Constraints of Type (4) for K = V

list of 202 Voronoi points. One of the facilities is located at the top right corner (1,1) (see Figure394

1). The best QCP solutions have at least one facility at the top of a low height hill (see Figure 2).395

Note that it is enough that one facility is “stuck” in a “bad” region. All other facilities’ locations396

become irrelevant to the value of the objective function.397

We suspect that the interior points and SNOPT are not designed to effectively solve such398

extreme non-convex problems. To get good solutions one must be “lucky” when selecting the399

starting solution. In fact, when the heuristic solution was used as a starting solution for QCP, the400

result remained the same. This is expected in view of Theorem 1. Run times by QCP are much401

longer. Note that Algorithms 1 and 2 have no random component and replicating them will yield402

the same solution which is optimal for the BLP.403

For n = 100 run times are comparable for Algorithms 1 and 2. For n = 1000, run times required404

by Algorithm 2 are stable and do not vary much for different values of p. On the other hand, run405

times by Algorithm 1 decrease as p increases. Since D decreases as p increases, the number of406
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Table 6: Results for Maximin2 n = 100 Instances

Heuristic Algorithm 3 Algorithm 4 QCP (Interior Point)
p Obje- K BLP Time K BLP Time Obje- Time % below

ctive Runs (sec.) Runs (sec.) ctive (sec.) Heuristic

2 0.154282 3 3 1.66 3 4 1.94 0.111489 17.84 27.7%
3 0.151738 4 3 2.36 4 4 1.79 0.108817 19.58 28.3%
4 0.150887 5 3 2.13 5 5 1.75 0.095811 26.21 36.5%
5 0.128668 14 12 9.01 14 9 5.68 0.092664 31.57 28.0%
6 0.111488 21 6 4.14 21 9 3.94 0.091351 35.57 18.1%
7 0.110668 22 4 3.72 22 10 5.42 0.083075 54.85 24.9%
8 0.108818 25 6 4.49 25 10 5.24 0.081279 48.44 25.3%
9 0.106636 26 5 5.07 26 7 4.35 0.081279 51.75 23.8%
10 0.102189 32 9 6.57 32 10 6.30 0.079098 71.50 22.6%
11 0.101100 36 8 9.42 36 11 6.56 0.076545 81.25 24.3%
12 0.100538 39 10 10.98 39 11 9.22 0.079096 77.60 21.3%
13 0.098631 43 13 11.56 43 10 6.77 0.078138 88.80 20.8%
14 0.096482 46 10 10.28 46 11 7.37 0.066097 98.15 31.5%
15 0.095394 49 10 10.17 49 11 6.89 0.066088 107.45 30.7%
16 0.094259 53 11 10.17 53 14 10.07 0.068306 117.49 27.5%
17 0.094259 53 9 9.08 53 11 7.38 0.056740 138.84 39.8%
18 0.094258 54 8 9.97 54 9 8.41 0.056742 146.93 39.8%
19 0.094012 55 8 8.99 55 9 9.95 0.056744 155.11 39.6%
20 0.093847 56 9 10.89 56 10 9.39 0.048573 173.89 48.2%

constraints of type (4) decreases as p increases leading to shorter run times. OPL using CPLEX407

was able to solve such problems with almost a million constraints and two thousand variables in a408

short run time. Both algorithms required very short run times and Algorithm 2 is clearly preferred409

for small values of p.410

The quality of the heuristic solutions is much better than those of the QCP. For n = 100, the411

interior point objectives were below the heuristic objectives by 13%-72% and the SNOPT objective412

was the same for p = 2 but was up to 37% below the heuristic solution for larger values of p. For413

n = 1000, the interior point solutions were 32%-90% below the heuristic objectives and the SNOPT414

solutions were 16%-59% below the heuristic solutions. In some cases the heuristic objective was415

more than 10 times better! Run times required by Matlab are much longer. The largest problem416

was solved heuristically in 24 seconds while it required about five hours by the interior point and417

SNOPT.418
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Table 7: Results for Maximin2 n = 1000 Instances

Heuristic Algorithm 3 Algorithm 4 QCP (Interior Point)
p Obje- K BLP Time K BLP Time Obje- Time % below

ctive Runs (sec.) Runs (sec.) ctive (sec.) Heuristic

2 0.060413 5 6 15.61 5 6 8.56 0.032961 184.28 45.4%
3 0.052838 7 5 16.92 7 6 10.04 0.032971 320.24 37.6%
4 0.050160 9 5 18.45 9 8 11.74 0.031792 527.52 36.6%
5 0.048652 10 4 16.21 10 6 10.21 0.027037 897.87 44.4%
6 0.048334 12 5 17.86 12 6 11.74 0.021501 1321.51 55.5%
7 0.048099 14 7 17.62 14 6 10.42 0.013620 1656.54 71.7%
8 0.047801 16 7 19.99 16 7 12.00 0.024378 2348.02 49.0%
9 0.044977 24 12 22.96 24 6 11.98 0.010598 2799.99 76.4%
10 0.044977 25 6 18.24 25 8 11.61 0.019381 3371.73 56.9%
11 0.044364 29 12 29.76 29 6 18.15 0.014727 3913.02 66.8%
12 0.044324 30 10 22.64 30 8 11.86 0.012497 4564.89 71.8%
13 0.044324 31 6 27.82 31 9 12.64 0.010614 5467.57 76.1%
14 0.043973 32 10 22.10 32 9 12.36 0.010578 6450.50 75.9%
15 0.043710 33 10 22.40 33 10 13.10 0.010614 7515.70 75.7%
16 0.043710 34 6 18.91 34 10 13.21 0.003796 8120.26 91.3%
17 0.043487 35 10 22.94 35 10 13.52 0.003797 9550.26 91.3%
18 0.043385 36 10 21.63 36 8 13.03 0.010576 10591.68 75.6%
19 0.042742 40 12 24.63 40 10 13.63 0.003797 11294.25 91.1%
20 0.041560 43 12 22.56 43 10 13.68 0.003796 11861.28 90.9%

4.2 Maximin2 Results419

In Table 6 we report results for n = 100 and in Table 7 for n = 1000 by Algorithms 3 and 4 and420

interior point for 2 ≤ p ≤ 20. The SNOPT solver failed to find even one feasible solution in 100421

runs for 20 of the 38 instances. We also solved the n = 100 instances 10,000 times. There were more422

feasible solutions and the results are slightly better (much worse than the heuristic results) and423

run times are 100 times longer. We thereofore do not report the SNOPT results for the Maximin2424

instances. The performance, except SNOPT, and conclusions are very similar to those obtained for425

Maximin1.426

Both algorithms are very efficient for n = 100 and performed about equally well. For n = 1000,427

run times required by Algorithm 4 are generally lower than those required by Algorithm 3.428

The quality of the heuristic solutions is much better than those obtained by the interior point429

solver. For n = 100, the interior point objectives were below the heuristic objectives by 18%-48%.430

For n = 1000, they were 37%-91% below the heuristic objectives. Run times of the QCP are much431
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Table 8: Results for Maximin1 n = 100 Instances Using D = 1√
p

Heuristic Alg. 1 Alg. 2 Interior Point SNOPT
p Obje- K Time K Time Obje- Time % below Obje- Time % below

ctive (sec.) (sec.) ctive (sec.) Heuristic ctive (sec.) Heuristic

2 0.154282 3 0.59 3 0.18 0.111486 3.81 27.7% 0.154283 3.07 0.0%
3 0.151738 4 0.57 4 0.16 0.108816 3.49 28.3% 0.150887 3.24 0.6%
4 0.114609 19 0.59 19 0.20 0.108818 5.30 5.1% 0.124591 5.13 -8.7%
5 0.111488 21 0.51 21 0.29 0.092665 7.54 16.9% 0.110669 7.39 0.7%
6 0.110668 22 0.47 22 0.19 0.081278 9.72 26.6% 0.095301 9.26 13.9%
7 0.108818 25 0.52 25 0.20 0.073011 23.61 32.9% 0.101620 22.99 6.6%
8 0.102189 32 0.48 32 0.24 0.073038 54.59 28.5% 0.095395 52.58 6.6%
9 0.102189 32 2.18 32 0.32 0.069585 61.80 31.9% 0.086117 59.57 15.7%
10 0.095394 49 0.55 49 0.24 0.055803 81.38 41.5% 0.093217 91.84 2.3%
11 0.095394 49 0.50 49 0.33 0.065434 74.35 31.4% 0.079606 72.08 16.6%
12 0.095169 50 0.50 50 0.35 0.027046 79.35 71.6% 0.079318 77.03 16.7%
13 0.094401 52 0.75 52 0.24 0.059649 151.55 36.8% 0.073015 147.33 22.7%
14 0.081280 78 0.72 78 0.40 0.035561 134.87 56.2% 0.072998 131.88 10.2%
15 0.081407 77 2.78 77 0.45 0.065433 302.97 19.6% 0.070529 294.69 13.4%
16 0.081280 78 0.61 78 0.29 0.055881 237.83 31.2% 0.067402 232.79 17.1%
17 0.075380 91 0.52 91 0.52 0.027045 490.82 64.1% 0.073015 483.18 3.1%
18 0.073080 103 0.53 103 0.52 0.027046 221.06 63.0% 0.069189 245.86 5.3%
19 0.075380 91 0.56 91 0.37 0.070528 268.33 6.4% 0.056615 299.86 24.9%
20 0.076831 88 0.57 88 0.38 0.027046 481.49 64.8% 0.058138 521.96 24.3%

longer in some cases by a factor of almost one thousand.432

5 Case Study: Locating Obnoxious Facilities in Colorado433

There are 271 municipalities in Colorado and we wish to build p obnoxious facilities such as pollution434

generating industrial facilities to be as far as possible from these municipalities. The problems were435

solved by the Voronoi based heuristic algorithms (that need to be solved only once) as well as by436

Matlab, using interior point method and using SNOPT, reporting the best solution obtained from437

100 randomly generated starting solutions.438

The locations for 2 ≤ p ≤ 20 by Maximin1 requiring D = 80 miles between facilities and439

Maximin2 with α = 2 are depicted in Tables 11 and 12. The results clearly show that the Voronoi440

based heuristic performed much better than the Matlab procedures on these 38 instances. The best441

value of the objective function obtained by the Matlab procedures was betwwn 6% and 57% lower442

than the results obtained by the Voronoi heuristic. Run times by the Voronoi based heuristic are443
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Table 9: Results for Maximin1 n = 1000 Instances Using D = 1√
p

Heuristic Alg. 1 Alg. 2 Interior Point SNOPT
p Obje- K Time K Time Obje- Time % below Obje- Time % below

ctive (sec.) (sec.) ctive (sec.) Heuristic ctive (sec.) Heuristic

2 0.060413 5 120.93 5 13.65 0.032968 151.78 45.4% 0.060414 28.85 0.0%
3 0.048099 14 100.05 14 13.89 0.032959 342.97 31.5% 0.038076 70.84 20.8%
4 0.048099 14 90.64 14 13.74 0.029457 523.79 38.8% 0.036250 146.11 24.6%
5 0.044364 29 82.76 29 15.14 0.027045 848.14 39.0% 0.032971 355.05 25.7%
6 0.044364 29 86.52 29 13.44 0.019380 1274.65 56.3% 0.031137 373.78 29.8%
7 0.043710 34 74.77 34 13.73 0.027044 1753.83 38.1% 0.029046 2959.65 33.5%
8 0.041560 43 79.85 43 14.26 0.026407 2518.62 36.5% 0.028746 1745.14 30.8%
9 0.039729 69 84.82 69 14.23 0.019382 2975.67 51.2% 0.027386 1653.56 31.1%
10 0.039729 69 76.05 69 14.15 0.019381 3750.88 51.2% 0.024644 1304.80 38.0%
11 0.038075 115 66.48 115 15.24 0.010609 5058.97 72.1% 0.023472 2954.71 38.4%
12 0.039123 87 68.38 87 14.63 0.009643 7469.20 75.4% 0.024104 3310.78 38.4%
13 0.038075 115 75.59 115 14.91 0.009863 11551.76 74.1% 0.023842 8746.06 37.4%
14 0.038075 115 84.43 115 14.29 0.010608 13240.33 72.1% 0.020034 10845.53 47.4%
15 0.037049 133 67.23 133 14.59 0.010615 19198.95 71.3% 0.020288 6800.51 45.2%
16 0.037049 133 64.99 133 15.31 0.009875 21075.77 73.3% 0.021321 3716.66 42.5%
17 0.035941 147 110.77 147 14.47 0.003795 30142.08 89.4% 0.020564 7650.78 42.8%
18 0.034271 203 82.50 203 17.11 0.003794 34586.89 88.9% 0.016961 4403.85 50.5%
19 0.035288 167 122.84 167 15.06 0.003796 40564.65 89.2% 0.020070 6593.26 43.1%
20 0.033267 222 132.45 222 17.47 0.010612 45396.36 68.1% 0.020019 8934.54 39.8%

more than 1,000 times faster for large values of p. Interior point performed better than SNOPT.444

The solution for locating 20 obnoxious facilities by the maximin1 model is depicted in Fig-445

ure 4. The heuristic minimum distance between facilities and communities is about 16.5 miles (see446

Table 11). Interior point’s best solution is about 15.6 miles while SNOPT’s is about 10.8 miles.447

6 Conclusions448

We formulated and solved two multiple obnoxious facilities problems. A given number of facilities449

are to be located in a convex polygon with the objective of maximizing the minimum distance450

between facilities and a given set of communities. The facilities has to be farther than a certain451

distance from one another. The proposed heuristic solution approaches are based on generating the452

Voronoi points of Voronoi diagrams [30, 34]. A binary linear program (BLP) was constructed and453

the solution approaches applied this BLP iteratively. Run times are very short producing excellent454

results.455
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Table 10: Upper Bounds For the Heuristic Results

n = 100 n = 1, 000
p Heuristic U.B. % above Heuristic U.B. % above

2 0.154282 0.158368 2.6% 0.060413 0.065301 8.1%
3 0.151738 0.154282 1.7% 0.048099 0.064855 34.8%
4 0.150887 0.151738 0.6% 0.048099 0.063223 31.4%
5 0.111488 0.150887 35.3% 0.044364 0.060413 36.2%
6 0.111488 0.150845 35.3% 0.044364 0.055291 24.6%
7 0.110668 0.148404 34.1% 0.043710 0.052838 20.9%
8 0.108818 0.135640 24.6% 0.041560 0.050315 21.1%
9 0.106636 0.134780 26.4% 0.039729 0.050160 26.3%
10 0.102189 0.134754 31.9% 0.039729 0.048652 22.5%
11 0.101100 0.133824 32.4% 0.038075 0.048627 27.7%
12 0.100538 0.133587 32.9% 0.039123 0.048334 23.5%
13 0.100538 0.132914 32.2% 0.038075 0.048158 26.5%
14 0.096482 0.128668 33.4% 0.038075 0.048099 26.3%
15 0.096482 0.126415 31.0% 0.037049 0.047881 29.2%
16 0.096482 0.124170 28.7% 0.037049 0.047801 29.0%
17 0.096482 0.124036 28.6% 0.035941 0.047774 32.9%
18 0.095394 0.117843 23.5% 0.034271 0.047660 39.1%
19 0.094537 0.114609 21.2% 0.035288 0.046943 33.0%
20 0.094259 0.113482 20.4% 0.033267 0.046500 39.8%

For comparison purposes we solved the problem by a multi-start approach applying the non-456

convex quadratically-constrained (QCP) method in Matlab based on Matlab’s default interior point457

and SNOPT solvers. The best results obtained by Matlab are worse by at least 13% than the458

heuristic results. In some cases the heuristic results are better by a factor greater than 10. This459

means that the minimum distance between communities and facilities in the heuristic solution is460

more than ten times greater than the minimum distance in the best solution found by Matlab!461

For example, suppose that 1000 communities are located in a 100 by 100 miles square in locations462

corresponding to our test problem. 20 noisy factories need to be located in the area. These463

factories are required to be at least 16 miles from one another to avoid cumulative nuisance to464

the communities. By Matlab using the interior point method the minimum distance between a465

community and a factory is 0.38 miles (see Table 5). SNOPT found a solution of 1.6 miles. By466

our heuristic result each community is at least 4 miles away from any factory. When the distances467

between factories are required to be at least twice the minimum distance to the communities (see468

Table 7), the minimum distance by the interior point method is the same 0.38 miles, SNOPT failed469
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Table 11: Results for Colorado Municipalities: Maximin1 Objective

Heuristic Alg. 1 Alg. 2 Interior Point SNOPT
p Obje- K Time K Time Obje- Time % below Obje- Time % below

ctive (sec.) (sec.) ctive (sec.) Heuristic ctive (sec.) Heuristic

2 39.694395 4 3.53 4 1.06 36.511967 41.96 8.0% 33.728213 10.90 15.0%
3 38.333642 6 3.26 6 1.28 35.181856 54.72 8.2% 33.728213 17.07 12.0%
4 37.388116 8 3.59 8 1.11 29.416538 83.51 21.3% 33.728213 57.46 9.8%
5 35.771728 16 3.25 16 1.34 26.652446 103.13 25.5% 33.728213 492.77 5.7%
6 35.181855 18 3.68 18 1.12 26.600475 143.14 24.4% 31.924244 1169.13 9.3%
7 33.728213 20 3.25 20 1.34 26.600475 171.81 21.1% 25.416189 1957.45 24.6%
8 30.134736 32 3.65 32 1.17 22.520097 210.84 25.3% 22.520097 2322.08 25.3%
9 29.742869 33 3.37 33 1.36 22.520097 290.29 24.3% 20.820193 3175.30 30.0%
10 29.528622 36 3.63 36 1.14 20.126060 335.87 31.8% 22.132283 2938.46 25.0%
11 29.416537 37 3.31 37 1.33 18.718547 452.46 36.4% 19.287761 2987.33 34.4%
12 29.057271 39 3.65 39 1.12 22.113030 561.33 23.9% 17.393139 3999.68 40.1%
13 28.629458 42 3.35 42 1.33 19.079799 689.59 33.4% 16.998044 3119.47 40.6%
14 28.265609 47 3.62 47 1.16 19.575039 873.61 30.7% 15.655950 5069.37 44.6%
15 24.835288 88 3.40 88 1.54 17.559717 1128.02 29.3% 15.255855 5696.77 38.6%
16 22.132283 118 3.79 118 1.64 16.309250 1343.76 26.3% 13.932383 6009.23 37.0%
17 20.949743 133 3.43 133 1.84 18.718547 1736.98 10.7% 13.870493 3498.17 33.8%
18 19.418680 154 3.71 154 1.97 13.261295 2133.28 31.7% 14.485326 4566.82 25.4%
19 19.145613 159 3.46 159 2.23 16.608329 2663.39 13.3% 11.821557 5510.11 38.3%
20 16.535647 215 3.82 215 2.70 15.565481 3009.58 5.9% 10.829746 4801.80 34.5%

to find a feasible solution, and our heuristic found a solution with a minimum distance of 4.16470

miles. Run times required by Matlab employing the interior point method or SNOPT solvers are471

much longer. The largest problem was solved heuristically in 24 seconds while it required about five472

hours by Matlab. We do not expect to get much better results by using other non-linear non-convex473

solvers because there are so many local maxima (4 × 1047 local maxima, some infeasible, for the474

largest tested problem) and the result depends on the initial random solution because it is unlikely475

to move from one local maximum to another (see Figure 2).476

We also solved a case study of locating obnoxious facilities in Colorado among 271 municipalities.477

The Voronoi heuristic performed much better than Matlab for this case study as well. By inspecting478

Figures 1 and 4, it seems that solutions tend to be close to the periphery of the convex polygon.479

It is possible, for example in the Colorado case study, that communities outside the state may be480

affected and should be considered in the model. In such cases the Voronoi points should be created481

considering also points outside the convex polygon but restricted to the convex polygon. This can482

be accomplished by creating a Voronoi diagram based on all points, selecting as Voronoi points the483
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Table 12: Results for Colorado Municipalities: Maximin2 Objective

Heuristic Alg. 3 Alg. 4 Interior Point SNOPT
p Obje- K Time K Time Obje- Time % below Obje- Time % below

ctive (sec.) (sec.) ctive (sec.) Heuristic ctive (sec.) Heuristic

2 39.694395 4 1.85 4 1.08 36.511967 44.00 8.0% 33.728213 10.95 15.0%
3 38.333642 6 1.74 6 1.02 35.181856 56.67 8.2% 33.728213 18.43 12.0%
4 37.388116 8 2.08 8 1.04 29.416538 84.32 21.3% 33.728213 62.07 9.8%
5 37.203216 9 2.53 9 1.11 26.652446 108.30 28.4% 33.728213 539.84 9.3%
6 35.181855 18 2.03 18 1.16 26.600475 150.18 24.4% 31.924244 1262.25 9.3%
7 33.728213 20 2.08 20 1.17 26.600475 181.87 21.1% 25.416189 2092.06 24.6%
8 33.119803 22 3.71 22 1.34 22.520097 219.15 32.0% 22.520097 2504.32 32.0%
9 32.110293 24 1.93 24 1.10 22.520097 298.95 29.9% 20.820193 3378.49 35.2%
10 30.134736 32 2.02 32 1.43 20.126060 355.58 33.2% 22.132283 3118.91 26.6%
11 29.416537 37 2.01 37 1.40 18.718547 473.52 36.4% 19.287761 3167.01 34.4%
12 29.057271 39 2.00 39 1.47 22.113030 588.50 23.9% 17.393139 4429.27 40.1%
13 28.902359 40 1.96 40 1.39 19.079799 729.14 34.0% 16.998044 3297.04 41.2%
14 28.629458 42 2.01 42 1.21 19.575039 939.98 31.6% 15.655950 4924.29 45.3%
15 28.359140 46 2.18 46 1.37 17.559717 1134.59 38.1% 15.255855 5216.74 46.2%
16 28.265609 47 2.12 47 1.27 16.309250 1373.46 42.3% 13.932383 5698.57 50.7%
17 27.093737 65 2.40 65 2.04 18.718547 1786.32 30.9% 13.870493 3111.48 48.8%
18 26.388220 72 2.59 72 2.17 13.261295 2193.20 49.7% 14.485326 3921.14 45.1%
19 26.086154 73 2.71 73 2.07 16.608329 2723.78 36.3% 11.821557 4800.02 54.7%
20 25.266566 80 2.37 80 1.65 15.565481 3072.09 38.4% 10.829746 4197.52 57.1%

Voronoi points in the convex polygon and the intersection points between the Voronoi edges and484

the boundary of the convex polygon.485

The problem can also be defined in a cube in three dimensions or on the globe. The heuristic486

approach requires three-dimensional Voronoi vertices [18] or spherical Voronoi vertices [27]. Non487

linear optimization procedures such as QCP in Matlab can be implemented in a multi-start approach488

but from the experience based on the results presented in this paper we do not expect that high489

quality solutions will be found this way.490

6.1 Suggestions for Future Research491

The discussion in Section 3.3 suggests other solution algorithms based on the Voronoi heuristic.492

There are a few possible approaches. For example, require a lower value of D and apply the493

Voronoi heuristic. Presumably, some constraints for the original value of D are violated. Apply494

an optimization procedure from this solution subject to the original D constraints. Some solution495

points may slide a bit from hilltops and a better solution may possibly be found. Constructing,496
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Figure 4: Locating 20 Obnoxious Facilities in Colorado

analyzing, and testing such approaches will constitute a full fledged new paper.497

Appendix: Generating Random Configurations498

We follow the idea presented in [23] for generating random numbers. We generate a sequence499

of integer numbers in the open range (0, 100,000). A starting seed r1, which is the first number in500

the sequence, is selected. The sequence is generated by the following rule for k ≥ 1:501

• Set θ = 12219rk.502

• Set rk+1 = θ − b θ
100000c × 100000, i.e., rk+1 is the remainder of dividing θ by 100000. It is503

also the last five digits of θ.504

For the x coordinates we used r1 = 97 and for the y-coordinates we used r1 = 367. The first505

100 points in a square (we divide the coordinates by 100000 so the points are in a unit square) are506
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depicted in Figure 1.507

These sequences return to the first point after 5000 generations. Note that even though there are508

99,999 numbers between 1 and 99,999, even numbers and numbers divisible by 5 are not obtained509

in the sequences. We could get longer sequences if 100,000 or 99,999 were prime numbers. The510

sequences suggested in [23] exploit the fact that 231 − 1 is a prime number. Note that the number511

12,219 can be replaced by many other numbers.512
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