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Modelling and dynamic behaviour of eIF2
dependent regulatory system with disturbances

Mohammad Farhan Khan∗, Sarah K. Spurgeon†, Xing-Gang Yan‡

Abstract—Eukaryotic initiation factor 2 (eIF2) is a central
controller of the eukaryotic translational machinery. To sustain
the on-going translation activity, eIF2 cycles between its GTP and
GDP bound states. However, in response to cellular stresses, the
phosphorylation of eIF2 takes place, which acts as an inhibitor of
the guanine nucleotide exchange factor eIF2B and switches the
translation activity on physiological timescales. The main objec-
tive of this work is to investigate the stability of the regulatory
system under nominal conditions, parametric fluctuations and
structural damages. In this paper, a mathematical model of eIF2
dependent regulatory system is used to identify the stability-
conferring features within the system with the help of direct and
indirect methods of Lyapunov stability theory. To investigate the
impact of intrinsic fluctuations and structural damages on the
stability of regulatory system, the mathematical model has been
linearised around feasible equilibrium point and the variation of
system poles have been observed. The investigations have revealed
that the regulatory model is stable and able to tolerate the
intrinsic stressors but becomes unstable when particular complex
is targeted to override the undesirable interaction. Our analyses
indicate that, the stability is a collective property and damage in
the structure of the system changes the stability of the system.

Index Terms—Protein synthesis, mathematical modelling,
structural stability, targeting undesirable interaction, species
elimination.

I. INTRODUCTION

Protein synthesis is itself a highly robust and complex
process consisting of mainly three phases, namely initiation,
elongation and termination [1]. Among these phases, initiation
is the very first step responsible for protein synthesis and
predominantly targeted for control of gene expression levels
[2]. Translation initiation is a dominant locus of control, which
depends hugely on the initiation factors (eIFs) [3]. One of the
main role of initiation factors is to ensure that the translation
activity is sustainable.

To maintain the on-going translation activity, the role of
eIF2 is to cycle between its active (GTP-bound) and inactive
(GDP-bound) states. The primary role of eIF2 in translation
initiation is to carry methionyl tRNA to the 40S ribosomal sub-
unit [3]. To participate in upcoming round of translation, eIF2
stimulates its active state with the help of guanine nucleotide
exchange factor (GEF) termed eIF2B, by releasing GDP from
eIF2:GDP and forming eIF2:GTP, and further regulated by a
guanidine dissociation inhibitor (GDI) function of eIF5 [4].
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The eIF2:GDP is released from translation initiation process
as eIF2:GDP:eIF5 complex [5].

During amino-acid starvation, uncharged tRNA (u-tRNA)
influences eIF2 by phosphorylating it with the help of highly
conserved single-substrate kinase namely general control non-
derepressible 2 (GCN2). Investigation has revealed that, u-
tRNA and charged tRNA are in competition with each other
for binding with GCN2, but GCN2 holds comparatively lesser
affinity for aminoacylated tRNA than u-tRNA [6]. Although
GCN2 can bind to both aminoacylated tRNA and u-tRNA, it
only activates by binding to u-tRNA [7], [8]. Phosphorylation
converts eIF2 to a competitive inhibitor of eIF2B, and binds
with eIF2B to form a tight complex that disrupts nominal
translation activity [9]. Compared to eIF2, GEF eIF2B is usu-
ally present in substoichiometric amounts [10] and even partial
phosphorylation of eIF2 can quantitatively block translation
activity.

From computation point of view, the dynamic aspects of
regulatory pathways involving eIF2 can be studied in the
context of overall translation initiation pathway or specific
reactions focussing on the core reaction [11]–[14]. In this
paper, the latter technique is adopted for investigating the sta-
bility of the regulatory system that involves the core eIF2:GDP
complexes required for phosphorylation of eIF2:GDP and
formation of tight complex eIF2-P:eIF2B.

There are several reasons to investigate the stability of the
eIF2 dependent regulatory system, such as, in drug design
targeting particular complex to override the undesirable inter-
action while avoiding unintended targets is one of the attractive
possibilities [15], [16]. Although, aiming particular target to
override the undesirable interaction is currently a huge chal-
lenge, in many cases this objective has been attained through
trial-and-error and rational design approaches [15]. Another
example includes, transient protein complex that holds suitable
level of stability, which can be broken by external factor such
as phosphorylation. Hence, stability can be specified as one of
the important features that should be observed in formation of
protein complexes [17]. Hence, the objective of this paper is to
investigate the impact of reaction elimination on the stability of
the eIF2 dependent regulatory system with the help of control
theory.

The remainder of the paper is organized as follows. In Sec-
tion II, a mathematical model for eIF2 dependent regulatory
system is developed using mass action kinetics. Section III
presents the detailed analyses of the dynamical behaviour of
eIF2 dependent regulatory system and the switching behaviour
of eIF2 dependent regulatory system. In the same section
the stability of the biochemical network is discussed for
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Fig. 1. The eIF2 dependent regulatory model demonstrates the role of u-
tRNA in activating GCN2 and halting the ongoing translation activity. To
sustain ongoing translation activity, regeneration of eIF2:GDP is required
by forming eIF2B:eIF2:GDP GEF complex. The GEF complex can form
either by release of eIF5 prior to recruitment of eIF2B (route 1) or through
eIF5:eIF2B:eIF2:GDP intermediate complex (route 2). Phosphorylated eIF2
(eIF2-P) binds with eIF2B and form a tight complex, resulting into quantitative
blockage of translation activity. The starting point of eIF2 phosphorylation is
activation of kinase GCN2 after binding to u-tRNA.

perturbed system, and the impact of structural damage on
general behaviour (in frequency domain) and stability of the
system is also presented. Finally, the paper is concluded in
Section IV.

II. MATERIALS AND METHODS

In the present study, translational control via phosphory-
lation of eIF2 is considered as a molecular switch, which
changes the translation activity on physiological timescales. To
demonstrate the role of highly conserved kinase GCN2 on the
general translation activity, a computational biology approach
is adopted. In this study, the mass-action kinetic modelling
approach [18] is used to develop the deterministic eIF2 model
and tools from control theory are used to investigate the
stability of the model. Note that, the deterministic models
are amenable to analysis methods from the domain of linear
control theory, which is not possible from stochastic models.

Fig. 1 demonstrates the role of inactive and active kinase
GCN2 on translation activity. It is well known that, GCN2
activates after binding to u-tRNA during amino-acid depriva-
tion, which results into down-regulation of translation activity.
The mathematical model is designed to mimic two established
states of the eIF2 cycle. The first state is referred as the normal
state (non-stress state) that corresponds availability of plenty
of amino-acids. While another state is the stress state, when
GCN2 activates by combining to u-tRNA during amino-acid
starvation.

As stated earlier, both u-tRNA and charged tRNAs compete
with each other for binding with GCN2 [6], but GCN2 only
activates after binding to u-tRNA. So changing concentration
of this activated complex can be modelled either by displacing
charged tRNA with u-tRNA from GCN2 or by increasing
the concentration of u-tRNA binding to GCN2. The model
illustrated in Fig. 1, includes the pathway (termed as route 2)

for the regeneration of eIF2:GDP due to intermediate complex
constituting factors eIF2B and eIF5 [5]. The formation of
eIF2:GDP:eIF2B GEF complex can either occur via release
of eIF5 prior to the recruitment of eIF2B (termed as route 1),
or through eIF2:GDP:eIF5:eIF2B intermediate complex [19],
[20]. In the recent study, it has been found that eIF2B functions
as an activator of eIF5 dissociation from eIF2:GDP:eIF5
complex, indicates that out of the two routes, latter route is
preferred for the regeneration of eIF2:GDP [19], [20].

The biomolecular reactions and differential equation in-
volved in the eIF2 pathway are given in supplementary file S1
and S2 respectively. Note that, the mathematical model is im-
plemented in Matlab and solved using a modified rosenbrock
solver (ode23s) [21]. To parametrise the proposed mathemat-
ical model, the Levenberg-Marquardt (LM) algorithm [22] is
used with target translation flux of 13,000 proteins per cell
per second (haploid) as an algorithm constraint [23]. The total
cellular concentrations reported in the literature are as follows:
eIF2 = 18 µM [23], [24], eIF2B = 1.8 µM [23], [24], eIF5 =
18 µM [24] and GCN2 = 0.03 µM [23].

It is worthy to note that, most of the parameters are not
known from experiments, hence estimating remaining param-
eters using LM algorithm will result into large parameter space
that is able to fit the target translation flux of 13,000 proteins
per cell per second. To narrow down the large parameter
space to single precise set of rate constants, it is necessary
to include the robustness property of the translation activity
against mutation induced changes in rate constants [25], [26].

The robustness of mathematical model against mutation in-
duced changes can be tested by obtaining the minimal change
in translation flux against parametric perturbations through
reaction containing reaction rates C11/C1. The processes of
parameter estimation and narrowing large parameter space to
single parameter set is discussed below.

The LM algorithm is initiated with random initial conditions
following aforementioned total cellular concentrations of eIF2,
eIF2B, eIF5 and GCN2. Note that, LM algorithm might fall
into local minima during the parameterisation process that
may result into uncertain combination of parameter values,
which may not follow experimental observations. Therefore
to overcome this limitation, the fitting process is repeated 105

times and the fit is validated using (1), which guarantees that
the algorithm is not falling into local minima [27].

ξ1 = |Y1D − Y1(Yi(0), Cj , t)| (1)

where, ξ1 is an absolute error between in vitro and simulated
experimental values, Y1D is the in vitro experimental data
value for haploid yeast cell, Cj is the set of rate constant and
Y1(Yi(0), Cj , t) is the simulated experimental value of protein
obtained by solving ODEs for Yi(0) and Cj initial conditions,
and j ∈ [1, 20]. Note that, out of 105 random experiments,
the percentage of parameter combinations giving ξ1 ≡ 0
is 1.684%. The percentage value of parameter combinations
defines the exact estimation of the experimental translation flux
because in that case Y1D ' Y1(Yi(0), Cj , t). The percentage
value suggests large combinations of rate constants are accu-
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rately fitting the target translation flux of 13,000 proteins per
cell per second for the current mathematical model.

To narrow down the large parameter space to single parame-
ter set, every individual combination of parameter is perturbed
to ±50% from its original value and the normalised average
error ξ2 is recorded, which can be determined from (2).

ξ2 =
1

T

∫ T

0

|Y1(Yi(0), Cm, t)− Y1(Yi(0),∆Cm, t)|
max(Y1(Yi(0), Cm, t), Y1(Yi(0),∆Cm, t))

dt

(2)
where, T is the evaluation time and ∆Cm is equal to ±50%
of original Cm value and m belongs to [2, 20] 63 [11]. The
purpose of perturbing the rate constants is to analyse the
robustness of translation activity against mutation induced
changes, which is illustrated in supplementary file S6. Lower
value of ξ2 defines high robustness against parametric changes
[28]. Hence, the parameter combination giving lowest value of
ξ2 is considered in this study. The estimated rate constants are
given in supplementary file S5.

III. RESULTS

In this section, the dynamic control properties of regulatory
systems involving the eIF2 pathway is to be investigated with
the help of simulation results. To simulate the impact of amino-
acid starvation on translation activity, the value of u-tRNA is
varied from 0 M (non-stress case) to 1.05 × 10−5 M (stress
case). A zero cellular concentration of u-tRNA implies its
absence in the system due to availability of amino-acids in
abundance. While increasing the value of u-tRNA from zero
acts as a stress signal implying accumulation of u-tRNA in the
amino-acid starved cell, and its role as GCN2 activator which
impacts on the translation activity. The switching property of
the model is discussed in the sub-section.

A. Switching behaviour of eIF2 dependent regulation

It is well known that, eIF2 is a G-protein acting as a
molecular switch inside the cells, which sets translational
activity to different levels in physiological timescales, which
depends on activation and interaction of kinase GCN2 with
u-tRNA. To observe this scenario, the initial concentration of
u-tRNA is varied from zero onwards. Activation of GCN2 has
a reciprocal effect on changes to the translation activity which
is evident from Figs. 2 and 3.

Fig. 2 shows slow ramping of translation activity from
13,000 proteins per cell per sec. (100%) to starvation in re-
sponse to u-tRNAs and activated GCN2. The transition of state
occurs when the existing pool of tRNA becomes uncharged
without modifying the total pool of tRNA. The increasing
pool of u-tRNA into the system has activated GCN2 that
forms tRNA:GCN2 complex, which eventually phosphorylates
eIF2α. In return eIF2-P acts as an inhibitor for GEF eIF2B,
resulting in the reduction in the eIF2:GTP complex and down-
regulation of the overall translation activity. Observing the
stress behaviour of the mathematical model, it can be asserted
that severe activation of GCN2 is leading to cessation of
levels of translation that could sustain cell metabolism, which
is consistent with the actual biological behaviour [7]. The

Fig. 2. Role of slow ramping of u-tRNA in response to starvation. The
kinase activity of GCN2 is activated by binding to u-tRNA, resulting in
downregulation of translation activity. The variation of colour from blue to
yellow represents increasing strength of u-tRNA.

Fig. 3. Activation of GCN2 changes translation activity on physiological
timescale. The red line represents uninterrupted translation activity when
there are plenty of amino-acids, while faded blue to dark blue surface
represents the impact of increasing strength of kinase activator (u-tRNA) on
translation activity. The translational activity declines quickly with increase
in the concentration level of activator.

initial conditions used to mimic this scenario are given in
supplementary files S3 and S5.

To further assess the impact of varying strength of u-
tRNA (Y13) on translation activity, the concentration of kinase
activator is varied from 0 M to 1.05 × 10−5 M, and the
output translation values are plotted against increasing values
of kinase activator, which is illustrated in Fig. 3. Fig. 3
shows that, the higher the concentration of kinase activator,
the steeper is the ramp of cessation of translation levels.

B. Stability of the eIF2 dependent regulatory system

As stated earlier, the biological systems are often unaffected
by the variations or fluctuations in the dynamical parameters
[25], [26], [29]. The main objective of this paper is to inves-
tigate the stability of the eIF2 dependent regulatory system
against parametric fluctuations and structural damage. Prior
investigating the stability of the system (in Lyapunov sense),
the eIF2 dependent regulatory system is to be represented in
the generalised state space form, that can be defined below:

•
Y = f(Y, t) (3)

where, vector Y is the non-negative concentration of the
species and t is the time.

According to the direct Lyapunov stability theory, an equi-
librium point of a non-linear system is said to be stable
locally if all the solutions starting at nearby points stay nearby;
otherwise, it is said to be unstable. On the other hand the
system is locally asymptotically stable if all the solutions
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starting at nearby points approaches towards equilibrium point
as time t→∞.

Theorem 1: If there exists a Lyapunov function V (Y, t) ≥ 0
for a system Y(t+ δ)− Y(t) = f(Y, t) satisfying:
∂V (Y, t)
∂Y

(
f(Y, t)

)
≤ 0

then the equilibrium point of the system is stable locally.
The equilibrium point of the model is mentioned in sup-

plementary file S4. Note that, the steady states obtained from
LM algorithm are used as initial concentrations for non-stress
case, which are close to the equilibrium point. The reason
behind such selection is to demonstrate the flow of model
from nominal state to stress state through slow ramping of
u-tRNAs and activated GCN2 in response to starvation. To
investigate the Lyapunov stability of the non-linear eIF2 sys-
tem around the equilibrium point, consider a positive definite
candidate Lyapunov function V (Y, t) for the system defined
in supplementary file S2:

V (Y, t) =2× Protein + 2× eIF5:eIF2:GDP (4)
+ eIF2B + 3× eIF5:eIF2B:eIF2:GDP
+ eIF5 + 2× eIF2B:eIF2:GDP + eIF2:GDP
+ eIF2:GTP + GCN2 + 2× tRNA:GCN2
+ eIF2-P + 2× eIF2-P:eIF2B + u-tRNA
+ 3× tRNA:GCN2:eIF2

where V (0, t) = 0 and V (Y, t) > 0 ∀Y 6= 0 because the
concentration of all species is either greater than or equal
to zero. Note that, there is no general rule to obtain the
Lyapunov function of the system, but the best way is to
initiate with a linear summation function that includes all
the species/variables of the system and modify the function
analytically until Theorem 1 is satisfied.

According to the Lyapunov theorem the system is stable if
derivative of V (Y, t) with respect to time t is negative definite
or negative semidefinite. The derivative of V (Y, t) in (4) with
respect to time is given by

•
V (Y, t) = −C20 × u-tRNA (5)

Since C20 is non-negative, from eqs. (4) and (5) it is evident

that
•
V (Y, t) ≤ 0. Therefore, the given system is stable. The

existence of Lyapunov function constituting weighted sum-
mation of states indicate that the stability of eIF2 regulatory
system depends on its structure. Time evolution of Lyapunov
function and its temporal derivative for stress and non-stress
case is illustrated in Fig. 4. To improve the visualisation of
Fig. 4, the individual plots for V and dV/dt are also illustrated
in supplementary file S7.

To further strengthen our result, the Lyapunov indirect
method is used. In indirect method, the proposed model is
linearised around the equilibrium point and the behaviour
of system based on its poles are observed after introducing
intrinsic and structural disturbances. The poles of Jacobian
matrix of perturbed model are given in supplementary file S8.
Note that, poles of the Jacobian matrix of a non-linear system
or a linearised system are the frequencies at which the value
of the denominator of transfer function is zero [30].

(a) (b)

Fig. 4. Time evolution of Lyapunov function and its temporal derivative for
stress and non-stress cases: (a) V , and (b) dV/dt.

C. Stability analysis of structurally damaged eIF2 regulatory
system

As stated earlier, the dynamic aspects of the eIF2 dependent
model can be studied either by considering overall translation
initiation pathway or by focusing on specific reactions [11]–
[14]. In the former case, model might contain large number
of ODEs and parameter sets, which usually result into huge
computational burden. To reduce the computational complex-
ity and prevent wrong simplifications of the models, various
techniques have been suggested in the literature [31]–[33].
While the latter case is relatively free from such computational
complexities. In the literature, various techniques have been
reported, which reduces the complex system to a simplified
version to avoid the computational burden [30], [34], [35].
However in biomolecular systems, model reduction techniques
should not result in lose of their physical meaning and should
not change the interaction matrices that mimics the behaviour
of the original system [36].

In control theory, model reduction techniques are helpful
in determining the important states within the system that are
responsible for achieving nominal behaviour. Among various
model reduction techniques, matched DC gain method is the
popular one [30]. The purpose of opting matched DC gain
method is that, the behaviour of the modified system should
not vary significantly with respect to the original system in
the frequency domain using Bode plot. The Bode plot is able
to estimate the extent at which the overall system behaviour
changes in frequency domain, when particular species (one
state) or group of species (multiple states) have been targeted.
The Bode plot estimates the frequency behaviour of the model
by evaluating the transfer function of the linear system in its
state-space model using the Laplace transform [30].

After species or variable elimination, the matched DC
gain method re-computes the state-space matrices, which is
discussed in supplementary file S10. The matched DC gain
method is applicable to both oscillatory and non-oscillatory
systems. The only difference is that, in non-oscillatory system,
the Bode magnitude plot is enough to observe the system be-
haviour. While in oscillatory system, the change in oscillations
after state elimination can be represented with the help of Bode
phase plot.

Prior to investigating the impact of dimensionality reduction
on behaviour of eIF2 regulatory system, it is beneficial to
eliminate the dynamics of u-tRNA from the original non-linear
model, because investigation has revealed that u-tRNA lies
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Fig. 5. The response time of translational activity (time after which translation
activity has dropped by 99%) as a function of u-tRNA (Y13 ) concentration.
Equating the dynamics of u-tRNA to zero, is not impacting the response time
of translation activity.

on fast time-scale and its concentration is not changed with
time. Therefore the dynamics of this particular species (state)
can be recognised as fast dynamics compared to the other
species. Fig. 5 illustrates the time to reach a 99% reduction in
translational activity as a function of u-tRNA concentration.
If the mathematical model is allowed to run at the steady-
state and then the concentration of u-tRNA is raised from zero
onwards, then in response to starvation, the translation activity
will drop to zero over time; which implies that the model can
achieve response times on physiological time scales. The rate
of response is concentration dependent, with a lower threshold
for the response time (arbitrarily defined here as the time
after which translation has dropped by 99%) between two
and three minutes. From Fig. 5 it is evident that, substituting
d u-tRNA/dt = 0 is not impacting the translational activity. Note
that, substituting d u-tRNA/dt = 0 to zero gives freedom to con-
sider u-tRNA as input u = (C13 × tRNA:GCN2)/(C12 × GCN2 + C20),
and hence control tool such as matched DC gain model
reduction technique [30] can be used for system analysis.

According to Lyapunov indirect method, the non-linear
model can be linearised around equilibrium point to investigate
its dynamic properties such as stability of the model. The
stability of the structurally damaged system can be easily
analysed with the help of the Lyapunov indirect method just by
observing the poles of the system, which is not easily possible
by the Lyapunov direct method that requires new candidate
Lyapunov function after each species/complex elimination.
The state space representation of modified non-linear model
with single input single output (SISO) can be defined as
follows:

•
Y(t) =Y(Y, t) + B(Y(t))u (6a)
Z(t) =Y1(t) (6b)

where, B(Y(t)) = [0 0 0 0 0 0 0 0 − C12Y9 C12Y9 0 0 0]T ,
Z(t) is the output signal or translation, and Y9 =GCN2. The
state space representation of approximate SISO linear model
of a modified non-linear system can be described in the form:

•
Y =AY + Bu (7a)
Z =DY (7b)

where A is a Jacobian matrix given in supplementary file
S10, Y = [Y1 Y2 · · · Y12 Y14]T , B and D are the constant

TABLE I
DIAGONAL ENTRIES OF JOINT GRAMIAN (gdiag )

Species Protein eIF5:eIF2:GDP eIF2B eIF5:eIF2B:eIF2:GDP
gdiag ∞ ∞ 6.53×10−7 3.27×10−9

Species eIF5 eIF2B:eIF2:GDP eIF2:GDP eIF2:GTP
gdiag 2.22×10−9 3.42×10−12 1.07×10−13 6.17×10−16

Species GCN2 tRNA:GCN2 eIF2-P eIF2-P:eIF2B
gdiag 1.52×10−17 1.60×10−19 6.60×10−22 6.38×10−25

Species u-tRNA tRNA:GCN2:eIF2
gdiag - 1.34×10−26

input and output matrices given as:

B = [0 0 0 0 0 0 0 0 − 4.331× 10−11 4.331× 10−11 0 0 0]T

D = [1 0 0 0 0 0 0 0 0 0 0 0 0]

Note that, vector Y includes all species except u-tRNA
(Y13), which is considered as input. It is worthy noting
that, after obtaining the desirable mathematical model, the
concept of linearisation around the equilibrium point has been
introduced for analysing the stability of the system. The size of
the Jacobian matrix A is 13×13 (supplementary file S10). The
elements of matrices A, B and D have their own significance.
The diagonal elements of A represent emerging (or disap-
pearing) effect of the species due to reversible (or irreversible)
interaction whereas off-diagonal elements represent interaction
between species. It is clear that the poles of matrix A is
important in understanding the stability of the model against
intrinsic disturbances and structural damages.

In this section joint Gramian (g) based model truncation
concept [37] is adopted to eliminate the species using matched
DC gain method. The diagonal entries of g (gdiag) reflect
the combined controllability and observability of the balanced
model. In other words, gdiag measures the contribution of each
species to the input/output behavior. The value of gdiag reflects
the relative importance of species in maintaining input-output
characteristics of the system. Hence, the species comprising
small value of gdiag can be eliminated from the system because
it might not affect the balanced model. Further, the frequency
response and poles are employed to investigate the impact of
species elimination having low gdiag value on the stability of
the system. If truncating single species or group of species
having low gdiag value is not showing deviation from the
SISO linear system in frequency domain, then it implies that
particular species or group of species can be targeted without
compromising nominal behaviour of the system. The diagonal
entries of the joint gramian gdiag are given in Table I.

Note that, the offset value opted for evaluating joint
Gramian is 10−8, that is, if the magnitude of a pole is less than
|10−8| in s−plane, then the pole is very close to zero and it
will be considered as unstable mode and represented as ∞ in
Table I. The truncation process is to be initiated from lowest
gdiag that is tRNA:GCN2:eIF2. The purpose of opting lowest
gdiag value is to observe the extent to which the model is
reducible without showing frequency deviation with respect to
the linear SISO model. Fig. 6 shows the comparative frequency
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Fig. 6. Comparison of Bode magnitude plots after dimension reduction. Overlapping of the original and truncated plots across the frequency range represent
similarity in the behaviour of the models. Larger the difference in the plots between two models, higher the difference in the behaviour. Red solid line represents
the linear SISO model while green dotted line represents the reduced model after eliminating: (a) tRNA:GCN2:eIF2, (b) tRNA:GCN2:eIF2 and eIF2-P:eIF2B,
(c) tRNA:GCN2:eIF2, eIF2-P:eIF2B and eIF2-P, (d) tRNA:GCN2:eIF2, eIF2-P:eIF2B – tRNA:GCN2, (e) tRNA:GCN2:eIF2, eIF2-P:eIF2B – GCN2, (f)
tRNA:GCN2:eIF2, eIF2-P:eIF2B – eIF2:GTP, and (g) tRNA:GCN2:eIF2, eIF2-P:eIF2B – eIF2:GDP

TABLE II
COMPARISON OF POLES OF LINEAR SISO AND REDUCED MODELS

SISO model 12th order model 11th order model

Po
le

s

−100.5× 103 −100.5× 103 −100.5× 103

−606.6 −711.1 −208.2
−213.5 −208.2 −7.5
−129.1 −7.5 −1.8
−7.5 −1.8 −1.3
−1.8 −1.3 −0.5
−1.3 −0.5 −99.9× 10−6

−0.5 −99.9× 10−6 −7.8× 10−7

−100.0× 10−6 −7.8× 10−7 7.4×10−7

10.2× 10−9 + 1.7× 10−6i 7.4×10−7 5.3×10−11

10.2× 10−9 − 1.7× 10−6i 5.3×10−11 2.1×10−12

−6.3× 10−12 2.1×10−12 −
1.0× 10−12 − −

10th order model 9th order model 8th order model

Po
le

s

−208.2 −7.2 −1.9
−7.5 −1.8 −1.4
−1.8 −1.3 −0.5
−1.3 −0.5 −99.9× 10−6

−0.5 −99.9× 10−6 −7.8× 10−7

−99.9× 10−6 −7.8× 10−7 7.4×10−7

−7.8× 10−7 7.4×10−7 5.3×10−11

7.4×10−7 5.3×10−11 2.1×10−12

5.3×10−11 2.1×10−12 −
2.1×10−12 − −

7th order model 6th order model

Po
le

s

−1.6 −0.4
−0.5 −7.8× 10−7

−99.9× 10−6 −99.9× 10−6

−7.8× 10−7 7.4×10−7

7.4×10−7 5.3×10−11

5.3×10−11 2.1×10−12

2.1×10−12 −

responses prior and after eliminating the set of species from the
system. Note that, the order of the system is defined as the total
number of species or variables available in the mathematical
model that has non-zero dynamics.

From the Bode magnitude plot in Fig. 6(a), it can be stated
that eliminating species tRNA:GCN2:eIF2 is not showing any
deviation from the linear SISO system. Therefore it can be
concluded that the reduced system is nicely capturing the
behaviour of the SISO linear system. Now considering another
species eIF2-P:eIF2B having second lowest gdiag value for
elimination along with tRNA:GCN2:eIF2. Eliminating both
species is showing deviation from the SISO linear system

(refer Fig. 6(b)). The deviation in Bode plot after reducing
the model to the 11th order suggests that eliminating two
species together has slightly changed the general behaviour
of the model and these species is important in maintaining
the general behaviour of the system. Again Figs. 6(c)-(g)
show very similar behaviour as that of Fig. 6(b). Hence, it
can be stated that eliminating set of species has impacted
the performance of the SISO linear system. Therefore these
species (except tRNA:GCN2:eIF2) are critically important
for the system and targeting these species may result into
excessive change in model’s behaviour.

The analysis above shows that the structure of the defined
system is not damageable without compromising its behaviour,
and robustness determining features are generally distributed
unevenly between the species. Further, this is the same case
when stability of the system is under observation. Table II
shows the placement of poles after model reduction or struc-
tural damage. In Table II, some of the poles lie between
the range [−10−8, 10−8], which is the offset value opted for
evaluating joint Gramian. Hence, any pole that lies within
the offset value should be considered as zero. Note that, the
magnitude of real part of a pole is important for understanding
the local stability of the system, that is, if any pole of the
model has positive magnitude of real part greater than offset
value, then it represents instability. So, the focus of Table II
is the real part of the pole’s magnitude that is greater than
10−8. A comparison of poles of the SISO model with reduced
models in Table II reveals that, damaging the structure of the
model or removal of species/complex has shifted one of the
poles towards the right half of s−plane that is 7.4 × 10−7.
Hence, due to one positive pole, it can be asserted that the
reduced systems are unstable around the given equilibrium
point. In other words, damage in the structure of the system
has pushed the system towards instability and stability of the
system can be considered as a collective property. It is worth
noting that, the novelty of the work presented in this paper
lies in exploring the structural stability of the system with
the help of tools from control theory. The proposed approach
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is applicable to any mathematical model which satisfies two
conditions: existence of Lyapunov function and input-output
relation of species.

IV. CONCLUSION

In this paper the dynamic control properties of regulatory
systems involving eIF2 has been addressed with the help
of the mathematical model. The investigation has revealed
that the stability of proposed mathematical eIF2 dependent
regulatory model has an ability to tolerate the intrinsic stres-
sors or parametric fluctuations, which is the core property
of the biochemical pathway. The key objective of the paper
is to investigate the stability of the eIF2 regulatory model
using Lyapunov indirect method of stability under system’s
structural damage. This paper has shown that the stability of
the eIF2 dependent regulatory system is a collective property
and damaging the structure of the defined system usually
causes instability, which is in consistence with the reality.
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