GENERALIZED FOULKES MODULES AND MAXIMAL
AND MINIMAL CONSTITUENTS OF PLETHYSMS OF
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ABSTRACT. This paper proves a combinatorial rule giving all maximal
and minimal partitions A such that the Schur function s) appears in a
plethysm of two arbitrary Schur functions. Determining the decompo-
sition of these plethysms has been identified by Stanley as a key open
problem in algebraic combinatorics. As corollaries we prove three conjec-
tures of Agaoka on the partitions labelling the lexicographically greatest
and least Schur functions appearing in an arbitrary plethysm. We also
show that the multiplicity of the Schur function labelled by the lexi-
cographically least constituent may be arbitrarily large. The proof is
carried out in the symmetric group and gives an explicit non-zero ho-

momorphism corresponding to each maximal or minimal partition.

1. INTRODUCTION

Fix m, n € N and let S,, 1S, be the wreath product of the symmetric
groups Sy, and S, acting as a transitive imprimitive subgroup of Sy,,. Let
p and v be partitions of m and n, respectively. Let S* denote the Specht
module for QS, labelled by the partition A of a natural number r. The
object of this article is to prove Theorems 1.2 and 1.3 below which give a
combinatorial characterization of the maximal and minimal partitions A in
the dominance order on partitions of mn such that S* is a summand of the
generalized Foulkes module

v N ASmn
Hu =(S*oS )TszSn .

Here S* @ S” denotes the Q(.S;, ! Sy,)-module with underlying vector space
(S")®" ® S¥ defined in §2.7. Two notable features of the proof are that it
is carried out entirely in the symmetric group, and that it gives an explic-
itly defined non-zero QS,,-homomorphism S* — H ;. for each maximal or
minimal partition A. The required background is relatively light: a reader
familiar with the basic results on symmetric group representations in [26]
should find the proof is self-contained.
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Restated in the language of polynomial representations of infinite general
linear groups, Theorems 1.2 and 1.3 determine the maximal and minimal
partitions labelling the irreducible summands V*(E) of V¥(V*E), where
V* is the Schur functor for the partition A\ and F is a Q-vector space of
sufficiently high dimension. In particular, the special cases v = (n) or
v = (1") give new results on the summands of Sym"(V*E) and A" (V*E).
Equivalently, Theorems 1.2 and 1.3 determine the maximal and minimal
partitions A such that sy appears with a non-zero coefficient in the plethysm
s, o s, of the Schur functions s, and s,. We discuss these connections and
give further applications of our main theorem in §9 below. In particular,
we prove three conjectures of Agaoka [2, Conjectures 1.2, 2.1 and 4.1] on
the lexicographically greatest and least constituents of s, o s,. We survey
the relatively few existing results on these plethysms, and give some further
motivation for the study of plethysms, later in the introduction.

The following combinatorial definitions are needed to state our main the-
orems. Example 1.4 below illustrates these definitions and theorems.

Definition 1.1.
(i) A tableau with entries in N is conjugate-semistandard if its rows are
strictly increasing and its columns are weakly increasing.

(i) A conjugate-semistandard tableau family of shape p? is a set of d
conjugate-semistandard p-tableaux.

(iii) Let x be a partition of n with exactly ¢ parts. A conjugate-semistandard
tableau family tuple of shape p* is a tuple (7T1,...,7.) where 7; is a
conjugate-semistandard tableau family of shape p¢, for each q.

(iv) Let (71,...,7:) be a conjugate-semistandard tableau family tuple.
Let M be the greatest entry of the py-tableaux in the families 7y, ..., 7.
The weight of (T1,...,7T:) is the composition (71, ...,var) such that
the total number of occurrences of j in the u-tableaux in the families
Ti,...,Teis v, for each j e {1,...,M}.

(v) The type of a conjugate-semistandard tableau family tuple of weight -,
where v is a partition, is the conjugate partition +'.

Our main theorems are as follows.

Theorem 1.2. Let p be a partition of m and let v be a partition of n.
The mazximal partitions X\ in the dominance order that label the Specht mod-
ules S* such that S* is a summand of H}/ are precisely the mazimal par-
titions that are weights of conjugate-semistandard tableau family tuples of
shape ¥ where n = 1.

Theorem 1.3. Let pu be a partition of m and let v be a partition of n. Set
k=1 if m is even, and k = v if m is odd. The minimal partitions X in the
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dominance order that label the Specht modules S* such that S* is a summand
of Hy; are precisely the minimal types of the conjugate-semistandard tableau

family tuples of shape u".

We show in §7 that Theorem 1.2 follows easily from Theorem 1.3 by
tensoring with the sign representation of Sy,,. We therefore focus on the
proof of Theorem 1.3. Throughout this article the partitions A, u, v and &
have the meanings in Theorems 1.2 and 1.3.

The special cases of Theorem 1.3 when p = (m) or u = (1) were proved
by the authors in [35]; in these cases a conjugate-semistandard tableau fam-
ily of shape p? is simply a family of d distinct subsets or multisubsets (respec-
tively) of N. It appears to be impossible to make a routine generalization
of the proof in [35], and so we have at many points adopted a different
approach. In particular, we do not use Garnir relations to prove that our
homomorphisms from Specht modules to generalized Foulkes modules are
well-defined, instead relying on the combinatorial argument given in §7.

Our methods also bound the multiplicity of the Specht module summands
given by Theorems 1.2 and 1.3: the multiplicity is bounded above in Theo-
rem 6.1 and below in Proposition 8.1. In Corollary 9.8 we show that the mul-
tiplicity of the Specht module summand of H); labelled by the lexicograph-
ically least partition may be arbitrarily large; by contrast, the multiplicity
of the Specht module labelled by the lexicographically greatest partition is
always 1, by Corollary 9.1.

In the following example, and in some later arguments, it is useful to
extend the definition of weights and types to conjugate-semistandard tableau
families. We do this in the obvious way, by regarding such a family as a
conjugate-semistandard tableau family of shape p(4).

Example 1.4. Part of the poset of conjugate-semistandard (2, 1)-tableaux
under the majorization order <,,; in Definition 2.8 is shown in Figure 1
overleaf. By Lemma 2.11, if (71, ...,7;) is a conjugate-semistandard tableau
family tuple of minimal type then each 7; is downwardly closed under <aj;
that is, if ¢ € 7; and s <5 t, then s € 7;. The five closed conjugate-
semistandard tableau families of shape (2,1)* are shown in Figure 2. The
first four have minimal type; note the third and fourth share the same
minimal type. Therefore, by Theorem 1.3, the minimal partitions A such
that S* is a summand of the generalized Foulkes module H ((;17)1) are (5,17),
(4,2,2,1%) and (3,3,2,2,1,1). Proposition 8.1 implies that the multiplicity
of §(3:3:22L1) 5 2. Since (8,4) is the weight of the unique closed conjugate-
semistandard tableau family tuple of shape (2, 1)(1’1’1’1), it follows from The-
orem 1.2 that the unique maximal partition \ such that S is a summand

of H((247)1) is (8,4).
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We leave it as an exercise to the reader to use Theorems 1.2 and 1.3 to-
gether with Figure 1 and Lemma 2.11 to show that the minimal partitions A
such that S* is a summand of H((g’ll)) are (4,2,1%) and (3,2,2,2,13), and the
maximal partitions are (8,3,1) and (7, 5).

1]2] 113] [2]3] [1]4] 1[5

RN /_\\l\/_\\ /o

1]2]
1

FiGure 1. Part of the poset of conjugate-semistandard
(2, 1)-tableaux under the majorization order.

Tableau family Type
{izLi3Li4Li5u (5.17)
{iﬂ’ iﬂ’ i3|’ i4|} (4.2.2,19
{i2ti2hi3Lé3u (5.3.2.2,1.1)
{i2ti2hé2Li3u (5.3.2.2,1.1)
{iﬂ’ iﬂ’ éﬂ’ i2|} (4.2,2,2,)

FiGURE 2. The closed conjugate-semistandard tableau fam-
ilies of shape (2,1)%.

Motivation. D. E. Littlewood defined the plethysm of symmetric functions
in 1936. Since then progress on the decomposition of the plethysm s, o s,
as an integral linear combination of Schur functions has been made via

symmetric functions, via polynomial representations of general linear groups
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and via the representation theory of symmetric groups. However, few general
results have been found. Finding a combinatorial rule for the multiplicities
(8, 0 84, 5x) that demonstrates their positivity was identified as a key open
problem in algebraic combinatorics by Stanley in [39, Problem 9].

One motivation for this problem is a long-standing conjecture of Foulkes
[16], which states that if m < n then s(,) 0 5(,) = 8(m) © 5(n) I8 @ non-negative
integral linear combination of Schur functions. Foulkes’ Conjecture was
proved when m = 2 in [40], when m = 3 in [14], when m = 4 in [32],
and recently when m = 5 in [10]. It has also been proved when n is very
much larger than m by Brion [7], using methods from geometric invariant
theory. In this connection, we note that if F is a complex vector space,
then the decomposition of s(,) o s, gives the polynomial representations of
GL(FE) appearing in the nth component Sym"™ V#(FE) of the coordinate ring
O(VH(E)). Our results apply to these rings; we find some new invariants
for the special linear group at the end of §9.

The plethysms V* /A" (FE) appear in the problem of describing relations
between the m xm minors of generic matrices [8, §1.5]. Plethysms can also be
used to construct polynomial representations of general linear groups: for ex-
ample, V(22 (E) is the kernel of the canonical surjection from Sym?(Sym?(E))
to Sym¥(E); thus, sg 0 59 = S(2,2) + S(4)- This is generalized and given a
geometric interpretation in [19, §14.4]. A further motivation comes from enu-
merative combinatorics. For example, by [37, (5.8)], the number of k-regular
graphs on n vertices (counted up to isomorphism) is {(s(,) © S(x), S(nk/2) © 52)-
Finally we mention that a better understanding of plethysm coefficients is
essential to Mulmuley and Sohoni’s geometric approach to the VP £ VNP
problem in algebraic complexity theory: see [9] for an introduction.

Background. The existing results on the plethysm of Schur functions fall
into three classes: explicit decompositions of s, o s, for particular v or p,
theorems on constituents of special forms, and results which relate plethysm
coefficients. Most of these results were obtained by symmetric function
methods; for uniformity, we use this language throughout our survey.
Explicit decompositions of the plethysms s, o s(,;,) are known when v is
a partition of n < 4; see Littlewood [30] for n = 2, Thrall [40, Theorem 5]
or Dent and Siemons [14, Theorem 4.1] for v = (3), and Foulkes [17, The-
orem 27] and Howe [22, Section 3.5 and Remark 3.6(b)] for the remaining
cases. For sufficiently small partitions v and p, the plethysm s, o s, can
readily be calculated using any of the computer algebra systems MAGMA
[6], GAP [20] or SYMMETRICA [28]. (There are also many hand calculations
in early papers: see for example [40, pages 383, 388].) A new recurrence
satisfied by the multiplicities (s(,) © 5(;n), $x) Was given in [15, Proposition
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5.1] and used to verify Foulkes’ Conjecture for m + n < 19, extending an
earlier computation in [33] for m +n < 17. This recurrence was generalized
to the plethysms s, 0 5(;,,) in [12, Theorem 6.2.6]. The plethysms sz 0 s, and
8(12) 08y, describing the decomposition of V#(E)®@V*#(E) into its symmetric
and antisymmetric parts, are determined by [13, Theorem 4.1].

Several other results, like our Theorems 1.2 and 1.3, give information
about constituents of a special form. By the Cayley—Sylvester formula, the
multiplicity of S(un_d,4) I S(n) © S(m) 1S the number of partitions of d whose
Young diagram is contained in the Young diagram of (m'), minus the num-
ber of partitions of d—1 satisfying the same restriction. The multiplicities of
the Schur functions s(,,;,—q.14), S(mn—d—s,s,14) A0 Sy _q_or 2t 14), 1N Sy 0 5y,
were found by Langley and Remmel in [29]. Giannelli [21, Theorem 1.2]
later found the multiplicities of a wider class of constituents of s(,) © s(m)
labelled by ‘near-hook’ partitions.

Foulkes” Conjecture gives one conjectural relationship between plethysm
coefficients. There are further theorems which given a constituent of a
plethysm of Schur functions yield constituents of related plethysms, such
as Foulkes’ Second Conjecture, proved (in a more general form) by Brion
in [7, §2], which states that (s(n) © S(m),5x) < {(S(n) © S(m+1)» Sa+(n)) for
any partition A of mn; here the addition is componentwise, as for weights
of representations of general linear groups. This setting may also be used
to prove Proposition 4.3.4 in [24], which states that if (s, 0 sp,,s:) = 1
and (57 © Sm,s5) = 1 then (5,14 0 sm, 3A+5\> > 1. Newell proved in [34]
that {(s(n) © S(m);83) = (S(17) © S(ma1)s Sar(in)) and (S(in) © S(m); Sx) =
(8(n)O8(m+1)s Sa+(1n))- A result of a similar flavour was found by de Boeck in
[12] who showed that (s(,)05(1m), $x) < {(S(n41)©8(1m), Sx4(1m))- Another re-
lationship between plethysms was proved by Manivel [31], who showed that
the specialization (S(nk) os(erkfl))(q*l, q) is symmetric under any permuta-
tion of m, n and k, generalizing the Cayley—Sylvester formula. Taking k = 1
and swapping k and n gives (s, o s(m))(q_l, q) = (sgny© 8(m+n,1))(q_1, q);
this is a combinatorial expression of the Wronskian isomorphism: see for

example [1, §2.5].

Outline. In §2 we set out our notation and prove some preliminary results.
In §3 we define explicit models for the modules H,; using v-tableaux whose
entries are certain p-tableaux. We believe these models are of independent
interest and will be of use beyond their applications in this paper. In §4
we define, for each conjugate-semistandard tableau family tuple of shape p*
and type A, a homomorphism from M into our model for H 1> Where M s
the twisted Young permutation module defined in §2.3 below. In §5 we show
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that these homomorphisms are non-zero. In §6 we show that given a non-
zero homomorphism S* — H .., there is a conjugate-semistandard tableau
family tuple of shape . These two sections contain the main work in the
proof, and may be read independently of each other. In §7 we combine them
to prove Theorem 1.3; we then deduce Theorem 1.2 by an easy sign twist.

The outline of the proof of Theorem 1.3 is as follows: by Proposition 5.1,
if there is a conjugate-semistandard tableau family tuple of type A and
shape p”, then there is a non-zero homomorphism M > H .- By Lemma 2.1,
it follows that there is a summand S of H Z for some AT<\. (Here < denotes
the dominance order on partitions.) On the other hand, by Theorem 6.1,
given any such summand, there is a conjugate-semistandard tableau family
tuple of the corresponding type. Hence tuples of minimal type correspond
to the summands of H); labelled by minimal partitions.

In §8 we give a sufficient condition for the homomorphisms defined with
respect to distinct conjugate-semistandard tableau family tuples of the same
type to be linearly independent. Example 8.3 gives an indication of the more
complicated behaviour when this condition does not hold. We end in §9 with
applications of this result and our two main theorems to the conjectures
of Agaoka mentioned earlier. In addition, we characterize all generalized
Foulkes modules having a unique minimal Specht module summand in the

dominance order.

2. PRELIMINARY DEFINITIONS AND RESULTS

2.1. Young diagrams. We define the Young diagram of a partition v with
exactly k parts by [v] = {(4,j) : 1 < i < k,1 < j < 7;}. We refer to
the elements of [vy] as bozes and draw Young diagrams in the ‘English’
convention, where the largest part appears at the top.

2.2. Tableaux. Let v be a partition and let 2 be a set. A y-tableau t with
entries from € is a function t : [y] — Q. If (i,7) € [y] and ¢ is a tableau
with entries from 2 then the entry in position (i,j) of t is (i,7)t € Q. If t is
injective then we say the entries are distinct. The conjugate of a y-tableau t
is the «'-tableau defined by (i,7)t' = (j,4)t. The symmetric group Sq acts
on the set of y-tableaux with entries from Q: if ¢ € Sq and t is such a
tableau, then t¢ is the y-tableau defined by (1, j)(t¢) = ((i,j)t) 0.

We also need a place permutation action: if o € S}, the symmetric group

v
on the boxes of the Young diagram [v], then ¢ o is th]e ~v-tableau defined by
(i,5)(t-0) = ((4,5)o")¢t. Thus if t has entry « in position (i, j) then ¢-o has
entry « in position (i,j)o. We define the groups of row place permutations
of v and column place permutations of v to be the Young subgroups RPP(7)

and CPP(y) of S[,j having as their orbits the rows of [y] and the columns
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of [v], respectively. Given a y-tableau ¢ with entries from 2, we define
the tabloid {t} and columnar tabloid ||t|| to be the equivalence classes of ¢
up to the action of RPP(y) and CPP(7), respectively. Thus {¢} and |[¢||
are determined by the multisets of entries in the rows and columns of ¢,
respectively.

We represent v-tableaux with entries from 2 by filling the boxes of [¥]
with elements of €2; if ¢ is a -tableau then we represent the corresponding
tabloid {t} by removing vertical lines from ¢ and the corresponding columnar
tabloid ||t|| by removing horizontal lines from t.

1(2 _ 12
T3 then {t} =

v =(2,2) and 2 may be taken to be N.

and [|t]| = ‘1‘2

1 3‘; here

For example, if ¢t =

2.3. Specht and dual Specht modules. Fix r € N, a partition v of r
and a set ) of size r. Throughout this subsection all tableaux, and so all
tabloids and columnar tabloids, have distinct entries from Q.

The action of Sq on -tableaux with entries from €2 commutes with the
place permutation action of Sp,). Thus setting {t}¢ = {t¢} for ¢ € Sq
and {t} a ~-tabloid gives a well-defined action of Sq on the set of y-tabloids.
Let M? denote the Young permutation module for QSq spanned by all ~-
tabloids. Let MY = MY ® (v) where (v) affords the sign representation of
Sq. Fix a ~v-tableau t, with entries from €2, so that {t,} ® v generates M.
We write [t,| = {'} ®v and [t,¢| = ({t,} ® v)¢ € M7 for ¢ € Sq. Thus if
t is a y-tableau and 7 € CPP(y) then |t - 7| = |t|sgn(7); up to a sign, |¢| is
determined by the corresponding columnar tabloid ||t||. We note that our
definition of M” agrees with Fulton’s in [18, Chapter 7].

Given a y-tableau t, let e(t) € M” be the corresponding polytabloid defined
by e(t) = 2.recpp(y){t-7} sgn(r) and let €(t) € M be the corresponding dual
polytabloid defined by €(t) = ZUeRPP(V) |t -o|. Let 7 € M"Y be tlie Spe’clzt
module spanned by all polytabloids e(t) for t a ~-tableau. Let S7 < M7
be the dual Specht module spanned by all dual polytabloids é(t) for t a ~-
tableau. Since the action of Sq commutes with the place permutation action
of CPP(7), we have

e(t)p = e(te) (1)

for ¢ € Sq. Hence the Specht module S7 is cyclic, generated by any poly-
tabloid. (An analogous result holds for 57.)

There are canonical Q.Sq-homomorphisms MY — 87 and MY — S7 de-
fined by |t| — e(t) and {t} — €(t), respectively. By [18, §7.4, Lemma 5|, the
composition S7 - M7 — S7is an isomorphism. By [26, Theorems 4.12 and
6.7], Specht and dual Specht modules are irreducible and each irreducible
module for QSgq is isomorphic to a unique Specht module S for § a partition
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of r. Moreover,
~y/ /
SA ®@sgn =~ SN =~ SV, (2)

For example, the Specht module S22) and the dual Specht module S(2:2)
for QS are generated by

6(12)_12_23_14+34
314 34 14 23 12
~ 2] _[1]2 2(1 112 2(1
S A AR RH SR
respectively. Setting ¢t = é i , these generators are the images of |t| €

M®2) and {t} € MZ?) under the respective canonical homomorphisms.
As mentioned in the outline, the following lemma is key to the proof of

the main theorem.

Lemma 2.1. If SN is a summand of ]\7)‘, for some partition X1 of r, then
A>T

Proof. Multiplying by the sign representation using (2), this follows from
Young’s rule (see, for instance [18, Corollary 1, page 92]) or [38, Proposi-
tion 7.18.7]). O

2.4. Symbols. Let A be a partition. We define the symbol of a box (x,y) €
[A] to be the formal symbol y,. We say that y is the number and x is
the index of y,. Let Q) be the set of all symbols y, for (x,3) € [\]. Let
I(A\) < Soa be the Young subgroup of Spoa having as its orbits the sets
{yz : 1 <2 < A} for each y € {1,...,\1}. We order O by first comparing
on numbers, then on indices: thus 3/, <y, if and only if 5 < yory =y and
x' < x. Let ty be the \-tableau with entries from Q* defined by (z, y)t\ = ..
Since I(A) permutes entries within the columns of ¢y, we have e(ty) = {t}by
where by = 35 U sgn(d).

2.5. Total order on conjugate-semistandard tableaux. Let € be to-
tally ordered by < and let A = {a1,...,a4} and B = {1, ..., B4} be multi-
subsets of 2 such that a; < ... < agand 8 < ... < B4. The colexicographic
order on multisubsets of {2 is defined by A < B if and only if for some g we
have oy < B, and age1 = Byt1,--.,0q = Bq. It is a total order.

Definition 2.2. Let v and v be distinct conjugate-semistandard u-tableaux
with entries in N. Let column j be the rightmost column in which u and v
differ, and let A and B be the multisets of entries in column j of u and v,
respectively. We set u < v if and only if A < B in the colexicographic order
on multisubsets of N.
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2.6. Pre-orders on tableaux. It will be useful to compare tableaux under
relations that are reflexive and transitive, but fail (in general) to be anti-
symmetric. Such relations are called pre-orders. Let < be a pre-order on a
set 2. Thus a < a and if a < § and 8 < 7 then o <  for all o, 5,7 € €.
There may exist distinct o and 8 such that o < 8 and 8 < a. We write

a < 3 to mean that a < 8 and 8 X «. A key property we need is stated in
the following lemma.

Lemma 2.3. Let < be a pre-order on a set Q and let aq,...,aq, B1,...,84 €
Q. If a; < B; for each i, and there exists a permutation ¢ € Sq such that
Big < oy for each i, then B; < oy for each i.

Proof. Let i€ {1,...,d}. If i is in a cycle of ¢ of length r then

o > Bz‘d) Z Qg = ... = 5i¢r—1 > O r—1 > ﬁmy- = ;.

By transitivity, it follows that 5; < «;, as required. O

Definition 2.4. Let < be a pre-order on a set €. Let u and v be tableaux
of the same shape with entries from Q.

(i) We set that u <., v if either (a) the multisets of entries of u and v
agree in every column, or (b) it is possible to order the entries in the
rightmost column for which the multisets differ so that u has entries
ai,...,aq and v has entries f1,..., 08¢ with a1 < 81, ..., ag < 4.

(i1) We set u <o v if u/ <e0 v

It is easily seen that <. and <,o are pre-orders on the set of v-tableaux
with entries from 2. Moreover <., and <;ow induce pre-orders on the set
of y-columnar tabloids and y-tabloids with entries from 2, respectively. We
reuse the symbols <., and <y for these induced pre-orders. (An example
is given at the end of this subsection.)

Definition 2.5. Let < be a pre-order on a set ). Let u be a tableau with
entries from (2. We say that u is row-standard if whenever u has a row with
entries aq, ..., a4, read from left-to-right, we have o < ... < ag. We say
that u is column-standard if v’ is row-standard.

Lemma 2.6. Let < be a pre-order on a set ) and let v be a partition.
(i) Let u be a row-standard ~y-tableau with entries from Q. If o € RPP(vy)
and o £ id then ||u - o|| <col ||ul|-
(ii) Let v be a column-standard ~y-tableau with entries from Q. If T €
CPP(y) and 7 % id then {v - T} <ow {v}.

Proof. For (i), let 7 be maximal such that there exists ¢ with (¢, j)o % (i, ).
Let R = {i : (i,j)o + (i,7)} and let ¢ € R. Since 0 € RPP(v) we have
(4,7)(u - o) = (3,7 )u for some j* < j. Since u is row-standard (7, ;" )u <
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(i,j)u. Therefore (i,j)(u- o) < (i,j)u for each i € R and (i,j)(u - o) =
(,7)u for each i ¢ R. It now follows from the definition of <., (comparing
on column j) and Lemma 2.3 that ||u - || <co1 ||u]|- The proof of (ii) is

similar. O

The orders defined in Definition 2.4 are useful even when < is a total
order. For example, if = N and < is the usual total order on N, then
the pre-order <., on tableaux of shape (2, 2) satisfies ||s|| <col |[t]| <col ||u]|

and ||t|| <co1 ||5]|, where

1]2
= t:
TR

2|1 1[2
1(2 1]2]

We use this pre-order in Lemma 5.3 and the proof of Proposition 5.1; we
also use Lemma 2.6 in a case where < is itself a pre-order in this proof.

2.7. Modules for wreath products. Let H be a finite group and let
n € N. Let W be a QH-module and let Z be a QS,,-module. The outer
tensor product W®" is a module for QH". The symmetric group S, acts
on this module by (w1 ® -+ ® wy)o = Wiy-1 ® -+ ® w,,—1 for o € S),.
Combining the actions of H" and S,, on W& we obtain a Q(HS,,)-module
X, as constructed in §4.3 of [25]. Let Infgzzs" Z denote the Q(Sy, 1 Sn)-
module inflated from Z using the canonical epimorphism S,,1S, — S,. We
define W @ Z to be the Q(H ¢ S,,)-module X @ Infg™*" Z. (The symbol @
was introduced, in a more general context, in [11].)

Importantly this construction is functorial in both W and Z. Thus given
a QH-homomorphism f : W — W' and a QS,-homomorphism g : Z — 7’
there is a corresponding Q(H 1Sy, )-homomorphism fQg: W@Z — W'QZ',
defined by ((w1 ®---®wn)®z)(f®g) =(wf® - Qu,f)® zg.

2.8. Closed conjugate-semistandard tableau families. While not log-
ically essential to the proof of Theorem 1.3, in practice it is very useful to
know that a conjugate-semistandard tableau family tuple of minimal type
satisfies the closure property used in Example 1.4.

Definition 2.7. Let A and B be finite subsets of a totally ordered set such
that A = {aq,...,aq} and B = {f1,...,84}, where a; < ... < a4 and
61 <...< By If a; < B; for each i then we say that B majorizes A.

Definition 2.8. Let u and v be conjugate-semistandard p-tableaux with
entries in N. We say that v majorizes u, and write u <p.; v, if row 7 of v

majorizes row i of u for each 7.

Definition 2.9.
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(i) A conjugate-semistandard tableau family 7 is closed if, whenever
v e T and u is a conjugate-semistandard tableau such that u <y,; v,
we have u e T.

(ii) A conjugate-semistandard tableau family tuple (771,...,7.) is closed
if 7; is closed for each 1.

From the part of the poset of conjugate-semistandard (2,1)-tableaux
shown in Figure 1, one can read off the five closed conjugate-semistandard
tableau families of shape (2,1)* in Figure 2. The first four families listed are
of minimal type and the final family is of non-minimal type (4,2%). Each
of the five closed conjugate-semistandard tableau families has a well-defined
type. This is true in general.

Proposition 2.10. If T is a closed conjugate-semistandard tableau family
then T has a well-defined type.

The authors have a proof of Proposition 2.10 by a variation on the Bender—
Knuth involution (see [4, page 47]). Since the proposition is used only in the
following result, which is not logically essential to the two main theorems,

and its proof is not short, we have chosen to omit it from this paper.

Lemma 2.11. If (71,...,7:) is a conjugate-semistandard tableau family
tuple of minimal type then each conjugate-semistandard tableau family T; is

closed.

Proof. Let T; have shape p. Suppose for a contradiction, that 7; is not
closed. Then there exists v € T; and a conjugate-semistandard p-tableau u
such that u <y v and u ¢ 7;. Choose v to be minimal in the <,,,; order
for which such a p-tableau u exists, and then pick v maximal in the <,;
order with the above property. Let (i,j) be minimal in the lexicographic
order such that (i,j)u % (i,j)v. Let (i,5)v = r. Since (i,j)u < r and
(i—1,j)u=(i—1,j)vand (i,j — 1)u = (i,j — 1)v (when these entries are
defined), the tableau v~ obtained from v by replacing the entry r in position
(7,7) with r — 1 is conjugate-semistandard. Moreover u Z<maj ¥ Zmaj v, SO
by choice of u, we have v = v~ and so v~ ¢ 7;. By replacing v by v~ and
repeating this process we eventually obtain a closed conjugate-semistandard
tableau family; by Proposition 2.10, this family has a well-defined type. We
repeat this argument for each non-closed conjugate-semistandard tableau
family within the tuple. Replacing each such 7; by the closed conjugate-
semistandard tableau family constructed above yields a closed conjugate-
semistandard tableau family tuple. By construction, this has smaller type.

O

It immediately follows that each of the families in a conjugate-semistandard
tableau family tuple of minimal partition type is closed.
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3. MODELS FOR GENERALIZED FOULKES MODULES

3.1. Preliminaries. Recall that u and v are partitions of m and n, respec-
tively. Let € be a set of size mn. Let M be the set of p-tableaux with
distinct entries from Q. Let AM(Q) be the set of v-tableaux T with entries
from M such that the union of the sets of entries of the p-tableaux in T
is . (Generally we use capital letters to denote tableaux whose entries are
themselves tableaux and bold capital letters for elements of N(Q2).) For
brevity we write N for () in this section.

Given ¢ € S and T € N we define T¢ by making ¢ act on each entry of
each p-tableau in T: thus (7, 7)(T¢) = ((i,7)T)¢ for each (3, j) € [v], where,
in turn, if (4, )T =t then (a, b)(t¢) = ((a,b)t)¢ for each (a,b) € [n]. Given
o = (0, : (i,) € [v]) € RPP(u)", and a tableau T € N, let T x o € N be
defined by (i,7)(T o) = (i,7)T - 0(; ;). We define T x 7 for m € CPP ()"
similarly. We define sgn(m) = []; jjer,1 s8n(m(i, 7). Observe that the action
of Sq on N commutes with that of RPP(u)"™ and CPP(u)".

Define N = ({T} : T € N)g and N = (|T| : T € N)g. We define
QSq-submodules R and C' of N by

R={{T*o}—{T}:TeN, o€ RPP(u)”>Q,

C = {({T*m} —sgn(m){T}: TeN, e CPP(n)"),
and QSq-submodules Rand C of N by

R={|Txo|—-|T|: TeN,seRPP(u)"),

C = (IT x 7| —sgn(m)|T| : Te N, 7 € CPP()"),,.

Observe that if T, U € A and, for each (i, j) € [v], the u-tableau entries
(4,7)T, (i,7)U of T and U agree up to the order of their rows, then {T}
and {U} are congruent modulo R. Informally put, working modulo R we
may regard the u-tableau entries of tableaux in A as p-tabloids.

3.2. Models. To make this idea more precise we shall give explicit bases
for N/R and N/R and explicit isomorphisms N/R =~ (M* @ M") TEZ;LSn
and ]\~7/§ ~ (M*Q ]\7”) Tg:;SH. For this we must suppose that € is totally
ordered; row-standard and column-standard for p-tableaux then have their
expected meanings from Definition 2.5. If s and t are u-tableaux with dis-
joint sets of entries from €2, we set s <gjj ¢ if the least entry of s is strictly

smaller than the least entry of ¢.

Definition 3.1. Let N'R be the set of T € A such that each p-tableau
entry of T is row-standard. Let N'R,ow be the set of T € N'R such that T
is row-standard in the order <gisj. Let N'R¢o1 be the set of T € AR such
that T is column-standard in the order <gjs;.
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We need a small extension of the construction in §2.7. Given v a parti-
tion of n, a QS,,-module W and a QS,-module Z, let S, < S,, denote the
Young subgroup labelled by v and let W@, Z denote the Q(S]" % S, )-module
obtained by restricting W @ Z to S}, » S,. We also need the characteri-
zation of induced modules in Alperin [3, Chapter III, Corollary 3]: if X is
an QG-module and Y is a QK-module, where G < K are finite groups,
then ¥ = X1 IG( if and only if Y |G has a QG-submodule W such that W
generates Y as a QK-module, W is isomorphic to X as a QG-module, and
dimY = |K : G|dim X. We denote the trivial and alternating Q.S,-modules
by Qg, and sgng_ respectively.

Proposition 3.2. Let G, = S}, x S,,. Identify Sy, and Sq via the unique
order preserving bijection {1,...,mn} — Q. Under this identification there
are isomorphisms

() N/R = (M"@,Qs,) 15" = (M@ M*) 3"
(ii) N/C = (M" @, Qs,) 1o = (M@ M") 13
(i) N/R = (M" @y seng,) 1o = (MP @ MY) 13 |
(iv) N/C = (M" @, sgng, ) g’”" ~ (M' @ M) 15

Moreover N/R has {{T}+R : T € NRyow} as a basis and N/R has {|T|+l~?, :
Te NRcol} as a basis.

Proof. Let t be a p-tableau with distinct entries from {1,...,m}. Let u
be a v-tableau with distinct entries from {1,...,n} whose rows are fixed
setwise by S, < Sp. Then ({u}) affords the trivial representation of the
Young subgroup S, < S,. It is clear that ({t} ®---® {t}) ® {u} € M* @ M"”
generates M* @, {{u}) as a QG,-module and M* @ M" as a Q(Sy, ! Sp)-
module. Moreover, dim M* @, ({u}) = (dim M*)" and |S;,0Sy, : Go| = |Sn :
Sy| = dim M", so

(dim M* @, ({u}))|Sm 1Sy : Gy = (dim M*)" dim M” = dim M* @ M".

Hence, by the characterization of induced modules,

SmiSn
Gy

and so (M* @ M) 15y = (M" @, Qs,) Tg':". This proves the second

isomorphism in (i).

Mro MY = (M" @, Qs,)

Let ¢ : {1,...,mn} —  be the unique order preserving bijection. For
each (i,7) € [v], if (4,7) is the ¢th box of [v] in the lexicographic order on
[v], then set T'(; ;) = {({ —1)m +1,...,¢m}e. For each (i,j) € [v] let ¢(;
be the p-tableau obtained from the fixed p-tableau t by replacing each entry
r€{l,...,m} with the rth smallest entry of I';; ;. (This choice is made for
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definiteness; any p-tableau with the same set of entries may be used.) For
each (a,b) € [u], let

Arap) = {(a, )t : (4, 7) € [v]}

be the set of entries of the tableaux ¢(; ;) in position (a,b). Let Hg be the
subgroup of H(a’b)e[u] SA(a,b) consisting of all permutations that permute
the I'(; ;) as blocks for their action. (These definitions are illustrated in the
example following this proof.) There are isomorphism of abstract groups
Hqo = Sa(,, = Sp for each (a,b) € [u]. Let Hq, < Hgq be the Young
subgroup of Hg whose orbits on the blocks I'(; jy are

{F(lyj) :jE {1,...,V1}},...,{F(k7]~) j € {1,...,Vk}}

where k is the number of parts of v. The subgroup

Go,=( |] Sru,) = Ho, (3)
(i.5)€v]

of Sq is then conjugate to G, < Sy, after identifying S,,, and Sq via the
bijection ¢. Let V € N be the v-tableau with entries from M defined by
(i,§)V = t(j)- It is clear that ({V} + R) affords the trivial representation
of the subgroup

( H Stabgr(i’j) {t(m)}) x Hq,

(i.5)e[v]
of Gq,. Therefore the QGq,-submodule of N/R generated by {V} + R is
isomorphic to M* @, Qg,,, after identifying GG, and Gq, via the bijection ¢.
The first isomorphism in (i) now follows from the characterization of induced
modules: it is given explicitly by

{(VI+ R {#}®--- @ {t} ® {u}. (4)

This completes the proof of (i).
Now define

NRx = {U€eNR: (i,j)U has distinct entries from [ for all (i,5) € [v1}

and let X be the QGg, -submodule of N/R generated by {V}+ R. It follows
from the choice of subsets g that NRx € N'R,ow and that the elements
{U} + R for U € NRx form a basis for X that is permuted transitively
by Ggq,. (This basis will be used later in the proof of Proposition 3.8.)
Considering the vector space decomposition N/R = @ » X ¢ where ¢ runs
over a set of coset representatives for the cosets of Gg, in Sq, we see that
N/R has a basis as claimed.

The remaining parts can be proved similarly. For instance, for (iii), re-
place ({u}) with (|u|) affording the sign representation of the Young sub-
group S, < Sy, replace {V}+ R with |V]| + R, and replace Hg, with a Young
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subgroup whose orbits on the blocks I'(; ;) are
{F(i,l) e d{l,. .., 1/{}}7 R {F(@C) e d{l,. .., Vé}},
where ¢ = v;. The isomorphism is given by
VI+ R= {1} ®--- @ {t} ® |u]. (5)
O

To illustrate the proof of (i), we take p = (2,1) and v = (3,1). Let
Q = {1,...,12} with the natural order; thus ¢ is the identity map. If we

take ¢ = | 2|then
3
1]2 4[5 718 10011
tay =13 | ta) =15 | tas) =rg |, teny =3 |

and V € N is the (3,1)-tableau with these (2, 1)-tableaux as entries. The
blocks I';; jy for (i,j) € [v] are the entries of these (2,1)-tableaux, and
Anyy = {1,4,7,10}, Apgy = {2,5,8,11}, Apyy = {3,6,9,12}. The sub-
group Ho < Spa710p X Sg258,11) X S(3,6,0,12; is generated by the permu-
tations (1,4,7,10)(2,5,8,11)(3,6,9,12) and (1,4)(2,5)(3,6). It permutes
the I';; ;) as blocks for its action. The subgroup Hgq, is generated by
the permutations (1,4,7)(2,5,8)(3,6,9) and (1,4)(2,5)(3,6) and Gq, =
(S{1,2,31 X Spas61 X Sr89) X St10,11,12)) @ Ha, -
The set N'Rx consists of all |-> t]u] € N such that

o {52 0P o (P B

o1l [1o12]
we { o [

Thus the QGgq,-submodule X of N/R generated by {V} + R is isomorphic
to MY @, Qg, and has {{U} + R : U € N'Rx} as a basis permuted
transitively by Gq,, .

2]

I

3]

9

6]}7

1 1 112]}
120 7 1] 710 )

8]

I

9]

I

l@\] lw’—‘
[oo]~ [ro]=
[w]oo [=]w
(e

-

(4

m
——

== lvl>01

3.3. Maps. We noted in §2.7 that W @ Z is functorial in W and Z. From
the canonical projections M* = $* and M* — S* defined in §2.3 we obtain
the canonical projections made explicit in the following proposition. (The
two projections not given are the only two we do not use.)

Proposition 3.3. Let T € N'. The homomorphisms (i) N/R — N/R, (i)
N/R — N/R, (iii) N/R — N/C, (iv) N/JR — N/C, (v) N/C — N/R, (vi)
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N/C — N/R, corresponding to the compositions

(i) (M" @ M) 15m = (M@ S")1mg, < (M" @ MY) 13,
(i) (M*" @ M")1} szs — (M" @ 8)1gms = (M" @ M) 195,
(iii) (M* @ M")13 szs = (S @ M) 1 — (M @ M) 13,
(iv) (M* @ M) 15, — <§“@M"> = (M" @ M") 15,
(v) (M@ M¥) 1§ — (S" @ MY)13ms — (M* @ MY)13ms.
(vi) (M" @ M") gm?s - (S"oM")1 g i, = (MF @ MY) 13

are defined on the generators |T| + R, {T} + R, |T|+ R, {T} + R, |T| + C,
{T} + C of their respective domains by

IT|+R — > {T-r}sgn(r)+R,

7eCPP(v)

{T}+ R —> 2 |T-7'|—i—]§7
TeRPP(v)

IT|+R — Z IT 0| + C,
oceRPP(u)™

{T}+R —> Z {Txo}+C,
oc€RPP(p)™

IT|+C +—> Z IT * 7| sgn(r) + R,
TeCPP(u)"

{T}+C — Z {T x 7} sgn(w) + R.
meCPP(u)™

Proof. We prove (iii) to illustrate the action of the group RPP(u)". There
is no loss of generality in taking T to be the tableau V € N defined in
the proof of Proposition 3.2. Also, as in this proof, let ¢ be a p-tableau
with distinct entries from {1,...,m} and let u be a v-tableau with distinct
entries from {1,...,n} such that (Ju|) affords the sign representation of
S,.. By Proposition 3.2 there are isomorphisms N/fz (M" M”) TszSn
and N/C = (M" @ M) Tgms, defined in Equation (5) by |V] + R —
{1} ®---@{t}®|u| and (similarly) [V|+C — [t|®- - ®|t|®|u| respectively.
The image of {¢} under the canonical surjection M* — S is 3 serPP() [t-0]-
Hence the induced map N/R — N/C satisfies

VI+R— > |[Vxo|+C,
oceRPP(p)™

since for o = (o(; ;) @ (4,7) € [v]) € RPP(u)" we have (i,j)(V x o) =
tig) " OGg)- -
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3.4. Models for plethystic Specht modules. In this subsection, we
combine the results so far to give explicit models for the QS,,,-modules

(SH o M") Tg:?sn and (S* @ M”) TgZ’;Sn. These models are used in §6.

Definition 3.4. Let N, be the set of T € A such that each row of T is
strictly increasing under <gisj and let Neo be the set of T € N such that
each column of T is strictly increasing under <gjg;.

We note that NRrow = NR N Niow and N Reol = NR N Meow-

Definition 3.5. For each T € N, define

erow(T) = Y, {Tm}sgn(r) + Re N/R,
7eCPP(u)n

co(T) = Y |Twn|sgn(r) + Re N/R.
7eCPP(u)"

The elements e,y (T) and .o (T) behave much like ordinary polytabloids.

In particular, we have

erow(T)¢ = erow(T(b) and ecol(r]:‘)(b = ecol(T(b) (6)

for any ¢ € Sq. The following lemma shows that a linear relation between
polytabloids in S* implies linear relations in the submodules of N/R and
N / R isomorphic to (S* @ MH) Tg::?sn and (S* @ MY ) Tg::?snv respectively.

Lemma 3.6. Let T € N. Let (i,j) € [v], let t = (i,7)T and let T be the
set of entries of t. Suppose that e(t) = Y cye(v) where the sum is over
u-tableaur v with distinct entries from I' and ¢, € Q for each v. For each
such v, let T, € N be obtained from T by replacing the entry t in position
(i,7) with v.
(i) If T € Niow then exow(T) = 3., cverow(Ty) and Ty € Niow for each v.
(ii) If T € Neol then ecol(T) = 3, cvecol(Ty) and Ty € Neoi for each v.

Proof. We prove (i); the proof of (ii) is similar, using part (iii) of Propo-
sition 3.2 rather than part (i). For each (i',;') € [v], let T'( j»y be the set
of entries of the u-tableau (i, j')T. Given any m € CPP(u)" there exists a

TE H ST,

(i,3")#(i.9)
such that (¢/,j')(T » m) = ((¢',5)T)7 for all (¢',5') * (i,j). Note that
sgn(m) = sgn(7)sgn(m(; ;). Moreover, since each T, agrees with T in its

unique permutation

positions other than (i, j), we have

(i, ") (Ty ) = (¢, 5)To) 7
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for all (i, ') % (i,7). Let H = {7 : m € CPP(u)"}. By these remarks
erow(T) = Z Z {T * 7 5y} sgn(m(; j)) dsen(e) + R,

d)EH TI'(,LJ)GCPP(M)

and

Dieverow(Tu) =D > > {Tyxm(}sen(n ) osen(d) + R,
v v ¢eH m(; ;yeCPP(u)
where, by a small abuse of notation, we regard 7(; ;) € CPP (1) as an element
of CPP(u)™ acting trivially on all p-tableaux not in position (i,7) of a v-
tableau. It therefore suffices to show that
Z {T*ﬂ'(i,j)} Sgn(ﬂ(m'))-i-R = Z Z CU{TU*W@J)} Sgn(ﬂ(m'))-i-R.
7(i,5)ECPP(k) 7(5,;)ECPP(u) v
By Proposition 3.2(i), the {U} + R for U € N'R,ow are a basis for N/R.
Since T € Nyow, the coefficient of {U} + R in either side is zero unless
{(«/,7)U} = {(#/,7)T} for each (i,5") + (i,7). (Since U € N'Ryow, this
determines U up to the entry in position (7, j).) Suppose that (i,j)U = u.
Then the coefficient of {U} + R in the left-hand side is the coefficient of {u}
in e(t), and the coefficient of {U} + R in the right-hand side is the coefficient
of {u} in )’ c,e(v). These agree by hypothesis. O

By the Standard Basis Theorem (see [26, Theorem 8.5]), if ¢ is a u-tableau
with distinct entries from I' € Q then e(t) € S* is an integral linear combi-
nation of polytabloids e(u) for standard p-tableaux u with distinct entries
from I'. This motivates the following definition.

Definition 3.7. Let NS be the set of T € A such that all u-tableau entries
of T are standard. Let NS;ow = NS N Neow and let NSqo1 = NS N Negl.

Lemma 3.8.
(i) The set Brow = {€row(S) : S € NSrow} is a basis for a submodule of N/R

isomorphic to
(5" @ M¥) 155, .

(i) The set Beol = {ecol(S) : S € NSco1} is a basis for a submodule of N/R
isomorphic to
(5" @ M) 15,

Proof. We prove (i); the proof of (ii) is similar. Let V € A be as constructed
in the proof of Proposition 3.2. Let V be the QSqg-submodule of N/R
generated by erow(V). By Proposition 3.3(vi), V' is isomorphic to (S* @
MY) Tg:?sn It remains to show that V has a basis B,. as claimed.

Let Gq, be as defined in (3) in the proof of Proposition 3.2. (Recall that,
after identifying S, with Sq, Gq, is conjugate to S? % S,.) Let NRx
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be as defined in the proof of Proposition 3.2. Recall that {{U} + R: U €
NTRx} is a basis for a QGgq, -submodule X of N/R isomorphic to M@, Qsg,,
(after identifying G, with Gq, ), and that the basis elements are permuted
transitively by G, . By definition of the sets I'; jy in the construction of V,
we have NRx S Niow-

Let Z be the QGq,-submodule of X generated by e;ow(V). By Proposi-
tions 3.2(i) and 3.3(vi), Z is isomorphic to S* @, Qg, (after identifying G,
with G, ). By (6) we have erow (V)Y = erow(V¥) for ¢ € Gg,. Since the
top group Hg, in the definition of G, acts trivially on X, we may assume
that v € [1(; jyer) Sryi ;) and so each p-tableau entry (i, j)(V¢) has the same
set of entries as (i,7)V. Thus (4,7)(V¢) has distinct entries from I'(; ;y for
all (i,7) € [v]. By repeated applications of Lemma 3.6 and the Standard
Basis Theorem we may express each e;on (V1) as a linear combination of
elements epow(S) for S € NSyow N NRx. Hence the elements e (S) for
S € NS,ow " N'Rx span Z. By dimension counting, using the isomorphism
Z = S* @, Qg, , we see that they are linearly independent.

Finally since N/R is induced from X, there is a vector space decomposi-
tion

N/R=@X¢
5

where ¢ runs over a set of coset representatives for G, in Sq. The result

now follows because ¢ sends the basis {€;ow(S) : S € NSiow " NRx} of Z
to a basis of the relevant subspace of N/R. U

4. HOMOMORPHISMS DEFINED USING CONJUGATE-SEMISTANDARD
TABLEAU FAMILY TUPLES

In this section we use the models defined in §3 to define the homomor-
phisms needed to prove Theorem 1.3.

4.1. Tableaux from conjugate-semistandard tableau family tuples.
Let T = (T1,...,7:) be a conjugate-semistandard tableau family tuple of
shape p” and type A, as in Theorem 1.3. For each i € {1,...,c} and each
Je{l, ... K}, let S(i,j) be the jth smallest conjugate-semistandard tableau
in 7; under the total order < defined in Definition 2.2. Let S be the k-tableau
defined by (i,7)S = s(; j) for each (i, j). Each entry of S is a u-tableau with
entries from N; for each ¢ € N the total number of entries equal to 4 that
appear is \;.

Let Q* be the set of symbols defined in §2.4. Let S be a s-tableau obtained
by appending indices to the entries of each p-tableau (i,7)S so that the set
of all the entries of the p-tableaux in S is Q* and so that each p-tableau in S
has strictly increasing columns in the total order on Q* defined in §2.4. For
definiteness we fix the following procedure: start with the u-tableau (1,1)S,
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and continue in lexicographic order of the boxes of v, finishing with the u-
tableau (c, k.)S, appending indices within each u-tableau in lexicographic
order of the boxes of p. (For an example see Example 4.2.)

Let T, = S’ if m is even and let T, = S if m is odd. Recall that v = &’ if
m is even, and v = & if m is odd. Thus T is a v-tableau in the set N'(Q"),
as defined in §3.1.

4.2. Homomorphisms. Identify S,,, with Sqx using the unique order pre-
serving bijection {1,...,mn} — Q* and identify the QSgr-modules N/R,
ﬁ/ﬁ, N/C, N/CN’ defined in §3 with the QS,,,-modules (M* @ M") Tg;’ifsn,
(MH @ M) 15 (MP @ MY) termg , (MP @ M¥) 15775 by four fixed
isomorphisms. (These isomorphisms exist by Proposition 3.2.)

Let ty be the A-tableau with distinct entries from Q* defined in §2.4. Note
that |t)| generates M* as a QSgr-module. Let by = > ¢y sgn(9)d, where
I()\) is the index permuting group defined in §2.4. We define homomor-

phisms f7 and g7 by

7. NV Smn s
friM— (MP QM) s |l fin,..7) = [Trlba + R,

Y3 14 Smn
g7 : MA — (M” oM )TSmESn’ |t>\|9(7'1,...,7’c) = {TT}b)\ + R.

That these are well-defined homomorphisms follows from the characterisa-
tion of induced modules.

Define
Fr i M (5" @8") g:?sn’
g M > (S" @ )15,

by composing fr with the canonical surjection (M* @ M ")Tee, > (MEQ

SY) T‘quysn—» (51 @ S¥) ngysn and composing g7 with the canonical surjec-
tion (M*@M") Tg:;lsnﬂa (M"Q5) Tgmrs — (St SY) Tg:?sn, respectively.
We remind the reader that these definitions require the four fixed isomor-
phisms. For example, the image of the homomorphism f is, strictly speak-
ing, a submodule of N/C; to obtain f; as defined above we must identify
N/C with (M* @ M) 13

We have the following explicit description of the homomorphisms f+

and gr.
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Proposition 4.1. The images of |t)| € M?* under the homomorphisms fr
and gy are
lfr =), {(Tr0-7)x0)}sen(®)sen(r) + C,
9eI(N)

T7eCPP(v)
oceRPP(u)™

tAgr = > |[(T9-7)*o|sgn(®) +C,
el ()
TeRPP(v)
ceRPP(u)"

respectively.
Proof. This is immediate from Proposition 3.3. (]
We end this section with an example of these homomorphisms.

Example 4.2. Take m = 3, n =5, p = (2,1) and v = (4,1). Take the
conjugate-semistandard tableau family tuple

(0 g e e

of shape (2,1)®*1) and type (32,23,1%). (We have written tableaux in the
total order < defined in Definition 2.2.) Appending indices to the tableaux
in 7 we obtain

14]21| | [15]22] | [14]31] | |16]32]
1 2 1 2
TT _ _2 _3 _5 _4 EN(Q(32723713))_
17]25]
1g

The corresponding homomorphism

_ ~a2 53 13 ~ ~ S ~ ~ g ~ ~
gr: M2 — (SBD @ SUD) 10 o (MY @ M) = N/C

sends the generator [t(s2 93 13)| to

14]21] | [15]22] | {14]31] | [16]32]

1o 23 15 24 ~
Z sgn(v) — — — — V-7|*xo| +C.
ve1(32,23,13) 17 25|
7€RPP(4,1)
ceRPP(2,1)° E

The proof of Proposition 5.1 shows that the coefficient of |T|+C in |ty|g is
2; correspondingly, ¢ = (11, 17)(12, 18)(21, 25) swaps the two (2, 1)-tableaux
in the first column of each columnar tabloid on the right-hand side, so
sgn(9)|(T79-7)*co| = |(Tr-7)*0o| for all 7 € RPP(4,1) and o € RPP(2,1)5.

We saw in Example 4.2 that 7 has minimal type. It therefore follows
from Theorem 1.3 and Lemma 2.1 that the kernel of g+ contains the Garnir
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relations generating the kernel of the canonical homomorphism M 3*2%1%) _
§(3%,2%,1%) (In this case it is also possible to prove this in a more explicit
way by adapting the argument used in [35, Proposition 5.2].) Hence we
obtain a well-defined homomorphism from S (3%.2°,1%) 6 the module (§ 21 o
S MJ))TESSS isomorphic to H ((2411)) . We continue in Example 8.2 to show that
the multiplicity of 5(32,2%.1%) 4 H((gll)) is 2.

5. THE HOMOMORPHISMS f; AND §; ARE NON-ZERO

In this section we prove the following proposition on the homomorphisms
defined in §4.2

Proposition 5.1. Let (T1,...,7T.) be a conjugate-semistandard tableau fam-
ily tuple of shape u® and type A.
(i) If m is even then the homomorphism

Ty s M= (S @ 8") 1905,

18 MON-2€70.
(ii) If m is odd then the homomorphism

Smn

5(7—1777’6) : MA - (g'u @ §V) SmiSn

18 Non-zero.

The proof of Proposition 5.1 uses Lemma 2.6 and the three further lemmas
below. Given a p-tableau t with entries from Q* let D(t) be the deindexed
tableau with entries from N obtained by removing indices from the entries
in t. Let N' = M (Q) be as defined in §3.1.

Lemma 5.2. Let T € N. Let w, ©’ € CPP(u)™ and let p, p' € RPP(v). If
(T-p)xm=(T-p)*7' then p=p and m =7'.

Proof. For each (i, j) € [v], the p-tableau in position (7, j)p of (T - p) * 7 has
the same set of entries as the p-tableau in position (i,7)p" of (T - p') » .
Since the sets of entries of the y-tableaux in any element of N are disjoint,

it follows that (i,7)p = (i,7)p’ for all (i,7) € [v]. Hence p = p'. It is now

clear that = = 7. O
Lemma 5.3. Let t1,...,t, be p-tableauzr with entries in Q* such that each
||D(t:)|] is conjugate-semistandard. Let o; € RPP(u) for each i. Suppose
that the multisets {||D(t1-01)]|, ..., ||D(tn-on)||} and {||D)|], ... [|D(tn)][}
are equal. Then o1 = ... =0, =id.

Proof. Let < be the usual total order on N and let <. be the order induced
by < on p-columnar tabloids with entries in N, defined in Definition 2.4. By
Lemma 2.6(i), since each D(t;) is row-standard under <, we have ||D(¢; -

—



24 ROWENA PAGET AND MARK WILDON

ai)|| Zcol ||D(t;)]] for each i. By assumption, there exists ¢ € S,, such that
[|1D(tig)|| <col ||D(t; - 05)|| for all i. By Lemma 2.3, applied with the pre-
order <o, we have ||D(t;)|| <col ||D(ti - 04)|| for all i. Hence, by another
application of Lemma 2.6(i), o; = id for all 1. O

Lemma 5.4. Let 1) € I(\), the group of index permutations, and let T €
N(QY). If TY - p = T where either p € RPP(v) or p e CPP(v) then

1 if m is even
sgny =

sgnp if m is odd.
Proof. We suppose that p € RPP(v): the other case is similar. Let p be the
permutation of Q* induced by p. By hypothesis p =1~ € I(\). If z,p = z,
with y # z then x, and z, are entries of distinct p-tableaux in the same row
of T, say s and ¢, and x;, p is an entry of ¢t whenever 33;, is an entry of s.
Hence p has exactly m cycles of length ¢ for each ¢-cycle in p. The lemma
follows. (|

We are now ready to prove Proposition 5.1. We prove part (i) in full, and
then indicate the changes needed for (ii).

of Proposition 5.1(1). By Proposition 4.1, we obtain a contribution to the
coefficient of {T+} + C in |t/\|7(7’1,...,TC) for each ¥ € I(\), 7 € CPP(v) and
o € RPP(u)" satisfying the condition {(T+9-7)*c} +C = {T7} + C. This
condition holds if and only if there exist 7 € CPP(u)" and p € RPP(v) such
that (((T79-7)*0) *7)-p = Tr. If such m and p exist they are unique, by
Lemma 5.2. The coefficient is therefore
Z sgn (V) sgn(7) sgn(m)
9eI(N)

7e€CPP(v)

c€RPP ()"

7weCPP ()"

pERPP(v)
((Tr9-T)x0)*mw)-p=Tr

where sgn(m) = [(; ;e[ S80(7(ij)) is as defined in §3.1.

Let 9, 7,0,m, p satisty ((T70 - 7) xo) x7) - p = T7. Let t(; 5y = (i,7)Tr.
The tableau in position (i, j)7 of T79 -7 is £(; y¥. Since ¥ permutes indices,
p acts a position permutation on v-tableaux in N while leaving the multiset
of u-tableaux entries invariant, and 7w acts as a column permutation on each

j-tableau entry of a tableau in A, there is an equality of multisets

{lID(t i) - opll = (d) € Wy = D)l = G g) e W1} (7)

Hence, by Lemma 5.3, 0; jy, = id for all (i, j) € [v], and so o = id.

Let < be the pre-order on p-tableaux with entries from Q% defined by
s < tif and only if D(s) < D(t), where < is the total order in Definition 2.2.
The tableau T is column-standard under <. Let <,.w be the pre-order on
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the set of tabloids {T} for T € N defined by Definition 2.4(ii) using <. If
7 # id then, by Lemma 2.6(ii), {T7+9 - 7} <yow {T7}. Since the total order
< is preserved by column position permutations on p-tableaux and =<y
depends only on the sets of entries in the rows of a tableau in N, it follows
that {((Tﬂ? ST) * 7r) . p} <row {T7}, a contradiction. Therefore 7 = id.

We now have (T79 *7)-p = Ty. For each (i,j) € [v] there exists
(i,7") € [v] such that ((i,j)Tﬂ?) (5 = (i,5)T7. Because the u-tableau
entries of T are conjugate-semistandard after deindexing, this shows that
acts on the entry in position (i,7) of T+¢ by permuting indices. Let

T(i,4)

7(i,5) € 1(A) be the permutation induced by m(; ;) and let

b= [] 9%upeIN).
(i.)€lv]
By Lemma 5.4 we have sgniy = 1. It follows that sgn(d) = sgn(w) and
sgn() sgn(7) sgn(m) = sgn(v) sgn(m) = 1. Hence the coefficient of {T'7} +C
in [tz f7 is strictly positive. O

of Proposition 5.1(ii). A similar argument shows that the coefficient of | T |+
C in tA?(Th,TC) is

>, sen(9)sgn(r) sen(p).
Yel(N)
TeRPP(v)
ceRPP(u)™
7eCPP ()"
peCPP(v)
((T79-T)x0)xm)-p=T7
Let ¥, 1, 0,7, p satisfy ((T79-7)*0)*7)-p = T+. The argument for case (i)
shows that (7) holds, and hence o(; jy = id for all (i, ) € [v]. Let < be as
defined in case (i). The tableau T is row-standard under the pre-order <.
Hence by Lemma 2.6(i), if 7 % id then ||T79 - 7|| <co ||T7||. A similar
argument now shows that ||((T+9 - 7) * 7) - p|| <col || T7||, a contradiction.
Therefore 7 = id. Now define ¢ as before, and apply Lemma 5.4 to get
sgn(¥) sgn(m) = sgn(v) = sgn(p), showing that the coefficient of |T;| 4+ C
in |t\|f is strictly positive. O

Under certain technical hypotheses the homomorphisms f7 and gz for
distinct conjugate-semistandard tableau family tuples 7 are linearly inde-
pendent; this is discussed in Section 8.

6. CONJUGATE-SEMISTANDARD TABLEAU FAMILIES TUPLES FROM
HOMOMORPHISMS

The aim of this section is to prove the following theorem.
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Theorem 6.1. Let q be the number of conjugate-semistandard tableau family
tuples of shape u® and type A\. Then

dim Homgs,,, ($*, (S" @ ") 15" ) <.

The proof uses the results in §3, taking the set Q to be Q* with its usual
order, namely y, < y., if and only if y < ¢ or both y = 3 and = < 2.
Recall that, by Definition 3.7, N'S is the set of all v-tableaux with standard
u-tableaux entries such that the union of all the entries of the u-tableaux is
O*, NSpow is the subset of N'S of v-tableaux with strictly increasing rows
under the order <gis; (defined in Section 3.2), and NS, is the subset of
NS of v-tableaux with strictly increasing columns under <gisj. Let Brow
and B be the bases of the submodules of N/R and N /E isomorphic to
(S o MY) Tg:’;sn and (S* @ ]\7”) Tg™s , respectively, given in Lemma 3.8.
Recall B,y consists of all

erow(S) = D> {Sxm}sgn(r) + R
7eCPP(u)n

where S € NS,ow and B, consists of all
col(8) = D, IS*mlsen(m) + R
TECPP ()"
where S € NS,1.

The key idea in the proof of Theorem 6.1, when m is even, is to pull back a
QS,nn-homomorphism S* — (S @ S) ng’?gn to a QSgr-homomorphism A :
M 5 N /fi with image contained in the submodule of N /ﬁ with basis B
isomorphic to (S* @]\7”) TgZ?Sn' We show that if [tx|h = X g s, cs€col(S)
then there is a conjugate-semistandard tableau family tuple of shape u*
and type A corresponding to each S with c¢g # 0. If m is odd we obtain
the same result by replacing N /1:2 with N/R and using the submodule with
basis Biow. To make this correspondence precise we require the definitions
below. Recall from §5 that if ¢ is a p-tableau with entries from Q* then the
deindexed tableau D(t) is the u-tableau with entries from N obtained by

removing indices from the entries of ¢.

Definition 6.2. Let T e N (Q).
(i) Suppose miseven. Foreach je {1,...,11},1let T; = {D(t1),...,D(t,)}

(&)

where 1, ... ,tl,; are the entries in column j of T. Define D . (T) =
(Ti,- - Tn).

(ii) Suppose misodd. Foreachie {1,...,v1},1let T; = {D(t1),...,D(t,,)}
where t1,...,t,, are the entries in row ¢ of T. Define Dyow(T) =
(T, ).

Definition 6.3. Let ¢ be a u-tableau with entries from Q*. We say that ¢
is separated if no two distinct symbols ¥, and y,s lie in the same row of t.
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Theorem 6.1 is an easy corollary of the following proposition and its ana-
logue for m odd.

Proposition 6.4. Suppose m is even. Let h : M > (SH @M”) Tg:?sn be
a homomorphism of QSy,,-modules. Identifying the domain with the QSqx-
module generated by |ty| and the codomain with the submodule of ]\Nf/]?’c with
basis B, let
talh = D" cueca(U) (8)
UeP
where P € NSeo1 and cy + 0 for each U e P.

(i) If U e P andt is a p-tableau entry of U then t is separated.
(ii) If U € P and s and t are p-tableau entries in different positions in the
same column of U then D(s) £ D(t).

For completeness, we state the version of the proposition for m odd.

Proposition 6.5. Suppose m is odd. Let h : M - (SH o M") TgZ?Sn be
a homomorphism of QSyn-modules. Identifying the domain with the QS -
module generated by |tx| and the codomain with the submodule of N/R with

basis Biow, let

[talh = D" cuerow(U) (9)
UeP
where P € NSiow and cy £ 0 for each U € P.

(i) If U e P and t is a p-tableau entry of U then t is separated.
(ii) If U € P and s and t are pu-tableau entries in different positions in the
same row of U then D(s) £+ D(t).

of Theorem 6.1 assuming Propositions 6.4 and 6.5. We first suppose that m
is even, then indicate the very minor changes needed if m is odd. Pull back
a non-zero homomorphism S* — (S* @ S¥) ngysn to a non-zero homomor-
phism M* — (S*©@ ]\7") TEZ?SH, and let b : M* — N/R be the correspond-
ing homomorphism of QSqx-modules with image contained in the submod-
ule of N/R with basis {eco1(S) : S € NSeo1}. Let [tx]h = 2 sep CSeeol(S), as
in (8).

Let T € P. If t is a pu-tableau entry of T, then ¢ is standard, so if y,, 3/, are
entries in the same row of ¢ then y, < y/,. Moreover, by Proposition 6.4(i),
we have y # y'. Therefore the rows of D(t) are strictly increasing. Similarly,
since t is standard, the columns of D(t) are weakly increasing. It now follows
from Proposition 6.4(ii) that D.,(T) is a conjugate-semistandard tableau
family tuple of shape p”. (Recall that x = v/ when m is even.)

Suppose that U € NS, is such that Deo)(U) = Deoi(T). There is an
index permutation ¥ € I(\) and a column place permutation 7 € CPP(v)
such that U = T¢-7. Observe that e.o(U) = ecoi(TY-7) = sgn(7)ecol(TV).
Applying ¥ to both sides of (8), we see from the summand creco(T)d that
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the coefficient of eqo(U) in [tx|0h is sgn(7)cr. Since [tz|9 = sgn(9)|ta],
it follows that sgn(d)cuy = sgn(7)cr. Hence the number of independent
choices for the coefficients in (8) is at most ¢, the number of conjugate-
semistandard tableau family tuples of shape p® and type A. Therefore
dim Hom@gﬂ(]\?/\,dﬁcoﬁ) < ¢. Since

dim Homgg,,,, (]\7)‘, (S* @ S") S

o ) < dim Homgoa (M, (Bear))
the theorem follows.

For m odd, instead start with a non-zero homomorphism S* — (S* @
Sv ) Tg:?sn and pull it back to a non-zero homomorphism M (S* @
M )1 gZ?Sn so that Proposition 6.5 may be used. Then replace eq(S) €
NS with erow(S) € NSiow, Beol With Brow and Deo(T) with Dyow (T)
throughout, and use that eyow(TV - 7) = erow(T)V for 7 € RPP(v) and

9 eI(N). O

6.1. Proof of Proposition 6.4. The main result needed to prove Propo-
sition 6.4 (and also the analogous Proposition 6.5) is Proposition 6.6 below;
this result may be seen as a modular version of Pieri’s rule. An example is
given following the proof. Recall that a subset of a Young diagram is said
to be a wvertical strip if it contains no two boxes in the same row.

Proposition 6.6. Let T' be a subset of Q* of size m. Let
b= > Usgn(d).
9eSTNI(N)

Letd = \i. Foreachye{l,...,d}, letT'y = {y1,... ,y%}mf‘. The elements
e(t)b such that

(i) t is a standard p-tableauw with entries from T,

(ii) the bozes of t occupied by the symbols in each Iy form a vertical strip,
(ili) if Yz, yor € Ty and © < 2’ then y, appears in a lower numbered row

than vy,

are a basis for the QSr-module S*b.

Proof. By repeated applications of Pieri’s rule (in the dual form stated in
[38, page 340]), the multiplicity of x* in (HZ=1 sgnpy) TSF is the number of
sequences of partitions

G =p) C 1 S S pi—1 C Hd = (10)

such that each [p,]/[pty—1] is a vertical strip and |py| — [py—1]| = |T'y|. Let S
be the set of such sequences. Define b = b/l_[;l:1 II'y|. Note that b is an
idempotent and that if v € SHb then (v) affords the sign representation of
]_[Z=1 I'y. By Frobenius reciprocity, we see that dim SHh = 1S].

Given a sequence in S as in (10), let ¢ be the standard p-tableau with
entries from I' such that, for each y, the boxes [u,]/[py—1] are occupied
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by the elements of Ty, ordered as in condition (iii). Let 7" be the set of
tableaux obtained in this way. Notice that if ¢ € T and ¥ € St n I(\)
then the tableau u obtained from ¢ by sorting its columns into increasing
order is standard. Let 4, be the unique permutation such that t¥d, = u.
If ¥ € Sp n I(\) gives the same tableau u after sorting the columns of ¢,
then 99, = 99, so sgn(d) sgn(d,) = sgn(y¥’)sgn(?,). Hence there exists
C € N such that the expansion of e(¢)b in the standard basis of S* is

e(t)b = C’Z cue(u),

where the sum is over all standard u-tableaux u with entries from I" such that
the sets of entries of u and ¢ in each vertical strip [jy]/[1y—1] are equal, and
cy € {+1, —1} for each u. Hence the e(t)b for t € T are linearly independent.
Since dim $#b = dim S¥b = |S| = |T'|, they form a basis for S*b. O

For example, ifI' = 9(3’2) = {11, 12, 21, 22,31}, then

b2 = Z Psgn(¥) = (1 — (11,12)) (1 — (21,22)),
ﬁESFﬁI(A)

52y 5) = (e( [ 31|>>.

If instead p = (2,2, 1) then

and

11(21 11124 11]29
S(2’2’1)b(372) = <€( 12 22 >, 6( 12 31 ) — 6( 12 31 )>
31 22 21]
The first two tableaux above form the set T defined in the proof; corre-
spondingly, Pieri’s rule implies the multiplicity of the character of (221 in

(sgng, x sgng, )1 is 2.

We remark that using the James—Peel filtration of a Specht module by
Specht modules labelled by skew-partitions (see [27, §3]) one can adapt the
proof of Proposition 6.6 to avoid assuming Pieri’s rule; the rule then follows
as a corollary.

of Proposition 6.4. We have [t5|by = C|t)| where C' = |I|. Hence the image
of the homomorphism A is contained in the subspace of N /E spanned by
the eco1(T)by for T € NSeo.

Let T € NSco1. For each (i, ) € [v], let T'(; j) be the set of entries of the
p-tableau (i, )T, let I(A)¢; ) = Sr(, ;, N I(A) and let

biij) = Z Usgn(d).
VESION 4.5
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Choosing coset representatives ¢1, ..., ¢, for H(i’j)e[y] I(N) i) in I(X), we
see that

e
ecol(Tbx = D ecal(T) [ biijydrsen(dr).
k=1 (i,5)elv]
Each b(; ;) acts on T by permuting the entries of the p-tableau in position
(i,7) of T, so by Proposition 6.6, e.,1(T) H(M) b(i,j) is a linear combination
of eco1(U) for U € NS, such that each p-tableau entry of U is separated.
Since the coset representatives ¢ permute indices while leaving numbers
fixed, we have eq,(T)by = ZUe/\/Scol cueeol(U) where if cy # 0 then each
u-tableau entry of U is separated. It follows that

(ecol(T)by : T € NSeo)) € W

where W is the subspace of N / R spanned by the eq,(U) for U € NS, such
that each p-tableau entry of U is separated.

To show that condition (ii) in Proposition 6.4 holds, it will be convenient
to say that T € NS has a column repeat if there exist distinct (7,7) and
(¢,7) € [v] such that the p-tableau entries s = (i,7)T and t = (i/,j)T
of T satisfy D(s) = D(t). Suppose that T € NS, has a column repeat,
described by this notation, and let

v=[] ((a,b)s,(a,b)t).

(a,b)€ln]
By hypothesis, 1 € I(\). Observe that si = t, t1) = s, and that v leaves all
other u-tableau entries of T fixed. Therefore |T| = —|T|. More generally,

if m € CPP(p)™ then, since the index permuting action of I(\) commutes
with place permutations, we have

T xm|(1+4) = [T x| + [T x 7] = [T x| = | T s

where ' € CPP(u)"™ is obtained from 7 by swapping the permutations
indexed by (i,7) and (¢, 7). Hence, taking coset representatives 91, ..., "%,
for (1) < I(\), and noting that sgn(¢) = 1 since m is even, we get

d

cco(T)or = >, |Txm|(1+1) ), Dxsgn(ds)

7eCPP(u)" k=1

d
= > (ITxa|=|Txa|) ) psgn(vy)

7eCPP(u)™ k=1
d d
= > (ITxx]) Dl desgn@i) = > (T *x]) Y] dpsgn(ds)
7eCPP(u)" k=1 TeCPP ()" k=1

= 0.
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It therefore suffices to show that if T has separated u-tableau entries, T does
not have a column repeat and e (U) appears in the expansion of e (T)by
in the basis NS, then U does not have a column repeat.

Let ¥ € I()\). For each (i,j) € [v], let v ;) be the u-tableau obtained
from (7, j)T¥ by sorting its columns into increasing order. Since (i, 7)T is a
separated p-tableau, each v(; ;) is standard. Let V be defined by (i,j)V =
v(i4)- Sorting the columns of V into increasing order in the order <giy; we
obtain U € NS, such that e, (T)? = te(U). Since ¥ permutes indices
while leaving numbers fixed, we have

{D((1,/)T),....,D((v},/)T)} = {D((1,5)U),...,D((v},4)U) }

for each j € {1,...,1v1}. Therefore U does not have a column repeat, as
required. ]

of Proposition 6.5. If m is odd then the proof should be modified by replac-
ing columns with rows. In the second step of the proof we have {T}y = {T}
and sgn(y)) = —1, since m is odd, and a similar argument shows that
erow(T)by = 0. O

7. PROOFS OF THEOREMS 1.2 AND 1.3

Theorem 1.3 follows easily using the following lemma which summarises

the salient points from Proposition 5.1 and Theorem 6.1.

Lemma 7.1.
(i) If S* is a summand of H;, then there is a conjugate-semistandard
tableau family tuple of shape p* and type N* with X > \*.
(ii) If there is a conjugate-semistandard tableau family tuple of shape p*
and type \* then there is a summand SN of H), with \* & AT

Proof. Using Theorem 6.1, the hypothesis of part (i) implies that there is at
least one conjugate-semistandard tableau family tuple of shape p* and type
A. We may therefore take A* to equal A here and the conclusion holds. For
(ii), by Proposition 5.1 there is a non-zero homomorphism from M* into
H}/. The result now follows since, by Lemma 2.1, if SM is a summand of
M* then A* > A, O

This completes the proof of Theorem 1.3. To deduce Theorem 1.2 we
twist by the sign representation. The restriction of sgng —to Sy, S, is
sgng @ Qg, if m is even and sgng @sgng if m is odd. Hence

(S @ S¥)12mn,  if m is even

HI/ ® Sgngmn: (S}L@Sll) TS’mn ® Sgnsmn ~ , , szsn
i SmiSn (SH @ S )ngysn if m is odd.
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It now follows from (2) in §2.3 that S* is a maximal summand of H ;. if and
only if S* is a minimal summand of H Z,, if m is even, or H Z,/, if m is odd.
By Theorem 1.3 this holds (in either case) if and only if X’ is a minimal
type, that is A is maximal among the partitions that occur as a weight of a
conjugate-semistandard tableau family tuple of shape 77”' where n = p'.
We remark that, using Proposition 2.10 (whose proof was not included
in this article) and Lemma 2.11, the statement of Theorem 1.2 may be
strengthened. We may remove the restriction that A is maximal among the
partitions that occur as a weight and conclude instead that X is simply a

maximal weight of the conjugate-semistandard tableau family tuple.

8. LINEAR INDEPENDENCE OF HOMOMORPHISMS

In this section we extend the argument in the proof of Proposition 5.1
to give a sufficient condition for homomorphisms defined using different
conjugate-semistandard tableau family tuples of the same type to be lin-
early independent.

To simplify the statement of this result we write t € 7 to mean that the
tableau ¢ belongs to one of the tableau families in the conjugate-semistandard
tableau family tuple 7. Let <., denote the order on p-columnar tabloids
defined in the proof of Lemma 5.3, obtained by taking < to be the usual
order on N in Definition 2.4. Recall that x = ¢/ if m is even and k = v if m
is odd.

Proposition 8.1. Let T ... T be conjugate-semistandard tableau fam-
ily tuples of shape p* and type A. Suppose that for each e € {1,...,d} there
exists a conjugate-semistandard tableau s(9 € T such that if ¢ < e and
we T then ||ul| <cor [[5]]-
(i) If m is even then the homomorphisms frq),..., f7w : S — Hy, are
linearly independent.
(ii) If m is odd then the homomorphisms gray,. .., gy : SA — Hy are

linearly independent.

Proof. We give the proof for m even and then explain the minor changes
needed if m is odd.

For each c € {1,...,d}, let T{®) be the tableau in A (Q") corresponding
to 7©. Suppose for a contradiction that there is a linear dependency in-
volving ?7-(1), .. ,77(6) in which the coefficient of ffr(e) is non-zero. The
proof of Proposition 5.1 shows that the coefficient of {T()} + C in |ty|f7)
is non-zero. Using the definition of 77-(5) in Proposition 4.1, we see that
there exists ¢ < e and ¥ € I(\), 7 € CPP(v) and o € RPP(u)™ such that
(T} + C = +{(T9 - 1) x 0} + C. Hence there exist 7 € CPP(u)" and
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p € RPP(v) such that
T = (TO9-7) x0) =) - p.

Let t(; ;) = (i, 5)T and u(, ;) = (4,§) T for (i,j) € [v].
Repeating the argument in the first step in the proof of Proposition 5.1,
we get

D) = G 5) € [P} = {lID(ugy) - ol = (5 5) € [V}

But by Lemma 2.6(i), we have |[D(ugjy - 04 jye)|l <col ||D(ug )l <ecol
||D(s'®))||. By transitivity, 1D zy - 0 jye)l] <col ||D(s))][; in particular,
1D (ugi ) - ol + ID(5()]|. Since ||D(s(9))]|] is a member of the left-
hand set, this is a contradiction.

If m is odd then instead we look at the coefficient of | T(¢)| +C, and instead
take 7 € RPP(v) and p € CPP(v). The proof is otherwise unchanged. O

Example 8.2. Let

1]2] _1]2] _[1]2] _[1]3] _[1]3]
1] 782—2 ,83—3 784—1 y S5 D) .

S1 =

Define S = ({31, S92, 83,84}, {81}). Note that S has the same shape and type
as T = ({s1, s2, 84,85}, {s1}) from Example 4.2. Since ||s5|| is the greatest
element of {||s1]],...,]||ss||} in the order <. used in Proposition 8.1, the
homomorphisms gg and g+ are linearly independent. Hence the multiplicity
of §3%2%.1%) ip H((;lll)) is at least 2.

If (U,Us) is a ’conjugate—semistandard tableau family tuple of shape
(2, 1)(4’1) of minimal type then, by Lemma 2.11, U/, and U5 are closed. Hence
Uy = {s1} and U; appears in the table in Figure 2. Therefore S and U are
the only conjugate-semistandard tableau family tuples of shape (2, 1)(471)
and type (32,23,13). Thus Theorem 6.1 implies that the multiplicity of

S§B2201%) iy g ((;1 11)) is at most 2. Therefore the multiplicity is exactly 2.

To motivate a further example, we remark on one obvious source of lin-
early dependent homomorphisms. Suppose that n is even and that &/ and V
are conjugate-semistandard tableau families of shape p” where r = n/2.
Let A be the type of (U, V) and let Ty,v) and T(y ) be the corresponding
elements of A(Q*). By the definition in §4, Ty is obtained from Ty
by swapping the two u-tableaux in each row, if m is even, and in each col-
umn, if m is odd. It now follows easily from Proposition 4.1 that when m is
even the homomorphisms corresponding to (i, V) and (V,U) from S* into
(MH @ SE) Tg:?sn are equal. If m is odd the homomorphisms from S* into
(M*+ @ Sy Tg::?sn agree up to a sign of (—1)". In either case, they are
linearly dependent.
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Example 8.3. Define

112] . _[2[3] .. _[1[3] . _[i[4]
a TR YTR TR

u =

Note that these tableaux are incomparable in the majorization order. The
set of conjugate-semistandard tableaux majorized by one of u, v, w and x is

T={12|12|12|12|13|13|23|13|14|14|}
1 2] (3] 4] il (2] 2] 3] (1] 2] ¥

Let t1,...,t10 denote these tableaux, in increasing order under <, the total
order from §2.5, as written above. Note that u = t4, v = t7, w = tg
and = ti9. The type A = (4%,3°,25,17) is minimal for the existence
of a conjugate-semistandard tableau family tuple of shape (2, 1)(8’8); up to
the equivalence (V,U) ~ (U, V) there are exactly five such tuples. Writing
Sap = {t1,t2,t3,t5,t6,t9} U {a, b} for a, b distinct elements of {u, v, w, x}, the
five tuples are

(Suv, wa)a (Su:va Swv)a (S’LL’UM S’UCE)7 (Suva Suw)a (Sv:m Swa:)

(This claim is not logically essential to this example; it may be verified
using the Haskell [36] program TableauFamilies available from the second
author’s website!.)

For each i € {1,2,3,4,5}, let S; € N'(Q2*) be the (8,8)-tableau with (2, 1)-
tableau entries corresponding to the ith tuple above, as defined in §4.1.
Let S;-r e N(2*) be obtained from S; by reordering the entries in each
of its two rows so that the two (2,1)-tableaux with entries from Q) ob-
tained by appending indices to elements of {u,v,w,x} appear in positions
(1,7),(1,8),(2,7),(2,8). We may perform this reordering so that applying
the deindexing map D to the entries in positions (1,7), (1,8), (2,7), (2,8)
of the S;-r gives the following tableaux:

ulv u|xr u|w u|v ’UJ," (11)

wlz| |wl|v| |v|z| |u|lw| |w|z

For each ¢ we have a corresponding homomorphism g; : M > (M SN
M (8’8)) ng‘l‘sg, as defined in §4.2. Since A has minimal type, g; induces a non-
zero homomorphism S* — (M2 @ M) 1 gi;‘sg. Define a homomorphism
Gi: SN > (MEY @ §(8’8)) Tgi;‘sg by composing this induced map with the
canonical surjection (M2 @ M®8)) Tgi;‘ssa (M2 @ §(8:8) Tgi‘fsg. Thus

e(tGi= Y. IS 7lsgn(@)+ R= > S 7[¥sgn(¥)+ R
vel(X) vel(X)
T€RPP((8,8)) T€RPP((8,8))
for each i, where the second equality holds because S; = S;-rai for some o; €
RPP((8,8)), and the place permutation action of RPP((8,8)) commutes

Lyww.ma.rhul . ac.uk/~uvah099
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with the index permutation action of I(\). Hence

et Fi= Y. &ShHisgn() + R (12)
JeI(N)

for each 7. Indicating (2, 1)-tableaux with entries from Q* by the deindexed
tableaux used to define them, (12) implies that

~ ~/|T1 |t t3 t5 t6 tg u|v ~
t = 9 9) + R. 13
e(tr ) gé)e( t1lt2 [ £3 5 [t [to |w | = ) sgn(?) (13)

Working with (8, 8)-tableaux with entries from the set of formal symbols
{17 27 37 47 57 67 1*’ 2*7 3*’
4* 5%, 6*, a, 3,7,0}, the (dual) Garnir relation

~

23[4[5161al8]\ _ _~([I12[3[4[516]als]\ _ ~([112[314]5]6

6(1*2*3*4*5*6*:6)_ 6(1*2*3*4*5*6*:[3) ( 351
~([1T2134[5]6]al6" ~[1T2T3[4[5 6 all®
—6(1*2*3*4*5*6:5)_”' ( = )

holds in S®). Applying this relation to g(SJ{), as it appears in (13), and
using the definition of Sg and Sg in (11), we get

&(sh) = —&(8))v, — &(8])ws — &(Ty) — - -+ — &(Ty)

for some 9,93 € I(\) and some Ty,...,Tg € N(Q*). Note that in the
first row of each T; there are two tableaux ¢ and t* with entries from oA
such that the deindexed tableaux D(t) and D(t*) are equal. For each j, let
1 € I(X\) be the unique permutation that is the product of three disjoint
transpositions such that ti; = t*. Thus €(T;)(1 + sgn(¢;)¢;) = 0. Hence

D SO sen(¥) = —sgn(¥a) Y, &S]V sgn(¥) —sgn(vs) > F(ShY sgn(v)
del(N) Jel(N) del(N)
and so e(ty)g1 = —sgn(¥2)e(tn)ge — sgn(vs)e(ty)gs. It follows that the
homomorphisms §i, g2, g3 are linearly dependent.
Therefore the multiplicity of S @3°2°17) iy g ((2281)) is at most 4. Calcula-
tion using symmetric functions in the computer alg’ebra package MAGMA [6]
shows that in fact the multiplicity is exactly 4.

9. LEXICOGRAPHICALLY MAXIMAL AND MINIMAL CONSTITUENTS

In this section we determine the lexicographically minimal and maximal
partitions labelling summands of the generalized Foulkes modules H,,. This
problem was addressed by Agaoka [2], in the context of plethysms of symmet-
ric functions, who made sixteen conjectures on the form of such partitions.
It is remarkable that although tableaux (as opposed to Young diagrams)
never formally appear in [2], all of these conjectures are correct.
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The following description of the lexicographically greatest constituent [2,
Conjecture 1.2] was first proved by Iijima in [23, Theorem 4.2]. We give an
alternative proof using Theorem 1.2.

Corollary 9.1. Let u be a partition of m with k parts and let v be a partition
of n with € parts. The lexicographically greatest partition labelling a Specht
module occurring as a summand of H is

(th' . 'anlu’k—hn(lu’k - 1) + 1,02, .,I/g) :

Moreover, this Specht module appears with multiplicity 1.

Proof. By Theorem 1.2 it suffices to find the lexicographically maximal
weight of a conjugate-semistandard tableau family tuple of shape 77”/ where
n = p'. Conjugating p'-tableaux, such a tuple becomes (77,...,7.) where
c is the first part of v and each 7; is a set of v/ distinct semistandard p-
tableaux. To maximise the weight in the lexicographic order, we maximise
the number of 1s occurring as entries in these u-tableaux, then the number
of 2s, and so on. Hence we take 7; = {t1,t2,...,t,/} where (a,b)t; = a if
a < korj < ppand (k,ur)t; = k +1i— 1. The weight of this family is
(npe1y o ynpg—1,n(pg — 1) +v1, 19, ..., ). Since there is a unique family of
this weight, Theorem 6.1 implies that the multiplicity is 1. O

The description of the lexicographically minimal partition is more com-
plicated. It is stated in the following two corollaries of Theorem 1.3, which
prove Conjectures 2.1 and 4.1 of [2]. We need the following definition.

Definition 9.2. We define the join of partitions A and A, to be the partition
whose multiset of parts is the union of the multisets of parts of A and A. We
denote the join of A and X by A L .

For example, the join of (4,2,1,1) and (6,2,2,1) is (6,4,23,13).

Corollary 9.3. The lexicographically least partition labelling a Specht mod-
ule occurring as a summand of Hj is oblained by taking the join of the
lexicographically least partitions labelling Specht modules occurring as sum-
mands of H,Syi) if m is odd or of H,Slyi) if m is even.

Proof. This is immediate from Theorem 1.3 since the lexicographically mini-
mal type of a conjugate-semistandard tableau family tuple occurs when each
conjugate-semistandard tableau family within the tuple has lexicographi-
cally minimal type. U

For example, the conjugate-semistandard tableau families {s1, s2, s3, $4}
and {s1, 2, S4, S5} seen in Examples 4.2 and 8.2 have lexicographically min-
imal type (32,22,12) and so the lexicographically least partition labelling a
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by is (35,2217 L (2,1) =

(32,23,13). By Example 8.2, this summand has multiplicity 2.
It remains to describe the lexicographically minimal type of a conjugate-

Specht module occurring as a summand of H

semistandard tableau family of shape p™. For this need a final pre-order:
if s and t are conjugate-semistandard p-tableaux with multisets of entries
A, B € N, then we set s <engry t if A < B in the colexicographic order
on subsets on N, defined in §2.5. It is clear that a conjugate-semistandard
tableau family of shape p™ is of lexicographically minimal type if and only
if it is the initial segment of length n under a total order refining <engry-.

Example 9.4. Let p = (3,1). Recall that < denotes the total order on
conjugate-semistandard p-tableaux defined in Definition 2.2. Let < be the
total order refining <en¢ry under which, if s and ¢ are conjugate-semistandard
u-tableaux with the same multiset of entries, s < t if and only if s < ¢. For
example, the initial segment of < of length 10 is

t12]3] _[1]2]3] _[1]2]3] _[1]2]4] _[1][2]4]

Y I ) I 1 I PN I P
1[3l4] [1]2]3] [1]2[4] _[1]3[4] _[2[3[4]
<L <i <i <1 <l .

The tableaux in positions 7, 8 and 9 have equal multisets of entries, so their
order in the initial segment depends on our choice of < to refine <¢p¢ry. Thus
if n < 10 then there is a unique conjugate-semistandard tableau family of
shape (3,1)™ and lexicographically minimal type, except when n = 7 or
n = 8, in which case there are three.

We now give an algorithm that, given p a partition of m and a positive
integer n, outputs all initial segments of length n of the total orders refining
<entry- The freedom to choose the refinement of <cpn¢ry enters only in Step F
of the algorithm. The special case ;. = (m) of this algorithm is a well known
method for finding initial segments of the colexicographic order on sets: see
for instance [5, page 25].

Let CS(u, k) denote the set of conjugate-semistandard p-tableaux with
entries taken from {1,2,...,k}. We write 4 —. ¥ to mean that [J] is
obtained from [p] by removing ¢ boxes, no two lying in the same row.

Algorithm 9.5. Perform Steps 1 up to m, then Step F.
e [Step 1] Choose k1 maximal such that |CS(u, k1)| < n. Let Ty =
CS(M7 kl)
o [Step j for j € {2,...,m}] Let (ki,...,kj_1) = (£5',...,€g") where
the ¢; are distinct. Choose k; € Ng maximal such that

DUCSW, k) < n— (Tl + -+ [TG-p))
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where the sum is over all sequences of partitions (91, ..., 9(@) such
that

9la—1) e, 9@ = 9. (14)

B e 19(1) eg o TPcqo1

For each sequence of partitions, take all u-tableaux ¢ such that (i) ¢
has entries ¢;+1 in the positions of 99 /90~ for each i e {1,...,q},
and (ii) t has an element of CS(J, k;) in the positions of 9. Let 7
be the set of such tableaux.

o [Step F] Let (ki,...,km) = (E‘lj’l, ...,0%). Let S be the union over
all sequences p —g, 9 —g4 92 -, 90D o, 90 = g of
the set of u-tableaux constructed as in (i), by putting ¢; + 1 in the
positions of ¥ /91 for each i € {1,...,r}. The required initial
segments are precisely the sets

Ty v Tmould
where U is any subset of S of size n — (|Ty| + -+ + [Ty ])-

Since CS(,0) = & whenever ¥ is non-empty, there is always a suitable
choice of k; in each Step j. By the maximality of k;, the sum |CS(9, kj + 1)
over all sequences as in (14) exceeds n—(|7(1)|+---+|7j_1)|). The analogous
sum of |CS(¢, k; +1)| over all sequences with a further step 9(%) —; 9@+ =
¢, if kj > kj_1, or an extra box removed in 97! a1+l 9@ = ¢ if k; =
kj_1,is at least as great, since putting k;+1 in the boxes removed in the new
final step gives all tableaux counted by the original sum (and possibly some
further tableaux that do not have strictly increasing rows). The sequence
(k1,k2, ..., ky) is therefore weakly decreasing and the construction in (i)
and (ii) gives conjugate-semistandard p-tableaux, with minimum possible
maximal entries. Similarly, the maximality of k,, implies that |S| = n —
(1Tl +- - +1Tmyl)- Thus S is the set of conjugate-semistandard p-tableaux
having exactly d; entries equal to ¢; + 1 for each ¢ € {1,...,r}. Therefore
Algorithm 9.5 constructs the required initial segments.

The computer software mentioned earlier includes an implementation of

the algorithm.

Example 9.6. Take y = (3,1) and n = 7. In Step 1, since ‘CS((?), 1),3)‘ =
3 <7, while [CS((3,1),4)| = 15 > 7, we take k; = 3 and

T(l):{ 1 2|3|’ 1 2|3|’ 1 2|3|}'

1 2 3

In Step 2, there are two sequences of partitions to consider: (3,1) —1 (3)
and (3,1) —1 (2,1). Since |CS((3),k)| + |CS((2,1),k)| is 2 when k = 2



GENERALIZED FOULKES MODULES 39

and 9 when k = 3, we take kg = 2 and

11214 [1]2]4
oo - {0 (I}

In Step 3, there are three sequences of partitions to consider: (3,1) —;
(3) =1 (2), (3,1) -1 (2,1) —1 (2) and (3,1) —1 (2,1) —1 (1,1). The
corresponding sum is 1 if k3 = 1 and 5 if k3 = 2, so we take k3 = 1 and

11314
723):{1 ||}

In Step 4 there are again three sequences of partitions to consider: (3,1) —
(3) =1 (2) =1 (1), (3,1) =1 (2,1) =1 (2) =1 (1) and (3,1) =1 (2,1) -1
(1,1) =1 (1). The corresponding sum is 0 if k4 = 0 and 3 if k4 = 1, so we
take k4 = 0 and 7(4) = &. In the final step, Step F, we have

S = 1[2]3] [1]2]4] [1]3]4]
4 13 12 '

(Note these are precisely the tableaux obtained by instead taking k4 = 1 in
Step 4.) As expected from Example 9.4, any tableau in S may be chosen
to complete an initial segment of length 7 in a total order refining <cntry;
the output of the algorithm is the three tableaux families 71y U 7(2) v T3y U
Teay v {t}, where t € S.

The following corollary is Conjecture 4.2 in [2]. It has a constructive proof

using Algorithm 9.5.

Corollary 9.7. With the notation as above, for each j € {1,...,m}, leta; =
n—Twl+---+|T;1) and let by = [T |(m+1—35)/k;. The lexicographically
least partition labelling a Specht module occurring as a summand of Hﬁn) ifm

is odd or of Hl(tln) if m is even is
(k1 + 1)™ k5 (ke + 1)22, k27 L (ki + 1), KD om)

where it may be necessary to reorder and regroup the parts to form a parti-

tion.

Proof. Algorithm 9.5 constructs a conjugate-semistandard tableau family
tuple of shape p™ and lexicographically least type. It remains to show that its
type is as claimed. Fori € {1,2,...,k} and n any partition, the total number
of occurrences of 7 as an entry in a member of CS(n, k) is |CS(n, k)||n|/k.
(This is essentially the statement that the Schur function s, is symmetric.)
Hence the type of the family 7y is k:ll’l. Now consider the entry k; + 1.
It appears in a removable box of each tableau in Tp) U ... U Ty v U. (If
k1 = ko there may be other entries in these tableaux equal to k1 + 1; these
will be counted shortly.) Since there are a1 = n — |7(1)| such tableaux, the
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contribution to the type of the initial segment from entries considered so far
is ((k1 + 1)“1,k11)1_a1). This gives the first two terms.

Let j € {2,...,m}. By the construction in (i) in Step j, the number of
occurrences of any i € {1,2,...,k;} in the tableaux in 7;) is

3 [9][CS(0, k)| _ [Tpl(m +1—7)
k; k;

= bj?

where the sum is over all sequences (14). Similarly to the case j = 1, we
count one appearance of kj + 1 in each of the a; tableaux in Ty v ... v
T(m) © U. The contribution to the type of the initial segment is therefore
., bi—a;
((k:j + 1)“],ij ]).
All entries of the tableaux in U are now accounted for, so the type of the

initial segment is as claimed. O

By Theorem 6.1, if there is a unique conjugate-semistandard tableau fam-
ily of the lexicographically minimal type then the multiplicity of the lexico-
graphic minimal Specht module is 1. Conversely, if there are two or more
such families then we have a choice of which tableaux to choose from the
final set S in Algorithm 9.5: the unique greatest element u under <o is
obtained by putting the entries ¢; + 1 as far to the right as possible, then
doing the same with the entries ¢ + 1, and so on. Thus ¢t <., w for all
t € U with ¢ + u, and taking subsets & and U’ of S of the appropriate
size such that v € U and u ¢ U’ gives families satisfying the hypotheses for
Proposition 8.1, and so the multiplicity is at least 2.

In general the multiplicity of the lexicographically minimal Specht module
may be arbitrarily large.

Corollary 9.8. Let me N. Let n € N and let v = (1™) if m is even and (n)
is m is odd. The multiplicity of the lexicographically minimal constituent of
Héjm—1 1 s equal to (me_l) for some e € {1,...,m — 1}. Moreover all these

values are attained for some n € N.

Proof. 1f the sequence (k1, ..., k) created by Algorithm 9.5 has a repeated
element, say k, then since there is a unique conjugate-semistandard (m —
1,1)-tableau with two occurrences of k + 1, the final set S is a singleton.
Otherwise S consists of all m — 1 standard Young tableaux with content
{k1 +1,...,km + 1}. In this case there are (me_l) conjugate-semistandard
tableau families of shape (m —1,1)", where e = n — (|T(1)| + - -+ 4+ [T)|)-
Conversely, let < be the total order refining <ep¢ry defined in the same
way as Example 9.4. Let hy > hg > ... > hy,, and for h € {hy,..., hp_1}, let
t(h) be the unique conjugate-semistandard (m — 1, 1)-tableau with content
{hi,ha,...,hp} having h in position (2,1). There is an initial segment of <
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ending
t(hy) < t(he) < ... <t(hm—1).

(When this initial segment is constructed using Algorithm 9.5, k;+1 = h; for
each i € {1,...,m}.) Therefore, given any e € {1,...,m — 1} there exists n
such that there are exactly (mgl) conjugate-semistandard tableau families of
shape (m —1,1)"™ and lexicographically minimal type, corresponding to the
(me_l) choices in Step F. Suppose that 7, ..., 7(D are these families and
let A be their common type. Since the columnar tableaux ||t(h1)l], ||t(h2)]],
oy ||t(hm—1)]|| are totally ordered under <o with |[t(h1)|| <col |[t(h2)]] Zcol

. Zecol |[t(hm—1)||, we see that the hypotheses for Proposition 8.1 are sat-
isfied. We therefore have (me_l) linearly independent homomorphisms from

S to H, 11y By Theorem 6.1, the multiplicity is exactly (me_l). O

We remark that the least n such that the multiplicity in Corollary 9.8
attains its maximum value of ([(mm—_ﬁ /2J) is m?/2 — 1 if m is even, and (m? —
1)/2 if m is odd.

For the uniqueness result mentioned at the end of the introduction we
need the following proposition. Recall that a partition of the form (a®) for
a, b € N is said to be rectangular.

Proposition 9.9. There is a unique conjugate-semistandard tableau family
of shape p™ and maximal weight if and only if m = 1, orn = 1, or u is
rectangular and n = 2.

Proof. Let t be the u-tableau such that (a,b)t = b for all (a,b) € [u]. Let e
be least such that row e of [u] has a removable box. The box (e, ue) of ¢
contains ji¢; this is the greatest number appearing in t. For c € N, let t¢ be
the conjugate-semistandard tableau obtained from ¢ by replacing this entry
with pe + ¢. Let n = p/. Note that n has p. parts, with 7, = e. The
weight of the conjugate-semistandard tableau family {t,¢+!, ..., t+("_1)} is
the partition Apax such that [Amax] is obtained from [nn] by removing n — 1
boxes from row p. (these correspond to the entries equal to . changed in
the definition of 7€) and inserting one box in each of the previously empty
rows fie +1,. .., pte +n— 1. Since the first p. — 1 rows of [nn] are unaffected,
it is clear that {t,¢*1 ... ,t+(”*1)} is the conjugate-semistandard tableau
family of shape p™ and lexicographically maximal weight. (This is a special
case of Corollary 9.1 and [23, Theorem 4.2].)

Assume that m £ 1. If n > 3 or p is not a rectangle, then the conjugate-
semistandard tableau family of lexicographically minimal type has no entry
equal to g, +n — 1. Its weight has fewer parts than Apax, and so is incom-
parable with Apa.x in the dominance order. O
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We give a brief example. The conjugate-semistandard tableau family of
shape (3,3)? and lexicographically maximal weight is

{123 1(2]3 123}
112[13]" [1[2]4] [|1]2]5])°

As seen in the proof of Proposition 9.9, its weight is (6,6,4,1, 1), obtained

from [34/] = [(6,6,6)] by removing two boxes from the lowest row, and

inserting new boxes in rows 4 and 5. The conjugate-semistandard tableau

family of lexicographically minimal type is

{ 112]3 112]3 1 }
1(2]13] [1]2]4] [1]3]4])

it has the incomparable weight (6,5, 5,2).

[\
w

Recall that kK = /' if m is even and k = v if m is odd.

Corollary 9.10. Let m = 2.
(i) There is a unique partition \, maximal in the dominance order on
partitions, such that S is a summand of H if and only if either v =
(n) or p is rectangular and v has ezxactly two parts.
(ii) There is a unique partition A, minimal in the dominance order on par-
titions, such that S* is a summand of Hy, if and only if either k = (1")

or p is rectangular and x = (2°,1%) for some c¢,d € N.

Proof. This follows immediately from Proposition 9.9 using Theorem 1.2
for (i) and Theorem 1.3 for (ii). O

When p = (a®), the unique closed conjugate-semistandard tableau family
of shape 2 has type (a+1,a%*~2 a—1). Using this it is routine to determine

the partitions A in Corollary 9.10 explicitly. For example, if m is even then
(n—c,c)

the unique minimal partition \ such that S* is a summand of H (a®) is
((CL + 1)07 a(2b72)c+b(n720), (a _ 1)8)

We end with an observation on invariants of special linear groups.

Corollary 9.11. Let k € N. Suppose that m is odd and n = |CS(u, k)|. Let
d = mn/k and let E be a b-dimensional complex vector space. There is a

unique polynomial invariant of degree n for the action of SL(E) on VH(E).

Proof. As seen in the proof of Corollary 9.7, the conjugate-semistandard
tableau family of shape u" consisting of all tableaux with greatest entry at
most k has lexicographically minimal type (k9). (This proves [2, Conjec-
ture 2.2].) By the remark following Corollary 9.7, the multiplicity of S (k%)
in Hl(Ln) is 1. Hence V*)(E) has multiplicity 1 in Sym”™ V#(E). Since

d
VENE) = (N E)® = deth,

the result follows. U
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