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Lipkin’s Conservation Law in Vacuum Electromagnetic Fields

G. Smith and P. Strange

School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.

(Dated: September 13, 2018)

Abstract

Lipkin’s zilches are a set of little-known conserved quantities in classical electromagnetic the-

ory. Here we report a systematic calculation of the zilches for topologically non-trivial vacuum

electromagnetic fields and their interpretation in terms of both the physical and mathematical

properties of the fields. Several families of electromagnetic fields have been explored and examined

computationally. In these cases it is found that the zilches can be written in terms of more familiar

conserved quantities: energy, momentum and angular momentum. Furthermore we demonstrate

that the zilches also contain information about the topology of the field lines for the fields we have

examined, thus providing a previously unsuspected aspect to their interpretation. We conjecture

that these properties generalise to all integrable fields.
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INTRODUCTION:

Maxwell’s equations in a vacuum can be solved using standard techniques to yield so-

lutions with the properties of monochromatic wave-like electromagnetic radiation[1]. This

was one of the great triumphs of 19th century physics. However, such light is not the only

solution of these equations and over the last thirty years there has been a great deal of work

on fields with exotic properties in electrodynamics, mainly inspired by the influential paper

of Ranada[2]. Ranada’s work has been shown to be equivalent to earlier solutions[3–5] and

has been generalised in a number of directions[6–9], which have led to families of solutions of

Maxwell’s equations with non-trivial topologies including knotted structures that are stable

with time[10, 11].

In 1964, Lipkin[12] introduced a set of new quantities in electromagnetism that form a

3rd rank tensor and which he (unattractively) named zilches. They represent a set of ten

(nine independent) conserved quantities that have units of force. As shown by Kibble[13]

and others[14–16], for any free field one can find an infinite number of conserved quantities

with densities that are bilinear functions of the fields. Kibble[13] was also able to show

how the zilches were related to more familiar quantities in electromagnetism including the

Electromagnetic Field tensor and the Maxwell stress energy tensor. These authors inferred

that the zilches are very unlikely to have any physical significance. A conservation law

implies a symmetry of the Lagrangian through Noether’s theorem. For a long time the

symmetry giving rise to the conservation of zilch remained elusive. However recently it has

been identified as a symmetry involving the second derivative of both the magnetic and

electric vector potential[17], and of just the magnetic vector potential[18]. For individual

zilches this symmetry has been suggested previously[19, 20]. Interpretation of the zilches

in terms of physical quantities has been mainly restricted to the Z000 zilch, which has been

thought of as a measure of optical chirality, and has been used in this capacity to predict

and interpret experiment[21, 22]. For monochromatic light, Z000 has been shown to be

proportional to the helicity of the field, and the 0j0-zilches proportional to the components

of spin of the fields[23–25]. As emphasised by Cameron and Barnett[17] there are no such

proportionalities in a polychromatic field. Beyond Z000 virtually nothing has been said

about the physical interpretation of the zilches. Hence the full meaning of these conserved

quantities has remained a mystery throughout the fifty years since their discovery, and
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anything new that can be said about them is of fundamental interest.

Our purpose here is to explore zilch properties in the arena of topologically unusual

electromagnetic fields. A profound connection between the zilches and the topology of the

fields is demonstrated. We have also found an interpretation of zilches in terms of known

conserved physical properties of the fields and hence of the Maxwell stress energy and angular

momentum tensors[1] for each of the fields.

In the following section we define and discuss the properties of the zilches and then look

at Bateman’s method for solving Maxwell’s equations[3]. Then we consider how to describe

the topology of the fields obtained in this way. Next we discuss three different families of

solutions of Maxwell’s equations, the topology and physical properties of their zilches, and

then finally draw some conclusions from this work.

THEORY:

In this paper, zilch densities will be represented by calligraphic Z, while for the integrated

zilches we will use latin letters Z. For an electric field, E, and magnetic field, B, the

contravariant components of Lipkin’s zilches are given by[26],

Z000 =
ε0
2

(
E · (∇× E) + c2B · (∇×B)

)
,

Z0i0 =
ε0c

2
(E× (∇×B)−B× (∇× E))i ,

Z ij0 = δijZ000 − ε0
2

(Ei(∇× E)j + Ej(∇× E)i + c2Bi(∇×B)j + c2Bj(∇×B)i),

Z ijk = δijZ00k +
ε0c

2

(
Bi
∂Ej
∂xk

+Bj
∂Ei
∂xk
− Ei

∂Bj

∂xk
− Ej

∂Bi

∂xk

)
,

Zµνγ = Zνµγ, Z00i = Z0i0, Z0ij = Z ij0,

where c is the speed of light. These obey

∂γZµνγ = 0,

and hence

Zµν0 =

∫ ∫ ∫
Zµν0d3r
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represents a set of ten conserved quantities.

In a key paper, Kedia et. al.[10] have defined knotted solutions of Maxwell’s equations

in a vacuum using Bateman’s construction[3]. A clear discussion and generalisation of this

work has been provided by Hoyos et. al.[11] and we outline the method below. Henceforth,

B is multiplied by the speed of light, c, to unify its units with those of E. Then Maxwell’s

equations in a vacuum are

∇ · E = 0, ∇× E= −1

c

∂B

∂t
,

∇ ·B = 0, ∇×B=
1

c

∂E

∂t
,

which writes them in the most symmetric way possible. If we define the Riemann-Silberstein

vector

R = E + iB,

Maxwell’s equations become

∇ ·R = 0, i
∂R

∂t
= c∇×R. (1)

These are satisfied by complex scalar quantities α and β such that

R = E0∇α×∇β, (2)

where E0 is an arbitrary constant with units of electric field times distance squared. α and

β are dimensionless and can be written in terms of the space-time coordinates and a scale

factor k which we set equal to one in most of what follows. This definition is automatically

consistent with the first of equations (1), and if α and β also satisfy

i

(
∂α

∂t
∇β − ∂β

∂t
∇α
)

= c∇α×∇β, (3)

then the fields generated represent a full solution to Maxwell’s equations. Furthermore,

once we have a solution, any well-behaved function of α and β yields another new solution

of Maxwell’s equations. Then, if the fields are integrable we can invoke the equations from

the previous section to calculate numerical values for the zilches. Once we have calculated

the fields it is a standard calculation, from Noether’s theorem[1] to show that symmetry

under translations in time, space, and under rotations leads to the conservation of energy,

momentum and angular momentum - which is expressed in the Maxwell stress energy tensor
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and angular momentum tensor in terms of the fields[1]. Explicitly the respective densities

are given by

Ep,q =
ε0
2

(E2 + B2), P =
ε0
c
E×B, L = r× P . (4)

We can also calculate the electric and magnetic helicity densities from

He =
ε0
c
E.C, Hm =

ε0
c
B.A,

where A is the usual magnetic vector potential, E = ∇×C and C is the electric equivalent

of A. Numerical values of these observables are found after integrating over all space.

VISUALISATION OF THE ELECTROMAGNETIC FIELDS:

We will generate a number of families of solutions of Maxwell’s equations, but before

doing so it is important to discuss how to visualise them. An insightful method based on a

suggestion of Kedia[10, 11] is to define a scalar field that can be used to generate the electric

and magnetic fields and to study the topology of that scalar field. This method requires

generalisation to be applicable here. If we define

φ = αβ = φ1 + iφ2,

and make use of equation (2), it can easily be shown that

R.∇φ = 0. (5)

Taking real and imaginary parts

E.∇φ1 −B.∇φ2 = 0,

B.∇φ1 + E.∇φ2 = 0. (6)

These equations will always be satisfied. If it happens that the first of these are satisfied

because B.∇φ1 = E.∇φ2 = 0 then φ1 and φ2 can be said to represent the magnetic and

electric fields respectively. This is indeed what happens for our knotted fields below. If the

second of equations (6) are satisfied because the two scalar products are zero then φ1 and φ2

can be said to represent the electric and magnetic fields respectively. Then surfaces can be

drawn on which φ1 or φ2 have a constant magnitude More usually these two equations will

be satisfied because the scalar products cancel. In that case, both φ1 and φ2 are necessary

5



to describe the total electromagnetic field, but the electric and magnetic fields are not

described by φ1 and φ2 separately. The fact that we can define φ such that φ1 and φ2 appear

symmetrically in equation (6) is a reflection of the symmetry seen in Maxwell’s equations

(1). Thus we can say that φ is a complex scalar field which we can use to examine the

topology of electromagnetic fields. At each point in space it has a real and an imaginary

component. In the following we will plot “equipotential” surfaces of this quantity. We can

then investigate the electromagnetic field through the topology of the φ1 and φ2 surfaces.

In what follows we will use N s
p,q to denote the number of separate pieces of surface of φ1(2).

This number is the same for both the real φ1 and imaginary φ2 scalar fields.

We note that once we have any pair (α, β) that yield a solution of Maxwell’s equations,

we can define (f(α), g(β)), where f and g are differentiable functions of α and β, and these

will also be valid solutions of Maxwell’s equations[10]. In particular, the choice of raising

either or both of them to an integer power p or q respectively, defines a family of solutions.

Below we present results for a number of families of solutions of Maxwell’s equations, all of

which are calculated for the case E0 = 1. In the first section on knotted electromagnetic

fields we provide a detailed discussion of the relationships between the familiar conserved

observables energy, momentum and angular momentum, and the zilches, and the topology

of the zilches. In later sections we treat other exotic families of integrable fields. Much of

the implementation is common to all solutions and so we present the principle results with

rather less detail for these cases.

KNOTTED ELECTROMAGNETIC FIELDS:

A particularly interesting solution to these equations was originally investigated by

Ranada[2], and has also been derived using Bateman’s construction[3, 10]. This is the

Hopfion solution:

A =
1

2
(k2x2 + k2y2 + k2z2 − k2c2t2 + 1);

α =
A− 1 + ikz

A+ ikct
; β =

kx− iky
A+ ikct

. (7)

This definition gives |α|2 + |β|2 = 1, and it has been shown by Ranada[2, 7, 27, 28] that this

implies an analogy with the Hopf fibration defined by the Hopf map S3 → S2. This Hopfion
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FIG. 1. Knotted φ1 (blue) and φ2 (red) surfaces for: a. (p, q) = (1, 1), φ1 = φ2 = 0.45; b.

(p, q) = (2, 2), φ1 = φ2 = 0.2; c. (p, q) = (2, 3), φ2 = 0.1. All figures are for k = 1.

solution was used[10] to generate further solutions. With p and q integer we generate the

complete family of toroidal electromagnetic fields. Fig. 1. displays several examples. If p

and q are co-prime, φ1(2) forms a torus knot and if not they form a torus link. For any p and

q, each knot and each component of a link is a closed surface of genus 1. The surfaces shown

in Figure 1 contain field lines and form tori that are linked through the centre with all other

tori. In this case φ1 is a representation of the magnetic field and φ2 represents the electric

field directly and Figure 1 demonstrates how the linked tori wrap around each other.

Solutions of Maxwell’s equations in a vacuum, such as those above, have been called

knotted light. They are a pulse of electromagnetic radiation for which no frequency or

wavelength can be defined, which, of course, is true for all pulses. In common with plane

waves E · B = 0 and knotted light has a convergent Fourier transform, it is built from

the electromagnetic spectrum. Another analogy with the common view of light has been

noted by others[6], at any instant, the field direction rotates as we pass through the knotted

structure in certain directions in a manner reminiscent of circularly polarised light. However

only a small number of complete rotations can occur and the “wavelength” is not constant

in time. A further difference between knotted electromagnetic fields and the electromagnetic

spectrum is that the surfaces in Figure 1 are closed and finite for the knotted case, whereas

the equivalent surfaces for pure plane waves are open and infinite, as they would be for many

forms of light, e.g. a Bessel beam with TE polarisation.
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Conserved Quantities:

The expressions for α and β in equation (7) can be substituted into the Bateman con-

struction formulae, with p and q, and expressions for the electric and magnetic fields found as

a function of position and time. These can be shown to be solutions of Maxwell’s equations

explicitly.

A list of conserved quantities, including the non-zero zilches for our hopfion family of

solutions to Maxwell’s equations, are evaluated and shown in Table I. The results in this

Quantity Expression

Energy Ep,q 2(p+ q)k

Momentum Pp,q (0, 0,−2pk/c)

Angular Momentum Lp,q (0, 0,−2q/c)

Helicity He
p,q = Hm

p,q 2/c

Z000
p,q (3p+ 2q)(p+ q)k2

Z030
p,q (q − 3p(p+ q))k2

Z110
p,q = Z220

p,q (q2 + 2pq)k2

Z330
p,q (3p2 + pq)k2

TABLE I. Conserved quantities in electromagnetic knots. Note that there is a sign difference

between our angular momentum and that of Hoyos[11] due to a difference in definition. Zµ,ν,0

are the non-zero zilches for these fields. To obtain the numerical values each of these expressions

should be multiplied by pqp!q!π2ε0E
2
0/(p+ q)!
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table show that the zilches are not all independent for knotted electromagnetic fields. Simple

arithmetic demonstrates that

Z000
p,q = Z110

p,q + Z220
p,q + Z330

p,q . (8)

Further investigation yields that the energies of the various knotted solutions can all be

written in terms of the energy of the (p, q) = (1, 1) hopfion which in turn can be evaluated

exactly as E1,1 = 2π2kε0E
2
0 .

Ep,q =
pqp!q!

(p+ q − 1)!
E1,1 =

2(p+ q)pqπ2p!q!ε0E
2
0

(p+ q)!
k.

This suggests that a profitable way to think about the knotted solutions is not as independent

fields, but as a set of excitations of a single field.

Lipkin’s Zilches and Knot Properties:

The results in Table 1. allow us to write the zilches entirely in terms of energy, momentum

and angular momentum:

Z000
p,q = −(p+ q)kc

2

(
3P z

p,q + 2kLzp,q
)

;

Z030
p,q = −

3(p+ q)kc2P z
p,q

2Ep,q

(
P z
p,q + kLzp,q

)
− k2c

2
Lzp,q;

Z110
p,q =

(p+ q)k2c2Lzp,q
2Ep,q

(
kLzp,q + 2P z

p,q

)
;

Z330
p,q =

(p+ q)kc2P z
p,q

2Ep,q

(
3P z

p,q + kLzp,q
)

;

and Z220
p,q = Z110

p,q . This shows explicitly that for these torus knotted fields the zilches can be

written in terms of other conserved quantities and, thus, are conserved themselves.

In Table II, we show the zilches in a particular set of units. These units are chosen

because they are the lowest that leave all zilches as integers. Now we have a prescription.

1. Evaluate Z000
p,q , Z030

p,q , Z110
p,q , and Z330

p,q .

2. Evaluate Z000
q,p , Z030

q,p , Z110
q,p , and Z330

q,p .
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(p, q) (1, 5) (2, 4) (3, 3) (4, 2) (5, 1)

Z000
p,q 78 84 90 96 102

Z030
p,q −13 −32 −51 −70 −89

Z110
p,q = Z220

p,q 35 32 27 20 11

Z330
p,q 8 20 36 56 80

Yp,q 1 4 3 2 1

N s
p,q 1 2 3 2 1

TABLE II. Table illustrating the link between the zilches and the number of pieces of surface. The

first row defines the values of p and q for p+ q = 6. Rows 2 to 5 show the non-zero zilches (divided

by pqπ2p!q!ε0E
2
0k

2/(2(p + q)!) to ensure they are dimensionless integers). Row 6 implements the

first step of the procedure and we show the gcd of the zilches. The last row is evaluated as the

gcd(Yp,q, Yq,p) and is the number of pieces of surface of φ2. The corresponding surfaces are shown

in Fig 2. a. - e.

3. Evaluate Yp,q = gcd(Z000
p,q , Z

030
p,q , Z

110
p,q , Z

330
p,q ) and Yq,p = gcd(Z000

q,p , Z
030
q,p , Z

110
q,p , Z

330
q,p ).

4. Evaluate N s
p,q = gcd(Yp,q, Yq,p).

N s
p,q is the number of distinct pieces of surface associated with the knotted fields (p, q) and

(q, p). The number of surfaces is known as the greatest common divisor (gcd) of p and q

from the topology of torus knots/links, but this prescription shows that it is also encoded in
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the zilches. Let us work through an example. From Table. II, the zilches for (p, q) = (2, 4)

are 84, -32, 32 and 20, and their gcd is 4. For (p, q) = (4, 2) the zilches are 96, -70, 20 and

56, and their gcd is 2. Then to find N s
p,q the gcd of 4 and 2 is 2. This is the number of pieces

of surface for (p, q) = (2, 4) and (4, 2) as shown in Fig. 2b and d. We have verified this

prescription explicitly for all knotted electromagnetic fields up to and including p+ q = 15.

FIG. 2. Knotted surfaces for: a. (p, q) = (1, 5), φE = 0.10 which has one distinct surface; b.

(p, q) = (2, 4), φE = 0.10 which is composed of two distinct surfaces; c. (p, q) = (3, 3), φE = 0.10

which is formed from three surfaces; d. (p, q) = (4, 2), φE = 0.10 which consists of two surfaces, e.

(p, q) = (5, 1), φE = 0.20 which has one distinct surface.

A torus knot, T (p, q), has an unknotting number defined as the number of times the knot

must pass through itself to become the unknot. For a torus knot, with p and q not both

even, this is given by

u(T (p, q)) =
1

2
(p− 1)(q − 1).

u(T (p, q)) can be written in terms of Z110 in the units shown in Table 2. For p+ q even

u(T (p, q)) = 1
2
Z110

(q−p)/2,p−1, q > p,

= 1
2
Z110

(p−q)/2,q−1, q < p,
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and for p+ q odd

u(T (p, q)) = 1
4

(
Z110

(q−p−1)/2,p−1 + Z110
(q−p+1)/2,p−1

)
, q > p,

u(T (p, q)) = 1
4

(
Z110

(p−q−1)/2,q−1 + Z110
(p−q+1)/2,q−1

)
, q < p.

Similarly the crossing number, c(T (p, q)), is the minimum number of crossings that occur

in any projection of the knot onto a two-dimensional plane. This number is always at least

double the unknotting number. For a torus knot it is given by

c(T (p, q)) = min(p(q − 1), q(p− 1))

The crossing number can also be written in terms of Z110. For p+ q odd

c(T (p, q)) = Z110
(q−p+1)/2,p−1, q > p,

= Z110
(p−q+1),q−1, q < p,

and for p+ q even

c(T (p, q)) = 1
2

(
Z110

(q−p)/2,p−1 + Z110
(q−p+2)/2,p−1

)
, q > p,

c(T (p, q)) = 1
2

(
Z110

(p−q)/2,q−1 + Z110
(p−q+2)/2,q−1

)
, q < p.

Other simple surface properties can also be obtained. For example, if q = 1 the surface

includes a helix (Fig. 2e for example). The number of turns of the helix is

Nt(T (p, 1)) =
1

2

(
Z110
p,1 − 3

)
.

It is now clear that the zilches possess a deep connection to the topology of the knotted

electromagnetic fields. We now go on to demonstrate that this is also the case for other

families of solutions of Maxwell’s equations.

SEGMENTED ELECTROMAGNETIC FIELDS:

A special conformal transformation of the coordinates yields new expressions for α and

β that also provide acceptable solutions of Maxwell’s equations.

A = 1 + 4k2(x2 + y2 + z2 − c2t2);

α =
2ik(z − ct)− 1

A+ 4ikct
; β =

2k(x− iy)

A+ 4ikct
.
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FIG. 3. Segmented surfaces for: a. (p, q) = (1, 1), φ2 = 0.20 which has one distinct surface; b.

(p, q) = (4, 2), φ2 = 0.005 which is composed of two distinct surfaces; c. (p, q) = (1, 5), φ2 = 0.005

which is formed from five surfaces; d. (p, q) = (3, 3), φ2 = 0.005 which consists of three surfaces;

e. (p, q) = (1, 5), φ1 = 0.005 which is formed from five surfaces; f. (p, q) = (3, 3), φ1 = 0.005 which

consists of three surfaces.

In turn these produce a new and very different family of fields. A selection of them, obtained

with these expressions with k = 1, is shown in Figure 3. The orientation used to display

these figures has no meaning and has simply been chosen to display the nature of the surfaces

as clearly as possible. In figures 3 a-d we show the surface associated with φ2, the imaginary

part of the scalar field φ. In figures 3 e-f we show the surface associated with φ1 the real

part of φ. The values of the p and q and the magnitudes chosen to plot the surface are the

same in figure 3 e and f as in c and d respectively. For all of them both the momentum and

angular momentum are solely in the z-direction. These representations display a number of

properties of these fields. Most obviously the surfaces φ1 and φ2 look very similar and this

is usually true. Importantly the number of distinct pieces of field surface is the same for φ1

and φ2, as it is in the knotted case, but this time it is given simply by q, while p is a measure

of how much the scalar field “equipotentials” curl around themselves. For these fields there
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are a number of very simple relations between the zilches and the field properties. Here we

again work in units that are the minimum necessary for all the conserved quantities to take

on integer values (as described in the caption to Figure 3). Then we obtain the following

relations between the standard conserved quantities and the zilches.

Ep,q = Z000
p,q /((2p+ 2q + 1)k),

P z
p,q = Z030

p,q /((2p+ 2q + 1)k),

Lzp,q = −Z110
p,q /((4p+ 2q)k2),

He
p,q = Hm

p,q = −Z030
p,q /(2pk

3(2p+ 2q + 1)) = Z000
p,q /(2k

3(2(p+ q)2 + p+ q)).

The number of pieces of surface in this case is also easily related to the zilches and to some

of the other conserved quantities.

N s
p,q =

2(p+ q)2 + p+ q

2p+ q

Z110
p,q

Z000
p,q

= −2p2 + 2pq + p

2p+ q

Z110
p,q

Z030
p,q

= −
Lzp,q
kHe

p,q

In table III we write out the values of all conserved quantities for (p, q) = (2, 3) as an

example and the reader can verify that the above relations hold for this case.

(p, q) Ep,q P
z
p,q L

z
p,q H

e
p,q Z

000
p,q Z030

p,q Z110
p,q Z330

p,q N s
p,q

(2,3) 60 −24 −18 6 660 −264 252 156 3

TABLE III. Table showing values of the conserved quantities for (p, q) = (2, 3) where we have used

c = k = 1. All quantities are determined using the values of α and β in equation (9) and then

dividing by pqp!q!π2ε0E
2
0/(2

2(p+q)−1(p+ q)! so that all quantities can be written as integers.

Clearly the number of pieces of surface can easily be found for all members of this family

of fields because it is simply equal to q. However again we have seen that it is also encoded

in the zilches. It is also clear that the higher p, the higher the circulatory nature of the

fields.

14



“DRIPPING” ELECTROMAGNETIC FIELDS:

A very different family of electromagnetic fields that are solutions of Maxwell’s equations

in a vacuum is generated by the parameters:

A =
1

2
(k2x2 + k2y2 + k2z2 − k2c2t2 + 1);

α =
1

2
− i(−i+ kct+ ikx+ ky − kz)

2A+ 2ikct
; β =

1

2
− i(kct− i− kz)

2A+ 2ikct
. (9)

Pictures illustrating members of this family of fields are shown in Figure 4. This choice of

α and β introduces some overall motion in the y-direction to the field. This means that,

not only are Py and Ly non-zero, but the zilch Z020
p,q is also non-zero and now Z110

p,q 6= Z220
p,q in

general. Figure 4 is drawn for fields evaluated at t = 0, for later times the topology remains

the same although the individual pieces of surface get closer to the lowest piece and tends

to flatten out, hence the label “dripping”. Clearly there is one major surface and several

smaller “droplets” near to it. This is the case in both φ1 and φ2. Figures 4 e and f show φ1

for the same values of p and q as figure 4 a and b show φ2. In a and e the magnitudes differ

because the smaller surface is too small to see on this scale if we equalise the magnitudes.

The distance between the main sheet and the nearest droplet increases with q for p + q

constant.

We have evaluated the constant quantities for the fields generated in this case and find

relations between them. This time we divide each calculated zilch by u =
pqp!q!π2ε0E2

0k
2

22(p+q)(p+q)!

making them dimensionless. Then all quantities are integers and we find

N s
p,q = gcd(Z000

p,q ) = gcd(Z110
p,q + Z220

p,q + Z330
p,q ) ∀ p+ q = constant.

(p, q) (1, 4) (2, 3) (3, 2) (4, 1)

Z000 70 275 530 500

TABLE IV. Table showing values of the conserved quantities for (p, q) = (2, 3). All quan-

tities are determined using the values of α and β in equation (9) and then dividing by

pqp!q!π2ε0E
2
0k

2/(22(p+q)(p+ q)!) so that all quantities can be written as integers.

For example the results for Z000, for all solutions with p + q = 5 are shown in Table IV.

It is obvious that their greatest common divisor is five and that is indeed the number of
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FIG. 4. Surfaces for the “dripping” fields with: a. (p, q) = (1, 1), φ2 = 0.20 which has two distinct

surfaces; b. (p, q) = (1, 3), φ2 = 0.05 which is composed of four distinct surfaces; c. (p, q) =

(4, 1), φ2 = 0.04 which is formed from five surfaces; d. (p, q) = (2, 3), φ2 = 0.03 which consists of

five surfaces; e. (p, q) = (1, 1), φ1 = 0.30 which has two distinct surfaces; f. (p, q) = (1, 3), φ1 = 0.05

which is composed of four distinct surfaces.

surfaces found for all these members of the family described by equations (9). Two examples

of the p + q = 5 family are shown in Figure 4. For these droplet solutions the zilches are

also related to other conserved properties, so for example

Z000
p,q = −k(p+ q)(

3

2
P z
p,q + kLzp,q)

and further relations between the other zilches and observables can be found. Their motion

in the y-direction is also encoded in the zilches because

P y
p,q = −kLyp,q =

2

(3(p+ q) + 1)k
Z020
p,q .

Hence we have yet another example where both the observables and the topology of the

fields is concealed in the zilches.
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Conclusions

Lipkin’s zilches have remained enigmatic for around half a century. There have been

a number of attempts to interpret and discuss them. In this study we have presented a

previously unsuspected view of the zilches which we believe sheds considerable light on

their interpretation. We have performed a systematic study of several families of vacuum

electromagnetic fields. The fields we have studied produce a convergent value for observables

when we integrate their density over all space, and closed surfaces when we plot contours of

constant φ. In all such cases we have found that:

1. Because we have explicit analytic expressions for the zilches we have shown categori-

cally that for these fields they can be expressed exactly in terms of the energy, momentum,

angular momentum and helicity of the fields.

2. The zilches contain information about the topology of the field, particularly the number

of distinct sheets of closed surface. In the case of knotted fields we have also been able to

determine properties such as the crossing number and unknotting number. It seems that

all these quantities can be determined from the number theoretic properties of the zilches.

There also appears to be an unquantified correlation between the zilches and the degree of

chirality in the field.

On the basis of this work we conjecture that this is always the case for this class of

fields. We have not been able to find such a relationship between the zilches and other

properties of the electromagnetic fields in cases where the field energy does not converge,

such as plane wave and constant field solutions. In these cases when we plot the fields using

the methods discussed above, we find the surfaces generated are neither finite nor closed.

This further supports our hypothesis that the zilches describe the topology of the fields

when their properties are convergent, but cannot do so when the field properties become

divergent.

To summarise then, we have found interpretations of the zilches for several examples of

this class of fields in terms of both the physical constants associated with the electromagnetic

fields and in terms of their topology. We speculate that this can be done for all fields whose

properties are convergent. We have certainly not found any examples for which this is not the

case. The results of this paper provide a previously unsuspected insight into the properties

of the zilches which we expect will give them a more central role in electromagnetic theory
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in the future.
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