
Dib, Fadi (2018) Improved Neighbourhood Search-Based Methods for Graph
Layout. Doctor of Philosophy (PhD) thesis, University of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/69286/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/69286/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

IMPROVED NEIGHBOURHOOD SEARCH-BASED
METHODS FOR GRAPH LAYOUT

By

Fadi Dib

June 2018

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT

IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

© Fadi Dib, 2018
University of Kent, UK

All rights reserved. This dissertation may not be reproduced in whole or in part,
by photocopying or other means, without the permission of the author.

i

Abstract

Graph drawing, or the automatic layout of graphs, is a challenging problem. There are several

search-based methods for graph drawing that are based on optimising a fitness function which

is formed from a weighted sum of multiple criteria. This thesis proposes a new neighbourhood

search-based method that uses a tabu search coupled with path relinking in order to optimise

such fitness functions for general graph layouts with undirected straight lines. None of these

methods have been previously used in general multi-criteria graph drawing. Tabu search uses

a memory list to speed up searching by avoiding previously tested solutions, while the path

relinking method generates new solutions by exploring paths that connect high quality

solutions. We use path relinking periodically within the tabu search procedure to speed up the

identification of good solutions.

We have evaluated our new method against the commonly used neighbourhood search

optimisation techniques: hill climbing and simulated annealing. Our evaluation examines the

quality of the graph layout (fitness function’s value) and the speed of the layout in terms of the

number of the evaluated solutions required to draw a graph. We also examine the relative

scalability of our method. Our experimental results were applied to both random graphs and a

real-world dataset. We show that our method outperforms both hill climbing and simulated

annealing by producing a better layout in a lower number of evaluated solutions. In addition,

we demonstrate that our method has greater scalability as it can lay out larger graphs than the

state-of-the-art neighbourhood search-based methods. Finally, we show that similar results can

be produced in a real world setting by testing our method against a standard public graph

dataset.

ii

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my supervisor, Dr.

Peter Rodgers, for his encouragement and guidance over the duration of my PhD. His

constructive feedback and advice were the main reasons for the successful completion of

this work. I have learned invaluable research skills under his supervision. I also thank him

for giving me the opportunity to participate in a Dagstuhl seminar which was a memorable

experience that I will always treasure.

My gratitude also goes out to Prof. Sally Fincher, Prof. Alex Freitas, and Dr. David

Barnes for the valuable feedback and advice they provided during all the review sessions

that improved the quality of my work. I would like to extend my gratitude to all the

administrative staff in the School of Computing at the University of Kent for all the

facilities they offer to students.

Special thanks go to Dr. Mahamed Omran for his recommendations in the early stages

of this work. Those recommendations had opened the door for implementing the key

algorithm discussed in this work.

Finally, and most importantly, I am really grateful to my parents, my sister, my

brother, my wife, and my lovely daughter, who had supported me and inspired me in all

my endeavours. Without their emotional support, prayers and love, I could have never

made it this far. Many thanks to all of them for always being there whenever I needed

them the most. May GOD bless you.

iii

Contents

Abstract .. i

Acknowledgements ... ii

Contents ... iii

List of Tables .. vii

List of Figures .. xi

List of Algorithms .. xix

Chapter 1 Introduction .. 1

1.1 Motivation and Objectives ..2

1.2 Contributions ..5

1.3 Publications ...6

1.4 Software Implementation and Online Resources ..6

1.5 Overview of Chapters ..7

1.6 Summary ...9

Chapter 2 Background and Related Work ... 10

2.1 Introduction ..10

2.2 Definitions ...11

2.3 Overview of Graph Drawing ...11

2.4 Graph Drawing Aesthetics ..13

2.5 Graph Drawing Approaches ...18

2.5.1 Force-directed Approaches ...18

2.5.2 Search-based Approaches ...22

2.5.3 Multi-level Approaches ..23

2.6 Population-based Methods ..24

2.6.1 Genetic Algorithms...24

iv

2.6.2 Ant Colony ...26

2.7 Neighbourhood Search-based Methods ...27

2.7.1 Simulated Annealing ..28

2.7.2 Hill Climbing ..30

2.8 Tabu Search ..32

2.9 Path Relinking ..40

2.10 Summary ...47

Chapter 3 A Visualisation Tool ... 48

3.1 Operations Frame ..48

3.2 Parameters and Aesthetic Measures Frame ..53

3.3 Summary ...54

Chapter 4 Neighbourhood Search-based Graph Drawing including Our
Proposed Tabu Search Algorithm ... 55

4.1 Normalisation of Metrics ...57

4.2 Common Procedures between Graph Drawing Algorithms59

4.2.1 Local Search Space ...60

4.2.2 Parameter Tuning Procedure ..60

4.3 Hill Climbing ..62

4.3.1 Algorithm..62

4.3.2 Parameter Tuning ...63

4.4 Simulated Annealing ..70

4.4.1 Algorithm..70

4.4.2 Parameter Tuning ...73

4.5 Tabu Search ..84

4.5.1 Algorithm..85

4.5.2 Parameter Tuning ...87

4.6 Summary ...107

Chapter 5 Experimental Results of Comparing Hill Climbing, Simulated
Annealing, and Tabu Search ... 108

5.1 Introduction ..108

v

5.2 Experiments on Random Graph Datasets ...110

5.2.1 Phase I...110

5.2.2 Phase II ...117

5.2.3 Phase III ..120

5.2.4 Statistical Tests ...124

5.3 Experiments on Real World Graph Datasets ..129

5.4 Threats to Validity ...135

5.5 Summary ...136

Chapter 6 Coupling Tabu Search with Path Relinking 138

6.1 Why Path Relinking? ...138

6.2 Coupling Tabu Search with Path Relinking for Graph Drawing139

6.2.1 Algorithm..140

6.2.2 Parameter Tuning ...144

6.3 Variation of Path Relinking ..155

6.3.1 Proper Selection of Initial and Guiding Solutions ..156

6.3.2 Improved Neighbourhood Searching Strategy ...159

6.3.3 Parameter Tuning ...168

6.4 Summary ...183

Chapter 7 Experimental Results for Comparing Tabu Search with Path
Relinking Versus Simulated Annealing... 184

7.1 Introduction ..184

7.2 Experiments on Random Graph Datasets ...186

7.2.1 Phase I...186

7.2.2 Phase II ...192

7.2.3 Phase III ..195

7.2.4 Statistical Tests ...200

7.3 Experiments on Real World Graph Datasets ..205

7.4 Scalability and Performance Analysis ..211

7.5 Summary ...217

Chapter 8 Conclusions ... 218

vi

8.1 Objectives and Contributions ...218

8.2 Future Work ...220

Bibliography ... 223

Appendix A Sample Layouts from Hill Climbing, Simulated Annealing, and
Our Proposed Tabu Search-based Algorithm .. 235

A.1 Sample Layouts from Datasets of Table 5.1 ...236

A.2 Sample Layouts from Datasets of Table 5.2 ...240

Appendix B Sample Layouts from Simulated Annealing, Our Proposed
Tabu Search-based Algorithm, and Path Relinking Coupled with Tabu
Search .. 244

B.1 Sample Layouts from Datasets of Table 7.1 ...245

B.2 Sample Layouts from Datasets of Table 7.2 ...249

vii

List of Tables

Table 4.1 The characteristics of graph datasets used in parameter tuning for the hill climbing algorithm

 ... 64

Table 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase II) 68

Table 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase II) 68

Table 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase II) 69

Table 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase II) 70

Table 4.6 Simulated Annealing - Fitness values with the maxIterations parameter (phase III) 80

Table 4.7 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase III) 81

Table 4.8 Simulated Annealing - Fitness values with the initialTemp parameter (phase III) 82

Table 4.9 Simulated Annealing - Fitness values with the coolDown parameter (phase III) 83

Table 4.10 Tabu Search - Fitness values with the maxIterations parameter (phase III) 97

Table 4.11 Tabu Search - Fitness values with the initialCutOff parameter (phase III) 98

Table 4.12 Tabu Search - Fitness values with the intensifyCutOff parameter (phase III) 99

Table 4.13 Tabu Search - Fitness values with the intensifyIterations parameter (phase III) 100

Table 4.14 Tabu Search - Fitness values with the duration parameter (phase III) 101

Table 4.15 Tabu Search - Fitness values with the maxIterations parameter (phase IV) 102

Table 4.16 Tabu Search - Fitness values with the initialCutOff parameter (phase IV) 103

Table 4.17 Tabu Search - Fitness values with the intensifyCutOff parameter (phase IV) 104

Table 4.18 Tabu Search - Fitness values with the intensifyIterations parameter (phase IV) 105

Table 4.19 Tabu Aearch - Fitness values with the duration parameter (phase IV) 106

Table 5.1 Characteristics of the graphs in the 1st category .. 109

Table 5.2 Characteristics of the graphs in the 2nd category ... 110

Table 5.3 Statistical analysis of the fitness function for HC, SA, TS when applied on the graphs of both

categories (phase I) ... 116

Table 5.4 Statistical analysis of number of evaluated solutions obtained by HC, SA, TS when applied

on the graphs of both categories (phase I) .. 116

Table 5.5 Statistical analysis of the average overall number of evaluated solutions obtained by HC, SA,

TS when applied on the graphs of the two categories together (phase II) .. 119

Table 5.6 Statistical analysis of the average overall fitness function values obtained by HC, SA, TS

when applied on the graphs of the two categories together (phase III) .. 122

viii

Table 5.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on HC, SA, TS when applied on the graphs of the 1st category (phase I) .. 127

Table 5.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on HC, SA, TS when applied on the graphs of the 2nd category (phase I) ... 127

Table 5.9 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on HC, SA, TS when applied on the graphs of the 1st category (phase I) 127

Table 5.10 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on HC, SA, TS when applied on the graphs of the 2nd category (phase I) 127

Table 5.11 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on HC, SA, TS when applied on the graphs of the 1st category (phase II) 128

Table 5.12 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on HC, SA, TS when applied on the graphs of the 2nd category (phase II) 128

Table 5.13 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on HC, SA, TS when applied on the graphs of the 1st category (phase III) .. 129

Table 5.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on HC, SA, TS when applied on the graphs of the 2nd category (phase III) 129

Table 5.15 Real world graph datasets characteristics and sources ... 130

Table 5.16 Average tie-breaks percentage for 40 random graphs ... 136

Table 6.1 Graph datasets used in parameter tuning for path relinking ... 145

Table 6.2 Path relinking fitness with the PRmaxIterations parameter (phase III) 151

Table 6.3 Path relinking fitness with the refSize parameter (phase III) ... 152

Table 6.4 Path relinking fitness with the pathLength parameter (phase III) 153

Table 6.5 Path relinking fitness with the pathSqrSize parameter (phase III) 154

Table 6.6 Characteristics of the graphs used in the experiment of selecting initial/guiding solutions . 157

Table 6.7 Characteristics of the graphs used in the experiment of comparing strategies (a) and (d) for

selecting solutions ... 158

Table 6.8 Characteristics of the graph datasets used for choosing proper values for the

acceleratioPeriod and accelerationRate parameters .. 161

Table 6.9 Characteristics of the graph datasets used in the comparison between the two strategies for

moving along the path ... 165

Table 6.10 Characteristics of the graph datasets used in tuning the parameters of our improved TS+PR

graph drawing algorithm ... 168

ix

Table 6.11 Fitness values reaching a target value by the improved drawing algorithm when tuning the

PRmaxIterations parameter (phase III) .. 176

Table 6.12 Fitness values reaching a target value by the improved drawing algorithm when tuning the

refSize parameter (phase III) ... 177

Table 6.13 Fitness values reaching a target value by the improved drawing algorithm when tuning the

pathLength parameter (phase III) ... 178

Table 6.14 Fitness values reaching a target value by the improved drawing algorithm when tuning the

pathSqrSize parameter (phase III).. 179

Table 6.15 Fitness values reaching a target value by the improved drawing algorithm when tuning the

accelerationPeriod parameter (phase III) .. 180

Table 6.16 Fitness values reaching a target value by the improved drawing algorithm when tuning the

accelerationRate parameter (phase III)... 182

Table 7.1 Characteristics of the graphs in the 1st category used in comparing PR+TS, TS, and SA ... 185

Table 7.2 Characteristics of the graphs in the 2nd category used in comparing PR+TS, TS, and SA .. 185

Table 7.3 Statistical analysis of the fitness function for TS, SA, PR+TS when applied on the graphs of

both categories (phase I) ... 191

Table 7.4 Statistical analysis of number of evaluated solutions obtained by TS, SA, PR+TS when

applied on the graphs of both categories (phase I) .. 192

Table 7.5 Statistical analysis of the average overall number of evaluated solutions obtained by TS, SA,

PR+TS when applied on the graphs of the two categories together (phase II) 194

Table 7.6 Statistical analysis of the average overall fitness function values obtained by TS, SA, PR+TS

when applied on the graphs of the two categories together (phase III) .. 197

Table 7.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) 201

Table 7.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) 202

Table 7.9 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) 202

Table 7.10 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) 202

Table 7.11 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase II) 203

x

Table 7.12 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase II) 203

Table 7.13 Effect size and p-values for the number of evaluated solutions after conducting the

Bonferroni test on TS, SA, PR+TS when applied on the graph layouts of the two categories together

(Phase II) .. 203

Table 7.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on TS, SA, PR+TS when applied on the graphs of the 1st category (phase III) 204

Table 7.15 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase III) 204

Table 7.16 Effect size and p-values for the fitness function values after conducting the Bonferroni test

on TS, SA, PR+TS when applied on the graph layouts of the two categories together (Phase III) 204

Table 7.17 Characteristics of the graph datasets used in scalability testing 212

Table 7.18 Normalised values of each aesthetic when the methods were applied on graph dataset 3

(listed in Table 5.15) ... 216

Table 7.19 Normalised values of each aesthetic when the methods were applied on graph dataset 5

(listed in Table 5.15) ... 216

xi

List of Figures

Figure 1.1 Path relinking tunnels through areas between initial and guiding graph layout solutions 4

Figure 2.1 Sample graph layout ... 11

Figure 2.2 Two symmetric layouts for the same graph (Kamada & Kawai 1989) 13

Figure 2.3 Node distribution .. 15

Figure 2.4 Uniform edge length ... 15

Figure 2.5 Edge crossings ... 16

Figure 2.6 Node-edge occlusion .. 16

Figure 2.7 Angular resolution .. 17

Figure 2.8 Randomised graph of a complete graph with 6 nodes .. 19

Figure 2.9 Embedded graph of a complete graph with 6 nodes using the basic spring embedder 19

Figure 2.10 An example of a graph layout using the algorithm proposed in Davidson & Harel (1996)29

Figure 2.11 A flowchart of a simple tabu search procedure .. 34

Figure 2.12 Hierarchical Diagraph (Laguna et al. 1997) ... 38

Figure 2.13 Bipartite sample drawing (Martı́ & Laguna 2003) ... 40

Figure 2.14 Path relinking: original path (solid line) and one possible relinked path (dotted line) in the
solution space ... 41

Figure 3.1 A screen shot of the drop-down menu of available operations in our visualisation tool 48

Figure 3.2 Adding nodes to the canvas .. 49

Figure 3.3 Adding edges between the nodes shown in Figure 3.2 ... 50

Figure 3.4 Moving nodes and stretching / shrinking edges shown in Figure 3.3 50

Figure 3.5 A frame prompting the user to enter number of nodes required in the random graph layout51

Figure 3.6 A frame prompting the user to enter the required density (showing the minimum value that
can be entered) .. 52

Figure 3.7 A randomly generated graph layout .. 52

Figure 3.8 A different layout of the graph shown in Figure 3.7 .. 53

Figure 3.9 A screen shot of the frame which allows the user to control the value of the parameter of
each method and the weight of each measure... 54

xii

Figure 4.1 The points around the square represent the candidate solutions at each node 60

Figure 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase I) 65

Figure 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase I) 65

Figure 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase I) 66

Figure 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase I) 66

Figure 4.6 Hill Climbing -Number of evaluated solutions when squareReduction = 2 (phase II) 68

Figure 4.7 Hill Climbing - Number of evaluated solutions when squareReduction = 4 (phase II) 69

Figure 4.8 Hill Climbing - Number of evaluated solutions when squareReduction = 6 (phase II) 69

Figure 4.9 Hill Climbing - Number of evaluated solutions when squareReduction = 8 (phase II) 70

Figure 4.10 Simulated Annealing - Fitness values with the maxIterations parameter (phase I)............ 74

Figure 4.11 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase I) 75

Figure 4.12 Simulated Annealing - Fitness values with the initialTemp parameter (phase I) 76

Figure 4.13 Simulated Annealing - Fitness values with the coolDown parameter (phase I) 76

Figure 4.14 Simulated Annealing - Fitness values with the maxIterations parameter (phase II) 77

Figure 4.15 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase II) 78

Figure 4.16 Simulated Annealing - Fitness values with the initialTemp parameter (phase II) 79

Figure 4.17 Simulated Annealing - Fitness values with the coolDown parameter (phase II) 79

Figure 4.18 Simulated Annealing – Number of evaluated solutions with the maxIterations parameter
(phase III) ... 81

Figure 4.19 Simulated Annealing – Number of evaluated solutions with the iterPerTemp parameter
(phase III) ... 82

Figure 4.20 Simulated Annealing – Number of evaluated solutions with the initialTemp parameter
(phase III) ... 83

Figure 4.21 Simulated Annealing – Number of evaluated solutions with the coolDown parameter
(phase III) ... 84

Figure 4.22 Tabu Search - Fitness values with the maxIterations parameter (phase I) 88

Figure 4.23 Tabu Search - Fitness values with the initialCutOff parameter (phase I) 89

Figure 4.24 Tabu Search - Fitness values with the intensifyCutOff parameter (phase I)...................... 90

Figure 4.25 Tabu Search - Fitness values with the intensifyIterations parameter (phase I) 91

Figure 4.26 Tabu Search - tabu list accesses with the intensifyIterations parameter (phase I) 91

Figure 4.27 Tabu Search - Fitness values with the duration parameter (phase I) 92

Figure 4.28 Tabu Search - tabu list accesses with the duration parameter (phase I) 92

Figure 4.29 Tabu Search - Fitness values with the maxIterations parameter (phase II) 93

xiii

Figure 4.30 Tabu Search - Fitness values with the initialCutOff parameter (phase II) 94

Figure 4.31 Tabu Search - Fitness values with the intensifyCutOff parameter (phase II) 94

Figure 4.32 Tabu Search - Fitness values with the intensifyIterations parameter (phase II) 95

Figure 4.33 Tabu Search - Fitness values with the duration parameter (phase II) 96

Figure 4.34 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase III)
 ... 97

Figure 4.35 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase III)
 ... 98

Figure 4.36 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase
III) .. 99

Figure 4.37 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase
III) .. 100

Figure 4.38 Tabu Search – Number of accesses to the tabu list with the duration parameter (phase III)
 ... 101

Figure 4.39 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase IV)
 ... 102

Figure 4.40 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase IV)
 ... 103

Figure 4.41 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase
IV) .. 104

Figure 4.42 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase
IV) .. 105

Figure 4.43 Tabu Search – Number of evaluated solutions with the duration parameter (phase IV) .. 106

Figure 5.1 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS
when applied on the graphs of the 1st category (phase I) .. 111

Figure 5.2 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS
when applied on the graphs of the 2nd category (phase I) .. 112

Figure 5.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
HC, SA, TS when applied on the graphs of the 1st category (phase I) ... 112

Figure 5.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
HC, SA, TS when applied on the graphs of the 2nd category (phase I) .. 113

Figure 5.5 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC,
SA, TS when applied on the graphs of the 1st category (phase I) .. 113

Figure 5.6 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC,
SA, TS when applied on the graphs of the 2nd category (phase I) ... 114

xiv

Figure 5.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by
HC, SA, TS when applied on the graphs of both categories (phase I) ... 115

Figure 5.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions
obtained by HC, SA, TS when applied on the graphs of both categories (phase I) 115

Figure 5.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
HC, SA, TS when applied on the graphs of the 1st category (phase II) .. 118

Figure 5.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
HC, SA, TS when applied on the graphs of the 2nd category (phase II) ... 118

Figure 5.11 Bar chart with 95% confidence interval of the average overall number of evaluated
solutions obtained by HC, SA, TS when applied on the graphs of the two categories together (phase II)
 ... 119

Figure 5.12 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA,
TS when applied on the graphs of the 1st category (phase III) .. 121

Figure 5.13 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA,
TS when applied on the graphs of the 2nd category (phase III) .. 121

Figure 5.14 Bar chart with 95% confidence interval of the average overall fitness function values
obtained by HC, SA, TS when applied on the graphs of the two categories together (phase III)........ 122

Figure 5.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas
of our visualization tool by the three methods: HC, SA, TS ... 123

Figure 5.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas
of our visualization tool by the three methods: HC, SA, TS ... 124

Figure 5.17 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph
datasets in Table 5.15 (phase I) ... 131

Figure 5.18 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on
the graph datasets in Table 5.15 (phase I) .. 132

Figure 5.19 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on
the graph datasets in Table 5.15 (phase II) ... 132

Figure 5.20 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph
datasets in Table 5.15 (phase III) ... 133

Figure 5.21 Layout of graph dataset 1 (listed in Table 5.15) produced by HC, SA, TS drawn within the
canvas of our visualization tool ... 134

Figure 5.22 Layout of graph dataset 2 (listed in Table 5.15) produced by HC, SA, TS drawn within the
canvas of our visualization tool ... 135

Figure 6.1 Our path relinking strategy in moving from the initial solution to the guiding solution 143

Figure 6.2 Path relinking fitness with the PRmaxIterations parameter (phase I) 146

Figure 6.3 Path relinking fitness with the refSize parameter (phase I) .. 147

xv

Figure 6.4 Path relinking fitness with the pathLength parameter (phase I) .. 147

Figure 6.5 Path relinking fitness with the pathSqrSize parameter (phase I) 148

Figure 6.6 Path relinking fitness with the PRmaxIterations parameter (phase II) 149

Figure 6.7 Path relinking fitness with the refSize parameter (phase II) ... 149

Figure 6.8 Path relinking fitness with the pathLength parameter (phase II) 150

Figure 6.9 Path relinking fitness with the pathSqrSize parameter (phase II) 150

Figure 6.10 Path relinking number of evaluated solutions with the PRmaxIterations parameter (phase
III) .. 152

Figure 6.11 Path relinking number of evaluated solutions with the refSize parameter (phase III) 153

Figure 6.12 Path relinking number of evaluated solutions with the pathLength parameter (phase III)154

Figure 6.13 Path relinking number of evaluated solutions with the pathSqrSize parameter (phase III)
 ... 155

Figure 6.14 Fitness values with 95% confidence interval of the strategies for selecting initial/guiding
solutions ... 157

Figure 6.15 Number of evaluated solutions with 95% confidence interval of the strategies for selecting
initial/guiding solutions ... 158

Figure 6.16 Number of evaluated solutions with 95% confidence interval performed when strategies
(a) and (d) run to reach a set fitness value .. 159

Figure 6.17 Fitness values produced with 95% confidence interval when strategies (a) and (d) run for a
set number of solutions ... 159

Figure 6.18 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationPeriod parameter (1st round) .. 161

Figure 6.19 Number of solutions for drawing the layouts for the datasets in Table 6.8 when examining
the values of the accelerationPeriod parameter (1st round).. 162

Figure 6.20 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationRate parameter (1st round) ... 163

Figure 6.21 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationPeriod parameter (2nd round) ... 164

Figure 6.22 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationRate parameter (2nd round) .. 164

Figure 6.23 Fitness values with 95% confidence interval for the layouts of the datasets in Table 6.9
when applying the two strategies of moving along the path.. 165

Figure 6.24 Number of solutions with 95% confidence interval for the layout of the graph datasets in
Table 6.9 when applying the two strategies of moving along the path .. 166

Figure 6.25 Fitness values of the improved drawing algorithm when tuning the PRmaxIterations
parameter (phase I) ... 169

xvi

Figure 6.26 Fitness values of the improved drawing algorithm when tuning the refSize parameter
(phase I) .. 170

Figure 6.27 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize
parameter (phase I) ... 171

Figure 6.28 Fitness values of the improved drawing algorithm when tuning the pathLength parameter
(phase I) .. 172

Figure 6.29 Fitness values of the improved drawing algorithm when tuning the pathSqrSize parameter
(phase I) .. 172

Figure 6.30 Fitness values of the improved drawing algorithm when tuning the accelerationPeriod
parameter (phase I) ... 173

Figure 6.31 Number of evaluated solutions of the improved drawing algorithm when tuning the
accelerationPeriod parameter (phase I) .. 174

Figure 6.32 Fitness values of the improved drawing algorithm when tuning the accelerationRate
parameter (phase I) ... 175

Figure 6.33 Number of evaluated solutions of the improved drawing algorithm when tuning the
PRmaxIterations parameter (phase III) .. 177

Figure 6.34 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize
parameter (phase III) ... 178

Figure 6.35 Number of evaluated solutions of the improved drawing algorithm when tuning the
pathSqrSize parameter (phase III).. 179

Figure 6.36 Number of evaluated solutions of the improved drawing algorithm when tuning the
accelerationPeriod parameter (phase III) .. 181

Figure 6.37 Number of evaluated solutions of the improved drawing algorithm when tuning the
accelerationRate parameter (phase III)... 182

Figure 7.1 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS
when applied on the graphs of the 1st category (phase I) .. 187

Figure 7.2 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS
when applied on the graphs of the 2nd category (phase I) .. 187

Figure 7.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
TS, SA, PR+TS when applied on the graphs of the 1st category (phase I) ... 188

Figure 7.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I) .. 188

Figure 7.5 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA,
PR+TS when applied on the graphs of the 1st category (phase I) .. 189

Figure 7.6 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA,
PR+TS when applied on the graphs of the 2nd category (phase I) ... 189

xvii

Figure 7.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by
TS, SA, PR+TS when applied on the graphs of both categories (phase I) ... 190

Figure 7.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions
obtained by TS, SA, PR+TS when applied on the graphs of both categories (phase I) 191

Figure 7.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
TS, SA, PR+TS when applied on the graphs of the 1st category (phase II) .. 193

Figure 7.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase II) 193

Figure 7.11 Bar chart with 95% confidence interval of the average overall number of evaluated
solutions obtained by TS, SA, PR+TS when applied on the graphs of the two categories together
(phase II) .. 194

Figure 7.12 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA,
PR+TS when applied on the graphs of the 1st category (phase III) .. 195

Figure 7.13 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA,
PR+TS when applied on the graphs of the 2nd category (phase III) ... 196

Figure 7.14 Bar chart with 95% confidence interval of the average overall fitness function values
obtained by TS, SA, PR+TS when applied on the graphs of the two categories together (phase III).. 196

Figure 7.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas
of our visualization tool by the three methods: SA, TS, PR+TS ... 198

Figure 7.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas
of our visualization tool by the three methods: SA, TS, PR+TS ... 199

Figure 7.17 Example of connected graph layout with 15 nodes and 24 edges drawn within the canvas
of our visualization tool by the three methods: SA, TS, PR+TS ... 200

Figure 7.18 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the
graph datasets in Table 5.15 (phase I) .. 205

Figure 7.19 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied
on the graph datasets in Table 5.15 (phase I) ... 206

Figure 7.20 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied
on the graph datasets in Table 5.15 (phase II) .. 206

Figure 7.21 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the
graph datasets in Table 5.15 (phase III) ... 207

Figure 7.22 Layout of graph dataset 1 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within
the canvas of our visualization tool .. 208

Figure 7.23 Layout of graph dataset 2 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within
the canvas of our visualization tool .. 209

Figure 7.24 Layout of graph dataset 3 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within
the canvas of our visualization tool .. 210

xviii

Figure 7.25 Layout of graph dataset 5 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within
the canvas of our visualization tool .. 211

Figure 7.26 Bar chart of the fitness values obtained by PR+TS and SA when applied on graph datasets
in Table 7.17 (phase I) for scalability testing ... 213

Figure 7.27 Bar chart of the number of evaluated solutions obtained by PR+TS and SA when applied
on graph datasets in Table 7.17 (phase I) for scalability testing .. 213

Figure 7.28 Bar chart of execution time in seconds obtained by PR+TS and SA when applied on graph
datasets in Table 7.17 (phase I) for scalability testing .. 214

Figure 7.29 Box plot chart of the overall fitness values obtained by PR+TS and SA when applied on
graph datasets with an increasing number of nodes and edges (Table 7.17) 214

Figure 7.30 Box plot chart of the overall number of evaluated solutions obtained by PR+TS and SA
when applied on graph datasets with an increasing number of nodes and edges (Table 7.17) 215

Figure 7.31 Box plot chart of the overall time in seconds obtained by PR+TS and SA when applied on
graph datasets with an increasing number of nodes and edges (Table 7.17) 215

Figure 7.32 The change of the fitness value as the number of evaluated solutions increases 216

Figure A.1.1 Sample layouts from group 1A in Table 5.1 .. 236

Figure A.1.2 Sample layouts from group 2A in Table 5.1 .. 237

Figure A.1.3 Sample layouts from group 3A in Table 5.1 .. 238

Figure A.1.4 Sample layouts from group 4A in Table 5.1 .. 239

Figure A.2.1 Sample layouts from group 1B in Table 5.2 .. 240

Figure A.2.2 Sample layouts from group 2B in Table 5.2 .. 241

Figure A.2.3 Sample layouts from group 3B in Table 5.2 .. 242

Figure A.2.4 Sample layouts from group 4B in Table 5.2 .. 243

Figure B.1.1 Sample layouts from group 1C in Table 7.1 ... 245

Figure B.1.2 Sample layouts from group 2C in Table 7.1 ... 246

Figure B.1.3 Sample layouts from group 3C in Table 7.1 ... 247

Figure B.1.4 Sample layouts from group 4C in Table 7.1 ... 248

Figure B.2.1 Sample layouts from group 1D in Table 7.2 .. 249

Figure B.2.2 Sample layouts from group 2D in Table 7.2 .. 250

Figure B.2.3 Sample layouts from group 3D in Table 7.2 .. 251

Figure B.2.4 Sample layouts from group 4D in Table 7.2 .. 252

xix

List of Algorithms

Algorithm 2.1 Simple tabu search approach (Glover 1989; Glover 1990) ... 35

Algorithm 2.2 Simple path relinking algorithm (Rahimi-Vahed et al. 2013) 42

Algorithm 4.1 Hill climbing graph drawing algorithm ... 63

Algorithm 4.2 Simulated annealing graph drawing algorithm .. 72

Algorithm 4.3 Our tabu search graph drawing algorithm ... 86

Algorithm 6.1 Tabu search and path relinking coupling algorithm for graph drawing 142

Algorithm 6.2 PathRelinking() procedure .. 144

Algorithm 6.3 MoveAlongPath() procedure ... 144

Algorithm 6.4 Improved PathRelinking() procedure .. 167

Algorithm 6.5 Improved MoveAlongPath() procedure ... 167

1

Chapter 1 Introduction

This thesis addresses the problem of automated graph drawing for general graphs with

undirected straight lines based on weighted sum multi-criteria optimisation. Graph drawing is

the process of transforming a graph into a visual representation that is called a graph layout (di

Battista et al. 1999). The graph layout depends on different aesthetic measures that could give a

better understanding of graphs. Such aesthetic include edge crossings, edge length, node-to-

node and node-to-edge occlusions, graph symmetry, angular resolution, and others (di Battista

et al. 1999; Davidson & Harel 1996; Stott et al. 2011; Eades 1984). These aesthetics are

measured and combined to form a multi-criteria weighted sum fitness function that measures

the quality of a graph and is then optimised by search-based methods (optimisation methods).

 Search-based methods can be placed into two categories according to the number of

solutions examined at the same time: neighbourhood search-based methods and population-

based methods. While neighbourhood search methods work on a single solution at a time,

population-based methods evolve a set of points in the search space (Blum & Roli 2003). These

methods can produce good solutions, but they have great potential for improvement. For

example, in the case of neighbourhood search methods, simulated annealing adds an element of

non-determinism in order to escape from local optima in the search space. This slows down the

performance of the algorithm since this stochastic behaviour means that a large number of

iterations can be required to reach a good solution (Davidson & Harel 1996). Hill climbing is

generally faster in reaching a final layout, but the final result is not always the best as it is more

likely to get trapped in a local optima (Talbi & Muntean 1993). Population-based methods,

such as genetic algorithms, typically have an even slower rate of convergence compared to

simulated annealing and hill climbing as they involve a wider search of the problem space. In

addition, they often require large memory to maintain the population and can require additional

algorithms to spread the solutions (Nam & Park 2000).

 Our work in this field aims to address the problem of multi-criteria graph layout with a

weighted sum fitness function from the perspective of neighbourhood search-based methods.

To achieve this we have explored improved techniques that overcome the disadvantages of the

current state of the art in neighbourhood search techniques. We propose a new neighbourhood

2

search-based method that uses tabu search coupled with path relinking for drawing general

graph layouts with undirected straight lines. None of these methods have been previously used

in general multi-criteria graph drawing. Our method has two main features that distinguish it

from other techniques: the use of a memory list to speed up searching by avoiding previously

tested solutions; and the generation of new solutions by exploring paths that connect high

quality solutions. We show that our method outperforms the current state of the art in

neighbourhood search methods when being applied on randomly generated datasets and real

world datasets.

1.1 Motivation and Objectives

Automatic graph layout is a topic in computer science that can be used in different applications

from different fields. For example, Cerebral (Barsky et al. 2008) is a system that uses a

biologically guided graph layout and incorporates experimental data directly into the graph

display. Systems biology is a model for biological experimentation affected by the behaviour of

thousands of biological entities that influence each other. These interactions are modelled as a

graph, where the nodes represent biomolecules such as proteins and genes, and the edges

represent interactions between them. Cerebral is used to lay out the graph model to interpret the

results of experiments that will help biologists further refine the model. Our visualisation tool,

described in Chapter 3, can be used as a replacement graph drawing back-end in tools such as

Cerebral.

 Many graph layout algorithms in the literature used neighbourhood search-based methods

for drawing multi-criteria graph layouts, such as simulated annealing (Davidson & Harel 1996;

Brank 2004; Lin et al. 2011; Gibson et al. 2013) and hill climbing (Stott et al. 2011; Talbi &

Muntean 1993; Rosete-Suárez et al. 1999). Tabu search and path relinking were used in the

field of graph drawing as well, but for single-criterion graph layouts (Marti 1998; Laguna &

Marti 1999). On the other hand, population-based methods have also been used in drawing

multi-criteria graph layouts with genetic algorithms (Kosak et al. 1991; Kosak et al. 1994;

Branke et al. 1996; Eloranta & Mäkinen 2001).

 Another popular type of automatic layout is the class of force-directed approaches. These

differ considerably from search-based methods. Here, interactions between nodes are applied,

3

such as the attraction of connected nodes and the repulsion of disconnected nodes, where the

method attempts to find an equilibrium layout (Noack 2007; Gansner et al. 2013; Jacomy et al.

2014; Ortmann et al. 2016). In addition, systems such as Pajek draw large networks using

spring embedders and eigenvectors (Batagelj & Mrvar 1998). However, aesthetics can only be

indirectly coded in force-directed approaches, whereas search-based methods have the

advantage of allowing tuneable combinations of directly coded metrics to meet user

preferences.

 We are not interested in finding the best possible layout, but enhancing the search

mechanism is our main motivation. We want to improve the efficiency and effectiveness of

neighbourhood search methods for drawing general graph layouts with undirected straight lines

based on a weighted sum multi-criteria optimisation. The objective of our work is concerned

with developing a new graph drawing search method based on tabu search and path relinking.

These methods have not been used before to lay out general graphs with multi-criteria

optimisation.

 Tabu search is a neighbourhood search-based technique which proceeds on the assumption

that selecting an inferior solution is not beneficial unless it is necessary such as escaping from a

local optimum (Lim & Chee 1991). Tabu search keeps information on the itinerary through the

last solutions visited. The role of this is to restrict the choice of some subsets in the

neighbourhood by forbidding moves to some neighbour solutions that have already been visited

(Hertz, et al. 1995).

 Path relinking integrates intensification and diversification strategies (Glover et al. 2000).

This approach generates new solutions by exploring paths that connect high quality solutions

(elite solutions from the reference set) by starting from one of these solutions, called the

initiating solution, and generating a path in the neighbourhood space that leads toward another

solution, called the guiding solution. Note that the initiating and the guiding solutions represent

the starting and the ending points of the path. This is accomplished by selecting moves that

introduce attributes contained in the guiding solutions (Laguna & Marti 1999). A crucial

difference between evolutionary algorithms, such as genetic algorithms, and path relinking is

that the former uses a factor of randomness to create offspring from parent solutions, whereas

4

the latter uses systematic and deterministic rules to combine elite solutions. The main principle

of its deterministic behaviour is the gradual introduction of attributes from the guiding solution

to intermediate solutions. These attributes should have fewer characteristics from the initial

solution and more characteristics from the guiding solution as the search moves along the path

(Ho & Gendreau 2006). Path relinking has been considered to be particularly appropriate to

tabu search, as it allows for ‘tunnelling’ through infeasible regions formed from the tabu list

(Glover 1997). Figure 1.1 demonstrates our interpretation to the path relinking process in the

context of graph drawing. Initial and guiding solutions are two different layouts chosen during

the execution of tabu search algorithm. Then, the path relinking procedure performs a

“tunnelling” operation in the solution space between the two solutions.

Figure 1.1 Path relinking tunnels through areas between initial and guiding graph layout solutions

 In order to reach our objective, we had to implement and evaluate our method against the

two commonly used alternative neighbourhood search-based methods for graph drawing. The

comparison was based on the three types of evaluations that were carried out: finding the best

layout that can be achieved; how long it takes to draw a graph to a particular level of quality;

and how good the quality of the graph is after a fixed optimisation time.

5

1.2 Contributions

The major contribution of this thesis is proposing a novel neighbourhood search-based graph

drawing algorithm that improves the current state of the art in neighbourhood search for

drawing general graph layouts with undirected straight lines based on a weighted sum multi-

criteria optimisation. This contribution can be broken down into several smaller contributions:

1. The development of a piece of software that can be used for testing the methods on

random graph layouts based on Erdos-Renyi model (Erdos & Rényi 1960; Daudin et al.

2008), and real world datasets. It also allows the user to control the values of the

parameters for each method and the weight of each aesthetic criterion in the fitness

function. This section of the work is described in Chapter 3.

2. The implementation of a novel neighbourhood search-based method that improves the

current state of the art in neighbourhood search methods. We started with proposing a

tabu search-based approach for graph drawing and we compared it with hill climbing

and simulated annealing. The method searches for the best positions of the nodes that

minimise the value of the fitness function, and draws a nice graph layout accordingly.

Tabu search forbids moves that have been previously examined which may be

considered poor potential solutions, making it a more effective layout method than hill

climbing. We show that tabu search alone outperforms hill climbing, but not simulated

annealing. This section of work is described in Chapters 4 and 5, and a description of an

initial version was published (Dib & Rodgers 2014).

3. An improvement to the proposed method by combining it with path relinking which

outperformed simulated annealing. The tabu search algorithm outperforms hill climbing

in minimising the value of the fitness function and the number of evaluated solutions

used to draw a graph layout. The addition of applying path relinking within the tabu

search procedure speeds up the identification of good solutions and outperforms

simulated annealing by producing graph layouts with better values of the fitness

function. We also demonstrate that when targeting a particular value of a fitness

function, the combination of tabu search and path relinking achieves the goal in a

smaller number of evaluated solutions. Note that the criteria of comparisons between

6

the methods are based on the number of evaluated solutions required to draw a layout

(as that is a machine independent criterion), and the value of the fitness function of that

layout. In addition, we present an execution time comparison when we test the

scalability of the methods. We use the execution time to formulate a realistic conclusion

of the run time for applying the methods. Statistical significance tests and effect size

measurements that confirm the results of our experiments are also conducted. Finally,

we show that similar results can be produced in a real world setting by testing our

method against a standard public graph dataset. This section of the work is described in

Chapters 6 and 7, and it was published (Dib & Rodgers 2018).

1.3 Publications

The following is a list of publications along with their related chapters and contributions:

• Refereed journal article: A tabu search-based approach for graph layout, in the Journal

of Visual Languages and Computing (JVLC) (Dib & Rodgers 2014). This paper was

accepted at the 2014 international workshop on Visual Languages and Computing

(VLC) as part of the 2014 international conference on Distributed Multimedia Systems

(DMS). Papers accepted at the DMS were published in a special issue of the JVLC

after an additional round of reviews. The work in this paper appears in Chapters 3, 4,

and 5 (Contributions 1 and 2). My contribution in this article included: conceiving and

proposing the graph drawing algorithm, implementing the algorithm, performing the

experimentation, and writing-up the article.

• Refereed journal article: Graph drawing using tabu search coupled with path

relinking, in PLoS ONE (Dib & Rodgers 2018). The work in this paper appears in

Chapters 3, 6, and 7 (Contributions 1 and 3). My contribution in this article included:

conceiving and proposing the graph drawing algorithm, implementing the algorithm,

performing the experimentation, and writing-up the article.

1.4 Software Implementation and Online Resources

In order to test the performance of all the drawing methods on graph layouts with multiple

metrics and in terms of time and quality, we implemented our own software visualisation tool

7

using Java. The tool consists of a graphical interface that includes a drop-down menu with

different options, where nodes and edges can be created and manipulated. The tool provides

the feature of importing/exporting graphs from/to text files. Moreover, the feature of

generating random connected graphs, based on Erdos-Renyi model, is provided using the

built-in random function in Java. The graph generator accepts the number of nodes and the

density of the graph to be generated and then the generator produces a random connected

graph accordingly. The user can select the preferred neighbourhood search-based technique to

apply on the imported graph layout.

In multi-criteria graph drawing, the weight of each metric could change for each layout as

it depends on the metric in which the user prefers to focus on. Therefore, we facilitate the

parameter tuning process for each method and the selection of weight for each aesthetic metric

by providing a smaller frame that contains text fields where these values can be controlled.

The frame also shows the value of each individual aesthetic measure after optimisation, in

addition to the value of the weighted sum of the fitness function.

A detailed description of our visualisation tool is provided in Chapter 3 of this thesis. The

code and data related to this research can be accessed at the Dryad Digital Repository:

https://doi.org/10.5061/dryad.k082rv8.

1.5 Overview of Chapters

This thesis is divided into several chapters, as described below:

Chapter 2

It includes a literature review on graph drawing and the aesthetic of graph layouts. A number

of different graph drawing techniques, such as force-directed approaches and search-based

approaches (including population-based and neighbourhood search-based approaches), that

were introduced in the literature are highlighted. It also introduces the background of tabu

search and path relinking as search-based techniques and it shows their effectiveness in many

graph applications and multi-criteria optimisation problems.

Chapter 3

8

It describes the features of our visualisation tool along with the operations that can be

performed in order to test our graph drawing algorithms and perform all the experiments

conducted in this research.

Chapter 4

It describes the basic neighbourhood search-based graph drawing algorithms along with the

parameters’ tuning process for hill climbing and simulated annealing, followed by our tabu

search-based approach for drawing general graph layouts with straight lines that have multiple

aesthetic criteria which are used in a weighted fitness function to measure the quality of the

graph layout. The process that we used for normalising the values of each aesthetic measure is

also described.

Chapter 5

It demonstrates the experimental results of applying hill climbing, simulated annealing, and

our graph drawing version of tabu search on random graph datasets and real world graph

datasets. It also shows our analysis and conclusions to the results.

Chapter 6

It describes the proposed algorithm by showing the process of integrating path relinking

within tabu search along with the calibration of parameters. The reason behind choosing path

relinking is clarified. It also discusses different variations of path relinking that can improve

the performance of the algorithm.

Chapter 7

It demonstrates the effect of coupling the tabu search graph drawing algorithm with path

relinking. A comparison with simulated annealing is made by applying the methods on

random and real world graph datasets. It also shows the process we followed for analysing the

performance of our method and for testing its scalability.

Chapter 8

It summarises the objectives, contributions, and findings of this thesis, and covers a number of

ideas for future research in this area.

9

1.6 Summary

In this chapter, we described the motivation behind conducting this research along with the

objectives that we needed to achieve. We also demonstrated our contributions and their related

publications. A brief description of our visualisation tool that had been used in our

experiments was shown. In the next chapter, we review the background material relevant to

this thesis.

10

Chapter 2 Background and Related Work

This chapter describes the background material relevant to the research in this thesis. It starts

with introducing the concept of graph drawing and diagram visualisation. Then, it describes

the aesthetics of graphs and their importance in improving the human understanding of graph

layouts. Also, a number of different graph drawing techniques, such as force-directed

approaches and search-based approaches (including population-based and neighbourhood

search-based approaches) that have been introduced in the literature, are highlighted. Lastly, it

introduces the background of tabu search and path relinking as search-based techniques and it

shows their effectiveness in many graph applications and multi-criteria optimisation problems.

2.1 Introduction

Graphs are commonly used data structures in many fields of computer science, such as state

graphs, networks, data-flow diagrams, and entity-relationships diagrams. A graph can be

defined as a set of nodes and a set of edges. Two nodes are said to be adjacent if they are

connected by an edge. The edge connecting two nodes represents the existence of a

relationship between them. This relationship could be symmetric or asymmetric based on the

type of the edge whether it is undirected or directed. In this research, we focus on undirected

graphs.

In this data structure, relationships can be represented in a tabular form using an adjacency

matrix or adjacency lists. Visualising a graph can help gain a better understanding of those

relationships. The way of drawing a graph has a significant impact on how humans understand

the relationships between the nodes of the graphs. Therefore, the layout and the arrangement

of the nodes highly affect the interpretation and the readability of the relationships in the

graph (Purchase et al. 1996; Purchase 1997). In order to lay out a graph automatically, graph

drawing algorithms are required to rearrange the nodes in a way that emphasises the

relationships without misleading the user of the generated layout.

We begin with definitions and notations of the terms for graph concepts that will be used

throughout this work.

11

2.2 Definitions

A graph is denoted by G=(V,E) where V is a set of nodes and E ⊆	(V×V) is a set of edges.

The number of nodes and the number of edges are denoted by |V| and |E|, respectively. For the

purpose of this work, it is assumed that G is connected, undirected, and simple (i.e. has neither

self-loop edges nor multi-edges between any two nodes). When embedded in the plane, the

nodes have x and y coordinates (x,y), and the edges are straight lines joining the coordinates of

the two nodes. ��� represents the Euclidean distance between two nodes i and j, whereas

deg(v) denotes the degree of a node v (i.e. the number of edges incident to v). A layout of a

graph G is a bijective function that maps each node v to a distinct point layout[v], and each

edge (u, v) to a distinct edge with endpoints layout[u] and layout[v].

2.3 Overview of Graph Drawing

Graph drawing is the process of turning an abstract graph into a graph with an embedding in

the plane that is called a graph layout. A sample graph layout is shown in Figure 2.1. This

representation should aid the analysis and understanding of the graph. Graph drawing is an

area of computer science which combines graph theory and information visualisation. Graph

layouts are not only used in the field of computer science. For example, they are used in:

physics and chemistry in modelling the interaction between particles, social sciences in

drawing graphs of group interaction, and electrical engineering in representing circuits.

However, the drawing process is a significant challenge. Firstly, it depends on what we refer

to as a nice graph and secondly, it depends on the efficiency of its automated implementation.

Many sophisticated algorithms were proposed to address the problem of displaying

complicated graphs of high complexity in structure and size (Huang et al. 2007; Dogrusoz et

al. 2007; Dogrusoz et al. 2009).

Figure 2.1 Sample graph layout

12

Many graph drawing algorithms were implemented taking into account one or more

aesthetic criteria that would increase the readability of the drawing (di Battista et al. 1999).

There are several multi-criteria approaches to layout graphs discussed in the literature, a

number of which are investigated later in this work. They are based on explicit cost functions

that combine the explicit measurements of graph quality. Generally, all graph drawing

approaches aim to enhance the readability of the graph and to convey the information that the

graph contains. In some approaches, the positions of the nodes are restricted, e.g. they are

placed on grid points (Batini et al. 1986; Tamassia et al. 1988), concentric circles (Carpano

1980), or parallel lines (Sugiyama et al. 1981). The edges, on the other hand, can be drawn as

straight lines, curves, or polygonal lines.

Graph layouts depend on different aesthetic qualities that could aid a better understanding

of graphs and consequently build more effective systems. Purchase (1997) performed

experiments on general graphs which showed a strong evidence to support minimising edge

crossings for increasing the readability of a graph layout in addition to an effect of maximising

the minimum angles between two incident edges to a single node. Additional aesthetics were

discussed in Purchase (2002). However, aesthetic selection is a subjective process that makes

the field of graph drawing more challenging. In fact, Blythe et al. (1995) asserted that there is

no best way to draw a graph and that a layout simply depends on the criteria of the graph we

wish to highlight. These might include specific aspects of the structure of the graph itself,

particular measures of centrality, or certain attributes of the nodes or edges (Gibson et al.

2013). For example, Figure 2.2 represents two symmetric graph layouts. But the users find the

layout on the left easier to understand than the one on the right although the latter has no edge

crossings (Gibson et al. 2013).

13

Figure 2.2 Two symmetric layouts for the same graph (Kamada & Kawai 1989)

In the next section, we describe the most commonly used aesthetic criteria of graphs

discussed in the literature that have an effect on the readability of the graph.

2.4 Graph Drawing Aesthetics

Graph drawing aesthetics are quality measures that determine the readability and usability of

graphs. A good layout can clearly deliver information, whereas a poor layout can mislead

(Purchase et al. 1996). Graph layout algorithms typically conform to one or more aesthetic

criteria. Metrics are used to measure these criteria in a weighted sum to quantify the quality of

the graph layout. These aesthetic metrics can be used for the definition of fitness functions for

search-based techniques, such as simulated annealing and hill climbing. These criteria include

edge crossings, edge length, edge bends, node-to-node and node-to-edge occlusions, graphs

symmetry, the angular resolution of the incident edges, and octilinearity (edges should be

drawn horizontally, vertically, or diagonally) (Eades 1984; Kosak et al. 1991; di Battista et al.

1999; Davidson & Harel 1996; Stott et al. 2011). Formal continuous metrics for measuring the

aesthetic presence in a graph drawing for seven common aesthetic criteria applicable to any

graph drawing of any size were presented by Purchase (2002). Metrics can be continuous or

discrete. Analysing the graph layout with continuous metrics would not be considered a binary

decision, but it would indicate the percentage in which the drawing conforms to the aesthetic.

14

An empirical study was conducted by Purchase et al. (1996) on the human understanding

of the undirected graphs drawn using three commonly used graph drawing aesthetics:

symmetry, minimising edge crossings, and minimising bends in polylines. The study

confirmed that increasing the number of edge crossings and the number of edge bends would

decrease the readability of the graph. Therefore, minimising these two aesthetics is justified.

The study was unable to conduct any conclusive assessment of the effectiveness of the local

symmetry hypothesis. Each aesthetic was considered separately by comparing graphs with the

extremes of the same aesthetic. Further empirical tests were conducted by Purchase (1997)

that resulted in showing strong evidence for minimising edge crossings and weaker evidence

for minimising the number of bends and maximising perceptual symmetry. The study also

concluded that maximising the orthogonal structure of the drawing and maximising the angles

between incident edges appear to have little effect on understanding the graph.

In this work, a list of aesthetics for measuring a graph layout quality was determined. The

list includes: nodes distribution, edge lengths, edge crossings, node-to-edge occlusions, and

angular resolution. The following is a description of the metrics used to measure the quality of

each aesthetic as described by Davidson and Harel (1996) and Stott et al. (2011):

a. Node distribution (m1)

Spreading the nodes out evenly on the drawing space makes the graph look nice and

readable. The distances between close nodes should be increased (minimising the

inverse), or in other words, the nodes should not be too close to each other (see Figure

2.3). This criterion is measured using the following formula that should be minimised:

� � 1
���	 			
ℎ�
�	� ≠ �

�∈��∈�

15

Figure 2.3 Node distribution

b. Uniform edge length (m2)

Edges of similar lengths would make the graph look pleasant in many cases (Stott et al.

2011). The purpose of this aesthetic is to make a consistent length of all edges. A specific

length (len) is defined, then all the edges would be adjusted in order to obtain the required

length (len) (i.e. to penalise shorter and longer edges) using the following formula (see

Figure 2.4):

�(� − ���)	
�∈�

Figure 2.4 Uniform edge length

c. Edge crossings (m3)

Planar graphs are most likely nice graphs. Minimising the number of crossing edges will

lead to a planar graph layout (if the graph under study is planar). Algorithms for producing

crossing-free graphs do exist (Eades & Wormald 1994; Leighton & Rao 1999; Chuzhoy

2011). However, we would like to retain the other criteria as well. Therefore, in this

16

measure, we focus on finding the number of edge intersections and we try to minimise that

number (see Figure 2.5).

Figure 2.5 Edge crossings

d. Node-edge occlusion (m4)

The edge crossings criterion does not take into consideration the nodes that can be

positioned on edges. Therefore, the distances between the nodes and edges should be taken

into account (see Figure 2.6). These distances should be increased (minimising the

inverse) according to the following formula:

� � 1
���	

�∈��∈�

where die is the Euclidean distance between node i and the closest point on edge e (note

that i does not equal to any of the end points of edge e).

Figure 2.6 Node-edge occlusion

17

e. Angular resolution (m5)

In order to have a graph where edges with a common node are not too close to each other,

we should increase the distance between the incident edges (see Figure 2.7). This measure

is computed as follows:

� � � 2�
���(�) − �(�1, �2)�

{�",�#}∈�%∈�

where θ(e1,e2) is the angle in radians between two adjacent edges e1 and e2 incident to

node v.

Figure 2.7 Angular resolution

Metrics are usually defined objectively, and they are not intended to take human value

judgements based on the perception of what appears to be a good graph layout into account.

However, the validity of human value judgements requires more extensive empirical studies

and should not be based on personal opinions (Purchase 2002).

All these metrics contribute in the graph quality weighted sum fitness function that could

be computed as follows (Davidson & Harel 1996):

fitness = w1*m1 + w2*m2 + w3*m3 + w4*m4 + w5*m5

where wi and mi are the weight and the measure for criterion i respectively. Note that,

increasing the value of wi compared to other weights would give the corresponding criterion a

higher priority when optimising the graph given that the measures are normalised.

18

2.5 Graph Drawing Approaches

Graph drawing is a difficult problem (Garey & Johnson 1983; Miller & Orlin 1985).

Therefore, acceptable heuristics are generally required to find good drawings and layouts of

graphs. Several graph drawing techniques work better on graphs belonging to specific classes

(di Battista et al. 1999). Next, we present two main divisions of graph drawing algorithms:

force-directed approaches and search-based approaches.

2.5.1 Force-directed Approaches

Force-directed algorithms use a physical analogy to model the graph layout problem. They

represent the graph as a system of bodies (nodes) with forces (edges) acting between the

bodies. The algorithms seek for a configuration (layout) of the bodies, where each body has a

position such that the sum of forces on each body is zero (i.e. a configuration where the

energy is locally minimal). As forces tend to apply equally for all nodes, graphs drawn with

these algorithms tend to have consistent edge lengths.

Force-directed approaches are commonly used because they are easy to understand and

relatively easy to code. Moreover, the experiments with force-directed approaches show that

they often give good results and can produce nice layouts of some of the well-known graphs in

graph theory (di Battista et al. 1999).

A force-directed approach consists of two components: the model and the algorithm. The

model is a force or an energy model that measures the goodness of a graph layout. It is usually

a quantification of the graph layout aesthetics. The algorithm, on the other hand, is an

optimisation technique for finding an equilibrium configuration of the system (i.e. locally

optimal layout).

Many force-directed algorithms have been proposed and tested. They differ in both the

formulation of the force or energy model, and in the optimisation technique used to find an

optimal energy configuration. The spring embedder (Eades 1984) uses a model of springs and

electrical forces. Nodes are modelled as equally charged rings that repel each other (repulsive

force), and edges are modelled as springs attached to the rings (attractive force). The force of

the spring that is calculated in terms of the logarithm of the distance between the nodes, makes

19

connected nodes attract each other. A repulsive force is also applied using an inverse square

law. These two forces contribute to drawing edges of roughly similar length and ensuring that

non-adjacent nodes are kept apart.

The algorithm works as follows: Firstly, the rings are placed in random locations forming

an initial layout. Secondly, a process for calculating the force on each ring and moving the

rings accordingly is repeated several times until the spring force on the rings moves the

system to a minimal energy state. Note that the experiments indicated that repeating the

process 100 times is enough in most of the cases to reach a minimal energy state. Calculating

the force on each node takes time proportional to the square of the number of nodes in the

graph: each iteration of the spring embedder runs with time O(n2). Figure 2.8 and Figure 2.9,

as described by Eades (1984), show how the spring embedder lays out the complete graph

with six nodes, K6.

Figure 2.8 Randomised graph of a complete
graph with 6 nodes

Figure 2.9 Embedded graph of a complete
graph with 6 nodes using the basic spring

embedder

The algorithm showed an acceptable running time for graphs with a small number of

nodes. However, there are some classes of graphs for which the algorithm does not produce a

good layout, such as: dense graphs or graphs with dense sub-graphs, and graphs with a small

number of bridges (Eades 1984).

The spring embedder model has been modified by eliminating the electrical charges and

instead associating a spring with every pair of nodes rather than just with the edges (Kamada

& Kawai 1989). This modified model has been conceptualised in terms of energy rather than

forces and it has been used for drawing undirected graphs and weighted graphs for human

understanding. This approach uses the relation between the graph theoretic distance and the

geometric Euclidean distance between nodes to produce good layouts.

20

The algorithm transforms the graph layout problem into a virtual dynamic system, such

that every two nodes are connected by a virtual spring of desirable distance. Hence, the

optimal layout of the graph is the state in which the total spring energy is minimal. The total

balance condition is computed as the square summation of the differences between the

desirable distances and the geometric distances for all pairs of nodes.

This approach differs from the one presented by Eades (1984) in its optimisation

algorithm. Instead of moving all the nodes at once, the algorithm moves only one node in the

drawing per iteration. In each iteration, the algorithm moves the node experiencing the

greatest net energy, by solving partial derivatives of the energy function, to a point of locally

minimal energy using a variation of the Newton-Raphson method (Rowe et al. 1987).

The algorithm works particularly well for symmetric graphs and is relatively good at

minimising edge crossings. The main disadvantage of this approach is its time complexity.

The model requires a pre-processing step that computes the shortest paths for every pair of

nodes. The time complexity of this step is O(n3) which makes this approach impractical for

large graphs (Rowe et al. 1987).

An improved algorithm for the spring embedder model was presented by Fruchterman &

Reingold (1991). The main goals for the proposed method were speed and simplicity. Many

graphs were drawn in less than a second, but measures were taken to restrict the graphs to a

maximum of 100 nodes. The method strives for uniform edge lengths, and it also performs

well in terms of distributing nodes evenly and reflecting symmetry.

In Fruchterman & Reingold (1991), a better cooling schedule could have significantly

improved the algorithm. Therefore, an enhancement was made by Frick et al. (1995) by

proposing an adaptive schedule with local and global temperatures and the algorithm is known

by the Graph EMbedder algorithm (GEM). The algorithm was able to match or even improve

the quality of the results obtained by other widely used implementations while running

consistently faster than them. The algorithm was tested to produce graph layouts with evenly

distributed nodes and edges with equal lengths. Although the GEM was not designed to

explicitly minimise edge crossings, it can often avoid crossings.

21

Van Ham & Van Wijk (2004) proposed a new force model with continuous visual

abstraction that combines both explicit clustering and visual clustering for drawing graph

layouts that better reflect the natural cluster structure of small world graphs. The model uses

the concept of force annealing, which combines force-directed algorithms that model a graph

as a physical system, then it attempts to find positions for all nodes such that the total energy

in the model is minimal, using a method of optimisation that starts with a random

configuration. This method showed better results compared with conventional force-directed

approaches when being applied on a cross referenced database of 500 artists (Van Ham & Van

Wijk 2004). Force annealing models were also used in other applications such as preventing

nodes from crossing edges (Simonetto et al. 2011).

Maaten & Hinton (2008) presented a t-distributed Stochastic Neighbour Embedding (t-

SNE) which is a non-linear dimensionality reduction visualisation technique used to visualise

high-dimensional data by assigning each data-point a location in a two or three dimensional

map. The visualisations produced by t-SNE were better than those produced by other non-

parametric visualisation techniques such as Isomap (Balasubramanian & Schwartz 2002).

Graph drawing with force-directed approaches that are based on virtual physical models is

still considered a hot topic that has been addressed in many recent research studies (Noack

2007; Gansner et al. 2013; Jacomy et al. 2014; Ortmann et al. 2016).

Force-directed approaches typically produce aesthetically pleasing layouts. They are fast

when being applied on small and medium size graphs, where the speed is highly beneficial for

use in interactive systems, but they are often unable to escape local optima due to their

physical model. These approaches are computationally expensive to find a minimum energy

state using general energy functions. A disadvantage of these techniques is that new criteria

can only be enforced by applying additional forces to the nodes causing them to move

differently. This makes it very difficult to strongly enforce additional criteria as nodes are

moved by summing all their forces in each iteration. Hence, the resulting composite force

satisfies none of the applied criteria, and nodes are moved to non-optimal positions.

Furthermore, force-directed approaches are usually selected to draw graph layouts when we

want to obtain uniform edge lengths and show symmetries in the graph (Eades 1984;

22

Fruchterman & Reingold 1991). However, these forces may introduce a lot of edge crossings

which is an aesthetic measure that cannot be turned into a force (Bertault 1999). General

search-based approaches, such as simulated annealing, genetic algorithms, and hill climbing

are more favourable techniques for general and discrete cost functions.

2.5.2 Search-based Approaches

The graph layout problem can also be modelled as an optimisation problem. Unlike force-

directed approaches, where aesthetics can only be indirectly coded; search-based approaches

have the advantage of allowing tuneable combinations of metrics to meet user preferences.

Here, layout involves minima of the fitness measure that represents the desired graph

aesthetics. The spring embedder approaches, described previously, mainly focus on

distributing nodes and edge lengths. Both criteria were measured using a simple and

continuous function of the locations of the nodes. However, many of the important aesthetic

criteria, such as the minimisation of the number of edge crossings, are not continuous.

Therefore, we can broaden the set of graph aesthetics by directly measuring them in the

layout.

When an algorithm attempts to draw a graph layout according to several graph aesthetic

criteria, some of these criteria might conflict with each other. Hence, we can use a fitness

function that linearly combines a number of measures. The weighted sum method allows the

multi-objective optimisation problem to be transformed as a single objective optimisation

function that is constructed as a sum of objective functions fi (measures) multiplied by

weighting coefficients wi (Grodzevich & Romanko 2006). The problem is formulated as

follows:

'�� �
�(� 	,												
)

�*+
	
ℎ�
�	
� ≥ 0, ∀� = 1, …	, 1.

The functions might include both continuous functions (like those used in the spring

embedder approaches) and discrete functions. In this way, the fitness function would measure

the quality of the graph layout (di Battista et al. 1999).

23

The problem with using general fitness functions is that it might be computationally

expensive to find a minimum fitness value. Since the overall fitness function could include

both continuous and discrete functions, some general search-based approaches, such as

population-based methods including genetic algorithms, and neighbourhood search-based

methods such as simulated annealing, and hill climbing, were used in order to find a minimum

fitness value. However, they are computationally expensive and not suitable for interactive

systems (di Battista et al. 1999). The main difference between these methods is the number of

solutions examined at the same time. While neighbourhood search methods work on a single

solution at a time, population-based methods evolve a set of points in the search space (Blum

& Roli 2003). Parameter tuning for all these methods plays an important role in increasing

their efficiency.

2.5.3 Multi-level Approaches

Multi-level graph drawing methods are frequently applied to clustered graphs (i.e. graphs with

recursive clustering structures over the nodes) (Eades & Feng 1996). The technique repeatedly

groups the nodes to form clusters which in turn are used to define a new graph. The coarsest

graph is then partitioned where each partition is refined on all the graphs starting from the

coarsest and ending with the original (Walshaw, 2000). This type of graph is commonly

visualised at multiple abstraction levels such as a three dimensional drawing where each level

is drawn on a plane at different z-coordinate while the clustering structure is drawn as a tree in

three dimensions. This representation preserves the mental map between abstraction levels as

it gives a better visualisation of the graph at different depth of abstractions and tracks the

abstractions from one level to another (Eades & Feng 1996). Walshaw (2000) proposed a fast

multi-level algorithm that outpeformed conventional force-directed placement and spring

embedder algorithms.

Hachul & Jünger (2004) presented a fast force-directed method that is based on a

combination of a multi-level scheme and a startegy for approximating the repulsive forces in

the system. The algorithm managed to visualise the structures of large graphs (with up to

100000 nodes) that were challenging to visualise with some other methods.

24

Archambault et al. (2007) proposed a multi-level framework to draw undirected graphs

based on the topological features they contain. It was the first multi-level approach that

partitioned the graph into topological features. It contained a stage that reduced the number of

node-edge overlaps and edges crossings and another stage to eliminate all node-node overlaps.

The algorithm was compared against four other multi-level algorithms on a variety of datasets

and it demonstrated improvements in terms of speed and visual quality.

2.6 Population-based Methods

Population-based methods are well-known searching methods that perform search processes

that demonstrate the evolution of a set of points in the search space (Blum & Roli 2003). They

provide a natural way for the exploration of the search space. The performance of these

methods is strongly dependent on the way of manipulating the population. Genetic algorithms

and ant colony optimisation are two popular stochastic methods which belong to this category.

Finding near-optimal solutions with these methods is secured, however, a global convergence

is not always guaranteed.

2.6.1 Genetic Algorithms

The genetic algorithms approach was applied to the graph layout problem as it is considered to

be a good global optimiser for many optimisation problems. Genetic algorithms are stochastic

global search methods that work with a population of candidate solutions and try to optimise

these by means of three basic principles: selection, recombination, and mutation. The initial

population is randomly chosen. Then, in every subsequent generation, new candidate solutions

are produced by selecting two solutions, with higher probability of selection for better

solutions, recombining parts of these solutions to form one or two offspring, and mutating the

resulting offspring. Finally, the offspring is inserted into the population and the worst solution

is deleted (Dorigo & Di Caro 1999).

Genetic algorithms have been successfully adapted in many single criterion and multi-

criteria optimisation problems (Fonseca & Fleming 1993; Murata et al. 1996; Konak et al.

2006; Coello et al. 2006). This search-based technique has also targeted the graph drawing

problem. Kosak et al. (1991) and Kosak et al. (1994) proposed a genetic algorithm-based

approach for drawing graphs under a number of visual constraints. The proposed algorithm

25

produces graphs with good quality in addition to its flexibility. It can be easily adapted to take

new layout aesthetics into account. However, the major problem in this algorithm is its slow

rate of convergence. It initially makes rapid progress towards a solution, but then it converges

very slowly to a global optimum (or at least to a good local one).

A genetic algorithm-based approach that minimises the number of edge crossings in

bipartite graphs, when the order of the nodes in one of the node subsets is fixed, was proposed

in Mäkinen & Sieranta (1994). The experimental results show that the proposed algorithm

outperforms some well-known heuristics that were previously applied on the bipartite graph

drawing problem, such as the barycentre heuristic and the median heuristic, especially when

applied on sparse graphs.

Branke et al. (1996) presented a genetic algorithm with a local fine tuner, based on the

spring algorithm, for the drawing of undirected graphs with straight-line edges. According to

some preliminary results, the algorithm shows its ability to produce layouts with a minimal

number of edge crossings on all tested graphs. The algorithm benefits from the combination of

the genetic algorithm and the spring algorithm to produce good layouts for a large class of

graphs with implicit symmetry, similar spring lengths, and even distribution of nodes. Varying

the weights of the criteria in the fitness function gives some control over the final appearance

of the graph layout.

The layouts found by the algorithm have good general structures, but they require some

fine tuning. Moreover, the comparatively long running time of the algorithm is its main

disadvantage. One reason for the high time complexity of the algorithm comes from the

crossover operator that was used to solve the competing conventions problem which states

that a recombination of two good parents may yield a very poor offspring (Branke et al. 1996).

A similar work was introduced by Eloranta & Mäkinen (2001). This work proposed a

genetic algorithm that nicely draws undirected graphs of moderate size. But the algorithm still

suffers from the lack of a proper crossover operation that would speed up its computations by

decreasing the number of generations needed.

26

Vrajitoru (2009) proposed a multi-criteria optimisation approach, using genetic

algorithms, to the graph drawing problem. The study addressed the problem of building

consistent graph layouts for weighted graphs following a specific geometric shape. The

proposed genetic algorithm was compared to force-based algorithms. For this problem in

particular, force-based algorithms were faster and more efficient in terms of performance.

However, with the genetic algorithm approach, geometric shapes that present interesting

geometric properties were obtained and they were visually more pleasing compared to force-

based algorithms.

In summary, genetic algorithms have been successfully used for single-criterion and multi-

criteria graph drawing. However, there are two major drawbacks: the slow rate of convergence

to global optimum; and the long execution time due to the lack of a proper crossover operator.

2.6.2 Ant Colony

Ant colony optimisation is another population-based method that was also applied in the field

of graph layout but it is not as common as genetic algorithms. This method takes inspiration

from the foraging behaviour of some ant species (Dorigo et al. 2006). These ants deposit a

substance on the ground to guide other members in the colony to follow a favourable path.

The chemical substance trails enable ants to find short paths between their colony and food

sources. The ant colony system exploits a similar technique for solving optimisation problems.

In the field of graph drawing, ant colony optimisation was applied to draw a special type

of graphs related to business process diagrams (Jancauskas et al. 2012). This problem is

defined as redrawing the lines that represent the sequence flow for fixed flow objects and

defined sequence flow, in a pleasant layout. The problem was reformulated as a multi-criteria

combinatorial optimisation problem, where aesthetic criteria, such as the length of lines and

the number of line crossings and bends, were considered in a fitness function that should be

minimised. The ant colony was applied on randomly generated test problems with different

complexities. The experimental results showed that ant colony optimisation is a promising

technique to solve this type of problem.

The automatic schematising of transport network data sets is another application where ant

colony optimisation was used (Ware & Richards 2013). The problem is defined as generating

27

an alternative network from an initial network layout by moving its vertices, reorienting

edges, and increasing or decreasing the lengths of its edges. An ant colony system was

implemented for the purpose of producing better results and in order to ensure a faster

execution time compared to the other search-based techniques which were used for

schematising transport networks. The system was tested and evaluated empirically. The results

of the experiments showed that the ant colony system can be effectively used in schematising

transportation maps since it outperformed previous algorithms which were applied for the

same purpose, in terms of the quality of the generated maps and algorithm’s execution time.

Ant colony optimisation was broadly applied to many multi-criteria optimisation

problems. These problems include: the vehicle routing problem with time window constraints

(Gambardella et al. 1999), the transportation problem with bi-objective combined in a

weighted sum (Parragh et al. 2008), the bi-objective scheduling problem (Iredi et al. 2001),

portfolio optimisation (Doerner et al. 2006), and the quadratic assignment problem (López-

Ibánez et al. 2004).

In summary, the ant colony approach is not widely used in the field of graph drawing, but

it showed promising results in the graph drawing applications in which it was used in. The

long running time was its major disadvantage (Jancauskas et al. 2012).

2.7 Neighbourhood Search-based Methods

Unlike the population-based methods which perform searching processes that describe the

evolution of a set of points in the search space, neighbourhood search-based methods work on

a single solution at a time. This searching technique describes a trajectory (path) in the search

space during the search process starting from a single solution (Blum & Roli 2003). Hill

climbing, simulated annealing, tabu search, and path relinking, are four different optimisation

techniques that go under the umbrella of neighbourhood search methods. Many graph layout

algorithms in the literature used neighbourhood search-based methods, such as simulated

annealing and hill climbing which are considered the most popular neighbourhood search

methods. In the following subsections, we demonstrate different graph drawing and multi-

criteria applications where simulated annealing and hill climbing were used. Then, we

28

dedicate separate sections for describing tabu search and path relinking as they form the core

of the algorithm proposed in this research.

2.7.1 Simulated Annealing

Simulated annealing is a search-based technique that has been widely used in a variety of

optimisation problems. It is inspired by the process of cooling and freezing a metal into a

crystalline structure with minimum energy. The annealing process was firstly proposed by

Metropolis et al. (1953). This search-based approach models the physical process of heating a

material and then slowly cooling the temperature to decrease defects that minimises the

system energy. It is usually used for large-scale combinatorial optimisation problems and

implemented in a way that tries to escape from a local minimum to a global minimum by

applying uphill moves (moves that spoil, rather than improve, the temporary solution). These

moves allow the approach to escape from a local minimal solution but with no guarantee that a

global minimum can be reached eventually. This technique was applied on many single-

criterion applications (Christensen et al. 1995; Ware et al. 2003) and multi-criteria

applications (Ulungu et al. 1998; Suman & Kumar 2006; Smith et al. 2008; Li & Landa-Silva

2011).

The simulated annealing approach was firstly used for the graph layout problem by

Davidson & Harel (1996) to draw general undirected graphs with straight line edges taking

into account several drawing aesthetics: distributing nodes evenly, making edge lengths

uniform, minimising edge crossings, and placing nodes not too close to edges. All these

criteria were combined into a meaningful function that could be subject to the general

optimisation fitness function.

The algorithm starts by choosing an initial configuration (initial graph layout) and initial

temperature. Then it repeats the following steps for a fixed number of times: a new

configuration is chosen from the neighbourhood of the current configuration (i.e. moving only

one node in the current configuration to a new location in a range of perimeter for a circle

which becomes smaller with time to get more accurate results). The fitness function of the

new configuration is computed and compared to the current configuration’s fitness function.

The configuration changes according to the one with the minimum value of the fitness

29

function. Once no improvements are made, the temperature is decreased and the process is

repeated until a termination rule is satisfied. Fine tuning iterations are applied on the fitness

function by adding the criteria that deal with distances between the nodes and edges.

The algorithm produces nice graph layouts for small size graphs, and it also has a similar

computational performance to the spring embedder approaches described earlier. However,

the algorithm does not perform well for graphs of larger sizes. Another drawback of this

approach is that it finds values very close to the global minimum but seldom does it detect the

global minimum itself (Davidson & Harel 1996). An example of a graph layout produced by

this algorithm is shown in Figure 2.10.

Figure 2.10 An example of a graph layout using the algorithm proposed in Davidson & Harel (1996)

An adjustment to the simulated annealing approach was made in the algorithm proposed

by Brank (2004). The algorithm applies a few adjustments to the simulated annealing

approach discussed in Davidson & Harel (1996) so that the fitness function can be minimised

using partial differentiation and minimisation using the gradient descent. Since the fitness

function is partially differentiable with respect to all its independent variables, its gradient

vector can be computed. This vector, once computed on a specific node, represents the

direction in which the node should move to increase the value of the fitness function. Thus,

this algorithm should move the node to the opposite direction to minimise the value of the

fitness function.

Applying the gradient descent technique has some challenges. For example, the fitness

function should be expressed explicitly in terms of coordinates, as its derivative will be found.

30

Also some criteria, such as minimising edge crossings, are discontinuous and not

differentiable. In Brank (2004), the gradient descent chooses a reasonable minimum length of

each step to prevent the algorithm from falling into a local minimum too early. But the

algorithm is still slow when being applied on larger graphs.

Lin et al. (2011) proposed an effective simulated annealing-based algorithm for drawing

mental-map-preserving graphs with straight lines of general undirected graphs including six

aesthetic criteria. Mental-map-preservation is about keeping the positions of the nodes as

stable as possible as the graph changes. Preserving a mental map is an important aspect in

graph drawing, as it allows the user to recognise the redrawn layout of the modified graph

using an external visual representation instead of relying entirely on memory (Coleman &

Parker 1996; Archambault & Purchase 2013). Similar to Davidson & Harel (1996), the

implementation includes flexibility in terms of the weights of the graph aesthetics since the

user can manually change those weights according to his/her preferences. Also, the algorithm

incorporates multi-criteria simultaneously in one objective function for graph layout unlike

previous works using a mental map which only included a single criterion at a time (Böhringer

& Paulisch 1990; Misue et al. 1995; He & Marriott 1998). The algorithm guarantees the

reduction of time required to relearn the modified drawing, but it is limited to graphs with a

small size only. In addition to the experimental evaluation, the work includes a student-based

questionnaire analysis for a better justification of the performance of the proposed algorithm.

In summary, simulated annealing is widely used in the field of graph drawing. It works

successfully with small graphs but it is too slow when applied to large graphs. It adds an

element of non-determinism in order to escape from local optima in the search space that

requires a large number of iterations to obtain a good solution. Our proposed approach in this

thesis should overcome this drawback by introducing a memory-based structure which

excludes previously visited solutions and low quality solutions, consequently speeding up the

execution time of the drawing process.

2.7.2 Hill Climbing

The second search-based approach that has been used in the field of graph drawing is hill

climbing. Hill climbing is one of the simplest search-based algorithms used in the field of

31

artificial intelligence. It is good for finding a local optimum but it is not guaranteed to find the

global optimum out of all possible solutions. It works by iteratively improving a given

solution that is often selected in a random way, by applying a transformation (variation) in the

current solution or picking any solution in its neighbourhood. Then, the new solution is

compared to the old one. If the new solution is better than the old one, the new solution

substitutes the old one. This process is repeated until no more improvement is recognised on

the current solution.

Hill climbing has been previously used in targeting single-criterion and multi-criteria

optimisation problems (Díaz & Suárez 2001; Coello et al. 2006; Yıldız 2009; Bandyopadhyay

& Saha 2012). In Flower et al. (2003), an aesthetic-based hill climbing method to draw Euler

diagrams was proposed. The work concluded that it is possible to enhance the understanding

of Euler diagrams with good layouts, using hill climbing, by defining a suitable set of metrics.

Hill climbing has also been used in the field of graph drawing to minimise the number of

edge crossings (Rosete-Suárez et al. 1999). The experiments conducted on random graphs of

different sizes showed that stochastic hill climbing outperforms efficient and popular search-

based techniques, such as evolution strategies and genetic algorithms.

Stott et al. (2011) used the hill climbing approach in implementing an automatic

mechanism for drawing metro maps. A good metro map layout could be evenly spaced

stations, running lines at regular angles and placing labels in unambiguous locations.

Therefore, Stott et al. (2011) applied multi-criteria optimisation using five different aesthetics

(angular resolution, average edge length, balanced edge length incident to the same station,

line straightness, and octilinearity) in a weighted sum to measure the esthetical quality of the

graph. In addition to these criteria, the following rules were taken into account for each

station: restricting the movement of stations to be bounded within a certain area, maintaining

the relative positions of the stations, avoiding node-edge occlusions, and preserving the

ordering of edges incident to a station. A hill climbing algorithm was used to reduce the value

of the weighted sum and find improved map layouts. Since hill climbing does not guarantee

finding the global minimum and in order to avoid local minima Stott et al. (2011) applied a

clustering technique to the map. The hill climber moves both stations and clusters when

32

finding improved layouts. The mechanism produced good map layouts and in some cases

better than both published and distorted layouts. However, the performance of the algorithm

was slow. To speed it up, Stott et al. (2011) suggested avoiding the comparison between nodes

that are far away from each other and reusing the calculations from previous iterations.

Many graph drawing algorithms in the literature that use search-based techniques, such as

simulated annealing, genetic algorithms and hill climbing, produce good layouts but they have

great potential for improvement. For example, simulated annealing adds an element of non-

determinism in order to escape from local minima in the search space. This would slow down

the performance of the algorithm since this stochastic behaviour means that a larger number of

iterations would be necessary to reach a minimum in the search space. Genetic algorithms, on

the other hand, have a slower rate of convergence compared to simulated annealing and hill

climbing. It initially makes rapid progress towards a solution, but then it converges very

slowly to a global optimum. The main problem with hill climbing is that it gets trapped in

local optima. Our proposed approach in this thesis uses an intensification technique based on a

combination of tabu search and path relinking that improves the quality of solutions and

speeds up the algorithm’s execution time.

2.8 Tabu Search

Tabu search is a general technique that was proposed by Fred Glover (Glover 1986; Glover &

Greenberg 1989; Glover 1989) for finding good solutions to combinatorial optimisation

problems. Many approaches were proposed to tackle this type of problems, and the majority

thereof were based on local search. In these approaches, the quality of solutions and the

algorithm’s computing time are dependent on the number of neighbourhood moves performed

in each iteration (Gendreau & Potvin 2014).

Tabu search could be considered as a neighbourhood search method (like simulated

annealing) but it takes a more aggressive approach. It proceeds on the assumption that there is

no value in choosing an inferior solution unless it is necessary, as in the case of escaping from

a local optimum (Lim & Chee 1991). In other words, tabu search improves the efficiency of

the exploration process by keeping track of local information (like the current value of the

objective function) along with some information related to the exploration process. This

33

systematic use of memory is an essential property of this searching technique. In addition to

saving the value of the best solution visited so far (like most exploration techniques), tabu

search also keeps information on the itinerary through the last solutions visited. This

information will be used to guide the move from solution i to the next solution j to be chosen

in the set of neighbourhood solutions to i. The role of the memory is to restrict the choice of

some subset of the neighbourhood set of node i, by forbidding moves to some neighbour

solutions (Hertz et al. 1995). At each iteration of the exploration process, it selects the best

neighbourhood solution. This is unlike hill-climbing, as it might make a down-hill move.

Therefore, this technique does not run out of choices for the next move. However, this might

lead in cycling by trapping the algorithm at locally optimal solutions. This problem has been

resolved by introducing two structures called Tabu lists and aspiration functions which are

used to keep information about past moves in order to respectively constrain and diversify the

search for good solutions (Lim & Chee 1991). A flow chart that demonstrates a simple tabu

search procedure is given in Figure 2.11.

The structure of tabu lists might vary from one problem to another depending on the

nature of the problem. However, the most simplified form of tabu list is a linear list that stores

the k most recent moves. The purpose of this list is to constrain the direction of search by

preventing the algorithm from going back to a state that was reached previously. Using this

structure might avoid being trapped in any local optimum. Tabu conditions are satisfied if the

current move tries to undo a move previously made that is still in the tabu list. Another

structure has been introduced called the aspiration function which has the ability to overrule

tabu conditions by accepting some moves in the tabu list that look attractive in spite of their

statuses. A tabu move is said to be attractive when applied on a current solution if it gives a

better solution than the best found so far. Such a move might be accepted in spite of its status.

This helps to diversify the search and encourage the exploration of new regions in the search

space (Lim & Chee 1991).

The memory used in tabu search is both explicit and attributive (Glover & Laguna 1997).

The explicit memory records complete solutions, typically consisting of elite solutions visited

during the search. An extension of this memory records highly attractive but unexplored

neighbours of elite solutions. The memorised elite solutions (or their attractive neighbours) are

34

used to expand the local search. On the other hand, tabu search uses attributive memory for

guiding purposes. This type of memory records information about solution attributes that

change in moving from one solution to another.

Figure 2.11 A flowchart of a simple tabu search procedure

An additional feature of tabu search is applying intensification and diversification. In the

search process, it might be useful to intensify the exploration in some region because it may

contain some acceptable solutions. This can be obtained by introducing a new term in the

objective function that assigns a high priority to the solutions in that region that have common

features with the current solution (i.e. penalise solutions far from the current one). This should

be done within a limited number of iterations and then the search process should move to

another region. Diversification will be responsible for moving the exploration process over

different regions. Additional terms can be introduced in the objective function that penalises

35

solutions that are close to the current one (i.e. to force the search process to jump to different

regions) (Hertz et al. 1995). Algorithm 2.1 is an outline of a simple tabu search approach

(Glover 1989; Glover 1990).

Tabu search can be applied on our problem for drawing a multi-criteria graph layout, but

the following major points should be thoroughly investigated:

• The generation process of neighbourhood solutions.

• The structure of tabu lists and how solutions are added and deleted to/from the lists

(intensification process).

• The definition of the aspiration function and how to update it (diversification process).

• The convergence properties of tabu search.

1. Select an initial solution x ∈ X.

Let x* = x, where x* denotes the best solution currently found.

Set the iteration counter i = 0

Begin with an empty set of tabu moves T

2. If S(x) - T is empty, go to Step 4, where S(x) is the set of all possible neighbourhood moves. Otherwise,

set i = i + 1 and select si ∈ S(x) - T such that si(x) is OPTIMUM(s(x):s ∈ S(x) - T).

3. Let x = si(x).

If C(x) < C(x*) let x* = x, where C is an objective function.

4. If a chosen number of iterations has elapsed either in total or since x* was last improved, or if S(x) = ∅

upon reaching this step directly from Step 2, stop. Otherwise, update T by adding x if it satisfies tabu

conditions and return to Step 2.

Algorithm 2.1 Simple tabu search approach (Glover 1989; Glover 1990)

Tabu search was used in solving multi-objective optimisation problems (Baykasoglu et al.

1999). The proposed algorithm was used to solve four different applications in different areas.

36

In every application, the algorithm’s solution was at least as good as, if not better than, the

reported results using different search-based techniques.

The solution structure of tabu search, in working with more than one solution

(neighbourhood solutions) at a time, enables this approach to be applied to multiple objective

optimisation problems. The main stages of the basic tabu search algorithm are: initial solution,

generation of neighbours, selection and updating. These stages are typical for any tabu search

approach that works on single-objective optimisation problems. However, to enable the tabu

search algorithm to work with more than one objective, the selection and updating stages were

redefined. In addition to the tabu list, two lists were defined, the Pareto list and the candidate

list. The Pareto list collects the selected non-dominated solutions found by the algorithm. The

candidate list, on the other hand, collects all other non-dominated solutions that were not

selected as Pareto optimal solutions in the current iteration. These solutions may become seed

solutions if they maintain their non-dominated status in later iterations. The candidate list

gives the opportunity to diversify the searching process (Baykasoglu et al. 1999).

Gandibleux et al. (1997) presented an algorithm based on the tabu search approach for

solving multi-objective combinatorial optimisation problems, and was able to determine the

efficient set of non-dominated solutions or at least a good inner approximation set of

solutions.

It is always possible to use all basic tabu search techniques in multi-objective optimisation

(Hansen 1997). The aspiration criterion allows the searching process to select neighbourhood

solutions that can contribute to the non-dominated set even if they are the results of tabu

moves, instead of only checking the best, non-tabu neighbour. Also, the neighbours resulting

from tabu moves can be accepted, in some cases, as best neighbours.

In basic tabu search, whenever there is a badly connecting neighbourhood function or

when the neighbourhood function induces wide valleys in the objective space, it might be

needed once in a while to sample new solutions in order to be able to search the whole feasible

set. This can be done by creating new, randomly generated solutions instead of duplicating

existing solutions. But it can be more effective, in a systematic or probabilistic fashion, to use

37

more than one neighbourhood function so that these connect the whole feasible set (Hansen

1997).

Moreover, the neighbourhood function might lead to generating many neighbours for each

solution. Therefore, it is more efficient to make moves based on a probabilistic or systematic

sampling of the neighbourhood, or to reduce the neighbourhood size. This would be useful in

multi-objective optimisation problems because they have an n-dimensional objective

boundary to discover and it is also time consuming to remain too long at each locality.

Choosing the appropriate neighbourhood function might make it possible to locate the best

neighbour without explicitly having to generate all the neighbours (Hansen 1997).

In Thakur & Dhiman (2011), it was concluded that tabu search can easily handle the

complicating constraints that could be found in real-life applications. However, this searching

technique might fail for two main reasons: an insufficient understanding of the basic concepts

of the tabu search method besides a lack of understanding of the problem at hand. Selecting a

proper search space and an effective neighbourhood strategy requires significant problem

knowledge. Tabu search, like all meta-heuristic methods, needs to achieve both depth and

breadth in its searching process; depth search is usually not a problem for tabu search, as it

generally finds quite good solutions early in the searching process, whereas breadth search can

be a critical issue. Therefore, it is extremely important to develop an effective diversification

scheme.

Other research studies and applications that used tabu search as a technique for optimising

problems with multi-criteria can be found in Brandao & Mercer (1997), Grandinetti et al.

(2012), Cordeau & Maischberger (2012), and Escobar et al. (2013).

Tabu search was previously used in the field of graph drawing with a single criterion. An

approach was proposed in Laguna et al. (1997) to minimise edge crossings in multi-layer

hierarchical digraphs. The nodes of these diagraphs must lie on a set of equally spaced

horizontal or vertical lines (layers) and all the edges flow in the same direction, as shown in

Figure 2.12. Garey & Johnson (1983) proved that this problem is NP-hard even if the digraph

has two layers only. The proposed tabu search approach searches for optimal or near-optimal

orderings of a single layer in between its adjacent layers whose orderings are fixed

38

(intensification phase). The algorithm also diversifies the search by applying an importance

sampling procedure, based on the degree of each node, where layers are treated differently

according to their level of importance. Then a switching procedure is performed on a

randomly selected node in a certain layer (diversification phase).

Two versions of the proposed algorithm were deployed such that the first version focuses

on the computational time when compared to methods based on simple ordering rules,

whereas the second version tries to find high-quality solutions within a reasonable computing

time. The only difference between the two versions was the termination criterion of the

algorithm. The experiments were conducted on a set of 200 randomly generated graphs and

the comparisons were made with effective techniques that were previously used in the field of

edge crossings minimisation such as the barycentric and the semi media methods with

switching. The experiments showed that the proposed tabu search approach is quite

competitive in terms of computational time and it also produces graphs with better quality,

although the difference becomes smaller at graphs with higher densities.

Figure 2.12 Hierarchical Diagraph (Laguna et al. 1997)

39

Many heuristic approaches (including tabu search) were developed to solve the bipartite

drawing problem which is a special case of multi-layer hierarchical graphs (Valls et al. 1996;

Marti 1998; Laguna & Marti 1999). In Martı́ & Laguna (2003), extensive computational

experiments were conducted to explore the behaviour of the most relevant heuristic and meta-

heuristic approaches developed to solve the problem of bipartite drawing, such as the

Barycenter method (Sugiyama et al. 1981), the median heuristic method (Eades & Wormald

1994), Tabu search method (Marti 1998), greedy randomised adaptive search procedure

(GRASP) with path relinking (Laguna & Marti 1999), and others. It is a 2-layer graph where

nodes are partitioned into two disjoint subsets (left and right layers), and edges are connecting

nodes between the two layers. In that work, the directions of the edges were omitted as they

have no effect on crossings. A bipartite graph drawing is specified with a unique y-coordinate

for each node, as shown in Figure 2.13. The experiments used around 3000 randomly

generated graphs to compare between the methods. The research concluded that the tabu

search method is more appropriate to use in solving the bipartite drawing problem as the

density of graph increases with a reasonable computational time. On the other hand, the

GRASP with path relinking produced better results with sparse graphs.

Tabu search has shown good results for large instances of many NP-hard problems in a

reasonable amount of time (Friden et al. 1989; Hertz & De Werra 1989). It has produced

comparably fast solutions in some graph theory applications, such as graph partitioning (Lim

& Chee 1991; Rolland et al. 1996; Benlic & Hao 2011), graph colouring (Hertz & De Werra

1989), and weighted maximal planar graphs (Osman 2006). It has also outperformed many

existing heuristics for solving the vehicle routing problem (Gendreau et al. 1994; Cordeau et

al. 1997; Escobar et al. 2014).

40

Figure 2.13 Bipartite sample drawing (Martı́ & Laguna 2003)

2.9 Path Relinking

Path relinking has been proposed as an approach to integrate intensification and diversification

strategies (Glover & Laguna 1997; Glover et al. 2000). This approach generates new solutions

by exploring paths that connect high-quality solutions (elite solutions from the reference set)

by starting from one of these solutions, called an initiating solution, and generating a path in

the neighbourhood space that leads toward other solutions, called guiding solutions where

initiating and guiding solutions represent the starting and ending points of the path. This is

accomplished by selecting moves that introduce attributes contained in the guiding solutions

(Laguna & Marti 1999). An illustration of a simple path is given in Figure 2.14. Unlike other

evolutionary approaches, such as genetic algorithms, where randomness is a key factor in the

creation of offspring from parent solutions, path relinking utilises systematic, deterministic

rules for combining elite solutions. Attributes from the guiding solution are gradually

introduced into the intermediate solutions, so that these solutions contain a limited number of

41

characteristics from the initial solution and more from the guiding solution while moving

along the path.

Path relinking is a fairly new approach and it has been applied in several computational

problems with great success (Aiex et al. 2003; Resende & Ribeiro 2003; Ghamlouche et al.

2004; Oliveira et al. 2004; Souza et al. 2004; Aiex et al. 2005).

The following three components are crucial in the design of the path relinking technique

(Ho & Gendreau 2006):

• Building the reference set,

• Choosing the initial and guiding solutions,

• Constructing a neighbourhood structure for moving along paths between initial and

guiding solutions.

Figure 2.14 Path relinking: original path (solid line) and one possible relinked path (dotted line) in the
solution space

Algorithm 2.2 shows a simple path relinking procedure that demonstrates how these

components interact (Rahimi-Vahed et al. 2013).

42

1. Generate a starting set of solutions.

2. Designate a subset of solutions to be included in the reference set.

while the cardinality of the reference list > 1

• Select two solutions for the reference set

• Identify the initial and guiding solutions

• Remove the initial solution for the reference set

• Move from the initial solution toward the guiding solution, generating intermediate solutions

• Update the reference list

3. Verify stopping criterion: Stop or go to 1.

Algorithm 2.2 Simple path relinking algorithm (Rahimi-Vahed et al. 2013)

Note that using path relinking periodically in a search procedure is intended to speed up

the identification of good solutions. Combining tabu search with path relinking is motivated

by the desire to tunnel through blocked off areas created by the tabu solutions (Glover 1997).

The proposed method in Ho & Gendreau (2006) for solving the vehicle routing problem

produced computational results that show that tabu search with path relinking is able to

generate better solutions than pure tabu search using considerably less computing time. Each

of the three components of path relinking used in the proposed method can be implemented in

different strategies as described in Ghamlouche et al. (2004). We summarise these

components as follows:

i. Building the reference set

The quality of generated solutions is affected by the quality and diversity of the solutions

included in the reference set. The algorithm builds the reference set during the tabu search

phase and is enriched during the path relinking phase. Ghamlouche et al. (2004) proposed

several strategies for building the reference set such as:

a. It is built with the solutions that at some point during tabu search become the best

overall solutions (i.e. linking the overall improving solutions).

43

b. It contains the best local minima encountered during the tabu search phase, because

usually local minimum solutions share some common characteristics with optimum

solutions.

c. It is built by selecting local minimum solutions that have a better objective function

value than those already in the reference set. The time aspect is introduced into the

selection process since the better solutions are usually encountered when the search

has been proceeding for some time. This strategy considers less local minima obtained

at that stage and consequently good solutions are found early during the searching

process.

d. This strategy ensures both the quality and the diversity of the solutions when building

the reference set. Starting with a large set of good solutions S, the reference set is

partially filled with the best solutions found in S to ensure the quality of the solutions.

Then, the reference set is extended with solutions that significantly differ from those

that already exist in the set.

ii. Choosing the initial and guiding solutions

The quality of the new generated solutions during the path relinking phase is highly

dependent upon the initial and the guiding solutions selected from the reference set R.

Ghamlouche et al. (2004) suggested five criteria for choosing the initial and guiding

solutions:

a. The guiding and initial solutions are defined as the best and worst solutions in R,

respectively.

b. The guiding solution is chosen to be the best solution in R, while the initial solution is

the second best one.

c. The guiding and initial solutions are chosen randomly in R.

d. The guiding solution is chosen as the best solution in R, while the initial solution is

defined as the solution with maximum Hamming distance from the guiding solution.

44

e. The guiding and initial solutions are chosen as the most distant solutions in R.

iii. Constructing a neighbourhood structure for moving along paths between initial and

guiding solutions

The aim of the path relinking phase is to progressively introduce the attributes of the

guiding solution into the solutions obtained by moving away from the initial solution. In

the path relinking phase, the algorithm must ensure that a progress towards the guiding

solution is made. Similarities and differences in the structure of the initial and guiding

solutions should be properly identified. Identical parts of the two solutions should remain

unchanged during the process. To clarify the importance of this phase, we highlight the

algorithm proposed in Ho & Gendreau (2006) for solving the vehicle routing problem.

Two neighbourhood methods were used. The first neighbourhood, N1(x), is made up of all

the potential solutions that can be reached from x by moving customers from their current

route to another while taking into account the structure of the guiding solution. The second

neighbourhood, N2(x) is defined similarly as the set of all potential solutions that can be

reached from x by exchanging two customers i and j between their respective routes while

taking into account the structure of the guiding solution.

In Ho & Gendreau (2006), the path relinking procedure is triggered within tabu search for

a predefined number of times. In each call, path relinking generates several paths with

different initial and guiding solutions from the reference set such that the initial and guiding

solutions are chosen according to one of the criteria described earlier. When the path is longer,

the chance of producing good solutions is better. After the path relinking phase is finished,

tabu search continues with the solution it had before path relinking was triggered. A

calibration process was performed to adjust the frequency of triggering the path relinking

procedure. This calibration process is important because if path relinking is performed too

frequently, the search will tend to focus on a small portion of the search space. However, if it

is performed very rarely, its impact will be negligible. Thus, it was important to find a balance

between these two extremes.

A path relinking-based algorithm combined with a greedy randomised adaptive search

procedure (GRASP) has been proposed to target the max-min diversity problem (Resende et

45

al. 2010). It is an NP-hard problem, where subsets of elements should be selected from a given

set such that the diversity among the selected elements is maximised. The main purpose of

that work was to extensively introduce path relinking as a competitive search-based method

for solving combinatorial problems. A comparison was performed with simulated annealing

and tabu search that were previously proposed to target the max-min diversity problem. The

results of the comparison were in favour of a variant of path relinking combined with GRASP.

The combination of tabu search and path relinking was also used to tackle the job shop

scheduling problem (Peng et al. 2014). The experimental results show that this combination

produces competitive results compared to state of the art algorithms for the job shop

scheduling problem in the literature demonstrating its effectiveness in terms of solution

quality and computational efficiency. Both techniques operate interchangeably, such that path

relinking is used to generate solutions on the path from the initial solution to the guiding

solution, while the purpose of tabu search is to improve the generated solution to a local

optimum.

The algorithm starts by generating a random population of a predefined size of feasible

solutions. Tabu search is used to optimise each solution in the population to become a local

optimum. The optimisation of each solution stops when the optimal solution is found or no

improvement on the best objective value is made after a given number of iterations. The

reference set is updated by selecting a solution (from the initial improved population) that

gives the minimum value of the objective function. Then, a pair of two solutions (initial and

guiding) is randomly selected from this population. A path relinking procedure is applied on

the selected solutions and returns the best solution in the path from the initial solution to the

guiding solution. The returned solution is passed to a tabu search procedure with long

iterations that will be compared afterwards to the solutions in the reference set and update it

accordingly. The new generated solution is added to the reference set and the worst solution is

removed. This process is repeated until a stopping criterion is met.

A study that shows the effect of using path relinking in the context of multi-criteria

optimisation problems was presented in Martí et al. (2015). A comparison between different

variants of GRASP with path relinking was made with the best methods that were previously

46

applied on two hard bi-objective combinatorial problems. The comparison considered three

different ways of implementation: firstly, each criterion is optimised independently; secondly,

each criterion is optimised sequentially by alternating to guide the search; and thirdly, all

criteria are combined into a single weighted objective function. The study concluded that

some variants of path relinking were favoured compared to other heuristic methods.

Path relinking demonstrated efficient performance when being applied coupled with

neighbourhood search-based methods and population-based methods (Ribeiro & Resende

2012). In addition to tabu search and GRASP, path relinking was successfully used in

conjunction with different search-based methods, such as variable neighbourhood search,

genetic algorithms, and scatter search (Canuto et al. 2001; Festa et al. 2002; Resende &

Werneck 2004; Scaparra & Church 2005; Ribeiro & Vianna 2009).

Path relinking has also been applied to specialist graph drawing tasks. In Laguna & Marti

(1999), path relinking was coupled with a greedy randomised adaptive search procedure

(GRASP) for the problem of minimising straight-line crossings in a 2-layer graph (bipartite

graph) to search for improved solutions. According to the results, the most influential factor

on the performance of the algorithm was the density of the tested graphs. With reference to the

experiments which were performed in Martı́ & Laguna (2003) to compare between 14

different heuristics, as described in the previous section, the combination of GRASP and path

relinking produced better results for relatively low density graphs. The relinking process

implemented in this algorithm could be summarised as follows:

During the first three iterations of the GRASP, the set of elite solutions is formed. Starting

from the fourth iteration, each generated solution is considered as an initiating solution and it

is subject to a relinking process by performing moves on the path from the initial solution to a

randomly chosen elite solution. A move along the path is made by choosing a node from the

initial solution and placing it in the position occupied by the same node in the guiding

solution. Afterwards, a sequence of position exchanges of nodes, that are one position away

from each other, is performed until no more improvement in the crossings minimisation is

found. Once this neighbourhood process is explored, the relinking continues from the solution

defined before the exchanges were performed. The relinking process stops when the initial

47

solution matches the guiding solution. Note that, it is inefficient to apply the neighbourhood

exploration process at each step of relinking since the two generated consecutive solutions

after the relinking step differ only in the position of two nodes. Hence, a number of parameters

that control the process of exchanges mechanism were introduced.

2.10 Summary

Throughout this chapter we have covered the area of graph drawing including graph layout

aesthetics and graph drawing techniques. Existing research in each of these fields has been

explored. We have discussed several search-based techniques that were previously used in the

field of graph drawing. We have also described two neighbourhood search-based techniques

(tabu search and path relinking) that were not previously applied to lay out multi-criteria

general graphs with straight lines, and we have highlighted their effectiveness in many

applications that involve multi-criteria optimisation. In the next chapter, we describe the

features of our visualisation tool along with the operations that can be performed in order to

test our graph drawing algorithms and perform all the experiments conducted in this research.

48

Chapter 3 A Visualisation Tool

In this chapter, we describe the visualisation tool that was used to perform all the experiments

discussed in this thesis. The software was implemented using Java programming language

(version 1.7.0; Java HotSpot™ 64-Bit Server VM 21.0-b17 on Windows 7). It consists of two

main graphical frames: a frame that includes all the operations that can be performed such as

drawing graphs, loading and saving graphs, generating random graphs, and running several

neighbourhood search-based graph drawing algorithms; and another frame that allows the user

to control the value of the parameter of each method and the weight of each aesthetic measure.

We give a detailed description of each frame in the following two sections. Note that, the code

can be accessed at the Dryad Digital Repository: https://doi.org/10.5061/dryad.k082rv8.

3.1 Operations Frame

The visualisation tool allows the user to choose from a list of operations displayed in a drop-

down menu inside a frame as shown in Figure 3.1. The list contains the following operations:

Figure 3.1 A screen shot of the drop-down menu of available operations in our visualisation tool

49

• Add nodes – This option allows the user to draw nodes. The user should place the

mouse’s cursor on the required position within the canvas and then he clicks the

mouse. The node will be displayed as a small square with a side-length of 12 pixels.

An automatic ID (starting from 1) will be also assigned to the drawn node (see Figure

3.2).

Figure 3.2 Adding nodes to the canvas

• Add edges – This option allows the user to draw edges between nodes. The user clicks

the mouse over the two nodes that form the end points of the edge to be drawn (see

Figure 3.3). Note that, our tool allows the user to draw simple graphs only. Self-

sourcing edges and multiple edges are not allowed.

50

Figure 3.3 Adding edges between the nodes shown in Figure 3.2

• Move nodes – This option allows the user to move nodes of a graph displayed within

the canvas. The user clicks the mouse over the node that he wants to move and drags it

to a new position (the edge will stretch and shrink accordingly as shown in Figure 3.4).

Using this option, the user can change the layout of a drawn graph. For example, the

user can change the initial layout of a given graph to test its effect on the drawing

algorithms.

Figure 3.4 Moving nodes and stretching / shrinking edges shown in Figure 3.3

51

• Load and store graphs – These two options allow the user to load and save graphs

from/to text files within a local directory. The file’s content begins with the number of

nodes in the graph followed by the coordinates of each node (i.e. the first pair of

numbers represents the horizontal and vertical coordinates of the node with ID 1; the

second pair of numbers represents the horizontal and vertical coordinates of the node

with ID 2; and so forth). Then, the information of edges comes after. Number of nodes

that are adjacent to node number 1 along with their IDs are listed first, then the same

information is listed for node number 2, and so forth.

• Generate random graphs – This option allows the user to generate simple random

connected graphs. The random graph generator is based on the Erdos-Renyi model

(Erdos & Rényi 1960; Daudin et al. 2008). It generates randomly connected graphs.

The parameters to the generator are the number of nodes (see Figure 3.5) and the

density of the graph. Once the user enters the number of nodes, the tool will calculate

the minimum density (i.e. minimum number of edges required to keep the graph

connected which equals to number of nodes minus one) and will show it to the user

(see Figure 3.6). Note that, if the user enters a value larger than the maximum density,

the tool will consider the graph as a complete graph (i.e. there is an edge between

every pair of nodes). Random locations for the nodes are generated based on the size

of the canvas where the graph is displayed. Then, the generator chooses random nodes

as the end points of the edges. All random values were generated using the random

method in Java. Self-sourcing edges and multiple edges between the same pair of

nodes are not allowed. Finally, the graph generator tests the connectivity of the

generated graph. Only connected graphs are accepted. A sample of a randomly

generated graph with 4 nodes and 4 edges (i.e. density = 0.67) is shown in Figure 3.7.

Figure 3.5 A frame prompting the user to enter number of nodes required in the random graph layout

52

Figure 3.6 A frame prompting the user to enter the required density (showing the minimum value that can
be entered)

Figure 3.7 A randomly generated graph layout

In our implementation, once the random graph is displayed on the canvas, the user has the

option to change the layout to another random layout by clicking on the canvas (see Figure

3.8).

53

Figure 3.8 A different layout of the graph shown in Figure 3.7

• Select a graph drawing algorithm – The user has the option to select a drawing

algorithm from a list of four neighbourhood search-based graph drawing algorithms:

hill climbing, simulated annealing, tabu search, and path relinking (coupled with tabu

search). The new layout is displayed on the canvas after applying the selected drawing

algorithm. The values of parameters of each drawing algorithm can be controlled by

the user using the other frame discussed in Section 3.2.

• Run on multiple graphs – This option allows the user to run a drawing algorithm on a

file which contains information of multiple graph layouts. Then, it generates an output

file that includes information about the fitness value of the drawn layout, the number

of evaluated solutions and the execution time (in seconds) of the drawing algorithm.

This operation was used in most the experiments discussed throughout this thesis. This

option currently works for one drawing algorithm at a time. In order to switch to

another drawing algorithm, it requires few lines of code to edit. We are planning to

offer the user an easier way of algorithm’s selection in the future.

3.2 Parameters and Aesthetic Measures Frame

In multi-criteria graph drawing, the weight of each metric could change for each layout as it

depends on the metric in which the user prefers to focus on. Therefore, we facilitate the

parameter tuning process for each method and the selection of weight for each aesthetic metric

by providing another frame that contains text fields where these values can be controlled by

54

the user (see Figure 3.9). The frame also shows the value of each individual aesthetic measure

after optimisation, in addition to the value of the weighted sum of the fitness function.

Additional information, such as number of nodes and number of edges of the graph displayed

within the canvas, are also provided inside the frame. Note that, the number of evaluated

solutions and the execution time (in seconds) of the drawing algorithm are displayed inside an

alert box once the algorithm finishes execution. We will try to add these two values within this

frame in the future.

Figure 3.9 A screen shot of the frame which allows the user to control the value of the parameter of each
method and the weight of each measure

3.3 Summary

In this chapter, we described the operations and the features of our visualisation tool that we

used to perform all the experiments discussed in this thesis. In the next chapter, we introduce

our proposed tabu search-based technique and we demonstrate how we apply it to draw graph

layouts. Then, we compare it to the most popular neighbourhood search-based algorithms: hill

climbing and simulated annealing.

55

Chapter 4 Neighbourhood Search-based Graph Drawing
including Our Proposed Tabu Search Algorithm

As discussed earlier in Chapter 2 (Section 2.5.2), there are several multi-criteria methods for

graph drawing that are based on explicit cost functions that combine several metrics of graph

layout quality. This approach has the advantage of allowing explicit, tuneable combinations of

metrics to meet user preferences. However, such methods work slowly, typically taking a

considerable time to lay out the graph. In this chapter, we want to show that we can improve

the performance of such neighbourhood search-based systems by introducing the features of

tabu search. This is the first time tabu methods have been applied to general graph drawing.

 The main goal in this chapter is to improve the efficiency of neighbourhood search-based

graph drawing algorithms by speeding up the drawing process using tabu search without

sacrificing the layout quality. We are not looking for the global optimum solution, but aim to

obtain a good solution quickly. Our contribution is to propose a tabu search-based approach as

described in Section 4.5. But, in order to prove the efficiency of our method and its competence

in relation to other neighbourhood search methods, a comparison was made with hill climbing

and simulated annealing. Therefore, we introduce the implementation and parameter tuning of

those two approaches first in this chapter using similar algorithms applied in Stott et al. (2011)

for hill climbing and in Davidson & Harel (1996) for simulated annealing. In addition to the

fact that these two methods are the most popular neighbourhood search-based methods, we

chose these two methods because hill climbing is considered as one of the fastest search-based

techniques to reach equilibrium, whereas simulated annealing allows more extensive search for

the optimal solution and consequently usually produces better solutions compared to hill

climbing (Talbi & Muntean 1993). Moreover, our tabu search method is close in concept to

these methods as they share a large amount of code. In fact, the basic tabu search can be seen as

simply the combination of hill climbing with short-term memories (Glover 1986). This means

that it is more likely to be a fair comparison, with a low amount of bias in terms of

implementation efficiency.

 In this chapter, we describe the different search-based approaches which we applied in

order to draw general graphs with straight lines. This is achieved by implementing

56

neighbourhood search-based methods which draw general graphs with multiple aesthetic

criteria that are used in a weighted sum fitness function to measure the quality of the graph

layout. The smaller the value of the fitness function, the better the quality of the graph layout.

Whilst there have been empirical studies of what may be the most effective layout criteria

(Purchase 2002), we are not overly concerned with the particular criteria or their weights.

Increasing the value of the weight of a metric for a certain aesthetic means that we want to

show the importance of that quality measure against the other aesthetics and expecting it to be

visualised in the generated layout, while the opposite is the case when the value of the weight is

decreased (Davidson & Harel 1996). In our experiment, the values of the weights in the fitness

function have been fixed and are the same in all approaches. With reference to the time

complexity analysis performed in Davidson & Harel (1996), increasing or decreasing the value

of a weight for a certain metric does not have an effect on the number of evaluated solutions

performed by the algorithm.

 Our fitness function follows a standard approach for search-based graph drawing methods.

It is similar to the fitness function used in Davidson & Harel (1996) with some changes in the

selected aesthetics. We used four metrics for measuring the quality of the graph. These metrics

represent the aesthetics of: distributing nodes evenly, making uniform edge lengths, minimising

edge crossings, and improving angular resolution (refer to Chapter 2 for a detailed description

of each criterion). All these metrics contribute in the graph quality fitness function that is

computed as follows:

fitness = w1*m1 + w2*m2 + w3*m3 + w4*m4

where wi and mi are the weight and the measure for criterion i respectively. The problem in a

multi-criteria optimisation function is that the value of a specific measure may dominate the

others. Therefore, we applied a normalisation process to ensure that the value of each measure

is between 0 and 1. It is not possible to determine unified weights that work well for all types

of graphs, and indeed weights can vary according to application area and user preferences.

Hence, we assigned the value 1 to all the weights such that w1=w2=w3=w4=1.

 The rest of this chapter is organised as follows: Section 4.1 demonstrates the normalisation

process we applied on the criteria (metrics) used in our fitness function; Section 4.2 describes

57

the local search space used by the three algorithms and the general procedure used for tuning

their parameters; Section 4.3 describes the pseudo code for the hill climbing graph drawing

algorithm along with the process of tuning its parameters; Section 4.4 describes the pseudo

code for the simulated annealing graph drawing algorithm along with the process of tuning its

parameters; Section 4.5 describes our proposed tabu search-based graph drawing algorithm

along with the process of tuning its parameters; and Section 4.6 summarises the contents of this

chapter.

4.1 Normalisation of Metrics

Multi-criteria optimisation algorithms seek to find a single optimised solution based on the

weighted sum of all criteria. If all metrics get better or worse together, this conventional

approach can effectively find the optimal solution. However, if there are conflicts between the

metrics, then there is no single optimal solution. In most cases, there are infinitely many

optimal solutions. An optimal solution in the multi-criteria optimisation context is a solution

where there is no other feasible solution that improves the value of at least one criterion

without deteriorating any other criterion. This is the notion of Pareto Optimality (Sunar &

Kahraman 2001; Kim & de Weck 2005).

The weighted sum formula allows the multi-criteria optimisation problem to be

transformed into a single criterion optimisation function that is constructed as a sum of

objective functions (metrics) mi multiplied by weighting coefficients wi (Grodzevich &

Romanko 2006). The problem is formulated as follows:

min �
�'�(7)												
)

�*+

such	that	7	is	a	set	of	nodes	and	edges	that	form	a	graph, where	
� ≥ 0, ∀� = 1, …	, 1.	
The problem in the multi-criteria optimisation function is that the value of a single

measure might largely dominate the others. Also, as different measures can have different

magnitudes, the normalisation of measures is required in order to obtain a solution consistent

with the weights assigned by the decision-maker who has insights into the problem and is

able to express relative importance of the measures.

58

In our graph layout problem, we have four different metrics that contribute in a single

weighted sum optimisation function. Each measure has a different scale of values (i.e. the

range of values of each measure differs from one measure to another). Furthermore, the node-

node occlusion measure (as described in Chapter 2 Section 2.4) might have a maximum value

of infinity (when two nodes have the same coordinates). Therefore, normalising the values to

a unified range (i.e. a range between 0 and 1) is required.

We normalised the values of measures using the min-max method (Kotsiantis et al. 2006;

Shalabi et al. 2006). This method assumes that the minimum (FG�H)	and the maximum (FGIJ)

values of a measure (m) are known. Then it uses the following function for normalisation:

' − FG�H
FGIJ − 	 FG�H

This formula was directly applied on the measure of edge crossings since the minimum

and maximum possible values for edge crossings can be easily calculated as follows:

FG�H = 0,

FGIJ = E * (E – 1) / 2 , where E is the number of edges.

However, the normalisation process was slightly different with the measures of node-node

occlusion, edge lengths, and angular resolution as the calculation of maximum value of these

measures is not straight forward and in some cases it could reach infinity. Therefore, we

performed the following process to normalise those measures:

i. As the graph drawing algorithm goes through several iterations searching for

candidate solutions, in the first iteration, we compute the value of each measure

and we consider that solution as an initial solution vector.

ii. In all the subsequent iterations, for each measure, we compute the current

maximum and minimum values of all the generated values (tracking a history of

values) for each measure in order to use in the calculation of a normalised value

between 0 and 1. For example, the normalised value of measure m at iteration i

(mi), 	

59

KL
'MN�O�� = 	 '� − P���
PNQ� − P��	�	

where P��� and PNQ� 	are the minimum and the maximum values of the measure at

the ith iteration.

iii. This process is performed at each iteration until a solution is found.

This is considered as an estimation of the normalised value for the measure. Calculating

the normalised values using this method will not affect the performance of our drawing

algorithm because we just compare the newly generated values with the current maximum

(minimum) and we update the value accordingly.

After applying all the above calculations, the value of each measure lies between 0 and 1

and none of the measures dominates the others. Thus, the value of our fitness function is

always a small non-negative value such that the maximum value is 4 and the minimum value

is 0 since our fitness function consists of four measures. This normalisation process is also

used in the field of neural networks to avoid neuron saturation where a neuron predominantly

outputs values close to the asymptotic ends of the bounded activation function (Jayalakshmi

& Santhakumaran 2011).

Our graph drawing algorithms are applied to lay out general graphs that might have

different properties. Therefore, assigning weights to the measures in the weighted sum

formula would be an interactive process with decision-makers (users) who have background

in graph layout. We cannot determine unified weights that work properly for any graph. Thus,

the weights should be assigned by decision-makers according to their preferences of which

measure they want to test. In our experiments, we assign the value 1 to all weights in order to

avoid the domination of a measure over another.

4.2 Common Procedures between Graph Drawing Algorithms

In this section, we describe the basic local search procedure used in the three neighbourhood

search-based graph drawing algorithms discussed in this chapter. We also provide a detailed

description of the parameter tuning process that we applied to tune the value of each parameter

in each algorithm.

60

4.2.1 Local Search Space

In all the algorithms described in this work, we use a systematic exploration of the search

space. For each node, we search the points (candidate solutions) around a square centred on

the node at a given distance, as shown in Figure 4.1. Eight points around the square are

checked (up, down, left, right, and the four corners). We compute the fitness value at each

candidate solution, and we select the candidate solution that gives the lowest fitness value

(currentFitness). In the case that there are multiple candidate solutions that share the

lowest fitness value, we select the first encountered candidate solution starting from the right

point around the square and move along the points of the square in a clockwise direction. This

is how the fitness tie-breaks in all the methods discussed in this work.

Figure 4.1 The points around the square represent the candidate solutions at each node

Note that, using a geometric shape for defining a search space in the field of graph

drawing was used earlier in Davidson & Harel (1996), and Stott et al. (2011) where a circle

and a rectangle had been respectively used. However, since evaluating a multi-criteria fitness

value is a lengthy process, we restrict the movements to eight points only to avoid the long

execution time for re-evaluating the value of the fitness function with a large number of

evaluated solutions. We use the same neighbourhood searching strategy with all the methods

included in this work in order to make a fair comparison. This searching strategy can be easily

adjusted with our implementation by increasing the number of repetitions from eight points to

any larger number, but the execution time would be significantly longer.

4.2.2 Parameter Tuning Procedure

Each method has a different number of parameters that affect the performance of the method

and the quality of the layouts generated by these methods. The parameters calibration process is

61

a key step in the development of any algorithm. Several experiments were conducted to tune

the parameters of the three methods. The experiments show the effect of increasing and

decreasing the values of the parameters on the method’s performance and the layout’s quality.

 Parameter tuning is a common practice in search-based methods. Typically, one parameter

is tuned at a time that may cause some suboptimal choices, since parameters often interact in a

complex way. However, the simultaneous tuning of more parameters leads to an enormous

amount of experiments. There are some technical drawbacks to parameter tuning based on

experimentation that can be summarised as follows (Eiben et al. 1999):

• Parameters are not independent, but trying all different combinations systematically is

practically impossible.

• The process of parameter tuning is time consuming, even if the parameters are

optimised one by one, regardless to their interactions.

• For a given problem, the selected parameter values are not necessarily optimal, even if

the effort made for setting them was significant.

However, many researchers (Davidson & Harel 1996; Rosete-Suárez et al. 1999; Pacheco

& Marti 2006; Gendreau & Potvin 2014) used the following process for tuning parameters:

i. Perform exploratory tests on a wide range of values for each parameter in order to

select a robust set of initial values.

ii. Perform a systematic incremental procedure for testing the values of each single

parameter at a time while fixing the values of the rest of the parameters at what

appears to be reasonable.

In computational experiments, it is recommended to divide the datasets into two subsets;

one that is used in the algorithm design and the tuning of the parameters, whereas the other

subset is used in the final experimentation after the parameters are calibrated. This is

necessary for avoiding overfitting, i.e. the tuned parameters might be good for the dataset at

hand, but they produce poor results in general with different datasets (Gendreau & Potvin

62

2014). Overfitting can be beneficial if we are trying to find the best set of values to parameters

for a specific type of graphs with certain properties but it causes a problem when we are

looking for more general results (Hawkins 2004).

In the next sections, we describe the basic neighbourhood search-based graph drawing

algorithms for hill climbing and simulated annealing, followed by our tabu search-based

approach for graph layout. For each algorithm, we provide a detailed description of the

parameters that the algorithm requires along with the results of the parameter tuning process.

4.3 Hill Climbing

Hill climbing has been applied as a multi-criteria search-based method in the field of graph

drawing in Rosete-Suárez et al. (1999), and Stott et al. (2011). Algorithm 4.1 shows an

overview of the process for a straightforward, generic hill climbing method for graph layout.

4.3.1 Algorithm

The algorithm operates in the following manner: first, we compute the fitness value of the

initial layout (layoutFitness). Then a local search procedure is implemented, as described

in the previous section. The square size starts with an initial predefined value,

(initialSquareSize). In order to intensify the searching process, the square size is

reduced when none of the candidate solutions at the current square size makes an improvement

to the current solution. SmallerSquareSize() is a function that reduces the current

square size (squareSize) by a predefined reduction rate (squareReduction) using the

following formula:

squareSize = squareSize / squareReduction

 The whole process of searching is repeated as long as the square size is of a positive value.

See Algorithm 4.1.

63

4.3.2 Parameter Tuning

The hill climbing algorithm is affected by two parameters: the initial value of the square size

used to determine the neighbourhood solutions (initialSquareSize) and the value used to reduce

the size of the square (squareReduction).

In order to tune the parameters of this algorithm and the other algorithms in this research,

several experiments were conducted to calibrate the parameters of each method. We performed

exploratory tests on a wide range of values for each parameter in order to select a robust set of

initial values. Then we ran a systematic incremental procedure for each single parameter at a

time while fixing the values of the other parameters. This is similar to the tests conducted in

Davidson & Harel (1996), Rosete-Suárez et al. (1999), Pacheco & Marti (2006), and Gendreau

Given:

 Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges.

 initialSquareSize: predefined size of a square where candidate solutions are located on its border.

 squareReduction: predefined value which represents the rate of reduction for the size of the square.

Algorithm :
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)}

2: squareSize = initialSquareSize

3: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */

4: while squareSize > 0 do

5: layoutFitness = Fitness(layout)

6: for v in V do

7: currentPos = layout[v] /* position currently associated with node v */

8: currentFitness = Fitness(layout)

9: for scaledOffset in {(squareSize*x, squareSize*y) | (x,y) in allOffsets}

10: candidatePos = currentPos + scaledOffset /* vector addition */

11: if (Fitness(candidatePos) < currentFitness)

12: layout[v] = candidatePos

13: currentFitness = Fitness(layout)

14: end if

15: end for

16: end for

17: if (currentFitness >= layoutFitness) /* in case of no improvement in layout fitness*/

18: squareSize = SmallerSquareSize(squareSize, squareReduction)

19: end if

 20:end while

Algorithm 4.1 Hill climbing graph drawing algorithm

64

& Potvin (2014). Since Erdos-Renyi graphs with the same parameters are known to possess

very similar characteristics (Bollobás 1998; Titiloye & Crispin 2012), we generated 100

random connected graphs based on Erdos-Renyi model that were divided into five sets such

that the graphs in each set had a different number of nodes and edges compared to the graphs in

the other sets. Hence, each set consisted of 20 test cases with the same number of nodes and

edges but with different initial layouts. The characteristics of the five sets are described in

Table 4.1. Since all our experiments are applied on undirected simple graphs, we use the

following formula for computing the density of a graph (Coleman & Moré 1983):

R��S�TU = 2|W|
|M|(|M| − 1)

Table 4.1 The characteristics of graph datasets used in parameter tuning for the hill climbing algorit hm

Graph Set Nodes Edges Density Label

1 50 153 0.125 N50E153

2 100 544 0.110 N100E544

3 150 1173 0.105 N150E1173

4 200 1890 0.095 N200E1890

5 250 2645 0.085 N250E2645

The parameters’ tuning process has passed through two phases. In the first phase we try to

find a proper set of values of parameters that gives the smallest fitness (best quality), whereas

in the second phase we try to find a set of values that gives the smallest number of evaluated

solutions.

i. Phase I

In phase I, we tested the hill climbing drawing algorithm on the 100 test cases for four

different values of initialSquareSize: 64, 128, 256, 512, and four different values of

squareReduction: 2, 4, 6, 8. We tested all combinations of these values in an attempt to obtain

the parameters’ values that give the best graph layout quality among all possible

combinations. We started the process by fixing the value of squareReduction to 2 and

changing the values of initialSquareSize according to the list of values mentioned above. We

applied the same process for all the values of squareReduction. Figure 4.2, Figure 4.3, Figure

4.4, and Figure 4.5 show the values of the fitness function generated by the hill climbing

65

drawing algorithm when we use all combinations of the parameters’ values listed above. The

figures show that the value of the fitness function decreases when the value of

initialSquareSize increases. In this phase of testing, we looked for the combination of

parameters’ values that give the smallest fitness value (best quality) compared to all other

combinations regardless of the number of evaluated solutions performed by the algorithm. The

best values we got in this phase were 512 for initialSquareSize and 2 for squareReduction.

Figure 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase I)

Figure 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase I)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

0 100 200 300 400 500 600

Fitness

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

0 100 200 300 400 500 600

Fitness

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

66

Figure 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase I)

Figure 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase I)

ii. Phase II

In phase II of parameter tuning, we focus on the performance of the algorithm (i.e. number of

evaluated solutions). The target is speeding up the process of drawing a good graph layout but

not necessarily the best layout. To do so, we took a view that a good-enough graph layout is a

layout in which its fitness value is slightly greater than the best fitness value produced in the

experiments of phase I. Therefore, we took the values of the fitness function produced by the

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

0 100 200 300 400 500 600

Fitness

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

0 100 200 300 400 500 600

Fitness

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

67

selected parameters’ values in phase I and we increased them by 12.5%. Then we ran the hill

climbing drawing algorithm until it reached equal fitness values to the target fitness values or

no further improvement in the fitness value could be made. Afterwards, we picked the most

appropriate parameters’ values that gave a good layout with a small number of evaluated

solutions.

In this experiment, we tested once more the following values for initialSquareSize: 64,

128, 256, 512 and the values 2, 4, 6, 8 for squareReduction. We followed the same process

performed in phase I by fixing the value of squareReduction to 2 and changing the values of

initialSquareSize according to the list of values given above. Then we repeat this for all the

values of squareReduction. The tables from Table 4.2 to Table 4.5 and the figures from Figure

4.6 to Figure 4.9 show the fitness function values and number of evaluated solutions generated

by the hill climbing algorithm in phase II.

According to these tables and figures, we recognised that the values of the parameters that

gave small fitness values (good quality) with a small number of evaluated solutions were: 512

for initialSquareSize and 4 for squareReduction. Using these two values for the parameters

made the hill climbing algorithm produce close fitness values to the target fitness values with

a limited number of evaluated solutions compared to the other parameters’ values. We could

have used the value 2 for squareReduction since it produced graph layouts with fitness values

that were slightly better than the graph layouts produced by the algorithm when

squareReduction equals to the value 4. However, the latter generated a lower number of

evaluated solutions compared to the former value, and since there is only a slight difference

between the values of the fitness function produced using these two values, we selected the

value 4 for squareReduction.

68

Table 4.2 Hill Climbing - Fitness value when squareReduction = 2 (phase II)

Fitness

initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645
64 0.591 0.821 0.996 1.168 1.336
128 0.487 0.766 0.991 1.127 1.290
256 0.474 0.764 0.981 1.125 1.291
512 0.453 0.760 0.985 1.123 1.288

Target 0.408 0.681 0.883 1.006 1.152

Figure 4.6 Hill Climbing -Number of evaluated solutions when squareReduction = 2 (phase II)

Table 4.3 Hill Climbing - Fitness value when squareReduction = 4 (phase II)

Fitness
initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645

64 0.599 0.855 1.019 1.187 1.348
128 0.505 0.784 1.017 1.145 1.288
256 0.487 0.812 1.013 1.129 1.299
512 0.500 0.800 0.996 1.120 1.297

Target 0.408 0.681 0.883 1.006 1.152

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 100 200 300 400 500 600

Evaluted

Solutions

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

69

Figure 4.7 Hill Climbing - Number of evaluated solutions when squareReduction = 4 (phase II)

Table 4.4 Hill Climbing - Fitness value when squareReduction = 6 (phase II)

Fitness

initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645
64 0.612 0.860 1.021 1.194 1.357

128 0.518 0.792 1.033 1.175 1.314

256 0.506 0.818 1.017 1.126 1.285

512 0.509 0.821 1.050 1.124 1.317

Target 0.408 0.681 0.883 1.006 1.152

Figure 4.8 Hill Climbing - Number of evaluated solutions when squareReduction = 6 (phase II)

0

20000

40000

60000

80000

100000

120000

140000

0 100 200 300 400 500 600

Evaluated

Solutions

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0

20000

40000

60000

80000

100000

120000

0 100 200 300 400 500 600

Evaluated

Solutions

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

70

Table 4.5 Hill Climbing - Fitness value when squareReduction = 8 (phase II)

Fitness
initialSquareSize N50E153 N100E544 N150E1173 N200E1890 N250E2645

64 0.615 0.861 1.022 1.197 1.358

128 0.521 0.792 1.038 1.174 1.314

256 0.509 0.881 1.039 1.128 1.307

512 0.571 0.831 1.022 1.134 1.303

Target 0.408 0.681 0.883 1.006 1.152

Figure 4.9 Hill Climbing - Number of evaluated solutions when squareReduction = 8 (phase II)

4.4 Simulated Annealing

Simulated annealing was first used for the graph layout problem in Davidson & Harel (1996). It

has been used to draw general undirected graphs with straight edges taking into account several

drawing aesthetics. An overview of a generic implementation for simulated annealing used in

drawing graph layouts is shown in Algorithm 4.2.

4.4.1 Algorithm

The algorithm starts by choosing an initial graph layout and an initial temperature

(initialTemp). Then it repeats the following steps for fixed number of iterations

(maxIterations): a new candidate solution is chosen from the neighbourhood of the

0

20000

40000

60000

80000

100000

120000

0 100 200 300 400 500 600

Evaluated

Solutions

initialSquareSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

71

current solution using the same neighbourhood solution selection process described in section

4.2.1 but the selection is performed at random (i.e. moving only one node in the current layout

to a new location on the points of the surrounding square to get a new layout). The fitness value

of the new candidate solution is computed and compared to the fitness value of the current

solution. The candidate solution becomes the new current solution if the fitness value of the

candidate solution is less than the fitness value of the current solution. Also, there is a

probability of selecting the candidate solution as the new current solution even if its fitness

value is larger than the fitness value of the current solution. This happens if the difference

between the fitness values satisfies the following condition:

e-(candidateFitness – currentFitness) / t ≤ random[0,1)

where t is the current temperature of the system.

 As the general simulated annealing algorithm dictates, a series of moves is attempted at

each temperature (i.e. the annealing process keeps searching for candidate solutions using the

same temperature for a certain number of iterations). Therefore, we have to decide when to

change the temperature and how to change it. iterPerTemp is the predefined value that

represents the number of iterations needed to search for candidate solutions at each

temperature.

 The cooling down schedule is one of the most crucial parts of the annealing algorithm. As

we start with an initial temperature (initialTemp), the temperature should be decreased

after a predefined number of iterations (iterPerTemp). We follow most researchers

(Davidson & Harel 1996) in applying the following rule as referenced in Algorithm 4.2 by the

CoolingDown() function:

tnew = told * coolDown

where t represents the temperature and coolDown is a predefined value that represents the

temperature reduction rate. Slow cooling may improve the results but at a cost of increasing

running time. In addition to cooling down the temperature, the size of the square, in which the

candidate solutions of the current solution lie, should also be reduced.

SmallerSquareSize() is the function we used to reduce the size of the square as in hill

72

climbing. However, our experiments showed that a slower reduction rate would give better

graph layouts. According to Davidson & Harel (1996), we used the following formula:

squareSize = squareSize – (initialSquareSize / squareReduction)

Given:

Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges.

initialSquareSize: predefined size of a square where candidate solutions are located on its border.

squareReduction: predefined value which represents the rate of reduction for the size of the square.

maxIterations: predefined value for the number of iterations for running the drawer.

iterPerTemp: predefined value for the required number of iterations at each temperature.

initialTemp: initial temperature used in the annealing process.

coolDown: predefined value for the temperature cooling down rate.

Algorithm :
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)}

2: squareSize = initialSquareSize

3: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */

4: t = initialTemp

5: iteration = 0

6: while iteration < maxIterations do

7: for i:= 1 to iterPerTemp do /* number of iterations at each temperature */

8: for v in V do

9: currentPos = layout[v] /* position currently associated with node v */

10: currentFitness = Fitness(layout)

11: generate random scaledOffset in {(squareSize*x,squareSize*y) | (x,y) in allOffsets}

12: candidatePos = currentPos + scaledOffset /* vector addition */

13: if (Fitness(candidatePos) < currentFitness)

14: layout[v] = candidatePos

15: currentFitness = Fitness(layout)

16: else

17: costDiff = Fitness(candidatePos) - currentFitness

18: if (e-costDiff / t < random[0,1))

19: layout[v] = candidatePos

20: currentFitness = Fitness(layout)

21: end if

22: end if

23: end for

24: end for

25: t = CoolingDown(t, coolDown)

26: squareSize = SmallerSquareSize(squareSize, squareReduction)

27: iteration = iteration + 1

 28:end while

Algorithm 4.2 Simulated annealing graph drawing algorithm

73

4.4.2 Parameter Tuning

The performance of the simulated annealing drawing algorithm is influenced by four

parameters: the number of iterations for running the algorithm (maxIterations), the number of

iterations at each temperature (iterPerTemp), the initial temperature used in the annealing

process (initialTemp), and the temperature cooling down factor (coolDown).

Simulated annealing is characterised as a slow search-based method. It is also a stochastic

method unlike hill climbing and tabu search. Thus, in order to speed up the testing process, the

process for generating the graphs used for testing was a bit different than the one used in the

previous method. We generated 10 random connected graphs, based on Erdos-Renyi model,

that were divided into five sets (as described previously in Table 4.1) such that each set had

two graphs with different initial layouts. Then, for each graph in each data set, we run the

simulated annealing drawing algorithm for 10 runs and we find the median of the results.

The parameters of simulated annealing are dependent. Increasing or decreasing the value

of one parameter affects the values of the other parameters. Therefore, we followed an

incremental testing process divided into three phases described as follows: in phase I, we

started with one parameter, tested it thoroughly with different values, and selected the value

which produced the best layout compared to the other values. We fixed the value of the first

parameter and we moved to testing another parameter in the same manner, and so forth. In this

phase, we were searching for the most appropriate values of the parameters that make the

simulated annealing algorithm produce good layout regardless of the number of evaluated

solutions performed by the drawer. Simulated annealing used the same neighbourhood

searching technique that was used in hill climbing. In the previous phase, we used an initial

square size of 256. However, after performing a complete testing on the parameters of hill

climbing, an initial square size of 512 has produced graph layouts with better quality and a

fewer number of evaluated solutions performed by the algorithm. Therefore, in phase II, we

repeated the same testing process that we performed in phase I using the best initial square

size parameter, as described in the parameter tuning process of hill climbing. In phase III, we

mainly focus on choosing the parameters which speed up the algorithm’s performance (i.e.

number of evaluated solutions).

74

i. Phase I

We started the testing process with the first parameter maxIterations by testing it with the

following values: 30, 40, 50, 60, 70, whereas the remaining parameters were set to some

arbitrary values such that iterPerTemp = 20, initialTemp = 0.5, and coolDown = 0.8. These

arbitrary values were very close to the values used in Davidson & Harel (1996). Figure 4.10

shows the effect of maxIterations on the fitness value. The simulated annealing drawing

algorithm produced graph layouts with good fitness values when the value of maxIterations

was 40 and 50. There is no significant difference between the two values. However, we chose

the value 40 because it generates a lower number of evaluated solutions (i.e. faster).

Figure 4.10 Simulated Annealing - Fitness values with the maxIterations parameter (phase I)

After setting the value of maxIterations to 40, we moved on to test the value of

iterPerTemp with the values: 10, 15, 20, 25, 30, 35, 40. Figure 4.11 shows that increasing the

value of this parameter produces graphs with better layouts. As shown in the figure, the fitness

values were close starting from the value 25 onwards. Thus, we chose the value 25 for

iterPerTemp.

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500

0 10 20 30 40 50 60 70 80

Fitness

maxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

75

Figure 4.11 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase I)

As opposed to iterPerTemp, increasing the value of the temperature parameter initialTemp

produces graph layouts with poor quality. We tested the initialTemp parameter with the

values: 0.5, 2.5, 4.5, 6.5. According to Figure 4.12 which shows the effect of the temperature

on the quality of the graph layout, we chose the value 0.5 for initialTemp since it is the best

value that produced graphs with good layouts compared to all the other values used in the

testing process.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

0 10 20 30 40 50

Fitness

iterPerTemp

N50E153

N100E544

N150E1173

N200E1890

N250E2645

76

Figure 4.12 Simulated Annealing - Fitness values with the initialTemp parameter (phase I)

The cooling down parameter was tested with the values: 0.5, 0.6, 0.7, 0.8, 0.9. Figure 4.13

shows that there was no significant difference in the fitness values when coolDown was tested

with the first four values. However, the value 0.9 gave a relatively poor graph layout

compared to the other values. We chose the value 0.7 since it produced layouts of better

fitness values when applied on large graphs.

Figure 4.13 Simulated Annealing - Fitness values with the coolDown parameter (phase I)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

0 1 2 3 4 5 6 7

Fitness

initialTemp

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.500

1.000

1.500

2.000

2.500

0 0.2 0.4 0.6 0.8 1

Fitness

coolDown

N50E153

N100E544

N150E1173

N200E1890

N250E2645

77

ii. Phase II

Similar to phase I, we started the testing process with the maxIterations parameter by testing

the values: 30, 35, 40, 45, 50. Figure 4.14 shows that the fitness values of the graph layouts

became stable after 40 iterations for maxIterations. Therefore, we selected the first tested

value after 40 which was the value 45, to become the value of this parameter.

Figure 4.14 Simulated Annealing - Fitness values with the maxIterations parameter (phase II)

In the previous phase, we recognised that the higher the value of the iterPerTemp

parameter, the better the quality of the produced layout. In this phase, we tested this parameter

with the values: 10, 15, 20, 25, 30. The fitness values, as shown in Figure 4.15, were at their

best when the value of iterPerTemp was either 25 or 30. The value 25 has been chosen since it

produced very close fitness values to those generated when the value 30 was used.

Furthermore, using the value 25 would make the algorithm generate a lower number of

evaluated solutions compared to the number of solutions that would have been generated if the

value 30 was used.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

0 10 20 30 40 50 60

Fitness

maxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

78

Figure 4.15 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase II)

In phase I, we realised that increasing the value of the temperature parameter would result

in producing layouts with poor quality. In this phase, we tested the initialTemp parameter with

the values: 0.25, 0.5, 0.75, 1.0, 1.25. Unlike phase I, increasing the value of this parameter in

phase II, has produced graph layouts with better quality compared to the values under test.

Therefore, we can conclude that the value of this parameter should be below 2 (as shown in

phase I testing) and above 1 (as shown in Figure 4.16). Although there is no major difference

between the fitness values when the values 1.0 and 1.25 were used for the initialTemp

parameter, we selected the value 1.25 as it produced slightly better solutions compared to

those generated when the value 1.0 was used.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

0 5 10 15 20 25 30 35

Fitness

iterPerTemp

N50E153

N100E544

N150E1173

N200E1890

N250E2645

79

Figure 4.16 Simulated Annealing - Fitness values with the initialTemp parameter (phase II)

The coolDown parameter has been tested with the following values: 0.6, 0.65, 0.7, 0.75,

0.8. In phase I, using the value 0.9 for this parameter made the drawer produce layouts of low

quality. That is why we selected a list of testing values that are below 0.9. According to Figure

4.17, the fitness values were relatively close but with an advantage of the fitness values (i.e.

layouts) produced by the algorithm when the value of coolDown was 0.8. Therefore, we chose

the value 0.8 for the coolDown parameter.

Figure 4.17 Simulated Annealing - Fitness values with the coolDown parameter (phase II)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fitness

initialTemp

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.4 0.5 0.6 0.7 0.8 0.9

Fitness

coolDown

N50E153

N100E544

N150E1173

N200E1890

N250E2645

80

iii. Phase III

Similar to phase II in Section 4.3.2, we took a view that a good-enough graph layout is a

layout in which its fitness value is slightly greater than the best fitness value produced in the

experiments of the previous phase. We used the values of the fitness function produced by the

selected values of the parameters in phase II and we increased them by 12.5%. Then we ran

the simulated annealing drawing algorithm until it reached equal fitness values to the target

fitness values or no further improvement in the fitness value was made. Finally, we selected

the most appropriate value for each parameter that gave a good-enough layout with a small

number of evaluated solutions.

The main objective of this phase is speeding up the performance. The maxIterations

parameter has a great effect on the number of evaluated solutions. Since 45 was the best value

for this parameter in phase II, we selected values below 45 to test whether the algorithm can

reduce the number of evaluated solutions and can still produce graphs with good-enough

layouts. In this phase, we tested maxIterations with the following values: 25, 30, 35, 40, 45.

According to Table 4.6, the values 40 and 45 were the only values that made the drawing

algorithm produce graph layouts with fitness values that met the target fitness value. We

selected the value 45 over the value 40, as Figure 4.18 shows that the number of evaluated

solutions generated by the algorithm using the former value was lower than the number of

evaluated solutions generated using the latter value as the graph size increases.

Table 4.6 Simulated Annealing - Fitness values with the maxIterations parameter (phase III)

Fitness
maxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645

25 0.684 1.220 1.508 1.708 1.865

30 0.391 0.870 1.185 1.377 1.551

35 0.288 0.619 0.881 1.069 1.201

40 0.288 0.599 0.826 1.013 1.125

45 0.288 0.600 0.828 1.013 1.121

Target 0.289 0.601 0.829 1.015 1.124

81

Figure 4.18 Simulated Annealing – Number of evaluated solutions with the maxIterations parameter
(phase III)

In phase II, we ended up selecting the value 25 for the iterPerTemp parameter. Therefore,

in phase III, we selected values which are less than 25 to test the possibility of using these

values for producing graphs with good layouts and a few number of evaluated solutions. We

tested this parameter with the values: 10, 15, 20, 25. Table 4.7 shows that all the values

(except 10) had produced graph layouts with fitness values that met the target fitness values.

We chose the value 15 for iterPerTemp since it generated a lower number of evaluated

solutions compared to the values 20 and 25, as shown in Figure 4.19.

Table 4.7 Simulated Annealing - Fitness values with the iterPerTemp parameter (phase III)

Fitness
iterPerTemp N50E153 N100E544 N150E1173 N200E1890 N250E2645

10 0.300 0.600 0.828 1.014 1.132

15 0.290 0.600 0.827 1.014 1.123

20 0.289 0.600 0.828 1.013 1.122

25 0.288 0.600 0.828 1.013 1.121

Target 0.289 0.601 0.829 1.015 1.124

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10 20 30 40 50

Evaluated

Solutions

maxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

82

Figure 4.19 Simulated Annealing – Number of evaluated solutions with the iterPerTemp parameter (phase
III)

The temperature parameter was tested with the values: 0.25, 0.75, 1.25, 1.75, 2.25. In

Table 4.8, we can see that using any of these values would give graph layouts with fitness

values that meet the target fitness values. On the other hand, Figure 4.20 shows that there was

no clear behaviour for the number of evaluated solutions before the value 0.75. But starting

from this value onwards, the figure shows that the number of evaluated solutions increased as

a function of the graph size. Thus, we selected the value 0.75 for the initialTemp parameter.

Table 4.8 Simulated Annealing - Fitness values with the initialTemp parameter (phase III)

Fitness
initialTemp N50E153 N100E544 N150E1173 N200E1890 N250E2645

0.25 0.314 0.601 0.828 1.015 1.113

0.75 0.299 0.601 0.828 1.014 1.117

1.25 0.290 0.600 0.827 1.014 1.123

1.75 0.290 0.600 0.827 1.013 1.122

2.25 0.288 0.600 0.827 1.012 1.122

Target 0.289 0.601 0.829 1.015 1.124

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30

Evaluated

Solutions

iterPerTemp

N50E153

N100E544

N150E1173

N200E1890

N250E2645

83

Figure 4.20 Simulated Annealing – Number of evaluated solutions with the initialTemp parameter (phase
III)

The behaviour of the coolDown parameter was not very clear in this phase, but it was still

possible to take a decision for the most appropriate value for this parameter. Table 4.9 shows

that all the values which we tested for cooldown: 0.65, 0.7, 0.75, 0.8, 0.85, would give graph

layouts with fitness values that meet the target fitness values (excluding the 1st set of graphs).

Figure 4.21 does not illustrate a clear behaviour of the effect of this parameter on the number

of evaluated solutions. However, using the value 0.8 for coolDown had generated a lower

number of evaluated solutions (except for the 4th set of graphs) compared to all the other

values under test. Therefore, we chose the value 0.8 for this parameter.

Table 4.9 Simulated Annealing - Fitness values with the coolDown parameter (phase III)

Fitness
coolDown N50E153 N100E544 N150E1173 N200E1890 N250E2645

0.65 0.306 0.601 0.828 1.015 1.106

0.7 0.302 0.600 0.828 1.012 1.119
0.75 0.301 0.600 0.828 1.014 1.125

0.8 0.299 0.601 0.828 1.014 1.117

0.85 0.293 0.622 0.889 1.119 1.278

Target 0.289 0.601 0.829 1.015 1.124

0

20000

40000

60000

80000

100000

120000

0 0.5 1 1.5 2 2.5

Evaluated

Solutions

initialTemp

N50E153

N100E544

N150E1173

N200E1890

N250E2645

84

Figure 4.21 Simulated Annealing – Number of evaluated solutions with the coolDown parameter (phase
III)

4.5 Tabu Search

Tabu search is a neighbourhood search-based approach that uses a memory structure while it

carefully explores the neighbourhood of each solution as the search progresses to avoid getting

trapped in local optima. It proceeds on the assumption that there is no value in choosing an

inferior solution unless it is necessary, as in the case of escaping from a local optimum (Lim &

Chee 1991). It improves the efficiency of the searching process by storing a tabu list of local

solutions. This is used to restrict the search by forbidding moves to some poor neighbour

solutions that have already been visited (Hertz et al. 1995). An additional feature of tabu search

is applying intensification and diversification. It might be useful to intensify the exploration in

some region because it may contain a high incidence of acceptable solutions. This can be

obtained by introducing a new term in the objective function that assigns a high priority to

solutions in the relevant region. Diversification is responsible for moving the exploration

process over different regions of the search space (Marti 1998).

 Our tabu search algorithm goes through a predefined number of iterations to minimise the

value of the fitness function. It uses a tabu list to store tabu moves in order to prevent the

algorithm from choosing previously reached moves for particular nodes for a predefined period

of time. Algorithm 4.3 represents the steps of our tabu search method.

0

20000

40000

60000

80000

100000

120000

140000

0 0.2 0.4 0.6 0.8 1

Evaluated

Solutions

coolDown

N50E153

N100E544

N150E1173

N200E1890

N250E2645

85

4.5.1 Algorithm

In outline, as described in the algorithm, the tabu search method operates in the following

manner: first, we compute the fitness value of the initial layout. Then the following steps are

performed for a set number of iterations (maxIterations): for each node, we search in the

neighbourhood for candidate solutions, as described in section 4.2.1. The ratio of the fitness

value of the candidate solution to the fitness value of the current solution is computed at each

point in the neighbourhood. Solutions with ratios above or equal to a predefined threshold

value (initialCutOff) are considered to be tabu moves and are stored in a tabu list. We

then move the node to a neighbouring point that is not in the tabu list and its fitness function

value is minimum compared to all neighbours. Then the current solution is added to the tabu

list. Note that the new solution might not be better than the current solution hence the tabu

search does not run out of solutions. In case all eight candidate solutions surrounding the

current solution are in the tabu list, the intensification and the diversification processes will be

the way out for solving this problem. A search intensification process is implemented: after a

chosen number of iterations (intensifyIterations), the square size centred on the node

is reduced and the cut-off value is decreased by a set value (intensifyCutOff) by calling

function SmallerSquareSize() and function SmallerTabuCutOff() respectively,

as shown in Algorithm 4.3. Finally, in order to diversify the searching space, the tabu list is

updated by removing old solutions from the list after a number of iterations (duration).

86

Given:

Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges.

initialSquareSize: predefined size of a square where candidate solutions are located on its border.

squareReduction: predefined value which represents the rate of reduction for the size of the square.

maxIterations: predefined maximum number of iterations of the drawer.

initialCutOff: predefined minimum value that determines whether a move is tabu or not.

intensifyCutOff: predefined value which represents the rate of reduction for cutOff.

intensifyIterations: predefined number of iterations in which the searching process starts to intensify.

duration: predefined number of iterations in which a move should remain in the tabu list.

Algorithm :
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)}

 2: tabuSet = {}

 3: squareSize = initialSquareSize , CutOff = initialCutOff

4: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */

 5: iteration = 0

 6: while iteration < maxIterations do

 7: for v in V do

8: currentPos = layout[v] /* position currently associated with node v */

 9: currentFitness = Fitness(layout)

 10: candidates = {}

11: for scaledOffset in {(squareSize*x, squareSize*y) | (x,y) in allOffsets}

12: candidatePos = currentPos + scaledOffset /* vector addition */

13: if (v, candidatePos, i) ∉ tabuSet for some i then
14: layout[v] = candidatePos

 15: candidateFitness = Fitness(layout)

16: if candidateFitness / currentFitness > CutOff then

17: tabuSet = tabuSet ∪ {(v, candidatePos, iteration)}
 18: else

19: candidates = candidates ∪ {(candidatePos, candidateFitness)}
 20: end if

 21: end if

 22: end for

 23: if candidates ≠ {} then
24: newPos = p, where (p,f) is the pair in candidates with minimal f

25: layout[v] = newPos

26: tabuSet = tabuSet ∪ {(v, currentPos, iteration)}
27: end if

 28: end for

29: if (iteration mod intensifyIterations) == 0 then

 30: squareSize = SmallerSquareSize(squareSize, squareReduction)

 31: CutOff = SmallerTabuCutOff(CutOff, intensifyCutOff)

 32: end if

33: tabuSet = {(v,p,i) | (v,p,i) in tabuSet and (iteration - i) < duration}

 34: iteration = iteration + 1

 35:end while

Algorithm 4.3 Our tabu search graph drawing algorithm

87

Note that the SmallerSquareSize() function reduces the square size used in

searching for candidate solutions by applying the same formula we used in hill climbing.

Whereas the SmallerTabuCutOff() function decreases the value of cut-off during the

intensification process to maintain high quality candidate solutions and truncate the other

solutions by adding them to the tabu list. The function uses the following formula for cut-off

value reduction, such that the initial value of oldCutOff is equal to initialCutOff:

newCutOff = oldCutOff – (intensifyCutOff * intensifyIterations)

4.5.2 Parameter Tuning

Tabu search has five parameters that affect the quality of the layouts produced by the

algorithm along with its performance: the total number of iterations needed for execution

(maxIterations), the cut-off value which determines whether to consider a solution for further

testing or to add it to the tabu list (initialCutOff), the value used in decreasing the cut-off value

for intensifying the search process (intensifyCutOff), the number of iterations required to

decrease the value of the cut-off (i.e. intensify the search) (intensifyIterations), and the

duration in which a solution remains in the tabu list (duration).

The graph sets used in testing the values of these parameters were exactly the same sets

used in testing the values of the parameters of hill climbing, as described earlier in this chapter

in Table 4.1.

Tabu search parameters are dependent. Therefore, we followed the same incremental

testing process that we performed with simulated annealing but we divided the process into

four phases. In phase I, we considered the values that gave good graph layouts (small fitness

values) regardless of the number of evaluated solutions performed by the drawing algorithm.

In the second phase of parameter tuning, we repeated the same steps followed in phase I, but

instead of starting with arbitrary values, we started with the values that were selected and

fixed from phase I. Moreover, we narrowed the differences between the tested values for each

parameter. In phase III, we tested the effect of the values of tabu search parameters on the

performance of the drawing algorithm (i.e. number of evaluated solutions). In all the previous

phases, we used an initial square size of 256. However, after performing a complete testing on

88

the parameters of hill climbing, an initial square size of 512 has produced graph layouts with

better quality and a lower number of evaluated solutions were performed by the drawing

algorithm. Therefore, in phase IV, we repeated the same tuning process that we performed on

the tabu search drawing algorithm in phase III using the best initial square size as described in

the hill climbing parameter tuning process.

i. Phase I

We tested the values of maxIterations and fixed the values of the other parameters to some

arbitrary values such that initialCutOff =2, intensifyCutOff = 0.005, intensifyIterations = 5,

and duration = 5. The values used in testing maxIterations were: 30, 40, 50, 60, 70. According

to Figure 4.22, the values 50 and 60 produced the best fitness values compared to others with

an advantage to the value 50 as the graph size becomes larger. Thus, we selected the value 50

for maxIterations.

Figure 4.22 Tabu Search - Fitness values with the maxIterations parameter (phase I)

Secondly, after fixing the value of maxIterations, we moved on to test the value of the

initialCutOff parameter and we kept the rest of the parameters with their arbitrary values.

initialCutOff has been tested with the following values: 0, 2, 4, 6, 8, 10. We chose the value 0

to see the effect of increasing the number of tabu solutions on the quality of the produced

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Fitness

maxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

89

layouts. Figure 4.23 shows the effect of the initialCutOff values on the fitness values of the

graph sets. According to the figure, the fitness function values look similar when the

initialCutOff value is between 2 and 10. However, we selected the value 4 since it produced

slightly better fitness values compared to 2 and almost the same as the rest of the values

except 0.

Now that we fixed the values of two parameters, we moved to the third parameter

intensifyCutOff and tested it with the following values: 0.005, 0.055, 0.105, 0.155, 0.205,

while keeping the rest of the parameters as they were. Figure 4.24 shows that the fitness

values are very close when the value of this parameter is between 0.005 and 0.055 with an

advantage to 0.005 for graphs with smaller sizes. Therefore, we selected the value 0.005 for

intensifyCutOff.

Figure 4.23 Tabu Search - Fitness values with the initialCutOff parameter (phase I)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0 2 4 6 8 10 12

Fitness

initialCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

90

Figure 4.24 Tabu Search - Fitness values with the intensifyCutOff parameter (phase I)

intensifyIterations was the next parameter to be tested after fixing the values of three

parameters. It has been tested with the following selected values: 1, 3, 5, 7, 9. This parameter

shows the effect of the number of iterations required to reduce the value of the cut-off. Figure

4.25 shows that there is no significant difference between the values selected, but the curve

starts to increase slightly after the value 5. That means that increasing the value of

intensifyIterations would produce low-quality graph layouts. This is normal, since the

intensification process should take place after a reasonable but not a large number of iterations

taking into account that there is a limited number of iterations for the algorithm to execute

(maxIterations). For this reason, we selected the value 5 for intensifyIterations. Another

reason for choosing this value, not a smaller one, was that the number of accesses to the tabu

list is higher with the value 5 compared to the values 1 and 3, as shown in Figure 4.26, and the

higher the number of accesses to the tabu list, the lower the number of evaluated solutions as

more solutions would be excluded from the searching process.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0 0.05 0.1 0.15 0.2 0.25

Fitness

intensifyCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

91

Figure 4.25 Tabu Search - Fitness values with the intensifyIterations parameter (phase I)

Figure 4.26 Tabu Search - tabu list accesses with the intensifyIterations parameter (phase I)

The last parameter that has been tested in this phase was duration. We tested this

parameter with the following values: 0, 5, 15, 25, 35, while all the other parameters were

fixed. Figure 4.27 shows that there is no significant effect of this parameter on the fitness

value of the produced graph layouts. However, Figure 4.28 shows that number of accesses to

the tabu list is small when the duration is below 5 and consequently, the number of evaluated

solutions would increase. On the other hand, the performance of the drawing algorithm looks

stable after the value 5. Therefore, we selected the value 5 for this parameter.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

0 2 4 6 8 10

Fitness

intensifyIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0

500

1000

1500

2000

2500

0 2 4 6 8 10

Tabu

Access

intensifyIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

92

Figure 4.27 Tabu Search - Fitness values with the duration parameter (phase I)

Figure 4.28 Tabu Search - tabu list accesses with the duration parameter (phase I)

ii. Phase II

We narrowed the differences between the tested values for each parameter. For example, in

phase I, the difference between the values we tested for maxIterations was 10. In this phase,

we reduced the difference to 5. The best value we got for maxIterations in phase I was 50.

Now, we tested this parameter with the following values: 40, 45, 50, 55, 60. As in phase I, we

chose the value which gives the best fitness value regardless of the number of evaluated

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

0 5 10 15 20 25 30 35 40

Fitness

duration

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35 40

Tabu

Access

duration

N50E153

N100E544

N150E1173

N200E1890

N250E2645

93

solutions produced by the drawer. With reference to Figure 4.29, the best value for

maxIterations is 55.

Figure 4.29 Tabu Search - Fitness values with the maxIterations parameter (phase II)

As for the initialCutOff parameter, we recognised in the first phase that there is no

significant difference in the fitness value when we tested the initialCutOff with several values

except for the value 0. In this phase, we got similar results. The fitness value reduces as we

increased the value of the initialCutOff. Nevertheless, the reduction rate was barely

recognised. Figure 4.30 shows the effect of the different values we tested for this parameter: 2,

3, 4, 5, 6, 7, 8, on the fitness value. According to the figure, all the values of initialCutOff

gave very close values for the fitness function. However, the initialCutOff value 7 gave a

slightly better fitness value compared to the others.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Fitness

maxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

94

Figure 4.30 Tabu Search - Fitness values with the initialCutOff parameter (phase II)

At the end of phase I, we fixed the value of intensifyCutOff to 0.005. We recognised that

the fitness value was better when the value of this parameter was below 0.1. Therefore, in this

phase, we tested this parameter with values less than 0.1 such as: 0.005, 0.025, 0.045, 0.065,

0.085. However, Figure 4.31 shows that any of these values could be selected as a value for

this parameter since there was no major difference between the fitness values. Thus, we kept

the same value that we selected in phase I which equals to 0.005.

Figure 4.31 Tabu Search - Fitness values with the intensifyCutOff parameter (phase II)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

0 2 4 6 8 10

Fitness

initialCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 0.02 0.04 0.06 0.08 0.1

Fitness

intensifyCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

95

The results of phase I showed that increasing the value of intensifyIterations would also

increase the value of the fitness function (i.e. reduce the quality of the graph layout). In this

phase, we selected the following values for testing: 3, 5, 7, 9, 11. Figure 4.32 shows that the

best values for the fitness function were produced when the value of intensifyIterations was 5

(the same value we selected in phase I). Furthermore, the figure confirmed the fact that

increasing the value of this parameter would reduce the quality of the graph layout.

Figure 4.32 Tabu Search - Fitness values with the intensifyIterations parameter (phase II)

As shown in the previous phase, increasing the value of duration starting from the value 5

would not make any significant changes in the values of the fitness function. This is what we

got when we tested this parameter again in phase II with the values: 5, 15, 25, 35, 45, as

shown in Figure 4.33. Therefore, we have not made any changes to the value of duration and

kept the fixed value from the previous phase which was 5. However, the value of this

parameter slightly affects the number of evaluated solutions generated by the drawer as we

will see in the next phase.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

0 2 4 6 8 10 12

Fitness

intensifyIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

96

Figure 4.33 Tabu Search - Fitness values with the duration parameter (phase II)

iii. Phase III

We performed a similar procedure to the one we used in parameter tuning in phase II of hill

climbing and in phase III of simulated annealing. We took a view that the fitness value of a

good-enough graph layout can be slightly larger than the best fitness value produced in the

experiments of the previous phase. We used the values of the fitness function produced by the

selected values of the parameters in phase II and we increased them by 12.5%. Then we ran

the tabu search drawing algorithm until it reached equal fitness values to the target fitness

values or no further improvement on the fitness value was made. Finally, we picked the most

appropriate values of the parameters that gave a good-enough layout with a small number of

evaluated solutions.

As we are looking to minimise the number of evaluated solutions, we tuned the value of

maxIterations by testing the following values: 35, 40, 45, 50, 55. Since the value 55 was the

best value we got in phase II, we tested this parameter with values lower than 55 to see

whether we can get a good layout with a lower number of iterations. Table 4.10 shows the

fitness values produced by the tabu search drawing algorithm compared to the target fitness

values. On the other hand, Figure 4.34 shows the number of evaluated solutions produced by

our tabu search drawing algorithm. According to the results in the table and the figure, we

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 10 20 30 40 50

Fitness

duration

N50E153

N100E544

N150E1173

N200E1890

N250E2645

97

selected the value 45 for maxIterations since it produced fitness values that are similar or less

than the target fitness values with a low number of iterations compared to the other values.

Table 4.10 Tabu Search - Fitness values with the maxIterations parameter (phase III)

Fitness
maxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645

35 0.344 0.652 0.876 1.073 1.234

40 0.370 0.654 0.872 1.071 1.245

45 0.293 0.641 0.868 1.078 1.239

50 0.302 0.640 0.869 1.078 1.235

55 0.287 0.628 0.875 1.078 1.238

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.34 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase III)

As shown in the previous phases, increasing the value of the initialCutOff slightly reduces

the value of the fitness function. On the other hand, in this phase, the experiment showed that

increasing the value of this parameter would slightly increase the number of evaluated

solutions. The best value we got for this parameter in phase II was 7. Therefore, we tested it

with lower values: 1, 2, 3, 4, 5 in order to verify whether we can obtain a good layout with a

small number of evaluated solutions. Table 4.11 and Figure 4.35 indicate that the value 2

could be the best value for initialCutOff since the number of evaluated solutions became stable

starting from that value.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30 35 40 45 50 55 60

Evaluated

Solutions

maxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

98

Table 4.11 Tabu Search - Fitness values with the initialCutOff parameter (phase III)

Fitness
initialCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645

1 0.821 0.996 1.215 1.398 1.597

2 0.314 0.645 0.866 1.069 1.235

3 0.298 0.643 0.867 1.074 1.244

4 0.302 0.640 0.868 1.072 1.238

5 0.295 0.643 0.867 1.077 1.240

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.35 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase III)

For the intensifyCutOff parameter, we tuned the value by testing it with values close to the

value 0.005 (as selected in phase II). The values which we tested were: 0.0025, 0.005, 0.0075,

0.01, 0.0125. Table 4.12 shows that our drawing algorithm produced fitness values similar or

lower than the target values with all the tested values (except for the first set of graphs).

Furthermore, the number of evaluated solutions is almost similar among all the tested values

with a minor advantage for the value 0.0025 in the first four sets of the graphs, as shown in

Figure 4.36. Therefore, we picked the value 0.0025 for the intensifyCutOff parameter.

0

10000

20000

30000

40000

50000

60000

70000

0 1 2 3 4 5 6

Evaluated

Solutions

initialCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

99

Table 4.12 Tabu Search - Fitness values with the intensifyCutOff parameter (phase III)

Fitness
intensifyCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645

0.0025 0.313 0.643 0.870 1.068 1.230

0.005 0.314 0.645 0.866 1.069 1.235

0.0075 0.329 0.648 0.869 1.072 1.236

0.01 0.330 0.645 0.869 1.072 1.230

0.0125 0.331 0.647 0.870 1.077 1.235

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.36 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase III)

The fourth parameter, intensifyIterations, was tested using the following values: 3, 5, 7, 9,

11. According to Table 4.13, the values 5 and 7 gave smaller fitness values (better quality)

compared to the other values of the parameter as the graph size increased. Whereas, the

number of evaluated solutions produced by the algorithm when the value of this parameter is

5, is smaller than or equal to the number of evaluated solutions given by the algorithm using

the rest of the values (except for the fourth set of graphs), as shown in Figure 4.37. But since

the difference was not significant, we chose the value 5 for this parameter.

0

10000

20000

30000

40000

50000

60000

70000

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Evaluated

Solutions

intensifyCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

100

Table 4.13 Tabu Search - Fitness values with the intensifyIterations parameter (phase III)

Fitness
intensifyIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645

3 0.304 0.637 0.872 1.079 1.245

5 0.313 0.643 0.870 1.068 1.230

7 0.374 0.650 0.867 1.071 1.229

9 0.379 0.660 0.878 1.083 1.246

11 0.399 0.656 0.880 1.082 1.246

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.37 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase
III)

The duration parameter has no significant effect on the quality of the produced layout as

shown in the previous phases. However, increasing the value of this parameter to a certain

limit would improve the performance of the drawing algorithm and consequently produce a

smaller number of evaluated solutions. In this phase, we tested the value of duration with the

following values: 5, 15, 25, 35, 45. Testing the algorithm with all these values produced graph

layouts with quality at least as good as the target layout, as shown in Table 4.14. On the other

hand, Figure 4.38 shows the number of accesses to the tabu list by the drawing algorithm. The

higher the number of accesses to the tabu list, the higher the number of solutions to exclude

from the searching process, and this consequently reduces the number of evaluated solutions.

In the figure, it is indicated that the number of accesses to the tabu list increased between the

0

10000

20000

30000

40000

50000

60000

70000

0 2 4 6 8 10 12

Evaluated

Solutions

intensifyIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

101

values 5 and 15 and then became stable. Therefore, we selected the value 15 for the duration

parameter.

Table 4.14 Tabu Search - Fitness values with the duration parameter (phase III)

Fitness
duration N50E153 N100E544 N150E1173 N200E1890 N250E2645

5 0.313 0.643 0.870 1.068 1.230

15 0.324 0.645 0.866 1.070 1.230

25 0.328 0.644 0.866 1.071 1.229

35 0.327 0.645 0.867 1.070 1.232

45 0.327 0.645 0.867 1.070 1.232

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.38 Tabu Search – Number of accesses to the tabu list with the duration parameter (phase III)

iv. Phase IV

We repeated the same tuning process that we performed on the tabu search drawing algorithm

in phase III using the best initial square size as described in the hill climbing parameter tuning

process. Table 4.15 and Figure 4.39 show the results produced by the tabu search drawing

algorithm when we tested the maxIterations parameter with the values: 30, 35, 40, 45, 50. The

main goal is to speed up the performance of the algorithm while producing graphs with good

layouts. Therefore, we chose the value that best satisfies the target fitness values with the

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50

Tabu

Access

duration

N50E153

N100E544

N150E1173

N200E1890

N250E2645

102

smallest number of iterations. The best value for maxIterations that satisfied this condition

was 40.

Table 4.15 Tabu Search - Fitness values with the maxIterations parameter (phase IV)

Fitness
maxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645

30 0.348 0.654 0.873 1.075 1.240

35 0.335 0.654 0.873 1.075 1.238

40 0.329 0.653 0.873 1.075 1.237

45 0.328 0.653 0.873 1.075 1.236

50 0.329 0.653 0.873 1.075 1.236

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.39 Tabu Search – Number of evaluated solutions with the maxIterations parameter (phase IV)

The initialCutOff parameter has been tested with the following values: 1, 2, 3, 4, 5. Table

4.16 shows that all the values (except the value 1) produced graph layouts with fitness values

below or equal to the target (except for the first graphs set). On the other hand, Figure 4.40

demonstrates the number of evaluated solutions performed by the tabu search algorithm and

indicates that when the algorithm uses the initialCutOff value 4, it generates the lowest

number of solutions compared to the other values.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 5 10 15 20 25 30 35 40 45 50 55

Evaluated

Solutions

maxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

103

Table 4.16 Tabu Search - Fitness values with the initialCutOff parameter (phase IV)

Fitness
initialCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645

1 0.892 1.080 1.261 1.479 1.648

2 0.329 0.653 0.873 1.075 1.237

3 0.324 0.653 0.873 1.077 1.238

4 0.316 0.652 0.877 1.079 1.236

5 0.322 0.660 0.876 1.079 1.241

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.40 Tabu Search – Number of evaluated solutions with the initialCutOff parameter (phase IV)

As for the intensifyCutOff parameter, we tested it with the following values: 0.0025, 0.005,

0.0075, 0.01, 0.0125. Table 4.17 shows that all these values could give good layouts since all

of them have reached fitness values less than or almost equal to the target fitness values

(except for the first set of graphs). But in Figure 4.41, we realise that using any of these values

would make no significant difference in the number of evaluated solutions performed by the

algorithm with a slight advantage to the value 0.005 in most of the tested graph data sets.

Therefore, we selected the value 0.005 for intensifyCutOff.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1 2 3 4 5 6

Evaluated

Solutions

initialCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

104

Table 4.17 Tabu Search - Fitness values with the intensifyCutOff parameter (phase IV)

Fitness
intensifyCutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645

0.0025 0.324 0.653 0.873 1.077 1.238

0.005 0.324 0.644 0.876 1.080 1.238

0.0075 0.320 0.645 0.874 1.077 1.239

0.01 0.321 0.647 0.872 1.080 1.236

0.0125 0.315 0.646 0.872 1.079 1.242

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.41 Tabu Search – Number of evaluated solutions with the intensifyCutOff parameter (phase IV)

The intensifyIterations parameter has been tested with five values 3, 5, 7, 9, 11. Figure

4.42 shows that the number of evaluated solutions increases as the value of this parameter

increases. Picking the value 3 would be the best in terms of the number of evaluated solutions.

However, according to Table 4.18, selecting this value would not produce good graph layouts

for the first two sets of the graphs under test. The results in the table indicate that the fitness

values in the first two sets of graphs (when intensifyIterations = 3) are far from the target

fitness values. Therefore, we chose the next best value for intensifyIterations which equals to

5.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Evaluated

Solutions

IntensifyCutOff

N50E153

N100E544

N150E1173

N200E1890

N250E2645

105

Table 4.18 Tabu Search - Fitness values with the intensifyIterations parameter (phase IV)

Fitness
intensifyIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645

3 0.367 0.660 0.877 1.077 1.240

5 0.324 0.644 0.876 1.080 1.238

7 0.310 0.652 0.881 1.080 1.240

9 0.335 0.655 0.877 1.080 1.245

11 0.399 0.670 0.878 1.082 1.247

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.42 Tabu Search – Number of evaluated solutions with the intensifyIterations parameter (phase
IV)

Last but not least, we tested the duration parameter with the following values: 5, 15, 25,

35, 45. Note that the search space in graph drawing is large, thus this parameter has no

significant effect on the quality of the produced layouts as shown in Table 4.19, where all the

tested values of this parameter have produced similar results. On the other hand, Figure 4.43

shows that this parameter has slightly affected the number of evaluated solutions performed

by the tabu search drawing algorithm. The figure shows that there is a difference between the

number of evaluated solutions when the value of duration is 5 and the rest of the values.

Although the figure does not show that the difference is significant, but the difference could

reach up to 7% (which reaches about 10,000 solutions or even more in some test cases where

the number of nodes is very large). Thus, the value 5 is the most appropriate for the duration

parameter.

0

10000

20000

30000

40000

50000

60000

0 2 4 6 8 10 12

Evaluated

Solutions

intensifyIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

106

Table 4.19 Tabu Aearch - Fitness values with the duration parameter (phase IV)

Fitness
duration N50E153 N100E544 N150E1173 N200E1890 N250E2645

5 0.324 0.644 0.876 1.080 1.238

15 0.331 0.657 0.873 1.078 1.238

25 0.330 0.657 0.874 1.080 1.238

35 0.330 0.657 0.874 1.080 1.238

45 0.330 0.657 0.874 1.080 1.238

Target 0.294 0.652 0.885 1.090 1.246

Figure 4.43 Tabu Search – Number of evaluated solutions with the duration parameter (phase IV)

Now as we have tuned all the parameters of the three methods, we list the value of each

parameter which will be used in our coming experiments:

i. Hill Climbing Parameters

initialSquareSize = 512

squareReduction = 4

ii. Simulated Annealing Parameters

 maxIterations = 45

 iterPerTemp = 15

 initialTemp = 0.75

 coolDown = 0.8

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50

Evaluated

Solutions

duration

N50E153

N100E544

N150E1173

N200E1890

N250E2645

107

iii. Tabu Search Parameters

 maxIterations = 40

 initialCutOff = 4

 intensifyCutOff = 0.005

 intensifyIterations = 5

 duration = 5

4.6 Summary

This chapter described the basic neighbourhood search-based graph drawing algorithms for

hill climbing and simulated annealing, followed by our tabu search-based approach for

drawing general graph layouts with straight lines that have multiple aesthetic criteria which

are used in a weighted fitness function to measure the quality of the graph layout. Each

criterion had a different range of values. Hence, a normalisation process for the values to a

unified range was described.

This chapter also demonstrated how the three drawing algorithms had used the same local

search space. They also shared the same procedure for tuning the values of their parameters by

performing exploratory tests on a wide range of values for each parameter in order to select a

robust set of initial values. Then a systematic incremental procedure was applied for each

single parameter at a time while fixing the values of the rest of the parameters.

Hill climbing, simulated annealing, and tabu search graph drawing algorithms were

described including their pseudo codes and a complete description of their parameters. A

detailed clarification of the parameter tuning process for each parameter was demonstrated

including figures and tables that showed the effect of each parameter on the quality of the

layouts and the efficiency of the drawing algorithms.

In the next chapter, we show the experimental results of a comprehensive comparison

between the three neighbourhood search-based methods according to the quality of the

generated layouts and the efficiency of the algorithms.

108

Chapter 5 Experimental Results of Comparing Hill Climbing,
Simulated Annealing, and Tabu Search

This chapter demonstrates the experimental results of applying the three graph drawing

algorithms described in the previous chapter: hill climbing, simulated annealing, and our

graph drawing version of tabu search on random graph datasets and real world graph datasets.

It also shows our analysis and conclusions to the results.

5.1 Introduction

Our research question in this experiment was: ‘Does our tabu search graph drawing algorithm

perform better than the hill climbing and simulated annealing approaches?’ To answer this

question we had to implement and evaluate our method against the two commonly used

alternative neighbourhood search-based methods for graph drawing. Three types of evaluations

were conducted:

i. Finding the best layout that can be achieved (i.e. minimising the value of the fitness

function);

ii. How long it took to draw a graph to a particular level of quality;

iii. How good the quality of the graph was after a fixed optimisation time (number of

evaluated solutions).

 These allow us to examine different possible use cases for the graph layout: firstly,

generating the best possible layout; secondly speed to draw an acceptable layout; and thirdly

how good the graph layout can be if there is a fixed time available to produce it.

 The programming language used in our implementation is Java (version 1.7.0; Java

HotSpot™ 64-Bit Server VM 21.0-b17 on Windows 7). The experiments were performed using

Lenovo Thinkpad T430, Intel® Core™ i7-3520M CPU processor with 2.90 GHz frequency

and 8 GB RAM.

 We generated random graph datasets in two categories. The graphs of the first category

have the same number of nodes but with different densities (i.e. different number of edges),

109

whereas the graphs of the second category have a different number of nodes with varying

values of densities.

 The random graph generator is based on the Erdos-Renyi model (Erdos & Rényi 1960;

Daudin et al. 2008). It generated randomly connected graphs. The parameters to the generator

were the number of nodes and the density of the graph. Random locations for the nodes were

generated based on the size of the window where the graph is displayed. Then, the generator

chose random nodes as the end points of the edges. All random values were generated using the

random method in Java. Self-sourcing edges and multiple edges between the same pair of

nodes were not allowed. Finally, the graph generator tested the connectivity of the generated

graph. Only connected graphs were accepted. In our implementation for the random graph

generator, we added an option which allows the user to randomly change the layout of the

generated connected graph.

 There were 80 random graphs in the first category split into 4 groups of 20 test cases each.

All the graphs in this category had 150 nodes, randomly positioned. Each group had a differing

number of edges so that the density varied. The graphs in each group had same number of

nodes and edges. See Table 5.1 for the characteristics of the graphs in the first category. Note

that the density of the graph is computed using the same formula described in the previous

chapter (Section 4.3.2).

Table 5.1 Characteristics of the graphs in the 1st category

Graph Set Nodes Edges Density

1A 150 558 0.05

2A 150 1117 0.1

3A 150 1676 0.15

4A 150 2235 0.2

 The second category also had 80 random graphs, again divided into 4 groups. The number

of nodes for a group varied, increasing in steps of 50. The value of the density was chosen for

each group to avoid too dense graphs so that we could generate graphs that were easily

visualised. A similar random process used to generate graphs in the first category was applied

to this category. See Table 5.2 for the characteristics of the graphs in the second category.

110

Table 5.2 Characteristics of the graphs in the 2nd category

Graph Set Nodes Edges Density

1B 50 159 0.13

2B 100 569 0.115

3B 150 1173 0.105

4B 200 1990 0.1

 The initial layout of nodes for each graph was random. We applied our tabu search-based

approach along with hill climbing and simulated annealing approaches to the graphs. Tabu

search and hill climbing approaches are deterministic methods which are not influenced by

chance. The characteristic of this type of method is that the output is determined when the set

of input elements and properties in the model has been specified. Both methods use the same

initial input layout and there is no randomness in their implementation. On the other hand,

simulated annealing is a stochastic method which includes an element of randomness in the

neighbourhood searching process. Therefore, this approach has been tested on each individual

graph for 30 different runs. Then we find the median of the results for the 30 different runs to

compare with the results of the tabu search and hill climbing approaches. Note that, we

modelled the neighbourhood transition probability of simulated annealing in a similar way to

the model described in Davidson & Harel (1996). In the following section, we describe the

three phases of the experiment along with the analysis of the results.

5.2 Experiments on Random Graph Datasets

To make a comprehensive comparison between the methods, we divided our experiment into

three phases. Firstly, in phase I, we focus on the overall performance for each method

regardless of how long it takes to execute to get the best possible graph layout that can be

generated by that method. Secondly, in phase II, we study the speed of each algorithm when it

runs to draw a graph for a particular level of quality. Thirdly, in phase III, we investigate the

quality of the drawn layouts after a fixed predefined execution time.

5.2.1 Phase I

We applied the methods on the graphs of the two categories described in Section 5.1. The

methods executed on the 20 test cases in each group of the two categories, and then the average

fitness function value and the average number of evaluated solutions were computed for each

111

group in each method. Note that in simulated annealing, the average of medians was computed

for the 30 runs of each test case. In this phase, the hill climbing approach was executed until it

found the best solution that can be reached (i.e. a solution that cannot be further improved).

Whereas, the simulated annealing and tabu search approaches were more flexible in how they

reach a good solution, and hence we ran them using the values of the parameters discussed

earlier in the previous chapter.

 The following figures show bar charts of the results obtained from phase I. Figure 5.1 and

Figure 5.2 show the difference between the three methods in terms of the quality of the

produced layouts (fitness value) when applied on each category of graphs, whereas Figure 5.3

and Figure 5.4 show the difference according to the performance efficiency (number of

evaluated solutions).

Figure 5.1 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS when
applied on the graphs of the 1st category (phase I)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1 2 3 4

Fitness

Graph Sets - Category I

HC

SA

TS

112

Figure 5.2 Bar chart with 95% confidence interval of the fitness function obtained by HC, SA, TS when
applied on the graphs of the 2nd category (phase I)

Figure 5.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC,
SA, TS when applied on the graphs of the 1st category (phase I)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1 2 3 4

Fitness

Graph Sets - Category II

HC

SA

TS

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category I

HC

SA

TS

113

Figure 5.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC,
SA, TS when applied on the graphs of the 2nd category (phase I)

 Figure 5.5 and Figure 5.6 show the execution time (in seconds) when the methods were

applied on the data of the first and second categories respectively. The figures demonstrate how

lengthy the layout process was with simulated annealing compared to the other two methods.

Our proposed tabu search-based method, on the other hand, shows a slightly faster execution

time against hill climbing.

Figure 5.5 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC, SA,
TS when applied on the graphs of the 1st category (phase I)

0

20000

40000

60000

80000

100000

120000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category II

HC

SA

TS

0

200

400

600

800

1000

1200

1 2 3 4

Time

(seconds)

Graph Sets - Category I

HC

SA

TS

114

Figure 5.6 Bar chart with 95% confidence interval of the execution time (in seconds) obtained by HC, SA,
TS when applied on the graphs of the 2nd category (phase I)

 In Figure 5.7 and Figure 5.8, we merge the results obtained from applying the three

methods on both categories (category I and category II graph datasets) to show respectively the

average overall fitness value and the average number of evaluated solutions produced by the

three methods. On the other hand, Table 5.3 and Table 5.4 demonstrate the statistical analysis

of the fitness values for the graph layouts produced by the three methods when applied on the

graph datasets of the first and the second categories together along with the number of

evaluated solutions obtained by each method. You can refer to Section 5.2.4 for a complete

description of the conducted statistical test and for the interpretation of the p-value column

listed in the tables.

0

100

200

300

400

500

600

700

800

1 2 3 4

Time

(seconds)

Graph Sets - Category II

HC

SA

TS

115

Figure 5.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by HC,
SA, TS when applied on the graphs of both categories (phase I)

Figure 5.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions
obtained by HC, SA, TS when applied on the graphs of both categories (phase I)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fitness
HC

SA

TS

0

10000

20000

30000

40000

50000

60000

70000

80000

Evaluated

Solutions

HC

SA

TS

116

Table 5.3 Statistical analysis of the fitness function for HC, SA, TS when applied on the graphs of both
categories (phase I)

Fitness

Hill Climbing Simulated Annealing Tabu Search

Graph Set Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1A 0.616 0.607 0.828 0.502 0.494 0.494 0.503 0.484 0.505 0.504 0.558 0.421 4.11E-07

2A 0.902 0.875 1.211 0.791 0.746 0.746 0.754 0.728 0.791 0.784 0.869 0.728 5.33E-09

3A 1.023 0.978 1.309 0.916 0.871 0.871 0.884 0.860 0.928 0.922 1.061 0.889 2.06E-09

4A 1.126 1.092 1.387 0.987 0.963 0.964 0.974 0.955 1.017 1.013 1.154 0.944 5.33E-09

1B 0.486 0.465 0.827 0.361 0.286 0.286 0.297 0.272 0.354 0.332 0.618 0.280 1.25E-08

2B 0.801 0.743 1.210 0.614 0.563 0.562 0.587 0.543 0.625 0.612 0.794 0.551 6.52E-09

3B 0.890 0.863 1.249 0.800 0.762 0.761 0.777 0.754 0.805 0.801 0.948 0.730 3.56E-08

4B 1.116 1.076 1.504 0.979 0.956 0.958 0.968 0.918 1.001 0.995 1.072 0.942 6.52E-09

Overall 0.870 0.837 1.191 0.744 0.705 0.705 0.718 0.689 0.753 0.745 0.884 0.685

Table 5.4 Statistical analysis of number of evaluated solutions obtained by HC, SA, TS when applied on
the graphs of both categories (phase I)

Evaluated Solutions

Hill Climbing Simulated Annealing Tabu Search
Graph

Set
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1A 49867 50071 56715 40577 71480 71473 71582 71326 44391 44393 44656 44047 2.64E-08

2A 50623 50132 60846 39727 72149 72139 72266 72059 44688 44670 45020 44381 1.25E-08

3A 53516 52571 65036 42458 72287 72277 72438 72186 44765 44783 45112 44368 1.25E-08

4A 51838 51640 68429 39193 72343 72342 72540 72162 44941 44939 45357 44382 2.64E-08

1B 14523 14206 18779 11801 24485 24489 24634 24387 14870 14883 15010 14619 1.38E-07

2B 32643 32661 44387 25746 48740 48733 48936 48638 29918 29959 30287 29454 8.76E-08

3B 54128 51864 71345 42643 72203 72208 72340 72068 44741 44764 45086 44243 5.33E-09

4B 76351 76891 93479 58574 95171 95163 95327 95079 59182 59152 59775 58818 5.33E-09

Overall 47936 47504 59877 37590 66107 66103 66258 65988 40937 40943 41288 40539

 The results presented in Figure 5.1, Figure 5.2, Figure 5.7, and Table 5.3 show that

simulated annealing produces the best graph layouts compared to the other two methods. It has

a slight advantage over tabu search in the quality of the graph layout, but both are considerably

better than hill climbing. On the other hand, simulated annealing evaluates a larger number of

solutions in order to get those good layouts. Figure 5.3, Figure 5.4, Figure 5.8, and Table 5.4

show that tabu search outperforms the other two methods in terms of performance efficiency

(number of evaluated solutions). The figures in Appendix A (A.1 and A.2) are samples of the

layouts drawn by the three algorithms when applied on the graph datasets described in Table

5.1 and Table 5.2 respectively.

117

5.2.2 Phase II

In phase II, we investigated the performance of the approaches rather than the quality of the

produced layouts. The following process was performed on the graphs of the two categories,

described in Section 5.1, to test which method has the lowest number of evaluated solutions to

reach a particular value of a fitness function (a particular level of a layout quality):

1. We ran the hill climbing method on the graphs until no improvements could be made

to the value of the fitness function. We started with hill climbing, in particular, because

in phase I, it produced graph layouts with the worst quality compared to the other two

methods. Therefore, simulated annealing and tabu search could easily produce graph

layouts with good quality as the one produced by hill climbing.

2. We ran simulated annealing and tabu search methods until they reached an equal or

better fitness function value compared to the one found by the hill climbing drawing

algorithm.

3. We measured the number of evaluated solutions for each method.

 Figure 5.9 and Figure 5.10 show the number of evaluated solutions obtained by the three

methods when they are applied on the graphs of the first category and the second category

respectively. Whereas Figure 5.11 and Table 5.5 describe, visually and statistically, the average

overall number of evaluated solutions obtained from phase II when the three methods are

applied on the graphs of the two categories together.

118

Figure 5.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC,
SA, TS when applied on the graphs of the 1st category (phase II)

Figure 5.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by HC,
SA, TS when applied on the graphs of the 2nd category (phase II)

0

10000

20000

30000

40000

50000

60000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category I

HC

SA

TS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category II

HC

SA

TS

119

Figure 5.11 Bar chart with 95% confidence interval of the average overall number of evaluated solutions
obtained by HC, SA, TS when applied on the graphs of the two categories together (phase II)

Table 5.5 Statistical analysis of the average overall number of evaluated solutions obtained by HC, SA, TS
when applied on the graphs of the two categories together (phase II)

According to the results shown in Figure 5.9, Figure 5.10, Figure 5.11, and Table 5.5, we

conclude that our tabu search method generates graph layouts of good quality with a very

limited number of evaluated solutions compared to hill climbing and simulated annealing.

This difference is significant since the p-values for all graph sets are smaller than our

significance level as shown in the last column of the tables according to the Friedman test that

will be described in Section 5.2.4.

0

10000

20000

30000

40000

50000

60000

Evaluated

Solutions

HC

SA

TS

Evaluated Solutions

HC SA TS

Graph Set Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1A 49867 50070 56715 40577 49929 50073 70029 37054 21468 23010 28765 12633 2.51E-07

2A 50622 50131 60846 39727 46822 46122 67079 32120 20851 23205 29366 2272 8.76E-08

3A 53516 52570 65036 42458 46478 47600 60463 32053 25007 27351 41053 6086 2.64E-08

4A 51837 51640 68429 39193 45321 45549 61512 32090 21450 25254 29789 2299 8.76E-08

1B 14523 14205 18779 11801 13136 12388 19220 7822 6665 6142 11819 2690 7.16E-07

2B 32643 32661 44387 25746 27602 26903 41822 16976 12009 11855 22726 2677 5.06E-08

3B 54127 51863 71345 42643 48811 49601 58243 31749 23266 23461 44243 5984 4.80E-07

4B 76351 76891 93479 58574 63208 63516 87893 41797 28551 30759 39755 1790 2.64E-08

Overall 47936 47504 59877 37589 42663 42719 58282 28957 19908 21379 30939 4553 < 2.2e-16

120

5.2.3 Phase III

In phase III, we investigated the quality of the layout produced by the drawing algorithms

rather than the performance. The following process was performed to test which method

produces the graph layouts with the best quality (smallest value of fitness function) when the

three methods perform the same number of evaluated solutions:

1. We ran the tabu search method on the graphs for a predefined number of iterations

(maxIterations = 40 as described in Chapter 4, Section 4.5.2). The number of evaluated

solutions is computed and saved. We started with the tabu search in particular because in

phase I, it generated the lowest number of evaluated solutions.

2. We ran hill climbing and simulated annealing methods until they perform the same

number of evaluated solutions performed by the tabu search drawing algorithm.

3. We measured the value of the fitness function produced by the drawing algorithms in

each of the steps above.

Figure 5.12 and Figure 5.13 show the values of the fitness function obtained by the three

drawing algorithms when they are applied on the graphs of the first category and the second

category respectively. Whereas Figure 5.14 and Table 5.6 describe, visually and statistically,

the average overall fitness function values obtained from phase III when the three methods are

applied on the graphs of the two categories together.

121

Figure 5.12 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA, TS
when applied on the graphs of the 1st category (phase III)

Figure 5.13 Bar chart with 95% confidence interval of the fitness function values obtained by HC, SA, TS
when applied on the graphs of the 2nd category (phase III)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1 2 3 4

Fitness

Graph Sets - Category I

HC

SA

TS

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1 2 3 4

Fitness

Graph Sets - Category II

HC

SA

TS

122

Figure 5.14 Bar chart with 95% confidence interval of the average overall fitness function values obtained
by HC, SA, TS when applied on the graphs of the two categories together (phase III)

Table 5.6 Statistical analysis of the average overall fitness function values obtained by HC, SA, TS when
applied on the graphs of the two categories together (phase III)

Fitness

HC SA TS

 Graph Set Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1A 0.617 0.609 0.828 0.502 0.658 0.659 0.668 0.646 0.505 0.504 0.558 0.421 2.64E-08

2A 0.904 0.877 1.211 0.792 0.897 0.897 0.907 0.886 0.791 0.784 0.869 0.728 1.38E-07

3A 1.028 0.989 1.309 0.925 1.015 1.015 1.033 1.002 0.928 0.922 1.061 0.889 9.66E-07

4A 1.132 1.098 1.390 0.988 1.101 1.100 1.123 1.090 1.017 1.013 1.154 0.944 1.30E-06

1B 0.487 0.465 0.827 0.361 0.419 0.421 0.438 0.390 0.354 0.332 0.618 0.280 9.80E-07

2B 0.803 0.746 1.210 0.616 0.696 0.696 0.713 0.683 0.625 0.612 0.794 0.551 9.66E-07

3B 0.895 0.872 1.249 0.803 0.908 0.909 0.921 0.895 0.805 0.801 0.948 0.730 4.80E-07

4B 1.122 1.082 1.517 0.987 1.121 1.123 1.138 1.102 1.001 0.995 1.072 0.942 1.36E-07

Overall 0.873 0.842 1.193 0.747 0.852 0.853 0.868 0.837 0.753 0.745 0.884 0.685 < 2.2e-16

We conclude from the results presented in Figure 5.12, Figure 5.13, Figure 5.14, and Table

5.6 that our tabu search approach draws graph layouts with better quality (or similar quality in

the worst case) compared to hill climbing and simulated annealing when they evaluate the

same number of solutions. The Friedman statistical significance test was applied on the results

and the p-values in the tables show that there is a significant difference in the layouts between

the three methods.

0.0

0.2

0.4

0.6

0.8

1.0

Fitness
HC

SA

TS

123

 Figure 5.15 and Figure 5.16 show two different examples of random graph layouts drawn

by hill climbing, simulated annealing, and our tabu search approach.

Random Layout Hill Climbing Layout

Simulated Annealing Layout Tabu Search Layout

Figure 5.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas of our
visualization tool by the three methods: HC, SA, TS

124

Random Layout Hill Climbing Layout

Simulated Annealing Layout Tabu Search Layout

Figure 5.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas of our
visualization tool by the three methods: HC, SA, TS

5.2.4 Statistical Tests

In order to test the effect of randomness in generating the initial graph layouts used in

comparing the methods, we performed a statistical significance test on the results generated

from the three phases. Note that, we applied a statistical significance test on phase I for the

fitness values of the graph layouts generated by the three methods to conclude which method

draws the best layout without fixing a specific number of evaluated solutions performed by

each method. To demonstrate that there is a statistical significant difference between the three

methods, we first applied the Friedman test (Upton & Cook 2014) which is a non-parametric

test for testing the differences between several samples. This test requires no prior knowledge

125

of the distribution of data. We could have applied ANOVA test if our population was

normally distributed, but when we applied Shapiro-Wilk normality test (Shapiro & Wilk

1965) on our randomly generated datasets, we got p-values less than the significance level that

equals to 0.05. Thus, the null hypothesis of Shapiro-Wilk’s test that the population is normally

distributed was rejected.

We ran the three methods on 20 randomly generated test cases, based on Erdos-Renyi

model, for each group of graphs in the first and second categories. Note that, in simulated

annealing, we calculated the median of 30 runs for each test case instead of finding the mean

(median is more reliable in avoiding outliers) and consequently we got 20 medians (since we

find the mean of 30 medians for each test case). Then we compared them with the results of

the means computed by hill climbing and tabu search using the Friedman test with a

significance level of a value 0.05. The null hypothesis for the Friedman test states that there

are no differences between the results of the methods. If the probability is low (i.e. less than

the selected significance level) the null hypothesis is rejected and it can be concluded that at

least two methods are significantly different from each other. In all the tests, as shown in

Table 5.3, Table 5.4, Table 5.5, and Table 5.6, we got p-values smaller than 0.05 which means

we can reject the null hypothesis and hence we conclude that there is a significant difference

between the three methods.

The Friedman test allowed us to conclude that there is a significant difference between the

methods, but it does not show how each method differs from the other. Therefore, a post-hoc

test for multiple comparisons between the methods was conducted using the Wilcoxon signed-

rank test (Wilcoxon 1945) with Bonferroni correction (Dunn 1961; Holm 1979). The

Wilcoxon signed-rank test is a non-parametric statistical hypothesis test that can be used as an

alternative to the paired student’s t-test since our population is not normally distributed.

Bonferroni correction, on the other hand, is a simple method that allows pairwise comparisons

and is easy to apply. Despite the importance of using the Bonferroni method for the multiple

comparison post-hoc correction, it can be considered conservative if there are a large number

of tests and/or the test statistics are positively correlated (Perneger 1998). Note that all the

statistical tests were conducted using the R statistical package i386 (version 3.1.1).

126

In the Bonferroni correction, we lower the significance level value to 0.01 in an attempt to

prevent data from incorrectly appearing to be statistically significant and to increase the

accuracy of results. When you are performing many independent or dependent statistical tests

at the same time, this multiple comparison post-hoc correction is used (Bland & Altman

1995).

While a p-value of a statistical significance test can indicate the existence of a significant

difference, but it does not show the size of that difference. Effect size is a simple way of

quantifying the difference between the results of two methods. Here, we measure it by the

standardized difference between two means (i.e., difference of means divided by the standard

deviation). Cohen (1992) classified effect sizes as small (= 0.2), medium (= 0.5), and large (=

0.8). See Table 5.7, Table 5.8, Table 5.9, and Table 5.10 for the effect sizes and p-values in

phase I; Table 5.11 and Table 5.12 for the effect sizes and p-values in phase II; and Table 5.13

and Table 5.14 for the effect sizes and p values in phase III.

The p-values of the Bonferroni post-hoc test shown in Table 5.7 and Table 5.8 conclude

that there is a significant difference between the layouts drawn by simulated annealing and the

other two methods except in the first graph dataset of the first category. The effect size of

fitness between simulated annealing and hill climbing is always large, whereas the effect size

increases from medium to large as the graph size increases when simulated annealing is

compared against tabu search. On the other hand, Table 5.9 and Table 5.10 show that the tabu

search outperforms the other two methods in terms of performance efficiency as the number of

nodes increases except for small graphs as shown in the first and the second graph datasets in

the second category in Table 5.10 (i.e., the effect size increases from small to medium then

large when tabu search is compared against hill climbing, and it is always large when

compared against simulated annealing).

127

Table 5.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
HC, SA, TS when applied on the graphs of the 1st category (phase I)

 Fitness

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 1.7e-10 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect 1.0442 0 0.9987 0 1.0374 0 1.1315 0

TS p 1.2e-08 0.2400 3.4e-06 1.5e-07 0.0001 4.4e-11 0.0002 1.2e-06

effect 0.8999 0.2954 0.7372 0.9724 0.6957 0.8648 0.7848 0.7805

Table 5.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
HC, SA, TS when applied on the graphs of the 2nd category (phase I)

 Fitness

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect 1.1044 0 1.0903 0 0.7858 0 0.8629 0

TS
p 4.1e-06 2.3e-06 1.0e-05 1.5e-06 1.2e-05 1.0e-05 1.7e-05 2.3e-06

effect 0.7310 0.5909 0.8397 0.7571 0.5297 0.6295 0.6400 0.9621

Table 5.9 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on HC, SA, TS when applied on the graphs of the 1st category (phase I)

 Evaluated Solutions

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 2.0e-07 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect 1.6794 0 1.6181 0 1.4865 0 1.4912 0

TS
p 0.0002 2.0e-07 2.6e-05 2.0e-07 8.7e-06 4.4e-11 0.0002 4.4e-11

effect 1.0772 1.8704 0.9268 1.8705 1.1500 1.8694 0.7738 1.8677

Table 5.10 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on HC, SA, TS when applied on the graphs of the 2nd category (phase I)

 Evaluated Solutions

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect 1.8559 0 1.6627 0 1.3728 0 1.1804 0

TS
p 0.1400 4.4e-11 0.0280 4.4e-11 1.2e-07 4.4e-11 1.2e-07 4.4e-11

effect -0.1824 1.8629 0.4961 1.8668 0.9798 1.8682 1.3144 1.8725

128

In Table 5.11 and Table 5.12 we see that tabu search outperforms hill climbing and

simulated annealing in drawing graph layouts with similar fitness values using a lower number

of evaluated solutions as the p-values in the tables show that there is a statistical significant

difference between the tabu search and the other two methods along with very large effect

sizes. On the other hand, there is no statistically significant difference in the number of

evaluated solutions between simulated annealing and hill climbing when applied on graphs

with a small number of nodes. However, Table 5.12 shows that there is a significant difference

between the two methods as the number of nodes increases with medium effect sizes.

Table 5.11 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on HC, SA, TS when applied on the graphs of the 1st category (phase II)

 Evaluated Solutions

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 1.0000 * 0.1500 * 0.0260 * 0.0340 *

effect 0.0045 0 -0.2736 0 -0.5751 0 -0.4570 0

TS p 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 5.2e-10 4.4e-11 4.4e-11

effect 1.7633 1.4981 1.5434 1.3164 1.5074 1.2786 1.4538 1.3258

Table 5.12 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on HC, SA, TS when applied on the graphs of the 2nd category (phase II)

 Evaluated Solutions

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 0.1700 * 0.0430 * 0.2200 * 0.0009 *

effect 0.3465 0 0.4984 0 0.3879 0 0.6480 0

TS p 8.7e-11 6.1e-09 4.4e-11 2.9e-09 8.7e-11 8.3e-10 4.4e-11 4.4e-11

effect 1.4860 1.2484 1.5087 1.2869 1.4767 1.4578 1.5524 1.3110

Table 5.13 and Table 5.14 show that the tabu search always draws graph layouts with

better quality compared to hill climbing and simulated annealing using the same number of

evaluated solutions with medium to large effect sizes when compared against hill climbing,

and very large effect sizes when compared against simulated annealing. On the other hand,

there is no significant difference between the qualities of the graph layouts drawn by hill

climbing and simulated annealing when they are applied on graphs using the same number of

evaluated solutions.

129

Table 5.13 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
HC, SA, TS when applied on the graphs of the 1st category (phase III)

 Fitness

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 0.0300 * 0.1500 * 0.2400 * 0.9200 *

effect -0.3991 0 0.0525 0 0.1075 0 0.2562 0

TS p 1.2e-08 4.4e-11 2.3e-06 4.4e-11 4.0e-05 1.2e-07 1.0e-04 1.2e-07

effect 0.9060 1.6279 0.7494 1.5637 0.7368 1.4149 0.8186 1.2066

Table 5.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
HC, SA, TS when applied on the graphs of the 2nd category (phase III)

 Fitness

 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 HC SA HC SA HC SA HC SA

SA

p 0.0430 * 0.5500 * 0.0180 * 0.1500 *

effect 0.4500 0 0.5625 0 -0.0928 0 0.0048 0

TS p 4.1e-06 1.2e-05 1.0e-05 2.8e-06 6.0e-06 1.2e-07 9.9e-07 4.4e-11

effect 0.7319 0.6455 0.8482 0.9581 0.5628 1.3612 0.6625 1.6436

 In the next section, we explore the performance of the methods when applied to real world

datasets sourced from the Internet.

5.3 Experiments on Real World Graph Datasets

After performing several experiments on random graphs, we tested our system on real world

graph datasets to demonstrate that we can reproduce similar results in a real world setting. We

selected 10 different datasets from different sources as shown in Table 5.15 that also indicates

the number of nodes, the number of edges, and the density of each graph. The graphs have

different sizes with different densities. The initial layout of the nodes in each graph was

generated randomly. Hill climbing and tabu search have run once on the same initial layout

whereas simulated annealing has run 30 times on that random initial layout, as we previously

did. Then we calculated the median for each of the 30 runs which was used in comparison with

the results of the other two methods. We tested the methods according to phases I, II, and III

described in Section 5.2.

130

Table 5.15 Real world graph datasets characteristics and sources

Graph Nodes Edges Density Source Description

1 34 78 0.139 (Zachary 1977)

A social network of
friendships between 34
members of a karate club
at a US university in the
1970s

2 62 159 0.084 (Lusseau et al. 2003)

An undirected social
network of frequent
associations between 62
dolphins in a community
living off Doubtful
Sound, New Zealand

3 105 441 0.081 (Krebs n.d.)

Books about US politics
sold by the online
bookseller Amazon.com.
Edges represent the
frequent co-purchasing of
books by the same
buyers, as indicated by
the ‘customers who
bought this book also
bought these other books’
feature on Amazon

4 112 425 0.068 (Newman 2006)

The network of common
adjective and noun
adjacencies for the novel
‘David Copperfield’ by
Charles Dickens

5 115 613 0.094 (Girvan & Newman 2002)

The network of American
football games between
Division IA colleges
during regular season Fall
2000

6 128 2075 0.255 (Melián & Bascompte 2004)

A network contains the
carbon exchanges in the
cypress wetlands of
South Florida during the
wet season

7 198 2742 0.141 (Gleiser & Danon 2003)
List of edges of the
network of Jazz
musicians

131

8 277 1918 0.05 (Choe et al. 2004)

C. elegans global network
of 277 neurons, and the
spatial positions of the
neurons as two-
dimensional coordinates

9 297 2148 0.049 (White et al. 1986) Neural network of the
nematode C. Elegans

10 332 2126 0.039 (Batagelj & Mrvar 2006) Undirected weighted
graph for US Air flights

 The results of the experiments are shown in the following figures. We start with Figure

5.17 and Figure 5.18 that illustrate the results of applying the three methods on the real data

graphs described in Table 5.15 according to phase I. The figures assert the conclusion

formulated in Section 5.2.1 stipulating that simulated annealing draws the best graph layouts

compared to hill climbing and tabu search, but it is the worst in terms of efficiency.

Figure 5.17 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph
datasets in Table 5.15 (phase I)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5 6 7 8 9 10

Fitness

Graph

Real Graph Datasets

HC

SA

TS

132

Figure 5.18 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on the
graph datasets in Table 5.15 (phase I)

 Figure 5.19 represents the number of evaluated solutions performed by each method when

testing the methods on the real world graphs described in Table 5.15 according to phase II. The

figure shows that our tabu search drawing algorithm outperforms the other two approaches as

the size of the graph increases which supports the conclusion we had in Section 5.2.2 when the

methods were applied on random graphs.

Figure 5.19 Bar chart of the number of evaluated solutions obtained by HC, SA, TS when applied on the
graph datasets in Table 5.15 (phase II)

 In Figure 5.20, the values of the fitness function obtained by each method are demonstrated

following the experiment described in phase III when applied on the same set of data. The

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9 10

Evaluated

Solutions

Graph

Real Graph Datasets

HC

SA

TS

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10

Evaluated

Solutions

Graph

Real Graph Datasets

HC

SA

TS

133

figure shows that the tabu search approach can reproduce the same behaviour described in

Section 5.2.3 on the real data setting (i.e. tabu search approach produces graph layouts with

better quality compared to hill climbing and simulated annealing when they evaluate the same

number of solutions).

Figure 5.20 Bar chart of the fitness function values obtained by HC, SA, TS when applied on the graph
datasets in Table 5.15 (phase III)

 Figure 5.21 and Figure 5.22 are examples of the layouts produced by hill climbing,

simulated annealing, and tabu search when applied to graph 1 and graph 2 in the list of real

world datasets described in Table 5.15.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4 5 6 7 8 9 10

Fitness

Graph

Real Graph Datasets

HC

SA

TS

134

Random Layout Hill Climbing Layout

Simulated Annealing Layout Tabu Search Layout

Figure 5.21 Layout of graph dataset 1 (listed in Table 5.15) produced by HC, SA, TS drawn within the
canvas of our visualization tool

135

Random Layout Hill Climbing Layout

Simulated Annealing Layout Tabu Search Layout

Figure 5.22 Layout of graph dataset 2 (listed in Table 5.15) produced by HC, SA, TS drawn within the
canvas of our visualization tool

5.4 Threats to Validity

In terms of threats to validity, two deterministic algorithms and one stochastic algorithm were

applied. The deterministic methods ran on the same initial graph layout whereas the stochastic

method ran 30 different times on the same initial layout for the same graph. The main internal

threat is in the implementation of the algorithms. The three methods were implemented by the

same coder, and were run on the same machine. There is the possibility that one of the three

methods was implemented in a more efficient way. However, the methods share substantial

code that increases confidence that none was particularly disadvantaged.

136

 Another concern is the selection strategy for a neighbour solution to break the tie when two

or more neighbour solutions have the same fitness values. In our method, we always break the

tie by selecting the solution located on the right. In order to test the significance of the selection

strategy, we investigated the number of times in which a tie-break would occur by applying the

method on 40 random graphs with a minimum of 60 nodes and a maximum of 110 nodes of

different layouts. Table 5.16 shows the average number of occurrences of tie-breaks along with

the average total number of solutions. The average percentage of occurrences was below 1%

(0.25%) which concludes that the selection strategy is insignificant.

Table 5.16 Average tie-breaks percentage for 40 random graphs

Evaluated Solutions
Tie-breaks Total Solutions Percentage %

187.5 73758.85 0.25

In terms of external threats, a threat to the generalizability of the results is possible.

Selection bias was avoided by using randomly generated graphs (except in the parameters of

the generation algorithm, such as number of nodes and edges). However, randomly generated

graphs generally do not have the same characteristics as real world graphs hence we also

evaluated the methods on real world data sets.

5.5 Summary

In this chapter, we described our research questions and the experiments we performed in

order to answer those questions by conducting a comparison between three neighbourhood

search-based drawing algorithms: hill climbing, simulated annealing, and tabu search. Our

experiments covered the three main aspects of our comparison: how good a layout can be

achieved by each drawing algorithm; number of evaluated solutions performed by each

method to reach a particular level of layout quality; and quality of layout drawn by the

methods after a fixed number of evaluated solutions. The experimental results on random

graphs and real world graphs provided quantitative evidence to assert that the tabu search

approach can draw a graph with a good layout quality in a lower number of evaluated

solutions compared to the hill climbing and the simulated annealing approaches. We also

conducted statistical tests which showed, along with the large effect sizes, that the tabu search

drawing algorithm was faster than the hill climbing drawing algorithm. It produced (along

137

with simulated annealing) graph layouts with better quality regardless of the graph size in

terms of the number of nodes and edges. On the other hand, the efficiency of our tabu search-

based method was better than the simulated annealing algorithm but the latter produced graph

layouts with similar or slightly better fitness values compared to those produced by our tabu

search algorithm when both methods ran without limitations on the number of evaluated

solutions. Whilst the tabu search drawing algorithm outperformed the hill climbing drawing

algorithm in all aspects and rapidly produced good graph layouts comparable with those

produced by the slow simulated annealing, the algorithm has potential to be further improved

and so produce better graph layouts if we couple it with methods to more effectively search

the problem space, such as path relinking, as we will discuss in Chapter 6.

138

Chapter 6 Coupling Tabu Search with Path Relinking

This chapter shows the effect of coupling our tabu search-based graph drawing algorithm with

path relinking that also belongs to the neighbourhood search-based algorithms. First, we

clarify the reason behind specifically choosing path relinking to be coupled with tabu search;

second, we highlight our contribution by describing the proposed path relinking-based graph

drawing algorithm and showing the process of integrating path relinking within tabu search

(Subsection 6.2.1) along with the calibration process of the parameters; third, we discuss

different variations of path relinking that can improve the performance of the algorithm, we

demonstrate the algorithm of the selected variation (Subsection 6.3.2) along with the tuning

process of its parameters; and at last, we give a short summary of the coupling process.

6.1 Why Path Relinking?

The main objective of integrating path relinking within tabu search is to speed up the

identification of good solutions. Path relinking is a relatively new neighbourhood search-based

method which was originally proposed to improve tabu search and scatter search (Glover et al.

2000). It has proven its efficiency when being coupled with tabu search in many multi-criteria

applications as we showed earlier in Chapter 2 (Ho & Gendreau 2006; Peng et al. 2014).

However, in a similar manner to tabu search, path relinking has not yet been used in the field

of drawing general multi-criteria graph layouts.

In addition to the successful combination of tabu search and path relinking discussed in the

literature, there are some other reasons behind selecting tabu search to be coupled with path

relinking in particular. Path relinking follows systematic and deterministic rules to combine

elite solutions. This is a crucial difference against evolutionary algorithms which use a factor

of randomness to create offspring from parent solutions. Stochastic methods could be better

than deterministic when they deal with uncertainties. But since we are using fixed values for

all the weights in the fitness function in our approach, deterministic methods are favoured as

they give the same output when given the same initial layout, unlike stochastic methods when

given the same set of parameter values and initial conditions will lead to an ensemble of

different outputs (Kleywegt & Shapiro 2001). Consequently, this leads to problems of

139

repeatability which requires running the stochastic method for a number of times for which we

calculate the mean or median of the generated outputs. Furthermore, stochastic methods lack

good stopping criteria (Kleywegt & Shapiro 2001).

The path relinking procedure takes an initial solution and a guiding solution selected from

the set of solutions generated by another search-based method like tabu search. Then the

relinking process is applied, where the algorithm aims to gradually introduce the attributes of

the guiding solution into the solutions obtained by moving away from the initial solution in a

systematic manner. This combination is motivated by the desire to tunnel through blocked off

areas and infeasible regions created by the tabu search process (Glover 1997). The tabu list

guarantees that the relinking process will only explore solutions which have not been visited

in the tabu search process.

6.2 Coupling Tabu Search with Path Relinking for Graph Drawing

Path relinking is a neighbourhood search-based approach which was proposed to intensify and

diversify the searching process (Glover & Laguna 1997). It starts with a set of elite solutions

that could be generated from other search-based methods such as tabu search, where two

solutions are selected from that set: an initial solution and a guiding solution. The relinking

process begins from the initial solution and searches in the neighbourhood space for

intermediate solutions. These intermediate solutions should introduce more attributes

contained in the guiding solution and fewer attributes from the initial solution. The path

relinking process usually stops when any of the intermediate solutions reach the guiding

solution.

There are different rules discussed in the literature, as shown in Chapter 2 (Section 2.9),

for building the set of elite solutions, selecting the initial and guiding solutions, and

constructing a systematic and deterministic neighbourhood structure to move along the paths.

In the next subsection, we describe how these components were selected and applied in our

basic path relinking implementation, in its simplest version, when coupled with our tabu

search procedure as an intensification step.

140

6.2.1 Algorithm

We couple our tabu search procedure with path relinking to intensify the search within a

specific space of elite solutions as described in Algorithm 6.1. This algorithm is similar to

Algorithm 4.3 plus the steps required for integrating path relinking within tabu search (lines 6,

30-38, and 40 in Algorithm 6.1). The path relinking procedure is called within the tabu search

procedure every fixed number of iterations (intensifyIterations). Building a reference set of

elite solutions is the first step in path relinking. This has a maximum size (refSize) and contains

no redundant solutions. Unlike the population in genetic algorithms, the reference set in path

relinking is recommended to be relatively small (Glover et al. 2000; Ho & Gendreau 2006).

Initially, the solutions produced by the tabu search procedure are added to the reference set. A

solution is directly added to the reference set as long as the set is not full. However, once the

reference set becomes full, a solution will replace the worst solution in the set when any of the

following criteria is satisfied:

a. Quality: the fitness value of the added solution is better (smaller) than the fitness value

of the best solution in the reference set. This is performed by the Quality() function in

Algorithm 6.1.

b. Diversity: the fitness value of the added solution is better (smaller) than the fitness

value of the worst solution in the set, and it is dissimilar to the solutions in the set. The

dissimilarity measure is computed as follows: we define RZ[, the level of dissimilarity

between solution s and the best solution b, as the sum of distances between the

corresponding nodes in the two graph layouts. This is performed by the Diversity()

function in Algorithm 6.1. We also define the median position of all solutions x ∈

refSet relatively to the best solution b as:

'���N�	\LS�T�L� = ∑ RJ[J^[J∈_�`a�b
|
�(c�T| − 1

where |refSet| denotes the number of solutions in the reference set. A solution s is

included in refSet if its fitness value is better than the fitness value of the worst

solution in refSet and its level of dissimilarity exceeds the median, RZ
[> Median.

141

Given:

Connected Graph G(V,E): V is a set of nodes and E ⊆	(V×V) is a set of edges.

initialSquareSize: predefined square size where tabu search candidate solutions are located on its border.

squareReduction: predefined value which represents the rate of reduction for the size of the square.

maxIterations: predefined maximum number of iterations of the tabu search drawing algorithm.

initialCutOff: predefined minimum value that determines whether a move is tabu or not.

intensifyCutOff: predefined value which represents the rate of reduction for the current cutOff value.

intensifyIterations: predefined number of iterations in which the tabu search searching process starts to
intensify.

duration: predefined number of iterations in which a move should remain in the tabu list.

refSize: predefined size for the maximum number of solutions that can be added to the reference set of path
relinking.

Algorithm :
1: allOffsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)}

 2: tabuSet = {}

 3: squareSize = initialSquareSize , CutOff = initialCutOff

4: layout = RandomizeLayout(G) /* layout maps each node in G to an (x,y) position */

 5: iteration = 0

 6: refSet = {} /* PR empty reference set */

 7: while iteration < maxIterations do

 8: for v in V do

9: currentPos = layout[v] /* position currently associated with node v */

 10: currentFitness = Fitness(layout)

 11: candidates = {}

12: for scaledOffset in {(squareSize*x, squareSize*y) | (x,y) in allOffsets}

13: candidatePos = currentPos + scaledOffset /* vector addition */

14: if (v, candidatePos, i) ∉ tabuSet for some i then

 15: layout[v] = candidatePos

 16: candidateFitness = Fitness(layout)

17: if candidateFitness / currentFitness > CutOff then

18: tabuSet = tabuSet ∪ {(v, candidatePos, iteration)}

 19: else

20: candidates = candidates ∪ {(candidatePos, candidateFitness)}

 21: end if

 22: end if

 23: end for

 24: if candidates ≠ {} then

25: newPos = p, where (p,f) is the pair in candidates with minimal f

26: layout[v] = newPos

27: tabuSet = tabuSet ∪ {(v, currentPos, iteration)}

28: end if

29: end for

142

When the path relinking procedure is called, the following steps are performed for a set

number of iterations (PRmaxIterations) as long as the reference set has more than one solution

(see Algorithm 6.2): firstly, we select two solutions from the reference set (initial and guiding

solutions). There are different ways for selecting these two solutions as we show later in this

chapter. In our first version of this algorithm, we select the worst and the best solutions from

the reference set to represent the initial and guiding solutions respectively, i.e. the guiding

solution is always of a better (smaller) fitness value than the fitness value of the initial

solution. Secondly, we remove the initial solution from the reference set as its path to the

guiding solution will be explored. Thirdly, we call the function MoveAlongPath() that moves

on a path from the initial solution toward the guiding solution and vice versa in the solution

space to generate intermediate solutions (see Algorithm 6.3). This scenario had produced

better results in other applications compared to moving in one direction only (Ho & Gendreau

2006). These intermediate solutions should become closer to the guiding solution (i.e. contain

more attributes from the guiding solution and fewer attributes from the initial solution). In our

algorithm, for each node in the initial solution, we visit the 8 positions around a square (same

local search space described earlier in Chapter 4, Section 4.2.1) of a predefined size

30: if !FoundinRefSet(layout) then

31: if Size(refSet) < refSize then /* not full */

32: refSet = refSet ∪ {(layout, iteration)}

33: else

34: if Quality(layout) || Diversity(layout) then

35: refSet = refSet ∪ {(layout, iteration)}

36: end if

37: end if

38: end if

 39: if (iteration mod intensifyIterations) == 0 then

 40: layout = PathRelinking(refSet, iteration)

41: squareSize = SmallerSquareSize(squareSize, squareReduction)

42: cutOff = SmallerTabuCutOff(cutOff, intensifyCutOff)

43: end if

44: tabuSet = {(v,p,i) | (v,p,i) in tabuSet and (iteration - i) < duration}

45: iteration = iteration + 1

46:end while

Algorithm 6.1 Tabu search and path relinking coupling algorithm for graph drawing

143

(pathSqrSize) and compute the Euclidean distance from each position to its corresponding

node in the guiding solution, as shown in Figure 6.1 where node number 2 would move to a

neighbourhood node that has the closest Euclidean distance to its corresponding node in the

guiding solution. We select the position with the shortest Euclidean distance. Its fitness value

is computed along with its dissimilarity level, and we update the reference set, by calling

function UpdateReferenceSet(), if the new solution satisfies the quality and dissimilarity

measures. The movement along the path requires two conditions to stop: the first is when an

intermediate solution reaches the guiding solution, and the second is when the length of the

path reaches a predefined value of a maximum length (pathLength). Note that, as we generate

intermediate solutions, we use the tabu search memory-based list to avoid previously visited

solutions.

Figure 6.1 Our path relinking strategy in moving from the initial solution to the guiding solution

144

6.2.2 Parameter Tuning

Our simplest version of path relinking has four parameters which affect the performance of the

method: the number of times we pick initial and target solutions from the reference set for

path testing (PRmaxIterations), the size of the reference set (refSize), the maximum length of

the path between the initial and the target solutions (pathLength), and the size of the square

Given:

PRmaxIterations: predefined value of the number of iterations to repeat the path relinking procedure.

pathSqrSize: predefined square size where path relinking candidate solutions are located on its border.

pathLength: predefined value representing the maximum length of the path.

Algorithm :
 1: i = 0

 2: while i < PRmaxIterations && Size(refSet) > 1 do

 3: SelectSourceDestination(refSet, source, destination)

 /* returns source and destination selected from the reference set refSet */

 4: candidateLayout1 = MoveAlongPath(source, destination, pathLength, pathSqrSize)

 /* forward path */

 5: candidateLayout2 = MoveAlongPath(destination, source, pathLength, pathSqrSize)

 /* backward path */

6: UpdateReferenceSet(refSet, Min(candidateLayout1, candidateLayout2))

7: i = i + 1

8: end while

Algorithm 6.2 PathRelinking() procedure

Algorithm :
MoveAlongPath (source, destination, pathLength, pathSqrSize)

 1: length = 0

 2: while source != destination || length < pathLength

 3: for v in V do

 4: position = ShortestEuclidean(source[v], destination[v], pathSqrSize)

 /* position with shortest distance around the square from the node in source to

 destination */

 5: fitness = Fitness(layout[position])

 6: move source[v] to position if position ∉ tabuSet

 7: tabuSet = tabuSet ∪ {(v, layout[position], iteration)}

 8: end for

 9: length = length + 1

 10:end while

Algorithm 6.3 MoveAlongPath() procedure

145

used to determine the neighbourhood search space of solutions in the path (pathSqrSize). In

this subsection, we try to calibrate the values of the parameters of the path relinking procedure

while fixing the values of the tabu search procedure to the ones we obtained earlier in Chapter

4 (Section 4.5.2). Note that, we could have re-calibrated the values of parameters for tabu

search, but we moved on since tabu search does not have an effect on the parameters of path

relinking (Ho & Gendreau 2006) as path relinking is a separate function for search

intensification. Tabu search is only responsible for building the reference set used in path

relinking by adding elite solutions to the set.

The graph datasets which we used in tuning the values of these parameters were exactly

the same sets used in tuning the values of the parameters of all the previous methods as

described in Table 6.1, i.e. 100 random connected graphs, based on Erdos-Renyi model, that

were divided into five sets such that each set had a different number of nodes and edges.

Table 6.1 Graph datasets used in parameter tuning for path relinking

Graph Set Nodes Edges Density Label

1 50 153 0.125 N50E153

2 100 544 0.110 N100E544

3 150 1173 0.105 N150E1173

4 200 1890 0.095 N200E1890

5 250 2645 0.085 N250E2645

We followed the same incremental testing process we performed with all the other

methods. The process was divided into three phases. In phase I, we select arbitrary values for

all parameters then we test each parameter with several values. We start with one parameter,

we test it thoroughly with different values, and then we select the value that produces the best

layout compared to the other values. We fix the value of the first parameter and we move on

to test another parameter in the same manner, and so forth. In the second phase of parameter

tuning, we repeated the same steps we followed in phase I, but instead of starting with

arbitrary values, we started with the values that were selected and fixed from phase I. The

third phase is to study the effect of the values of the path relinking parameters on the

performance of the drawing algorithm (i.e. number of evaluated solutions).

146

i. Phase I

At the beginning, we tested different values for the PRmaxIterations parameter {1, 2, 3, 4, 5},

while fixing the rest of the parameters to some arbitrary values: refSize = 5, pathLength = 10,

and pathSqrSize = 10. In this phase of testing, we were looking for the combination of

parameters’ values that give the smallest fitness value (best quality) compared to all other

combinations regardless of the number of evaluated solutions performed by the drawing

algorithm. According to Figure 6.2, we selected the value 5 for the PRmaxIterations

parameter. Note that we could increase the values for this parameter as the figure shows that

the fitness value decreases as the number of iterations increases. However, we stopped at the

value 5 since the arbitrary value of the maximum size of the reference set is small. After

testing the refSize parameter we can choose larger values for PRmaxIterations in phase II.

Figure 6.2 Path relinking fitness with the PRmaxIterations parameter (phase I)

After fixing the value of PRmaxIterations, we moved on to the second parameter refSize

and tested it with the values {5, 10, 15, 20, 25}. As shown in Figure 6.3, the layout became

better as the size of the reference set increased. When refSize was assigned the value 20 or 25,

it produced better graph layouts compared to the rest of the values. But we selected the value

20 for this parameter as the number of evaluated solutions was lower.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 5 10

Fitness

PRmaxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

147

Figure 6.3 Path relinking fitness with the refSize parameter (phase I)

The maximum length of the path between the initial solution and the guiding solution,

pathLength was tested with the values {5, 10, 15, 20, 25}. The fitness values of the layouts

produced by our path relinking drawing algorithm were close to each other, as shown in

Figure 6.4. However, on large graph datasets whether we decrease or increase the value of this

parameter around the value 15, the fitness value increases. Thus, we selected the value 15 for

pathLength as the figure shows that this value gave the best layout.

Figure 6.4 Path relinking fitness with the pathLength parameter (phase I)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 5 10 15 20 25 30

Fitness

refSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 5 10 15 20 25 30

Fitness

pathLength

N50E153

N100E544

N150E1173

N200E1890

N250E2645

148

The square size representing the neighbourhood search space around each solution in the

path was tested with the values {2, 6, 10, 14, 18}. Figure 6.5 shows that the fitness value

decreased as the value of PathSqrsize increased until the value 14 was reached. After that the

fitness value had increased again at the value 18. We chose the value 14 for this parameter

since it produced the best fitness values of graph layouts when applied on large graphs.

Figure 6.5 Path relinking fitness with the pathSqrSize parameter (phase I)

ii. Phase II

We started with the values that were selected and fixed from phase I. In Figure 6.6, we show

the results of testing the value of PRmaxIterations with the values {3, 5, 7, 9, 11}. The figure

shows that the best layouts were produced when the value of this parameter was either 9 or 11.

But we selected the value 11 as it produced a slightly better fitness value compared to the

layout’s fitness value produced when the value 9 was used on large graphs.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 5 10 15 20

Fitness

pathSqrSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

149

Figure 6.6 Path relinking fitness with the PRmaxIterations parameter (phase II)

In this phase, there is no significant difference between the fitness values produced when

we tested refSize parameter with the values {10, 15, 20, 25, 30} except with large graphs as

Figure 6.7 indicates that the value 25 for this parameter produced layouts with the best fitness

value compared to the other values of the parameter.

Figure 6.7 Path relinking fitness with the refSize parameter (phase II)

We retested the value of the pathLength parameter in this phase using the values {10, 15,

20, 25, 30}. Figure 6.8 shows once more that the best fitness values were produced at value 15

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 5 10 15

Fitness

PRmaxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 5 10 15 20 25 30 35

Fitness

refSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

150

for all the categories of graphs used in this experiment. The figure also shows that the fitness

values increased as the length of the path increased starting from the value 15.

Figure 6.8 Path relinking fitness with the pathLength parameter (phase II)

The results in phase I showed that increasing the value of the pathSqrSize parameter

decreases the value of the layout’s fitness until the value of this parameter reaches the value

14. In this phase, we retested this parameter with the values {4, 9, 14, 19, 24}. Figure 6.9

shows that phase II gave similar results to those generated in phase I. The fitness values were

at their best when the value of this parameter was 14.

Figure 6.9 Path relinking fitness with the pathSqrSize parameter (phase II)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 5 10 15 20 25 30 35

Fitness

pathLength

N50E153

N100E544

N150E1173

N200E1890

N250E2645

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0 5 10 15 20 25 30

Fitness

pathSqrSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

151

iii. Phase III

We performed a similar process to the one used in parameter tuning of the previous drawing

algorithms discussed in Chapter 4. We took a view that a good-enough graph layout is a

layout in which its fitness value is slightly greater than the best fitness value produced in the

experiments of phase II. We used the values of the fitness function produced by the selected

parameters’ values in phase II and we increased them by 12.5%. Then we ran the path

relinking procedure until it reached equal fitness values to the target fitness values or no

further improvement in the fitness value was made. Finally, we selected the most appropriate

parameter values that gave a good layout with a small number of evaluated solutions.

The best value for the PRmaxIterations parameter in phase II was 11. As we are looking to

minimise the number of evaluated solutions in phase III, we tested this parameter with values

smaller than 11: {4, 5, 7, 9}. The results in Table 6.2 and Figure 6.10 indicate that the method

produced layouts with fitness values equal or smaller than the targeted fitness values with all

the values of PRmaxIterations which we tested. However, the value 4 was the one which

made the method generate the targeted layouts with the lowest number of evaluated solutions.

To ensure that there is no smaller value for PRmaxIterations which could produce results

better than the value 4, we tested it with the value 2 instead. But this value could not allow the

method to reach the targeted fitness value for one of the tested graph datasets, as shown in

Table 6.2.

Table 6.2 Path relinking fitness with the PRmaxIterations parameter (phase III)

 Fitness
PRmaxIterations N50E153 N100E544 N150E1173 N200E1890 N250E2645

2 0.300 0.626 0.813 0.944 1.017

4 0.299 0.624 0.809 0.926 1.009

5 0.296 0.622 0.808 0.926 1.008

7 0.298 0.621 0.811 0.924 1.007
9 0.299 0.619 0.810 0.926 1.006

Target 0.303 0.634 0.825 0.941 1.029

152

Figure 6.10 Path relinking number of evaluated solutions with the PRmaxIterations parameter (phase III)

In the previous phase, the best value for the reference set size parameter was 25. We tested

the refSize parameter in this phase with the values {5, 10, 15, 20, 25}. Figure 6.11 shows that

there was no significant difference in the number of evaluated solutions when we tested this

parameter with the values ranging from 10 to 25. Only the value 5 had generated a lower

number of evaluated solutions. However, a path relinking procedure with a reference set of

size 5 could not generate graph layouts with fitness values that reach the targeted fitness

values in two graph datasets as shown in Table 6.3. We decided to select the value 20 for the

refSize parameter as the fitness values produced by the method were better and smaller than

the targeted fitness values with a similar number of evaluated solutions compared to the other

values of this parameter.

Table 6.3 Path relinking fitness with the refSize parameter (phase III)

 Fitness
refSize N50E153 N100E544 N150E1173 N200E1890 N250E2645

5 0.305 0.627 0.814 0.933 1.030

10 0.302 0.623 0.814 0.936 1.024

15 0.301 0.624 0.814 0.930 1.020
20 0.300 0.625 0.805 0.928 1.009

25 0.300 0.625 0.807 0.929 1.011

Target 0.303 0.634 0.825 0.941 1.029

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10

Evaluated

Solutions

PRmaxIterations

N50E153

N100E544

N150E1173

N200E1890

N250E2645

153

Figure 6.11 Path relinking number of evaluated solutions with the refSize parameter (phase III)

According to the tuning process for the pathLength parameter in phase II, we obtained the

best fitness values when the value of this parameter was 15. As this value increased or

decreased, the fitness values were also becoming larger (worse). The length of the path was

tested in phase III with the values {5, 10, 15, 20, 25}. Figure 6.12 illustrates that the number

of evaluated solutions decreases as the value of pathLength decreases. A path length with the

value 5 produced a lower number of evaluated solutions compared to the other values, but the

algorithm could not reach the targeted fitness value for one graph dataset, as shown in Table

6.4. Thus, the value 10 was the best value for pathLength in which it produced graph layouts

having similar fitness values to the targeted fitness values with a lower number of evaluated

solutions compared to the other values of this parameter.

Table 6.4 Path relinking fitness with the pathLength parameter (phase III)

 Fitness
pathLength N50E153 N100E544 N150E1173 N200E1890 N250E2645

5 0.299 0.636 0.812 0.929 1.018

10 0.299 0.626 0.807 0.929 1.014

15 0.300 0.625 0.805 0.928 1.009
20 0.300 0.627 0.819 0.947 1.023

25 0.299 0.626 0.816 0.943 1.031

Target 0.303 0.634 0.825 0.941 1.029

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25 30

Evaluated

Solutions

refSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

154

Figure 6.12 Path relinking number of evaluated solutions with the pathLength parameter (phase III)

In phase II, the best value for pathSqrSize was 14. In this phase, we retested this parameter

with the values {6, 10, 14, 18, 22}. Table 6.5 shows that the path relinking procedure could

reach the targeted fitness values with all the values we tested for pathSqrSize. On the other

hand, Figure 6.13 shows that the number of evaluated solutions decreased as the square size

increased. The figure shows that starting from the value 18 onwards, the number of evaluated

solutions becomes stable. Therefore, we chose the value 18 for the pathSqrSize parameter.

Table 6.5 Path relinking fitness with the pathSqrSize parameter (phase III)

 Fitness
pathSqrSize N50E153 N100E544 N150E1173 N200E1890 N250E2645

6 0.302 0.624 0.813 0.927 1.014

10 0.294 0.625 0.810 0.932 1.016

14 0.299 0.626 0.807 0.929 1.014

18 0.300 0.622 0.812 0.928 1.019

22 0.300 0.628 0.816 0.930 1.024

Target 0.303 0.634 0.825 0.941 1.029

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 5 10 15 20 25 30

Evaluated

Solutions

pathLength

N50E153

N100E544

N150E1173

N200E1890

N250E2645

155

Figure 6.13 Path relinking number of evaluated solutions with the pathSqrSize parameter (phase III)

 Now that we have tuned the parameters of the simplest version of path relinking for graph

drawing, we list the values for the parameters of the path relinking procedure below that we

will use in the coming experiment:

PRmaxIterations = 4,

refSize = 20,

pathLength = 10,

pathSqrSize = 18.

In the following section, we discuss different variations of path relinking that could

improve the performance of the path relinking procedure in its simplest version.

6.3 Variation of Path Relinking

The performance of the path relinking procedure is influenced by the strategy used for

selecting the initial and the guiding solutions. It is also affected by the technique used in

searching for solutions in the neighbourhood search space. In this section, we describe the

different strategies applied in order to select the best variation of path relinking that improves

the basic implementation in terms of the performance and quality of the produced layouts. We

also include experimental results which second our selections.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 5 10 15 20 25

Evaluated

Solutions

pathSqrSize

N50E153

N100E544

N150E1173

N200E1890

N250E2645

156

6.3.1 Proper Selection of Initial and Guiding Solutions

Different selection strategies for the initial (source) and guiding (destination) solutions affect

the quality of the graph layouts drawn by the path relinking procedure. There are five different

variations for the selection mechanism of the source solution and the destination solution from

the reference set (Ho & Gendreau 2006):

a. The worst and the best elite solutions,

b. The best and the second best elite solutions,

c. Random selection of elite solutions,

d. The best elite solution and the most distant elite solution to the best. In our graph

layout application, the distance between two layouts can be computed as the

summation of Euclidean distances between the corresponding nodes in the two layouts

as described in the Diversity() function used in Algorithm 6.1 which was

discussed in Section 6.2.1. The most distant solution is the one with the maximum

summation of distances to the best elite solution (i.e. the most distant solution = s such

that s ∈ refSet and satisfies the formula: 'NQ ∑ RZ
[Z^[

Z∈_�`a�b , where b is the best solution

in refSet and RZ
[is the level of dissimilarity between solutions s and b),

e. The two most distant elite solutions.

In our basic version of the path relinking procedure, we started with the first strategy

where source and destination solutions were the worst and the best elite solutions in the

reference set. But as we want to choose the variation that gives the best performance, we

tested the five different strategies on random connected graph datasets, as shown in Table 6.6.

We generated 40 random graphs, based on Erdos-Renyi model, divided into 4 groups such that

each group contains 10 test cases. Each group had a number of nodes and a number of edges

that varies from the number of nodes and edges in the other groups. The results in Figure 6.14

and Figure 6.15 show that the first (a) and the fourth (d) strategies were competitive and had

better performance compared to the other strategies, taking into consideration the combination

of both quality and speed.

157

Table 6.6 Characteristics of the graphs used in the experiment of selecting initial/guiding solutions

Graph Set Nodes Edges Density

1 55 190 0.128

2 105 611 0.112

3 155 1217 0.102

4 205 1986 0.095

Figure 6.14 Fitness values with 95% confidence interval of the strategies for selecting initial/guiding
solutions

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4

Fitness

Graph Group

PR (a)

PR (b)

PR (c)

PR (d)

PR (e)

158

Figure 6.15 Number of evaluated solutions with 95% confidence interval of the strategies for selecting
initial/guiding solutions

We performed another comparison between those two strategies on newly generated

random datasets (described in Table 6.7) in order to avoid overfitting. The graph datasets were

divided into groups in the same way which we followed in the previous experiment. We

divided the comparison into two phases: the first phase tested the number of evaluated

solutions performed by the drawing algorithm for each strategy as it runs until it reaches a set

fitness value; and the second phase tested the quality of the generated graph layouts when the

drawing procedure runs for a set number of evaluated solutions. In both phases, the path

relinking procedure which was based on strategy (d) slightly outperformed the procedure with

strategy (a) in terms of speed as shown in Figure 6.16 and the fitness of the generated layouts

as shown in Figure 6.17.

Table 6.7 Characteristics of the graphs used in the experiment of comparing strategies (a) and (d) for
selecting solutions

Graph Set Nodes Edges Density

1 150 1173 0.105

2 200 1890 0.095

3 250 2645 0.085

4 300 3363 0.075

0

20000

40000

60000

80000

100000

120000

1 2 3 4

Evaluated

Solutions

Graph Group

PR (a)

PR (b)

PR (c)

PR (d)

PR (e)

159

Figure 6.16 Number of evaluated solutions with 95% confidence interval performed when strategies (a)
and (d) run to reach a set fitness value

Figure 6.17 Fitness values produced with 95% confidence interval when strategies (a) and (d) run for a set
number of solutions

6.3.2 Improved Neighbourhood Searching Strategy

After improving our basic implementation of the path relinking procedure by choosing the

strategy, for selecting the initial and the guiding solutions, that works best with our graph

0

20000

40000

60000

80000

100000

120000

1 2 3 4

Evaluated

Solutions

Graph Group

PR (a)

PR (d)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4

Fitness

Graph Group

PR (a)

PR (d)

160

drawing application, we proposed another improvement to our path relinking procedure by

examining the way the path is formed from the initial solution to the guiding solution.

In the basic implementation, the step-size we use to move from an initial solution to

intermediate solutions is fixed (pathSqrSize) and it never changes as we move along the path

until we reach the guiding solution. We examined if using a variable step-size would improve

performance. Moving along the path such that the movement starts faster near the initial

solution and it becomes slower as it gets closer to the guiding solution in the solution space

which intensifies the search in the area of the guiding solution. This strategy is applied to both

directions: from an initial solution to a guiding solution and vice versa. This variation

introduces two new parameters to our path relinking procedure: number of iterations required

to update the step-size (accelerationPeriod), and the rate of decreasing the step-size

(accelerationRate). The net effect is to search more closely to the two known solutions than in

the space between them. Note that, moving in a variable step-size will not exclude the

solutions in the middle of the path. They will have a fair exploration time, as the acceleration

takes place at one end and slows down at the other end in both directions. However, according

to Sánchez-Oro & Duarte (2012), the best solutions were usually detected near the guiding

solution since the main purpose of path relinking is intensifying the search near elite solutions.

Before we compare between those two strategies (fixed step-size or variable step-size), we

need to select proper values for the newly introduced parameters while fixing the other

parameters of path relinking to the values which were determined earlier in Section 6.2.

Therefore, we firstly chose initial arbitrary values for those parameters and we performed a

tuning process on those values by applying the method on randomly generated graph layouts.

We generated 50 random graphs, based on Erdos-Renyi model, split into 5 groups, as shown

in Table 6.8, such that each group contains 10 test cases.

161

Table 6.8 Characteristics of the graph datasets used for choosing proper values for the acceleratioPeriod
and accelerationRate parameters

Graph Set Nodes Edges Density Label

1 50 156 0.128 N50E156

2 100 549 0.111 N100E549

3 150 1173 0.105 N150E1173

4 200 1970 0.099 N200E1970

5 250 2583 0.083 N250E2583

We performed two rounds of tuning the values of accelerationPeriod and

accelerationRate. In the first round, we fixed the value of accelerationRate to 0.01, and we

examined a set of values for the other parameter {1, 5, 10, 15, 20}. We were looking for the

value that gives the best fitness compared to the other values and if we get a tie, we select the

one that gives a lower number of evaluated solutions. The line charts in Figure 6.18 and

Figure 6.19 show that the fitness value and number of evaluated solutions performed by the

drawing algorithm become stable after the value 10 that we selected as a value for

accelerationPeriod in this round.

Figure 6.18 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationPeriod parameter (1st round)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0 5 10 15 20 25

Fitness

accelerationPeriod

N50E156

N100E549

N150E1173

N200E1970

N250E2583

162

Figure 6.19 Number of solutions for drawing the layouts for the datasets in Table 6.8 when examining the
values of the accelerationPeriod parameter (1st round)

To select a proper value for the accelerationRate parameter, we fixed the value of

accelerationPeriod to 10, and we examined the following values for the accelerationRate

{0.01, 0.05, 0.10, 0.15, 0.20}. The results in Figure 6.20 indicate that the value 0.01 is the one

which should be selected as it generates layouts with better fitness values compared to the

other values in the set. There is no need to examine the number of evaluated solutions since

the values of fitness function are small with 0.01 acceleration rate. We could have tested

smaller values, but our main target in this tuning process was getting a proper starting value

not the final value of the parameter.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 5 10 15 20

Evaluated

Solutions

accelerationPeriod

N50E156

N100E549

N150E1173

N200E1970

N250E2583

163

Figure 6.20 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationRate parameter (1st round)

We performed another round for calibrating the values for both parameters in the same

manner which we followed in the first round but we used the values which we got in the first

round as starting values. The set of values used for accelerationPeriod in the second round

was {6, 7, 8, 9, 10}. The fitness values were close to each other as shown in Figure 6.21, with

an advantage to the value 9 in some graph layouts (graphs with group label N100E549 for

example). So, we picked that value for accelerationPeriod and we examined the following set

of values for accelerationRate {0.01, 0.02, 0.03, 0.04, 0.05}. Again, we selected the value

0.01 with reference to the results demonstrated in Figure 6.22.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

0 0.05 0.1 0.15 0.2 0.25

Fitness

accelerationRate

N50E156

N100E549

N150E1173

N200E1970

N250E2583

164

Figure 6.21 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationPeriod parameter (2nd round)

Figure 6.22 Fitness values of the layouts for the datasets in Table 6.8 when examining the values of the
accelerationRate parameter (2nd round)

After selecting reasonable values for the newly introduced parameters, we implemented a

comparison between the path relinking procedure with a fixed (constant) step-size for moving

along the path, and the same procedure but with a variable step-size. We applied both

strategies on four groups of randomly generated connected graph layouts, based on Erdos-

Renyi model, with a different number of nodes and edges as shown in Table 6.9.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0 2 4 6 8 10 12

Fitness

accelerationPeriod

N50E156

N100E549

N150E1173

N200E1970

N250E2583

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 0.005 0.01 0.015 0.02 0.025 0.03

Fitness

accelerationRate

N50E156

N100E549

N150E1173

N200E1970

N250E2583

165

Table 6.9 Characteristics of the graph datasets used in the comparison between the two strategies for
moving along the path

Graph Set Nodes Edges Density

1 150 1229 0.11

2 200 1990 0.1

3 250 2801 0.09

4 300 3588 0.08

The two variations used the same values of all path relinking parameters except for the

newly introduced parameters as they are only related to the variable step-size strategy. We ran

both of them until reaching the stopping criterion. The results showed that using a variable

step-size to move along the path can produce better graph layouts with a lower number of

evaluated solutions than a fixed step-size strategy, as shown in Figure 6.23 and Figure 6.24.

Figure 6.23 Fitness values with 95% confidence interval for the layouts of the datasets in Table 6.9 when
applying the two strategies of moving along the path

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4

Fitness

Graph Group

PR fixed step

PR variable step

166

Figure 6.24 Number of solutions with 95% confidence interval for the layout of the graph datasets in Table
6.9 when applying the two strategies of moving along the path

Our improved path relinking procedure will add some changes to Algorithm 6.2 and

Algorithm 6.3 that were discussed in Section 6.2.1. The two parameters, accelerationPeriod

and accelerationRate, will be introduced in the PathRelinking() and MoveAlongPath()

procedures, as shown in Algorithm 6.4, where the two parameters have been added to the list

of parameters of the MoveAlongPath() procedure, and in Algorithm 6.5 (Line 5 and Line 6),

where both parameters are used to intensify the searching process. Note that, the stopping

conditions for moving along the path are still the same as described in Algorithm 6.3: the first

is when an intermediate solution reaches the guiding solution, and the second is when the

length of the path reaches a predefined value of a maximum length.

Since the results of the experiment show that the variable step-size strategy used in

moving along the path is better than the fixed step-size strategy, we performed an intensive

parameter tuning on all the parameters of our improved path relinking procedure, as will be

described in the next section, in order to get a solid graph drawing algorithm that can be

compared with simulated annealing and tabu search graph drawing algorithms.

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

1400.000

1600.000

1 2 3 4

Evaluated

Solutions

Graph Group

PR fixed step

PR variable step

167

Given:

PRmaxIterations: predefined value of the number of iterations to repeat the path relinking procedure.

pathSqrSize: predefined square size where path relinking candidate solutions are located on its border.

pathLength: predefined value representing the maximum length of the path.

accelerationPeriod: predefined number of iterations required for updating the searching step-size.

accelerationRate: predefined value representing the rate of decreasing the searching step-size.

Algorithm :
1: i = 0

2: while i < PRmaxIterations && Size(refSet) > 1 do

3: SelectSourceDestination(refSet, source, destination)

/* returns source and destination selected from the reference set refSet */

4: candidateLayout1 = MoveAlongPath(source, destination, pathLength, pathSqrSize,

accelerationRate, accelerationPeriod) /* forward path */

5: candidateLayout2 = MoveAlongPath(destination, source, pathLength, pathSqrSize,

accelerationRate, accelerationPeriod) /* backward path */

6: UpdateReferenceSet(refSet, Min(candidateLayout1, candidateLayout2))

7: i = i + 1

8: end while

Algorithm :
MoveAlongPath (source, destination, pathLength, pathSqrSize, accelerationRate,

accelerationPeriod)

 1: length = 0

 2: updateSquare = 0

 3: while source != destination || length < pathLength

 4: for v in V do

 5: if length mod accelerationPeriod == 0 then /* variable step-size for a path move

 6: updateSquare += accelerationRate

 7: end if

 8: position = ShortestEuclidean(source[v], destination[v], pathSqrSize + updateSquare)

 9: /* position with shortest distance around the square from the node in source to

 destination */

 10: fitness = Fitness(layout[position])

 11: move source[v] to position if position ∉ tabuSet

 12: tabuSet = tabuSet ∪ {(v, layout[position], iteration)}

 13: end for

 14: length = length + 1

 15:end while

Algorithm 6.4 Improved PathRelinking() procedure

Algorithm 6.5 Improved MoveAlongPath() procedure

168

6.3.3 Parameter Tuning

There are six parameters which affect our improved path relinking procedure: the number of

iterations to repeat the path relinking procedure (PRmaxIterations), the size for the maximum

number of solutions that can be added to the reference set of path relinking (refSize), the

maximum length of the path (pathLength), the square size where path relinking candidate

solutions are located on its border (pathSqrSize), the number of iterations required to update

the size of the square (accelerationPeriod), and the rate of decreasing the searching step-size

(accelerationRate).

For tuning the values of these parameters, we applied our improved graph drawing

algorithm on 100 random connected graphs which were divided into five sets such that each

set had a different number of nodes and edges, as described in Table 6.10.

Table 6.10 Characteristics of the graph datasets used in tuning the parameters of our improved TS+PR
graph drawing algorithm

Graph Set Nodes Edges Density Label

1 50 147 0.120 N50E147

2 100 519 0.105 N100E519

3 150 1117 0.100 N150E1117

4 200 1791 0.090 N200E1791

5 250 2490 0.080 N250E2490

Since the improved procedure is called within our tabu search drawing algorithm, we used

the same values of the parameters of tabu search that we obtained in Chapter 4 (Section 4.5.2).

On the other hand, in order to calibrate the values of the parameters of the improved path

relinking, we followed the same incremental testing process we performed with all the other

methods. The process was divided into three phases. In phase I, we selected the values

according to our previous parameters testing described in our basic path relinking

implementation in Section 6.2.2 and the values of the newly introduced parameters described

in Section 6.3.2. In phase II of the experimental process for tuning the parameters of our

improved path relinking procedure, we performed another round of further tuning similar to

the process we followed in phase I using different graph datasets but with the same number of

nodes and edges. In phase III, we focused on the number of evaluated solutions performed by

the drawing algorithm when it reached a certain fitness value.

169

i. Phase I

In phase I, we selected the values according to our previous parameters testing described in

our basic path relinking implementation in Section 6.2.2 and the values of the newly

introduced parameters described in Section 6.3.2. The initial values of the parameters were:

PRmaxIterations = 4, refSize = 20, pathLength = 10, pathSqrSize = 18, accelerationPeriod =

9, accelerationRate = 0.01. We started with one parameter, tested it thoroughly with different

values, and selected the value which draws layouts with the minimum fitness value compared

to the other values. If the fitness values were too close to each other, we would select the

values based on the ones which performed the lowest number of evaluated solutions. We fixed

the value of the first parameter and we moved on to test another parameter in the same

manner, and so forth.

We started the tuning process with the PRmaxIterations parameter by testing the values of

the set {1, 4, 7, 10}. Figure 6.25 shows that increasing the value of this parameter would

minimise the value of the fitness function of the generated layout. According to the set of

values which we tested, the best value to choose was 10.

Figure 6.25 Fitness values of the improved drawing algorithm when tuning the PRmaxIterations
parameter (phase I)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0 5 10 15

Fitness

PRmaxIterations

N50E147

N100E519

N150E1117

N200E1791

N250E2490

170

In the next parameter (refSize), we selected the set {10, 20, 30, 40} to be used in

calibrating this parameter. With reference to Figure 6.26, the best value for refSize that gave

the best fitness value was 20. Note that, all the tested values led to producing very close

fitness values, but as the value of this parameter increases, it slightly increases the number of

evaluated solutions, as shown in Figure 6.27. We selected the value 20, as it gave a fitness

value (on the graphs with label N250E2490) that was slightly better than the other values and

the number of evaluated solutions performed by the algorithm when using this value is less

than the evaluated solutions when we test this parameter on the values 30 and 40).

Figure 6.26 Fitness values of the improved drawing algorithm when tuning the refSize parameter (phase I)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 5 10 15 20 25 30 35 40 45

Fitness

refSize

N50E147

N100E519

N150E1117

N200E1791

N250E2490

171

Figure 6.27 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize
parameter (phase I)

The length of the path from the initial solution to the target solution (pathLength) was

tested with the following set of values: {10, 20, 30, 40}. After testing all these values, we

selected the value 20. We chose this value although it did not give better fitness compared to

the value 10 on small graphs, but it has the same behaviour on larger graphs as shown in

Figure 6.28. We first need to test the effect of the initial square size value on longer paths. If

the effect is not significant, then we could select the value 10 in phase II of parameters testing.

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25 30 35 40 45

Evaluated

Solutions

refSize

N50E147

N100E519

N150E1117

N200E1791

N250E2490

172

Figure 6.28 Fitness values of the improved drawing algorithm when tuning the pathLength parameter
(phase I)

The pathSqrSize parameter was tested with the values {5, 10, 15, 20}. According to Figure

6.29, the best value that could be picked is 20 since the fitness value was slightly smaller as

the graph size became larger. The value 15 also produced good results but when applied on

larger graphs, the value 20 was better.

Figure 6.29 Fitness values of the improved drawing algorithm when tuning the pathSqrSize parameter
(phase I)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 5 10 15 20 25 30 35 40 45

Fitness

pathLength

N50E147

N100E519

N150E1117

N200E1791

N250E2490

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 5 10 15 20 25

Fitness

pathSqrSize

N50E147

N100E519

N150E1117

N200E1791

N250E2490

173

To test the effect of the accelerationPeriod parameter, we tested it with the following

values: {1, 5, 9, 13}. Figure 6.30 shows that changing the value of this parameter did not

greatly affect the value of the fitness function. But Figure 6.31 shows that increasing the value

of this parameter would slightly increase the number of evaluated solutions. That is why we

chose the value 5 although there was no big difference with the fitness values produced when

accelerationPeriod was set to 9 or 13, but it was better on larger graphs with a lower number

of evaluated solutions.

Figure 6.30 Fitness values of the improved drawing algorithm when tuning the accelerationPeriod
parameter (phase I)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0 5 10 15

Fitness

accelerationPeriod

N50E147

N100E519

N150E1117

N200E1791

N250E2490

174

Figure 6.31 Number of evaluated solutions of the improved drawing algorithm when tuning the
accelerationPeriod parameter (phase I)

The last parameter that was tested in phase I was accelerationRate which was tested with

the values {0, 0.05, 0.1, 0.15}. Increasing the value of this parameter resulted in an increase in

the value of the fitness function as shown in Figure 6.32 when the values went beyond the

value 0.05. On the other hand, setting the value 0 to this parameter had produced larger fitness

values compared to those when the value 0.05 was assigned to this parameter. Therefore, we

chose the value 0.05 in this phase, but in the next phase, we will test the value of this

parameter with a set of values in the range between 0 and 0.05 to examine the behaviour of the

fitness function in that specific range.

0

20000

40000

60000

80000

100000

120000

0 5 10 15

Evaluated

Solutions

accelerationPeriod

N50E147

N100E519

N150E1117

N200E1791

N250E2490

175

Figure 6.32 Fitness values of the improved drawing algorithm when tuning the accelerationRate
parameter (phase I)

ii. Phase II

We performed another round of further tuning similar to the process we followed in phase I

using different graph datasets but with the same number of nodes and edges, as described

earlier in Table 6.10. In this phase, all the parameters started with the values which were

chosen in the first phase. When a parameter was tested, a set of values that are close to the

value that was chosen in the previous phase was selected. The behaviour of the drawing

algorithm was similar to its behaviour in the previous phase for all the parameters with a slight

change in the selected values of the parameters since the set of values was different in this

phase. The parameters were assigned the following values at the end of this phase:

PRmaxIterations = 10, refSize = 20, pathLength = 15, pathSqrSize = 20, accelerationPeriod =

5, accelerationRate = 0.0025.

iii. Phase III

We selected the values of the parameters that made the algorithm implement the lowest

number of evaluated solutions. We assumed that a good-enough graph layout is a layout in

which its fitness value is slightly larger than the best fitness value produced in the experiments

of the previous phase as we explained earlier in Chapter 4 (Section 4.3.2). We set a target

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

0 0.05 0.1 0.15 0.2

Fitness

accelerationRate

N50E147

N100E519

N150E1117

N200E1791

N250E2490

176

fitness value for each test case (from phase II with an increase of 12.5%) and we tested

number of evaluated solutions required to reach that value. The value of the parameter that

gave the minimum number of evaluated solutions was chosen. Different graph datasets

(different layouts) were randomly generated and used in this phase as well, but with the same

number of nodes and edges of the previous two phases.

The initial values of the parameters in this phase were the final values which were chosen

from the previous phase. We started with the PRmaxIterations parameter by testing a set of

values {2, 4, 6, 8, 10}. Although the value 2 would make the algorithm perform the lowest

number of evaluated solutions as shown in Figure 6.33, it did not reach the target fitness on

the small graph layouts according to the highlighted cell in Table 6.11. Thus, we picked the

value 4 since the algorithm had reached the target fitness value with all graph layouts and it

had performed the lowest number of evaluated solutions.

Table 6.11 Fitness values reaching a target value by the improved drawing algorithm when tuning the
PRmaxIterations parameter (phase III)

 Fitness
PRmaxIterations N50E147 N100E519 N150E1117 N200E1791 N250E2490

2 0.180 0.372 0.483 0.574 0.644

4 0.164 0.376 0.484 0.574 0.644

6 0.161 0.377 0.484 0.574 0.645

8 0.163 0.379 0.483 0.572 0.643

10 0.161 0.377 0.483 0.573 0.642

Target 0.164 0.382 0.487 0.581 0.650

177

Figure 6.33 Number of evaluated solutions of the improved drawing algorithm when tuning the
PRmaxIterations parameter (phase III)

For the size of candidate elite solutions in the reference set, refSize, we examined the

following set of values: {12, 16, 20, 24}. The highlighted cells in Table 6.12 show that the

algorithm could not reach the target fitness value when refSize had the values 16 or 24. With

reference to Figure 6.34, we selected the value 20 since the algorithm had performed a slightly

lower number of evaluated solutions compared to the performance of the algorithm when the

value 12 was assigned to the refSize parameter.

Table 6.12 Fitness values reaching a target value by the improved drawing algorithm when tuning the
refSize parameter (phase III)

 Fitness
refSize N50E147 N100E519 N150E1117 N200E1791 N250E2490

12 0.164 0.375 0.484 0.573 0.644

16 0.165 0.376 0.484 0.574 0.644

20 0.164 0.376 0.484 0.574 0.644

24 0.165 0.376 0.484 0.574 0.644

Target 0.164 0.382 0.487 0.581 0.650

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2 4 6 8 10 12

Evaluated

Solutions

PRmaxIterations

N50E147

N100E519

N150E1117

N200E1791

N250E2490

178

Figure 6.34 Number of evaluated solutions of the improved drawing algorithm when tuning the refSize
parameter (phase III)

The third parameter, pathLength, was tested with the values {11, 15, 19, 23}. None of

these values (except the value 15) could help the algorithm in reaching the target fitness

values for all the graph layouts as shown in the highlighted cells of Table 6.13. Therefore, we

selected the value 15 since it was the only one that reached the target fitness value for all the

test cases.

Table 6.13 Fitness values reaching a target value by the improved drawing algorithm when tuning the
pathLength parameter (phase III)

 Fitness
pathLength N50E147 N100E519 N150E1117 N200E1791 N250E2490

11 0.242 0.367 0.471 0.568 0.639

15 0.164 0.376 0.484 0.574 0.644

19 0.167 0.373 0.511 0.579 0.644

23 0.172 0.376 0.516 0.579 0.644

Target 0.164 0.382 0.487 0.581 0.65

Two out of the four values {12, 16, 20, 24} which we used for tuning the fourth parameter,

pathSqrSize, led to the failure of the algorithm to reach the target fitness value as shown in the

highlighted cells of Table 6.14. With reference to Figure 6.35, we chose the value 20 although

the values 12 and 16 gave a lower number of evaluated solutions on small graph layouts, but

that was not the case with large graph layouts which is more important to us in this phase

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30

Evaluated

Solutions

refSize

N50E147

N100E519

N150E1117

N200E1791

N250E2490

179

since we are trying to improve the performance of the drawing algorithm. On the other hand,

the value 24 did not reach the target fitness value on small graph layouts.

Table 6.14 Fitness values reaching a target value by the improved drawing algorithm when tuning the
pathSqrSize parameter (phase III)

 Fitness
pathSqrSize N50E147 N100E519 N150E1117 N200E1791 N250E2490

12 0.165 0.376 0.483 0.577 0.644

16 0.164 0.377 0.480 0.576 0.643

20 0.164 0.376 0.484 0.574 0.644

24 0.170 0.377 0.480 0.573 0.644

Target 0.164 0.382 0.487 0.581 0.65

Figure 6.35 Number of evaluated solutions of the improved drawing algorithm when tuning the
pathSqrSize parameter (phase III)

During the tuning process of the fifth parameter, accelerationPeriod, the behaviour of the

algorithm was not clear when we chose a set of four values only for tuning the parameter.

Thus, we increased the number of values in order to examine the behaviour of the algorithm

and to get a proper indication of its performance. The following values were tested: {2, 3, 4, 5,

6, 7, 8, 9, 10}.

After testing all the values, we selected the value 7 to be assigned to the

accelerationPeriod parameter. This value did not reach the target fitness on the smallest graph

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30

Evaluated

Solutions

pathSqrSize

N50E147

N100E519

N150E1117

N200E1791

N250E2490

180

dataset as shown in Table 6.15, but as Figure 6.36 indicates, the number of evaluated solutions

had greatly dropped down with value 7. Since our main target was to speed up the drawing

process while generating good graph layouts, we chose the value 7 because there was no big

difference in the number of evaluated solutions as the size of the graph layouts increased. On

the other hand, the algorithm had generated graph layouts with fitness values which reach the

target fitness values for all graphs when the values 4 and 5 were assigned to the

accelerationPeriod parameter, but the number of evaluated solutions was very large when the

graph size increased.

Table 6.15 Fitness values reaching a target value by the improved drawing algorithm when tuning the
accelerationPeriod parameter (phase III)

 Fitness
accelerationPeriod N50E147 N100E519 N150E1117 N200E1791 N250E2490

2 0.185 0.403 0.511 0.580 0.644

3 0.168 0.381 0.507 0.579 0.645

4 0.164 0.375 0.483 0.579 0.645

5 0.164 0.376 0.484 0.574 0.644

6 0.172 0.375 0.482 0.569 0.640

7 0.205 0.373 0.479 0.568 0.641

8 0.245 0.372 0.479 0.566 0.640

9 0.254 0.372 0.474 0.570 0.641

10 0.255 0.368 0.477 0.569 0.640

Target 0.164 0.382 0.487 0.581 0.65

181

Figure 6.36 Number of evaluated solutions of the improved drawing algorithm when tuning the
accelerationPeriod parameter (phase III)

With the last parameter, accelerationRate, we had a similar situation to the one we had in

the previous parameter, where the behaviour of the algorithm was not very clear with the four

values we initially chose. Therefore, we tested this parameter with many values {0.001,

0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005}. After testing all these values,

there were two values which could be selected for this parameter: 0.002 or 0.0025. When the

parameter was assigned any of these two values, the number of evaluated solutions performed

by the algorithm was minimum compared to the other values. Although the target fitness value

was not reached when those two values were selected on the smallest graph layouts only, but

that was the case also when all the other values were tested as shown in the highlighted cells

of Table 6.16. Since we were looking to generate good graph layouts besides speeding up the

algorithm to lay out larger graphs, we chose the value 0.002 as the number of evaluated

solutions was the lowest, in most of the test cases, compared to all other values as shown in

Figure 6.37.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 3 6 9 12

Evaluated

Solutions

accelerationPeriod

N50E147

N100E519

N150E1117

N200E1791

N250E2490

182

Table 6.16 Fitness values reaching a target value by the improved drawing algorithm when tuning the
accelerationRate parameter (phase III)

 Fitness
accelerationRate N50E147 N100E519 N150E1117 N200E1791 N250E2490

0.001 0.255 0.384 0.473 0.557 0.644

0.0015 0.258 0.359 0.453 0.555 0.643

0.002 0.250 0.370 0.478 0.562 0.640

0.0025 0.205 0.373 0.479 0.568 0.641

0.003 0.168 0.374 0.480 0.569 0.642

0.0035 0.165 0.377 0.480 0.573 0.644

0.004 0.165 0.378 0.485 0.576 0.643

0.0045 0.164 0.383 0.494 0.580 0.644

0.005 0.165 0.382 0.499 0.584 0.645

Target 0.164 0.382 0.487 0.581 0.65

Figure 6.37 Number of evaluated solutions of the improved drawing algorithm when tuning the
accelerationRate parameter (phase III)

After finishing the tuning process for all the parameters of the improved path relinking

procedure, we list the value of each parameter which will be used in our coming experiments:

PRmaxIterations = 4

refSize = 20

pathLength = 15

pathSqrSize = 20

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 0.001 0.002 0.003 0.004 0.005

Evaluated

Solutions

accelerationRate

N50E147

N100E519

N150E1117

N200E1791

N250E2490

183

accelerationPeriod = 7

accelerationRate = 0.002

6.4 Summary

Path relinking is a relatively new neighbourhood search-based method that has proved its

effectiveness in many multi-criteria optimisation problems especially when coupled with other

search-based methods as an intensification step. In this chapter, we described our basic graph

drawing algorithm which was based on a coupling of tabu search and path relinking. The

desire to tunnel through blocked off areas created by tabu search solutions was the main

reason for choosing the path relinking procedure to couple with tabu search to intensify the

searching process between an initial and a guiding solutions selected from a set of elite

solutions generated by the tabu search drawing algorithm. A first round of parameter tuning

was performed to calibrate the values of the basic parameters of the path relinking procedure.

Two improvements were proposed and applied on the path relinking procedure: a proper

selection of the initial and the guiding solutions from the reference set of elite solutions, and

an improved neighbourhood searching strategy based on a variable step size. The proposed

improvements introduced two new parameters that could affect the performance of the

procedure. Therefore, we performed a final round of the parameters calibration process in

order to assign reasonable values for each parameter before we examine the performance of

our improved neighbourhood search-based method compared to other neighbourhood search

methods.

In the next chapter, we conduct an experiment that consists of three phases, with the aim to

perform a comprehensive comparison, in terms of the speed of the drawing algorithm and the

quality of the generated layouts, between three neighbourhood search-based methods:

simulated annealing, tabu search, and our improved coupling of tabu search with the path

relinking procedure.

184

Chapter 7 Experimental Results for Comparing Tabu Search with
Path Relinking Versus Simulated Annealing

This chapter demonstrates the effect of coupling the tabu search graph drawing algorithm with

path relinking. A comparison with simulated annealing is made by applying the methods on

random and real world graph datasets. It also illustrates the process we followed for analysing

the performance of our method and for testing its scalability. The experimental results are

presented along with our comments and conclusions.

7.1 Introduction

In the previous experiment that was described in Chapter 5, we concluded that simulated

annealing and tabu search graph drawing algorithms can generate graph layouts with better

fitness values compared to the ones generated by hill climbing. In this chapter, we want to test

the effect of coupling path relinking with our tabu search algorithm. In this experiment, in spite

of using new randomly generated datasets, we exclude hill climbing for two reasons:

• The results of the previous experiment showed that hill climbing performed

considerably worse than both tabu search and simulated annealing in all phases when

being applied on random datasets and real world datasets;

• One of the main drawbacks of hill climbing is getting trapped in local optima, unlike

tabu search which does not run out of solutions (as we described earlier in Chapter 4).

That behaviour of hill climbing conflicts with the fact that building a reference set for

path relinking requires diversity in the elite solutions generated by the other search

algorithm in the pre-processing step.

 Here, we need to answer the following question: ‘Does coupling the tabu search method

with path relinking improve the performance of the tabu search graph drawing method?’ To

answer this question we had to implement and evaluate our improved method against simulated

annealing and pure tabu search graph drawing algorithms. We use the same system

specifications and the same three phases of evaluations that were implemented in our previous

experiment, that include: finding the best layout that can be achieved (phase I); how long it

185

takes to generate a layout to a particular level of quality (phase II); and how good the quality of

the layout is after a fixed number of evaluated solutions (phase III). The values of the

parameters for each method were assigned according to the selections we made after the tuning

process, as described earlier in Chapter 4 and Chapter 6.

 In order to avoid overfitting, where the drawing algorithm could be tailored to the dataset

used in the first experiment, we generated new random graph datasets in this experiment, based

on Erdos-Renyi model that were also divided into two categories, using the same procedure we

followed for generating random graphs in our previous comparison.

 In the first category, we had 80 random graphs split into 4 groups of 20 test cases. All the

graphs in this category had 160 nodes, randomly positioned. Each group had a different number

of edges so that the density varied. The graphs in each group had the same number of nodes

and edges but with different random layouts. See Table 7.1 for the characteristics of the graphs

in the first category. The graphs of the second category were generated in the same way as

those graphs of category II described in the previous experiment. See Table 7.2 for the

characteristics of the graphs in the second category.

Table 7.1 Characteristics of the graphs in the 1st category used in comparing PR+TS, TS, and SA

Graph Set Nodes Edges Density

1C 160 572 0.045

2C 160 1208 0.095

3C 160 1844 0.145

4C 160 2480 0.195

Table 7.2 Characteristics of the graphs in the 2nd category used in comparing PR+TS, TS, and SA

Graph Set Nodes Edges Density

1D 60 221 0.125

2D 110 659 0.110

3D 160 1272 0.100

4D 210 2139 0.0975

186

7.2 Experiments on Random Graph Datasets

In a similar scenario to the experiments which were conducted in Chapter 5, we divided our

experiment into three phases. The first phase focuses on the overall performance for each

method where all the methods run until they completely finish execution; the second phase

evaluates the speed of each algorithm when it runs for a particular level of quality; and the third

phase investigates the quality of the drawn layouts after a fixed number of evaluated solutions.

 The experiment includes two deterministic methods (pure tabu search and tabu search

coupled with path relinking) and one stochastic method (simulated annealing). When the

deterministic methods were applied on several test cases from a group of graphs with similar

characteristics but with different initial layouts, we computed the average for the fitness values

and the average of the number of evaluated solutions for each group of graph layouts to use in

our comparison. But that was not the case with simulated annealing as it is a stochastic method.

For each test case, we ran a simulated annealing graph drawing method on the same initial

layout 30 times, then, we computed the median. The average of medians was calculated for the

30 runs of each test case and was compared to the results obtained after applying the

deterministic methods.

7.2.1 Phase I

The three methods were applied on the datasets described in Section 7.1. In this phase, we

tested the overall performance of each method by running each method until it finishes

regardless of how long it took to execute. Figure 7.1 and Figure 7.2 show the values of the

fitness function when the three methods were applied on the graph datasets of the first and the

second categories respectively, whereas Figure 7.3 and Figure 7.4 show the number of

evaluated solutions performed by each method when applied on the same datasets.

187

Figure 7.1 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS
when applied on the graphs of the 1st category (phase I)

Figure 7.2 Bar chart with 95% confidence interval of the fitness function obtained by TS, SA, PR+TS
when applied on the graphs of the 2nd category (phase I)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4

Fitness

Graph Sets - Category I

PR+TS

SA

TS

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1 2 3 4

Fitness

Graph Sets - Category II

PR+TS

SA

TS

188

Figure 7.3 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS,
SA, PR+TS when applied on the graphs of the 1st category (phase I)

Figure 7.4 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS,
SA, PR+TS when applied on the graphs of the 2nd category (phase I)

Figure 7.5 and Figure 7.6 demonstrate the execution time (in seconds) when the three

methods were applied on the data of the first and second categories respectively. We conclude

from these two figures that the execution time increases as the number of nodes in the graph

increases as shown in the results of the data of the second category (Figure 7.6), unlike the

data of the first category where the number of nodes is fixed.

0

20000

40000

60000

80000

100000

120000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category I

PR+TS

SA

TS

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category II

PR+TS

SA

TS

189

Figure 7.5 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA,
PR+TS when applied on the graphs of the 1st category (phase I)

Figure 7.6 Bar chart with 95% confidence interval of execution time (in seconds) obtained by TS, SA,
PR+TS when applied on the graphs of the 2nd category (phase I)

In order to analyse the overall performance of the three methods and to examine how good

a layout can the methods achieve, we combined the results of both categories into one bar

chart as presented in Figure 7.7 which shows the difference between the three methods in

terms of the lowest fitness that can be obtained by each method. Another bar chart is presented

in Figure 7.8 that shows the number of evaluated solutions required to reach those lowest

fitness values.

0

20000

40000

60000

80000

100000

120000

1 2 3 4

Time

(seconds)

Graph Sets - Category I

PR+TS

SA

TS

0

200

400

600

800

1000

1200

1 2 3 4

Time

(seconds)

Graph Sets - Category II

PR+TS

SA

TS

190

The advantage of coupling tabu search with path relinking is very clear in Figure 7.7 as

this combination had produced graph layouts with low fitness values compared to those

layouts produced by pure tabu search and simulated annealing. However, the number of

evaluated solutions performed by the coupled methods is larger than the other two methods, as

shown in Figure 7.8. The statistical analysis of the fitness values and the number of evaluated

solutions presented in Table 7.3 and Table 7.4 second this conclusion.

Note that the large number of evaluated solutions for the coupled methods is justified since

the analysis of this phase is based on the overall performance of the methods when they run

until they finish using the best values of parameters which were selected in the tuning process.

The coupling of tabu search and path relinking requires many iterations in order to get the

lowest fitness value that can be obtained. But this combination can still produce good graph

layouts with a lower number of evaluated solutions as will be shown in the following two

phases. The figures in Appendix B (B.1 and B.2) are samples of the layouts drawn by the three

algorithms when applied on the graph datasets described in Table 7.1 and Table 7.2

respectively.

Figure 7.7 Bar chart with 95% confidence interval of the average overall fitness function obtained by TS,
SA, PR+TS when applied on the graphs of both categories (phase I)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fitness

Graph Sets

PR+TS

SA

TS

191

Figure 7.8 Bar chart with 95% confidence interval of the average overall number of evaluated solutions obtained
by TS, SA, PR+TS when applied on the graphs of both categories (phase I)

Table 7.3 Statistical analysis of the fitness function for TS, SA, PR+TS when applied on the graphs of both
categories (phase I)

Fitness

PR + TS SA TS

Graph

Set
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1C 0.242 0.242 0.272 0.216 0.493 0.492 0.509 0.486 0.506 0.505 0.549 0.463 1.38E-07

2C 0.382 0.382 0.403 0.359 0.772 0.772 0.782 0.756 0.825 0.821 0.923 0.741 5.33E-09

3C 0.468 0.469 0.525 0.408 0.905 0.907 0.913 0.886 0.951 0.956 0.988 0.906 2.06E-09

4C 0.585 0.593 0.629 0.538 0.999 1.000 1.006 0.991 1.042 1.038 1.084 0.988 5.33E-09

1D 0.315 0.314 0.360 0.266 0.353 0.355 0.368 0.338 0.398 0.388 0.591 0.328 8.74E-07

2D 0.300 0.294 0.333 0.276 0.598 0.596 0.613 0.583 0.634 0.628 0.700 0.592 5.33E-09

3D 0.397 0.399 0.437 0.362 0.792 0.791 0.803 0.786 0.857 0.846 1.148 0.782 1.25E-08

4D 0.489 0.487 0.536 0.431 0.984 0.991 0.999 0.938 1.021 1.028 1.080 0.946 5.06E-08

Overall 0.397 0.398 0.437 0.357 0.737 0.738 0.749 0.721 0.779 0.776 0.883 0.718

0

20000

40000

60000

80000

100000

120000

Evaluated

Solutions

Graph Sets

PR+TS

SA

TS

192

Table 7.4 Statistical analysis of number of evaluated solutions obtained by TS, SA, PR+TS when applied
on the graphs of both categories (phase I)

Evaluated Solutions

PR + TS SA TS

Graph

Set
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1C 104515 104487 108095 99665 76002 75983 76177 75874 47176 47181 47501 46872 2.06E-09

2C 104022 103990 109386 99175 76769 76755 76877 76635 47497 47499 47867 46776 2.06E-09

3C 104036 103916 110543 100263 76913 76924 77004 76757 47784 47786 48061 47555 2.06E-09

4C 104754 104428 111258 100026 76923 76910 77130 76804 47875 47936 48180 47550 2.06E-09

1D 61676 61705 62261 61077 29381 29390 29482 29278 17875 17902 18170 17572 2.06E-09

2D 85840 85667 91971 82419 53445 53459 53524 53352 32936 32880 33314 32680 2.06E-09

3D 103379 103465 107068 99410 76794 76801 76937 76681 47635 47674 48023 46603 2.06E-09

4D 125735 125386 131283 121829 99755 99763 100050 99565 62164 62118 62739 61676 2.06E-09

Overall 99245 99130 103983 95483 70748 70748 70897 70618 43868 43872 44231 43410

7.2.2 Phase II

In this phase, we investigated the performance of the methods by counting the number of

evaluated solutions performed by each method to reach similar values for the fitness function.

Based on the results of the previous phase, we ran the tabu search first since it produced graph

layouts with the largest fitness values compared to the other methods. This would easily allow

the other methods to produce graph layouts with a quality which is at least as good as the

quality of the ones produced by tabu search. Then, we ran the other methods until they reached

an equal or better fitness value compared to the one reached by the tabu search. Finally, we

measured the number of evaluated solutions for each method.

 Figure 7.9 and Figure 7.10 present the number of evaluated solutions obtained when

applying the three methods to reach graph layouts of a certain quality. Figure 7.11 and Table

7.5, on the other hand, show the average number of evaluated solutions obtained when the

methods were applied on all the graph layouts of both categories along with the statistical

analysis of the results.

193

Figure 7.9 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS,
SA, PR+TS when applied on the graphs of the 1st category (phase II)

Figure 7.10 Bar chart with 95% confidence interval of the number of evaluated solutions obtained by TS,
SA, PR+TS when applied on the graphs of the 2nd category (phase II)

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category I

PR+TS

SA

TS

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4

Evaluated

Solutions

Graph Sets - Category II

PR+TS

SA

TS

194

Figure 7.11 Bar chart with 95% confidence interval of the average overall number of evaluated solutions
obtained by TS, SA, PR+TS when applied on the graphs of the two categories together (phase II)

Table 7.5 Statistical analysis of the average overall number of evaluated solutions obtained by TS, SA,
PR+TS when applied on the graphs of the two categories together (phase II)

Evaluated Solutions

PR+TS SA TS

Graph
Set

Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1C 39423 36879 55180 29073 72012 73097 76190 65831 47177 47181 47501 46872 7.74e-06

2C 32470 30211 56041 14478 62492 62418 76734 48034 47497 47499 47867 46776 7.74e-06

3C 32777 29798 44884 21777 62331 60460 74949 54517 47785 47786 48061 47555 7.74e-06

4C 31268 29759 52479 23277 62579 62772 76923 53920 47875 47936 48180 47550 7.74e-06

1D 17021 17875 21032 8191 25147 26374 29433 13568 17876 17902 18170 17572 5.69e-05

2D 30058 30628 38544 17773 46816 48251 53497 35852 32936 32880 33314 32680 7.74e-06

3D 29876 29737 44593 8673 61580 61340 76733 37397 47636 47675 48023 46603 3.47e-04

4D 32981 29754 50216 21055 85040 83589 99629 68381 62165 62119 62739 61676 7.74e-06

Overall 30734 29330 45371 18037 59750 59787 70511 47187 43868 43872 44232 43411 < 2.2e-16

 With reference to the bar charts in the figures and the results presented in the table, we

conclude that coupling tabu search with path relinking could draw graph layouts with a certain

quality by implementing a lower number of evaluated solutions with a significant difference to

the number of solutions obtained by simulated annealing and pure tabu search. In other words,

adding path relinking to pure tabu search improved the process of searching for good layouts

with a lower number of evaluated solutions.

0

10000

20000

30000

40000

50000

60000

70000

Evaluated

Solutions

Graph Sets

PR+TS

SA

TS

195

7.2.3 Phase III

In phase III, we investigated the quality of the layouts produced by the drawing algorithms. We

tested which method produced graph layouts with the smallest fitness function values (best

quality) when they perform the same number of evaluated solutions. We ran the tabu search

method on the graphs for a predefined number of iterations (maxIterations) as described earlier

in the parameters’ tuning process presented in Chapter 4. We started with the tabu search

because in phase I, it generated the lowest number of evaluated solutions. We ran the other

methods until they perform the same number of evaluated solutions performed by the tabu

search method. Finally, we measured the value of the fitness function produced by each

drawing algorithm.

 In Figure 7.12 and Figure 7.13, we show bar charts for the values of the fitness function

when the three methods were applied to perform a set number of evaluated solutions on the

graph layouts of the first and the second categories respectively. The average values of the

fitness function obtained when we combined the results of applying the methods on both

categories are presented in Figure 7.14 besides Table 7.6 which shows the statistical analysis of

all the obtained results.

Figure 7.12 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA,
PR+TS when applied on the graphs of the 1st category (phase III)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1 2 3 4

Fitness

Graph Sets - Category I

PR+TS

SA

TS

196

Figure 7.13 Bar chart with 95% confidence interval of the fitness function values obtained by TS, SA,
PR+TS when applied on the graphs of the 2nd category (phase III)

Figure 7.14 Bar chart with 95% confidence interval of the average overall fitness function values obtained
by TS, SA, PR+TS when applied on the graphs of the two categories together (phase III)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1 2 3 4

Fitness

Graph Sets - Category II

PR+TS

SA

TS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fitness

Graph Sets

PR+TS

SA

TS

197

Table 7.6 Statistical analysis of the average overall fitness function values obtained by TS, SA, PR+TS
when applied on the graphs of the two categories together (phase III)

Fitness

PR+TS SA TS
Graph

Set
Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value

1C 0.343 0.347 0.384 0.320 0.664 0.663 0.676 0.646 0.506 0.505 0.549 0.463 7.74e-06

2C 0.451 0.451 0.481 0.419 0.930 0.930 0.945 0.912 0.825 0.821 0.923 0.741 7.74e-06

3C 0.531 0.532 0.595 0.474 1.051 1.052 1.064 1.038 0.951 0.956 0.988 0.906 7.74e-06

4C 0.650 0.656 0.692 0.595 1.139 1.139 1.152 1.117 1.042 1.038 1.084 0.988 7.74e-06

1D 0.561 0.564 0.631 0.440 0.485 0.486 0.507 0.464 0.398 0.388 0.591 0.328 5.69e-05

2D 0.407 0.404 0.458 0.377 0.727 0.729 0.741 0.709 0.634 0.628 0.700 0.592 7.74e-06

3D 0.466 0.469 0.510 0.425 0.942 0.946 0.959 0.920 0.857 0.846 1.148 0.782 5.69e-05

4D 0.558 0.557 0.612 0.493 1.162 1.167 1.176 1.123 1.021 1.028 1.080 0.946 7.74e-06

Overall 0.496 0.497 0.545 0.443 0.887 0.889 0.902 0.866 0.779 0.776 0.883 0.718 < 2.2e-16

Based on the results presented in the table and the previous three figures, we conclude that

intensifying the search process of tabu search by introducing path relinking could lead to a

quick investigation for graph layouts of good quality when compared with pure tabu search

and simulated annealing performing the same number of evaluated solutions. This difference

becomes significantly clear when the size of the graph increases as shown in Figure 7.13 that

presents the results when the methods are applied on the graph layouts of the second category

where the number of nodes in each set of graph layouts increases. However, the coupling of

tabu search with path relinking does not seem to be very effective on small graphs when it is

applied for a few number of iterations as shown in the first column of Figure 7.13.

Figure 7.15, Figure 7.16, and Figure 7.17 show three different examples of random graph

layouts drawn by simulated annealing, tabu search, and tabu search coupled with path

relinking.

198

Random Layout Simulated Annealing Layout

Tabu Search Layout Improved PR+TS Layout

Figure 7.15 Example of connected graph layout with 10 nodes and 19 edges drawn within the canvas of our
visualization tool by the three methods: SA, TS, PR+TS

199

Random Layout Simulated Annealing Layout

Tabu Search Layout Improved PR+TS Layout

Figure 7.16 Example of connected graph layout with 12 nodes and 17 edges drawn within the canvas of our
visualization tool by the three methods: SA, TS, PR+TS

200

Random Layout Simulated Annealing Layout

Tabu Search Layout Improved PR+TS Layout

Figure 7.17 Example of connected graph layout with 15 nodes and 24 edges drawn within the canvas of our
visualization tool by the three methods: SA, TS, PR+TS

7.2.4 Statistical Tests

In this section, we perform the same statistical tests which were described earlier in Chapter 5

(Section 5.2.4) to test the effect of randomness in generating the initial graph layouts used in

comparing the methods. In order to show that there is a statistical significant difference in the

results generated by the three methods, we applied the Friedman test since Shapiro-Wilk

normality test showed that the population was not normally distributed. We ran the methods

on 20 randomly generated test cases for each group of graphs in the first and the second

categories. Simulated annealing, the only stochastic method, had run 30 times on each test

case, and medians were calculated. Then we compared the three methods using the Friedman

201

test with a significance level of 0.05. All the p-values shown in the last column of Table 7.3,

Table 7.4, Table 7.5, and Table 7.6, are smaller than the value of our chosen significance level

which concludes that there is a significant difference between the three methods.

With reference to the result of the Friedman test, pairwise comparisons between the three

methods were performed using the Wilcoxon signed-rank test with Bonferroni correction, with

a confidence level of 0.01, in order to show if there was a statistical significant difference

between every pair of methods. Cohen’s effect size measure was also applied. According to

Cohen (1992), a small effect size is 0.2, a medium effect size is 0.5, and a large effect size is

0.8.

 Table 7.7 and Table 7.8 show the p-values for the fitness function when applying the

Bonferroni correction on the graphs of both categories according to the experiment conducted

in phase I where each method would run without any restriction on the number of evaluated

solutions or on the fitness value. The results indicate that the difference between each pair of

methods is significant in terms of the quality of the generated layouts, except for special cases

where the graph size is small as shown in the first graph dataset. Also, the effect sizes of fitness

between path relinking coupled with tabu search against the other two methods are in the range

of large and very large in most of the cases. On the other hand, there is a clear and a significant

difference in the number of evaluated solutions between every pair of methods with very large

effect sizes, as shown in Table 7.9 and Table 7.10.

Table 7.7 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
TS, SA, PR+TS when applied on the graphs of the 1st category (phase I)

 Fitness
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect 1.8519 0 1.8725 0 1.8586 0 1.8641 0

TS
p 4.4e-11 0.2900 4.4e-11 1.2e-07 4.4e-11 1.2e-08 4.4e-11 1.2e-07

effect 1.8422 0.5115 1.8161 0.9034 1.8516 1.3449 1.8724 1.2902

202

Table 7.8 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I)

 Fitness
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 5.0e-06 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect 1.1410 0 1.8675 0 1.8640 0 1.8674 0

TS
p 4.0e-07 0.0035 4.4e-11 2.3e-06 4.4e-11 1.5e-06 4.4e-11 0.0025

effect 0.8384 0.5258 1.8214 0.9709 1.5666 0.5245 1.8429 0.7924

Table 7.9 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase I)

 Evaluated Solutions
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 2.0e-07 * 2.0e-07 * 2.0e-07 * 4.4e-11 *

effect 1.8717 0 1.8302 0 1.7943 0 1.8117 0

TS
p 4.4e-11 2.0e-07 4.4e-11 2.0e-07 2.0e-07 2.0e-07 2.0e-07 2.0e-07

effect 1.8765 1.8706 1.8563 1.8655 1.8419 1.8724 1.8502 1.8702

Table 7.10 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase I)

 Evaluated Solutions
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 2.0e-07 * 4.4e-11 * 4.4e-11 * 2.0e-07 *

effect 1.8704 0 1.8152 0 1.8556 0 1.8198 0

TS
p 2.0e-07 2.0e-07 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 2.0e-07

effect 1.8707 1.8705 1.8416 1.8721 1.8628 1.8599 1.8564 1.8697

 When the Bonferroni test was applied on the results of phase II of the experiment, as shown

in Table 7.11, Table 7.12, and Table 7.13, we see that path relinking outperformed simulated

annealing in drawing graph layouts with similar objective function values using a limited

number of evaluated solutions with very large effect sizes. It also outperformed the pure tabu

search procedure on large graphs (as number of nodes increases) with very large effect sizes,

unlike smaller graphs where there was no significant difference as shown in the first and the

second graph datasets in Table 7.12.

203

Table 7.11 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on TS, SA, PR+TS when applied on the graphs of the 1st category (phase II)

 Evaluated Solutions
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 4.4e-11 * 5.2e-10 * 4.4e-11 * 4.4e-11 *

effect 1.7531 0 1.4528 0 1.5998 0 1.6449 0

TS
p 0.0002 4.4e-11 8.7e-06 4.4e-11 4.4e-11 4.4e-11 3.6e-06 2.0e-07

effect 0.9573 1.8459 1.1111 1.3504 1.4447 1.4673 1.5011 1.3799

Table 7.12 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on TS, SA, PR+TS when applied on the graphs of the 2nd category (phase II)

 Evaluated Solutions
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 3.4e-06 * 8.5e-09 * 8.7e-11 * 4.4e-11 *

effect 1.1474 0 1.4358 0 1.4438 0 1.7678 0

TS
p 0.9800 3.4e-06 0.8700 4.4e-11 4.4e-11 7.2e-06 4.4e-11 4.4e-11

effect 0.2286 1.3242 0.4833 1.6245 1.2565 1.1270 1.6876 1.5858

Table 7.13 Effect size and p-values for the number of evaluated solutions after conducting the Bonferroni
test on TS, SA, PR+TS when applied on the graph layouts of the two categories together (Phase II)

 Evaluated Solutions

 PR+TS SA

SA

p 4.4e-11 *

effect 1.6120 0

TS
p 4.4e-11 4.4e-11

effect 1.3000 1.5330

Table 7.14, Table 7.15, and Table 7.16 show the p-values for the values of the fitness

function after conducting the Bonferroni test on the results of the experiment according to

phase III where we ran the drawing algorithms so that they evaluate a specific number of

solutions to test the quality of layouts that would be generated in a set time. The results in the

tables show that coupling tabu search with path relinking draws graph layouts with better

204

quality compared to simulated annealing with very large effective sizes. It also outperforms

pure tabu search as the size of the graph increases.

Table 7.14 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
TS, SA, PR+TS when applied on the graphs of the 1st category (phase III)

 Fitness
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect 1.9000 0 1.8666 0 1.8619 0 1.8631 0

TS
p 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11 4.4e-11

effect 1.8296 1.8142 1.7952 1.4303 1.8541 1.6960 1.8522 1.6389

Table 7.15 Effect size and p-values for the fitness function values after conducting the Bonferroni test on
TS, SA, PR+TS when applied on the graphs of the 2nd category (phase III)

 Fitness
 Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4

 PR + TS SA PR + TS SA PR + TS SA PR + TS SA

SA

p 6.0e-06 * 4.4e-11 * 4.4e-11 * 4.4e-11 *

effect -1.2122 0 1.8830 0 1.8691 0 1.8671 0

TS
p 4.0e-08 1.2e-07 4.4e-11 4.4e-11 4.4e-11 9.9e-07 4.4e-11 4.4e-11

effect -1.4582 1.0635 1.7946 1.6529 1.5038 0.7855 1.8331 1.6902

Table 7.16 Effect size and p-values for the fitness function values after conducting the Bonferroni test on

TS, SA, PR+TS when applied on the graph layouts of the two categories together (Phase III)

 Fitness

 PR+TS SA

SA

p 4.4e-11 *

effect 1.9000 0

TS
p 4.4e-11 9.9e-07

effect 1.8300 1.8140

 Note that the improved method does not have any additional threats to validity more than

those discussed earlier in Chapter 5 (Section 5.4). In the next section, we show how coupling

tabu search with path relinking performs on real world graph datasets.

205

7.3 Experiments on Real World Graph Datasets

In this section, we want to show if the improved method can produce similar results in a real

world setting by testing it against a standard public graph datasets described earlier in Chapter

5 (Section 5.3). We used the same 10 datasets listed in Table 5.15. The initial layout of the

nodes in each graph was generated randomly. We tested the methods according to phases I, II,

and III. The results of the experiments are shown in the following figures. Figure 7.18 and

Figure 7.19 show the results of applying the methods on the real graph datasets according to

phase I. The results shown in the charts second our conclusion in the previous section, that

coupling path relinking with tabu search produces graph layouts with better fitness values

compared to tabu search and simulated annealing. The difference becomes clearer as the size of

the graph increases, as shown in Figure 7.18. However, that big difference requires more

solutions to search in the neighbourhood and consequently, the number of evaluated solutions

becomes larger, as shown in Figure 7.19.

Figure 7.18 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the graph
datasets in Table 5.15 (phase I)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

Fitness

Graph

Real Graph Datasets

PR+TS

SA

TS

206

Figure 7.19 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied on
the graph datasets in Table 5.15 (phase I)

 In Figure 7.20, where the experiment was based on phase II, we see that the improved

method can reach the same fitness values of different graph layouts with a lower number of

evaluated solutions compared to the other two methods. It also produces graph layouts with

better fitness values, except for small graphs, when all the methods evaluate the same number

of solutions as shown in Figure 7.21, where the experiment was based on phase III.

Figure 7.20 Bar chart of the number of evaluated solutions obtained by TS, SA, PR+TS when applied on
the graph datasets in Table 5.15 (phase II)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 2 3 4 5 6 7 8 9 10

Evaluated

Solutions

Graph

Real Graph Datasets

PR+TS

SA

TS

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10

Evaluated

Solutions

Graph

Real Graph Datasets

PR+TS

SA

TS

207

Figure 7.21 Bar chart of the fitness function values obtained by TS, SA, PR+TS when applied on the graph
datasets in Table 5.15 (phase III)

Figure 7.22, Figure 7.23, Figure 7.24, and Figure 7.25 are four examples of the layouts

produced by the methods when applied to graph datasets 1, 2, 3, and 5 respectively in the list

of real world datasets described in Table 5.15.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10

Fitness

Graph

Real Graph Datasets

PR+TS

SA

TS

208

Figure 7.22 Layout of graph dataset 1 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within the

canvas of our visualization tool

Random Layout Simulated Annealing Layout

Tabu Search Layout Improved PR+TS Layout

209

Random Layout Simulated Annealing Layout

Tabu Search Layout Improved PR+TS Layout

Figure 7.23 Layout of graph dataset 2 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within the
canvas of our visualization tool

210

Random Layout Simulated Annealing Layout

Tabu Search Layout Improved PR+TS Layout

Figure 7.24 Layout of graph dataset 3 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within the
canvas of our visualization tool

211

Random Layout Simulated Annealing Layout

Tabu Search Layout Improved PR+TS Layout

Figure 7.25 Layout of graph dataset 5 (listed in Table 5.15) produced by TS, SA, PR+TS drawn within
the canvas of our visualization tool

In the next section, we analyse the performance of our method against the graph size

accompanied with figures which describe its scalability. We also show its effect on each

aesthetic criterion.

7.4 Scalability and Performance Analysis

In order to test the scalability of our method and its ability to work effectively on large graph

datasets, we ran our method against simulated annealing on randomly generated large graphs,

based on Erdos-Renyi model, according to phase I. Note that we excluded hill climbing from

212

this comparison as the statistical tests in Chapter 5 showed that hill climbing is considerably

worse than the other methods. We ran simulated annealing 30 times on each dataset, and the

median value was recorded for each set. The graphs were generated using the same generator

described in Chapter 3 and Chapter 5 (Section 5.1). We started with a graph dataset of 1000

nodes and 3003 edges and we kept increasing the number of nodes and edges as we move

from one dataset to another as shown in Table 7.17. We stopped increasing the size of the

datasets when we had a very long execution time for one of the tested methods (almost half a

day).

Table 7.17 Characteristics of the graph datasets used in scalability testing

Graph Set Nodes Edges

1 1000 3003

2 1500 4503

3 2000 6003

4 2500 7503

5 3000 9003

6 3500 10503

7 4000 12003

8 4500 13503

9 5000 15002

10 5500 16503

Figure 7.26 shows that our method effectively minimises the value of the fitness function

and outperforms simulated annealing regardless of how large the size of the graph is. Also, as

Figure 7.27 and Figure 7.28 show, the speed of this minimisation process is efficient in our

method compared to simulated annealing as the graph size increases. The figures show that

increasing the number of nodes and edges (i.e. increasing the size of the graph) would increase

the number of evaluated solutions and execution time for simulated annealing and our method

as well, but with different rates of increase. Note that the execution time would be shorter if

we test the methods for drawing graph layouts with a single criterion. However, since our

fitness function contains multiple measures, it took a longer time to execute as some measures

have a long computation time.

213

Figure 7.26 Bar chart of the fitness values obtained by PR+TS and SA when applied on graph datasets in
Table 7.17 (phase I) for scalability testing

Figure 7.27 Bar chart of the number of evaluated solutions obtained by PR+TS and SA when applied on
graph datasets in Table 7.17 (phase I) for scalability testing

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1 2 3 4 5 6 7 8 9 10

Fitness

Graph

PR+TS

SA

0

500000

1000000

1500000

2000000

2500000

3000000

1 2 3 4 5 6 7 8 9 10

Evaluated

Solutions

Graph

PR+TS

SA

214

Figure 7.28 Bar chart of execution time in seconds obtained by PR+TS and SA when applied on graph
datasets in Table 7.17 (phase I) for scalability testing

Figure 7.29, Figure 7.30, and Figure 7.31, show boxplots for the overall performance of

our method when being applied on a set of graphs with an increasing number of nodes and

edges, as described in Table 7.17, in terms of fitness values, number of evaluated solutions,

and execution time in seconds respectively. All figures show that our method outperforms

simulated annealing in all aspects.

Figure 7.29 Box plot chart of the overall fitness values obtained by PR+TS and SA when applied on graph
datasets with an increasing number of nodes and edges (Table 7.17)

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10

Time

(seconds)

Graph

PR+TS

SA

215

Figure 7.30 Box plot chart of the overall number of evaluated solutions obtained by PR+TS and SA when
applied on graph datasets with an increasing number of nodes and edges (Table 7.17)

Figure 7.31 Box plot chart of the overall time in seconds obtained by PR+TS and SA when applied on
graph datasets with an increasing number of nodes and edges (Table 7.17)

In order to examine the behaviour of our method on the value of the fitness function as the

number of evaluated solutions increases, we ran the method on several graphs of the same size

having 105 nodes and 441 edges but with different initial layouts. The average value of the

fitness was recorded at different points during the execution time of the method. Figure 7.32

describes the algorithm’s behaviour by showing the change in the value of the fitness as the

216

number of evaluated solutions increases. The figure shows that the fitness value decreases as

the number of evaluated solutions increases.

Figure 7.32 The change of the fitness value as the number of evaluated solutions increases

 Last but not least, we find it interesting to report examples of the normalised values of each

aesthetic used in our fitness function independently when being evaluated by hill climbing,

simulated annealing, tabu search, and path relinking coupled with tabu search. Table 7.18 and

Table 7.19 provide values from the real world datasets 3 and 5 described in Table 5.15.

Table 7.18 Normalised values of each aesthetic when the methods were applied on graph dataset 3 (listed
in Table 5.15)

 node-node occlusion edge length edge crossings angular resolution
HC 0.029602 0.119400 0.075273 0.249458

SA 0.021657 0.084227 0.038497 0.230175

TS 0.026453 0.061855 0.038879 0.219136

PR+TS 0.000279 0.024855 0.024902 0.085991

Table 7.19 Normalised values of each aesthetic when the methods were applied on graph dataset 5 (listed
in Table 5.15)

 node-node occlusion edge length edge crossings angular resolution
HC 0.079880 0.164624 0.058610 0.395361

SA 0.035921 0.077498 0.033709 0.312177

TS 0.048987 0.096359 0.039349 0.346663

PR+TS 0.000156 0.031453 0.026176 0.195369

217

7.5 Summary

In this chapter, we studied the effect of coupling path relinking with tabu search on the

efficiency and the effectiveness of the proposed drawing algorithm. This was achieved by

conducting three comparisons with the pure tabu search and simulated annealing drawing

algorithms based on the quality of the layout that can be achieved by each drawing algorithm;

the number of evaluated solutions performed by each method to reach a particular level of

layout quality; and the quality of layout drawn by the methods after a fixed number of

evaluated solutions. The experiments were conducted on new randomly generated datasets,

different than those used in Chapter 5 in order to avoid overfitting, and on the same real world

datasets. The statistical tests of the experiments on random graph datasets gave strong

evidence that coupling path relinking with tabu search outperforms all the neighbourhood

search methods discussed in this research in all aspects with very large effect size. The results

of applying the methods on real world datasets support our conclusion. We also described the

performance of the proposed method as the size of the graph increases and we showed that the

method has better scalability compared to simulated annealing.

218

Chapter 8 Conclusions

This chapter provides a summary of the objectives and contributions. We also highlight a

number of ideas which can be explored in the future.

8.1 Objectives and Contributions

In this work, we addressed the research area of graph drawing, where the main task was

improving the efficiency and effectiveness of neighbourhood search-based methods for

drawing general graph layouts with undirected straight lines based on a weighted sum multi-

criteria fitness function. This approach has the advantage of allowing explicit combinations of

metrics that can be tuned to meet user preferences. We described a novel automated

neighbourhood search method based on tabu search and path relinking that have not been used

before in drawing general graph layouts with multi-aesthetic criteria, unlike hill climbing and

simulated annealing.

To achieve our goals, we started with implementing a visualisation tool that we used for

testing all the neighbourhood search methods discussed in this thesis. The tool allowed the

user to choose the preferred values of the parameters for each method, and the weights of each

aesthetic metric (Chapter 3). It was not possible to determine unified weights that work well

for all types of graphs, and indeed weights could vary according to application area and user

preferences. Hence, we assigned the value 1 to all the weights for a fair comparison between

the methods.

The first attempt for improving neighbourhood search methods in the field of drawing

graph layouts was made by implementing an automated drawing method based on tabu search.

The method searches for the best positions of the nodes, so minimising the value of the fitness

function and drawing a nice graph layout. The key feature in tabu search was the combination

of forbidding reverse moves using a memory-based tabu list and allowing escapes from local

optima. We also implemented the basic neighbourhood search-based graph drawing

algorithms for hill climbing and simulated annealing in order to be compared with our

method. Besides the fact that all the methods shared the same local (neighbourhood) search

space, we followed a unified systematic incremental procedure for tuning the values of the

219

parameters of each method to select proper values which produce graph layouts with small

fitness values (good quality). We provided figures and tables which describe the effect of

adjusting the value of each parameter on the quality of the layouts and the efficiency of the

drawing algorithms (Chapter 4).

We then conducted a comprehensive comparison between the three neighbourhood search-

based drawing algorithms: hill climbing, simulated annealing, and tabu search. The

comparison was broken down into three phases to answer the following questions: How good

a layout can be achieved by each drawing algorithm? How many evaluated solutions

performed by each method to reach a particular level of layout quality? And how good is the

quality of layout drawn by the methods after a fixed number of evaluated solutions? We

provided quantitative evidence of experimental results on randomly generated graph layouts,

based on Erdos-Renyi model, and real world graphs to assert that the tabu search approach can

draw a graph layout with a good quality in a smaller number of evaluated solutions compared

to the hill climbing and the simulated annealing approaches. We also conducted statistical

tests that showed, along with the large effect sizes, that the tabu search drawing algorithm was

faster than the hill climbing drawing algorithm. It produced, along with simulated annealing,

graph layouts with better quality regardless of the graph size in terms of number of nodes and

edges. In addition, the efficiency of our tabu search-based method was better than the

simulated annealing algorithm but the latter produced graph layouts with similar or slightly

better fitness values compared to those produced by our tabu search algorithm when both

methods ran without limitations on the number of evaluated solutions (Chapter 5).

Since our tabu search drawing algorithm had not outperformed simulated annealing in

some aspects, we improved our method by coupling it with path relinking. The desire to

tunnel through blocked off areas created by tabu search solutions was the main reason of

choosing path relinking procedure to couple with tabu search to intensify the searching

process between an initial and a guiding solutions selected from a set of elite solutions

generated by the tabu search drawing algorithm. The integration of features of tabu search and

path relinking in one implementation made our method a more effective graph layout method

than the other neighbourhood search methods. Building a reference set of elite solutions

generated by tabu search and moving efficiently along the path between two solutions were

the main two aspects of our path relinking procedure. We also developed a systematic way for

220

choosing the values of the parameters used by the method. We performed one round of

parameter tuning to adjust the values of the parameters of the basic path relinking procedure.

Then, we proposed two improvements on the basic implementation: a proper selection of the

initial and the guiding solutions from the reference set of elite solutions; and an improved

neighbourhood searching strategy based on a variable step size. The proposed improvements

introduced two new parameters that could affect the performance of the procedure. Therefore,

we performed a final round of parameters calibration process in order to assign reasonable

values for each parameter before we examine the performance of our improved

neighbourhood search method compared to other neighbourhood search methods (Chapter 6).

Finally, we studied the effect of coupling path relinking with tabu search on the efficiency

and the effectiveness of the proposed drawing algorithm. This was achieved by conducting

three comparisons, with our tabu search drawing algorithm and simulated annealing drawing

algorithm. Our experimental results on random graphs and real world graphs showed that our

tabu search/path relinking approach draws graph layouts with good quality in a relatively low

number of evaluated solutions. Coupling tabu search with path relinking outperformed all the

other methods discussed in this work in both terms of quality of layout and speed of layout

process with very large effect sizes. We also described the performance of the proposed

method as the size of the graph increases and we showed that the method had a better

scalability when compared against simulated annealing (Chapter 7).

8.2 Future Work

In this section, we list a number of potential ideas which can be investigated to extend the

work covered in this thesis.

1. Experiments can be conducted to study the efficiency of this method when applied to

different types of graphs such as trees, hierarchical, and circular graphs. Our method

can be easily adjusted to work with directed edges, but each type of these graphs has

its own aesthetic measures such as: subtree separation, closest and farthest leaves for

tree graphs; uniform edge direction and cycle removal for hierarchical graphs;

partitioning the graph into clusters and placing the nodes of each cluster onto the

perimeter of an embedding circle for circular graphs (Tamassia 2013). These

aesthetics, in addition to the ones discussed in this thesis which usually exist in any

221

graph, must be formulated in a weighted sum multi-criteria objective function to be

optimised by our proposed method.

2. The performance of our method can be further improved by implementing a hybrid of

path relinking and a Greedy Randomized Adaptive Search Procedure (GRASP). This

combination has been previously applied efficiently in some applications with

promising results (Laguna & Marti 1999). In GRASP, each iteration consists of

constructing a candidate solution and then improves that solution by applying an

exchange procedure to find a local optimum. ‘The construction phase is iterative,

greedy, randomized, and adaptive. It is iterative because the initial solution is built

considering one element at a time. It is greedy because the addition of each element is

guided by a greedy function. It is randomized because the selection of that

element is made in a random fashion. And it is adaptive because the element chosen at

any iteration in a construction is a function of those previously chosen. The

improvement phase typically consists of a local search procedure (Duarte et al. 2017).

Unlike tabu search, the generated solution by each GRASP iteration is not linked to the

next solution by a sequence of neighbourhood moves. Therefore, the relinking process

can have different interpretations with GRASP (Fleurent & Glover 1999).

3. There is a relationship between the algorithm’s execution time (in seconds) and the

calculation of each metric in the fitness function (Davidson & Harel 1996). In our

implementation, when the fitness function is evaluated, the aesthetic measure is

recalculated for all nodes and edges. This slows down the execution time (but not the

number of evaluated solutions). The runtime could be improved if we use memoisation

on the calculation of metrics by storing previous values and calculating the metric only

for the nodes and edges that are affected by a movement in the neighbouthood search

space.

4. More investigations can be performed on the effectiveness of our approach in

comparison with force-directed approaches and other population-based approaches that

have been previously used in the field of graph drawing such as Genetic Algorithms

(Eloranta & Mäkinen 2001; Vrajitoru 2009) and Ant Colony optimisation (Ware &

Richards 2013).

222

5. An empirical study on human users could be conducted to evaluate the layouts

generated by different graph drawing algorithms as visualisation is also concerned

with how significant the differences are to the human eye and the human sense of

aesthetics.

6. One way to improve the quality of solutions in tabu search is to divide the sets into

Pareto and candidate lists (Baykasoglu et al. 1999). In our work, solutions were only

added to a candidate list since we used the basic tabu search algorithm. But we can try

using Pareto list such that the Pareto list collects the selected non-dominated solutions

found by the algorithm. The candidate list, on the other hand, collects all other non-

dominated solutions that were not selected as Pareto optimal solutions in an iteration.

These solutions may become seed solutions if they maintain their non-dominated

status in subsequent iterations. Using this process, the candidate list would give the

opportunity to diversify the searching process.

Bibliography

Aiex, R. M., Binato, S. & Resende, M., 2003. Parallel GRASP with path relinking for job
shop scheduling. Parallel computing, 29(4), pp. 393-430.

Aiex, R. M., Resende, M., Pardalos, P. M. & Toraldo, G., 2005. GRASP with path relinking
for the three index assignment problem. INFORMS Journal on computing, 17(2), pp. 224-247.

Archambault, D., Munzner, T. & Auber, D., 2007. Topolayout: Multilevel graph layout by
topological features. IEEE transactions on visualization and computer graphics, 13(2).

Archambault, D. & Purchase, H. C., 2013. The “map” in the mental map: Experimental results
in dynamic graph drawing. International journal of human-computer studies, 71(11), pp.
1044-1055.

Balasubramanian, M. & Schwartz, E. L., 2002. The isomap algorithm and topological
stability. Science, 295(5552), pp. 7-7.

Bandyopadhyay, S. & Saha, S., 2012. Unsupervised classification: similarity measures,
classical and metaheuristic approaches, and applications. s.l.:Springer science & business
media.

Barsky, A., Munzner, T., Gardy, J. & Kincaid, R., 2008. Cerebral: Visualizing multiple
experimental conditions on a graph with biological context. IEEE transactions on
visualization and computer graphics, 14(6), pp. 1253-1260.

Batagelj, V. & Mrvar, A., 1998. Pajek-program for large network analysis. Connections,
21(2), pp. 47-57.

Batagelj, V. & Mrvar, A., 2006. Pajek datasets. Web page http://vlado. fmf. uni-lj.
si/pub/networks/data, s.l.: s.n.

Batini, C., Nardelli, E. & Tamassia, R., 1986. A layout algorithm for data flow diagrams.
IEEE trans. software eng., Volume 4, pp. 538-546.

Baykasoglu, A., Owen, S. & Gindy, N., 1999. A Taboo search based approach to find the
pareto optimal set in multiple objective optimization. Engineering optimization, 31(6), pp.
731-748.

Benlic, U. & Hao, J. K., 2011. An effective multilevel tabu search approach for balanced
graph partitioning. Computers & operations research, 38(7), pp. 1066-1075.

Bertault, F., 1999. A force-directed algorithm that preserves edge crossing properties. Berlin,
Heidelberg, Springer , pp. 351-358.

224

Bland, J. M. & Altman, D. G., 1995. Multiple significance tests: the Bonferroni method. Bmj,
310(6973), p. 170.

Blum, C. & Roli, A., 2003. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM computing surveys (CSUR), 35(3), pp. 268-308.

Blythe, J., McGrath, C. & Krackhardt, D., 1995. The effect of graph layout on inference from
social netword data. Passau, Germany, Springer Berlin Heidelberg, pp. 40-51.

Böhringer, K. F. & Paulisch, F. N., 1990. Using constraints to achieve stability in automatic
graph layout algorithms. s.l., In Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM, pp. 43-51.

Bollobás, B., 1998. Random graphs. New York, NY, Springer, pp. 215-252.

Brandao, J. & Mercer, A., 1997. A tabu search algorithm for the multi-trip vehicle routing and
scheduling problem. European journal of operational research, 100(1), pp. 180-191.

Branke, J., Bucher, F. & Schmeck, H., 1996. Using genetic algorithms for drawing undirected
graphs. s.l., In the third nordic workshop on genetic algorithms and their applications.

Brank, J., 2004. Drawing graphs using simulated annealing and gradient descent. s.l.,
Zbornik C 7 mednarodne multi-konference Informacijska družba IS 2004.

Canuto, S. A., Resende, M. G. & Ribeiro, C. C., 2001. Local search with perturbations for the
prize‐collecting Steiner tree problem in graphs. Networks, 38(1), pp. 50-58.

Carpano, M., 1980. Automatic display of hierarchized graphs for computer-aided decision
analysis. IEEE trans. syst., man, and cybernetics, 10(11), pp. 705-715.

Choe, Y., McCormick, B. H. & Koh, W., 2004. Network connectivity analysis on the
temporally augmented C. elegans web: A pilot study. In soc neurosci abstr, 30(921.9).

Christensen, J., Marks, J. & Shieber, S., 1995. An empirical study of algorithms for point-
feature label placement. ACM transactions on graphics (TOG), 14(3), pp. 203-232.

Chuzhoy, J., 2011. An algorithm for the graph crossing number problem. San Jose, CA, USA,
In proceedings of the forty-third annual ACM symposium on Theory of computing, ACM, pp.
303-312.

Coello, C. C., Lamont, G. & Van Veldhuizen, D. A., 2006. Evolutionary algorithms for
solving multi-objective problems. 2nd ed. New York, Inc. Secaucus, NJ, USA: Springer-
Verlag.

Cohen, J., 1992. A power primer. Psychological bulletin, 112(1), p. 155.

Coleman, M. K. & Parker, D. S., 1996. Aesthetics‐based graph layout for human
consumption. Software: practice and experience, 26(12), pp. 1415-1438.

225

Coleman, T. F. & Moré, J. J., 1983. Estimation of sparse Jacobian matrices and graph coloring
blems. SIAM journal on numerical analysis, 20(1), pp. 187-209.

Cordeau, J. F., Gendreau, M. & Laporte, G., 1997. A tabu search heuristic for periodic and
multi‐depot vehicle routing problems. Networks, 30(2), pp. 105-119.

Cordeau, J. F. & Maischberger, M., 2012. A parallel iterated tabu search heuristic for vehicle
routing problems. Computers & operations research, 39(9), pp. 2033-2050.

Daudin, J. J., Picard, F. & Robin, S., 2008. A mixture model for random graphs. Statistics and
computing, 18(2), pp. 173-183.

Davidson, R. & Harel, D., 1996. Drawing graphs nicely using simulated annealing. ACM
transactions on graphics, 15(4), pp. 301-331.

di Battista, G., Eades, P., Tamassia, R. & Tollis, I. G., 1999. Graph drawing: algorithms for
the visualisation of graphs. s.l.:Prentice Hall.

Díaz, R. & Suárez, A. R., 2001. A study of the capacity of the stochastic hill climbing to solve
multi-objective problems. s.l., In international symposium on adaptative system, pp. 37-40.

Dib, F. K. & Rodgers, P., 2014. A tabu search based approach for graph layout. Journal of
visual languages & computing, 25(6), pp. 912-923.

Dib, F. K. & Rodgers, P., 2018. Graph drawing using tabu search coupled with path relinking.
PLoS ONE, 13(5), p. e0197103.

Doerner, K. F. et al., 2006. Pareto ant colony optimization with ILP preprocessing in
multiobjective project portfolio selection. European journal of operational research, 171(3),
pp. 830-841.

Dogrusoz, U. et al., 2009. A layout algorithm for undirected compound graphs. Information
sciences, 179(7), pp. 980-994.

Dogrusoz, U., Kakoulis, K. G., Madden, B. & Tollis, I. G., 2007. On labeling in graph
visualization. Information sciences, 177(12), pp. 2459-2472.

Dorigo, M., Birattari, M. & Stutzle, T., 2006. Ant colony optimization. IEEE computational
intelligence magazine, 1(4), pp. 28-39.

Dorigo, M. & Di Caro, G., 1999. Ant colony optimization: a new meta-heuristic. In
evolutionary computation, proceedings of the 1999 congress, Volume 2, pp. 1470-1477.

Duarte, A., Laguna, M. & Marti, R., 2017. Metaheuristics for business analytics: A decision
modeling approach. s.l.:Springer.

Dunn, O. J., 1961. Multiple comparisons among means. Journal of the American statistical
association, 56(293), pp. 52-64.

226

Eades, P., 1984. A heuristic for graph drawing. Congressus numeratum, Volume 42, pp. 149-
160.

Eades, P. & Feng, Q. W., 1996. Multilevel visualization of clustered graphs. Berlin,
Heidelberg, Springer, pp. 101-112.

Eades, P. & Wormald, N. C., 1994. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4), pp. 379-403.

Eiben, A. E., Hinterding, R. & Michalewicz, Z., 1999. Parameter control in evolutionary
algorithms. IEEE transactions on evolutionary computation, 3(2), pp. 124-141.

Eloranta, T. & Mäkinen, E., 2001. TimGA: A genetic algorithm for drawing undirected
graphs. Divulgaciones matematicas, 9(2), pp. 155-171.

Erdos, P. & Rényi, A., 1960. On the evolution of random graphs. Publication of the
mathematical institute of the Hungarian academy of sciences, 5(1), pp. 17-60.

Escobar, J. W., Linfati, R. & Toth, P., 2013. A two-phase hybrid heuristic algorithm for the
capacitated location-routing problem. Computers & operations research, 40(1), pp. 70-79.

Escobar, J. W., Linfati, R., Toth, P. & Baldoquin, M. G., 2014. A hybrid granular tabu search
algorithm for the multi-depot vehicle routing problem. Journal of heuristics, 20(5), pp. 483-
509.

Festa, P., Pardalos, P. M., Resende, M. G. & Ribeiro, C. C., 2002. Randomized heuristics for
the MAX-CUT problem. Optimization methods and software, 17(6), pp. 1033-1058.

Fleurent, C. & Glover, F., 1999. Improved constructive multistart strategies for the quadratic
assignment problem using adaptive memory. INFORMS journal on computing, 11(2), pp. 198-
204.

Flower, J., Rodgers, P. & Mutton, P., 2003. Layout metrics for Euler diagrams. s.l., In
information visualization, 2003. IV 2003. proceedings. seventh international conference,
IEEE, pp. 272-280.

Fonseca, C. M. & Fleming, P. J., 1993. Genetic algorithms for multiobjective optimization:
formulation discussion and generalization. s.l., In ICGA, pp. 416-423.

Frick, A., Ludwig, A. & Mehldau, H., 1995. A fast adaptive layout algorithm for undirected
graphs. London, UK, Proceedings of the DIMACS international workshop on graph drawing,
Springer-Verlag, pp. 388--403.

Friden, C., Hertz, A. & de Werra, D., 1989. STABULUS: A technique for finding stable sets
in large graphs with tabu search. Computing, Springer-Verlag, 42(1), pp. 35-44.

227

Fruchterman, T. M. & Reingold, E. M., 1991. Graph drawing by force-directed placement.
Software practice and experience, 21(11), pp. 1129-1164.

Gambardella, L. M., Taillard, E. & Agazzi, G., 1999. MACS-VRPTW: A multiple ant colony
system for vehicle routing problems with time windows. London, UK, In new ideas in
optimization, D. Corne et al., Eds. McGraw Hill, p. 63–76.

Gandibleux, X., Mezdaoui, N. & Fréville, A., 1997. A tabu search procedure to solve
multiobjective combinatorial optimization problems. In advances in multiple objective and
goal programming, Springer Berlin Heidelberg, pp. 291-300.

Gansner, E. R., Hu, Y. & North, S., 2013. A maxent-stress model for graph layout. IEEE
transactions on visualization and computer graphics, 19(6), pp. 927-940.

Garey, M. R. & Johnson, D. S., 1983. Crossing number is NP-complete. SIAM journal of
algebraic and discrete methods, 4(3), pp. 312-316.

Gendreau, M., Hertz, A. & Laporte, G., 1994. A tabu search heuristic for the vehicle routing
problem. Management science, 40(10), pp. 1276-1290.

Gendreau, M. & Potvin, J. Y., 2014. Tabu search. In: Search methodologies. US: Springer, pp.
243-263.

Ghamlouche, I., Crainic, T. G. & Gendreau, M., 2004. Path relinking, cycle based
neighbourhoods and capacitated multicommodity network design. Annals of operations
research, 131(1-4), pp. 109-133.

Gibson, H., Faith, J. & Vickers, P., 2013. A survey of two-dimensional graph layout
techniques for information visualisation. Information visualization, 12((3-4)), pp. 324-357.

Girvan, M. & Newman, M. E., 2002. Community structure in social and biological networks.
Proceedings of the national academy of sciences, 99(12), pp. 7821-7826.

Gleiser, P. M. & Danon, L., 2003. Community structure in jazz. Advances in complex systems,
6(04), pp. 565-573.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence.
Computer and operations research, 13(5), pp. 533-549.

Glover, F., 1989. Tabu search - part I. ORSA journal on computing, 1(3), pp. 190-206.

Glover, F., 1990. Tabu search - part II. ORSA journal on computing, 2(1), pp. 4-32.

Glover, F., 1997. Tabu search and adaptive memory programming—advances, applications
and challenges. s.l., In interfaces in computer science and operations research, Springer US,
pp. 1-75.

228

Glover, F. & Greenberg, H. J., 1989. New approaches for heuristic search: A bilateral linkage
with artificial intelligence. European journal of operational research, Volume 39, pp. 119-
130.

Glover, F. & Laguna, M., 1997. Tabu search. Boston: Kluwer academic publishers.

Glover, F., Laguna, M. & Martí, R., 2000. Fundamentals of scatter search and path relinking.
Control and cybernetics, 29(3), pp. 653-684.

Grandinetti, L., Guerriero, F., Laganà, D. & Pisacane, O., 2012. An optimization-based
heuristic for the multi-objective undirected capacitated arc routing problem. Computers &
operations research, 39(10), pp. 2300-2309.

Grodzevich, O. & Romanko, O., 2006. Normalization and other topics in multi-objective
optimization, s.l.: Proceedings of the fields-MITACS industrial problems workshop.

Hachul, S. & Jünger, M., 2004. Drawing large graphs with a potential-field-based multilevel
algorithm. Berlin, Heidelberg, Springer, pp. 285-295.

Hansen, M., 1997. Tabu search for multiobjective optimization: MOTS. s.l., In proceedings of
the 13th international conference on multiple criteria decision making.

Hawkins, D. M., 2004. The problem of overfitting. Journal of chemical information and
computer sciences, 44(1), pp. 1-12.

Hertz, A. & De Werra, D., 1989. Using tabu search techniques for graph coloring. Computing,
39(4), pp. 345-351.

Hertz, A., Taillard, E. & De Werra, D., 1995. A tutorial on tabu search. In proceedings of
giornate di lavoro AIRO, Volume 95, pp. 13-24.

He, W. & Marriott, K., 1998. Constrained graph layout. Constraints, 3(4), pp. 289-314.

Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scandinavian journal
of statistics, 6(2), pp. 65-70.

Ho, S. C. & Gendreau, M., 2006. Path relinking for the vehicle routing problem. Journal of
heuristics, 12(1-2), pp. 55-72.

Huang, X., Lai, W., Sajeev, A. S. M. & Gao, J., 2007. A new algorithm for removing node
overlapping in graph visualization. Information sciences, 177(14), pp. 2821-2844.

Iredi, S., Merkle, D. & Middendorf, M., 2001. Bi-criterion optimization with multi colony ant
algorithms. In evolutionary multi-criterion optimization, Springer Berlin/Heidelberg, pp. 359-
372.

229

Jacomy, M., Venturini, T., Heymann, S. & Bastian, M., 2014. ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the Gephi software. PloS
ONE, 9(6), p. e98679.

Jancauskas, V., Kaukas, G., Zilinskas, A. & Zilinskas, J., 2012. On multi-objective
optimization aided visualization of graphs related to business process diagrams. s.l., DB &
local proceedings, pp. 71-80.

Jayalakshmi, T. & Santhakumaran, A., 2011. Statistical normalization and back propagation
for classification. International journal of computer theory and engineering, 3(1), pp. 1793-
8201.

Kamada, T. & Kawai, S., 1989. An algorithm for drawing general undirected graphs. Journal
of information processing letters, 31(1), pp. 7-15.

Kim, I. Y. & de Weck, O. L., 2005. Adaptive weighted-sum method for bi-objective
optimization: Pareto front generation. Structural and multidisciplinary optimization, 29(2), pp.
149-158.

Kleywegt, A. J. & Shapiro, A., 2001. Stochastic optimization. In: Handbook of Industrial
Engineering. s.l.:John Wiley & Sons, pp. 2625-2649.

Konak, A., Coit, D. W. & Smith, A. E., 2006. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability engineering & system safety, 91(9), pp. 992-1007.

Kosak, C., Marks, J. & Shieber, S., 1991. A parallel genetic algorithm for network diagram
layout. San Diego, CA, USA, Proceedings of the 4th international conference on genetic
algorithms, pp. 458-465.

Kosak, C., Marks, J. & Shieber, S., 1994. Automating the layout of network diagrams with
specified visual organization. IEEE transactions on systems, man, and cybernetics, 24(3), pp.
440-454.

Kotsiantis, S. B., Kanellopoulos, D. & Pintelas, P. E., 2006. Data preprocessing for supervised
leaning. International journal of computer science, 1(2), pp. 111-117.

Krebs, V., n.d. http://www.orgnet.com, s.l.: unpublished.

Laguna, M. & Marti, R., 1999. GRASP and path relinking for 2-layer straight line crossing
minimization. INFORMS journal on computing A., 11(1), pp. 44-52.

Laguna, M., Marti, R. & Valls, V., 1997. Arc crossing minimization in hierarchical digraphs
with tabu search. Computers and operations research, 24(12), pp. 1175-1186.

Leighton, T. & Rao, S., 1999. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM (JACM), 46(6), pp. 787-832.

230

Li, H. & Landa-Silva, D., 2011. An adaptive evolutionary multi-objective approach based on
simulated annealing. Evolutionary computation, 19(4), pp. 561-595.

Lim, A. & Chee, Y. M., 1991. Graph partitioning using tabu search. IEEE international
symposium on circuits and systems, Volume 2, pp. 1164-1167.

Lin, C. C., Lee, Y. Y. & Yen, H. C., 2011. Mental map preserving graph drawing using
simulated annealing. Information sciences, 181(19), pp. 4253-4272.

López-Ibánez, M., Paquete, L. & Stutzle, T., 2004. On the design of ACO for the biobjective
quadratic assignment problem. Lecture notes in computer science, Volume 3172, pp. 214-225.

Lusseau, D. et al., 2003. The bottlenose dolphin community of Doubtful Sound features a
large proportion of long-lasting associations. Behavioral ecology and sociobiology, 54(4), pp.
396-405.

Maaten, L. V. D. & Hinton, G., 2008. Visualizing data using t-SNE. Journal of machine
learning research, 9(Nov), pp. 2579-2605.

Mäkinen, E. & Sieranta, M., 1994. Genetic algorithms for drawing bipartite graphs.
International journal of computer mathematics, 53(3-4), pp. 157-166.

Marti, R., 1998. A tabu search algorithm for the bipartite drawing problem. European journal
of operational research, 106(2), pp. 558-569.

Martí, R., Campos, V., Resende, M. G. & Duarte, A., 2015. Multiobjective GRASP with path
relinking. European journal of operational research, 240(1), pp. 54-71.

Martı́, R. & Laguna, M., 2003. Heuristics and meta-heuristics for 2-layer straight line crossing
minimization. Discrete applied mathematics, 127(3), pp. 665-678.

Melián, C. J. & Bascompte, J., 2004. Food web cohesion. Ecology, 85(2), pp. 352-358.

Metropolis, N. et al., 1953. Equation of state calculations by fast computing machines. The
journal of chemical physics, 21(6), pp. 1087-1092.

Miller, Z. & Orlin, J. B., 1985. NP-completeness for minimizing maximum edge length in grid
embeddings. Journal of algorithms, 6(1), pp. 10-16.

Misue, K., Eades, P., Lai, W. & Sugiyama, K., 1995. Layout adjustment and the mental map.
Journal of visual languages & computing, 6(2), pp. 183-210.

Murata, T., Ishibuchi, H. & Tanaka, H., 1996. Multi-objective genetic algorithm and its
applications to flowshop scheduling. Computers & industrial engineering, 30(4), pp. 957-968.

Nam, D. & Park, C. H., 2000. Multiobjective simulated annealing: A comparative study to
evolutionary algorithms. International journal of fuzzy systems, 2(2), pp. 87-97.

231

Newman, M. E., 2006. Finding community structure in networks using the eigenvectors of
matrices. Physical review E, 74(3), p. 036104.

Noack, A., 2007. Energy models for graph clustering. Journal of graph algorithms
applications, 11(2), pp. 453-480.

Oliveira, C. A., Pardalos, P. M. & Resende, M., 2004. GRASP with path-relinking for the
quadratic assignment problem. In experimental and efficient algorithms. Springer Berlin
Heidelberg, pp. 356-368.

Ortmann, M., Klimenta, M. & Brandes, U., 2016. A sparse stress model. In international
symposium on graph drawing and network visualization, Springer international publishing,
pp. 18-32.

Osman, I. H., 2006. A tabu search procedure based on a random Roulette diversification for
the weighted maximal planar graph problem. Computers & operations research, 33(9), pp.
2526-2546.

Pacheco, J. & Marti, R., 2006. Tabu search for a multi-objective routing problem. Journal of
the operational research society, 57(1), pp. 29-37.

Parragh, S. N., Doerner, K. F. & Hartl, R. F., 2008. A survey on pickup and delivery
problems. Journal für Betriebswirtschaft, 58(1), pp. 21-51.

Peng, B., Lu, Z. & Cheng, T., 2014. A tabu search/path relinking algorithm to solve the job
shop scheduling problem. s.l.:arXiv preprint arXiv:1402.5613.

Perneger, T. V., 1998. What's wrong with Bonferroni adjustments.. British medical journal,
316(7139), p. 1236.

Purchase, H. C., 1997. Which aesthetic has the greatest effect on human understanding?.
Proceedings of graph drawing symposium, pp. 248-261.

Purchase, H. C., 2002. Metrics for graph drawing aesthetics. Journal of visual languages and
computing, 13(5), pp. 501-516.

Purchase, H. C., Cohen, R. F. & Jones, M., 1996. Validating graph drawing aesthetics. s.l., In
graph drawing, Springer Berlin Heidelberg, pp. 435-446.

Rahimi-Vahed, A., Crainic, T. G., Gendreau, M. & Rei, W., 2013. A path relinking algorithm
for a multi-depot periodic vehicle routing problem. Journal of heuristics, 19(3), pp. 497-524.

Resende, M. G., Martí, R., Gallego, M. & Duarte, A., 2010. GRASP and path relinking for the
max–min diversity problem. Computers & operations research, 37(3), pp. 498-508.

Resende, M. G. & Werneck, R. F., 2004. A hybrid heuristic for the p-median problem.
Journal of heuristics, 10(1), pp. 59-88.

232

Resende, M. & Ribeiro, C., 2003. A GRASP with path‐relinking for private virtual circuit
routing. Networks , 41(2), pp. 104-114.

Ribeiro, C. C. & Resende, M. G., 2012. Path-relinking intensification methods for stochastic
local search algorithms. Journal of heuristics, 18(2), pp. 193-214.

Ribeiro, C. C. & Vianna, D. S., 2009. A hybrid genetic algorithm for the phylogeny problem
using path‐relinking as a progressive crossover strategy. International transactions in
operational research, 16(5), pp. 641-657.

Rolland, E., Pirkul, H. & Glover, F., 1996. Tabu search for graph partitioning. Annals of
operations research , 63(2), pp. 209-232.

Rosete-Suárez, A., Ochoa-Rodrıguez, A. & Sebag, M., 1999. Automatic graph drawing and
stochastic hill climbing. In proceedings of the genetic and evolutionary computation
conference, Volume 2, pp. 1699-1706.

Rowe, L. A. et al., 1987. A browser for directed graphs. Software: practice and experience,
17(1), pp. 61-76.

Sánchez-Oro, J. & Duarte, A., 2012. Grasp with path relinking for the sumcut problem.
International journal of combinatorial optimization problems and informatics, 3(1), pp. 3-11.

Scaparra, M. P. & Church, R. L., 2005. A GRASP and path relinking heuristic for rural road
network development. Journal of heuristics, 11(1), pp. 89-108.

Shalabi, L. A., Shaaban, Z. & Kasasbeh, B., 2006. Data mining: A preprocessing engine.
Journal of computer science, 2(9), pp. 735-739.

Shapiro, S. S. & Wilk, M. B., 1965. An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4), pp. 591-611.

Simonetto, P., Archambault, D., Auber, D. & Bourqui, R., 2011. ImPrEd: An improved force‐
directed algorithm that prevents nodes from crossing edges. Oxford, UK, Blackwell
Publishing Ltd., pp. 1071-1080.

Smith, K. I. et al., 2008. Dominance-based multiobjective simulated annealing. IEEE
transactions on evolutionary computation, 12(3), pp. 323-342.

Souza, M. C., Duhamel, C. & Ribeiro, C., 2004. A GRASP heuristic for the capacitated
minimum spanning tree problem using a memory-based local search strategy. In
metaheuristics: computer decision-making. Springer US, pp. 627-657.

Stott, J., Rodgers, P., Martinez-Ovando, J. C. & Walker, S. G., 2011. Automatic metro map
layout using multicriteria optimization. IEEE transactions on visualization and computer
graphics, 17(1), pp. 101-114.

233

Sugiyama, K., Tagawa, S. & Toda, M., 1981. Methods for visual understanding of hierarchical
system structures. IEEE trans, syst., man, and cybernetics, 11(2), pp. 109-125.

Suman, B. & Kumar, P., 2006. A survey of simulated annealing as a tool for single and
multiobjective optimization. Journal of the operational research society, 57(10), pp. 1143-
1160.

Sunar, M. & Kahraman, R., 2001. A comparative study of multiobjective optimization
methods in structural design. Turkish journal of engineering and environmental sciences,
25(2), pp. 69-78.

Talbi, E. G. & Muntean, T., 1993. Hill-climbing, simulated annealing and genetic algorithms:
a comparative study and application to the mapping problem. s.l., Proceeding of the twenty-
sixth Hawaii international conference, IEEE, pp. 565-573.

Tamassia, R. (., 2013. Handbook of graph drawing and visualization. s.l.:CRC press.

Tamassia, R., Battista, G. & Batini, C., 1988. Automatic graph drawing and readability of
diagrams. IEEE trans. syst., man, and cybernetics, 18(1), pp. 61-79.

Thakur, T. & Dhiman, J., 2011. A tabu search algorithm for multi-objective purpose of feeder
reconfiguration. Journal of electrical and electronics engineering research, 3(4), pp. 71-79.

Titiloye, O. & Crispin, A., 2012. Parameter tuning patterns for random graph coloring with
quantum annealing. PloS one, 7(11), p. e50060.

Ulungu, L. E., Teghem, J. & Ost, C., 1998. Interactive simulated annealing in a multiobjective
framework: application to an industrial problem. Journal of operational research society,
49(10), pp. 1044-1050.

Upton, G. & Cook, I., 2014. A dictionary of statistics. 3 ed. s.l.:Oxford university press.

Valls, V., Martí, R. & Lino, P., 1996. A tabu thresholding algorithm for arc crossing
minimization in bipartite graphs. Annals of operations research, 63(2), pp. 233-251.

Van Ham, F. & Van Wijk, J. J., 2004. Interactive visualization of small world graphs. Austin,
Texas, Proc. IEEE symposium on information visualization, IEEE CS Press, pp. 199-206.

Vrajitoru, D., 2009. Multiobjective genetic algorithm for a graph drawing problem. s.l., In
proceedings of the midwest artificial intelligence and cognitive science conference, pp. 28-43.

Walshaw, C., 2000. A multilevel algorithm for force-directed graph drawing. Berlin,
Heidelberg, Springer, pp. 171-182.

Ware, J. M., Jones, C. B. & Thomas, N., 2003. Automated map generalization with multiple
operators: a simulated annealing approach. International journal of geographical information
science, 17(8), pp. 743-769.

234

Ware, M. & Richards, N., 2013. An ant colony system algorithm for automatically
schematizing transport network data sets. s.l., In evolutionary computation (CEC), 2013 IEEE
congress, pp. 1892-1900.

White, J. G., Southgate, E., Thomson, J. N. & Brenner, S., 1986. The structure of the nervous
system of the nematode Caenorhabditis elegans. Philosophical transactions of the royal
society of London. B, biological sciences, 314(1165), pp. 1-340.

Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics bulletin, 1(6), pp.
80-83.

Yıldız, A. R., 2009. An effective hybrid immune-hill climbing optimization approach for
solving design and manufacturing optimization problems in industry. Journal of materials
processing technology, 209(6), pp. 2773-2780.

Zachary, W., 1977. An information flow modelfor conflict and fission in small groups1.
Journal of anthropological research, 33(4), pp. 452-473.

235

Appendix A Sample Layouts from Hill Climbing, Simulated
Annealing, and Our Proposed Tabu Search-based Algorithm

In this appendix, we show sample layouts, from the graph datasets described in Table 5.1 and

Table 5.2, generated by the three drawing algorithms discussed in Chapter 5: hill climbing,

simulated annealing, and our proposed tabu search-based algorithm. Note that, the fitness

function includes the measures of the following aesthetics: node-node occlusion, edge length,

edge crossings, and angular resolution.

236

A.1 Sample Layouts from Datasets of Table 5.1

Hill climbing

Fitness = 0.612

Simulated annealing

Fitness = 0.490

Tabu search

Fitness = 0.509

Figure A.1.1 Sample layouts from group 1A in Table 5.1

237

Hill climbing

Fitness = 0.859

Simulated annealing

Fitness = 0.752

Tabu search

Fitness = 0.825

Figure A.1.2 Sample layouts from group 2A in Table 5.1

238

Hill climbing

Fitness = 0.925

Simulated annealing

Fitness = 0.879

Tabu search

Fitness = 0.889

Figure A.1.3 Sample layouts from group 3A in Table 5.1

239

Hill climbing

Fitness = 1.038

Simulated annealing

Fitness = 0.910

Tabu search

Fitness = 0.993

Figure A.1.4 Sample layouts from group 4A in Table 5.1

240

A.2 Sample Layouts from Datasets of Table 5.2

Hill climbing

Fitness = 0.417

Simulated annealing

Fitness = 0.276

Tabu search

Fitness = 0.327

Figure A.2.1 Sample layouts from group 1B in Table 5.2

241

Hill climbing

Fitness = 0.632

Simulated annealing

Fitness = 0.560

Tabu search

Fitness = 0.612

Figure A.2.2 Sample layouts from group 2B in Table 5.2

242

Hill climbing

Fitness = 1.249

Simulated annealing

Fitness = 0.760

Tabu search

Fitness = 0.858

Figure A.2.3 Sample layouts from group 3B in Table 5.2

243

Hill climbing

Fitness = 1.068

Simulated annealing

Fitness = 0.966

Tabu search

Fitness = 1.034

Figure A.2.4 Sample layouts from group 4B in Table 5.2

244

Appendix B Sample Layouts from Simulated Annealing, Our
Proposed Tabu Search-based Algorithm, and Path Relinking
Coupled with Tabu Search

In this appendix, we show sample layouts, from the graph datasets described in Table 7.1 and

Table 7.2, generated by the three drawing algorithms discussed in Chapter 7: simulated

annealing, our proposed tabu search-based algorithm, and path relinking coupled with tabu

search. Note that, the fitness function includes the measures of the following aesthetics: node-

node occlusion, edge length, edge crossings, and angular resolution.

245

B.1 Sample Layouts from Datasets of Table 7.1

Simulated annealing

Fitness = 0.489

Tabu search

Fitness = 0.497

Path Relinking +

Tabu search

Fitness = 0.238

Figure B.1.1 Sample layouts from group 1C in Table 7.1

246

Simulated annealing

Fitness = 0.766

Tabu search

Fitness = 0.835

Path Relinking +

Tabu search

Fitness = 0.398

Figure B.1.2 Sample layouts from group 2C in Table 7.1

247

Simulated annealing

Fitness = 0.911

Tabu search

Fitness = 0.930

Path Relinking +

Tabu search

Fitness = 0.481

Figure B.1.3 Sample layouts from group 3C in Table 7.1

248

Simulated annealing

Fitness = 1.002

Tabu search

Fitness = 1.069

Path Relinking +

Tabu search

Fitness = 0.600

Figure B.1.4 Sample layouts from group 4C in Table 7.1

249

B.2 Sample Layouts from Datasets of Table 7.2

Simulated annealing

Fitness = 0.348

Tabu search

Fitness = 0.385

Path Relinking +

Tabu search

Fitness = 0.335

Figure B.2.1 Sample layouts from group 1D in Table 7.2

250

Simulated annealing

Fitness = 0.600

Tabu search

Fitness = 0.625

Path Relinking +

Tabu search

Fitness = 0.301

Figure B.2.2 Sample layouts from group 2D in Table 7.2

251

Simulated annealing

Fitness = 0.792

Tabu search

Fitness = 0.846

Path Relinking +

Tabu search

Fitness = 0.381

Figure B.2.3 Sample layouts from group 3D in Table 7.2

252

Simulated annealing

Fitness = 0.986

Tabu search

Fitness = 1.080

Path Relinking +

Tabu search

Fitness = 0.431

Figure B.2.4 Sample layouts from group 4D in Table 7.2

