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Abstract

Graph drawing, or the automatic layout of grapbs thallenging problem. There are several
search-based methods for graph drawing that aedll@s optimising a fitness function which

is formed from a weighted sum of multiple criterTdnis thesis proposes a new neighbourhood
search-based method that uses a tabu search cauthepath relinking in order to optimise
such fitness functions for general graph layouth windirected straight lines. None of these
methods have been previously used in general mitéria graph drawing. Tabu search uses
a memory list to speed up searching by avoidingipusly tested solutions, while the path
relinking method generates new solutions by expiprpaths that connect high quality
solutions. We use path relinking periodically witlthe tabu search procedure to speed up the

identification of good solutions.

We have evaluated our new method against the comgmmed neighbourhood search
optimisation techniques: hill climbing and simulht@nnealing. Our evaluation examines the
quality of the graph layout (fitness function’s wa) and the speed of the layout in terms of the
number of the evaluated solutions required to deagraph. We also examine the relative
scalability of our method. Our experimental resultse applied to both random graphs and a
real-world dataset. We show that our method oudper$ both hill climbing and simulated
annealing by producing a better layout in a lowember of evaluated solutions. In addition,
we demonstrate that our method has greater saatadsl it can lay out larger graphs than the
state-of-the-art neighbourhood search-based metfkausly, we show that similar results can
be produced in a real world setting by testing o@thod against a standard public graph

dataset.
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Chapter 1 Introduction

This thesis addresses the problem of automatedhgdapwing for general graphs with
undirected straight lines based on weighted suntiqtritieria optimisation. Graph drawing is
the process of transforming a graph into a visejptesentation that is called a graph layout (di
Battista et al. 1999). The graph layout dependditberent aesthetic measures that could give a
better understanding of graphs. Such aesthetiadecedge crossings, edge length, node-to-
node and node-to-edge occlusions, graph symmetgylar resolution, and others (di Battista
et al. 1999; Davidson & Harel 1996; Stott et allPOEades 1984). These aesthetics are
measured and combined to form a multi-criteria Widd sum fitness function that measures

the quality of a graph and is then optimised bydehased methods (optimisation methods).

Search-based methods can be placed into two ceegaccording to the number of
solutions examined at the same time: neighbourlsaadch-based methods and population-
based methods. While neighbourhood search methodk @n a single solution at a time,
population-based methods evolve a set of pointisarsearch space (Blum & Roli 2003). These
methods can produce good solutions, but they hagat gpotential for improvement. For
example, in the case of neighbourhood search metisgdulated annealing adds an element of
non-determinism in order to escape from local ogtimthe search space. This slows down the
performance of the algorithm since this stochalsébaviour means that a large number of
iterations can be required to reach a good solym@vidson & Harel 1996). Hill climbing is
generally faster in reaching a final layout, but fimal result is not always the best as it is more
likely to get trapped in a local optima (Talbi & Miean 1993). Population-based methods,
such as genetic algorithms, typically have an eslewer rate of convergence compared to
simulated annealing and hill climbing as they imeoh wider search of the problem space. In
addition, they often require large memory to mamthe population and can require additional
algorithms to spread the solutions (Nam & Park 2000

Our work in this field aims to address the problefrmulti-criteria graph layout with a
weighted sum fitness function from the perspect@eighbourhood search-based methods.
To achieve this we have explored improved techridhat overcome the disadvantages of the
current state of the art in neighbourhood searchnigues. We propose a new neighbourhood
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search-based method that uses tabu search coufplegath relinking for drawing general
graph layouts with undirected straight lines. Noh¢hese methods have been previously used
in general multi-criteria graph drawing. Our methwas two main features that distinguish it
from other techniques: the use of a memory liggeed up searching by avoiding previously
tested solutions; and the generation of new salstioy exploring paths that connect high
quality solutions. We show that our method outpenfo the current state of the art in
neighbourhood search methods when being appliedimiomly generated datasets and real
world datasets.

1.1 Motivation and Objectives

Automatic graph layout is a topic in computer sceethat can be used in different applications
from different fields. For example, Cerebral (Barsit al. 2008) is a system that uses a
biologically guided graph layout and incorporatepegimental data directly into the graph
display. Systems biology is a model for biologieaperimentation affected by the behaviour of
thousands of biological entities that influenceheather. These interactions are modelled as a
graph, where the nodes represent biomolecules asigbroteins and genes, and the edges
represent interactions between them. Cerebrakgd teslay out the graph model to interpret the
results of experiments that will help biologiststifier refine the model. Our visualisation tool,
described in Chapter 3, can be used as a replatgmagh drawing back-end in tools such as
Cerebral.

Many graph layout algorithms in the literature diseighbourhood search-based methods
for drawing multi-criteria graph layouts, such aawdated annealing (Davidson & Harel 1996;
Brank 2004; Lin et al. 2011; Gibson et al. 2013 &l climbing (Stott et al. 2011; Talbi &
Muntean 1993; Rosete-Suéarez et al. 1999). Tabwtseard path relinking were used in the
field of graph drawing as well, but for single-eribn graph layouts (Marti 1998; Laguna &
Marti 1999). On the other hand, population-basedhods have also been used in drawing
multi-criteria graph layouts with genetic algoritbtniKosak et al. 1991; Kosak et al. 1994,
Branke et al. 1996; Eloranta & Makinen 2001).

Another popular type of automatic layout is thassl of force-directed approaches. These

differ considerably from search-based methods. Heteractions between nodes are applied,
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such as the attraction of connected nodes andethdsion of disconnected nodes, where the
method attempts to find an equilibrium layout (No2007; Gansner et al. 2013; Jacomy et al.
2014; Ortmann et al. 2016). In addition, systemshsas Pajek draw large networks using
spring embedders and eigenvectors (Batagel] & Mi@®8). However, aesthetics can only be
indirectly coded in force-directed approaches, whsr search-based methods have the
advantage of allowing tuneable combinations of afiye coded metrics to meet user

preferences.

We are not interested in finding the best possibiout, but enhancing the search
mechanism is our main motivation. We want to imgrakie efficiency and effectiveness of
neighbourhood search methods for drawing geneaalglayouts with undirected straight lines
based on a weighted sum multi-criteria optimisatibine objective of our work is concerned
with developing a new graph drawing search metras®d on tabu search and path relinking.
These methods have not been used before to laygengral graphs with multi-criteria

optimisation.

Tabu search is a neighbourhood search-based ¢eehwnihich proceeds on the assumption
that selecting an inferior solution is not beneficinless it is necessary such as escaping from a
local optimum (Lim & Chee 1991). Tabu search keafigmation on the itinerary through the
last solutions visited. The role of this is to riestthe choice of some subsets in the
neighbourhood by forbidding moves to some neighlsolutions that have already been visited
(Hertz, et al. 1995).

Path relinking integrates intensification and déiécation strategies (Glover et al. 2000).
This approach generates new solutions by explgrathgs that connect high quality solutions
(elite solutions from the reference set) by stgrtfrom one of these solutions, called the
initiating solution, and generating a path in tlegghbourhood space that leads toward another
solution, called the guiding solution. Note tha# thitiating and the guiding solutions represent
the starting and the ending points of the paths Thiaccomplished by selecting moves that
introduce attributes contained in the guiding sohg (Laguna & Marti 1999). A crucial
difference between evolutionary algorithms, suclyasetic algorithms, and path relinking is

that the former uses a factor of randomness tdeiéspring from parent solutions, whereas



the latter uses systematic and deterministic tae®mbine elite solutions. The main principle
of its deterministic behaviour is the gradual idtrotion of attributes from the guiding solution
to intermediate solutions. These attributes shdwade fewer characteristics from the initial
solution and more characteristics from the guidiatytion as the search moves along the path
(Ho & Gendreau 2006). Path relinking has beenidensd to be particularly appropriate to
tabu search, as it allows for ‘tunnelling’ througiieasible regions formed from the tabu list
(Glover 1997). Figure 1.1 demonstrates our inteégpien to the path relinking process in the
context of graph drawing. Initial and guiding sadas are two different layouts chosen during
the execution of tabu search algorithm. Then, tlaéh prelinking procedure performs a
“tunnelling” operation in the solution space betwéee two solutions.

Graph layout space Solution space

Initlal solution - - | | .

target solution

Figure 1.1 Path relinking tunnels through areas beteen initial and guiding graph layout solutions

In order to reach our objective, we had to impletrend evaluate our method against the
two commonly used alternative neighbourhood sebasded methods for graph drawing. The
comparison was based on the three types of evahsathat were carried out: finding the best
layout that can be achieved; how long it takesrtavda graph to a particular level of quality;

and how good the quality of the graph is aftexadioptimisation time.



1.2 Contributions

The major contribution of this thesis is proposagovel neighbourhood search-based graph

drawing algorithm that improves the current stateth@ art in neighbourhood search for

drawing general graph layouts with undirected ghialines based on a weighted sum multi-

criteria optimisation. This contribution can be keo down into several smaller contributions:

1.

3.

The development of a piece of software that camdesl for testing the methods on
random graph layouts based on EriRenyi model (Erdos & Rényi 1960; Daudin et al.
2008), and real world datasets. It also allows uker to control the values of the
parameters for each method and the weight of easthetic criterion in the fitness

function. This section of the work is describedCimapter 3.

The implementation of a novel neighbourhood seaeded method that improves the
current state of the art in neighbourhood searcthogs. We started with proposing a
tabu search-based approach for graph drawing andomgared it with hill climbing
and simulated annealing. The method searches déobekt positions of the nodes that
minimise the value of the fithess function, andwdra nice graph layout accordingly.
Tabu search forbids moves that have been previoeghmined which may be
considered poor potential solutions, making it aeneffective layout method than hill
climbing. We show that tabu search alone outpergadnith climbing, but not simulated
annealing. This section of work is described injitees 4 and 5, and a description of an
initial version was published (Dib & Rodgers 2014).

An improvement to the proposed method by combiringith path relinking which

outperformed simulated annealing. The tabu sedgdmiihm outperforms hill climbing

in minimising the value of the fithess function aihe number of evaluated solutions
used to draw a graph layout. The addition of apmglypath relinking within the tabu
search procedure speeds up the identification @fdgsolutions and outperforms
simulated annealing by producing graph layouts wi#iter values of the fitness
function. We also demonstrate that when targetingagicular value of a fithness
function, the combination of tabu search and patmking achieves the goal in a

smaller number of evaluated solutions. Note thatdhteria of comparisons between
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the methods are based on the number of evaluabetibss required to draw a layout
(as that is a machine independent criterion), aed/alue of the fitness function of that
layout. In addition, we present an execution tinmmparison when we test the
scalability of the methods. We use the executime tio formulate a realistic conclusion
of the run time for applying the methods. Statatisignificance tests and effect size
measurements that confirm the results of our empts are also conducted. Finally,
we show that similar results can be produced ira world setting by testing our
method against a standard public graph datases.sEation of the work is described in
Chapters 6 and 7, and it was published (Dib & Ro&l@618).

1.3 Publications

The following is a list of publications along witheir related chapters and contributions:

» Refereed journal articlés tabu search-based approach for graph layouthe Journal
of Visual Languages and Computing (JVLC) (Dib & Reds 2014)This paper was
accepted at the 2014 international workshop on alidtanguages and Computing
(VLC) as part of the 2014 international conferenneDistributed Multimedia Systems
(DMS). Papers accepted at the DMS were publishea special issue of the JVLC
after an additional round of reviews. The workhistpaper appears in Chapters 3, 4,
and 5 (Contributions 1 and 2). My contribution Intstarticle included: conceiving and
proposing the graph drawing algorithm, implementihg algorithm, performing the
experimentation, and writing-up the article.

» Refereed journal articleGraph drawing using tabu search coupled with path
relinking, in PLoS ONE (Dib & Rodgers 2018). The work insthpaper appears in
Chapters 3, 6, and 7 (Contributions 1 and 3). Mytidoution in this article included:
conceiving and proposing the graph drawing algorjtimplementing the algorithm,

performing the experimentation, and writing-up énécle.

1.4 Software Implementation and Online Resources

In order to test the performance of all the drawmethods on graph layouts with multiple

metrics and in terms of time and quality, we impéered our own software visualisation tool
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using Java. The tool consists of a graphical iatexfthat includes a drop-down menu with
different options, where nodes and edges can lmetteand manipulated. The tool provides
the feature of importing/exporting graphs from/textt files. Moreover, the feature of
generating random connected graphs, based on ‘Relmg model, is provided using the
built-in random function in Java. The graph germraiccepts the number of nodes and the
density of the graph to be generated and then éimergtor produces a random connected
graph accordingly. The user can select the preferegghbourhood search-based technique to
apply on the imported graph layout.

In multi-criteria graph drawing, the weight of eadetric could change for each layout as
it depends on the metric in which the user preferfocus on. Therefore, we facilitate the
parameter tuning process for each method and teetiom of weight for each aesthetic metric
by providing a smaller frame that contains texidewhere these values can be controlled.
The frame also shows the value of each individesttetic measure after optimisation, in

addition to the value of the weighted sum of tieefss function.

A detailed description of our visualisation toobi®vided in Chapter 3 of this thesis. The
code and data related to this research can be sacted the Dryad Digital Repository:
https://doi.org/10.5061/dryad.k082rv8.

1.5 Overview of Chapters

This thesis is divided into several chapters, asiileed below:
Chapter 2

It includes a literature review on graph drawingl &ime aesthetic of graph layouts. A number
of different graph drawing techniques, such asddatitected approaches and search-based
approaches (including population-based and neigtiloog search-based approaches), that
were introduced in the literature are highlightddalso introduces the background of tabu
search and path relinking as search-based techmaneit shows their effectiveness in many

graph applications and multi-criteria optimisatgoblems.

Chapter 3



It describes the features of our visualisation talwng with the operations that can be
performed in order to test our graph drawing alhons and perform all the experiments

conducted in this research.

Chapter 4

It describes the basic neighbourhood search-basgah girawing algorithms along with the
parameters’ tuning process for hill climbing anthgiated annealing, followed by our tabu
search-based approach for drawing general gragluiayvith straight lines that have multiple
aesthetic criteria which are used in a weightetefis function to measure the quality of the
graph layout. The process that we used for noringlihe values of each aesthetic measure is

also described.

Chapter 5

It demonstrates the experimental results of apglyiitl climbing, simulated annealing, and
our graph drawing version of tabu search on randoaph datasets and real world graph
datasets. It also shows our analysis and conclssethe results.

Chapter 6

It describes the proposed algorithm by showing ghecess of integrating path relinking
within tabu search along with the calibration ofgraeters. The reason behind choosing path
relinking is clarified. It also discusses differegriations of path relinking that can improve

the performance of the algorithm.

Chapter 7

It demonstrates the effect of coupling the tabudegraph drawing algorithm with path
relinking. A comparison with simulated annealingnsde by applying the methods on
random and real world graph datasets. It also shba/process we followed for analysing the

performance of our method and for testing its suhig

Chapter 8

It summarises the objectives, contributions, andifigs of this thesis, and covers a number of

ideas for future research in this area.



1.6 Summary

In this chapter, we described the motivation behindducting this research along with the
objectives that we needed to achieve. We also dsimated our contributions and their related
publications. A brief description of our visualigst tool that had been used in our
experiments was shown. In the next chapter, weevevhe background material relevant to

this thesis.



Chapter 2 Background and Related Work

This chapter describes the background materialaateto the research in this thesis. It starts
with introducing the concept of graph drawing amagdam visualisation. Then, it describes
the aesthetics of graphs and their importance proning the human understanding of graph
layouts. Also, a number of different graph drawiteghniques, such as force-directed
approaches and search-based approaches (includimgiafon-based and neighbourhood
search-based approaches) that have been introdutieel literature, are highlighted. Lastly, it
introduces the background of tabu search and piditiking as search-based techniques and it

shows their effectiveness in many graph applicat@amd multi-criteria optimisation problems.

2.1 Introduction

Graphs are commonly used data structures in maigsfiof computer science, such as state
graphs, networks, data-flow diagrams, and entilgtienships diagrams. A graph can be
defined as a set of nodes and a set of edges. bdesnare said to be adjacent if they are
connected by an edge. The edge connecting two nosjgesents the existence of a
relationship between them. This relationship cddsymmetric or asymmetric based on the
type of the edge whether it is undirected or dedcin this research, we focus on undirected

graphs.

In this data structure, relationships can be reytesl in a tabular form using an adjacency
matrix or adjacency lists. Visualising a graph ¢etp gain a better understanding of those
relationships. The way of drawing a graph has aifegnt impact on how humans understand
the relationships between the nodes of the graperefore, the layout and the arrangement
of the nodes highly affect the interpretation ahd teadability of the relationships in the
graph (Purchase et al. 1996; Purchase 1997). kr ¢oday out a graph automatically, graph
drawing algorithms are required to rearrange thdemoin a way that emphasises the

relationships without misleading the user of theegated layout.

We begin with definitions and notations of the terfor graph concepts that will be used

throughout this work.
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2.2 Definitions

A graph is denoted by G=(V,E) where V is a set @dles and E (VxV) is a set of edges.
The number of nodes and the number of edges ageatehy |V| and |E|, respectively. For the
purpose of this work, it is assumed that G is cotet undirected, and simple (i.e. has neither
self-loop edges nor multi-edges between any tweegspd/Nhen embedded in the plane, the
nodes have andy coordinatesxyyy), and the edges are straight lines joining thedioates of
the two nodesd;; represents the Euclidean distance between twosnodad j, whereas
dedqv) denotes the degree of a nodé.e. the number of edges incidentvjo A layout of a
graph G is a bijective function that maps each notle a distinct pointayout[v], and each

edge (, v) to a distinct edge with endpoirs/out[u] andlayout[v].

2.3 Overview of Graph Drawing

Graph drawing is the process of turning an abstyesgbh into a graph with an embedding in
the plane that is called a graph layout. A sampéply layout is shown in Figure 2.1. This
representation should aid the analysis and undelistg of the graph. Graph drawing is an
area of computer science which combines graph yhaod information visualisation. Graph
layouts are not only used in the field of compiwdeience. For example, they are used in:
physics and chemistry in modelling the interactioetween particles, social sciences in
drawing graphs of group interaction, and electriealgineering in representing circuits.
However, the drawing process is a significant @magje. Firstly, it depends on what we refer
to as a nice graph and secondly, it depends oaffivgency of its automated implementation.
Many sophisticated algorithms were proposed to esfdrthe problem of displaying
complicated graphs of high complexity in structaral size (Huang et al. 2007; Dogrusoz et
al. 2007; Dogrusoz et al. 2009).

Nodes =11, 2, 3, 4, 5}

Graph Drawing

Edges = {(1,2), (1,3), (1,4), (2,3),
(2,5),(3,4), (3,5), (4,50}

Figure 2.1 Sample graph layout
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Many graph drawing algorithms were implemented rtgkinto account one or more
aesthetic criteria that would increase the readglof the drawing (di Battista et al. 1999).
There are several multi-criteria approaches to uaygraphs discussed in the literature, a
number of which are investigated later in this wdarkey are based on explicit cost functions
that combine the explicit measurements of graphlitguaGenerally, all graph drawing
approaches aim to enhance the readability of taplgand to convey the information that the
graph contains. In some approaches, the positibiseonodes are restricted, e.g. they are
placed on grid points (Batini et al. 1986; Tamasgtial. 1988), concentric circles (Carpano
1980), or parallel lines (Sugiyama et al. 1981)e Eldges, on the other hand, can be drawn as
straight lines, curves, or polygonal lines.

Graph layouts depend on different aesthetic qealitihat could aid a better understanding
of graphs and consequently build more effectivetesys. Purchase (1997) performed
experiments on general graphs which showed a s&gitignce to support minimising edge
crossings for increasing the readability of a griglout in addition to an effect of maximising
the minimum angles between two incident edgesdmgle node. Additional aesthetics were
discussed in Purchase (2002). However, aesthdéctiem is a subjective process that makes
the field of graph drawing more challenging. Intfalythe et al. (1995) asserted that there is
no best way to draw a graph and that a layout sidgpends on the criteria of the graph we
wish to highlight. These might include specific @sfs of the structure of the graph itself,
particular measures of centrality, or certain bittres of the nodes or edges (Gibson et al.
2013). For example, Figure 2.2 represents two symergraph layouts. But the users find the
layout on the left easier to understand than theeanthe right although the latter has no edge

crossings (Gibson et al. 2013).
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Figure 2.2 Two symmetric layouts for the same grapfKamada & Kawai 1989)

In the next section, we describe the most commarisiyd aesthetic criteria of graphs

discussed in the literature that have an effe¢herreadability of the graph.

2.4 Graph Drawing Aesthetics

Graph drawing aesthetics are quality measuresdéttarmine the readability and usability of
graphs. A good layout can clearly deliver inforraati whereas a poor layout can mislead
(Purchase et al. 1996). Graph layout algorithmscally conform to one or more aesthetic
criteria. Metrics are used to measure these @itara weighted sum to quantify the quality of
the graph layout. These aesthetic metrics can ée fas the definition of fitness functions for
search-based techniques, such as simulated armealihhill climbing. These criteria include
edge crossings, edge length, edge bends, noded®-amd node-to-edge occlusions, graphs
symmetry, the angular resolution of the incidenge=j and octilinearity (edges should be
drawn horizontally, vertically, or diagonally) (Ees11984; Kosak et al. 1991; di Battista et al.
1999; Davidson & Harel 1996; Stott et al. 2011)rral continuous metrics for measuring the
aesthetic presence in a graph drawing for sevemmmmaesthetic criteria applicable to any
graph drawing of any size were presented by Puec(@302). Metrics can be continuous or
discrete. Analysing the graph layout with continsionetrics would not be considered a binary

decision, but it would indicate the percentage imchl the drawing conforms to the aesthetic.
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An empirical study was conducted by Purchase €tL8P6) on the human understanding
of the undirected graphs drawn using three commadgd graph drawing aesthetics:
symmetry, minimising edge crossings, and minimisimgnds in polylines. The study
confirmed that increasing the number of edge cngssand the number of edge bends would
decrease the readability of the graph. Thereforeinmsing these two aesthetics is justified.
The study was unable to conduct any conclusivesassent of the effectiveness of the local
symmetry hypothesis. Each aesthetic was consideearately by comparing graphs with the
extremes of the same aesthetic. Further empirests twere conducted by Purchase (1997)
that resulted in showing strong evidence for mising edge crossings and weaker evidence
for minimising the number of bends and maximisireggceptual symmetry. The study also
concluded that maximising the orthogonal structifrthe drawing and maximising the angles
between incident edges appear to have little etfieainderstanding the graph.

In this work, a list of aesthetics for measuringraph layout quality was determined. The
list includes: nodes distribution, edge lengthggeedrossings, node-to-edge occlusions, and
angular resolution. The following is a descriptafrthe metrics used to measure the quality of
each aesthetic as described by Davidson and H&386)] and Stott et al. (2011):

a. Node distribution ()

Spreading the nodes out evenly on the drawing spaadees the graph look nice and
readable. The distances between close nodes shmmlthcreased (minimising the
inverse), or in other words, the nodes should motdo close to each other (see Figure

2.3). This criterion is measured using the follogviormula that should be minimised:

1
—— Wherei #j
5L werei
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Figure 2.3 Node distribution
b. Uniform edge length (sh

Edges of similar lengths would make the graph Ipl@asant in many cases (Stott et al.
2011). The purpose of this aesthetic is to makersistent length of all edges. A specific
length (en) is defined, then all the edges would be adjustemtder to obtain the required
length (en) (i.e. to penalise shorter and longer edges) uiiegfollowing formula (see
Figure 2.4):

Z (e — len)?

eEeE

\

Ty -

\ \./>

Figure 2.4 Uniform edge length
c. Edge crossings (gn

Planar graphs are most likely nice graphs. Miningsihe number of crossing edges will
lead to a planar graph layout (if the graph untigdysis planar). Algorithms for producing
crossing-free graphs do exi{gades & Wormald 1994; Leighton & Rao 1999; Chuzhoy

2011). However, we would like to retain the otheitecia as well. Therefore, in this
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measure, we focus on finding the number of edgasettions and we try to minimise that

number (see Figure 2.5).
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Figure 2.5 Edge crossings
d. Node-edge occlusion gn

The edge crossings criterion does not take intosidemation the nodes that can be
positioned on edges. Therefore, the distances eetie nodes and edges should be taken
into account (see Figure 2.6). These distancesIdhio@ increased (minimising the

inverse) according to the following formula:

»)
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whered; is the Euclidean distance between noded the closest point on edgénote

thati does not equal to any of the end points of ezlge
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Figure 2.6 Node-edge occlusion
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e. Angular resolution (1)

In order to have a graph where edges with a commode are not too close to each other,
we should increase the distance between the incetkges (see Figure 2.7). This measure
is computed as follows:

Z Z |dezg72v)_9(el'ez)

veV {eq,e;}EE

where #(e;,&) is the angle in radians between two adjacent edgesde, incident to

nodev.

._______- .
DS — o o

Figure 2.7 Angular resolution

Metrics are usually defined objectively, and theg aot intended to take human value

judgements based on the perception of what appedre a good graph layout into account.

However, the validity of human value judgementsunezs more extensive empirical studies

and should not be based on personal opinions (Bsec?002).

All these metrics contribute in the graph qualitgighted sum fitness function that could

be computed as follows (Davidson & Harel 1996):

fitness = w*m + wo*m, + ws*ms + Ws*my + ws*ms

where w; and m; are the weight and the measure for criteriorespectively. Note that,

increasing the value of; compared to other weights would give the corredpancriterion a

higher priority when optimising the graph giventtttee measures are normalised.
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2.5 Graph Drawing Approaches

Graph drawing is a difficult problem (Garey & Jobns1983; Miller & Orlin 1985).
Therefore, acceptable heuristics are generallyireduo find good drawings and layouts of
graphs. Several graph drawing techniques work tbettegraphs belonging to specific classes
(di Battista et al. 1999). Next, we present two mdivisions of graph drawing algorithms:

force-directed approachemndsearch-based approaches

2.5.1 Force-directed Approaches

Force-directed algorithms use a physical analogyealel the graph layout problem. They
represent the graph as a system of bodies (nodés)fevces (edges) acting between the
bodies. The algorithms seek for a configuratiogdid) of the bodies, where each body has a
position such that the sum of forces on each badygero (i.e. a configuration where the
energy is locally minimal). As forces tend to applyually for all nodes, graphs drawn with

these algorithms tend to have consistent edgetsngt

Force-directed approaches are commonly used bethegeare easy to understand and
relatively easy to code. Moreover, the experimevith force-directed approaches show that
they often give good results and can produce @igeuts of some of the well-known graphs in
graph theorydi Battista et al. 1999).

A force-directed approach consists of two compasieihie model and the algorithm. The
model is a force or an energy model that measheegdodness of a graph layout. It is usually
a quantification of the graph layout aestheticse H®igorithm, on the other hand, is an
optimisation technique for finding an equilibriunongiguration of the system (i.e. locally

optimal layout).

Many force-directed algorithms have been proposeditasted. They differ in both the
formulation of the force or energy model, and ie tiptimisation technique used to find an
optimal energy configuration. The spring embedé@&ades 1984) uses a model of springs and
electrical forces. Nodes are modelled as equallygdd rings that repel each other (repulsive
force), and edges are modelled as springs attaohie rings (attractive force). The force of

the spring that is calculated in terms of the Idgar of the distance between the nodes, makes
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connected nodes attract each other. A repulsiveef also applied using an inverse square
law. These two forces contribute to drawing edde®aghly similar length and ensuring that
non-adjacent nodes are kept apart.

The algorithm works as follows: Firstly, the ringe placed in random locations forming
an initial layout. Secondly, a process for caldakatthe force on each ring and moving the
rings accordingly is repeated several times uti@d spring force on the rings moves the
system to a minimal energy state. Note that theeem@nts indicated that repeating the
process 100 times is enough in most of the casemat a minimal energy state. Calculating
the force on each node takes time proportionah&osiguare of the number of nodes in the
graph: each iteration of the spring embedder ruitls tme O(r?). Figure 2.8 and Figure 2.9,
as described by Eades (1984), show how the sprimgedder lays out the complete graph
with six nodes, K

Figure 2.9 Embedded graph of a complete
graph with 6 nodes using the basic spring
embedder

Figure 2.8 Randomised graph of a complete
graph with 6 nodes

The algorithm showed an acceptable running timegi@phs with a small number of
nodes. However, there are some classes of grapmghfoh the algorithm does not produce a
good layout, such as: dense graphs or graphs witeedsub-graphs, and graphs with a small
number of bridges (Eades 1984).

The spring embedder model has been modified byirgitng the electrical charges and
instead associating a spring with every pair ofesodcather than just with the edges (Kamada
& Kawai 1989). This modified model has been congajited in terms of energy rather than
forces and it has been used for drawing undiregtegphs and weighted graphs for human
understanding. This approach uses the relationdsgtvthe graph theoretic distance and the

geometric Euclidean distance between nodes to peogood layouts.
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The algorithm transforms the graph layout probleno ia virtual dynamic system, such
that every two nodes are connected by a virtuahgpof desirable distance. Hence, the
optimal layout of the graph is the state in whikbk total spring energy is minimal. The total
balance condition is computed as the square summati the differences between the

desirable distances and the geometric distanceslfpairs of nodes.

This approach differs from the one presented byeEafl984) in its optimisation
algorithm. Instead of moving all the nodes at ottlse,algorithm moves only one node in the
drawing per iteration. In each iteration, the aiifpon moves the node experiencing the
greatest net energy, by solving partial derivatioethe energy function, to a point of locally

minimal energy using a variation of the Newton-Raphmethod (Rowe et al. 1987).

The algorithm works particularly well for symmetrgraphs and is relatively good at
minimising edge crossings. The main disadvantagthisfapproach is its time complexity.
The model requires a pre-processing step that ctamghe shortest paths for every pair of
nodes. The time complexity of this stepd$n®) which makes this approach impractical for

large graphs (Rowe et al. 1987).

An improved algorithm for the spring embedder moaak presented by Fruchterman &
Reingold (1991). The main goals for the proposethotw were speed and simplicity. Many
graphs were drawn in less than a second, but nesagiere taken to restrict the graphs to a
maximum of 100 nodes. The method strives for umfa@dge lengths, and it also performs

well in terms of distributing nodes evenly and eeflng symmetry.

In Fruchterman & Reingold (1991), a better coolsghedule could have significantly
improved the algorithm. Therefore, an enhancemess wade by Frick et al. (1995) by
proposing an adaptive schedule with local and gltdmaperatures and the algorithm is known
by the Graph EMbedder algorithm (GEM). The algantivas able to match or even improve
the quality of the results obtained by other widelsed implementations while running
consistently faster than them. The algorithm wateteto produce graph layouts with evenly
distributed nodes and edges with equal lengthsholilgh the GEM was not designed to

explicitly minimise edge crossings, it can oftemiavcrossings.
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Van Ham & Van Wik (2004) proposed a new force modéh continuous visual
abstraction that combines both explicit clusterargl visual clustering for drawing graph
layouts that better reflect the natural clustencttire of small world graphs. The model uses
the concept of force annealing, which combinesddaticected algorithms that model a graph
as a physical system, then it attempts to findtjmys for all nodes such that the total energy
in the model is minimal, using a method of optitima that starts with a random
configuration. This method showed better resultsgared with conventional force-directed
approaches when being applied on a cross referetataliase of 500 artists (Van Ham & Van
Wijk 2004). Force annealing models were also usedther applications such as preventing

nodes from crossing edges (Simonetto et al. 2011).

Maaten & Hinton (2008) presented a t-distributedcBastic Neighbour Embedding (t-
SNE) which is a non-linear dimensionality reductiosualisation technique used to visualise
high-dimensional data by assigning each data-pmilaication in a two or three dimensional
map. The visualisations produced by t-SNE wereebdttan those produced by other non-

parametric visualisation techniques such as Isof@afasubramanian & Schwartz 2002).

Graph drawing with force-directed approaches thatased on virtual physical models is
still considered a hot topic that has been adddessenany recent research studies (Noack
2007; Gansner et al. 2013; Jacomy et al. 2014; @ntnet al. 2016).

Force-directed approaches typically produce aastligt pleasing layouts. They are fast
when being applied on small and medium size graphsre the speed is highly beneficial for
use in interactive systems, but they are often len&d escape local optima due to their
physical model. These approaches are computatyoagfiensive to find a minimum energy
state using general energy functions. A disadvantdghese techniques is that new criteria
can only be enforced by applying additional for¢esthe nodes causing them to move
differently. This makes it very difficult to strolygenforce additional criteria as nodes are
moved by summing all their forces in each iteratibience, the resulting composite force
satisfies none of the applied criteria, and nodes moved to non-optimal positions.
Furthermore, force-directed approaches are ussgallcted to draw graph layouts when we

want to obtain uniform edge lengths and show symiawetin the graph (Eades 1984,
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Fruchterman & Reingold 1991). However, these foroey introduce a lot of edge crossings
which is an aesthetic measure that cannot be tuimeda force (Bertault 1999). General
search-based approaches, such as simulated ampegdimetic algorithms, and hill climbing

are more favourable techniques for general andeatscost functions.

2.5.2 Search-based Approaches

The graph layout problem can also be modelled aspaimisation problem. Unlike force-
directed approaches, where aesthetics can onlpdieectly coded; search-based approaches
have the advantage of allowing tuneable combinatiminmetrics to meet user preferences.
Here, layout involves minima of the fitness measthat represents the desired graph
aesthetics. The spring embedder approaches, dedchidveviously, mainly focus on
distributing nodes and edge lengths. Both critesi@re measured using a simple and
continuous function of the locations of the noddswever, many of the important aesthetic
criteria, such as the minimisation of the numberedfje crossings, are not continuous.
Therefore, we can broaden the set of graph aesshbyi directly measuring them in the

layout.

When an algorithm attempts to draw a graph laycabaling to several graph aesthetic
criteria, some of these criteria might conflict hviéach other. Hence, we can use a fitness
function that linearly combines a number of measufde weighted sum method allows the
multi-objective optimisation problem to be transfmd as a single objective optimisation
function that is constructed as a sum of objectwections fi (measures) multiplied by
weighting coefficientsw; (Grodzevich & Romanko 2006). The problem is foratetl as

follows:

k
minzwifi, wherew; =2 0,Vi=1, ... k.
i=1
The functions might include both continuous funesio(like those used in the spring

embedder approaches) and discrete functions. $nwthy, the fitness function would measure

the quality of the graph layout (di Battista et199).
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The problem with using general fitness functionsthat it might be computationally
expensive to find a minimum fitness value. Since tlverall fitness function could include
both continuous and discrete functions, some gérsarch-based approaches, such as
population-based methods including genetic algorgth and neighbourhood search-based
methods such as simulated annealing, and hill alig)lwere used in order to find a minimum
fitness value. However, they are computationallpemsive and not suitable for interactive
systems (di Battista et al. 1999). The main difieezbetween these methods is the number of
solutions examined at the same time. While neighimad search methods work on a single
solution at a time, population-based methods evalget of points in the search space (Blum
& Roli 2003). Parameter tuning for all these methqihys an important role in increasing

their efficiency.

2.5.3 Multi-level Approaches

Multi-level graph drawing methods are frequentlplg to clustered graphs (i.e. graphs with
recursive clustering structures over the nodesiiéE& Feng 1996). The technique repeatedly
groups the nodes to form clusters which in turnuemed to define a new graph. The coarsest
graph is then partitioned where each partitionefned on all the graphs starting from the
coarsest and ending with the original (Walshaw,@00his type of graph is commonly
visualised at multiple abstraction levels such #sr@e dimensional drawing where each level
is drawn on a plane at differentoordinate while the clustering structure is draagra tree in
three dimensions. This representation preservem#rgal map between abstraction levels as
it gives a better visualisation of the graph afedént depth of abstractions and tracks the
abstractions from one level to another (Eades &FEI96). Walshaw (2000) proposed a fast
multi-level algorithm that outpeformed conventiorfarce-directed placement and spring

embedder algorithms.

Hachul & Junger (2004) presented a fast force-theanethod that is based on a
combination of a multi-level scheme and a startegyapproximating the repulsive forces in
the system. The algorithm managed to visualisesthectures of large graphs (with up to

100000 nodes) that were challenging to visualigh some other methods.
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Archambault et al. (2007) proposed a multi-levalinfework to draw undirected graphs
based on the topological features they contairwds the first multi-level approach that
partitioned the graph into topological featuresdhtained a stage that reduced the number of
node-edge overlaps and edges crossings and astdigerto eliminate all node-node overlaps.
The algorithm was compared against four other rheNgel algorithms on a variety of datasets

and it demonstrated improvements in terms of speedvisual quality.

2.6 Population-based Methods

Population-based methods are well-known searchiaethods that perform search processes
that demonstrate the evolution of a set of poimthe search space (Blum & Roli 2003). They
provide a natural way for the exploration of thersé space. The performance of these
methods is strongly dependent on the way of maatmg the population. Genetic algorithms
and ant colony optimisation are two popular stottbasethods which belong to this category.
Finding near-optimal solutions with these metha&lsdcured, however, a global convergence

is not always guaranteed.

2.6.1 Genetic Algorithms

The genetic algorithms approach was applied tgthph layout problem as it is considered to
be a good global optimiser for many optimisatioolgpems. Genetic algorithms are stochastic
global search methods that work with a populatiboamdidate solutions and try to optimise
these by means of three basic principles: selectezombination, and mutation. The initial
population is randomly chosen. Then, in every sqbset generation, new candidate solutions
are produced by selecting two solutions, with higpeobability of selection for better
solutions, recombining parts of these solutionfotm one or two offspring, and mutating the
resulting offspring. Finally, the offspring is imged into the population and the worst solution
is deleted (Dorigo & Di Caro 1999).

Genetic algorithms have been successfully adaptesiany single criterion and multi-
criteria optimisation problem@onseca & Fleming 1993; Murata et al. 1996; Koeéalal.
2006; Coello et al. 2006). This search-based teglenhas also targeted the graph drawing
problem.Kosak et al. (1991) and Kosak et al. (1994) progosegenetic algorithm-based

approach for drawing graphs under a number of Visaastraints. The proposed algorithm
24



produces graphs with good quality in addition sofiéxibility. It can be easily adapted to take
new layout aesthetics into account. However, thmn@oblem in this algorithm is its slow
rate of convergence. It initially makes rapid pexg towards a solution, but then it converges

very slowly to a global optimum (or at least toaod local one).

A genetic algorithm-based approach that minimides number of edge crossings in
bipartite graphs, when the order of the nodes safrthe node subsets is fixed, was proposed
in Makinen & Sieranta (1994). The experimental lssahow that the proposed algorithm
outperforms some well-known heuristics that werevigusly applied on the bipartite graph
drawing problem, such as the barycentre heuristit the median heuristic, especially when

applied on sparse graphs.

Branke et al. (1996) presented a genetic algoritith a local fine tuner, based on the
spring algorithm, for the drawing of undirected @ra with straight-line edges. According to
some preliminary results, the algorithm shows H8itg to produce layouts with a minimal
number of edge crossings on all tested graphsalgwithm benefits from the combination of
the genetic algorithm and the spring algorithm todpice good layouts for a large class of
graphs with implicit symmetry, similar spring lehgt and even distribution of nodes. Varying
the weights of the criteria in the fitness functmimes some control over the final appearance

of the graph layout.

The layouts found by the algorithm have good gdr&ractures, but they require some
fine tuning. Moreover, the comparatively long rumitime of the algorithm is its main
disadvantage. One reason for the high time complexi the algorithm comes from the
crossover operator that was used to solve the daomgpeonventions problem which states

that a recombination of two good parents may yeelery poor offspring (Branke et al. 1996).

A similar work was introduced by Eloranta & Makiné2001). This work proposed a
genetic algorithm that nicely draws undirected gsapf moderate size. But the algorithm still
suffers from the lack of a proper crossover operathat would speed up its computations by

decreasing the number of generations needed.
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Vrajitoru (2009) proposed a multi-criteria optintism approach, using genetic
algorithms, to the graph drawing problem. The stadylressed the problem of building
consistent graph layouts for weighted graphs falhowa specific geometric shape. The
proposed genetic algorithm was compared to foresedbaalgorithms. For this problem in
particular, force-based algorithms were faster amade efficient in terms of performance.
However, with the genetic algorithm approach, gaomeshapes that present interesting
geometric properties were obtained and they weseally more pleasing compared to force-
based algorithms.

In summary, genetic algorithms have been succégsfsied for single-criterion and multi-
criteria graph drawing. However, there are two mdjawbacks: the slow rate of convergence

to global optimum; and the long execution time tuthe lack of a proper crossover operator.

2.6.2 Ant Colony

Ant colony optimisation is another population-baseethod that was also applied in the field
of graph layout but it is not as common as geragorithms. This method takes inspiration
from the foraging behaviour of some ant speciesriffjooet al. 2006). These ants deposit a
substance on the ground to guide other memberseircalony to follow a favourable path.

The chemical substance trails enable ants to fivwit paths between their colony and food

sources. The ant colony system exploits a simélenique for solving optimisation problems.

In the field of graph drawing, ant colony optimisatwas applied to draw a special type
of graphs related to business process diagramgguskas et al. 2012). This problem is
defined as redrawing the lines that represent gugience flow for fixed flow objects and
defined sequence flow, in a pleasant layout. Tldblpm was reformulated as a multi-criteria
combinatorial optimisation problem, where aesthetiteria, such as the length of lines and
the number of line crossings and bends, were ceredin a fitness function that should be
minimised. The ant colony was applied on randondgpegated test problems with different
complexities. The experimental results showed #Hmtcolony optimisation is a promising
technique to solve this type of problem.

The automatic schematising of transport networl dats is another application where ant

colony optimisation was used (Ware & Richards 20T8E problem is defined as generating
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an alternative network from an initial network layoby moving its vertices, reorienting
edges, and increasing or decreasing the lengthss afdges. An ant colony system was
implemented for the purpose of producing betteultesand in order to ensure a faster
execution time compared to the other search-basetiniques which were used for
schematising transport networks. The system wasdesd evaluated empirically. The results
of the experiments showed that the ant colony systen be effectively used in schematising
transportation maps since it outperformed previalgorithms which were applied for the

same purpose, in terms of the quality of the geaedrmaps and algorithm’s execution time.

Ant colony optimisation was broadly applied to mamyulti-criteria optimisation
problems. These problems include: the vehicle ngutiroblem with time window constraints
(Gambardella et al. 1999), the transportation mnoblwith bi-objective combined in a
weighted sum (Parragh et al. 2008), the bi-objectgheduling problem (Iredi et al. 2001),
portfolio optimisation (Doerner et al. 2006), ar tquadratic assignment problem (Lopez-
Ibanez et al. 2004).

In summary, the ant colony approach is not widelgdlin the field of graph drawing, but
it showed promising results in the graph drawingliaptions in which it was used in. The

long running time was its major disadvantage (Jasikas et al. 2012).

2.7 Neighbourhood Search-based Methods

Unlike the population-based methods which perfoearshing processes that describe the
evolution of a set of points in the search spaeghbourhood search-based methods work on
a single solution at a time. This searching teammidescribes a trajectory (path) in the search
space during the search process starting from glesgolution (Blum & Roli 2003). Hill
climbing, simulated annealing, tabu search, ant pelinking, are four different optimisation
techniques that go under the umbrella of neighbmagthsearch methods. Many graph layout
algorithms in the literature used neighbourhoodrdebhased methods, such as simulated
annealing and hill climbing which are considered thost popular neighbourhood search
methods. In the following subsections, we demotestdifferent graph drawing and multi-

criteria applications where simulated annealing dmiltl climbing were used. Then, we
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dedicate separate sections for describing tabclsesrd path relinking as they form the core

of the algorithm proposed in this research.

2.7.1 Simulated Annealing

Simulated annealing is a search-based techniqueh#isabeen widely used in a variety of
optimisation problems. It is inspired by the praced cooling and freezing a metal into a
crystalline structure with minimum energy. The aimg process was firstly proposed by
Metropolis et al. (1953). This search-based approacdels the physical process of heating a
material and then slowly cooling the temperaturedézrease defects that minimises the
system energy. It is usually used for large-scamlinatorial optimisation problems and
implemented in a way that tries to escape fromcalloninimum to a global minimum by
applying uphill moves (moves that spoil, rathemtlaprove, the temporary solution). These
moves allow the approach to escape from a localhmainsolution but with no guarantee that a
global minimum can be reached eventually. This neghe was applied on many single-
criterion applications (Christensen et al. 1995; r&Vvaet al. 2003) and multi-criteria
applications (Ulungu et al. 1998; Suman & Kumar&0Bmith et al. 2008; Li & Landa-Silva
2011).

The simulated annealing approach was firstly usadtlie graph layout problem by
Davidson & Harel (1996) to draw general undirecgedphs with straight line edges taking
into account several drawing aesthetics: distmguthodes evenly, making edge lengths
uniform, minimising edge crossings, and placing esaot too close to edges. All these
criteria were combined into a meaningful functidratt could be subject to the general

optimisation fitness function.

The algorithm starts by choosing an initial confagion (initial graph layout) and initial
temperature. Then it repeats the following steps dofixed number of times: a new
configuration is chosen from the neighbourhoodhef¢urrent configuration (i.e. moving only
one node in the current configuration to a new tiocain a range of perimeter for a circle
which becomes smaller with time to get more aceurasults). The fitness function of the
new configuration is computed and compared to tireeat configuration’s fitness function.
The configuration changes according to the one Wi minimum value of the fitness
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function. Once no improvements are made, the testyer is decreased and the process is
repeated until a termination rule is satisfiedneFiuning iterations are applied on the fitness

function by adding the criteria that deal with drstes between the nodes and edges.

The algorithm produces nice graph layouts for sisiakk graphs, and it also has a similar
computational performance to the spring embeddproagehes described earlier. However,
the algorithm does not perform well for graphs afger sizes. Another drawback of this
approach is that it finds values very close toglodal minimum but seldom does it detect the
global minimum itself (Davidson & Harel 1996). Araample of a graph layout produced by

this algorithm is shown in Figure 2.10.

(2) (b)
Figure 2.10 An example of a graph layout using thalgorithm proposed in Davidson & Harel (1996)

An adjustment to the simulated annealing approaat made in the algorithm proposed
by Brank (2004). The algorithm applies a few adpestts to the simulated annealing
approach discussed in Davidson & Harel (1996) sbtthe fithess function can be minimised
using partial differentiation and minimisation ugithe gradient descent. Since the fitness
function is partially differentiable with resped all its independent variables, its gradient
vector can be computed. This vector, once compoteda specific node, represents the
direction in which the node should move to incretimevalue of the fitness function. Thus,
this algorithm should move the node to the oppaditection to minimise the value of the

fitness function.

Applying the gradient descent technique has sonadlectges. For example, the fitness

function should be expressed explicitly in termgodbrdinates, as its derivative will be found.
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Also some criteria, such as minimising edge cragsinare discontinuous and not
differentiable. In Brank (2004), the gradient degaghooses a reasonable minimum length of
each step to prevent the algorithm from fallingoira local minimum too early. But the

algorithm is still slow when being applied on largeaphs.

Lin et al. (2011) proposed an effective simulatedealing-based algorithm for drawing
mental-map-preserving graphs with straight lineg@feral undirected graphs including six
aesthetic criteria. Mental-map-preservation is adaeping the positions of the nodes as
stable as possible as the graph changes. Presexvimgntal map is an important aspect in
graph drawing, as it allows the user to recogniigeredrawn layout of the modified graph
using an external visual representation insteadelying entirely on memory (Coleman &
Parker 1996; Archambault & Purchase 2013). SimitarDavidson & Harel (1996), the
implementation includes flexibility in terms of tlveeights of the graph aesthetics since the
user can manually change those weights accordihgstber preferences. Also, the algorithm
incorporates multi-criteria simultaneously in ongeative function for graph layout unlike
previous works using a mental map which only inellid single criterion at a time (B&hringer
& Paulisch 1990; Misue et al. 1995; He & Marrio®9B). The algorithm guarantees the
reduction of time required to relearn the modifedrdwing, but it is limited to graphs with a
small size only. In addition to the experimentahleration, the work includes a student-based

guestionnaire analysis for a better justificationhe performance of the proposed algorithm.

In summary, simulated annealing is widely usedhia field of graph drawing. It works
successfully with small graphs but it is too slowen applied to large graphs. It adds an
element of non-determinism in order to escape ffocal optima in the search space that
requires a large number of iterations to obtaimadgsolution. Our proposed approach in this
thesis should overcome this drawback by introducchgnemory-based structure which
excludes previously visited solutions and low dyadolutions, consequently speeding up the

execution time of the drawing process.

2.7.2 Hill Climbing

The second search-based approach that has beennutedlfield of graph drawing is hill

climbing. Hill climbing is one of the simplest sehrbased algorithms used in the field of
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artificial intelligence. It is good for finding @tal optimum but it is not guaranteed to find the
global optimum out of all possible solutions. It nhk® by iteratively improving a given

solution that is often selected in a random wayapplying a transformation (variation) in the
current solution or picking any solution in its giegbourhood. Then, the new solution is
compared to the old one. If the new solution igdsethan the old one, the new solution
substitutes the old one. This process is repeatgino more improvement is recognised on

the current solution.

Hill climbing has been previously used in targetisiggle-criterion and multi-criteria
optimisation problems (Diaz & Suéarez 2001; Coetlale2006; Yildiz 2009; Bandyopadhyay
& Saha 2012). In Flower et al. (2003), an aestHadi®ed hill climbing method to draw Euler
diagrams was proposed. The work concluded that possible to enhance the understanding

of Euler diagrams with good layouts, using hilhdling, by defining a suitable set of metrics.

Hill climbing has also been used in the field o&gn drawing to minimise the number of
edge crossings (Rosete-Suarez et al. 1999). Theriemgnts conducted on random graphs of
different sizes showed that stochastic hill clinfomutperforms efficient and popular search-

based techniques, such as evolution strategiegaretic algorithms.

Stott et al. (2011) used the hill climbing approaich implementing an automatic
mechanism for drawing metro maps. A good metro regput could be evenly spaced
stations, running lines at regular angles and ptpadabels in unambiguous locations.
Therefore, Stott et al. (2011) applied multi-cieoptimisation using five different aesthetics
(angular resolution, average edge length, balaedg@ length incident to the same station,
line straightness, and octilinearity) in a weighgeohn to measure the esthetical quality of the
graph. In addition to these criteria, the followinges were taken into account for each
station: restricting the movement of stations tdobanded within a certain area, maintaining
the relative positions of the stations, avoidingdex@dge occlusions, and preserving the
ordering of edges incident to a station. A hilhdting algorithm was used to reduce the value
of the weighted sum and find improved map layo8iace hill climbing does not guarantee
finding the global minimum and in order to avoidtd minima Stott et al. (2011) applied a

clustering technique to the map. The hill climbeoves both stations and clusters when
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finding improved layouts. The mechanism produceddgmap layouts and in some cases
better than both published and distorted layoutsnéver, the performance of the algorithm
was slow. To speed it up, Stott et al. (2011) satggeavoiding the comparison between nodes

that are far away from each other and reusing almilations from previous iterations.

Many graph drawing algorithms in the literaturetthse search-based techniques, such as
simulated annealing, genetic algorithms and hithibing, produce good layouts but they have
great potential for improvement. For example, sated annealing adds an element of non-
determinism in order to escape from local miniméhie search space. This would slow down
the performance of the algorithm since this stobb&ghaviour means that a larger number of
iterations would be necessary to reach a minimuthersearch space. Genetic algorithms, on
the other hand, have a slower rate of convergeoogared to simulated annealing and hill
climbing. It initially makes rapid progress towardssolution, but then it converges very
slowly to a global optimumThe main problem with hill climbing is that it gettapped in
local optima. Our proposed approach in this theses an intensification technique based on a
combination of tabu search and path relinking thgtroves the quality of solutions and

speeds up the algorithm’s execution time.

2.8 Tabu Search

Tabu search is a general technique that was prdgms€&red Glover (Glover 1986; Glover &

Greenberg 1989; Glover 1989) for finding good dsoha to combinatorial optimisation

problems. Many approaches were proposed to tahbldetytpe of problems, and the majority
thereof were based on local search. In these agpesathe quality of solutions and the
algorithm’s computing time are dependent on the bemof neighbourhood moves performed
in each iteration (Gendreau & Potvin 2014).

Tabu search could be considered as a neighboureeatth method (like simulated
annealing) but it takes a more aggressive apprdaploceeds on the assumption that there is
no value in choosing an inferior solution unless mecessary, as in the case of escaping from
a local optimum (Lim & Chee 1991). In other wortihu search improves the efficiency of
the exploration process by keeping track of locébrimation (like the current value of the

objective function) along with some information ateld to the exploration process. This
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systematic use of memory is an essential propdrtiii® searching technique. In addition to
saving the value of the best solutigisited so far (like most exploration techniqueashu
search also keeps information on the itinerary ugho the last solutions visited. This
information will be used to guide the move fromwd@n i to the next solutionto be chosen

in the set of neighbourhood solutionsitd@ he role of the memory is to restrict the chate
some subset of the neighbourhood set of nipd®y forbidding moves to some neighbour
solutions (Hertz et al. 1995). At each iterationtlod exploration process, it selects the best
neighbourhood solution. This is unlike hill-climiginas it might make a down-hill move.
Therefore, this technique does not run out of at®ior the next move. However, this might
lead in cycling by trapping the algorithm at logatiptimal solutions. This problem has been
resolved by introducing two structures callBdbu listsand aspiration functionswvhich are
used to keep information about past moves in daleespectively constrain and diversify the
search for good solutions (Lim & Chee 1991). A flohart that demonstrates a simple tabu

search procedure is given in Figure 2.11.

The structure of tabu lists might vary from one ljjeon to another depending on the
nature of the problem. However, the most simplifiean of tabu list is a linear list that stores
the k most recent moves. The purpose of this list isdnstrain the direction of search by
preventing the algorithm from going back to a stat was reached previously. Using this
structure might avoid being trapped in any locairmpm. Tabuconditionsare satisfied if the
current move tries to undo a move previously mdas ts still in the tabu list. Another
structure has been introduced called the aspirdtination which has the ability to overrule
tabu conditions by accepting some moves in the lisbthat look attractive in spite of their
statuses. A tabu move is said to be attractive vaptied on a current solution if it gives a
better solution than the best found so far. Sunfoae might be accepted in spite of its status.
This helps to diversify the search and encouragesgploration of new regions in the search
space (Lim & Chee 1991).

The memory used in tabu search is batplicit andattributive (Glover & Laguna 1997).
The explicit memory records complete solutionsjdglty consisting of elite solutions visited
during the search. An extension of this memory mésdighly attractive but unexplored

neighbours of elite solutions. The memorised alditions (or their attractive neighbours) are
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used to expand the local search. On the other hahd,search uses attributive memory for
guiding purposes. This type of memory records mftion about solution attributes that

change in moving from one solution to another.

Initial solution

h

Create a candidate list

of solutions

Evaluate solutions

o 4
' 1' B
Choose the best
solution
. S

Stopping
condition

[ Final solution ]

Figure 2.11 A flowchart of a simple tabu search proedure

Update Tabu &
Aspiration conditions

An additional feature of tabu search is applyingnsificationanddiversification In the
search process, it might be useful to intensifydhploration in some region because it may
contain some acceptable solutions. This can bendsteby introducing a new term in the
objective function that assigns a high prioritytiie solutions in that region that have common
features with the current solution (i.e. penaliskitions far from the current one). This should
be done within a limited number of iterations aheért the search process should move to
another region. Diversification will be responsilite moving the exploration process over

different regions. Additional terms can be introeddn the objective function that penalises
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solutions that are close to the current one (@dotce the search process to jump to different
regions) (Hertz et al. 1995). Algorithm 2.1 is amtlme of a simple tabu search approach
(Glover 1989; Glover 1990).

Tabu search can be applied on our problem for ehguai multi-criteria graph layout, but

the following major points should be thoroughly éstigated:
» The generation process of neighbourhood solutions.

* The structure of tabu lists and how solutions atded and deleted to/from the lists

(intensification process).
* The definition of the aspiration function and hawupdate it (diversification process).

* The convergence properties of tabu search.

1. Select an initial solution g X.
Let x* = x, where x* denotes the best solution eatty found.
Set the iteration counter i = 0
Begin with an empty set of tabu moves T

2. If S(x) - T is empty, go to Step 4, where S(x)He set of all possible neighbourhood moves. Othserwi
seti =i+ 1 and select € S(x) - T such thatj&) is OPTIMUM(s(x):s€ S(x) - T).

3. Letx=g(x).
If C(x) < C(x*) let x* = x, where C is an objectifanction.

4. If a chosen number of iterations has elapsed eiithi@tal or since x* was last improved, or if S&P
upon reaching this step directly from Step 2, s@ierwise, update T by adding x if it satisfielsua

conditions and return to Step 2.

Algorithm 2.1 Simple tabu search approach (Glover 289; Glover 1990)
Tabu search was used in solving multi-objectivemigation problems (Baykasoglu et al.
1999). The proposed algorithm was used to solveddterent applications in different areas.
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In every application, the algorithm’s solution watsleast as good as, if not better than, the

reported results using different search-based tquks.

The solution structure of tabu search, in workingghwmore than one solution
(neighbourhood solutions) at a time, enables thp@ach to be applied to multiple objective
optimisation problems. The main stages of the bakia search algorithm arieitial solution,
generation of neighbouyselectionandupdating These stages are typical for any tabu search
approach that works on single-objective optimisatiwoblems. However, to enable the tabu
search algorithm to work with more than one objextthe selection and updating stages were
redefined. In addition to the tabu list, two ligtere defined, th@areto listand thecandidate
list. The Pareto list collects the selected non-dorathablutions found by the algorithm. The
candidate list, on the other hand, collects alleothon-dominated solutions that were not
selected as Pareto optimal solutions in the cuiterdtion. These solutions may become seed
solutions if they maintain their non-dominated $ain later iterations. The candidate list

gives the opportunity to diversify the searchinggass (Baykasoglu et al. 1999).

Gandibleux et al. (1997) presented an algorithnedam the tabu search approach for
solving multi-objective combinatorial optimisatigmmoblems, and was able to determine the
efficient set of non-dominated solutions or at feasgood inner approximation set of

solutions.

It is always possible to use all basic tabu setachniques in multi-objective optimisation
(Hansen 1997). The aspiration criterion allows gbarching process to select neighbourhood
solutions that can contribute to the non-dominagetleven if they are the results of tabu
moves, instead of only checking the best, non-tadaghbour. Also, the neighbours resulting

from tabu moves can be accepted, in some casbsstraeighbours.

In basic tabu search, whenever there is a badlyexiimg neighbourhood function or
when the neighbourhood function induces wide vallgy the objective space, it might be
needed once in a while to sample new solutionsderdo be able to search the whole feasible
set. This can be done by creating new, randomhemgged solutions instead of duplicating

existing solutions. But it can be more effectiveaisystematic or probabilistic fashion, to use
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more than one neighbourhood function so that tltes@ect the whole feasible set (Hansen
1997).

Moreover, the neighbourhood function might lead¢éoerating many neighbours for each
solution. Therefore, it is more efficient to makevas based on a probabilistic or systematic
sampling of the neighbourhood, or to reduce thght®murhood size. This would be useful in
multi-objective optimisation problems because thegve an n-dimensional objective
boundary to discover and it is also time consunmtimgemain too long at each locality.
Choosing the appropriate neighbourhood functionhinigake it possible to locate the best

neighbour without explicitly having to generatetakk neighbours (Hansen 1997).

In Thakur & Dhiman (2011), it was concluded thabuasearch can easily handle the
complicating constraints that could be found in-td@ applications. However, this searching
technique might fail for two main reasons: an ifisignt understanding of the basic concepts
of the tabu search method besides a lack of uradetistg of the problem at hand. Selecting a
proper search space and an effective neighbourlstrategy requires significant problem
knowledge. Tabu search, like all meta-heuristichods, needs to achieve both depth and
breadth in its searching process; depth searcBually not a problem for tabu search, as it
generally finds quite good solutions early in tearshing process, whereas breadth search can
be a critical issue. Therefore, it is extremely artpnt to develop an effective diversification
scheme.

Other research studies and applications that @rddearch as a technique for optimising
problems with multi-criteria can be found in Brand& Mercer (1997), Grandinetti et al.
(2012), Cordeau & Maischberger (2012), and Escebat. (2013).

Tabu search was previously used in the field oplgrdrawing with a single criterion. An
approach was proposed in Laguna et al. (1997) tunmse edge crossings in multi-layer
hierarchical digraphs. The nodes of these diagrapbst lie on a set of equally spaced
horizontal or vertical lines (layers) and all thdges flow in the same direction, as shown in
Figure 2.12. Garey & Johnson (1983) proved that pinoblem is NP-hard even if the digraph
has two layers only. The proposed tabu search appresearches for optimal or near-optimal
orderings of a single layer in between its adjackyers whose orderings are fixed
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(intensification phase). The algorithm also divieesi the search by applying an importance
sampling procedure, based on the degree of each, ndtere layers are treated differently
according to their level of importance. Then atelng procedure is performed on a

randomly selected node in a certain layer (diveaion phase).

Two versions of the proposed algorithm were deplogech that the first version focuses
on the computational time when compared to methoalsed on simple ordering rules,
whereas the second version tries to find high-tpablutions within a reasonable computing
time. The only difference between the two versioves the termination criterion of the
algorithm. The experiments were conducted on as@00 randomly generated graphs and
the comparisons were made with effective technigo@swere previously used in the field of
edge crossings minimisation such as the barycewtnd the semi media methods with
switching. The experiments showed that the propotdal search approach is quite
competitive in terms of computational time and Igoaproduces graphs with better quality,

although the difference becomes smaller at graptishigher densities.

Laver 1 Layer 2 Lavyer 3 Layer 4

Figure 2.12 Hierarchical Diagraph (Laguna et al. 197)
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Many heuristic approaches (including tabu searatewdeveloped to solve the bipartite
drawing problem which is a special case of mulgetahierarchical graphs (Valls et al. 1996;
Marti 1998; Laguna & Marti 1999). In Mar& Laguna (2003), extensive computational
experiments were conducted to explore the behawbtire most relevant heuristic and meta-
heuristic approaches developed to solve the probdénbipartite drawing, such as the
Barycenter method (Sugiyama et al. 1981), the nmebdeuristic method (Eades & Wormald
1994), Tabu search method (Marti 1998), greedy oanised adaptive search procedure
(GRASP) with path relinking (Laguna & Marti 199@)nd others. It is a 2-layer graph where
nodes are partitioned into two disjoint subsetf dad right layers), and edges are connecting
nodes between the two layers. In that work, thedtiobns of the edges were omitted as they
have no effect on crossings. A bipartite graph dngvis specified with a uniqugcoordinate
for each node, as shown in Figure 2.13. The exmarisnused around 3000 randomly
generated graphs to compare between the methodsreBearch concluded that the tabu
search method is more appropriate to use in solthegbipartite drawing problem as the
density of graph increases with a reasonable catipoal time. On the other hand, the

GRASP with path relinking produced better resulith\sparse graphs.

Tabu search has shown good results for large iossaof many NP-hard problems in a
reasonable amount of time (Friden et al. 1989; Hé&rtDe Werra 1989). It has produced
comparably fast solutions in some graph theoryiegfpbns, such as graph partitioning (Lim
& Chee 1991; Rolland et al. 1996; Benlic & Hao 2Q)Igraph colouring (Hertz & De Werra
1989), and weighted maximal planar graphs (Osmd&®6)20at has also outperformed many
existing heuristics for solving the vehicle routipgpblem (Gendreau et al. 1994; Cordeau et
al. 1997; Escobar et al. 2014).
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(a) Crossings = 5 (b) Crossings =1

Figure 2.13 Bipartite sample drawing (Marti & Laguna 2003)

2.9 Path Relinking

Path relinking has been proposed as an approantetgrate intensification and diversification
strategies (Glover & Laguna 1997; Glover et al.®00his approach generates new solutions
by exploring paths that connect high-quality s@uos (elite solutions from theeference sét

by starting from one of these solutions, calledratmating solution and generating a path in
the neighbourhood space that leads toward othetisoes$, calledguiding solutionswhere
initiating and guiding solutions represent the starting and ending pahthe path. This is
accomplished by selecting moves that introducebates contained in the guiding solutions
(Laguna & Marti 1999). An illustration of a simppath is given in Figure 2.14. Unlike other
evolutionary approaches, such as genetic algorjtiwhere randomness is a key factor in the
creation of offspring from parent solutions, pagtinking utilises systematic, deterministic
rules for combining elite solutions. Attributes fmothe guiding solution are gradually

introduced into the intermediate solutions, so thate solutions contain a limited number of
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characteristics from the initial solution and mdrem the guiding solution while moving
along the path.

Path relinking is a fairly new approach and it bagn applied in several computational
problems with great success (Aiex et al. 2003; RéseX Ribeiro 2003; Ghamlouche et al.
2004; Oliveira et al. 2004; Souza et al. 2004; Aeeal. 2005).

The following three components are crucial in tlesign of the path relinking technique
(Ho & Gendreau 2006):

* Building the reference set,
» Choosing the initial and guiding solutions,

« Constructing a neighbourhood structure for movitang paths between initial and

guiding solutions.

-
s -~
initial . -

L - -

Figure 2.14 Path relinking: original path (solid line) and one possible relinked path (dotted line) ithe
solution space

Algorithm 2.2 shows a simple path relinking proceduhat demonstrates how these
components interact (Rahimi-Vahed et al. 2013).
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1. Generate a starting set of solutions.
2. Designate a subset of solutions to be includetiénr¢ference set.
while the cardinality of the reference list > 1
* Select two solutions for the reference set
¢ Identify the initial and guiding solutions
¢ Remove the initial solution for the reference set
¢ Move from the initial solution toward the guidinglstion, generating intermediate solutions

« Update the reference list

3. Verify stopping criterion: Stop or go to 1.

Algorithm 2.2 Simple path relinking algorithm (Rahimi-Vahed et al. 2013)

Note that using path relinking periodically in aaggh procedure is intended to speed up
the identification of good solutions. Combining wakearch with path relinking is motivated
by the desire to tunnel through blocked off areasted by the tabu solutions (Glover 1997).
The proposed method in Ho & Gendreau (2006) fowisglthe vehicle routing problem
produced computational results that show that tedarch with path relinking is able to
generate better solutions than pure tabu searcly gsinsiderably less computing time. Each
of the three components of path relinking usedégroposed method can be implemented in
different strategies as described in Ghamlouchealet (2004). We summarise these

components as follows:
i. Building the reference set

The quality of generated solutions is affected iy quality and diversity of the solutions
included in the reference set. The algorithm buildsreference seluring the tabu search
phase and is enriched during the path relinkinggph&hamlouche et al. (2004) proposed
several strategies for building the referencesgeh as:

a. It is built with the solutions that at some poinirihg tabu search become the best

overall solutions (i.e. linking the overall improg solutions).
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b.

It contains the best local minima encountered dufiregtébu search phase, because
usually local minimum solutions share some commisaracteristics with optimum

solutions.

It is built by selecting local minimum solutions thetve a better objective function
value than those already in the reference set.tifilme aspect is introduced into the
selection process since the better solutions awellysencountered when the search
has been proceeding for some time. This strateggiders less local minima obtained
at that stage and consequently good solutions aredf early during the searching

process.

This strategy ensures both the quality and thersiityeof the solutions when building
the reference set. Starting with a large set ofdgsolutionsS, the reference set is
partially filled with the best solutions found 8ito ensure the quality of the solutions.
Then, the reference set is extended with solutibas significantly differ from those

that already exist in the set.

Choosing the initial and guiding solutions

The quality of the new generated solutions during path relinking phase is highly

dependent upon the initial and the guiding solgiselected from the reference &et

Ghamlouche et al. (2004) suggested five criteria dmoosing the initial and guiding

solutions:

The guiding and initial solutions are defined as liestand worst solutions inR,

respectively.

The guiding solution is chosen to be thesstsolution inR, while the initial solution is

thesecond bestne.
The guiding and initial solutions are chogsandomlyin R.

The guiding solution is chosen as thestsolution inR, while the initial solution is

defined as the solution withaximum Hamming distané®m the guiding solution.
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e. The guiding and initial solutions are chosen astbst distansolutions inR.

iii. Constructing a neighbourhood structure for movinigng paths between initial and

guiding solutions

The aim of the path relinking phase is to progredgiintroduce the attributes of the
guiding solution into the solutions obtained by mmgvaway from the initial solution. In
the path relinking phase, the algorithm must enslia¢ a progress towards the guiding
solution is made. Similarities and differences he structure of the initial and guiding
solutions should be properly identified. Identipakts of the two solutions should remain
unchanged during the process. To clarify the irfgyme of this phase, we highlight the
algorithm proposed in Ho & Gendreau (2006) for Bajvthe vehicle routing problem.
Two neighbourhood methods were used. The firsthimigrhoodN;(X), is made up of all
the potential solutions that can be reached fxdsmg moving customers from their current
route to another while taking into account thedtrte of the guiding solution. The second
neighbourhoodN,(x) is defined similarly as the set of all potensalutions that can be
reached fronx by exchanging two customerandj between their respective routes while
taking into account the structure of the guidingon.

In Ho & Gendreau (2006), the path relinking proaeds triggered within tabu search for
a predefined number of times. In each call, palmkiag generates several paths with
different initial and guiding solutions from thefeeence set such that the initial and guiding
solutions are chosen according to one of the @itbescribed earlier. When the path is longer,
the chance of producing good solutions is bettdterAhe path relinking phase is finished,
tabu search continues with the solution it had feefpath relinking was triggered. A
calibration process was performed to adjust thquieacy of triggering the path relinking
procedure. This calibration process is importardabse if path relinking is performed too
frequently, the search will tend to focus on a $maition of the search space. However, if it
is performed very rarely, its impact will be nedhig. Thus, it was important to find a balance

between these two extremes.

A path relinking-based algorithm combined with a&egty randomised adaptive search
procedure (GRASP) has been proposed to target s&xermn diversity problem (Resende et
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al. 2010). It is an NP-hard problem, where subst&dements should be selected from a given
set such that the diversity among the selected exlesns maximised. The main purpose of
that work was to extensively introduce path reingkias a competitive search-based method
for solving combinatorial problems. A comparisonswzerformed with simulated annealing
and tabu search that were previously proposedrgettahe max-min diversity problem. The

results of the comparison were in favour of a var@ path relinking combined with GRASP.

The combination of tabu search and path relinkirag &lso used to tackle the job shop
scheduling problem (Peng et al. 2014). The experialgesults show that this combination
produces competitive results compared to statehef drt algorithms for the job shop
scheduling problem in the literature demonstratitsg effectiveness in terms of solution
quality and computational efficiency. Both techreguoperate interchangeably, such that path
relinking is used to generate solutions on the paim the initial solution to the guiding
solution, while the purpose of tabu search is tprowe the generated solution to a local

optimum.

The algorithm starts by generating a random pojmiadf a predefined size of feasible
solutions. Tabu search is used to optimise eadaltisolin the population to become a local
optimum. The optimisation of each solution stopewlhhe optimal solution is found or no
improvement on the best objective value is mader at given number of iterations. The
reference set is updated by selecting a solutiom(fthe initial improved population) that
gives the minimum value of the objective functidien, a pair of two solutions (initial and
guiding) is randomly selected from this populatidnpath relinking procedure is applied on
the selected solutions and returns the best salutidghe path from the initial solution to the
guiding solution. The returned solution is passedattabu search procedure with long
iterations that will be compared afterwards to sbhéutions in the reference set and update it
accordingly. The new generated solution is addetigaeference set and the worst solution is

removed. This process is repeated until a stopgieyion is met.

A study that shows the effect of using path rehgkiin the context of multi-criteria
optimisation problems was presented in Marti e(2015). A comparison between different

variants of GRASP with path relinking was made with best methods that were previously
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applied on two hard bi-objective combinatorial gesbs. The comparison considered three
different ways of implementation: firstly, eachterion is optimised independently; secondly,
each criterion is optimised sequentially by alténato guide the search; and thirdly, all
criteria are combined into a single weighted olpyecfunction. The study concluded that

some variants of path relinking were favoured campdo other heuristic methods.

Path relinking demonstrated efficient performanceemw being applied coupled with
neighbourhood search-based methods and populaasedbmethods (Ribeiro & Resende
2012). In addition to tabu search and GRASP, patmking was successfully used in
conjunction with different search-based methodshsas variable neighbourhood search,
genetic algorithms, and scatter search (Canutd.e2081; Festa et al. 2002; Resende &
Werneck 2004; Scaparra & Church 2005; Ribeiro &wiia 2009).

Path relinking has also been applied to specigiph drawing tasks. In Laguna & Marti
(1999), path relinking was coupled with a greedgdamised adaptive search procedure
(GRASP) for the problem of minimising straight-liseossings in a 2-layer graph (bipartite
graph) to search for improved solutions. Accordinghe results, the most influential factor
on the performance of the algorithm was the demsithe tested graphs. With reference to the
experiments which were performed in Ma& Laguna (2003) to compare between 14
different heuristics, as described in the previsetion, the combination of GRASP and path
relinking produced better results for relativelywlaensity graphs. The relinking process

implemented in this algorithm could be summarisefbdiows:

During the first three iterations of the GRASP, #e of elite solutions is formed. Starting
from the fourth iteration, each generated soluttooonsidered as an initiating solution and it
is subject to a relinking process by performing ewwon the path from the initial solution to a
randomly chosen elite solution. A move along th#hpa made by choosing a node from the
initial solution and placing it in the position agued by the same node in the guiding
solution. Afterwards, a sequence of position exgeanof nodes, that are one position away
from each other, is performed until no more improeat in the crossings minimisation is
found. Once this neighbourhood process is expldredrelinking continues from the solution

defined before the exchanges were performed. Tinekireg process stops when the initial
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solution matches the guiding solution. Note thiats iinefficient to apply the neighbourhood
exploration process at each step of relinking sitheetwo generated consecutive solutions
after the relinking step differ only in the positiof two nodes. Hence, a number of parameters

that control the process of exchanges mechanism wepduced.

2.10 Summary

Throughout this chapter we have covered the aregraggh drawing including graph layout
aesthetics and graph drawing techniques. Existisgarch in each of these fields has been
explored. We have discussed several search-bagmuidaes that were previously used in the
field of graph drawing. We have also described heaghbourhood search-based techniques
(tabu search and path relinking) that were not iptesly applied to lay out multi-criteria
general graphs with straight lines, and we haveénliglgted their effectiveness in many
applications that involve multi-criteria optimisai. In the next chapter, we describe the
features of our visualisation tool along with theemtions that can be performed in order to
test our graph drawing algorithms and performfa €xperiments conducted in this research.
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Chapter 3 A Visualisation Tool

In this chapter, we describe the visualisation tbat was used to perform all the experiments
discussed in this thesis. The software was impléadensing Java programming language
(version 1.7.0; Java HotSpot™ 64-Bit Server VM 2810 on Windows 7). It consists of two
main graphical frames: a frame that includes a&ldperations that can be performed such as
drawing graphs, loading and saving graphs, gemgraandom graphs, and running several
neighbourhood search-based graph drawing algorjtantsanother frame that allows the user
to control the value of the parameter of each netral the weight of each aesthetic measure.
We give a detailed description of each frame inftlewing two sections. Note that, the code
can be accessed at the Dryad Digital Repositotgstitdoi.org/10.5061/dryad.k082rv8.

3.1 Operations Frame

The visualisation tool allows the user to choosaenfia list of operations displayed in a drop-

down menu inside a frame as shown in Figure 3.&.liBh contains the following operations:

| £ My Graph Layout | = | =l ihj

|>

Hodes (N)

Move Nodes (M)

Edges (E}

[Clear (C)

Load Graph (L)

Save Graph (5)

Generate Graph (G)

1. Hill Climbing (without Grids} (1)
2. Tabu Search (2)

3. Simulated Annealing (3)
4. Path Relinking (4)

Run on Random Graphs (R}

Figure 3.1 A screen shot of the drop-down menu ofvailable operations in our visualisation tool
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* Add nodes — This option allows the user to draw nodes. Ther should place the
mouse’s cursor on the required position within ta@vas and then he clicks the
mouse. The node will be displayed as a small sqwédtea side-length of 12 pixels.
An automatic ID (starting from 1) will be also agsed to the drawn node (see Figure
3.2).

|2 My Graph Layout i . f i i l = &J

Nodes (N) B2

D

| 3
r
\

]

4] il [ v

Figure 3.2 Adding nodes to the canvas

* Add edges — This option allows the user to draw edges betwexles. The user clicks
the mouse over the two nodes that form the endtpaihthe edge to be drawn (see
Figure 3.3). Note that, our tool allows the userdtaw simple graphs only. Self-

sourcing edges and multiple edges are not allowed.
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|| My Graph Layout

[Euges )

Figure 3.3 Adding edges between the nodes shownHigure 3.2

Move nodes — This option allows the user to move nodes ofaglg displayed within

the canvas. The user clicks the mouse over the thadde wants to move and drags it
to a new position (the edge will stretch and shan&ordingly as shown in Figure 3.4).
Using this option, the user can change the laybat drawn graph. For example, the

user can change the initial layout of a given grépltest its effect on the drawing

algorithms.
L e ———

L Irld

{

4]

-

Figure 3.4 Moving nodes and stretching / shrinkingedges shown in Figure 3.3
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* Load and store graphs — These two options allow the user to load and sgraphs
from/to text files within a local directory. Thddis content begins with the number of
nodes in the graph followed by the coordinates aithenode (i.e. the first pair of
numbers represents the horizontal and verticaldinates of the node with ID 1; the
second pair of numbers represents the horizonthivartical coordinates of the node
with ID 2; and so forth). Then, the informationexfges comes after. Number of nodes
that are adjacent to node number 1 along with tfxsrare listed first, then the same
information is listed for node number 2, and sdhor

* Generate random graphs — This option allows the user to generate simpledom
connected graphs. The random graph generator edbas the Erde®enyi model
(Erdos & Rényi 1960; Daudin et al. 2008). It getesarandomly connected graphs.
The parameters to the generator are the numbepdésn(see Figure 3.5) and the
density of the graph. Once the user enters the auwofnodes, the tool will calculate
the minimum density (i.e. minimum number of edgeguired to keep the graph
connected which equals to number of nodes minu} ame will show it to the user
(see Figure 3.6). Note that, if the user enteralaevlarger than the maximum density,
the tool will consider the graph as a complete lgrége. there is an edge between
every pair of nodes). Random locations for the sagle generated based on the size
of the canvas where the graph is displayed. Thengénerator chooses random nodes
as the end points of the edges. All random valuesewenerated using the random
method in Java. Self-sourcing edges and multiplgegedetween the same pair of
nodes are not allowed. Finally, the graph gener&sts the connectivity of the
generated graph. Only connected graphs are accepteshmple of a randomly
generated graph with 4 nodes and 4 edges (i.eitgen.67) is shown in Figure 3.7.

Input [ﬁj

= Enter Number of Nodes

OK “ Cancel |

Figure 3.5 A frame prompting the user to enter numier of nodes required in the random graph layout
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Input mi‘

# | The graph density should be at least 0.2 to be connected
Enter Graph Density

OK Cancel

Figure 3.6 A frame prompting the user to enter theequired density (showing the minimum value that ca
be entered)

| = My Graph Layout

Generate Graph (G)

Figure 3.7 A randomly generated graph layout

In our implementation, once the random graph ipldiged on the canvas, the user has the
option to change the layout to another random lapyuclicking on the canvas (see Figure
3.8).

52



[E] My Graph Layout 0 — — —

[Generate Graph (G)

Figure 3.8 A different layout of the graph shown inFigure 3.7

Select a graph drawing algorithm — The user has the option to select a drawing
algorithm from a list of four neighbourhood seal&dsed graph drawing algorithms:
hill climbing, simulated annealing, tabu searchd gath relinking (coupled with tabu
search). The new layout is displayed on the caaftas applying the selected drawing
algorithm. The values of parameters of each drawiggrithm can be controlled by
the user using the other frame discussed in Se8tlhn

Run on multiple graphs — This option allows the user to run a drawingpathm on a
file which contains information of multiple grapaybuts. Then, it generates an output
file that includes information about the fithessueaof the drawn layout, the number
of evaluated solutions and the execution time éooads) of the drawing algorithm.
This operation was used in most the experimentudged throughout this thesis. This
option currently works for one drawing algorithm attime. In order to switch to
another drawing algorithm, it requires few linescofle to edit. We are planning to

offer the user an easier way of algorithm’s setecin the future.

3.2 Parameters and Aesthetic Measures Frame

In multi-criteria graph drawing, the weight of eatletric could change for each layout as it

depends on the metric in which the user preferfotois on. Therefore, we facilitate the

parameter tuning process for each method and teetise of weight for each aesthetic metric

by providing another frame that contains text feldhere these values can be controlled by
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the user (see Figure 3.9). The frame also showsalue of each individual aesthetic measure
after optimisation, in addition to the value of theighted sum of the fithess function.
Additional information, such as number of nodes aanchber of edges of the graph displayed
within the canvas, are also provided inside then&aNote that, the number of evaluated
solutions and the execution time (in seconds) efdtawing algorithm are displayed inside an
alert box once the algorithm finishes execution. Wiletry to add these two values within this

frame in the future.

(Bl - ==
Mumber of Nodes 0 |Number of Edges 0 |
Hode-Node Occlusion Weight 1 |Node-Node Threshold 50 |
Edge Length Weight 1 |Required Edge-Length G0 |
Edge Crossings Weight 1 |
Hode-Edge Occlusion Weight 0 |Node-Edge Threshold 100 |
Angular Resolution Weight 1 |Anguiar Resolution Threshold 25 |

Grid Size 33 |

I S Max lterations 40 |TS intensify iterations |5 |

S initial CutOff 4 |TS Duration 15 |
S Intensify CutOff 0.005 |
SA initial Temperature 075 | SA lterations per Temperature 15 |
SA Cooling Down 0.8 |SA Max lterations 45 |
PR Max Iterations 4 PR Reference Set 20 |
PR Length 15 PR Square Acceleration Period 7 |
PR Square Size 20 PR Square Acceleration Rate 0.002 |
Hode-Node Occlusion Measure 0.0 |
Edge Length Measure 0.0 |
Edge Crossings Measure 0.0 |
Hode-Edge Occlusion Measure 0.0 |
angular Resolution Measure 0.0 |
Fitness 0.0 |

Figure 3.9 A screen shot of the frame which allowthe user to control the value of the parameter ofach
method and the weight of each measure

3.3 Summary

In this chapter, we described the operations aaddhtures of our visualisation tool that we
used to perform all the experiments discussedimthiesis. In the next chapter, we introduce
our proposed tabu search-based technique and wend&ate how we apply it to draw graph
layouts. Then, we compare it to the most populaghimurhood search-based algorithms: hill

climbing and simulated annealing.
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Chapter 4 Neighbourhood Search-based Graph Drawing
including Our Proposed Tabu Search Algorithm

As discussed earlier in Chapter 2 (Section 2.5t@ye are several multi-criteria methods for
graph drawing that are based on explicit cost fonstthat combine several metrics of graph
layout quality. This approach has the advantagalotving explicit, tuneable combinations of
metrics to meet user preferences. However, suclhadstwork slowly, typically taking a

considerable time to lay out the graph. In thisptéga we want to show that we can improve
the performance of such neighbourhood search-bsygstidms by introducing the features of

tabu search. This is the first time tabu methode lieeen applied to general graph drawing.

The main goal in this chapter is to improve thecefhcy of neighbourhood search-based
graph drawing algorithms by speeding up the drawpngcess using tabu search without
sacrificing the layout quality. We are not lookifay the global optimum solution, but aim to
obtain a good solution quickly. Our contributiortaspropose a tabu search-based approach as
described in Section 4.5. But, in order to prowveefficiency of our method and its competence
in relation to other neighbourhood search methadssmparison was made with hill climbing
and simulated annealing. Therefore, we introduedrtiplementation and parameter tuning of
those two approaches first in this chapter usinglar algorithms applied in Stott et al. (2011)
for hill climbing and in Davidson & Harel (1996)feimulated annealing. In addition to the
fact that these two methods are the most popul@ghbeurhood search-based methods, we
chose these two methods because hill climbingmsidered as one of the fastest search-based
techniques to reach equilibriunvhereas simulated annealing allows more extengiaech for
the optimal solution and consequently usually poedubetter solutions compared to hill
climbing (Talbi & Muntean 1993)Moreover, our tabu search method is close in cdntmep
these methods as they share a large amount of lcoldet, the basic tabu search can be seen as
simply the combination of hill climbing with shatrm memories (Glover 1986). This means
that it is more likely to be a fair comparison, lwia low amount of bias in terms of

implementation efficiency.

In this chapter, we describe the different seaml$ed approaches which we applied in
order to draw general graphs with straight linesisTis achieved by implementing
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neighbourhood search-based methods which draw @egeaphs with multiple aesthetic
criteria that are used in a weighted sum fitnesgtfan to measure the quality of the graph
layout. The smaller the value of the fitness fumctithe better the quality of the graph layout.
Whilst there have been empirical studies of whay fba the most effective layout criteria
(Purchase 2002), we are not overly concerned iighparticular criteria or their weights.
Increasing the value of the weight of a metric docertain aesthetic means that we want to
show the importance of that quality measure agdimesbther aesthetics and expecting it to be
visualised in the generated layout, while the ofipas the case when the value of the weight is
decreased (Davidson & Harel 1996). In our experinthe values of the weights in the fitness
function have been fixed and are the same in gifagrhes. With reference to the time
complexity analysis performed in Davidson & HarEd96), increasing or decreasing the value
of a weight for a certain metric does not have ffacton the number of evaluated solutions

performed by the algorithm.

Our fitness function follows a standard approacahstarch-based graph drawing methods.
It is similar to the fitness function used in Dasodd & Harel (1996) with some changes in the
selected aesthetics. We used four metrics for nmieastihe quality of the graph. These metrics
represent the aesthetics of: distributing nodeslgymaking uniform edge lengths, minimising
edge crossings, and improving angular resolutiefefrto Chapter 2 for a detailed description
of each criterion). All these metrics contributetire graph quality fitness function that is

computed as follows:

fitness = w*m; + wo*m, + Ws*ms + Wy my

wherew; andm are the weight and the measure for critefioespectively. The problem in a
multi-criteria optimisation function is that thelua of a specific measure may dominate the
others. Therefore, we applied a normalisation g®de ensure that the value of each measure
is between 0 and 1. It is not possible to deterrmmé&ed weights that work well for all types

of graphs, and indeed weights can vary accordingpigication area and user preferences.

Hence, we assigned the value 1 to all the weiglintd thatvi=w,=w3=w,=1.

The rest of this chapter is organised as folld®ection 4.1 demonstrates the normalisation

process we applied on the criteria (metrics) useour fitness function; Section 4.2 describes
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the local search space used by the three algoriimdghe general procedure used for tuning
their parameters; Section 4.3 describes the pseade for the hill climbing graph drawing
algorithm along with the process of tuning its paeters; Section 4.4 describes the pseudo
code for the simulated annealing graph drawingréalgn along with the process of tuning its
parameters; Section 4.5 describes our proposed daearch-based graph drawing algorithm
along with the process of tuning its parameterd; $&ction 4.6 summarises the contents of this

chapter.

4.1 Normalisation of Metrics

Multi-criteria optimisation algorithms seek to firad single optimised solution based on the
weighted sum of all criteria. If all metrics gettte® or worse together, this conventional
approach can effectively find the optimal solutiblowever, if there are conflicts between the
metrics, then there is no single optimal solutibm.most cases, there are infinitely many
optimal solutions. An optimal solution in the muttiteria optimisation context is a solution

where there is no other feasible solution that oups the value of at least one criterion
without deteriorating any other criterion. Thistie notion of Pareto Optimality (Sunar &

Kahraman 2001; Kim & de Weck 2005).

The weighted sum formula allows the multi-criter@ptimisation problem to be
transformed into a single criterion optimisatiomdtion that is constructed as a sum of
objective functions (metricsjni multiplied by weighting coefficientsv; (Grodzevich &

Romanko 2006). The problem is formulated as foltows

k
min Z wim;(G)
i=1

such that G is a set of nodes and edges that form a graph, wherew; > 0,Vi =1, ... , k.

The problem in the multi-criteria optimisation fuion is that the value of a single
measure might largely dominate the others. Alsodifierent measures can have different
magnitudes, the normalisation of measures is reduir order to obtain a solution consistent
with the weights assigned by the decision-maker Wwa® insights into the problem and is

able to express relative importance of the measures
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In our graph layout problem, we have four differemetrics that contribute in a single
weighted sum optimisation function. Each measure dalifferent scale of values (i.e. the
range of values of each measure differs from onasore to another). Furthermore, the node-
node occlusion measure (as described in Chaptectto§ 2.4) might have a maximum value
of infinity (when two nodes have the same coor@disptTherefore, normalising the values to
a unified range (i.e. a range between 0 and Bqgasired.

We normalised the values of measures using thenmaxi-method (Kotsiantis et al. 2006;
Shalabi et al. 2006). This method assumes thanthenum (,,,;,) and the maximumf,,,)

values of a measuren] are known. Then it uses the following function fmrmalisation:

m — Fmin
Fmax - Fmin
This formula was directly applied on the measuredde crossings since the minimum

and maximum possible values for edge crossingdeaasily calculated as follows:

Fmin = 0’

Fpax =E* (E-1)/ 2, wherd is the number of edges.

However, the normalisation process was slightlfedént with the measures of node-node
occlusion, edge lengths, and angular resolutia@salculation of maximum value of these
measures is not straight forward and in some césesuld reach infinity. Therefore, we

performed the following process to normalise thosasures:

i. As the graph drawing algorithm goes through sevésahtions searching for
candidate solutions, in the first iteration, we gane the value of each measure

and we consider that solution as an initial solutiector.

ii. In all the subsequent iterations, for each measwe, compute the current
maximum and minimum values of all the generatediesl(tracking a history of
values) for each measure in order to use in theutzlon of a normalised value
between 0 and 1. For example, the normalised vaflueeasurem at iterationi
(m),
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m; — Mlnl
Max; — Min ;
whereMin; andMax; are the minimum and the maximum values of the nreasu

NormValue; =

thei iteration.

lii.  This process is performed at each iteration urglation is found.

This is considered as an estimation of the normdliglue for the measure. Calculating
the normalised values using this method will ndeetf the performance of our drawing
algorithm because we just compare the newly gesdrahlues with the current maximum

(minimum) and we update the value accordingly.

After applying all the above calculations, the wahf each measure lies between 0 and 1
and none of the measures dominates the others, Tiuyvalue of our fitness function is
always a small non-negative value such that theirmam value is 4 and the minimum value
is 0 since our fitness function consists of fouraswges. This normalisation process is also
used in the field of neural networks to avoid neusaturation where @euron predominantly
outputs values close to the asymptotic ends obthended activation functio@ayalakshmi
& Santhakumaran 2011).

Our graph drawing algorithms are applied to lay gaeheral graphs that might have
different properties. Therefore, assigning weigtdsthe measures in the weighted sum
formula would be an interactive process with decisnakers (users) who have background
in graph layout. We cannot determine unified wesghat work properly for any graph. Thus,
the weights should be assigned by decision-makargrding to their preferences of which
measure they want to test. In our experiments,ssega the value 1 to all weights in order to

avoid the domination of a measure over another.

4.2 Common Procedures between Graph Drawing Algorithms

In this section, we describe the basic local seproeedure used in the three neighbourhood
search-based graph drawing algorithms discussédisrchapter. We also provide a detailed
description of the parameter tuning process thaapydied to tune the value of each parameter

in each algorithm.
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4.2.1 Local Search Space

In all the algorithms described in this work, wee us systematic exploration of the search
space. For each node, we search the points (caedidations) around a square centred on
the node at a given distance, as shown in Figute Eight points around the square are
checked (up, down, left, right, and the four coshelWe compute the fithess value at each
candidate solution, and we select the candidatetisol that gives the lowest fitness value
(current Fi t ness). In the case that there are multiple candidatetisos that share the
lowest fitness value, we select the first encowtterandidate solution starting from the right
point around the square and move along the pofritsecsquare in a clockwise direction. This
is how the fitness tie-breaks in all the methodewassed in this work.

17
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Figure 4.1 The points around the square represenhe candidate solutions at each node

Note that, using a geometric shape for definingearch space in the field of graph
drawing was used earlier in Davidson & Harel (1926)d Stott et al. (2011) where a circle
and a rectangle had been respectively used. Howewee evaluating a multi-criteria fitness
value is a lengthy process, we restrict the movésneneight points only to avoid the long
execution time for re-evaluating the value of titeess function with a large number of
evaluated solutions. We use the same neighbourbeaixthing strategy with all the methods
included in this work in order to make a fair compan. This searching strategy can be easily
adjusted with our implementation by increasingrhenber of repetitions from eight points to

any larger number, but the execution time woulgigaificantly longer.

4.2.2 Parameter Tuning Procedure

Each method has a different number of parametatsafifiect the performance of the method

and the quality of the layouts generated by thesthods. The parameters calibration process is
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a key step in the development of any algorithm.eBavexperiments were conducted to tune
the parameters of the three methods. The expesm&mw the effect of increasing and

decreasing the values of the parameters on theodtistherformance and the layout’s quality.

Parameter tuning is a common practice in searsbébanethods. Typically, one parameter
is tuned at a time that may cause some suboptinwites, since parameters often interact in a
complex way. However, the simultaneous tuning ofenparameters leads to an enormous
amount of experiments. There are some technicallireks to parameter tuning based on

experimentation that can be summarised as foll@se( et al. 1999):

» Parameters are not independent, but trying aledifit combinations systematically is

practically impossible.

* The process of parameter tuning is time consumewgn if the parameters are

optimised one by one, regardless to their intevasti

» For a given problem, the selected parameter vatesot necessarily optimal, even if

the effort made for setting them was significant.

However, many researchers (Davidson & Harel 199&eRe-Suérez et al. 1999; Pacheco
& Marti 2006; Gendreau & Potvin 2014) used thedwling process for tuning parameters:

i. Perform exploratory tests on a wide range of \alioe each parameter in order to

select a robust set of initial values.

ii. Perform a systematic incremental procedure foringsthe values of each single
parameter at a time while fixing the values of test of the parameters at what

appears to be reasonable.

In computational experiments, it is recommendeditide the datasets into two subsets;
one that is used in the algorithm design and thentuof the parameters, whereas the other
subset is used in the final experimentation aftex parameters are calibrated. This is
necessary for avoiding overfitting, i.e. the tummdameters might be good for the dataset at

hand, but they produce poor results in general different datasets (Gendreau & Potvin
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2014). Overfitting can be beneficial if we are myito find the best set of values to parameters
for a specific type of graphs with certain propsstibut it causes a problem when we are

looking for more general results (Hawkins 2004).

In the next sections, we describe the basic neigtitood search-based graph drawing
algorithms for hill climbing and simulated anneglirfollowed by our tabu search-based
approach for graph layout. For each algorithm, wevipde a detailed description of the

parameters that the algorithm requires along wighresults of the parameter tuning process.

4.3 Hill Climbing

Hill climbing has been applied as a multi-critesi@arch-based method in the field of graph
drawing in Rosete-Suarez et al. (1999), and Stbtal.e(2011). Algorithm 4.1 shows an

overview of the process for a straightforward, genlill climbing method for graph layout.

4.3.1 Algorithm

The algorithm operates in the following mannerrstfiwe compute the fitness value of the
initial layout ( ayout Fi t ness). Then a local search procedure is implementedessribed

in the previous section. The square size startsh van initial predefined value,
(initial Squar eSi ze). In order to intensify the searching process, sheare size is
reduced when none of the candidate solutions atuhrent square size makes an improvement
to the current solutionSmal | er Squar eSi ze() is a function that reduces the current
square sizes(quar eSi ze) by a predefined reduction ratsqguar eReduct i on) using the

following formula:

squar eSi ze = squareSi ze / squar eReducti on

The whole process of searching is repeated asdsitige square size is of a positive value.
See Algorithm 4.1.
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Given:
Connected Grap&( V, E) : Vis a set of nodes andE(V V) is a set of edges.
initial SquareSi ze: predefined size of a square where candidate sokitice located on its border.
squar eReduct i on: predefined value which represents the rate of tagtuéor the size of the square.
Algorithm :
:allOfsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)}
: squareSi ze = initial SquareSi ze

| ayout = Random zelLayout(Q /* |ayout maps each node in Gto an (x,y) position */
: while squareSize > 0 do

1
2
3
4
5: layoutFitness = Fitness(layout)
6: for vin Vdo

7 currentPos = layout[v] /* position currently associated with node v */
8 currentFitness = Fitness(layout)

9

for scaledOfset in {(squareSize*x, squareSize*y) | (x,y) in allOfsets}

10: candi datePos = currentPos + scaledOffset /* vector addition */
11: i f (Fitness(candi datePos) < currentFitness)

12: I ayout [v] = candi dat ePos

13: currentFitness = Fitness(layout)

14: end if

15: end for

16: end for

17: if (currentFitness >= layoutFitness) /* in case of no inmproverment in |layout fitness*/
18: squareSize = Snall er Squar eSi ze(squar eSi ze, squar eReducti on)

19: end if

20: end while

Algorithm 4.1 Hill climbing graph drawing algorithm

4.3.2 Parameter Tuning

The hill climbing algorithm is affected by two paraters: the initial value of the square size
used to determine the neighbourhood solutionisg]SquareSizeand the value used to reduce
the size of the squarsquareReduction

In order to tune the parameters of this algorithmd the other algorithms in this research,
several experiments were conducted to calibratpan@meters of each method. We performed
exploratory tests on a wide range of values fohgemrameter in order to select a robust set of
initial values. Then we ran a systematic incremenmtacedure for each single parameter at a
time while fixing the values of the other parametérhis is similar to the tests conducted in
Davidson & Harel (1996), Rosete-Suarez et al. (J998checo & Marti (2006), and Gendreau
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& Potvin (2014). Since ErdeRenyi graphs with the same parameters are knowossess
very similar characteristics (Bollobas 1998; Ti#o & Crispin 2012), we generated 100
random connected graphs based on ERlasyi model that were divided into five sets such
that the graphs in each set had a different numlbeodes and edges compared to the graphs in
the other sets. Hence, each set consisted of P@asss with the same number of nodes and
edges but with different initial layouts. The chdeaistics of the five sets are described in
Table 4.1. Since all our experiments are appliedundirected simple graphs, we use the
following formula for computing the density of aagh (Coleman & Moré 1983):

2|E]

Density = ——————
Y= iavi—n

Table 4.1 The characteristics of graph datasets udén parameter tuning for the hill climbing algorit hm

Graph Set | Nodes| Edges Density Label
1 50 153 0.125 N50E153
2 100 544 0.110 N100E544
3 150 1173 0.105 N150E1173
4 200 1890 0.095 N200E1890
5 250 2645 0.085 N250E2645

The parameters’ tuning process has passed thraumphases. In the first phase we try to
find a proper set of values of parameters thatggitie smallest fitness (best quality), whereas
in the second phase we try to find a set of vatbas gives the smallest number of evaluated

solutions.
i. Phase |

In phase I, we tested the hill climbing drawingalthm on the 100 test cases for four
different values ofinitialSquareSize 64, 128, 256, 512, and four different values of
squareReductiar?, 4, 6, 8. We tested all combinations of them@es in an attempt to obtain
the parameters’ values that give the best graploulayquality among all possible
combinations. We started the process by fixing ¥a&ie of squareReductiorto 2 and
changing the values afitialSquareSizeaccording to the list of values mentioned above. W
applied the same process for all the valuesqofareReductianFigure 4.2, Figure 4.3, Figure
4.4, and Figure 4.5 show the values of the fitfesstion generated by the hill climbing
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drawing algorithm when we use all combinationshef parameters’ values listed above. The
figures show that the value of the fitness functidecreases when the value of
initialSquareSizeincreases. In this phase of testing, we looked tfe combination of

parameters’ values that give the smallest fithedsev (best quality) compared to all other
combinations regardless of the number of evalustéations performed by the algorithm. The

best values we got in this phase were 512nitinlSquareSizeand 2 forsquareReductian
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Figure 4.2 Hill Climbing - Fitness value when squagReduction = 2 (phase )
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Figure 4.3 Hill Climbing - Fitness value when squagReduction = 4 (phase )
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Figure 4.4 Hill Climbing - Fitness value when squagReduction = 6 (phase I)
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Figure 4.5 Hill Climbing - Fitness value when squagReduction = 8 (phase I)

ii. Phase ll

In phase Il of parameter tuning, we focus on thdopmance of the algorithm (i.e. number of

evaluated solutions). The target is speeding uptbeess of drawing a good graph layout but
not necessarily the best layout. To do so, we talew that a good-enough graph layout is a
layout in which its fitness value is slightly greathan the best fitness value produced in the

experiments of phase I. Therefore, we took theeshf the fithess function produced by the
66



selected parameters’ values in phase | and wedsecethem by 12.5%. Then we ran the hill
climbing drawing algorithm until it reached equiihéss values to the target fithess values or
no further improvement in the fitness value coutdrbade. Afterwards, we picked the most
appropriate parameters’ values that gave a goooutawith a small number of evaluated

solutions.

In this experiment, we tested once more the follgwalues forinitialSquareSize 64,
128, 256, 512 and the values 2, 4, 6, 8siguareReductionWe followed the same process
performed in phasely fixing the value osquareReductioto 2 and changing the values of
initialSquareSizeaccording to the list of values given above. Thenrepeat this for all the
values ofsquareReductianThe tables from Table 4.2 to Table 4.5 and therés from Figure
4.6 to Figure 4.9 show the fitness function valaled number of evaluated solutions generated

by the hill climbing algorithm in phase II.

According to these tables and figures, we recognilsat the values of the parameters that
gave small fitness values (good quality) with a kmamber of evaluated solutions were: 512
for initialSquareSizeand 4 forsquareReductionUsing these two values for the parameters
made the hill climbing algorithm produce close 8 values to the target fitness values with
a limited number of evaluated solutions comparethéoother parameters’ values. We could
have used the value 2 fequareReductiosince it produced graph layouts with fitness value
that were slightly better than the graph layout©odpced by the algorithm when
squareReductiorequals to the value 4. However, the latter gendratdower number of
evaluated solutions compared to the former valad, sance there is only a slight difference
between the values of the fitness function producgidg these two values, we selected the

value 4 forsquareReduction.
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Table 4.2 Hill Climbing - Fitness value when squar@eduction = 2 (phase II)

Fithess
initialSquareSize | N50E153| N100E544 N150E1173 N20@E9D | N250E2645
64 0.591 0.821 0.996 1.168 1.336
128 0.487 0.766 0.991 1.127 1.290
256 0.474 0.764 0.981 1.125 1.291
512 0.453 0.760 0.985 1.123 1.288
Target 0.408 0.681 0.883 1.006 1.152
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Figure 4.6 Hill Climbing -Number of evaluated solutons when squareReduction = 2 (phase II)

Table 4.3 Hill Climbing - Fitness value when squar@eduction = 4 (phase II)

Fitness
initialSquareSize | N50E153| N100E544 N150E1173 N20@ERD | N250E2645
64 0.599 0.855 1.019 1.187 1.348
128 0.505 0.784 1.017 1.145 1.288
256 0.487 0.812 1.013 1.129 1.299
512 0.500 0.800 0.996 1.120 1.297
Target \ 0.408 0.681 0.883 1.006 1.152
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Figure 4.7 Hill Climbing - Number of evaluated soltions when squareReduction = 4 (phase II)

Table 4.4 Hill Climbing - Fitness value when squar@eduction = 6 (phase II)

Fitness
initialSquareSize | N50E153| N100E544 N150E1173 N20@E9D | N250E2645
64 0.612 0.860 1.021 1.194 1.357
128 0.518 0.792 1.033 1.175 1.314
256 0.506 0.818 1.017 1.126 1.285
512 0.509 0.821 1.050 1.124 1.317
Target 0.408 0.681 0.88: 1.00¢ 1.152
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Figure 4.8 Hill Climbing - Number of evaluated soltions when squareReduction = 6 (phase II)
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Table 4.5 Hill Climbing - Fitness value when squar@eduction = 8 (phase II)

Fithess
initialSquareSize | N50E153| N100E544 N150E1173 N20@E9D | N250E2645
64 0.615 0.861 1.022 1.197 1.358
128 0.521 0.792 1.038 1.174 1.314
256 0.509 0.881 1.039 1.128 1.307
512 0.571 0.831 1.022 1.134 1.303
Target 0.408 0.681 0.883 1.006 1.152
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Figure 4.9 Hill Climbing - Number of evaluated soltions when squareReduction = 8 (phase II)

4.4 Simulated Annealing

Simulated annealing was first used for the grapbuaproblem in Davidson & Harel (1996). It
has been used to draw general undirected graphsstrétight edges taking into account several
drawing aesthetics. An overview of a generic im@atation for simulated annealing used in
drawing graph layouts is shown in Algorithm 4.2.

4.4.1 Algorithm

The algorithm starts by choosing an initial graphyout and an initial temperature
(initial Tenp). Then it repeats the following steps for fixednrher of iterations

(maxl terations): a new candidate solution is chosen from the himgrhood of the
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current solution using the same neighbourhood isoligelection process described in section
4.2.1 but the selection is performed at random ifai@ving only one node in the current layout
to a new location on the points of the surroundiggare to get a new layout). The fitness value
of the new candidate solution is computed and coetpéo the fitness value of the current
solution. The candidate solution becomes the newnectsolution if the fitness value of the
candidate solution is less than the fitness valtighe current solution. Also, there is a
probability of selecting the candidate solutiontlas new current solution even if its fithess
value is larger than the fitness value of the aursolution. This happens if the difference

between the fitness values satisfies the folloveimigdition:

e—(candidateFitnesscurrentFitnes)s/t < random[O,l)

wheret is the current temperature of the system.

As the general simulated annealing algorithm thstaa series of moves is attempted at
each temperature (i.e. the annealing process lsagwshing for candidate solutions using the
same temperature for a certain number of iteratioiiserefore, we have to decide when to
change the temperature and how to changetier Per Tenp is the predefined value that
represents the number of iterations needed to tsefoc candidate solutions at each
temperature.

The cooling down schedule is one of the most atyzarts of the annealing algorithm. As
we start with an initial temperaturer(i ti al Tenp), the temperature should be decreased
after a predefined number of iterationst €r Per Tenp). We follow most researchers
(Davidson & Harel 1996) in applying the followingle as referenced in Algorithm 4% the
Cool i ngDown() function:

tnewz t0|d * COOl D)m

wheret represents the temperature ar@bl Down is a predefined value that represents the
temperature reduction rate. Slow cooling may imprtwe results but at a cost of increasing
running time. In addition to cooling down the temgiare, the size of the square, in which the
candidate solutions of the current solution lie, odd also be reduced.

Smal | er Squar eSi ze() is the function we used to reduce the size ofstipgare as in hill
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climbing. However, our experiments showed thatavel reduction rate would give better

graph layouts. According to Davidson & Harel (1996¢ used the following formula:

squareSi ze = squareSi ze — (initial SquareSi ze / squar eReducti on)

Given:
Connected Grap@( V, E) : Vis a set of nodes andE(VxV) is a set of edges.
i nitial SquareSi ze: predefined size of a square where candidate sokitice located on its border.
squar eReduct i on: predefined value which represents the rate of rastuéor the size of the square.
max| t er ati ons: predefined value for the number of iterations faining the drawer.
i ter Per Tenp: predefined value for the required number of itersdiat each temperature.
initial Tenp: initial temperature used in the annealing process.
cool Down: predefined value for the temperature cooling doata.r
Algorithm :
allOfsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (0, 1)}
squareSi ze = initial SquareSi ze

| ayout = Random zeLayout(Q /* |ayout naps each node in Gto an (x,y) position */
t = initial Tenp

while iteration < maxlterations do
for i:=1to iterPerTenp do /* nunber of iterations at each tenperature */

1

2

3

4

5: iteration = 0
6

7

8 for vin Vdo
9

currentPos = layout[v] /* position currently associated with node v */
10: current Fitness = Fitness(layout)
11: generate random scal edO fset in {(squareSi ze*x, squareSi ze*y) | (X,y) in allOfsets}
12: candi datePos = currentPos + scal edOf f set /* vector addition */
13: if (Fitness(candi datePos) < currentFitness)
14: | ayout [v] = candi dat ePos
15: currentFitness = Fitness(layout)
16: el se
17: costDi ff = Fitness(candi datePos) - currentFitness
18: if (ecstBff/t < randonfo0, 1))
19: layout [v] = candi dat ePos
20: currentFitness = Fitness(layout)
21: end if
22: end if
23: end for
24: end for

25: t = Cool i ngDbown(t, cool Down)

26: squareSize = Snal | er Squar eSi ze(squar eSi ze, squar eReducti on)
27: iteration = iteration + 1

28:end while

Algorithm 4.2 Simulated annealing graph drawing algrithm
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4.4.2 Parameter Tuning

The performance of the simulated annealing drawahgprithm is influenced by four
parameters: the number of iterations for runnirggalgorithm (haxiterationy, the number of
iterations at each temperaturigeiPerTemp, the initial temperature used in the annealing

processifitialTemp), and the temperature cooling down factmalDowr).

Simulated annealing is characterised as a slovelsdrmsed method. It is also a stochastic
method unlike hill climbing and tabu search. Thogrder to speed up the testing process, the
process for generating the graphs used for testasya bit different than the one used in the
previous method. We generated 10 random connectgzhg; based on Erdéenyi mode)
that were divided into five sets (as described jprgsly in Table 4.1) such that each set had
two graphs with different initial layouts. Then,feach graph in each data set, we run the

simulated annealing drawing algorithm for 10 rund we find the median of the results.

The parameters of simulated annealing are depenkhenéasing or decreasing the value
of one parameter affects the values of the othearpaters. Therefore, we followed an
incremental testing process divided into three pbagescribed as follows: in phase I, we
started with one parameter, tested it thoroughi wifferent values, and selected the value
which produced the best layout compared to therothleies. We fixed the value of the first
parameter and we moved to testing another parannetiee same manner, and so forth. In this
phase, we were searching for the most approprialiges of the parameters that make the
simulated annealing algorithm produce good layagardless of the number of evaluated
solutions performed by the drawer. Simulated anngaused the same neighbourhood
searching technique that was used in hill climbiimgthe previous phase, we used an initial
square size of 256. However, after performing apete testing on the parameters of hill
climbing, an initial square size of 512 has prodlgeaph layouts with better quality and a
fewer number of evaluated solutions performed leydlyorithm. Therefore, in phase II, we
repeated the same testing process that we perfommgldase | using the best initial square
size parameter, as described in the parametergymotess of hill climbing. In phase Ill, we
mainly focus on choosing the parameters which spgethe algorithm’s performance (i.e.
number of evaluated solutions).
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i. Phasel

We started the testing process with the first patanmaxliterationsby testing it with the
following values: 30, 40, 50, 60, 70, whereas tbmaining parameters were set to some
arbitrary values such thaerPerTemp = 20initialTemp = 0.5 andcoolDown = 0.8.These
arbitrary values were very close to the values usddavidson & Harel (1996). Figure 4.10
shows the effect ofmaxlterationson the fitness value. The simulated annealing drgwi
algorithm produced graph layouts with good fithneaties when the value ohaxlterations
was 40 and 50. There is no significant differenetveen the two values. However, we chose

the value 40 because it generates a lower numbsratfiated solutions (i.e. faster).
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Figure 4.10 Simulated Annealing - Fitness values thi the maxiterations parameter (phase )

After setting the value ofmaxlterationsto 40, we moved on to test the value of
iterPerTempwith the values: 10, 15, 20, 25, 30, 35, 40. Figudel shows that increasing the
value of this parameter produces graphs with bityeuts. As shown in the figure, the fitness
values were close starting from the value 25 onsafithus, we chose the value 25 for

iterPerTemp
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Figure 4.11 Simulated Annealing - Fitness values thithe iterPerTemp parameter (phase I)

As opposed taterPerTempjncreasing the value of the temperature paranieiteal Temp
produces graph layouts with poor quality. We tedfeel initialTemp parameter with the
values: 0.5, 2.5, 4.5, 6.5. According to Figure2anihich shows the effect of the temperature
on the quality of the graph layout, we chose thee/@.5 forinitialTempsince it is the best
value that produced graphs with good layouts costgpao all the other values used in the

testing process.
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Figure 4.12 Simulated Annealing - Fitness values thithe initialTemp parameter (phase I)

The cooling down parameter was tested with theeslQ.5, 0.6, 0.7, 0.8, 0.9. Figure 4.13
shows that there was no significant differencénmfitness values wharoolDownwas tested
with the first four values. However, the value @Ave a relatively poor graph layout
compared to the other values. We chose the valliesiice it produced layouts of better

fitness values when applied on large graphs.
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Figure 4.13 Simulated Annealing - Fitness values thi the coolDown parameter (phase )
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ii. Phase ll

Similar to phase |, we started the testing proeé@#s the maxlterationsparameter by testing
the values: 30, 35, 40, 45, 50. Figure 4.14 shdwas the fitness values of the graph layouts
became stable after 40 iterations foaxlterations Therefore, we selected the first tested

value after 40 which was the value 45, to becoreevéiiue of this parameter.
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Figure 4.14 Simulated Annealing - Fitness values thi the maxliterations parameter (phase II)

In the previous phase, we recognised that the highe value of theterPerTemp
parameter, the better the quality of the produegdut. In this phase, we tested this parameter
with the values: 10, 15, 20, 25, 30. The fitnedsies as shown in Figure 4.15, were at their
best when the value d@erPerTempwas either 25 or 30. The value 25 has been chsisea it
produced very close fitness values to those gesebrathen the value 30 was used.
Furthermore, using the value 25 would make the rdlgon generate a lower number of
evaluated solutions compared to the number of isoisithat would have been generated if the

value 30 was used.
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Figure 4.15 Simulated Annealing - Fitness values thithe iterPerTemp parameter (phase II)

In phase I, we realised that increasing the vafubetemperature parameter would result
in producing layouts with poor quality. In this gleawe tested thaitialTempparameter with
the values: 0.25, 0.5, 0.75, 1.0, 1.25. Unlike phasncreasing the value of this parameter in
phase Il, has produced graph layouts with bettatitfjucompared to the values under test.
Therefore, we can conclude that the value of thimmeter should be below 2 (as shown in
phase | testing) and above 1 (as shown in Figur&)4Although there is no major difference
between the fitness values when the values 1.0 1aP8 were used for thaitialTemp
parameter, we selected the value 1.25 as it pradskghtly better solutions compared to

those generated when the value 1.0 was used.
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Figure 4.16 Simulated Annealing - Fitness values thithe initialTemp parameter (phase I1)

The coolDownparameter has been tested with the following valQeg 0.65, 0.7, 0.75,
0.8. In phase I, using the value 0.9 for this pat@mmade the drawer produce layouts of low
quality. That is why we selected a list of testuadues that are below 0.9. According to Figure
4.17, the fitness values were relatively closewaitth an advantage of the fithess values (i.e.
layouts) produced by the algorithm when the valueoolDownwas 0.8. Therefore, we chose

the value 0.8 for theoolDownparameter.
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Figure 4.17 Simulated Annealing - Fitness values thithe coolDown parameter (phase Il)
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iii. Phase Il

Similar to phase Il in Section 4.3.2, we took awithat a good-enough graph layout is a
layout in which its fitness value is slightly greathan the best fitness value produced in the
experiments of the previous phase. We used thesatithe fitness function produced by the
selected values of the parameters in phase Il antheveased them by 12.5%. Then we ran
the simulated annealing drawing algorithm untiteéached equal fithess values to the target
fitness values or no further improvement in thadgs value was made. Finally, we selected
the most appropriate value for each parametergaa¢ a good-enough layout with a small

number of evaluated solutions.

The main objective of this phase is speeding up peédormance. Themaxliterations
parameter has a great effect on the number of ateisolutions. Since 45 was the best value
for this parameter in phase Il, we selected vaheew 45 to test whether the algorithm can
reduce the number of evaluated solutions and ddnpsbduce graphs with good-enough
layouts. In this phase, we testethxIterationswith the following values: 25, 30, 35, 40, 45.
According to Table 4.6, the values 40 and 45 whe=dnly values that made the drawing
algorithm produce graph layouts with fithess valtiest met the target fithess value. We
selected the value 45 over the value 40, as Figur@ shows that the number of evaluated
solutions generated by the algorithm using the &rwalue was lower than the number of

evaluated solutions generated using the latterevaduthe graph size increases.

Table 4.6 Simulated Annealing - Fitness values witthe maxliterations parameter (phase IIl)

Fitness
maxlterations N50E153| N10OE544 N150E1173 N200E1890N250E2645
25 0.684 1.220 1.508 1.708 1.865
30 0.391 0.870 1.185 1.377 1.551
35 0.288 0.619 0.881 1.069 1.201
40 0.288 0.599 0.826 1.013 1.125
45 0.288 0.600 0.828 1.013 1.121
Target 0.289 0.601 0.829 1.015 1.124
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Figure 4.18 Simulated Annealing — Number of evaluad solutions with the maxiterations parameter
(phase llI)

In phase I, we ended up selecting the value 2%HeiterPerTempparameter. Therefore,

in phase lll, we selected values which are lesa B&to test the possibility of using these

(except 10) had produced graph layouts with fitnedees that met the target fitness values.

solutions compared to the values 20 and 25, asrsiowigure 4.19.

values for producing graphs with good layouts aridvanumber of evaluated solutions. We
tested this parameter with the values: 10, 15,2%),Table 4.7 shows that all the values

We chose the value 15 faterPerTempsince it generated a lower number of evaluated

Table 4.7 Simulated Annealing - Fitness values witthe iterPerTemp parameter (phase Ill)

Fitness
iterPerTemp | N50E153 | N100E544| N150E1173 N200E1890 99E2645
10 0.300 0.600 0.828 1.014 1.132
15 0.290 0.600 0.827 1.014 1.123
20 0.289 0.600 0.828 1.013 1.122
25 0.288 0.600 0.828 1.013 1.121
Target 0.289 0.601 0.829 1.015 1.124
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Figure 4.19 Simulated Annealing — Number of evaluat solutions with the iterPerTemp parameter (phase

The temperature parameter was tested with the sla@5, 0.75, 1.25, 1.75, 2.25. In

Table 4.8, we can see that using any of these sakoeild give graph layouts with fitness

values that meet the target fitness values. Owtiwer hand, Figure 4.20 shows that there was

no clear behaviour for the number of evaluatedtswia before the value 0.75. But starting

from this value onwards, the figure shows thatrthmber of evaluated solutions increased as

a function of the graph size. Thus, we selected/éihee 0.75 for thanitialTempparameter.

Table 4.8 Simulated Annealing - Fitness values witthe initialTemp parameter (phase I11)

Fitness
initialTemp | N50E153 | N100E544| N150E1173 N200E1890 BHOE2645
0.25 0.314 0.601 0.828 1.015 1.113
0.75 0.299 0.601 0.828 1.014 1.117
1.25 0.290 0.600 0.827 1.014 1.123
1.75 0.290 0.600 0.827 1.013 1.122
2.25 0.288 0.600 0.827 1.012 1.122
Target 0.289 0.601 0.829 1.015 1.124
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Figure 4.20 Simulated Annealing — Number of evaluad solutions with the initialTemp parameter (phase

The behaviour of theoolDownparameter was not very clear in this phase, buag still

possible to take a decision for the most appropwalue for this parameter. Table 4.9 shows
that all the values which we tested tmoldown 0.65, 0.7, 0.75, 0.8, 0.85, would give graph
layouts with fitness values that meet the targeefis values (excluding th& get of graphs).
Figure 4.21 does not illustrate a clear behaviduhe effect of this parameter on the number
of evaluated solutions. However, using the valu& for coolDownhad generated a lower

number of evaluated solutions (except for tffesét of graphs) compared to all the other

values under test. Therefore, we chose the vaigo0this parameter.

Table 4.9 Simulated Annealing - Fitness values witthe coolDown parameter (phase 1l1)

Fitness
coolDown | N50E153| N100E544 N150E1173 N200E1890 N2B6HL
0.65 0.306 0.601 0.828 1.015 1.106
0.7 0.302 0.600 0.828 1.012 1.119
0.75 0.301 0.600 0.828 1.014 1.125
0.8 0.299 0.601 0.828 1.014 1.117
0.85 0.293 0.622 0.889 1.119 1.278
Target 0.289 0.601 0.829 1.015 1.124
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Figure 4.21 Simulated Annealing — Number of evaluad solutions with the coolDown parameter (phase

1)
4.5 Tabu Search

Tabu search is a neighbourhood search-based appttwaticuses a memory structure while it
carefully explores the neighbourhood of each smfusis the search progresses to avoid getting
trapped in local optima. It proceeds on the assiamghat there is no value in choosing an
inferior solution unless it is necessary, as indage of escaping from a local optimum (Lim &
Chee 1991). It improves the efficiency of the skig process by storing a tabu list of local
solutions. This is used to restrict the search dopifiding moves to some poor neighbour
solutions that have already been visited (Her&d.€1995). An additional feature of tabu search
is applying intensification and diversification.ntight be useful to intensify the exploration in
some region because it may contain a high incidericacceptable solutions. This can be
obtained by introducing a new term in the objectiwiection that assigns a high priority to
solutions in the relevant region. Diversification iesponsible for moving the exploration

process over different regions of the search s(/deeti 1998).

Our tabu search algorithm goes through a predgfmenber of iterations to minimise the
value of the fitness function. It uses a tabu tiststore tabu moves in order to prevent the
algorithm from choosing previously reached move#aticular nodes for a predefined period

of time. Algorithm 4.3epresents the steps of our tabu search method.

84



4.5.1 Algorithm

In outline, as described in the algorithm, the talearch method operates in the following
manner: first, we compute the fitness value ofitfigal layout. Then the following steps are
performed for a set number of iteration®X| t er at i ons): for each node, we search in the
neighbourhood for candidate solutions, as descnbegkction 4.2.1. The ratio of the fithess
value of the candidate solution to the fitness @alfithe current solution is computed at each
point in the neighbourhood. Solutions with ratid®we or equal to a predefined threshold
value ( ni ti al Cut O f) are considered to be tabu moves and are storadahu list. We
then move the node to a neighbouring point thabisin the tabu list and its fitness function
value is minimum compared to all neighbours. THen durrent solution is added to the tabu
list. Note that the new solution might not be bettean the current solution hence the tabu
search does not run out of solutions. In case ightecandidate solutions surrounding the
current solution are in the tabu list, the inteination and the diversification processes will be
the way out for solving this problem. A search nsiéication process is implemented: after a
chosen number of iterationisr{t ensi f yl t er at i ons), the square size centred on the node
is reduced and the cut-off value is decreased $8t ®&aluei(nt ensi f yCut O f ) by calling
function Smal | er Squar eSi ze() and functionSnal | er TabuCut Of f () respectively,
as shown in Algorithm 4.3. Finally, in order to drgify the searching space, the tabu list is

updated by removing old solutions from the liseati number of iterationsl@r at i on).
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Given:
Connected Grap@( V, E) : Vis a set of nodes andE(V xV) is a set of edges.
ini tial SquareSi ze: predefined size of a square where candidate sokiice located on its border.
squar eReduct i on: predefined value which represents the rate of imuéor the size of the square.
max| t er at i ons: predefined maximum number of iterations of thavekr.
initial CutOf: predefined minimum value that determines whegherove is tabu or not.
i ntensi fyCut O f : predefined value which represents the rate afgtoh forcut OF f .
intensifylterations: predefined number of iterations in which the skarg process starts to intensify.
dur at i on: predefined number of iterations in which a molveiwdd remain in the tabu list.
Algorithm :
allOfsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (O, 1)}
tabuSet = {}

squareSize = initial SquareSize , CutOf = initial CutCo f
| ayout = Randomi zelLayout (G /* layout nmaps each node in Gto an (x,y) position */

1

2

3

4

5: iteration = 0
6: while iteration < maxlterations do

7 for vin V do

8 currentPos = layout[v] /* position currently associated with node v */
9 current Fitness = Fitness(layout)

10: candidates = {}

11: for scaledOfset in {(squareSize*x, squareSize*y) | (x,y) in allOfsets}

12: candi dat ePos = currentPos + scal edOffset /* vector addition */
13: if (v, candidatePos, i) & tabuSet for sone i then

14: layout [v] = candi dat ePos

15: candi dat eFi t ness = Fitness(layout)

16: i f candidateFitness / currentFitness > CutOff then

17: tabuSet = tabuSet U {(v, candidatePos, iteration)}

18: el se

19: candi dates = candi dates U {(candi dat ePos, candi dateFitness)}
20: end if

21: end if

22: end for

23: if candidates # {} then

24: newPos = p, where (p,f) is the pair in candidates with mnimal f
25: layout[v] = newPos

26: tabuSet = tabuSet U {(v, currentPos, iteration)}

27: end if

28: end for

29: if (iteration nmod intensifylterations) == 0 then

30: squareSi ze = Snal | er Squar eSi ze(squar eSi ze, squar eReducti on)

31: CutOFf = SnallerTabuCut OfFf (Cut OfFf, intensifyCutOff)

32: end if

33: tabuSet = {(v,p,i) | (v,p,i) in tabuSet and (iteration - i) < duration}
34: iteration = iteration + 1

35:end while

Algorithm 4.3 Our tabu search graph drawing algorithm
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Note that theSmal | er Squar eSi ze() function reduces the square size used in
searching for candidate solutions by applying thme formula we used in hill climbing.
Whereas theéSmal | er TabuCut O f () function decreases the value of cut-off during the
intensification process to maintain high qualityndi@ate solutions and truncate the other
solutions by adding them to the tabu list. The fiamcuses the following formula for cut-off

value reduction, such that the initial valueobdCut O f is equal toi niti al Cut O f :
newCutOff = oldCutOff —iftensifyCutOff * intensifylterations)

4.5.2 Parameter Tuning

Tabu search has five parameters that affect thdityju the layouts produced by the
algorithm along with its performance: the total ruen of iterations needed for execution
(maxlteration$, the cut-off value which determines whether tasider a solution for further
testing or to add it to the tabu listifial CutOff), the value used in decreasing the cut-off value
for intensifying the search processiténsifyCutOff, the number of iterations required to
decrease the value of the cut-off (i.e. intenskhe tsearch) iitensifylterationy and the

duration in which a solution remains in the talst @uration).

The graph sets used in testing the values of thassmmeters were exactly the same sets
used in testing the values of the parameters bélmhbing, as described earlier in this chapter
in Table 4.1.

Tabu search parameters are dependent. Therefordplleeed the same incremental
testing process that we performed with simulategealing but we divided the process into
four phases. In phase I, we considered the vahasgave good graph layouts (small fithess
values) regardless of the number of evaluated isolsiperformed by the drawing algorithm.
In the second phase of parameter tuning, we repeélatesame steps followed in phase I, but
instead of starting with arbitrary values, we @drtvith the values that were selected and
fixed from phase |. Moreover, we narrowed the défeces between the tested values for each
parameter. In phase lll, we tested the effect efvhlues of tabu search parameters on the
performance of the drawing algorithm (i.e. numbleewaluated solutions). In all the previous
phases, we used an initial square size of 256. Mewnvafter performing a complete testing on
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the parameters of hill climbing, an initial squaiee of 512 has produced graph layouts with
better quality and a lower number of evaluated tsmis were performed by the drawing

algorithm. Therefore, in phase IV, we repeatedstimae tuning process that we performed on
the tabu search drawing algorithm in phase Il g¢ire best initial square size as described in

the hill climbing parameter tuning process.
i. Phasel

We tested the values afaxiterationsand fixed the values of the other parameters toeso
arbitrary values such thatitialCutOff =2, intensifyCutOff = 0.005intensifylterations = 5
andduration = 5 The values used in testingaxiterationsvere: 30, 40, 50, 60, 70. According
to Figure 4.22, the values 50 and 60 produced #isé fitness values compared to others with
an advantage to the value 50 as the graph sizemesclarger. Thus, we selected the value 50

for maxlterations.
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Figure 4.22 Tabu Search - Fitness values with theawlterations parameter (phase )
Secondly, after fixing the value ofaxlterations we moved on to test the value of the
initialCutOff parameter and we kept the rest of the parametighstiaeir arbitrary values.
initialCutOff has been tested with the following values: 0,,8,48, 10. We chose the value 0

to see the effect of increasing the number of tadlutions on the quality of the produced
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layouts. Figure 4.23 shows the effect of thiialCutOff values on the fitness values of the
graph sets. According to the figure, the fitnesacfion values look similar when the
initialCutOff value is between 2 and 10. However, we selected/atue 4 since it produced
slightly better fithess values compared to 2 andoal the same as the rest of the values

except O.

Now that we fixed the values of two parameters, weved to the third parameter
intensifyCutOffand tested it with the following values: 0.005,5500.105, 0.155, 0.205,
while keeping the rest of the parameters as thenewieigure 4.24 shows that the fitness
values are very close when the value of this patamse between 0.005 and 0.055 with an
advantage to 0.005 for graphs with smaller sizéerdfore, we selected the value 0.005 for
intensifyCutOff.
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Figure 4.23 Tabu Search - Fitness values with thaitial CutOff parameter (phase 1)
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Figure 4.24 Tabu Search - Fitness values with thatensifyCutOff parameter (phase I)

intensifylterationswas the next parameter to be tested after fixirgy whlues of three
parameters. It has been tested with the followglgated values: 1, 3, 5, 7, 9. This parameter
shows the effect of the number of iterations rezpito reduce the value of the cut-off. Figure
4.25 shows that there is no significant differebeéween the values selected, but the curve
starts to increase slightly after the value 5. Thaans that increasing the value of
intensifylterationswould produce low-quality graph layouts. This isrmal, since the
intensification process should take place aftexasonable but not a large number of iterations
taking into account that there is a limited numbeiterations for the algorithm to execute
(maxlterations) For this reason, we selected the value 5imbensifylterations.Another
reason for choosing this value, not a smaller araes that the number of accesses to the tabu
list is higher with the value 5 compared to theuesl1 and 3, as shown in Figure 4.26, and the
higher the number of accesses to the tabu listiother the number of evaluated solutions as

more solutions would be excluded from the searcpiogess.
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Figure 4.25 Tabu Search - Fitness values with thatensifylterations parameter (phase 1)
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Figure 4.26 Tabu Search - tabu list accesses withe intensifylterations parameter (phase 1)

The last parameter that has been tested in thisephasduration We tested this
parameter with the following values: 0, 5, 15, 35, while all the other parameters were
fixed. Figure 4.27 shows that there is no signiftcaffect of this parameter on the fitness
value of the produced graph layouts. However, Eigu28 shows that number of accesses to
the tabu list is small when the duration is beloans consequently, the number of evaluated
solutions would increase. On the other hand, tiBopeance of the drawing algorithm looks

stable after the value 5. Therefore, we selected/@iiue 5 for this parameter.
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Figure 4.28 Tabu Search - tabu list accesses withe duration parameter (phase )

ii. Phase Il

We narrowed the differences between the testecesdir each parameter. For example, in
phase I, the difference between the values weddstanaxiterationswas 10. In this phase,
we reduced the difference to 5. The best value etefay maxiterationsin phase | was 50.
Now, we tested this parameter with the followindues: 40, 45, 50, 55, 60. As in phase |, we

chose the value which gives the best fitness vedgardless of the number of evaluated
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solutions produced by the drawer. With referenceFtgure 4.29, the best value for

maxlterationds 55.
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Figure 4.29 Tabu Search - Fitness values with theawlterations parameter (phase 1)

As for theinitialCutOff parameter, we recognised in the first phase thatetis no
significant difference in the fitness value when tested thenitial CutOff with several values
except for the value 0. In this phase, we got simiésults. The fitness value reduces as we
increased the value of thmitialCutOff. Nevertheless, the reduction rate was barely
recognised. Figure 4.30 shows the effect of thiediht values we tested for this parameter: 2,
3, 4,5, 6, 7, 8, on the fitness value. Accordiaghe figure, all the values afitial CutOff
gave very close values for the fitness functionwkeleer, theinitialCutOff value 7 gave a

slightly better fitness value compared to the cther
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Figure 4.30 Tabu Search - Fitness values with theitial CutOff parameter (phase II)

At the end of phase I, we fixed the valueirdensifyCutOffto 0.005. We recognised that
the fitness value was better when the value ofghrameter was below 0.1. Therefore, in this
phase, we tested this parameter with values lessQil such as: 0.005, 0.025, 0.045, 0.065,
0.085. However, Figure 4.31 shows that any of thvedees could be selected as a value for
this parameter since there was no major differdrateeen the fitness values. Thus, we kept

the same value that we selected in phase | whighledgo 0.005.
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Figure 4.31 Tabu Search - Fitness values with thatensifyCutOff parameter (phase II)
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The results of phase | showed that increasing #haevofintensifylterationswould also
increase the value of the fitness function (i.eluse the quality of the graph layout). In this
phase, we selected the following values for testhd, 7, 9, 11. Figure 4.32 shows that the
best values for the fitness function were produeidn the value ahtensifylterationsvas 5
(the same value we selected in phase 1). Furthentbe figure confirmed the fact that

increasing the value of this parameter would redbeeyuality of the graph layout.

1.300
1.200
1.100

1.000 e
0.900

0.800 = g —¢=N50E153

0.700
Fitness == N100E544

0.600 = —— A —{ ]
0.500 N150E1173

0.400 N200E1890
0.300 —— —— =3=N250E2645
0.200
0.100
0.000 T T T T T !

intensifylterations

Figure 4.32 Tabu Search - Fitness values with thatensifylterations parameter (phase Il)

As shown in the previous phase, increasing theevafduration starting from the value 5
would not make any significant changes in the aloiethe fitness function. This is what we
got when we tested this parameter again in phaseéthl the values: 5, 15, 25, 35, 45, as
shown in Figure 4.33. Therefore, we have not maxgjechanges to the value dfirationand
kept the fixed value from the previous phase whicds 5. However, the value of this
parameter slightly affects the number of evaluateldtions generated by the drawer as we

will see in the next phase.
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Figure 4.33 Tabu Search - Fitness values with theudation parameter (phase II)

iii. Phase lll

We performed a similar procedure to the one we usguhrameter tuning in phase Il of hill

climbing and in phase Il of simulated annealinge Yok a view that the fitness value of a
good-enough graph layout can be slightly largenttiee best fithess value produced in the
experiments of the previous phase. We used thesatithe fitness function produced by the
selected values of the parameters in phase Il antheveased them by 12.5%. Then we ran
the tabu search drawing algorithm until it reacleedial fitness values to the target fithess
values or no further improvement on the fithessi®@alias made. Finally, we picked the most
appropriate values of the parameters that gaveod-goough layout with a small number of

evaluated solutions.

As we are looking to minimise the number of evatdasolutions, we tuned the value of
maxlIterationsby testing the following values: 35, 40, 45, 50, Stce the value 55 was the
best value we got in phase Il, we tested this patamwith values lower than 55 to see
whether we can get a good layout with a lower nundfdterations. Table 4.10 shows the
fitness values produced by the tabu search draaliggyithm compared to the target fitness
values. On the other hand, Figure 4.34 shows thabeu of evaluated solutions produced by

our tabu search drawing algorithm. According to tesults in the table and the figure, we
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selected the value 45 famaxlterationssince it produced fitness values that are sinatdess

than the target fitness values with a low numbeteshtions compared to the other values.

Table 4.10 Tabu Search - Fitness values with the miierations parameter (phase 1)

Fithess
maxlterations N50E153 | N100E544) N150E1173 N200E1890N250E2645
35 0.344 0.652 0.876 1.073 1.234
40 0.370 0.654 0.872 1.071 1.245
45 0.293 0.641 0.868 1.078 1.239
50 0.302 0.640 0.869 1.078 1.235
55 0.287 0.628 0.875 1.078 1.238
Target 0.294 0.652 0.885 1.090 1.246
80000
70000
60000 //M)j
50000 & =0—N50E153
Evaluated ;00 X% —8—N100E544
Solutions
30000 ./._./l’. N150E1173
20000 H""H —>é=N200E1890
10000 = N250E2645
0 ——
0 5 10 15 20 25 30 35 40 45 55 60
maxliterations

Figure 4.34 Tabu Search — Number of evaluated solohs with the maxliterations parameter (phase IlI)

As shown in the previous phases, increasing theeval theinitial CutOff slightly reduces

the value of the fitness function. On the otherdhan this phase, the experiment showed that
increasing the value of this parameter would shglmcrease the number of evaluated
solutions. The best value we got for this paramietgrthase Il was 7. Therefore, we tested it
with lower values: 1, 2, 3, 4, 5 in order to venffnether we can obtain a good layout with a
small number of evaluated solutions. Table 4.11 Bigire 4.35 indicate that the value 2

could be the best value fanitial CutOff since the number of evaluated solutions becanhdesta

starting from that value.
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Table 4.11 Tabu Search - Fitness values with theitial CutOff parameter (phase III)

Fithess
initial CutOff N50E153 N100E544 N150E1173 N200E1890 N250E2645
1 0.821 0.996 1.215 1.398 1.597
2 0.314 0.645 0.866 1.069 1.235
3 0.298 0.643 0.867 1.074 1.244
4 0.302 0.640 0.868 1.072 1.238
5 0.295 0.643 0.867 1.077 1.240
Target 0.294 0.652 0.885 1.090 1.246
70000
60000 - e e
50000 N
x / ——NS50E153
Evaluated 40000 <~ ——N100E544
Solutions 30000 _
/ — 1 — N150E1173
20000 :/‘f . -~ Y —>é=N200E1890
10000 = N250E2645
0 T T T T T 1

0 1 2 3 4 5 6
initialCutOff

Figure 4.35 Tabu Search — Number of evaluated soiohs with the initial CutOff parameter (phase Ill)

For theintensifyCutOffparameter, we tuned the value by testing it walugs close to the
value 0.005 (as selected in phase Il). The valugshwve tested were: 0.0025, 0.005, 0.0075,
0.01, 0.0125. Table 4.12 shows that our drawingrélgmn produced fitness values similar or
lower than the target values with all the testetliesm (except for the first set of graphs).
Furthermore, the number of evaluated solutiongn®st similar among all the tested values
with a minor advantage for the value 0.0025 inftret four sets of the graphs, as shown in
Figure 4.36. Therefore, we picked the value 0.00@23heintensifyCutOffparameter.
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Table 4.12 Tabu Search - Fitness values with thetansifyCutOff parameter (phase I11)

Fitness
intensifyCutOff | NSOE153 | N100OE544| NI150E1173 N200E1B9 N250E2645
0.0025 0.313 0.643 0.870 1.068 1.230
0.005 0.314 0.645 0.866 1.069 1.235
0.0075 0.329 0.648 0.869 1.072 1.236
0.01 0.330 0.645 0.869 1.072 1.230
0.0125 0.331 0.647 0.870 1.077 1.235
Target 0.294 0.652 0.885 1.090 1.246
70000
60000 N . =X
50000
—4—NS50E153
i“ﬁ::“:;:g 22222 —8—N100E544
— —a—a N150E1173
20000 * —— * —>=N200E1890
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0 0002 0004 0006 0008 001 0012 0014
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Figure 4.36 Tabu Search — Number of evaluated solons with the intensifyCutOff parameter (phase IIl)

The fourth parametemtensifylterationswas tested using the following values: 3, 5,,7, 9
11. According to Table 4.13, the values 5 and 7egawaller fitness values (better quality)
compared to the other values of the parameter eagytaph size increased. Whereas, the
number of evaluated solutions produced by the dlgarwhen the value of this parameter is
5, is smaller than or equal to the number of ewalligolutions given by the algorithm using
the rest of the values (except for the fourth $egraphs), as shown in Figure 4.37. But since

the difference was not significant, we chose tHaesa for this parameter.
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Table 4.13 Tabu Search - Fitness values with thetensifylterations parameter (phase IlI)

Fitness
intensifylterations | NSOE153| N100E544 N150E1173 N2B0890| N250E2645
3 0.304 0.637 0.872 1.079 1.245
5 0.313 0.643 0.870 1.068 1.230
7 0.374 0.650 0.867 1.071 1.229
9 0.379 0.660 0.878 1.083 1.246
11 0.399 0.656 0.880 1.082 1.246
Target 0.294 0.652 0.885 1.090 1.246
70000
60000 : : : e~
20000 = e —o—N50E153
Es‘::::::: :Zggg ;: 8 N100E544
o N150E1173
20000
10000 4 ¢ -6 g * =>é=N200E1890
0 | | . | . . —%—N250E2645
0 2 4 6 8 10 12
intensifylterations

Figure 4.37 Tabu Search — Number of evaluated solohs with the intensifylterations parameter (phase

1))

Theduration parameter has no significant effect on the qualftyhe produced layout as
shown in the previous phases. However, increasiegvalue of this parameter to a certain
limit would improve the performance of the drawialgorithm and consequently produce a
smaller number of evaluated solutions. In this phage tested the value déirationwith the
following values: 5, 15, 25, 35, 45. Testing thgoaithm with all these values produced graph
layouts with quality at least as good as the taageiut, as shown in Table 4.14. On the other
hand, Figure 4.38 shows the number of accessée talbu list by the drawing algorithm. The
higher the number of accesses to the tabu listhideer the number of solutions to exclude
from the searching process, and this consequegdiyces the number of evaluated solutions.

In the figure, it is indicated that the number ot@sses to the tabu list increased between the
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values 5 and 15 and then became stable. Thereferselected the value 15 for tberation

parameter.

Table 4.14 Tabu Search - Fitness values with the thtion parameter (phase I11)

Fitness
duration N50E153 N100E544 N150E1173 N200E1890 N228HE5
5 0.313 0.643 0.870 1.068 1.230
15 0.324 0.645 0.866 1.070 1.230
25 0.328 0.644 0.866 1.071 1.229
35 0.327 0.645 0.867 1.070 1.232
45 0.327 0.645 0.867 1.070 1.232
Target 0.294 0.652 0.885 1.090 1.246
5000
4500 —)ﬁ(
4000 M
3500
2000 i ——N50E153
/:ci'::'s 500 —@—N100E544
iggg N150E1173
1000 p— B % 5 —>4=N200E1890
500 «—N250E2645
0 T T T T 1
0 10 20 30 40 50
duration

Figure 4.38 Tabu Search — Number of accesses to ttabu list with the duration parameter (phase Iil)

iv. Phase IV

We repeated the same tuning process that we pextbom the tabu search drawing algorithm
in phase 11l using the best initial square sizel@scribed in the hill climbing parameter tuning
process. Table 4.15 and Figure 4.39 show the eeputtduced by the tabu search drawing
algorithm when we tested timeaxlterationgparameter with the values: 30, 35, 40, 45, 50. The
main goal is to speed up the performance of therigihgn while producing graphs with good
layouts. Therefore, we chose the value that besgtfiea the target fithess values with the
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smallest number of iterations. The best valuenfi@xlterationsthat satisfied this condition

was 40.
Table 4.15 Tabu Search - Fitness values with the miierations parameter (phase 1V)
Fitness
maxlterations | N50E153 | N100E544| NI150E11783 N200E1890N250E2645
30 0.348 0.654 0.873 1.075 1.240
35 0.335 0.654 0.873 1.075 1.238
40 0.329 0.653 0.873 1.075 1.237
45 0.328 0.653 0.873 1.075 1.236
50 0.329 0.653 0.873 1.075 1.236
Target 0.294 0.652 0.885 1.090 1.246
45000
40000 M
35000
30000 =¢=—N50E153
Es‘::“:::: 2(5)232 —@—N100E544
15000 7 N150E1173
10000 =>=N200E1890
5000 —#=N250E2645
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0 5 10 15 20 25 30 35 40 45 50 55
maxlterations

Figure 4.39 Tabu Search — Number of evaluated solons with the maxiterations parameter (phase V)

The initial CutOff parameter has been tested with the following walte?2, 3, 4, 5. Table
4.16 shows that all the values (except the valuerdduced graph layouts with fitness values
below or equal to the target (except for the fgsiphs set). On the other hand, Figure 4.40
demonstrates the number of evaluated solution®ipeeld by the tabu search algorithm and
indicates that when the algorithm uses th#ialCutOff value 4, it generates the lowest

number of solutions compared to the other values.
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Table 4.16 Tabu Search - Fitness values with theitial CutOff parameter (phase V)

Fitness
initialCutOff | NSOE153 | N10OE544 | N150E1173] N200E1890 N250E2645
1 0.892 1.080 1.261 1.479 1.648
2 0.329 0.653 0.873 1.075 1.237
3 0.324 0.653 0.873 1.077 1.238
4 0.316 0.652 0.877 1.079 1.236
5 0.322 0.660 0.876 1.079 1.241
Target | 0.294 | 0.652 0.885 1.090 1.246
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Figure 4.40 Tabu Search — Number of evaluated solohs with the initial CutOff parameter (phase V)

As for theintensifyCutOffparameter, we tested it with the following valu@€:025, 0.005,
0.0075, 0.01, 0.0125. Table 4.17 shows that alehalues could give good layouts since all
of them have reached fithess values less thanmostlequal to the target fitness values
(except for the first set of graphs). But in Figdté1, we realise that using any of these values
would make no significant difference in the numbéevaluated solutions performed by the
algorithm with a slight advantage to the value 8.@® most of the tested graph data sets.
Therefore, we selected the value 0.005riggnsifyCutOff.
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Table 4.17 Tabu Search - Fitness values with thetamsifyCutOff parameter (phase 1V)

Fitness
intensifyCutOff | NSOE153 | N100OE544| NI150E1173 N200E1B9 N250E2645
0.0025 0.324 0.653 0.873 1.077 1.238
0.005 0.324 0.644 0.876 1.080 1.238
0.0075 0.320 0.645 0.874 1.077 1.239
0.01 0.321 0.647 0.872 1.080 1.236
0.0125 0.315 0.646 0.872 1.079 1.242
Target 0.294 0.652 0.885 1.090 1.246
40000
35000 o ; e | :
30000
25000 —6—N50E153
B e e
15000 -— o ~ ° ® N150E1173
10000 —>¢=N200E1890
5000
0 | | | | | | | —=N250E2645
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
IntensifyCutOff

Figure 4.41 Tabu Search — Number of evaluated solons with the intensifyCutOff parameter (phase V)

The intensifylterationsparameter has been tested with five values 3, S, 11. Figure
4.42 shows that the number of evaluated solutioneeases as the value of this parameter
increases. Picking the value 3 would be the bewrims of the number of evaluated solutions.
However, according to Table 4.18, selecting thise/avould not produce good graph layouts
for the first two sets of the graphs under tese Tésults in the table indicate that the fithess
values in the first two sets of graphs (whatensifylterations= 3) are far from the target
fitness values. Therefore, we chose the next kmsevorintensifylterationswvhich equals to
5.
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Table 4.18 Tabu Search - Fitness values with thetansifylterations parameter (phase V)

Fitness
intensifylterations | NSOE153| N100E544 N150E1173 N2B0890| N250E2645
3 0.367 0.660 0.877 1.077 1.240
5 0.324 0.644 0.876 1.080 1.238
7 0.310 0.652 0.881 1.080 1.240
9 0.335 0.655 0.877 1.080 1.245
11 0.399 0.670 0.878 1.082 1.247
Target 0.294 0.652 0.885 | 1.090 | 1.246

60000

50000 )/ﬁ
40000 —o—N50E153
Evaluated M
30000 1 =i N100E544
Solutions x> /.’_._———.
20000 N150E1173
—=> —— <

10000 =>e=N200E1890

== N250E2645
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0 2 4 6 8 10 12

intensifylterations

Figure 4.42 Tabu Search — Number of evaluated solohs with the intensifylterations parameter (phase
V)

Last but not least, we tested ttheration parameter with the following values: 5, 15, 25,
35, 45. Note that the search space in graph dravgingrge, thus this parameter has no
significant effect on the quality of the producegduts as shown in Table 4.19, where all the
tested values of this parameter have producedasimakults. On the other hand, Figure 4.43
shows that this parameter has slightly affectedntivaber of evaluated solutions performed
by the tabu search drawing algorithm. The figurevahthat there is a difference between the
number of evaluated solutions when the valualwfationis 5 and the rest of the values.
Although the figure does not show that the diffeesis significant, but the difference could
reach up to 7% (which reaches about 10,000 solkitioreven more in some test cases where
the number of nodes is very large). Thus, the valiethe most appropriate for tharation

parameter.
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Table 4.19 Tabu Aearch - Fitness values with the dation parameter (phase 1V)

Fitness
duration N50E153 N100E544 N150E1173 N200E1890 N22®8:E5
5 0.324 0.644 0.876 1.080 1.238
15 0.331 0.657 0.873 1.078 1.238
25 0.330 0.657 0.874 1.080 1.238
35 0.330 0.657 0.874 1.080 1.238
45 0.330 0.657 0.874 1.080 1.238
Target 0.294 0.652 0.885 1.090 1.246
40000
35000 VRS e
30000
25000 S ¢—N50E153
Evaluated
Solutions 20000 = 5 5 5 ——N100E544
15000 — ~ ~ ~ 7y N150E1173
10000 === N200E 1890
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Figure 4.43 Tabu Search — Number of evaluated solons with the duration parameter (phase V)

Now as we have tuned all the parameters of thee threthods, we list the value of each

parameter which will be used in our coming experitae

i. Hill Climbing Parameters

initialSquareSize = 512

squareReduction = 4

ii. Simulated Annealing Parameters

maxlterations = 45
iterPerTemp =15
initialTemp = 0.75

coolDown = 0.8
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iii. Tabu Search Parameters
maxlterations = 40
initialCutOff = 4
intensifyCutOff = 0.005
intensifylterations = 5

duration =5

4.6 Summary

This chapter described the basic neighbourhoodclsdsrsed graph drawing algorithms for
hill climbing and simulated annealing, followed loyir tabu search-based approach for
drawing general graph layouts with straight linleatthave multiple aesthetic criteria which
are used in a weighted fitness function to measiieequality of the graph layout. Each
criterion had a different range of values. Hencepanalisation process for the values to a

unified range was described.

This chapter also demonstrated how the three drpaligorithms had used the same local
search space. They also shared the same proceddvaihg the values of their parameters by
performing exploratory tests on a wide range otigalfor each parameter in order to select a
robust set of initial values. Then a systematiacenental procedure was applied for each

single parameter at a time while fixing the valoéghe rest of the parameters.

Hill climbing, simulated annealing, and tabu seagiaph drawing algorithms were
described including their pseudo codes and a cdmpmlescription of their parameters. A
detailed clarification of the parameter tuning mex for each parameter was demonstrated
including figures and tables that showed the eftdctach parameter on the quality of the

layouts and the efficiency of the drawing algorigim

In the next chapter, we show the experimental tesofl a comprehensive comparison
between the three neighbourhood search-based nsethozbrding to the quality of the

generated layouts and the efficiency of the aljor.
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Chapter 5 Experimental Results of Comparing Hill Cimbing,
Simulated Annealing, and Tabu Search

This chapter demonstrates the experimental resiltapplying the three graph drawing
algorithms described in the previous chapter: dilinbing, simulated annealing, and our
graph drawing version of tabu search on randomigdapasets and real world graph datasets.

It also shows our analysis and conclusions toebkalts.

5.1 Introduction

Our research question in this experiment was: ‘Omestabu search graph drawing algorithm
perform better than the hill climbing and simulai@ohealing approaches?’ To answer this
guestion we had to implement and evaluate our mdeigainst the two commonly used
alternative neighbourhood search-based methodgdph drawing. Three types of evaluations

were conducted:

I. Finding the best layout that can be achieved fnigimising the value of the fithess

function);
ii. How long it took to draw a graph to a particulardeof quality;

iii. How good the quality of the graph was after a fiaatimisation time (number of

evaluated solutions).

These allow us to examine different possible uaseg for the graph layout: firstly,
generating the best possible layout; secondly speellaw an acceptable layout; and thirdly

how good the graph layout can be if there is affitkee available to produce it.

The programming language used in our implememtais Java (version 1.7.0; Java
HotSpot™ 64-Bit Server VM 21.0-b17 on Windows 7heTexperiments were performed using
Lenovo Thinkpad T430, Intel® Core™ i7-3520M CPU gessor with 2.90 GHz frequency
and 8 GB RAM.

We generated random graph datasets in two cagsgorhe graphs of the first category

have the same number of nodes but with differensities (i.e. different number of edges),
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whereas the graphs of the second category hav#fesedi number of nodes with varying

values of densities.

The random graph generator is based on the Hdagi model (Erdos & Rényi 1960;
Daudin et al. 2008). It generated randomly conmegtaphs. The parameters to the generator
were the number of nodes and the density of thehgi@andom locations for the nodes were
generated based on the size of the window whergrdgeh is displayed. Then, the generator
chose random nodes as the end points of the eflijesndom values were generated using the
random method in Java. Self-sourcing edges andipieukdges between the same pair of
nodes were not allowed. Finally, the graph generasted the connectivity of the generated
graph. Only connected graphs were accepted. Ininoplementation for the random graph
generator, we added an option which allows the tseandomly change the layout of the

generated connected graph.

There were 80 random graphs in the first categphy into 4 groups of 20 test cases each.
All the graphs in this category had 150 nodes, oariyg positioned. Each group had a differing
number of edges so that the density varied. Thphgran each group had same number of
nodes and edges. See Table 5.1 for the charaiceastthe graphs in the first category. Note
that the density of the graph is computed usingstme formula described in the previous
chapter (Section 4.3.2).

Table 5.1 Characteristics of the graphs in the®icategory

Graph Set| Nodes| Edges| Density
1A 150 558 0.05
2A 150 | 1117 0.1
3A 150 | 1676 0.15
4A 150 | 2235 0.2

The second category also had 80 random graphis, digaded into 4 groups. The number
of nodes for a group varied, increasing in stepS0fThe value of the density was chosen for
each group to avoid too dense graphs so that wkl gmnerate graphs that were easily
visualised. A similar random process used to geeeyaphs in the first category was applied
to this category. See Table 5.2 for the charatiesisf the graphs in the second category.
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Table 5.2 Characteristics of the graphs in the™ category

Graph Set| Nodes| Edges| Density
1B 50 159 0.13
2B 100 569 0.115
3B 150 | 1173 0.105
4B 200 | 1990 0.1

The initial layout of nodes for each graph wasdman. We applied our tabu search-based
approach along with hill climbing and simulated ealng approaches to the graphs. Tabu
search and hill climbing approaches are deterngnisethods which are not influenced by
chance. The characteristic of this type of mettsothat the output is determined when the set
of input elements and properties in the model e kspecified. Both methods use the same
initial input layout and there is no randomnesgsheir implementation. On the other hand,
simulated annealing is a stochastic method whicludes an element of randomness in the
neighbourhood searching process. Therefore, thisoaph has been tested on each individual
graph for 30 different runs. Then we find the madié the results for the 30 different runs to
compare with the results of the tabu search andchihbing approaches. Note that, we
modelled the neighbourhood transition probabilitysionulated annealing in a similar way to
the model described in Davidson & Harel (1996)tHa following section, we describe the

three phases of the experiment along with the arsabf the results.

5.2 Experiments on Random Graph Datasets

To make a comprehensive comparison between theongtiwe divided our experiment into
three phases. Firstly, in phase I, we focus on dherall performance for each method
regardless of how long it takes to execute to getliest possible graph layout that can be
generated by that method. Secondly, in phase Ity the speed of each algorithm when it
runs to draw a graph for a particular level of gyalThirdly, in phase Ill, we investigate the

quality of the drawn layouts after a fixed predeéirexecution time.

5.2.1 Phase |

We applied the methods on the graphs of the twegoaies described in Section 5.1. The
methods executed on the 20 test cases in each gfdle two categories, and then the average

fitness function value and the average number afuated solutions were computed for each
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group in each method. Note that in simulated ammgaihe average of medians was computed
for the 30 runs of each test case. In this phasehitl climbing approach was executed until it
found the best solution that can be reached (isnlation that cannot be further improved).
Whereas, the simulated annealing and tabu seaproaghes were more flexible in how they
reach a good solution, and hence we ran them ubmgyalues of the parameters discussed

earlier in the previous chapter.

The following figures show bar charts of the résobtained from phase I. Figure 5.1 and
Figure 5.2 show the difference between the thre¢hods in terms of the quality of the
produced layouts (fithess value) when applied ah e&ategory of graphs, whereas Figure 5.3
and Figure 5.4 show the difference according to plkeormance efficiency (humber of

evaluated solutions).
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Figure 5.1 Bar chart with 95% confidence interval @ the fitness function obtained by HC, SA, TS when
applied on the graphs of the I category (phase 1)
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Figure 5.2 Bar chart with 95% confidence interval @ the fitness function obtained by HC, SA, TS when
applied on the graphs of the #' category (phase I)
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Figure 5.3 Bar chart with 95% confidence interval é the number of evaluated solutions obtained by HC,
SA, TS when applied on the graphs of the®lcategory (phase 1)
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Figure 5.4 Bar chart with 95% confidence interval é the number of evaluated solutions obtained by HC,
SA, TS when applied on the graphs of the"2 category (phase 1)

Figure 5.5 and Figure 5.6 show the execution tjmeseconds) when the methods were
applied on the data of the first and second cakegoespectively. The figures demonstrate how
lengthy the layout process was with simulated ainmpaompared to the other two methods.
Our proposed tabu search-based method, on the lodinel, shows a slightly faster execution

time against hill climbing.
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Figure 5.5 Bar chart with 95% confidence interval & the execution time (in seconds) obtained by HC AS
TS when applied on the graphs of the®icategory (phase I)

113



800

700
600
500

(s:cltr::\ils) mHC
300 mSA
200 s
100

0 T

Graph Sets - Category Il

Figure 5.6 Bar chart with 95% confidence interval & the execution time (in seconds) obtained by HC AS
TS when applied on the graphs of the™ category (phase 1)

In Figure 5.7 and Figure 5.8, we merge the resoitttined from applying the three
methods on both categories (category | and catdfjgraph datasets) to show respectively the
average overall fithess value and the average nuofbevaluated solutions produced by the
three methods. On the other hand, Table 5.3 ante Tadh demonstrate the statistical analysis
of the fitness values for the graph layouts produmethe three methods when applied on the
graph datasets of the first and the second cat=syddgether along with the number of
evaluated solutions obtained by each method. Youreger to Section 5.2.4 for a complete
description of the conducted statistical test amdtle interpretation of the p-value column

listed in the tables.
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Figure 5.7 Bar chart with 95% confidence interval ¢ the average overall fitness function obtained b¥iC,
SA, TS when applied on the graphs of both categosgphase I)
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Figure 5.8 Bar chart with 95% confidence interval ¢ the average overall number of evaluated solutions
obtained by HC, SA, TS when applied on the graphsfdoth categories (phase 1)
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Table 5.3 Statistical analysis of the fitness funictn for HC, SA, TS when applied on the graphs of b
categories (phase 1)

Fitness
Tabu Search
Graph Set | Mean | Median | Max Min Mean | Median | Max Min Mean | Median Max Min p-value
1A 0.616 | 0.607 | 0.828 | 0.502| 0.494 | 0.494 | 0.503 | 0.484| 0.505 0.504 0.558 0.421 4.11E-07
2A 0902 | 0.875 | 1.211| 0.791| 0.746 | 0.746 | 0.754 | 0.728| 0.791 0.784 0.869 0.728 5.33E-04
3A 1.023 | 0.978 | 1.309 | 0.916| 0.871 | 0.871 | 0.884 | 0.860| 0.928 0.922 1.061 0.889 2.06E-09
4A 1.126 | 1.092 | 1.387 | 0.987| 0.963 | 0.964 | 0.974 | 0.955| 1.017 1.013 1.154 0.944 5.33E-04
1B 0.486 0.465 0.827 0.36] 0.286 | 0.286 | 0.297 | 0.272| 0.354 0.332 0.618 0.280 1.25E-D8
2B 0.801 0.743 1214 0.614 0.563 | 0.562 | 0.587 | 0.543| 0.625 0.612 0.794 0.551 6.52E-P9
3B 0.890 0.863 1.249 0.80{ 0.762 | 0.761 | 0.777 | 0.754| 0.805 0.801 0.948 0.730 3.56E-P8
4B 1.116 1.076 1504 0.97{ 0.956 | 0.958 | 0.968 | 0.918| 1.001 0.995 1.072 0.942 6.52E-P9
Overall 0.870 0.837 1191 0.744 0.705 0.70p 0.7118 0.1)89 530{7 0.745 0.884 0.685

Table 5.4 Statistical analysis of number of evaluatl solutions obtained by HC, SA, TS when applied on
the graphs of both categories (phase I)

Evaluated Solutions
Tabu Search

Grsae[;h Mean Median Max Min Mean Median| Max Min Meal Medigh Max Min p-value
1A 49867 | 50071 56715 | 40577 | 71480 71473 71582 71326 | 44391 44393 44656 | 44047 2.64E-08|

2A 50623 50132 60846 39727 | 72149 72139 72266 72059 | 44688 44670 45020 44381 1.25E—02f

3A 53516 52571 65036 42458 | 72287 72277 72438 72186 | 44765 44783 45112 44368| 1.25E-02+
4A 51838 51640 68429 39193 | 72343 72342 72540 72162 | 44941 44939 45357 44382 2.64E—O&£
1B 14523 14206 18779 1180] 24485 24489 24634 24387 14870 14883 15010 14619 1.38E407
2B 32643 32661 44387 2574( 48740 48733 48936 48638 29918 29959 30287 29454 8.76E{08
3B 54128 51864 71345 4264] 72203 72208 72340 72068 44741 44764 45086 44243 5.33E{09
4B 76351 76891 93479 58574 95171 95163 95327 95079 59182 59152 59775 58818 5.33E109

Overall 47936 47504 59877 3759 66107 66108 66258 65988 37409 40943 41288 40539

The results presented in Figure 5.1, Figure 5igurE 5.7, and Table 5.3 show that
simulated annealing produces the best graph layaumpared to the other two methods. It has
a slight advantage over tabu search in the qualitile graph layout, but both are considerably
better than hill climbing. On the other hand, siatetl annealing evaluates a larger number of
solutions in order to get those good layouts. FduB, Figure 5.4, Figure 5.8, and Table 5.4
show that tabu search outperforms the other twdhoastin terms of performance efficiency
(number of evaluated solutions). The figures in éqgix A (A.1 and A.2) are samples of the
layouts drawn by the three algorithms when apptiedhe graph datasets described in Table

5.1 and Table 5.2 respectively.
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5.2.2 Phase Il

In phase I, we investigated the performance ofapproaches rather than the quality of the
produced layouts. The following process was peréairan the graphs of the two categories,
described in Section 5.1, to test which methodthadowest number of evaluated solutions to

reach a particular value of a fitness functiongdipular level of a layout quality):

1. We ran the hill climbing method on the graphs umtilimprovements could be made
to the value of the fitness function. We startethwill climbing, in particular, because
in phase I, it produced graph layouts with the wqtglity compared to the other two
methods. Therefore, simulated annealing and tabrclsecould easily produce graph

layouts with good quality as the one produced Hyclimbing.

2. We ran simulated annealing and tabu search metiaiilsthey reached an equal or
better fitness function value compared to the anad by the hill climbing drawing

algorithm.
3. We measured the number of evaluated solutionsaicin enethod.

Figure 5.9 and Figure 5.10 show the number of ewatlisolutions obtained by the three
methods when they are applied on the graphs ofitstecategory and the second category
respectively. Whereas Figure 5.11 and Table 5.6rites visually and statistically, the average
overall number of evaluated solutions obtained frphase Il when the three methods are

applied on the graphs of the two categories togethe
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Figure 5.9 Bar chart with 95% confidence interval é the number of evaluated solutions obtained by HC,
SA, TS when applied on the graphs of the®icategory (phase I1)
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Figure 5.10 Bar chart with 95% confidence intervalof the number of evaluated solutions obtained by HC
SA, TS when applied on the graphs of the"2category (phase II)
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Figure 5.11 Bar chart with 95% confidence intervalof the average overall number of evaluated solutian
obtained by HC, SA, TS when applied on the graphsfthe two categories together (phase 1)

Table 5.5 Statistical analysis of the average ovdtamumber of evaluated solutions obtained by HC, SATS
when applied on the graphs of the two categoriesgether (phase II)

Evaluated Solutions

TS
Graph Set | Mean Median Max Min Mean Median Max Min Meanh Median Max Min p-value
1A 49867 | 50070 | 56715 | 40577| 49929 50073 70029 | 37054| 21468 23010 28765 12633 2.51E-01
2A 50622 | 50131 60846 | 39727| 46822 46122 67079 | 32120| 20851 23205 29366 2272 8.76E-09
3A 53516 | 52570 | 65036 | 42458 46478 47600 60463 | 32053| 25007 27351 41053 6086 2.64E-09
4A 51837 | 51640 | 68429 | 39193 45321 45549 61512 | 32090( 21450 25254 29789 2299 8.76E-08
1B 14523 14205 18779 | 11801| 13136 12388 19220 7822 | 6665 6142 11819 2690 7.16E-07
2B 32643 | 32661 44387 | 25746| 27602 26903 41822 | 16976 12009 11855 22726 2677 5.06E-09
3B 54127 | 51863 71345 | 42643| 48811 49601 58243 | 31749| 23266 23461 44243 5984 4.80E-07
4B 76351 | 76891 93479 | 58574| 63208 63516 87893 | 41797| 28551 30759 39755 1790 2.64E-08
Overall 47936 | 47504 | 59877 | 37589| 42663 42719 58282 | 28957 19908 21379 30939 4553 < 2.2e-14

According to the results shown in Figure 5.9, Fegbrl0, Figure 5.11, and Table 5.5, we
conclude that our tabu search method generate$ dagputs of good quality with a very
limited number of evaluated solutions compared itbdimbing and simulated annealing.
This difference is significant since the p-values &ll graph sets are smaller than our

significance level as shown in the last columnhef tables according to the Friedman test that

will be described in Section 5.2.4.
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5.2.3 Phase lll

In phase Ill, we investigated the quality of thgdat produced by the drawing algorithms
rather than the performance. The following process performed to test which method
produces the graph layouts with the best qualitya{kest value of fitness function) when the

three methods perform the same number of evalsaletions:

1. We ran the tabu search method on the graphs faoedefined number of iterations
(maxlterations = 40 as described in Chapter 4,i@edt5.2). The number of evaluated
solutions is computed and saved. We started withathu search in particular because in

phase |, it generated the lowest number of evadusiitions.

2. We ran hill climbing and simulated annealing methaohtil they perform the same

number of evaluated solutions performed by the tsarch drawing algorithm.

3. We measured the value of the fithess function prediwby the drawing algorithms in

each of the steps above.

Figure 5.12 and Figure 5.13 show the values ofithess function obtained by the three
drawing algorithms when they are applied on thelgsaof the first category and the second
category respectively. Whereas Figure 5.14 andeTalfl describe, visually and statistically,
the average overall fithess function values obthinem phase Il when the three methods are

applied on the graphs of the two categories togethe
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Figure 5.12 Bar chart with 95% confidence intervalof the fitness function values obtained by HC, SATS
when applied on the graphs of the *Lcategory (phase Il1)
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Figure 5.13 Bar chart with 95% confidence intervalof the fitness function values obtained by HC, SATS
when applied on the graphs of the® category (phase I11)
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Figure 5.14 Bar chart with 95% confidence intervalof the average overall fitness function values obitaed

by HC, SA, TS when applied on the graphs of the twoategories together (phase 111)

Table 5.6 Statistical analysis of the average ovdlditness function values obtained by HC, SA, TS ten
applied on the graphs of the two categories togethéohase IIl)

Fitness
TS
Graph Set | Mean | Median Max Min Mean | Median | Max Min Mean | Median | Max Min p-value
1A 0.617 0.609 0.828 | 0.502| 0.658 0.659 0.668 | 0.646| 0.505 0.504 0.558| 0.421 2.64E-08|
2A 0.904 0.877 1.211 | 0.792| 0.897 0.897 0.907 | 0.886| 0.791 0.784 0.869 | 0.728 1.38E-07
3A 1.028 0.989 1.309 | 0.925| 1.015 1.015 1.033 | 1.002| 0.928 0.922 1.061| 0.889 9.66E-07|
4A 1.132 1.098 1.390 | 0.988| 1.101 1.100 1.123 | 1.090| 1.017 1.013 1.154| 0.944 1.30E-06
1B 0.487 0.465 0.827 | 0.361| 0.419 0.421 0.438 | 0.390( 0.354 0.332 0.618| 0.280 9.80E-07|
2B 0.803 0.746 1.210 | 0.616| 0.696 0.696 0.713 | 0.683| 0.625 0.612 0.794| 0.551 9.66E-07|
3B 0.895 0.872 1.249 | 0.803| 0.908 0.909 0.921 | 0.895( 0.805 0.801 0.948| 0.730 4.80E-07|
4B 1.122 1.082 1517 | 0.987| 1.121 1123 1138 | 1.102| 1.001 0.995 1.072| 0.942 1.36E-07
Overall 0.873 0.842 1.193| 0.747 0.85 0.853 0.868.830 | 0.753 0.745 0.884 0.68p <2.2e-16

We conclude from the results presented in Figut2,3igure 5.13, Figure 5.14, and Table

5.6 that our tabu search approach draws graph tayath better quality (or similar quality in

the worst case) compared to hill climbing and sated annealing when they evaluate the

same number of solutions. The Friedman statissicalificance test was applied on the results

and the p-values in the tables show that theresigraficant difference in the layouts between

the three methods.
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Figure 5.15 and Figure 5.16 show two differentrepi®s of random graph layouts drawn
by hill climbing, simulated annealing, and our ta®arch approach.

Random Layot Hill Climbing Layou!
Simulated Annealing Layo Tabu Search Layo

Figure 5.15 Example of connected graph layout with0 nodes and 19 edges drawn within the canvas ofrou
visualization tool by the three methods: HC, SA, TS
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Random Layol Hill Climbing Layour
Simulated Annealing Leout Tabu Search Layo

Figure 5.16 Example of connected graph layout with2 nodes and 17 edges drawn within the canvas ofrou
visualization tool by the three methods: HC, SA, TS

5.2.4 Statistical Tests

In order to test the effect of randomness in gdimgyathe initial graph layouts used in

comparing the methods, we performed a statistiggifcance test on the results generated
from the three phases. Note that, we applied &sstal significance test on phase | for the
fitness values of the graph layouts generated bytiree methods to conclude which method
draws the best layout without fixing a specific roen of evaluated solutions performed by
each method. To demonstrate that there is a #tatisignificant difference between the three
methods, we first applied the Friedman test (Ug&oBook 2014) which is a non-parametric

test for testing the differences between severapsss. This test requires no prior knowledge
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of the distribution of data. We could have appli@BlOVA test if our population was
normally distributed, but when we applied ShapirdkWhormality test (Shapiro & Wilk
1965) on our randomly generated datasets, we gatygs less than the significance level that
equals to 0.05. Thus, the null hypothesis of Sleapiilk’s test that the population is normally

distributed was rejected.

We ran the three methods on 20 randomly genera&dcases, based on Erdosnyi
mode| for each group of graphs in the first and secoaiggories. Note that, in simulated
annealing, we calculated the median of 30 rungémh test case instead of finding the mean
(median is more reliable in avoiding outliers) amhsequently we got 20 medians (since we
find the mean of 30 medians for each test caséepnwe compared them with the results of
the means computed by hill climbing and tabu searsing the Friedman test with a
significance level of a value 0.05. The null hypesis for the Friedman test states that there
are no differences between the results of the mdsthié the probability is low (i.e. less than
the selected significance level) the null hypotbesirejected and it can be concluded that at
least two methods are significantly different fraach other. In all the tests, as shown in
Table 5.3, Table 5.4, Table 5.5, and Table 5.6gatep-values smaller than 0.05 which means
we can reject the null hypothesis and hence weledadhat there is a significant difference

between the three methods.

The Friedman test allowed us to conclude that tiseaesignificant difference between the
methods, but it does not show how each methodrdiffem the other. Therefore, a post-hoc
test for multiple comparisons between the methoas eonducted using the Wilcoxon signed-
rank test (Wilcoxon 1945) with Bonferroni correctidDunn 1961; Holm 1979). The
Wilcoxon signed-rank test is a non-parametric stial hypothesis test that can be used as an
alternative to the paired student’s t-test since jpopulation is not normally distributed.
Bonferroni correction, on the other hand, is a $&mmpethod that allows pairwise comparisons
and is easy to apply. Despite the importance afgudie Bonferroni method for the multiple
comparison post-hoc correction, it can be consttlemmservative if there are a large number
of tests and/or the test statistics are positivagrelated (Perneger 1998). Note that all the
statistical tests were conducted using the R statigpackage i386 (version 3.1.1).
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In the Bonferroni correction, we lower the sigrégfice level value to 0.01 in an attempt to
prevent data from incorrectly appearing to be stiatlly significant and to increase the
accuracy of results. When you are performing maagpendent or dependent statistical tests
at the same time, this multiple comparison post-boection is used (Bland & Altman
1995).

While a p-value of a statistical significance teash indicate the existence of a significant
difference, but it does not show the size of th#febnce. Effect size is a simple way of
guantifying the difference between the resultsved imethods. Here, we measure it by the
standardized difference between two means (i.Bereihnce of means divided by the standard
deviation). Cohen (1992) classified effect sizesmasll (= 0.2), medium (= 0.5), and large (=
0.8). See Table 5.7, Table 5.8, Table 5.9, anderatlo for the effect sizes and p-values in
phase |; Table 5.11 and Table 5.12 for the effeetssand p-values in phase II; and Table 5.13
and Table 5.14 for the effect sizes and p valugshase Il

The p-values of the Bonferroni post-hoc test shawiable 5.7 and Table 5.8 conclude
that there is a significant difference betweenl#lyputs drawn by simulated annealing and the
other two methods except in the first graph datagehe first category. The effect size of
fitness between simulated annealing and hill clmgbs always large, whereas the effect size
increases from medium to large as the graph sigeeases when simulated annealing is
compared against tabu search. On the other haibte 5@ and Table 5.10 show that the tabu
search outperforms the other two methods in tefrmpgidormance efficiency as the number of
nodes increases except for small graphs as showe ifirst and the second graph datasets in
the second category in Table 5.10 (i.e., the ef§ext increases from small to medium then
large when tabu search is compared against hithldhig, and it is always large when

compared against simulated annealing).
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Table 5.7 Effect size and p-values for the fitneganction values after conducting the Bonferroni teson
HC, SA, TS when applied on the graphs of the®Icategory (phase 1)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 1.7e-10 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA | effect| 1.0442 0 0.9987 0 1.0374 0 1.1315 0
TS p 1.2e-08 | 0.2400| 3.4e-06 1.5e-Q7  0.0001 4.4e111 @.0001.2e-06
effect| 0.8999 | 0.2954| 0.7372 0.9724 0.6957 0.8648 0.7848 7808.

Table 5.8 Effect size and p-values for the fitneganction values after conducting the Bonferroni teson
HC, SA, TS when applied on the graphs of the" category (phase 1)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA | effect| 1.1044 0 1.0903 0 0.7858 0 0.8629 0
TS p 4.1e-06 | 2.3e-06] 1.0e-05 1.5e-06 1.2e-p5 1.04-05 e-057| 2.3e-06
effect | 0.7310 0.5909 0.8397 0.7571 0.5297 0.6295 0.6400 962Q.

Table 5.9 Effect size and p-values for the numberf @valuated solutions after conducting the Bonferroi
test on HC, SA, TS when applied on the graphs of ¢hT"' category (phase 1)

Evaluated Solutions
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 2.0e-07 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA effect | 1.6794 0 1.6181 0 1.486% 0 1.4912 0
s p 0.0002 | 2.0e-07| 2.6e-05 2.0e-Q7 8.7e-06 4.4e-11 00.00 4.4e-11
effect | 1.0772 1.8704| 0.9268 1.8705 1.1500 1.8694  0.7738 8677.

Table 5.10 Effect size and p-values for the numbef evaluated solutions after conducting the Bonfewni
test on HC, SA, TS when applied on the graphs of éh2™ category (phase 1)

Evaluated Solutions
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA effect | 1.8559 0 1.6627 0 1.3728 0 1.1804 0
TS p 0.1400 4.4e-11 0.0280 4.4e-11 1.2e-p7 4.4erll  UAi2¢- 4.4e-11
effect | -0.1824 1.8629 0.4961 1.8668 0.9798 1.8682 1.3144 .872%
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In Table 5.11 and Table 5.12 we see that tabu lseantperforms hill climbing and
simulated annealing in drawing graph layouts withilar fithess values using a lower number
of evaluated solutions as the p-values in the sabl®w that there is a statistical significant
difference between the tabu search and the othemtethods along with very large effect
sizes. On the other hand, there is no statisticsitiyificant difference in the number of
evaluated solutions between simulated annealinghahadlimbing when applied on graphs
with a small number of nodes. However, Table 5H®@\s that there is a significant difference
between the two methods as the number of nodesases with medium effect sizes.

Table 5.11 Effect size and p-values for the numbef evaluated solutions after conducting the Bonfewni
test on HC, SA, TS when applied on the graphs of ¢hT™ category (phase II)

Evaluated Solutions

Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 1.0000 * 0.1500 * 0.0260 * 0.0340 *
SA | effect | 0.0045 0 -0.27360 O -0.5751 0 -0.4570 0

TS p 4.4e-11| 4.4e-11 4.4e-11 4.4e-11 4.4e-11 5.2e-10 e-Hl4| 4.4e-11
effect | 1.7633 1.4981 1.5434 1.3164 1.5074 1.2786 1.4538 3258.

Table 5.12 Effect size and p-values for the numbef evaluated solutions after conducting the Bonfewni
test on HC, SA, TS when applied on the graphs of éh2™ category (phase II)

Evaluated Solutions

Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 0.1700 * 0.0430 * 0.2200 * 0.0009 *
SA | effect | 0.3465 0 0.4984 0 0.3879 0 0.6480 0

TS p 8.7e-11| 6.1e-09f 4.4e-11 2.9e-09 8.7e-11 8.3¢-10 e-H14| 4.4e-11
effect | 1.4860 1.2484 1.5087 1.2869 1.4767Y 1.45[78 1.5524 3110.

Table 5.13 and Table 5.14 show that the tabu sealwhys draws graph layouts with
better quality compared to hill climbing and sinteth annealing using the same number of
evaluated solutions with medium to large effecesizvhen compared against hill climbing,
and very large effect sizes when compared agaimstlated annealing. On the other hand,
there is no significant difference between the igeal of the graph layouts drawn by hill
climbing and simulated annealing when they areiagmn graphs using the same number of

evaluated solutions.
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Table 5.13 Effect size and p-values for the fithedanction values after conducting the Bonferroni tst on
HC, SA, TS when applied on the graphs of the®icategory (phase I1I)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 0.0300 * 0.1500 * 0.2400 * 0.9200 *
SA | effect | -0.3991 0 0.0525 0 0.1075% 0 0.2562 0
TS p 1.2e-08 4.4e-11 2.3e-06 4.4e-11 4.0e{05 1.2e-07 e-040 | 1.2e-07
effect | 0.9060 1.6279 0.7494 1.563y 0.7368 1.4149 0.8186 2068.

Table 5.14 Effect size and p-values for the fitheganction values after conducting the Bonferroni tst on
HC, SA, TS when applied on the graphs of the"? category (phase 1)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
HC SA HC SA HC SA HC SA
p 0.0430 * 0.5500 * 0.0180 * 0.150d *
SA | effect| 0.4500 0 0.5625 0 -0.0928 0 0.0048 0
TS p 4.1e-06 | 1.2e-0§ 1.0e-05 2.8e-06 6.0e{06 1.2e{07 e-®9| 4.4e-11
effect | 0.7319 0.6455 0.8482 0.9581 0.5628 1.3612 0.6625 6436.

In the next section, we explore the performancthefmethods when applied to real world
datasets sourced from the Internet.

5.3 Experiments on Real World Graph Datasets

After performing several experiments on random lgsapve tested our system on real world
graph datasets to demonstrate that we can repraiindar results in a real world setting. We
selected 10 different datasets from different seaiigs shown in Table 5.1%at also indicates
the number of nodes, the number of edges, andeahsitg of each graph. The graphs have
different sizes with different densities. The ialtlayout of the nodes in each graph was
generated randomly. Hill climbing and tabu searalkehrun once on the same initial layout
whereas simulated annealing has run 30 times dirdhdom initial layout, as we previously
did. Then we calculated the median for each oBtheuns which was used in comparison with
the results of the other two methods. We testedrtethods according to phases |, 1l, and llI
described in Section 5.2.
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Table 5.15 Real world graph datasets characteristicand sources

Graph

Nodes

Edges

Density

Source

Description

34

78

0.139

(Zachary 1977)

A social network o
friendships between 34
members of a karate club
at a US university in the
1970s

62

159

0.084

(Lusseau et al. 2003)

An undirected socie
network of frequent
associations between 62
dolphins in a community
living off Doubtful
Sound, New Zealand

105

441

0.081

(Krebs n.d.)

Books about US politic
sold by the online
bookseller Amazon.com,
Edges represent the
frequent co-purchasing d
books by the same
buyers, as indicated by
the ‘customers who
bought this book also
bought these other book
feature orAmazon

12

112

425

0.068

(Newman 2006)

Thenetwork of commol
adjective and noun
adjacencies for the nove
‘David Copperfield’ by
Charles Dickens

115

613

0.094

(Girvan & Newman 2002

Thenetwork of Americar
football games between
Division 1A colleges

during regular season F4l
2000

128

2075

0.255

(Melian & Bascompte 20

A network contains th
carbon exchanges in the|
)@/press wetlands of
South Florida during the
wet season

198

2742

0.141

(Gleiser & Danon 2003

List of edges cthe
network of Jazz

musicians
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277

1918

0.05

(Choe et al. 2004)

C. elegans global netwo
of 277 neurons, and the
spatial positions of the
neurons as two-
dimensional coordinates

297

2148

0.049

(White et al. 1986)

Neural network of thi
nematode C. Elegans

10

332

2126

0.039

(Batagelj & Mrvar 2006

Undirected weighte
graph for US Air flights

The results of the experiments are shown in tlewing figures. We start with Figure

5.17 and Figure 5.18 that illustrate the resultsymblying the three methods on the real data

graphs described in Table 5.15 according to phaséhé figures assert the conclusion

formulated in Section 5.2.1 stipulating that sinethannealing draws the best graph layouts

compared to hill climbing and tabu search, but thie worst in terms of efficiency.

Fitness 0.600

Real Graph Datasets

1.200

1.000

0.800

0.400

0.200

0.000

Graph

mHC
mSA
TS

Figure 5.17 Bar chart of the fitness function valug obtained by HC, SA, TS when applied on the graph
datasets in Table 5.15 (phase I)
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Real Graph Datasets
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120000
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Evaluated 80000
Solutions  gpo00
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0 -

mHC

mSA

TS

Graph

Figure 5.18 Bar chart of the number of evaluated dations obtained by HC, SA, TS when applied on the
graph datasets in Table 5.15 (phase 1)

Figure 5.19epresents the number of evaluated solutions peedrby each method when
testing the methods on the real world graphs deesdtin Table 5.1according to phase Il. The
figure shows that our tabu search drawing algoridutperforms the other two approaches as
the size of the graph increases which supportsdhelusion we had in Section 5.2.2 when the

methods were applied on random graphs.

Real Graph Datasets

120000

100000

80000

Evaluated

. 60000 mHC
Solutions

40000 ~  ESA

20000 - | mTS

0 .
1 2 3 4 5 6 7 8 9 10
Graph

Figure 5.19 Bar chart of the number of evaluated dations obtained by HC, SA, TS when applied on the
graph datasets in Table 5.15 (phase II)

In Figure 5.20the values of the fithess function obtained by eaethod are demonstrated

following the experiment described in phase Il whapplied on the same set of data. The
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figure shows that the tabu search approach camdepe the same behaviour described in
Section 5.2.3 on the real data setting (i.e. tadarch approach produces graph layouts with
better quality compared to hill climbing and simathannealing when they evaluate the same

number of solutions).

Real Graph Datasets

1.200

1.000

0.800
Fitness 0.600 B HC
0.400 HSA
TS

0.200
0.000

Graph

Figure 5.20 Bar chart of the fitness function valug obtained by HC, SA, TS when applied on the graph
datasets in Table 5.15 (phase III)

Figure 5.21 and Figure 5.22 are examples of tlyeuks produced by hill climbing,
simulated annealing, and tabu search when appiegtaph 1 and graph 2 in the list of real

world datasets described in Table 5.15.
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Simulated Annealing Layout Tabu Search Layout

Figure 5.21 Layout of graph dataset 1 (listed in Tlle 5.15) produced by HC, SA, TS drawn within the
canvas of our visualization tool
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Simulated Annealing Layout Tabu Search Layout

Figure 5.22 Layout of graph dataset 2 (listed in Thle 5.15) produced by HC, SA, TS drawn within the
canvas of our visualization tool

5.4 Threats to Validity

In terms of threats to validity, two determiniséilgorithms and one stochastic algorithm were
applied. The deterministic methods ran on the saitial graph layout whereas the stochastic
method ran 30 different times on the same iniigblit for the same graph. The main internal
threat is in the implementation of the algorithifike three methods were implemented by the
same coder, and were run on the same machine. Ehtre possibility that one of the three

methods was implemented in a more efficient wayweieer, the methods share substantial

code that increases confidence that none was plarii disadvantaged.
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Another concern is the selection strategy foright®ur solution to break the tie when two
or more neighbour solutions have the same fitnakses. In our method, we always break the
tie by selecting the solution located on the rigiorder to test the significance of the selection
strategy, we investigated the number of times ircvi tie-break would occur by applying the
method on 40 random graphs with a minimum of 60esaahd a maximum of 110 nodes of
different layouts. Table 5.16 shows the averagelbmurof occurrences of tie-breaks along with
the average total number of solutions. The avepageentage of occurrences was below 1%
(0.25%) which concludes that the selection strategysignificant.

Table 5.16 Average tie-breaks percentage for 40 rdom graphs

Evaluated Solutions
Tie-breaks | Total Solutions| Percentage %
187.5 73758.85 0.25

In terms of external threats, a threat to the gdmzability of the results is possible.
Selection bias was avoided by using randomly géeergraphs (except in the parameters of
the generation algorithm, such as number of noddsedges). However, randomly generated
graphs generally do not have the same charactsrias real world graphs hence we also

evaluated the methods on real world data sets.

5.5 Summary

In this chapter, we described our research questaom the experiments we performed in
order to answer those questions by conducting gpadson between three neighbourhood
search-based drawing algorithms: hill climbing, siated annealing, and tabu search. Our
experiments covered the three main aspects of @wmparison: how good a layout can be
achieved by each drawing algorithm; number of eaald solutions performed by each
method to reach a particular level of layout qyalind quality of layout drawn by the
methods after a fixed number of evaluated solutidriee experimental results on random
graphs and real world graphs provided quantitagivielence to assert that the tabu search
approach can draw a graph with a good layout qualita lower number of evaluated
solutions compared to the hill climbing and the Wdemed annealing approaches. We also
conducted statistical tests which showed, along Wié large effect sizes, that the tabu search

drawing algorithm was faster than the hill climbidgawing algorithm. It produced (along
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with simulated annealing) graph layouts with betiarlity regardless of the graph size in
terms of the number of nodes and edges. On the b#mel, the efficiency of our tabu search-
based method was better than the simulated angeadtyorithm but the latter produced graph
layouts with similar or slightly better fitness uak compared to those produced by our tabu
search algorithm when both methods ran withouttéittitns on the number of evaluated
solutions. Whilst the tabu search drawing algorithutperformed the hill climbing drawing
algorithm in all aspects and rapidly produced gagpdph layouts comparable with those
produced by the slow simulated annealing, the dlgarhas potential to be further improved
and so produce better graph layouts if we couplethh methods to more effectively search
the problem space, such as path relinking, as Wealiscuss in Chapter 6.
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Chapter 6 Coupling Tabu Search with Path Relinking

This chapter shows the effect of coupling our tabarch-based graph drawing algorithm with
path relinking that also belongs to the neighboadchsearch-based algorithms. First, we
clarify the reason behind specifically choosinghpealinking to be coupled with tabu search;
second, we highlight our contribution by describthg proposed path relinking-based graph
drawing algorithm and showing the process of irdegg path relinking within tabu search

(Subsection 6.2.1) along with the calibration pescef the parameters; third, we discuss
different variations of path relinking that can irope the performance of the algorithm, we
demonstrate the algorithm of the selected variatRubsection 6.3.2) along with the tuning

process of its parameters; and at last, we giveod summary of the coupling process.

6.1 Why Path Relinking?

The main objective of integrating path relinkingthun tabu search is to speed up the
identification of good solutions. Path relinkingaiselatively new neighbourhood search-based
method which was originally proposed to improveutabarch and scatter search (Glover et al.
2000). It has proven its efficiency when being dedpwith tabu search in many multi-criteria
applications as we showed earlier in Chapter 2 gHGendreau 2006; Peng et al. 2014).
However, in a similar manner to tabu search, palinking has not yet been used in the field

of drawing general multi-criteria graph layouts.

In addition to the successful combination of tabarsh and path relinking discussed in the
literature, there are some other reasons behirttsey tabu search to be coupled with path
relinking in particular. Path relinking follows dgmatic and deterministic rules to combine
elite solutions. This is a crucial difference agaiavolutionary algorithms which use a factor
of randomness to create offspring from parent smigt Stochastic methods could be better
than deterministic when they deal with uncertasitidut since we are using fixed values for
all the weights in the fitness function in our aggeh, deterministic methods are favoured as
they give the same output when given the samalayout, unlike stochastic methods when
given the same set of parameter values and irgbaditions will lead to an ensemble of

different outputs (Kleywegt & Shapiro 2001). Conseqtly, this leads to problems of
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repeatability which requires running the stochastathod for a number of times for which we
calculate the mean or median of the generated tsutpurthermore, stochastic methods lack

good stopping criteria (Kleywegt & Shapiro 2001).

The path relinking procedure takes an initial dolutand a guiding solution selected from
the set of solutions generated by another searsbdbaethod like tabu search. Then the
relinking process is applied, where the algorithmsato gradually introduce the attributes of
the guiding solution into the solutions obtainednbgving away from the initial solution in a
systematic manner. This combination is motivatedheydesire to tunnel through blocked off
areas and infeasible regions created by the tadmectsg@rocess (Glover 1997). The tabu list
guarantees that the relinking process will onlylesg solutions which have not been visited

in the tabu search process.

6.2 Coupling Tabu Search with Path Relinking for GraphDrawing

Path relinking is a neighbourhood search-basedoapprwhich was proposed to intensify and
diversify the searching process (Glover & Lagun@7)9It starts with a set of elite solutions
that could be generated from other search-basetodetsuch as tabu search, where two
solutions are selected from that set: an initiditsan and a guiding solution. The relinking
process begins from the initial solution and seescln the neighbourhood space for
intermediate solutions. These intermediate solsti@hould introduce more attributes
contained in the guiding solution and fewer attisufrom the initial solution. The path
relinking process usually stops when any of thermediate solutions reach the guiding

solution.

There are different rules discussed in the liteggtas shown in Chapter 2 (Section 2.9),
for building the set of elite solutions, selectitige initial and guiding solutions, and
constructing a systematic and deterministic neighi@od structure to move along the paths.
In the next subsection, we describe how these coenge were selected and applied in our
basic path relinking implementation, in its simplegersion, when coupled with our tabu

search procedure as an intensification step.
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6.2.1 Algorithm

We couple our tabu search procedure with path kielinto intensify the search within a
specific space of elite solutions as described lgoAthm 6.1. This algorithm is similar to
Algorithm 4.3 plus the steps required for integrgtpath relinking within tabu search (lines 6,
30-38, and 40 in Algorithm 6.1). The path relinkimgpcedure is called within the tabu search
procedure every fixed number of iteratiomsténsifylterationy Building a reference set of
elite solutions is the first step in path relinkifidnis has a maximum sizee{Siz¢ and contains
no redundant solutions. Unlike the population inejee algorithms, the reference set in path
relinking is recommended to be relatively smalld@r et al. 2000; Ho & Gendreau 2006).
Initially, the solutions produced by the tabu skgroocedure are added to the reference set. A
solution is directly added to the reference sdbag as the set is not full. However, once the
reference set becomes full, a solution will repldeeworst solution in the set when any of the

following criteria is satisfied:

a. Quality: the fitness value of the added solutiobester (smaller) than the fitness value
of the best solution in the reference set. Thigeidormed by th&uality() function in
Algorithm 6.1.

b. Diversity: the fitness value of the added solutisrbetter (smaller) than the fithess
value of the worst solution in the set, and itissthilar to the solutions in the set. The
dissimilarity measure is computed as follows: wéngeD?, the level of dissimilarity
between solutiors and the best solutiob, as the sum of distances between the
corresponding nodes in the two graph layouts. Thigerformed by thd®iversity()
function in Algorithm 6.1. We also define the mediposition of all solutionx €

refSetrelatively to the best solutidmas:

xX*b < tDb

. iy X
median position = SxerefSet 7X.
|refSet| — 1

where fefSef denotes the number of solutions in the referesate A solutions is
included inrefSetif its fitness value is better than the fithessuealof the worst

solution inrefSetand its level of dissimilarity exceeds the mediah,> Median
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Given:

Connected Graph G(V,E): V is a set of nodes aml(¥xV) is a set of edges.

initial SquareSi ze: predefined square size where tabu search candidiatiions are located on its border.
squar eReduct i on: predefined value which represents the rate of teatuor the size of the square.

max| t erati ons: predefined maximum number of iterations of thaitabarch drawing algorithm.

initial CutOff: predefined minimum value that determines whethaosge is tabu or not.

i ntensi fyCut O f: predefined value which represents the rate ofatagtufor the currentut O f value.

intensifylterations: predefined number of iterations in which the tadmarch searching process starts
intensify.

dur at i on: predefined number of iterations in which a moveuti remain in the tabu list.

ref Si ze: predefined size for the maximum number of solidinat can be added to the reference set of pg
relinking.

Algorithm :

1. allOfsets = {(1,1), (1,0), (1,-1), (0,-1), (-1,-1), (-1, 0), (-1, 1), (O, 1)}
2: tabuSet = {}

3: squareSize = initialSquareSize , CutOf = initial CutOff

4: |ayout = Random zelLayout(G /* |layout maps each node in Gto an (x,y) position */
5: iteration = 0

6: refSet = {} /* PR enpty reference set */

7: while iteration < maxlterations do

8: for vin V do

9: currentPos = layout[v] /* position currently associated with node v */
10: currentFitness = Fitness(layout)

11: candidates = {}

12: for scaledOfset in {(squareSize*x, squareSize*y) | (x,y) in allOfsets}
13: candi datePos = currentPos + scaledOffset /* vector addition */

14: if (v, candidatePos, i) & tabuSet for sone i then

15: | ayout [v] = candi dat ePos

16: candi dat eFi t ness = Fitness(layout)

17: if candidateFitness / currentFitness > CutOff then

18: tabuSet = tabuSet U {(v, candidatePos, iteration)}

19: el se

20: candi dates = candi dates U {(candi dat ePos, candi dateFitness)}

21: end if

22: end if

23: end for

24: if candidates # {} then

25: newPos = p, where (p,f) is the pair in candidates with mnimal f

26: layout[v] = newPos

27: tabuSet = tabuSet U {(v, currentPos, iteration)}

28: end if

29: end for
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30: if !'Foundi nRef Set (| ayout) then
31: if Size(refSet) <refSize then /* not full */

32: refSet = refSet U {(layout, iteration)}

33: else

34: if Quality(layout) || Diversity(layout) then
35: refSet = refSet U {(layout, iteration)}
36: end if

37: end if

38: end if

39: if (iteration nod intensifylterations) == 0 then

40: layout = PathRelinking(refSet, iteration)

41: squareSi ze = Smal | er Squar eSi ze(squar eSi ze, squar eReduct i on)

42: cutOf = SmallerTabuCutOf (cutOfif, intensifyCutOff)

43: end if

44: tabuSet = {(v,p,i) | (v,p,i) in tabuSet and (iteration - i) < duration}
45: iteration = iteration + 1

46: end while

Algorithm 6.1 Tabu search and path relinking couplhg algorithm for graph drawing

When the path relinking procedure is called, théowang steps are performed for a set
number of iterationsRRmaxlIterationsas long as the reference set has more than tutéoso
(see Algorithm 6.2): firstly, we select two solutgofrom the reference set (initial and guiding
solutions). There are different ways for selectimgse two solutions as we show later in this
chapter. In our first version of this algorithm, select the worst and the best solutions from
the reference set to represent the initial andiggidolutions respectively, i.e. the guiding
solution is always of a better (smaller) fitnessueathan the fitness value of the initial
solution. Secondly, we remove the initial solutipom the reference set as its path to the
guiding solution will be explored. Thirdly, we calie functionMoveAlongPath(that moves
on a path from the initial solution toward the gogisolution and vice versa in the solution
space to generate intermediate solutions (see igor6.3). This scenario had produced
better results in other applications compared teingin one direction only (Ho & Gendreau
2006). These intermediate solutions should becdoszcto the guiding solution (i.e. contain
more attributes from the guiding solution and featributes from the initial solution). In our
algorithm, for each node in the initial solutiong wisit the 8 positions around a square (same

local search space described earlier in ChapteBettion 4.2.1) of a predefined size
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(pathSqrSizeand compute the Euclidean distance from eachtiposio its corresponding
node in the guiding solution, as shown in Figurk where node number 2 would move to a
neighbourhood node that has the closest Euclidestande to its corresponding node in the
guiding solution. We select the position with th®i<dest Euclidean distance. Its fitness value
is computed along with its dissimilarity level, ameé update the reference set, by calling
function UpdateReferenceSet()ff the new solution satisfies the quality andsdislarity
measures. The movement along the path requiredwditions to stop: the first is when an
intermediate solution reaches the guiding solutang the second is when the length of the
path reaches a predefined value of a maximum lepgitnLength. Note that, as we generate
intermediate solutions, we use the tabu search mebased list to avoid previously visited

solutions.

3
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Figure 6.1 Our path relinking strategy in moving from the initial solution to the guiding solution
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Given:
PRmax| t erati ons: predefined value of the number of iterations teegghe path relinking procedure.
pat hSqr Si ze: predefined square size where path relinking canelisialutions are located on its border.

pat hLengt h: predefined value representing the maximum length@path.

Algorithm :

1. i =0

2: while i < PRmaxlterations & Size(refSet) > 1 do

3: Sel ect SourceDestination(refSet, source, destination)
/* returns source and destination selected fromthe reference set refSet */

4: candi dat eLayout 1 = MoveAl ongPat h(source, destination, pathLength, pathSqrSize)
/* forward path */

5: candi dat eLayout 2 = MoveAl ongPat h(desti nation, source, pathLength, pathSqrSize)
/* backward path */

6: Updat eRef erenceSet (ref Set, M n(candi dat eLayout 1, candi datelLayout 2))
701 =i +1
8: end while
Algorithm 6.2 PathRelinking() procedure
Algorithm :

MoveAl ongPat h (source, destination, pathLength, pathSqrSize)
1: length =0
2: while source != destination || length < pathLength
3: for vin Vdo
4 posi tion = ShortestEuclidean(source[v], destination[v], pathSgrSize)
/* position with shortest distance around the square fromthe node in source to
destination */

5 fitness = Fitness(layout[position])

6 nove source[v] to position if position ¢ tabuSet

7: tabuSet = tabuSet U {(v, layout[position], iteration)}
8 end for

9 length = length + 1

10: end while

Algorithm 6.3 MoveAlongPath() procedure

6.2.2 Parameter Tuning

Our simplest version of path relinking has fourgmaeters which affect the performance of the
method: the number of times we pick initial andy&rsolutions from the reference set for
path testing PRmaxliteration the size of the reference sefSiz¢, the maximum length of

the path between the initial and the target sahstipathLength, and the size of the square

144



used to determine the neighbourhood search spaselwions in the pathpathSqrSize In

this subsection, we try to calibrate the valuethefparameters of the path relinking procedure
while fixing the values of the tabu search procedorthe ones we obtained earlier in Chapter
4 (Section 4.5.2). Note that, we could have rebcated the values of parameters for tabu
search, but we moved on since tabu search dodsanetan effect on the parameters of path
relinking (Ho & Gendreau 2006) as path relinking das separate function for search

intensification. Tabu search is only responsible Bailding the reference set used in path
relinking by adding elite solutions to the set.

The graph datasets which we used in tuning theegati these parameters were exactly
the same sets used in tuning the values of themeteas of all the previous methods as
described in Table 6.1, i.e. 100 random connectedhs, based on Erd&enyi mode] that

were divided into five sets such that each setehdififerent number of nodes and edges.

Table 6.1 Graph datasets used in parameter tuningf path relinking

Graph Set | Nodes| Edges Density Label
1 50 153 0.125 N50E153

2 100 544 0.110 N100E544

3 150 1173 0.105| N150E1173
4 200 1890 0.095| NZ200E1890
5 250 2645 0.085| N250E2645

We followed the same incremental testing processpedormed with all the other
methods. The process was divided into three phasghase |, we select arbitrary values for
all parameters then we test each parameter withralevalues. We start with one parameter,
we test it thoroughly with different values, anénhwe select the value that produces the best
layout compared to the other values. We fix theieaf the first parameter and we move on
to test another parameter in the same manner,@fath. In the second phase of parameter
tuning, we repeated the same steps we followedhese |, but instead of starting with
arbitrary values, we started with the values thatenselected and fixed from phase I. The
third phase is to study the effect of the valuestt@ path relinking parameters on the

performance of the drawing algorithm (i.e. numbleevaluated solutions).
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i. Phasel

At the beginning, we tested different values far BRmaxIterationgparameter {1, 2, 3, 4, 5},
while fixing the rest of the parameters to sometaty valuesrefSize = 5 pathLength = 10
and pathSqrSize = 10In this phase of testing, we were looking for twmbination of
parameters’ values that give the smallest fitnedsev (best quality) compared to all other
combinations regardless of the number of evalua@dtions performed by the drawing
algorithm. According to Figure 6.2, we selected tmue 5 for thePRmaxlIterations
parameter. Note that we could increase the valoiethis parameter as the figure shows that
the fitness value decreases as the number ofidesaincreases. However, we stopped at the
value 5 since the arbitrary value of the maximume 2f the reference set is small. After

testing theefSizeparameter we can choose larger value®fmaxiterationsn phase Il.
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1.000 . i S
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0.800

0.700 ——N50E153

g'igg ————a —@—N100E544

0.400

0.300 ————9 N200E1890

0.200 = N250E2645
0.100

0.000 T 1

Fitness

N150E1173

PRmaxlterations

Figure 6.2 Path relinking fithess with the PRmaxIteations parameter (phase )

After fixing the value ofPRmaxliterationswe moved on to the second parameséBize
and tested it with the values {5, 10, 15, 20, 2A%. shown in Figure 6.3, the layout became
better as the size of the reference set incre&¥bdnrefSizewas assigned the value 20 or 25,
it produced better graph layouts compared to teeakthe values. But we selected the value

20 for this parameter as the number of evaluatkdisns was lower.
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Figure 6.3 Path relinking fithess with the refSizeparameter (phase I)

The maximum length of the path between the ingiaution and the guiding solution,
pathLengthwas tested with the values {5, 10, 15, 20, 25}e Titness values of the layouts
produced by our path relinking drawing algorithmrevelose to each other, as shown in
Figure 6.4. However, on large graph datasets whetbalecrease or increase the value of this
parameter around the value 15, the fitness vakreases. Thus, we selected the value 15 for

pathLengthas the figure shows that this value gave thelagstit.
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Figure 6.4 Path relinking fithess with the pathLengh parameter (phase I)
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The square size representing the neighbourhoodlsspace around each solution in the

path was tested with the values {2, 6, 10, 14, Bgure 6.5 shows that the fithess value

decreased as the valueRdthSqrsizencreased until the value 14 was reached. Aftat tie

fitness value had increased again at the valueMs8chose the value 14 for this parameter

since it produced the best fitness values of glapbuts when applied on large graphs.
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Figure 6.5 Path relinking fitness with the pathSqr&e parameter (phase 1)

ii. Phase Il

We started with the values that were selected ied from phase I. In Figure 6.6, we show

the results of testing the value BRmaxlIterationsvith the values {3, 5, 7, 9, 11}. The figure

shows that the best layouts were produced whewdlue of this parameter was either 9 or 11.

But we selected the value 11 as it produced athfidfetter fitness value compared to the

layout’s fitness value produced when the value 8 wsed on large graphs.
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Figure 6.6 Path relinking fithess with the PRmaxIteations parameter (phase 1)

In this phase, there is no significant differenegénzen the fithess values produced when
we testedrefSizeparameter with the values {10, 15, 20, 25, 30}aptowith large graphs as
Figure 6.7 indicates that the value 25 for thisapaeter produced layouts with the best fithess

value compared to the other values of the parameter
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Figure 6.7 Path relinking fitness with the refSizgparameter (phase II)

We retested the value of tpathLengthparameter in this phase using the values {10, 15,

20, 25, 30}. Figure 6.8 shows once more that tlst filmess values were produced at value 15
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for all the categories of graphs used in this expent. The figure also shows that the fithess

values increased as the length of the path incdestagting from the value 15.
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Figure 6.8 Path relinking fithess with the pathLengh parameter (phase I1)

The results in phase | showed that increasing @daevof thepathSqrSizeparameter
decreases the value of the layout’s fitness uhélvalue of this parameter reaches the value
14. In this phase, we retested this parameter thghvalues {4, 9, 14, 19, 24}. Figure 6.9
shows that phase Il gave similar results to th@seeated in phase I. The fithess values were

at their best when the value of this parameteridas

1.000

0.900 w%— j

0.800
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Figure 6.9 Path relinking fithess with the pathSqr$&e parameter (phase II)
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iii. Phase Il

We performed a similar process to the one usediarpeter tuning of the previous drawing

algorithms discussed in Chapter 4. We took a vieat & good-enough graph layout is a
layout in which its fitness value is slightly greathan the best fitness value produced in the
experiments of phase Il. We used the values ofithess function produced by the selected
parameters’ values in phase Il and we increasech thg 12.5%. Then we ran the path

relinking procedure until it reached equal fithesdues to the target fithess values or no
further improvement in the fitness value was mdadeally, we selected the most appropriate

parameter values that gave a good layout with dl smiaber of evaluated solutions.

The best value for theRmaxIterationparameter in phase Il was 11. As we are looking to
minimise the number of evaluated solutions in pHHs&ve tested this parameter with values
smaller than 11: {4, 5, 7, 9}. The results in Tabl& and Figure 6.10 indicate that the method
produced layouts with fitness values equal or ssndlan the targeted fitness values with all
the values ofPRmaxliterationswhich we tested. However, the value 4 was the whieh
made the method generate the targeted layoutsthgtlowest number of evaluated solutions.
To ensure that there is no smaller value P&tmaxIterationswhich could produce results
better than the value 4, we tested it with the @&@unstead. But this value could not allow the
method to reach the targeted fitness value for aine tested graph datasets, as shown in
Table 6.2.

Table 6.2 Path relinking fithess with the PRmaxIteations parameter (phase IlI)

Fitness

PRmaxlterations | NSOE153| N100E544 NI150E1173 N200EDBY N250E2645
2 0.300 0.626 0.813 0.944 1.017
4 0.299 0.624 0.809 0.926 1.009
5 0.296 0.622 0.808 0.926 1.008
7 0.298 0.621 0.811 0.924 1.007
9 0.299 0.619 0.810 0.926 1.006

Target 0.303 0.634 0.825 0.941 1.029
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Figure 6.10 Path relinking number of evaluated soltions with the PRmaxlIterations parameter (phase 1)

In the previous phase, the best value for the eefar set size parameter was 25. We tested

therefSizeparameter in this phase with the values {5, 10,2T5 25}. Figure 6.11 shows that

there was no significant difference in the numbieevmluated solutions when we tested this

parameter with the values ranging from 10 to 25ly@he value 5 had generated a lower

number of evaluated solutions. However, a patmke&lg procedure with a reference set of

size 5 could not generate graph layouts with fgneslues that reach the targeted fitness

values in two graph datasets as shown in TableV@e3decided to select the value 20 for the

refSizeparameter as the fithess values produced by thirochavere better and smaller than

the targeted fitness values with a similar numbesvaluated solutions compared to the other

values of this parameter.

Table 6.3 Path relinking fitness with the refSize arameter (phase III)

Fitness
refSize N50E153| N100E544 N150E1173 N200E1890  N25gE
5 0.305 0.627 0.814 0.933 1.030
10 0.302 0.623 0.814 0.936 1.024
15 0.301 0.624 0.814 0.930 1.020
20 0.300 0.625 0.805 0.928 1.009
25 0.300 0.625 0.807 0.929 1.011
| Target | 0303 | o063 | o085 | o094 | 1029 |
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Figure 6.11 Path relinking number of evaluated soltions with the refSize parameter (phase 1)

According to the tuning process for thathLengthparameter in phase I, we obtained the

best fitness values when the value of this paramsts 15. As this value increased or

decreased, the fithess values were also becomiggrléworse). The length of the path was

tested in phase Il with the values {5, 10, 15, 28}. Figure 6.12 illustrates that the number

of evaluated solutions decreases as the valpatblengthdecreases. A path length with the

value 5 produced a lower number of evaluated soigtcompared to the other values, but the

algorithm could not reach the targeted fithess edtir one graph dataset, as shown in Table

6.4. Thus, the value 10 was the best valugp&thLengthin which it produced graph layouts

having similar fitness values to the targeted 8sgalues with a lower number of evaluated

solutions compared to the other values of thisrpatar.

Table 6.4 Path relinking fitness with the pathLengh parameter (phase Il)

Fitness

pathLength | N50E153 | N100E544| N150E1173 N200E1890 NE2645
5 0.299 0.636 0.812 0.929 1.018
10 0.299 0.626 0.807 0.929 1.014
15 0.300 0.625 0.805 0.928 1.009

20 0.300 0.627 0.819 0.947 1.023
25 0.299 0.626 0.816 0.943 1.031

\ Target \ 0.303 0.634 0.825 0.941 1.029
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Figure 6.12 Path relinking number of evaluated soltions with the pathLength parameter (phase III)

In phase I, the best value fpathSqrSizevas 14. In this phase, we retested this parameter
with the values {6, 10, 14, 18, 22}. Table 6.5 skatlvat the path relinking procedure could

reach the targeted fitness values with all the emlwe tested fopathSqrSizeOn the other

hand, Figure 6.13 shows that the number of evalustéutions decreased as the square size

increased. The figure shows that starting fromviddee 18 onwards, the number of evaluated

solutions becomes stable. Therefore, we chosedlue 1.8 for thepathSqrSiz@arameter.

Table 6.5 Path relinking fitness with the pathSqrSie parameter (phase Il1)

Fitness
pathSqrSize | N50E153| N100E544 N150E1173 N200E1890 50822645
6 0.302 0.624 0.813 0.927 1.014
10 0.294 0.625 0.810 0.932 1.016
14 0.299 0.626 0.807 0.929 1.014
18 0.300 0.622 0.812 0.928 1.019
22 0.300 0.628 0.816 0.930 1.024
Target 0.303 0.634 0.825 0.941 1.029
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Figure 6.13 Path relinking number of evaluated soltions with the pathSqrSize parameter (phase 1ll)

Now that we have tuned the parameters of the sshplkersion of path relinking for graph
drawing, we list the values for the parametershef path relinking procedure below that we

will use in the coming experiment:

PRmaxlterations = 4,
refSize = 20,
pathLength = 10,
pathSqrSize = 18.

In the following section, we discuss different wations of path relinking that could

improve the performance of the path relinking pohee in its simplest version.

6.3 Variation of Path Relinking

The performance of the path relinking proceduranituenced by the strategy used for
selecting the initial and the guiding solutions.idtalso affected by the technique used in
searching for solutions in the neighbourhood seapdrce. In this section, we describe the
different strategies applied in order to selectlibst variation of path relinking that improves
the basic implementation in terms of the perforneaawed quality of the produced layouts. We

also include experimental results which secondselgctions.
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6.3.1 Proper Selection of Initial and Guiding Solutions

Different selection strategies for the initial (soe) and guiding (destination) solutions affect
the quality of the graph layouts drawn by the patmking procedure. There are five different
variations for the selection mechanism of the segdution and the destination solution from

the reference set (Ho & Gendreau 2006):
a. The worst and the best elite solutions,
b. The best and the second best elite solutions,
c. Random selection of elite solutions,

d. The best elite solution and the most distant edgkition to the best. In our graph
layout application, the distance between two layooan be computed as the
summation of Euclidean distances between the quneng nodes in the two layouts
as described in th&i versity() function used in Algorithm 6.1 which was
discussed in Section 6.2.1. The most distant soluis the one with the maximum
summation of distances to the best elite soluti@n the most distant solutionssuch

thats € refSetand satisfies the formulaax z;zfeﬁet D?, whereb is the best solution

in refSetandD? is the level of dissimilarity between soluticandb),
e. The two most distant elite solutions.

In our basic version of the path relinking procedune started with the first strategy
where source and destination solutions were thestwamd the best elite solutions in the
reference set. But as we want to choose the vamidahat gives the best performance, we
tested the five different strategies on random ected graph datasets, as shown in Table 6.6.
We generated 40 random graphs, based on ERdagimode] divided into 4 groups such that
each group contains 10 test cases. Each group hathber of nodes and a number of edges
that varies from the number of nodes and edgdsemther groups. The results in Figure 6.14
and Figure 6.15 show that the first (a) and thetfo(d) strategies were competitive and had
better performance compared to the other strateikisig into consideration the combination

of both quality and speed.
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Table 6.6 Characteristics of the graphs used in thexperiment of selecting initial/guiding solutions

Graph Set | Nodes| Edges Density
1 55 190 0.128
2 105 611 0.112
3 155 1217 0.102
4 205 1986 0.095
1.200
1.000 I I
0800 I I I PR (a)
Fitness 0.600 I I PR (b)
PR
0.400 1 ()
I I H PR (d)
0.200 :I I PR (e)
0.000 - . . .
1 2 3
Graph Group

Figure 6.14 Fitness values with 95% confidence inteal of the strategies for selecting initial/guidirg

solutions
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Figure 6.15 Number of evaluated solutions with 95%onfidence interval of the strategies for selecting
initial/guiding solutions

We performed another comparison between those tvategies on newly generated
random datasets (described in Table 6.7) in owerodid overfitting. The graph datasets were
divided into groups in the same way which we fokavin the previous experiment. We
divided the comparison into two phases: the filsage tested the number of evaluated
solutions performed by the drawing algorithm focleatrategy as it runs until it reaches a set
fitness value; and the second phase tested thayqofthe generated graph layouts when the
drawing procedure runs for a set number of evatbatdutions. In both phases, the path
relinking procedure which was based on strateggl{ghtly outperformed the procedure with
strategy (a) in terms of speed as shown in Figuté &nd the fitness of the generated layouts
as shown in Figure 6.17.

Table 6.7 Characteristics of the graphs used in thexperiment of comparing strategies (a) and (d) for
selecting solutions

Graph Set | Nodes| Edges Density
1 150 1173 0.105
2 200 1890 0.095
3 250 2645 0.085
4 300 3363 0.075
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Figure 6.16 Number of evaluated solutions with 95%onfidence interval performed when strategies (a)
and (d) run to reach a set fitness value
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Figure 6.17 Fitness values produced with 95% confahce interval when strategies (a) and (d) run for aet
number of solutions

6.3.2 Improved Neighbourhood Searching Strategy

After improving our basic implementation of the Ipatlinking procedure by choosing the

strategy, for selecting the initial and the guidsgutions, that works best with our graph
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drawing application, we proposed another improvanmerour path relinking procedure by

examining the way the path is formed from the ahisiolution to the guiding solution.

In the basic implementation, the step-size we wasentdve from an initial solution to
intermediate solutions is fixegdthSqrSizeand it never changes as we move along the path
until we reach the guiding solution. We examinedding a variable step-size would improve
performance. Moving along the path such that thevemeent starts faster near the initial
solution and it becomes slower as it gets closeheoguiding solution in the solution space
which intensifies the search in the area of theliggi solution. This strategy is applied to both
directions: from an initial solution to a guidinglstion and vice versa. This variation
introduces two new parameters to our path relinkirecedure: number of iterations required
to update the step-sizeadcelerationPeriofi and the rate of decreasing the step-size
(accelerationRate The net effect is to search more closely tot#te known solutions than in
the space between them. Note that, moving in aabigristep-size will not exclude the
solutions in the middle of the path. They will haavéair exploration time, as the acceleration
takes place at one end and slows down at the etitem both directions. However, according
to Sanchez-Oro & Duarte (2012), the best solutese usually detected near the guiding

solution since the main purpose of path relinkstensifying the search near elite solutions.

Before we compare between those two strategiesdfstep-size or variable step-size), we
need to select proper values for the newly intreduparameters while fixing the other
parameters of path relinking to the values whichrewdetermined earlier in Section 6.2.
Therefore, we firstly chose initial arbitrary vatuér those parameters and we performed a
tuning process on those values by applying the oadetin randomly generated graph layouts.
We generated 50 random graphs, based on Bdagi mode] split into 5 groups, as shown

in Table 6.8, such that each group contains 10ctesds.
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Table 6.8 Characteristics of the graph datasets uddor choosing proper values for the acceleratioPéd
and accelerationRate parameters

Graph Set | Nodes| Edges Density Label
1 50 156 0.128 N50E156
2 100 549 0.111 N100E549
3 150 1173 0.105| N150E1173
4 200 1970 0.099 | N200E1970
5 250 2583 0.083| N250E2583

We performed two rounds of tuning the values atcelerationPeriod and
accelerationRateln the first round, we fixed the value a€celerationRaté¢o 0.01, and we
examined a set of values for the other parameteb {10, 15, 20}. We were looking for the
value that gives the best fithess compared to tier walues and if we get a tie, we select the
one that gives a lower number of evaluated solstidrhe line charts in Figure 6.18 and
Figure 6.19 show that the fitness value and numb&valuated solutions performed by the
drawing algorithm become stable after the value th@t we selected as a value for
accelerationPeriodn this round.
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M
0.700 — ” : v :
0.600
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Fitness 0.400 -% = u == N100E549
0.300 N150E1173
0.200 - 0: . > > =3é=N200E1970
=== N250E2583
0.100
0.000 T T T T ]
0 5 10 15 20 25
accelerationPeriod

Figure 6.18 Fitness values of the layouts for theathsets in Table 6.8 when examining the values dfet
accelerationPeriod parameter (1 round)
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Figure 6.19 Number of solutions for drawing the laguts for the datasets in Table 6.8 when examinindn¢

To select a proper value for treccelerationRateparameter, we fixed the value of

values of the accelerationPeriod parameter {iround)

accelerationPeriodto 10, and we examined the following values fag #HtcelerationRate

{0.01, 0.05, 0.10, 0.15, 0.20}. The results in Fey6.20 indicate that the value 0.01 is the one
which should be selected as it generates layouts beétter fitness values compared to the
other values in the set. There is no need to exahie@ number of evaluated solutions since
the values of fitness function are small with Oddceleration rate. We could have tested

smaller values, but our main target in this tunimgcess was getting a proper starting value

not the final value of the parameter.
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Figure 6.20 Fitness values of the layouts for theathsets in Table 6.8 when examining the values dfe
accelerationRate parameter (I round)

We performed another round for calibrating the galdior both parameters in the same

manner which we followed in the first round but used the values which we got in the first

round as starting values. The set of values useddcelerationPeriodn the second round

was {6, 7, 8, 9, 10}. The fitness values were cltiseach other as shown in Figure 6.21, with

an advantage to the value 9 in some graph layguéplis with group label N1OOE549 for

example). So, we picked that value &mcelerationPeriocand we examined the following set
of values foraccelerationRatg0.01, 0.02, 0.03, 0.04, 0.05}. Again, we selectbd value

0.01 with reference to the results demonstratddgare 6.22.
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Figure 6.21 Fitness values of the layouts for theathsets in Table 6.8 when examining the values dfe
accelerationPeriod parameter (2 round)
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Figure 6.22 Fitness values of the layouts for theathsets in Table 6.8 when examining the values dfe
accelerationRate parameter (¥ round)

After selecting reasonable values for the newlyoihiced parameters, we implemented a
comparison between the path relinking procedurb witixed (constant) step-size for moving
along the path, and the same procedure but withareable step-size. We applied both
strategies on four groups of randomly generatechected graph layouts, based on Erdos
Renyimode| with a different number of nodes and edges as showable 6.9.
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Table 6.9 Characteristics of the graph datasets uden the comparison between the two strategies for
moving along the path

Graph Set | Nodes| Edges Density
1 150 1229 0.11
2 200 1990 0.1
3 250 2801 0.09
4 300 3588 0.08

The two variations used the same values of all palihking parameters except for the
newly introduced parameters as they are only rli¢he variable step-size strategy. We ran
both of them until reaching the stopping criteridime results showed that using a variable
step-size to move along the path can produce begttgrh layouts with a lower number of

evaluated solutions than a fixed step-size stratagyghown in Figure 6.23 and Figure 6.24.
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Figure 6.23 Fitness values with 95% confidence imteal for the layouts of the datasets in Table 6.9 hien
applying the two strategies of moving along the pat
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Figure 6.24 Number of solutions with 95% confidencénterval for the layout of the graph datasets in Bble
6.9 when applying the two strategies of moving algnthe path

Our improved path relinking procedure will add sosfenges to Algorithm 6.2 and
Algorithm 6.3 that were discussed in Section 6.21de two parametersccelerationPeriod
and accelerationRate will be introduced in thePathRelinking() and MoveAlongPath()
procedures, as shown in Algorithm 6.4, where the parameters have been added to the list
of parameters of th®oveAlongPath(procedure, and in Algorithm 6.5 (Line 5 and Line 6
where both parameters are used to intensify theclsieg process. Note that, the stopping
conditions for moving along the path are still Hane as described in Algorithm 6.3: the first
is when an intermediate solution reaches the ggigdwlution, and the second is when the

length of the path reaches a predefined valuenoddamum length.

Since the results of the experiment show that theable step-size strategy used in
moving along the path is better than the fixed -siep strategy, we performed an intensive
parameter tuning on all the parameters of our iwvguigpath relinking procedure, as will be
described in the next section, in order to get lad sgraph drawing algorithm that can be

compared with simulated annealing and tabu seaagphgdrawing algorithms.
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Given:

PRmax| t erati ons: predefined value of the number of iterations teegphe path relinking procedure.
pat hSqr Si ze: predefined square size where path relinking canelisialutions are located on its border.
pat hLengt h: predefined value representing the maximum lengthepath.

accel erati onPeri od: predefined number of iterations required for upttathe searching step-size.

accel erati onRat e: predefined value representing the rate of decrgabmsearching step-size.

Algorithm :

1: i =0

2: while i < PRmaxlterations & Size(refSet) > 1 do

3:  Sel ect Sour ceDesti nation(refSet, source, destination)

/* returns source and destination selected fromthe reference set refSet */

4: candi dateLayout1l = MoveAl ongPat h(source, destination, pathLength, pathSqrSize,
accel erationRate, accelerationPeriod) /* forward path */

5: candi dateLayout 2 = MoveAl ongPat h(desti nati on, source, pathLength, pathSqrSize,
accel erationRate, accelerationPeriod) /* backward path */

6: Updat eRef erenceSet (ref Set, M n(candi dat eLayout 1, candi dat eLayout?2))

o=+ 1
8: end while
Algorithm 6.4 Improved PathRelinking() procedure
Algorithm :
MoveAl ongPat h (source, destination, pat hLengt h, pat hSar Si ze, accel erati onRat e,

accel erati onPeri od)

length = 0
updat eSquare = 0
whil e source !'= destination || length < pathLength

for vin V do

if length nmod accel erationPeriod == 0 then /* variable step-size for a path nove

updat eSquare += accel erationRate

end if

position = ShortestEuclidean(source[v], destination[v], pathSgrSize + updateSquare)
/* position with shortest distance around the square fromthe node in source to

e Nk whR

destination */
10: fitness = Fitness(layout[position])
11: nove source[v] to position if position ¢ tabuSet

12: tabuSet = tabuSet U {(v, layout[position], iteration)}

13: end for
14: length = length + 1
15: end while

Algorithm 6.5 Improved MoveAlongPath() procedure
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6.3.3 Parameter Tuning

There are six parameters which affect our improvath relinking procedure: the number of
iterations to repeat the path relinking procedi®rfiaxiteration the size for the maximum
number of solutions that can be added to the nefereset of path relinking€fSiz¢, the
maximum length of the patipdthLength, the square size where path relinking candidate
solutions are located on its bordpathSqrSizg the number of iterations required to update
the size of the squaradcelerationPerioyl and the rate of decreasing the searching shep-si
(accelerationRate

For tuning the values of these parameters, we eppdur improved graph drawing
algorithm on 100 random connected graphs which warneed into five sets such that each
set had a different number of nodes and edgessasided in Table 6.10.

Table 6.10 Characteristics of the graph datasets ad in tuning the parameters of our improved TS+PR
graph drawing algorithm

Graph Set | Nodes| Edges Density Label
1 50 147 0.120 N50E147
2 100 519 0.105 N100E519
3 150 1117 0.100 | N150E1117
4 200 1791 0.090| N200E1791
5 250 2490 0.080 | N250E2490

Since the improved procedure is called within @outsearch drawing algorithm, we used
the same values of the parameters of tabu seaatwthobtained in Chapter 4 (Section 4.5.2).
On the other hand, in order to calibrate the valfethe parameters of the improved path
relinking, we followed the same incremental testimgcess we performed with all the other
methods. The process was divided into three phdeephase I, we selected the values
according to our previous parameters testing dmsdriin our basic path relinking
implementation in Section 6.2.2 and the valueshefriewly introduced parameters described
in Section 6.3.2. In phase Il of the experimentalcpss for tuning the parameters of our
improved path relinking procedure, we performedth@oround of further tuning similar to
the process we followed in phase | using diffegnaph datasets but with the same number of
nodes and edges. In phase lll, we focused on th#auof evaluated solutions performed by

the drawing algorithm when it reached a certaimefis value.
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i. Phasel

In phase |, we selected the values according topoerious parameters testing described in
our basic path relinking implementation in Secti6r2.2 and the values of the newly
introduced parameters described in Section 6.32. ifitial values of the parameters were:
PRmaxlterations= 4, refSize= 20, pathLength= 10, pathSqrSize= 18, accelerationPeriod=

9, accelerationRate= 0.01.We started with one parameter, tested it thoroughily different
values, and selected the value which draws laywitbsthe minimum fitness value compared
to the other values. If the fitness values were dlmse to each other, we would select the
values based on the ones which performed the lawasber of evaluated solutions. We fixed
the value of the first parameter and we moved onesd another parameter in the same

manner, and so forth.

We started the tuning process with Bigmaxliterationgparameter by testing the values of
the set {1, 4, 7, 10}. Figure 6.25 shows that iasiag the value of this parameter would
minimise the value of the fitness function of thengrated layout. According to the set of

values which we tested, the best value to choosel@a
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Figure 6.25 Fitness values of the improved drawinglgorithm when tuning the PRmaxlIterations
parameter (phase 1)
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In the next parametendfSiz¢, we selected the set {10, 20, 30, 40} to be used
calibrating this parameter. With reference to F&g6r26, the best value foefSizethat gave
the best fitness value was 20. Note that, all #stetd values led to producing very close
fitness values, but as the value of this parameteeases, it slightly increases the number of
evaluated solutions, as shown in Figure 6.27. Wectsl the value 20, as it gave a fitness
value (on the graphs with label N250E2490) that slaghtly better than the other values and
the number of evaluated solutions performed byatigerithm when using this value is less

than the evaluated solutions when we test thispater on the values 30 and 40).
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Figure 6.26 Fitness values of the improved drawinglgorithm when tuning the refSize parameter (phasé)
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Figure 6.27 Number of evaluated solutions of the iproved drawing algorithm when tuning the refSize
parameter (phase 1)

The length of the path from the initial solution ttee target solutionp@thLength was
tested with the following set of values: {10, 2@, 310}. After testing all these values, we
selected the value 20. We chose this value althd@udjd not give better fithess compared to
the value 10 on small graphs, but it has the saemawour on larger graphs as shown in
Figure 6.28. We first need to test the effect & ithitial square size value on longer paths. If

the effect is not significant, then we could selbetvalue 10 in phase Il of parameters testing.
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Figure 6.28 Fitness values of the improved drawinglgorithm when tuning the pathLength parameter
(phase I)

ThepathSgrSizeparameter was tested with the values {5, 10, @k, Rccording to Figure
6.29, the best value that could be picked is 26esthe fithess value was slightly smaller as
the graph size became larger. The value 15 alsdupeal good results but when applied on

larger graphs, the value 20 was better.
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Figure 6.29 Fitness values of the improved drawinglgorithm when tuning the pathSqrSize parameter
(phase I)
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To test the effect of thaccelerationPeriodparameter, we tested it with the following
values: {1, 5, 9, 13}. Figure 6.30 shows that chagghe value of this parameter did not
greatly affect the value of the fitness functionit Bigure 6.31 shows that increasing the value
of this parameter would slightly increase the numifeevaluated solutions. That is why we
chose the value 5 although there was no big diiferevith the fithess values produced when
accelerationPeriodvas set to 9 or 13, but it was better on largaplas with a lower number
of evaluated solutions.
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Figure 6.30 Fitness values of the improved drawinglgorithm when tuning the accelerationPeriod
parameter (phase I)
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Figure 6.31 Number of evaluated solutions of the iproved drawing algorithm when tuning the

accelerationPeriod parameter (phase I)

The last parameter that was tested in phase laseserationRatevhich was tested with

the values {0, 0.05, 0.1, 0.15}. Increasing theueabf this parameter resulted in an increase in

the value of the fithess function as shown in Feg@r32 when the values went beyond the

value 0.05. On the other hand, setting the valtetlis parameter had produced larger fitness

values compared to those when the value 0.05 vwsagnasl to this parameter. Therefore, we

chose the value 0.05 in this phase, but in the phese, we will test the value of this

parameter with a set of values in the range betWesard 0.05 to examine the behaviour of the

fitness function in that specific range.
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Figure 6.32 Fitness values of the improved drawinglgorithm when tuning the accelerationRate
parameter (phase 1)

ii. Phase Il

We performed another round of further tuning simitathe process we followed in phase |
using different graph datasets but with the sammbau of nodes and edges, as described
earlier in Table 6.10. In this phase, all the patars started with the values which were
chosen in the first phase. When a parameter wésdtes set of values that are close to the
value that was chosen in the previous phase wastedl The behaviour of the drawing
algorithm was similar to its behaviour in the pas phase for all the parameters with a slight
change in the selected values of the parametece $he set of values was different in this
phase. The parameters were assigned the followaiges at the end of this phase:
PRmaxlterations 10, refSize= 20, pathLength= 15, pathSqrSize 20, accelerationPeriod-

5, accelerationRate 0.0025.
iii. Phase lll

We selected the values of the parameters that rtfaglelgorithm implement the lowest
number of evaluated solutions. We assumed thatod-goough graph layout is a layout in
which its fitness value is slightly larger than thest fitness value produced in the experiments

of the previous phase as we explained earlier iap@r 4 (Section 4.3.2). We set a target
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fitness value for each test case (from phase Ih\ait increase of 12.5%) and we tested
number of evaluated solutions required to reach thhie. The value of the parameter that
gave the minimum number of evaluated solutions wiagsen. Different graph datasets
(different layouts) were randomly generated andlusehis phase as well, but with the same

number of nodes and edges of the previous two phase

The initial values of the parameters in this phasee the final values which were chosen
from the previous phase. We started with BiRemaxliterationgparameter by testing a set of
values {2, 4, 6, 8, 10}. Although the value 2 wouldhke the algorithm perform the lowest
number of evaluated solutions as shown in Figudg,6t did not reach the target fithess on
the small graph layouts according to the highlightell in Table 6.11. Thus, we picked the
value 4 since the algorithm had reached the tditpetss value with all graph layouts and it
had performed the lowest number of evaluated swisti

Table 6.11 Fitness values reaching a target valug lthe improved drawing algorithm when tuning the
PRmaxlterations parameter (phase lll)

Fitness

PRmaxlterations N50E147 | NI100E519 N150E1117 N200E1N79 N250E2490
2 0.180 0.372 0.483 0.574 0.644
4 0.164 0.376 0.484 0.574 0.644
6 0.161 0.377 0.484 0.574 0.645
8 0.163 0.379 0.483 0.572 0.643
10 0.161 0.377 0.483 0.573 0.642

Target 0.164 0.382 0.487 0.581 0.650
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Figure 6.33 Number of evaluated solutions of the iproved drawing algorithm when tuning the
PRmaxlterations parameter (phase Ill)

For the size of candidate elite solutions in thierence setrefSize we examined the
following set of values: {12, 16, 20, 24}. The highted cells in Table 6.12 show that the
algorithm could not reach the target fitness vallrenrefSizehad the values 16 or 24. With
reference to Figure 6.34, we selected the valugrite the algorithm had performed a slightly
lower number of evaluated solutions compared toprdormance of the algorithm when the
value 12 was assigned to tte¢Sizeparameter.

Table 6.12 Fitness values reaching a target valueg the improved drawing algorithm when tuning the
refSize parameter (phase Ill)

Fitness
refSize N50E147 N100E519 N150E1117 N200E1791 N250HP
12 0.164 0.375 0.484 0.573 0.644
16 0.165 0.376 0.484 0.574 0.644
20 0.164 0.376 0.484 0.574 0.644
24 0.165 0.376 0.484 0.574 0.644
Target 0.164 0.382 0.487 0.581 0.650
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Figure 6.34 Number of evaluated solutions of the iproved drawing algorithm when tuning the refSize
parameter (phase lll)

The third parametempathLength was tested with the values {11, 15, 19, 23}. Narfe

these values (except the value 15) could help therithm in reaching the target fitness

values for all the graph layouts as shown in tighlighted cells of Table 6.13. Therefore, we

selected the value 15 since it was the only onert#eched the target fithess value for all the

test cases.

Table 6.13 Fitness values reaching a target valueg Ithe improved drawing algorithm when tuning the

pathLength parameter (phase IIl)

Fitness
pathLength | N50E147 | N100E519] N150E1117  N200E179L  NER490
11 0.242 0.367 0.471 0.568 0.639
15 0.164 0.376 0.484 0.574 0.644
19 0.167 0.373 0.511 0.579 0.644
23 0.172 0.376 0.516 0.579 0.644
Target 0164 | 0382 | 0487 0.581 0.65

Two out of the four values {12, 16, 20, 24} whiclewsed for tuning the fourth parameter,

pathSqrSizeled to the failure of the algorithm to reach tamget fitness value as shown in the

highlighted cells of Table 6.14. With reference~igure 6.35, we chose the value 20 although

the values 12 and 16 gave a lower number of evadusblutions on small graph layouts, but

that was not the case with large graph layouts wiscmore important to us in this phase
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since we are trying to improve the performancehefdrawing algorithm. On the other hand,

the value 24 did not reach the target fithess valusmall graph layouts.

Table 6.14 Fitness values reaching a target valug Ithe improved drawing algorithm when tuning the
pathSqrSize parameter (phase lll)

Fitness
pathSqrSize N50E147 N100OE519 N150E1117 N200E1791 5022490
12 0.165 0.376 0.483 0.577 0.644
16 0.164 0.377 0.480 0.576 0.643
20 0.164 0.376 0.484 0.574 0.644
24 0.170 0.377 0.480 0.573 0.644
Target 0164 | 0382 | 0487 | 0581 0.65
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Figure 6.35 Number of evaluated solutions of the iproved drawing algorithm when tuning the
pathSqrSize parameter (phase Ill)

During the tuning process of the fifth parametecelerationPeriodthe behaviour of the
algorithm was not clear when we chose a set of f@ues only for tuning the parameter.
Thus, we increased the number of values in ordexsmine the behaviour of the algorithm
and to get a proper indication of its performaridee following values were tested: {2, 3, 4, 5,
6,7,8,9, 10}.

After testing all the values, we selected the valieto be assigned to the

accelerationPeriogparameter. This value did not reach the targeé¢d$is on the smallest graph
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dataset as shown in Table 6.15, but as Figureifdéates, the number of evaluated solutions

had greatly dropped down with value 7. Since oumntarget was to speed up the drawing

process while generating good graph layouts, waelloe value 7 because there was no big

difference in the number of evaluated solutionshassize of the graph layouts increased. On

the other hand, the algorithm had generated grapbuts with fitness values which reach the

target fitness values for all graphs when the walde and 5 were assigned to the

accelerationPeriogparameter, but the number of evaluated solutioms wery large when the

graph size increased.

Table 6.15 Fitness values reaching a target valug lthe improved drawing algorithm when tuning the

accelerationPeriod parameter (phase IlI)

Fitness
accelerationPeriod N50E147| N100E51¢9 N150E1117 N2A0@1 | N250E2490
2 0.185 0.403 0.511 0.580 0.644
3 0.168 0.381 0.507 0.579 0.645
4 0.164 0.375 0.483 0.579 0.645
5 0.164 0.376 0.484 0.574 0.644
6 0.172 0.375 0.482 0.569 0.640
7 0.205 0.373 0.479 0.568 0.641
8 0.245 0.372 0.479 0.566 0.640
9 0.254 0.372 0.474 0.570 0.641
10 0.255 0.368 0.477 0.569 0.640
Target 0.164 0.382 0.487 0.581 0.65
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Figure 6.36 Number of evaluated solutions of the iproved drawing algorithm when tuning the
accelerationPeriod parameter (phase IlI)

With the last parameteaccelerationRatewe had a similar situation to the one we had in
the previous parameter, where the behaviour oalfparithm was not very clear with the four
values we initially chose. Therefore, we tested tharameter with many values {0.001,
0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.004m5}. After testing all these values,
there were two values which could be selectedHisr parameter: 0.002 or 0.0025. When the
parameter was assigned any of these two valuesutmber of evaluated solutions performed
by the algorithm was minimum compared to the otladues. Although the target fithess value
was not reached when those two values were seleatéige smallest graph layouts only, but
that was the case also when all the other values tested as shown in the highlighted cells
of Table 6.16. Since we were looking to generatadggraph layouts besides speeding up the
algorithm to lay out larger graphs, we chose thkie/@.002 as the number of evaluated
solutions was the lowest, in most of the test casampared to all other values as shown in
Figure 6.37.
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Table 6.16 Fitness values reaching a target valug the improved drawing algorithm when tuning the
accelerationRate parameter (phase Il)

Fitness
accelerationRate N50E147 N100E519 N150E111]/ N200B17| N250E2490

0.001 0.255 0.384 0.473 0.557 0.644
0.0015 0.258 0.359 0.453 0.555 0643
0.002 0.250 0.370 0.478 0.562 0.640
0.0025 0.205 0.373 0.479 0.568 0.641
0.003 0.168 0.374 0.480 0.569 0.642
0.0035 0.165 0.377 0.480 0.573 0.644
0.004 0.165 0.378 0.485 0.576 0.643
0.0045 0.164 0.383 0.494 0.580 0.644
0.005 0.165 0.382 0.499 0.584 0.645
Target 0.164 0382 | 0487 | o581 | o065
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Figure 6.37 Number of evaluated solutions of the iproved drawing algorithm when tuning the
accelerationRate parameter (phase Ill)

After finishing the tuning process for all the paeters of the improved path relinking

procedure, we list the value of each parameterhwvitt be used in our coming experiments:

PRmaxlterations- 4
refSize= 20
pathLength= 15
pathSqrSize 20
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accelerationPeriods 7

accelerationRates 0.002

6.4 Summary

Path relinking is a relatively new neighbourhoodrsk-based method that has proved its
effectiveness in many multi-criteria optimisatiomplems especially when coupled with other
search-based methods as an intensification stehidrichapter, we described our basic graph
drawing algorithm which was based on a couplingadiu search and path relinking. The
desire to tunnel through blocked off areas credigdabu search solutions was the main
reason for choosing the path relinking proceduredaple with tabu search to intensify the
searching process between an initial and a guidmigtions selected from a set of elite
solutions generated by the tabu search drawingitiga A first round of parameter tuning

was performed to calibrate the values of the bparameters of the path relinking procedure.
Two improvements were proposed and applied on #th pelinking procedure: a proper

selection of the initial and the guiding solutidnsm the reference set of elite solutions, and
an improved neighbourhood searching strategy based variable step size. The proposed
improvements introduced two new parameters thatdcadfect the performance of the

procedure. Therefore, we performed a final roundhef parameters calibration process in
order to assign reasonable values for each parainetere we examine the performance of
our improved neighbourhood search-based method a@mdpgo other neighbourhood search

methods.

In the next chapter, we conduct an experimentdbasists of three phases, with the aim to
perform a comprehensive comparison, in terms obpeed of the drawing algorithm and the
quality of the generated layouts, between thregghieiurhood search-based methods:
simulated annealing, tabu search, and our impr@eegling of tabu search with the path

relinking procedure.
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Chapter 7 Experimental Results for Comparing Tabu arch with
Path Relinking Versus Simulated Annealing

This chapter demonstrates the effect of couplirgtéiibu search graph drawing algorithm with
path relinking. A comparison with simulated anneglis made by applying the methods on
random and real world graph datasets. It alsotititess the process we followed for analysing
the performance of our method and for testing dalability. The experimental results are

presented along with our comments and conclusions.

7.1 Introduction

In the previous experiment that was described iapB#r 5, we concluded that simulated
annealing and tabu search graph drawing algoritbamsgenerate graph layouts with better
fithess values compared to the ones generatedIlwlitmbing. In this chapter, we want to test
the effect of coupling path relinking with our tabearch algorithm. In this experiment, in spite
of using new randomly generated datasets, we exdliicclimbing for two reasons:

» The results of the previous experiment showed thiflt climbing performed
considerably worse than both tabu search and sietlnnealing in all phases when

being applied on random datasets and real workkdts;

* One of the main drawbacks of hill climbing is gagtitrapped in local optima, unlike
tabu search which does not run out of solutionsM@slescribed earlier in Chapter 4).
That behaviour of hill climbing conflicts with tHact that building a reference set for
path relinking requires diversity in the elite daus generated by the other search

algorithm in the pre-processing step.

Here, we need to answer the following questioroeé® coupling the tabu search method
with path relinking improve the performance of tabu search graph drawing method?’ To
answer this question we had to implement and etama improved method against simulated
annealing and pure tabu search graph drawing #igmi We use the same system
specifications and the same three phases of eimlgghat were implemented in our previous

experiment, that include: finding the best laydwattcan be achieved (phase 1); how long it
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takes to generate a layout to a particular leveguallity (phase I1); and how good the quality of
the layout is after a fixed number of evaluatedusohs (phase lll). The values of the
parameters for each method were assigned accdadthg selections we made after the tuning

process, as described earlier in Chapter 4 andt@hap

In order to avoid overfitting, where the drawirlgaithm could be tailored to the dataset
used in the first experiment, we generated newarmngraph datasets in this experiment, based
on ErdosRenyi model that were also divided into two categgrusing the same procedure we

followed for generating random graphs in our pragicomparison.

In the first category, we had 80 random graphg spb 4 groups of 20 test cases. All the
graphs in this category had 160 nodes, randomligipiosd. Each group had a different number
of edges so that the density varied. The grapleaain group had the same number of nodes
and edges but with different random layouts. Sd#elra.1 for the characteristics of the graphs
in the first category. The graphs of the seconégmly were generated in the same way as
those graphs of category Il described in the previexperiment. See Table 7.2 for the

characteristics of the graphs in the second cagegor

Table 7.1 Characteristics of the graphs in the®Lcategory used in comparing PR+TS, TS, and SA

Graph Set | Nodes| Edges| Density
1C 160 572 0.045
2C 160 1208 0.095
3C 160 1844 0.145
4C 160 2480 0.195

Table 7.2 Characteristics of the graphs in the™ category used in comparing PR+TS, TS, and SA

Graph Set | Nodes| Edges| Density
1D 60 221 0.125
2D 110 659 0.110
3D 160 1272 0.100
4D 210 2139 | 0.0975
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7.2 Experiments on Random Graph Datasets

In a similar scenario to the experiments which wesaducted in Chapter 5, we divided our
experiment into three phases. The first phase &xus the overall performance for each
method where all the methods run until they congbyetinish execution; the second phase
evaluates the speed of each algorithm when itfame particular level of quality; and the third

phase investigates the quality of the drawn layafits a fixed number of evaluated solutions.

The experiment includes two deterministic meth@uisre tabu search and tabu search
coupled with path relinking) and one stochastic hodt (simulated annealing). When the
deterministic methods were applied on severaldasés from a group of graphs with similar
characteristics but with different initial layoutse computed the average for the fitness values
and the average of the number of evaluated sokifmneach group of graph layouts to use in
our comparison. But that was not the case with ksited annealing as it is a stochastic method.
For each test case, we ran a simulated annealayghgirawing method on the same initial
layout 30 times, then, we computed the median.aMeeage of medians was calculated for the
30 runs of each test case and was compared toethdts obtained after applying the
deterministic methods.

7.2.1 Phase |

The three methods were applied on the datasetsilole$dn Section 7.1. In this phase, we
tested the overall performance of each method Imning each method until it finishes
regardless of how long it took to execute. Figurke &d Figure 7.2 show the values of the
fitness function when the three methods were apmiethe graph datasets of the first and the
second categories respectively, whereas Figureaid® Figure 7.4 show the number of

evaluated solutions performed by each method whphea on the same datasets.
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Figure 7.1 Bar chart with 95% confidence interval ¢ the fithess function obtained by TS, SA, PR+TS
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Figure 7.2 Bar chart with 95% confidence interval ¢ the fithess function obtained by TS, SA, PR+TS

when applied on the graphs of the"® category (phase 1)
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Figure 7.3 Bar chart with 95% confidence interval é the number of evaluated solutions obtained by TS,
SA, PR+TS when applied on the graphs of the™category (phase 1)
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Figure 7.4 Bar chart with 95% confidence interval ¢ the number of evaluated solutions obtained by TS,
SA, PR+TS when applied on the graphs of the"®category (phase 1)

Figure 7.5 and Figure 7.6 demonstrate the executioa (in seconds) when the three
methods were applied on the data of the first @odrsd categories respectively. We conclude
from these two figures that the execution time eéases as the number of nodes in the graph
increases as shown in the results of the dataeokdélcond category (Figure 7.6), unlike the

data of the first category where the number of saddixed.
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Figure 7.5 Bar chart with 95% confidence interval ¢ execution time (in seconds) obtained by TS, SA,
PR+TS when applied on the graphs of the*icategory (phase I)
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Figure 7.6 Bar chart with 95% confidence interval ¢ execution time (in seconds) obtained by TS, SA,
PR+TS when applied on the graphs of the"? category (phase )

In order to analyse the overall performance ofttliee methods and to examine how good
a layout can the methods achieve, we combineddbelts of both categories into one bar
chart as presented in Figure 7.7 which shows tfferdhce between the three methods in
terms of the lowest fitness that can be obtaineddmn method. Another bar chart is presented
in Figure 7.8 that shows the number of evaluatddtisns required to reach those lowest

fithess values.
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The advantage of coupling tabu search with pathnkielg is very clear in Figure 7.7 as
this combination had produced graph layouts witlv iithess values compared to those
layouts produced by pure tabu search and simulateckaling. However, the number of
evaluated solutions performed by the coupled meti®targer than the other two methods, as
shown in Figure 7.8. The statistical analysis &f filness values and the number of evaluated
solutions presented in Table 7.3 and Table 7.4rekttus conclusion.

Note that the large number of evaluated solutionshfe coupled methods is justified since
the analysis of this phase is based on the ovpealbrmance of the methods when they run
until they finish using the best values of paramsetehich were selected in the tuning process.
The coupling of tabu search and path relinking ilegumany iterations in order to get the
lowest fitness value that can be obtained. But ¢bimbination can still produce good graph
layouts with a lower number of evaluated soluti@asswill be shown in the following two
phases. The figures in Appendix B (B.1 and B.2)samaples of the layouts drawn by the three
algorithms when applied on the graph datasets ibescrin Table 7.1 and Table 7.2

respectively.
0.9
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Fitness
0.4 I mSA
0.3
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0.0 1
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Figure 7.7 Bar chart with 95% confidence interval d the average overall fitness function obtained by'S,
SA, PR+TS when applied on the graphs of both categes (phase I)
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Figure 7.8 Bar chart with 95% confidence intervialhe average overall number of evaluated solutabtained
by TS, SA, PR+TS when applied on the graphs of batkgories (phase 1)

Table 7.3 Statistical analysis of the fitness funicin for TS, SA, PR+TS when applied on the graphs dfoth
categories (phase I)

Fitness
TS
Gg;g;h Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value
1c 0.242 0.242 0.272 0.214 0.493 0.492 0.509 0.486 | 0.506 0.505 0.549 0.463 1.38E-07|
2C 0.382 0.382 0.403 0.359 0.772 0.772 0.782 0.756 | 0.825 0.821 0.923 0.741 5.33E-09
3C 0.468 0.469 0.525 0.404 0.905 0.907 0.913 0.886 | 0.951 0.956 0.988 0.906 2.06E-09
4c 0.585 0.593 0.629 0.534 0.999 1.000 1.006 0.991 | 1.042 1.038 1.084 0.988 5.33E-09
1D 0.315 0.314 0.360 0.26§ 0.353 0.355 0.368 0.338 | 0.398 0.388 0.591 0.328 8.74E-07|
2D 0.300 0.294 0.333 0.27§ 0.598 0.596 0.613 0.583 | 0.634 0.628 0.700 0.592 5.33E-09
3D 0.397 0.399 0.437 0.363 0.792 0.791 0.803 0.786 | 0.857 0.846 1.148 0.782 1.25E-08|
4D 0.489 0.487 0.536 0.43] 0.984 0.991 0.999 0.938 | 1.021 1.028 1.080 0.946 5.06E-08
Overall 0.397 0.398 0.437 0.357] 0.73 0.738 0.749 .720 0.779 0.776 0.883 0.71
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Table 7.4 Statistical analysis of number of evaluatl solutions obtained by TS, SA, PR+TS when applied
on the graphs of both categories (phase I)

Evaluated Solutions

Graph

Set Mean Median Max Min Mean Median Max Min Mean Medial Max| Min p-value
ic 104515| 104487| 10809 9966! 76002 | 75983 76177 75874| 47176 | 47181 | 47501 | 46872| 2.06E-09
2C 104022 | 103990 10938 9917Y 76769 | 76755 76877 76635| 47497 | 47499 | 47867 | 46776| 2.06E-09
3C 104036 | 103916| 11054 10026 76913 | 76924 77004 76757| 47784 | 47786 | 48061 | 47555| 2.06E-09
4C 104754 | 104428 11125 10004 76923 | 76910 77130 76804| 47875 | 47936 | 48180 | 47550| 2.06E-09
1D 61676 61705 62261 61077 29381 | 29390 29482 29278| 17875 | 17902 | 18170 | 17572| 2.06E-09
2D 85840 85667 91971 82419 53445 | 53459 53524 53352| 32936 | 32880 | 33314 | 32680| 2.06E-09
3D 103379 | 103465/ 10706 9941( 76794 | 76801 76937 76681| 47635 | 47674 | 48023 | 46603| 2.06E-09
4D 125735 | 125386 13128 12182 99755 | 99763 | 100050 | 99565| 62164 | 62118 | 62739 | 61676| 2.06E-09
Overall 99245 99130 103983 95483 70748 70748 708?770618 43868 43872 44231 43410

7.2.2 Phase |l

In this phase, we investigated the performancehefrmethods by counting the number of
evaluated solutions performed by each method tchreamilar values for the fithess function.

Based on the results of the previous phase, wéhetabu search first since it produced graph
layouts with the largest fitness values compareithéoother methods. This would easily allow
the other methods to produce graph layouts withuaity which is at least as good as the
quality of the ones produced by tabu search. TWerran the other methods until they reached
an equal or better fitness value compared to tleereached by the tabu search. Finally, we

measured the number of evaluated solutions for esthod.

Figure 7.9 and Figure 7.10 present the numbervafuated solutions obtained when
applying the three methods to reach graph layouts aertain quality. Figure 7.11 and Table
7.5, on the other hand, show the average numbewatiated solutions obtained when the
methods were applied on all the graph layouts dh lmategories along with the statistical

analysis of the results.
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Figure 7.9 Bar chart with 95% confidence interval é the number of evaluated solutions obtained by TS,
SA, PR+TS when applied on the graphs of theicategory (phase 1)
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Figure 7.10 Bar chart with 95% confidence intervalof the number of evaluated solutions obtained by TS
SA, PR+TS when applied on the graphs of the"category (phase I1)
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Figure 7.11 Bar chart with 95% confidence intervalof the average overall number of evaluated solutian
obtained by TS, SA, PR+TS when applied on the graphof the two categories together (phase Il)

Table 7.5 Statistical analysis of the average ovdtaumber of evaluated solutions obtained by TS, SA
PR+TS when applied on the graphs of the two categies together (phase 1)

Evaluated Solutions
Gfsaph Mean | Median Max Min Mean Median Max Min Mean Median| Max| Min p-value
et

1C 39423 36879 55180 2907{ 72012 73097 76190 | 65831| 47177 47181 47501 46872 7.74e-06

2C 32470 30211 56041 1447) 62492 62418 76734 | 48034 47497 47499 47867 46776 7.74e-06

3C 32777 29798 44884 2177 62331 60460 74949 | 54517| 47785 47786 48061 47555 7.74e-06

4C 31268 29759 52479 2327| 62579 62772 76923 | 53920| 47875 47936 48180 47550 7.74e-06
1D 17021 17875 21032 8191 25147 26374 29433 135688761 17902 18170 17572 5.69e-0p
2D 30058 30628 38544 17778 46816 48251 53497 3582936 32880 33314 32680 7.74e-0p
3D 29876 29737 44593 8673 61580 6134p 76733 373976364 47675 48023 46603] 3.47e-04
4D 32981 29754 50216 21055 85040 83589 99629  683&R165 62119 62739 61676 7.74e-0p
Overall | 30734 29330 45371 1803 59750 59787 70%11 47187 684:](8 43872 44232 43411 <2.2e-1p

With reference to the bar charts in the figured #Hre results presented in the table, we
conclude that coupling tabu search with path réligicould draw graph layouts with a certain
quality by implementing a lower number of evaluasetuitions with a significant difference to
the number of solutions obtained by simulated alimggand pure tabu search. In other words,
adding path relinking to pure tabu search improtedprocess of searching for good layouts
with a lower number of evaluated solutions.
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7.2.3 Phase lll

In phase lll, we investigated the quality of thgolats produced by the drawing algorithms. We
tested which method produced graph layouts withstieallest fithess function values (best
guality) when they perform the same number of eatalth solutions. We ran the tabu search
method on the graphs for a predefined number ddtitens (naxlteration$ as described earlier

in the parameters’ tuning process presented in €hap We started with the tabu search
because in phase I, it generated the lowest nuwibevaluated solutions. We ran the other
methods until they perform the same number of etalli solutions performed by the tabu
search method. Finally, we measured the value effithess function produced by each

drawing algorithm.

In Figure 7.12 and Figure 7.13, we show bar cHartshe values of the fitness function
when the three methods were applied to performt amw@ber of evaluated solutions on the
graph layouts of the first and the second categaespectively. The average values of the
fitness function obtained when we combined the ltesaf applying the methods on both
categories are presented in Figure 7.14 besidde Tabwhich shows the statistical analysis of

all the obtained results.
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Figure 7.12 Bar chart with 95% confidence intervalof the fithess function values obtained by TS, SA,
PR+TS when applied on the graphs of the®lcategory (phase i)
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Figure 7.13 Bar chart with 95% confidence intervalof the fitness function values obtained by TS, SA,
PR+TS when applied on the graphs of the"? category (phase I11)
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Figure 7.14 Bar chart with 95% confidence intervalof the average overall fitness function values obitaed
by TS, SA, PR+TS when applied on the graphs of thevo categories together (phase III)
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Table 7.6 Statistical analysis of the average ovdtditness function values obtained by TS, SA, PR+$
when applied on the graphs of the two categoriesgether (phase Il1)

Fitness
Graph Mean Median Max Min Mean Median Max Min Mean Median Max Min p-value
Set
1C 0.343 0.347 0.384 0.32( 0.664 0.663 0.676 0.646 | 0.506 0.505 0.549 0.463 7.74e-06
2C 0.451 0.451 0.481 0.41y 0.930 0.930 0.945 0.912| 0.825 0.821 0.923 0.741 7.74e-06
3C 0.531 0.532 0.595 0.474 1.051 1.052 1.064 1.038| 0.951 0.956 0.988 0.906 7.74e-06
4C 0.650 0.656 0.692 0.59% 1.139 1.139 1.152 1.117| 1.042 1.038 1.084 0.988 7.74e-06
1D 0.561 0.564 0.631 0.44( 0.485 0.486 0.507 0.464 | 0.398 0.388 0.591 0.328 5.69e-05
2D 0.407 0.404 0.458| 0.371 0.727 0.729 0.741 0.709 | 0.634 0.628 0.700 0.592 7.74e-06
3D 0.466 0.469 0.510] 0.424 0.942 0.946 0.959 0.920| 0.857 0.846 1.148 0.782 5.69e-05
4D 0.558 0.557 0.612] 0.493 1.162 1.167 1.176 1.123| 1.021 1.028 1.080 0.946 7.74e-06
Overall 0.496 0.497 0.545 0.443 0.88y 0.889 0.9p2 .866 0.779 0.776 0.883 0.718 <2.2e-16

Based on the results presented in the table angréveous three figures, we conclude that
intensifying the search process of tabu searchntrgducing path relinking could lead to a
quick investigation for graph layouts of good qtyalvhen compared with pure tabu search
and simulated annealing performing the same numbevaluated solutions. This difference
becomes significantly clear when the size of thepgrincreases as shown in Figure 7.13 that
presents the results when the methods are appli¢hleograph layouts of the second category
where the number of nodes in each set of graptutayiocreases. However, the coupling of
tabu search with path relinking does not seem todog effective on small graphs when it is

applied for a few number of iterations as showthafirst column of Figure 7.13.

Figure 7.15, Figure 7.16, and Figure 7.17 showetldiéferent examples of random graph
layouts drawn by simulated annealing, tabu seaarid tabu search coupled with path

relinking.
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Random Layol Simulated AnnealinLayout

Tabu Search Layo Improved PR+TS Layo

Figure 7.15 Example of connected graph layout withO nodes and 19 edges drawn within the canvas ofrou
visualization tool by the three methods: SA, TS, PRTS
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Random Layol Simulated Annealing Layo
Tabu Search Layo Improved PR+TS Layo

Figure 7.16 Example of connected graph layout with2 nodes and 17 edges drawn within the canvas ofrou
visualization tool by the three methods: SA, TS, PRTS
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Random Layol Simulated Annealing Layo

Tabu Search Layo Improved PR+TS Layo

Figure 7.17 Example of connected graph layout with5 nodes and 24 edges drawn within the canvas ofrou
visualization tool by the three methods: SA, TS, PRTS

7.2.4 Statistical Tests

In this section, we perform the same statisticstistevhich were described earlier in Chapter 5
(Section 5.2.4) to test the effect of randomnesgeinerating the initial graph layouts used in
comparing the methods. In order to show that tiseeestatistical significant difference in the
results generated by the three methods, we apghiedrriedman test since Shapiro-Wilk
normality test showed that the population was ratnally distributed. We ran the methods
on 20 randomly generated test cases for each gsbupaphs in the first and the second
categories. Simulated annealing, the only stoahas@thod, had run 30 times on each test

case, and medians were calculated. Then we comfaedtiree methods using the Friedman
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test with a significance level of 0.05. All the plres shown in the last column of Table 7.3,
Table 7.4, Table 7.5, and Table 7.6, are smalkem the value of our chosen significance level

which concludes that there is a significant differe between the three methods.

With reference to the result of the Friedman tpatfwise comparisons between the three
methods were performed using the Wilcoxon signed-tast with Bonferroni correction, with
a confidence level of 0.01, in order to show ifrthevas a statistical significant difference
between every pair of methods. Cohen’s effect sieasure was also applied. According to
Cohen (1992), a small effect size is 0.2, a mediffiect size is 0.5, and a large effect size is
0.8.

Table 7.7 and Table 7.8 show the p-values forfiimess function when applying the
Bonferroni correction on the graphs of both categoaccording to the experiment conducted
in phase | where each method would run without r@syriction on the number of evaluated
solutions or on the fitness value. The resultscaidi that the difference between each pair of
methods is significant in terms of the quality loé tgenerated layouts, except for special cases
where the graph size is small as shown in thednaph dataset. Also, the effect sizes of fithess
between path relinking coupled with tabu searchnsgshe other two methods are in the range
of large and very large in most of the cases. @rother hand, there is a clear and a significant
difference in the number of evaluated solutionsveen every pair of methods with very large
effect sizes, as shown in Table 7.9 and Table 7.10.

Table 7.7 Effect size and p-values for the fitneganction values after conducting the Bonferroni teson
TS, SA, PR+TS when applied on the graphs of thé'tategory (phase 1)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+ TS SA PR+ TS SA PR+ TS SA PR + T4 SA
p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA
effect | 1.8519 0 1.8725 0 1.8586 0 1.8641 0
TS p 4.4e-11 0.2900, 4.4e-11 1.2e-q7 4.4e-11 1.2€-08 -HMl4e 1.2e-07
effect | 1.8422 0.5115 1.8161 0.9034 1.8516 1.3449 1.8724 2902.

201



Table 7.8 Effect size and p-values for the fitneganction values after conducting the Bonferroni teson
TS, SA, PR+TS when applied on the graphs of thé®category (phase 1)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+ TS SA PR+ TS SA PR+ TS SA PR + TH SA
p 5.0e-06 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA
effect 1.1410 0 1.8675 0 1.8640 0 1.8674 0
TS p 4.0e-07 0.0035 4.4e-11 2.3e-06 4.4e-11 1.5e-06 -Hl4e 0.0025
effect 0.8384 0.5258 1.8214 0.9709 1.5666 0.5245 1.84p9 792a.

Table 7.9 Effect size and p-values for the numberf @valuated solutions after conducting the Bonferroi
teston TS, SA, PR+TS when applied on the graphs tife 1* category (phase 1)

Evaluated Solutions
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+TS| SA | PR+TS| SA | PR+TS| SA | PR+Td SA
P 2.0e-07 * 2.0e-07 * 2.0e-07 * 4.4e-11 *
SA [ ftect | 1.8717 0 1.8302 0 1.7943 0 1811} 0
P 4.4e-11 | 2.0e-07] 4.4e-11] 2.0e-07 2.0e-07 2.0-07 e-@O| 2.0e-07
TS T tect | 18765 | 1.8706] 1.8563| 1.8656  1.8410  1.8704  1.8502 8702,

Table 7.10 Effect size and p-values for the numbef evaluated solutions after conducting the Bonfewni
test on TS, SA, PR+TS when applied on the graphs tfe 2" category (phase I)

Evaluated Solutions
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+ TS SA PR+ TS SA PR + TS| SA PR+ TS SA
p 2.0e-07 * 4.4e-11 * 4.4e-11 * 2.0e-07 *
SA
effect 1.8704 0 1.8152 0 1.8556 0 1.8198 0
s p 2.0e-07 2.0e-07 4.4e-11 4.4e-11 4.4e-11 4.4¢-11 e-M4 | 2.0e-07
T effect 1.8707 1.8705 1.8416 1.8721 1.8628 1.8509 1.8564 8697.

When the Bonferroni test was applied on the tesaflphase Il of the experiment, as shown
in Table 7.11, Table 7.12, and Table 7.13, we batpgath relinking outperformed simulated
annealing in drawing graph layouts with similar etive function values using a limited
number of evaluated solutions with very large dffgzes. It also outperformed the pure tabu
search procedure on large graphs (as number okrindeeases) with very large effect sizes,
unlike smaller graphs where there was no significkifierence as shown in the first and the

second graph datasets in Table 7.12.
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Table 7.11 Effect size and p-values for the numbef evaluated solutions after conducting the Bonfewni
test on TS, SA, PR+TS when applied on the graphs tife I category (phase I1)

Evaluated Solutions
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+ TS SA PR+ TS SA PR+ TS SA PR + T4 SA
p 4.4e-11 * 5.2e-10 * 4.4e-11 * 4.4e-11 *
SA
effect 1.7531 0 1.4528 0 1.5998 0 1.6449 0
TS p 0.0002 4.4e-11 8.7e-06 4.4e-11 4.4e-11 4.4e-11 -B6e 2.0e-07
effect 0.9573 1.8459 1.1111 1.3504 1.444y 1.46[73 1.5011 3799.

Table 7.12 Effect size and p-values for the numbef evaluated solutions after conducting the Bonfewni
teston TS, SA, PR+TS when applied on the graphs tife 2" category (phase I1)

Evaluated Solutions
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+ TS SA PR+ TS SA PR+ TS SA PR+TS SA
p 3.4e-06 * 8.5e-09 * 8.7e-11 * 4.4e-11 *
SA
effect 1.1474 0 1.4358 0 1.4438 0 1.7678 0
TS p 0.9800 3.4e-06 0.8700 4.4e-11 4.4e-11 7.2er06 M4de- 4.4e-11
effect | 0.2286 1.3242 0.4833 1.6245 1.256H 1.12f70 1.6876 5858.

Table 7.13 Effect size and p-values for the numbef evaluated solutions after conducting the Bonfewni
test on TS, SA, PR+TS when applied on the graph layts of the two categories together (Phase 1)

Evaluated Solutions
PR+TS SA
p 4.4e-11 *
SA [effect| 1.6120 0
p 4.4e-11 4.4e-11
TS
effect 1.3000 1.5330

Table 7.14, Table 7.15, and Table 7.16 show thalpes for the values of the fithess
function after conducting the Bonferroni test oe tlesults of the experiment according to
phase 1l where we ran the drawing algorithms sat they evaluate a specific number of
solutions to test the quality of layouts that wobhlgenerated in a set time. The results in the

tables show that coupling tabu search with patimkiglg draws graph layouts with better
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quality compared to simulated annealing with veasgé effective sizes. It also outperforms
pure tabu search as the size of the graph increases

Table 7.14 Effect size and p-values for the fitheganction values after conducting the Bonferroni tst on
TS, SA, PR+TS when applied on the graphs of thé'tategory (phase IlI)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+ TS SA PR+ TS SA PR+ TS SA PR+TS SA
p 4.4e-11 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA
effect 1.9000 0 1.8666 0 1.8619 0 1.8631 0
. p 4.4e-11 4.4e-11] 4.4e-11] 4.4e-11 4.4e-11 4.4e-11 e-Hl4| 4.4e-11
effect | 1.8296 1.8142 1.7952 1.4308 1.8541 1.6960 1.8522 6389.

Table 7.15 Effect size and p-values for the fithedanction values after conducting the Bonferroni tst on
TS, SA, PR+TS when applied on the graphs of thé®2category (phase I11)

Fitness
Graph Set 1 Graph Set 2 Graph Set 3 Graph Set 4
PR+ TS SA PR+ TS SA PR+ TS SA PR+TS SA
p 6.0e-06 * 4.4e-11 * 4.4e-11 * 4.4e-11 *
SA

effect | -1.2122 0 1.8830 0 1.8691 0 1.8671 0
s p 4.0e-08 1.2e-07 4.4e-11 4.4e-11 4.4e-11 9.9¢-07 e-#14| 4.4e-11

T effect | -1.4582 1.0635 1.7946 1.6529 1.5038 0.78p5 1.8331 .6902

Table 7.16 Effect size and p-values for the fitheganction values after conducting the Bonferroni tst on
TS, SA, PR+TS when applied on the graph layouts difie two categories together (Phase 1)

Fitness

PR+TS SA

b | 4dell >
SA [effect | 1.9000 0
b | 44e11| 9.9e:07
TS
offect | 1.8300 | 1.8140

Note that the improved method does not have dditianal threats to validity more than
those discussed earlier in Chapter 5 (Section ;4he next section, we show how coupling
tabu search with path relinking performs on realldvgraph datasets.
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7.3 Experiments on Real World Graph Datasets

In this section, we want to show if the improvedtmoel can produce similar results in a real
world setting by testing it against a standard jguidlaph datasets described earlier in Chapter
5 (Section 5.3). We used the same 10 datdistétsl in Table 5.15The initial layout of the
nodes in each graph was generated randomly. Wadltdst methods according to phases |, I,
and lll. The results of the experiments are showthe following figures. Figure 7.18 and
Figure 7.19 show the results of applying the methaw the real graph datasets according to
phase I. The results shown in the charts seconct@nelusion in the previous section, that
coupling path relinking with tabu search producespl layouts with better fitness values
compared to tabu search and simulated annealirggdifierence becomes clearer as the size of
the graph increases, as shown in Figure 7.18. Hemyeliat big difference requires more
solutions to search in the neighbourhood and caressty, the number of evaluated solutions

becomes larger, as shown in Figure 7.19.

Real Graph Datasets

1.0
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PR+TS
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0.1
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Graph

Figure 7.18 Bar chart of the fithess function valus obtained by TS, SA, PR+TS when applied on the goh
datasets in Table 5.15 (phase )
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Real Graph Datasets
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Figure 7.19 Bar chart of the number of evaluated dotions obtained by TS, SA, PR+TS when applied on
the graph datasets in Table 5.15 (phase I)

In Figure 7.20, where the experiment was baseghase I, we see that the improved
method can reach the same fitness values of diffey@ph layouts with a lower number of
evaluated solutions compared to the other two naisthit also produces graph layouts with
better fitness values, except for small graphs,ndlethe methods evaluate the same number

of solutions as shown in Figure 7.21, where theegrpent was based on phase llI.

Real Graph Datasets
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Evaluated 80000
Solutions HPR+TS
60000
uSA
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TS

20000 -

0 -

Graph

Figure 7.20 Bar chart of the number of evaluated dotions obtained by TS, SA, PR+TS when applied on
the graph datasets in Table 5.15 (phase II)
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Real Graph Datasets
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Figure 7.21 Bar chart of the fitness function valus obtained by TS, SA, PR+TS when applied on the gra
datasets in Table 5.15 (phase III)

Figure 7.22, Figure 7.23, Figure 7.24, and Figu257are four examples of the layouts
produced by the methods when applied to graph efatds 2, 3, and 5 respectively in the list

of real world datasets described in Table 5.15.
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Tabu Search Layout Improved PR+TS Layout

Figure 7.22 Layout of graph dataset 1 (listed in Tlale 5.15) produced by TS, SA, PR+TS drawn within tl
canvas of our visualization tool

208



Tabu Search Layout Improved PR+TS Layout

Figure 7.23 Layout of graph dataset 2 (listed in Tlhle 5.15) produced by TS, SA, PR+TS drawn within ta
canvas of our visualization tool
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Tabu Search Layout Improved PR+TS Layout

Figure 7.24 Layout of graph dataset 3 (listed in Tlle 5.15) produced by TS, SA, PR+TS drawn within ta
canvas of our visualization tool
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Tabu Search Layout Improved PR+TS Layout

Figure 7.25 Layout of graph dataset 5 (listed in Thle 5.15) produced by TS, SA, PR+TS drawn within
the canvas of our visualization tool

In the next section, we analyse the performanceusfmethod against the graph size
accompanied with figures which describe its scétgbiWwe also show its effect on each
aesthetic criterion.

7.4 Scalability and Performance Analysis

In order to test the scalability of our method asdability to work effectively on large graph
datasets, we ran our method against simulated knges randomly generated large graphs,

based on ErdeRenyimode| according to phase I. Note that we excluded hithising from
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this comparison as the statistical tests in Chaptelnowed that hill climbing is considerably

worse than the other methods. We ran simulatedadinge30 times on each dataset, and the
median value was recorded for each set. The gnaphs generated using the same generator
described in Chapter 3 and Chapter 5 (Section BVé&) started with a graph dataset of 1000
nodes and 3003 edges and we kept increasing theearuoh nodes and edges as we move
from one dataset to another as shown in Table %\& stopped increasing the size of the

datasets when we had a very long execution timerierof the tested methods (almost half a

day).

Table 7.17 Characteristics of the graph datasets &d in scalability testing

Graph Set | Nodes | Edges
1 100(¢ 300z
2 150(¢ 450:
3 200( 600:
4 250( 750:
5 300( 900:
6 350( 1050:
7 400( 1200:
8 450( 1350:
9 500( 1500z
10 550( 1650:

Figure 7.26 shows that our method effectively misam the value of the fitness function
and outperforms simulated annealing regardles®wflarge the size of the graph is. Also, as
Figure 7.27 and Figure 7.28 show, the speed ofrthismisation process is efficient in our
method compared to simulated annealing as the ggaghincreases. The figures show that
increasing the number of nodes and edges (i.eeasorg the size of the graph) would increase
the number of evaluated solutions and executioe fon simulated annealing and our method
as well, but with different rates of increase. Ntitat the execution time would be shorter if
we test the methods for drawing graph layouts witkingle criterion. However, since our
fitness function contains multiple measures, iktadonger time to execute as some measures

have a long computation time.
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Figure 7.26 Bar chart of the fithess values obtairtby PR+TS and SA when applied on graph datasets in
Table 7.17 (phase 1) for scalability testing
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Figure 7.27 Bar chart of the number of evaluated dations obtained by PR+TS and SA when applied on
graph datasets in Table 7.17 (phase |) for scalalii testing

213



70000
60000
50000
40000

Time
(seconds) 30000

20000
10000

0

5

Graph

6

10

W PR+TS
mSA

Figure 7.28 Bar chart of execution time in secondsbtained by PR+TS and SA when applied on graph

Figure 7.29, Figure 7.30, and Figure 7.31, showphmg for the overall performance of
our method when being applied on a set of grapltis &an increasing number of nodes and
edges, as described in Table 7.17, in terms oédgnvalues, number of evaluated solutions,

and execution time in seconds respectively. Alufeg show that our method outperforms

simulated annealing in all aspects.

datasets in Table 7.17 (phase |) for scalability sting
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Figure 7.29 Box plot chart of the overall fithess alues obtained by PR+TS and SA when applied on grap
datasets with an increasing number of nodes and edg (Table 7.17)
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Figure 7.30 Box plot chart of the overall number ofvaluated solutions obtained by PR+TS and SA when
applied on graph datasets with an increasing numbeof nodes and edges (Table 7.17)
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Figure 7.31 Box plot chart of the overall time in sconds obtained by PR+TS and SA when applied on
graph datasets with an increasing number of hodesnd edges (Table 7.17)

In order to examine the behaviour of our methodhenvalue of the fitness function as the
number of evaluated solutions increases, we ramgtbod on several graphs of the same size
having 105 nodes and 441 edges but with diffeneitiai layouts. The average value of the
fithess was recorded at different points duringeakecution time of the method. Figure 7.32

describes the algorithm’s behaviour by showingahange in the value of the fithess as the
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number of evaluated solutions increases. The fighoavs that the fithess value decreases as

the number of evaluated solutions increases.
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Figure 7.32 The change of the fitness value as thamber of evaluated solutions increases
Last but not least, we find it interesting to repexamples of the normalised values of each
aesthetic used in our fitness function indepenglentien being evaluated by hill climbing,
simulated annealing, tabu search, and path retinkoupled with tabu search. Table 7.18 and
Table 7.19 provide values from the real world dette8 and 5 described in Table 5.15.

Table 7.18 Normalised values of each aesthetic whdre methods were applied on graph dataset 3 (liste

in Table 5.15)
node-node occlusion edge length edge crossings alaguesolution
HC 0.02960: 0.119401 0.07527. 0.24945i
SA 0.02165 0.08422 0.03849 0.23017!
TS 0.02645: 0.06185! 0.03887! 0.21913i
PR+TS 0.00027! 0.02485! 0.02490: 0.08599:

Table 7.19 Normalised values of each aesthetic whdre methods were applied on graph dataset 5 (liste

in Table 5.15)
node-node occlusion edge length edge crossings alaguesolution
HC 0.07988I 0.16462. 0.05861! 0.39536!
SA 0.03592. 0.07749: 0.03370! 0.31217
TS 0.04898 0.09635! 0.03934 0.34666.
PR+TS 0.00015! 0.03145: 0.02617 0.19536!
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7.5 Summary

In this chapter, we studied the effect of couplpagh relinking with tabu search on the
efficiency and the effectiveness of the proposealvdrg algorithm. This was achieved by
conducting three comparisons with the pure tabuckeand simulated annealing drawing
algorithms based on the quality of the layout taat be achieved by each drawing algorithm;
the number of evaluated solutions performed by eaethod to reach a particular level of
layout quality; and the quality of layout drawn Hye methods after a fixed number of
evaluated solutions. The experiments were conduatedew randomly generated datasets,
different than those used in Chapter 5 in ordexvimid overfitting, and on the same real world
datasets. The statistical tests of the experimentsandom graph datasets gave strong
evidence that coupling path relinking with taburskaoutperforms all the neighbourhood
search methods discussed in this research infakceswith very large effect size. The results
of applying the methods on real world datasets stppr conclusion. We also described the
performance of the proposed method as the sizeeafriaph increases and we showed that the

method has better scalability compared to simulategealing.
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Chapter 8 Conclusions

This chapter provides a summary of the objectived eontributions. We also highlight a

number of ideas which can be explored in the future

8.1 Objectives and Contributions

In this work, we addressed the research area gdhgdmawing, where the main task was
improving the efficiency and effectiveness of néigarhood search-based methods for
drawing general graph layouts with undirected ghralines based on a weighted sum multi-
criteria fitness function. This approach has theaathge of allowing explicit combinations of

metrics that can be tuned to meet user preferendks.described a novel automated
neighbourhood search method based on tabu seadgba#imrelinking that have not been used
before in drawing general graph layouts with ma#sthetic criteria, unlike hill climbing and

simulated annealing.

To achieve our goals, we started with implementngsualisation tool that we used for
testing all the neighbourhood search methods discligh this thesis. The tool allowed the
user to choose the preferred values of the parasneteeach method, and the weights of each
aesthetic metric (Chapter 3). It was not possiblddtermine unified weights that work well
for all types of graphs, and indeed weights cowdy/\according to application area and user
preferences. Hence, we assigned the value 1 tbealiveights for a fair comparison between

the methods.

The first attempt for improving neighbourhood séarcethods in the field of drawing
graph layouts was made by implementing an autonataging method based on tabu search.
The method searches for the best positions of ddes) so minimising the value of the fitness
function and drawing a nice graph layout. The lestdire in tabu search was the combination
of forbidding reverse moves using a memory-baskd st and allowing escapes from local
optima. We also implemented the basic neighbourhgedrch-based graph drawing
algorithms for hill climbing and simulated annegliin order to be compared with our
method. Besides the fact that all the methods dhidre same local (neighbourhood) search

space, we followed a unified systematic incremeptatedure for tuning the values of the
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parameters of each method to select proper valiishwproduce graph layouts with small
fitness values (good quality). We provided figuessl tables which describe the effect of
adjusting the value of each parameter on the quafithe layouts and the efficiency of the

drawing algorithms (Chapter 4).

We then conducted a comprehensive comparison betikeghree neighbourhood search-
based drawing algorithms: hill climbing, simulatehnealing, and tabu search. The
comparison was broken down into three phases warbe following questions: How good
a layout can be achieved by each drawing algorithfiotv many evaluated solutions
performed by each method to reach a particulad lefvkayout quality? And how good is the
quality of layout drawn by the methods after a dixeumber of evaluated solutions? We
provided quantitative evidence of experimental itsson randomly generated graph layouts,
based on ErdeRenyimode] and real world graphs to assert that the tabickegproach can
draw a graph layout with a good quality in a snratliember of evaluated solutions compared
to the hill climbing and the simulated annealingraaches. We also conducted statistical
tests that showed, along with the large effectssiteat the tabu search drawing algorithm was
faster than the hill climbing drawing algorithm.gtoduced, along with simulated annealing,
graph layouts with better quality regardless ofgreph size in terms of number of nodes and
edges. In addition, the efficiency of our tabu skdrased method was better than the
simulated annealing algorithm but the latter pregdlugraph layouts with similar or slightly
better fitness values compared to those producedubytabu search algorithm when both

methods ran without limitations on the number dlasated solutions (Chapter 5).

Since our tabu search drawing algorithm had nopenfirmed simulated annealing in
some aspects, we improved our method by couplingith path relinking. The desire to
tunnel through blocked off areas created by talarckesolutions was the main reason of
choosing path relinking procedure to couple witbutessearch to intensify the searching
process between an initial and a guiding solutisekected from a set of elite solutions
generated by the tabu search drawing algorithm.ifidlegration of features of tabu search and
path relinking in one implementation made our mdthanore effective graph layout method
than the other neighbourhood search methods. Bgildi reference set of elite solutions
generated by tabu search and moving efficientlypglthe path between two solutions were

the main two aspects of our path relinking procedWe also developed a systematic way for
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choosing the values of the parameters used by #that. We performed one round of

parameter tuning to adjust the values of the patenm®f the basic path relinking procedure.

Then, we proposed two improvements on the basitemmgntation: a proper selection of the

initial and the guiding solutions from the referenget of elite solutions; and an improved

neighbourhood searching strategy based on a varsbp size. The proposed improvements
introduced two new parameters that could affecipgrdormance of the procedure. Therefore,
we performed a final round of parameters calibrajiwocess in order to assign reasonable
values for each parameter before we examine thdorpgnce of our improved

neighbourhood search method compared to other In@ighood search methods (Chapter 6).

Finally, we studied the effect of coupling pathmking with tabu search on the efficiency
and the effectiveness of the proposed drawing kgor This was achieved by conducting
three comparisons, with our tabu search drawingrailgn and simulated annealing drawing
algorithm. Our experimental results on random gsagid real world graphs showed that our
tabu search/path relinking approach draws grapbulgywith good quality in a relatively low
number of evaluated solutions. Coupling tabu sewitih path relinking outperformed all the
other methods discussed in this work in both teomguality of layout and speed of layout
process with very large effect sizes. We also desdrthe performance of the proposed
method as the size of the graph increases and weeshthat the method had a better

scalability when compared against simulated anng&{Chapter 7).

8.2 Future Work

In this section, we list a number of potential isleghich can be investigated to extend the

work covered in this thesis.

1. Experiments can be conducted to study the effigiaiahis method when applied to
different types of graphs such as trees, hieraathand circular graphs. Our method
can be easily adjusted to work with directed edbes.each type of these graphs has
its own aesthetic measures such as: subtree separgdbsest and farthest leaves for
tree graphs; uniform edge direction and cycle reahdwer hierarchical graphs;
partitioning the graph into clusters and placing tiodes of each cluster onto the
perimeter of an embedding circle for circular gmp{Tamassia 2013). These

aesthetics, in addition to the ones discussedimthiesis which usually exist in any
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graph, must be formulated in a weighted sum muitéga objective function to be

optimised by our proposed method.

. The performance of our method can be further imgdolyy implementing a hybrid of
path relinking and a Greedy Randomized Adaptivec®eRrocedure (GRASP). This
combination has been previously applied efficienthy some applications with
promising results (Laguna & Marti 1999). In GRAS&ach iteration consists of
constructing a candidate solution and then impro¥ed solution by applying an
exchange procedure to find a local optimum. ‘Thastaction phase is iterative,
greedy, randomized, and adaptive. It is iteratieeaose the initial solution is built
considering one element at a time. It is greedyabse the addition of each element is
guided by a greedy function. It is randomized beeahe selection of that
element is made in a random fashion. And it is &idafpbecause the element chosen at
any iteration in a construction is a function ofosk previously chosen. The
improvement phase typically consists of a locatde@arocedure (Duarte et al. 2017).
Unlike tabu search, the generated solution by &RASP iteration is not linked to the
next solution by a sequence of neighbourhood moMastefore, the relinking process
can have different interpretations with GRASP (Féeti & Glover 1999).

. There is a relationship between the algorithm’scaken time (in seconds) and the
calculation of each metric in the fitness functi@avidson & Harel 1996). In our

implementation, when the fithess function is evedda the aesthetic measure is
recalculated for all nodes and edges. This slowsndbe execution time (but not the
number of evaluated solutions). The runtime co@dnyproved if we use memoisation
on the calculation of metrics by storing previoadues and calculating the metric only
for the nodes and edges that are affected by a m&vein the neighbouthood search

space.

. More investigations can be performed on the effeagss of our approach in
comparison with force-directed approaches and gibpulation-based approaches that
have been previously used in the field of graplwirg such as Genetic Algorithms
(Eloranta & Makinen 2001; Vrajitoru 2009) and AnblGny optimisation (Ware &
Richards 2013).
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5. An empirical study on human users could be condudte evaluate the layouts
generated by different graph drawing algorithmsvissialisation is also concerned
with how significant the differences are to the lameye and the human sense of
aesthetics.

6. One way to improve the quality of solutions in tadmarch is to divide the sets into
Pareto and candidate lists (Baykasoglu et al. 1989ur work, solutions were only
added to a candidate list since we used the basicdearch algorithm. But we can try
using Pareto list such that the Pareto list cal¢ioeé selected non-dominated solutions
found by the algorithm. The candidate list, on titeer hand, collects all other non-
dominated solutions that were not selected as ®agtmal solutions in an iteration.
These solutions may become seed solutions if thayntain their non-dominated
status in subsequent iterations. Using this prodbsscandidate list would give the

opportunity to diversify the searching process.
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Appendix A Sample Layouts from Hill Climbing, Simulated
Annealing, and Our Proposed Tabu Search-based Algdhm

In this appendix, we show sample layouts, fromgteph datasets described in Table 5.1 and
Table 5.2, generated by the three drawing algosthinscussed in Chapter 5: hill climbing,
simulated annealing, and our proposed tabu seasbdbalgorithm. Note that, the fithess
function includes the measures of the followingtlaetics: node-node occlusion, edge length,

edge crossings, and angular resolution.
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A.1 Sample Layouts from Datasets of Table 5.1
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A.2 Sample Layouts from Datasets of Table 5.2
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Appendix B Sample Layouts from Simulated AnnealingQur
Proposed Tabu Search-based Algorithm, and Path Relking
Coupled with Tabu Search

In this appendix, we show sample layouts, fromgteph datasets described in Table 7.1 and
Table 7.2, generated by the three drawing algosthdiscussed in Chapter 7: simulated
annealing, our proposed tabu search-based alggrahioh path relinking coupled with tabu

search. Note that, the fitness function includesrtieasures of the following aesthetics: node-

node occlusion, edge length, edge crossings, amaanresolution.
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B.1 Sample Layouts from Datasets of Table 7.1
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B.2 Sample Layouts from Datasets of Table 7.2
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