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Abstract

Koop, Pesaran and Smith (2013) suggest a simple diagnostic indicator for

the Bayesian estimation of the parameters of a DSGE model. They show that,

if a parameter is well identi�ed, the precision of the posterior should improve

as the (arti�cial) data size T increases, and the indicator checks the speed at

which precision improves. As it does not require any additional programming,

a researcher just needs to generate arti�cial data and estimate the model with

increasing sample size, T . We apply this indicator to the benchmark Smets and

Wouters�(2007) DSGE model of the US economy, and suggest how to implement

this indicator on DSGE models.
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1 Introduction

Many macroeconomists have expressed concern about the extent to which identi�cation

of structural, or DSGE, models may or may not have been achieved during estimation.1

Re�ecting the rapid progress of Bayesian estimation techniques, it is now common

practice to estimate DSGE models rather than to simply calibrate them. The problem

is, however, that if a parameter is not identi�ed, this means that the data (and

the prior) cannot pin down the value of this parameter, and if a parameter is only

weakly identi�ed, this means that a small change in, say, the sample variation causes a

large change in the parameter estimate. Compared with standard linear identi�cation

problems in econometrics, DSGE models involve nonlinear estimation with many

theoretical parameter restrictions and accordingly identi�cation may be considerably

more problematic.

And yet it gets worse: in the Bayesian framework the prior often masks the problem

of non- or weak identi�cation by the data.2 That is, even if data provide little or no

information of a parameter, it still can be seemingly identi�ed solely because of its prior.

Koop et al. (2013) discuss, from a pure Bayesian perspective, that this observation may

not necessarily be problematic and we might simply want to thank our informative

priors. However, some (or perhaps most) researchers may regard this position as rather

embarrassing, as econometric-based inference may only then rely only on researchers�

initial beliefs and not on the data. In this respect, Canova and Sala (2009) among

others, warn against the current practice of comparing the prior and posterior densities

of a parameter to check the informativeness of data: since a parameter may be identi�ed

only jointly with others and not individually, even if these densities have di¤erent shapes,

still there is a signi�cant possibility that any given parameter may be unidenti�ed.

As a result of these problems, two strands of diagnostic indicators have been

developed. The �rst line of indicators sets an intermediate target and investigates the

Jacobian of such a target with respect to the deep parameters of a model. This line of

1DSGE stands for dynamic stochastic general equilibrium and refers to structural models derived
from microfoundations, which are perturbed by a rich structure of shocks.

2See Canova and Sala (2009) and Koop et al. (2011) among others.
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indicators has been pioneered by Iskrev (2010a), Iskrev and Ratto (2010) and Komunjer

and Ng (2011). Typically, this intermediate target is a set of data moments. If the

Jacobian of the data moments is column rank de�cient, there are two possibilities; (i)

one or more parameters do not a¤ect any data moments at all; and (ii) a change in one

parameter is totally o¤set by changes in other parameters and hence again may not a¤ect

any moments. The latter case, which is presumably more common than the former, is

often referred to as partially identi�ed or perfect collinearity among parameters. Iskrev

(2010a) also proposes a check of the Jacobian of the reduced form parameters with

respect to the deep parameters, so-called Iskrev�s J2.3 Note that this type of diagnostic

is only a necessary condition for identi�cation; in the sense that even if a proper Jacobian

is column full rank, quite often the limitation of data availability hampers parameter

estimation. This circumstance however implies that by combining a Jacobian-based and

a Hessian-based approach, which we discuss in the next paragraph, we can detect the

source of non- or weak identi�cation. For example, if a Jacobian is column full rank

but a Hessian is not full rank, then we could conclude the failure of identi�cation is not

because of the model structure but because of data limitations.

The second line of indicators, such as Koop et al. (2013, KPS henceforth) and

Iskrev (2010b), exploits the Information matrix, which is the expectation of the Hessian.

This idea is very straightforward: if the likelihood function is �at along a particular

direction at a likelihood mode, i.e. the Hessian is singular, the value of the likelihood

(or posterior density) does not change along this direction and hence there are in�nitely

many combinations of parameters that achieve the maximum likelihood. The main

di¤erence between KPS and Iskrev (2010b) is that the former is mainly interested in

the identi�cation by data, whereas Iskrev (2010b) checks the identi�cation by both the

prior and data. This point is very important and we will discuss this more deeply

in our main analysis. One practical weakness of this second approach is that, as

opposed to the Jacobian based methods, if the Hessian is singular it may be hard, if

not impossible, to pin down the maximum point. This is because nearly all maximizing

3In this case, the intermediate target is the coe¢ cients of the reduced form model solved by, say,
Sims�(2002) QZ method.
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algorithms require a non-singular (i.e., strictly negative de�nite) Hessian; otherwise, the

likelihood mode is not well de�ned. This Catch-22 problem seems to be common for most

Hessian-based approaches.4 Importantly this means that this class of indicators work

only for weakly identi�ed parameters; a researcher has to obtain a priori information

about the parameters that are unidenti�ed before implementing this class of indicator.

However, as opposed to the Jacobian-based approach, the Hessian-based approach is

a full information approach, in the sense that it exploits the likelihood (or posterior

density), which contains all the information that is available.5

The purpose of our paper is to investigate the KPS indicator. KPS suggest

two separate methods for checking the presence and strength of identi�cation of the

parameters of DSGE models. Their �rst indicator is based on Bayesian theory. Suppose,

for example, that it is not known if a parameter is identi�ed or not. If it is unidenti�ed,

�the marginal posterior of this parameter will equal the posterior expectation of the prior

of this parameter conditional on the identi�ed parameters�. The second method, relying

on asymptotic theory, says that the precision of a parameter estimate will increase at

the rate of the data size T , if it is identi�ed. One merit of this second method lies

in the simplicity of its implementation: in practice, it does not require any additional

(time consuming) programming or simulations because it just examines the Hessian (or

posterior variances) for (arti�cial) data sets with di¤erent sizes. As we shall explain, all

a researcher then has to do, when estimating any model, is simply to check the speed at

which the parameter precision increases. On the basis of our results, we will recommend

using an Identi�cation Ratio that compares the estimates with a sample of either 1,000

or 5,000 observations with those of 10,000.

As the second method is more widely applicable, it is the one that we apply in

the analysis of the identi�cation of the in�uential DSGE model of Smets and Wouters

(2007) and discuss several practical issues in computing and interpreting the simple KPS

4Even for Jacobian based-methods, however, we often need data to pin down the point in the
parameter space, at which we calculate a proper Jacobian matrix. If so, there is a similar sort of
Catch-22 problem even for Jacobian based-methods.

5Note though that both the Jacobian- and Hessian-based approaches are local rather than global
indicators.
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indicator.6 The results are clear enough to allow us to make a number of observations.

As many researchers use Smets andWouters (SW), or its variants, as a testing ground for

their identi�cation methods, we are thus able to match our results in using a very simple

indicator with theirs, see, for example, Iskrev (2010a) and Iskrev and Ratto (2010).

Although we will need to investigate other key models, as well, to be conclusive, broadly

speaking, because our �ndings on the SW model are consistent with other results, we

should continue to be cautious about whether estimated parameters are indeed identi�ed.

The issues on identi�cation in such a widely cited model, suggest that there continues to

be a question mark about whether Bayesian estimation of DSGE models generates more

heat than light. And so what we can suggest is that we should accordingly use a simple

indicator to examine identi�cation. In our view a little more clarity about identi�cation

when using DSGE procedures would aid and focus the debate on the development of

models with more realistic economic structures. The regular use of KPS when estimating

any DSGE model would allow the reader to make up their own mind on the question of

whether model identi�cation has been achieved of the estimates presented.

The rest of the paper is organized as follows: Section 2 brie�y introduces the idea of

KPS and the design of our experiment, Section 3 summarizes our main �ndings, Section

4 is reserved for a brief discussion of the methodology of the KPS in light of our results

and �nally Section 5 concludes.

2 Identi�cation based on Asymptotic Precision

2.1 The KPS Idea

For completeness, we start with outlining the intuition of the KPS indicator.7 Consider

the Bayesian estimation of a DSGE model. Let � = (�1; �2:::�n) be a parameter vector, T

be the size of the data and note that an underscore refers to the prior, an overscore as the

posterior and a circum�ex refers to an estimated parameter. Suppose that the posterior

6According to Google Scholar (accessed in June 2012) the SW paper and its variants has 1,269
citations.

7See Koop et al. (2011) for a comprehensive analysis.
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density is well approximated by a normal distribution. In this case, the posterior mode,

��T , is the average of the prior mode � and the data likelihood mode, �̂T , weighted by

their respective precision H and T ŜT . That is,

��T = �H�1
T

�
T ŜT �̂ +H�

�
; (1)

�HT = T ŜT +H; (2)

where �HT is the posterior Hessian. Note that as T ! 1, �H�1
T asymptotes to the true

variance-covariance matrix of parameter estimates.

Now suppose that all parameters are identi�ed. In this case, T�1 �HT converges to ŜT

as T !1,

T�1 �HT = ŜT + T
�1H ! ŜT :

At the limit, ŜT (which measures data precision, T ŜT , divided by T ) converges to a

certain point, as the prior precision, H, is dwarfed. That is, the data dominates the

prior as T increases. Since T�1 �HT converges to a certain value, it is clear that posterior

precision �HT improves at rate T .

Let us focus on one speci�c parameter, say, the �rst parameter �1. Under the

normality assumption, the parameter mean is ��1T and the precision of the estimate,

�h11, is given as �h11 = �H11 � �H12 �H
�1
22
�H21.8 Hence, we obtain

T�1�h11 =
�
Ŝ11 + T

�1H11

�
�
�
Ŝ12 + T

�1H12

��
Ŝ22 + T

�1H22

��1 �
Ŝ21 + T

�1H21

�
: (3)

Following the same analysis as above, at the limit this expression (3) is given as,

lim
T!1

T�1�h11 = Ŝ11 � Ŝ12Ŝ�122 Ŝ21 =
�
Ŝ�111

��1
;

which is the inverse of the (1; 1) element of Ŝ�1T=1. Since the prior is dominated at the

limit, let us focus on T ŜT . From standard, or frequentist, econometric theory, it is easy

8The numerical subscripts indicate submatrices: e.g., �H22 is �HT eliminating its �rst row and �rst
column. To avoid overly messy notation, we omit subscript T to show data size T , when we discuss
submatrices.
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to see, if ��1 is well identi�ed, Ŝ�111 approaches a particular number as T ! 1: in other

words, the variance T�1Ŝ�111 of ��1 shrinks at rate T . Intuitively, this observation means

that, as the data sample become larger, the estimation will become more precise. These

observations lead KPS to recommend checking the behavior of �h11 for increasingly large

data sizes, T .

In sum, for a given parameter, �1, and its posterior precision, �h11:

lim
T!1

T�1�h11 =

8><>: 0 (�h11 improves at rate slower than T ) if unidenti�ed

a number (�h11 improves at rate T ) if identi�ed
:

Putting it in a simpler form, �HT can be inverted to obtain the following diagnostic value:

T�1�hii = T
�1 ~H�1

ii where ~Hii is the i-th diagonal element of �H�1
T : (4)

Although the covariance structure provides some important information, our baseline

task is to check the reciprocal of the diagonal elements of ~HT for increasingly large data

sizes T , where ~HT is the inverse of the posterior Hessian, �HT . More speci�cally, we

check if ~H�1
ii increases at rate T . Alternatively, we can use variances computed from

the entire posterior density, say, by using the Markov Chain Monte Carlo (MCMC)

Method. Since the Hessian shows that the asymptotic precision, which is the inverse

of the variance, using the Hessian or (exact) posterior variances are almost equivalent

for a large T (though not exactly equivalent for smaller T ). However, in practice we do

not need additional computation to obtain �HT , as almost all gradient-based maximizing

algorithms compute the posterior Hessian automatically,9 while the use of the MCMC

typically requires additional computation, which is itself often time consuming.

Note that the KPS indicator focuses on identi�cation by the data as it e¤ectively

excludes help by any chosen prior, which is dwarfed as T !1. This feature is distinct

from other existing diagnostics; where in most cases data is either irrelevant or considered

9For problems of low dimensionality non-gradient based-algorithms, such as grid search type
methods, are often much more e¢ cient. However, since the dimension of the estimated parameters
is typically large (say, more than 3) for typical DSGE estimations, it is rather exceptional to use an
algorithm that does not rely on the Hessian.
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jointly with the prior. This feature creates a strong motivation, in our view, for the

applied researcher to use KPS. Researchers will though need guidance on three key

issues: (i) what values of the sample size, T , ought to be used as the baseline and then

the comparator as the sample size increases; (ii) whether we ought to concentrate on

the MCMC chain or the Hessian to calculate variances; and (iii) given that precision

increases with sample size, at what rate of improvement should we consider the model

identi�ed? As a result of our work, we are in a position to suggest how to use the KPS

indicator for applied analysis.

2.2 Design of Experiments

We investigate the extent to which the key parameters of the benchmark Smets and

Wouters�(2007) model of the US macroeconomy are identi�ed. This widely-cited model

can be thought of as a standard depiction of a key aggregate relationships and has

been widely used in the macroeconometric literature. For clarity, the model equations

are listed in Table 1 and the priors, posterior modes and de�nitions of parameters are

presented in Table 2. Our baseline exercise is as follows:

1. Given estimated parameters ��, we simulate the model to generate arti�cial data

for, say, 10; 000 periods (T = 10; 000);

2. We re-estimate the model with T = 10, 100, 1; 000, 5; 000 and 10; 000. Note that

every larger sample encompasses the previous smaller sample(s);

3. We check the convergence of the posterior variance of each parameter. We de�ne

identi�cation ratio as IRn = n�2T=n= (N�
2
T=N), where n is the shorter sample size

with, say, T = 1; 000, and 5; 000, and N = 10; 000 is the largest sample size.

4. A parameter is said to be identi�ed, if its posterior variance shrinks faster than

or at the same rate as the sample size T used in the estimation.10 That is, if

identi�ed, theoretically, IRn � 1.
10Note that T�1�hii converges to a number if a parameter i is identi�ed, the ratio of it for two di¤erent

sample sizes should go to 1.
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The standard estimation of the SW model requires seven macroeconomic time series:

output, consumption, investment, hours worked, in�ation, the real wage and the nominal

interest rate. For Step 1, the arti�cial data set is generated by simulating the model to

give the seven macroeconomic time series. We use both the inverse of the Hessian and

the MCMC algorithm to obtain the posterior variances.11 We then examine the rate

at which the posterior variance falls, normalized by the increase the sample size of the

estimates. We use variance, rather than precision, because, given non-normality, it is

not an trivial task to recover the precision from the MCMC measure of exact variance.

We primarily examine the magnitude of the convergence statistic for both run these

measures of inverse of the Hessian and the MCMC algorithm and consider results for

the numerator in intervals from T = 10 to 5; 000.

5. We employ some simple restrictions implied by theory to examine the implications

for identi�cation of this model.

Once we have established the results of this baseline experiment, we impose several

restrictions on certain weakly identi�ed parameters. These restrictions allow us to assess

how the result is a¤ected, since �xing some weakly (and non-) identi�ed parameters

is common econometric practice. For some parameters, we impose ad hoc parameter

restrictions such as �p = �w and �p = �w, which can be regarded as cross parameter

restrictions, where we simply assume wage and price share the same degree of indexation

and stickiness.
11There are a couple of further technical notes here. First, in this experiment, we use Dynare: with

it, it is easy to compute the KPS indicator. Second, in some preliminary simulations, the maximization
algorithms cannot �nd the maximum posterior points. Often, this problem cannot be resolved even
after trying several di¤erent initial values with di¤erent maximization algorithms. In this case, we use
a di¤erent part of the arti�cially generated data. More practically, in all exercises, we discard the �rst
10% of the arti�cial data to eliminate the e¤ects of the initial state. If, however, the Dynare programme
cannot �nd the maximum point of the posterior, we redo all the exercises by discarding the �rst 10%
plus 1 of the arti�cial data (keeping T = 10; 100; 1000; 10000). In our exercise, longer data sets include
shorter ones, and we redo all estimations if the algorithm does not converge. One possible concern is
that this shows a lack of robustness in our estimations. However, given the nature of the arti�cial data,
the estimation results are almost identical whichever part of the data is used, especially for large T .
Although it is not clear why the convergence depends on such a minor di¤erence in the data sets, it
seems unlikely that our estimation results are sensitive to this shift in the arti�cial data.

9



3 Results

Throughout our results and in order to simulate the arti�cial data, following Smets and

Wouters (2007) and the extant literature, we �x the capital depreciation, �, the wage

markup in steady-state, �w, the government consumption to output ratio in steady-

state, gy, the Kimball curvature parameter for goods price elasticity, �p, and the Kimball

curvature for wage elasticity, �w.12 It is well-known that these deep structural parameters

are not identi�ed or, at least, very di¢ cult to identify: i.e. for these deep or steady-

state parameters, the maximization algorithms cannot �nd the posterior mode. In this

respect, we can avoid a form of Catch 22-type problem because we know this fact from

earlier researchers.

3.1 Baseline Exercise

We have checked the identi�cation of 41 parameters of this prototypical structural, or

DSGE, model, including the above �ve parameters eliminated the estimation of Smets

and Wouters (2007). The main results are shown in Tables 3 to 6. Tables 3 and 4

correspond to �rst to the estimated posteriors and then the identi�cation ratio generated

by the MCMC and then for Tables 5 and 6 by the Hessian, respectively. The �rst �ve

columns of Table 3 and 5 report the normalized posterior variances of the estimated

parameters generated by the MCMC algorithm and the posterior Hessian respectively.13

The parameters above the Table-wide horizontal line are structural parameters and the

ones below refer to parameters governing the models forcing processes, or shocks.

Our �rst result is that the results from Table 3 and 5 suggest that the results from

the posterior variance generated by MCMC and from the Hessian are nearly identical in

parameter and response to increasing the sample size, T . This result strongly supports

the use of the Hessian because the additional computational burden to obtain the Hessian

is e¤ectively zero while the computational times for the MCMC method for large T takes

a considerable computation time. Note that we show the results from the inverse of the

12See Table 2 for the de�nitions of the symbols, their priors and posterior results.
13The estimation results and code are all available from the authors.
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Hessian for Table 5 to facilitate the comparison with Table 3, but we can also simply

use the Hessian as a precision matrix in practice, in which case, divide the Hessian by

T . We would therefore recommend that the applied researcher simply use the Hessian.

Now we are in a position to check whether the posterior variance falls more quickly

than sample size and we simply compute, what we call the Identi�cation Ratio (IR)

of the normalized variances in Tables 4 and 6 and �nd that, if we mechanically apply

the cut-o¤ point of 1, (which is indicated by the short horizontal lines in each Table)

three issues emerge. First, that a signi�cant number of parameters do not seem to be

identi�ed as the IR is under 1. But secondly that there is a tendency for the number

of parameters that are identi�ed to increase when the sample size of the numerator is

increased. Finally and relatedly, the whole set of ratios tend to move up towards one

when we increase the sample size of the numerator. In Table 4 the least well identi�ed

parameter and median go from 0.124 to 0.776 and from 0.31 to 0.97 as we move from an

IR involving T=10
T=100

to one employs T=5;000
T=10;000

and similarly for Table 6 we go from 0.005

to 0.805 and from 0.24 to 1.02, respectively.

So although theoretically the threshold should be 1, many parameters concentrate

around 1. This leads us not to suggest the use the theoretical threshold naively. There

are mainly two reasons not to use 1 as a threshold: (i) as priors help identi�cation more

strongly for small sample than large sample, we may want to judge any tendency to 1 as

evidence in support of identi�cation; and (ii) and T even when large but still �nite. To

illustrate (ii), note that the IR1;000 is around 0:1 for some parameters, which is very close

to n=T = 1; 000=10; 000, but also far above it for many others. This is not by chance,

rather this implies that the precision of these former parameters does not improve at all

even if the sample size increases. If we could implement this exercise for T = 1, their

RI1 should go to 0 as the theory suggests, but not with �nite sample size. But for some

of the other parameters which show some improvement these observations suggest that

we should use the threshold value that should be slightly smaller than 1. Unfortunately,

however, it is hard to give a proper threshold a priori.

To better illustrate these results, Figures 1 and 2 show the scatter of the IR derived
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from the MCMC and the inverse of the Hessian for the two extreme cases of T=10
T=100

and

T=5;000
T=10;000

and whilst we can see that all the points lie close to the implied 450 implying

little or no di¤erence in the IR from using MCMC or Hessian estimates, the extent of

identi�cation is radically di¤erent. In Figure 1 nearly all the parameters lie inside the

unit box - and thus are not identi�ed - but in Figure 2 nearly all parameters move to

cluster around the point of identi�cation.14

If we look at the �rst three columns of Tables 4 and 6, the parameters that are clearly

identi�ed the trend growth rate, 
, the AR term of government spending shock, �g, the

AR term of productivity shock, �a, the AR term of wage mark-up shock, �w and the MA

term of wage mark-up shock, !w. However, a number of parameters: ��, �qs, �w and �g,

are close to 1 and could be classi�ed as identi�ed. On the other hand, the parameters

that do not seem very well identi�ed are the in�ation coe¢ cient of the monetary policy

rule, r�, the steady state growth rate of in�ation, ��, and the steady state growth rate

of hours worked, �l. At face value, this is a highly problematic result for researchers

who wish to estimate DSGE models but if we move to the IR which employs T=1;000
T=10;000

or T=5;000
T=10;000

then most of the parameters seem identi�ed or nearly identi�ed. We shall

return to this �nal point.

Overall we also note that the exogenous shock processes tend to be somewhat better

identi�ed; this is a rather common �nding in most identi�cation literature (see, for

example, KPS (2013) and Iskrev and Ratto (2010)). Our �ndings about identi�ed or

nearly identi�ed parameters are in line with other papers, such as Iskrev (2010a) and

Iskrev and Ratto (2010). Third, setting aside 
, we can see three groups. The gaps

between them appear around 0:3, 0:8 and 1:5. We label these groups as not-identi�ed,

weakly identi�ed and strongly identi�ed, and discuss them shortly. For expositional

purpose, we look at them on group-by-group basis. Overall, we �nd the following

tendencies: (a) level parameters, (b) monetary policy parameters and (c) nominal

stickiness parameters are weakly identi�ed, while (d) parameters for exogenous processes

are more or less well identi�ed. Broadly speaking, these �ndings are not very di¤erent

14For scaling reasons we do not show any IR estimates larger than 5 but by de�nition they are clearly
identi�ed.
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from other papers, such as Iskrev (2010a) and Iskrev and Ratto (2010), although, given

di¤erence in the identi�cation designed, our results are not necessarily identical to theirs.

(a) Level Parameters: First, steady state in�ation �� and steady state labour hours �l

are only weakly identi�ed. Also, subjective discount factor � is poorly identi�ed, which

determines the steady state interest rate. One exception is, as mentioned above, trend

growth rate 
, which is identi�ed exceptionally well. They capture the level of the data,

but such information is lost in the standard DSGE models, because the endogenous

variables are presented as the deviations from their steady state values. As Canova and

Sala (2009) pointed out, having constant terms changes the identi�cation in general.

Our conjecture is that, if we do not subtract the means from the log-linearized variables

and instead add constant terms in the equations, the identi�cation of these parameters

could improve signi�cantly.

(b) Monetary Policy Parameters: Second, monetary policy parameters ry and r�

are only weakly identi�ed. This could be the problem of data variation, because in�ation

and output are highly correlated in a Phillips curve type model, the role of ry and r�

could be similar. This is quite problematic to evaluate the monetary policy performance

based on DSGE estimations.

(c) Parameters Related to Nominal Stickiness: Third, the two Kimball

parameters for goods and labour aggregators are not identi�ed. This �nding is consistent

with Iskrev (2010b). Kimball aggregator is an extension of Dixit-Stiglitz aggregator, in

which the elasticity of substitution among types of (intermediate) goods is constant. In

Kimball aggregator, it is not a constant any more, and the Kimball parameter governs

the rate of change in the elasticity of substitution to the change in demand. We can �nd

an intuitive exposition in Iskrev (2010b) but we also would like to point out algebraically

that each Kimball parameter appears only together with corresponding Calvo parameter,

which shows one minus the price (or wage) reset probability. For example, Kimball

curvature parameter �p for goods price elasticity is coupled with Calvo parameter �p
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both appear only in the last term of equation (10) in Table 1. Following Smets and

Wouters (2007), we labels the coe¢ cient on that term �3. If we ignore prior, even if

data successfully the value of �3, there are in�nitely many combinations of �p and �p

that attain such a value for �3. In this sense, non-identi�cation of Kimball parameters

is not surprising but it is still a puzzle why two Calvo parameters are identi�ed, though

only weakly.

Also, from our previous exercise (results not shown here), there is some evidence

to consider that Calvo parameters and indexation parameters �p and �w are collinear,

which also could reduce their identi�ability. Indeed, Iskrev (2010b) suggests that there

are strong collinearities between �p and �p and between �w and �w, but another possibility

is those between �p and �w and between �p and �w, as Canova and Sala (2009) �nd.

(d) Parameters of Exogenous Processes As a general tendency, we also note that

the parameters of the exogenous shock processes are somewhat better identi�ed; this is

a rather common �nding in most identi�cation literature. See, for example, KPS (2013)

and Iskrev and Ratto (2010).

(e) Other Parameters Finally, in terms of the parameters excluded in Smets and

Wouters (2007), the wage markup in steady-state �w is actually only weakly identi�ed,

but capital depreciation rate � and the share of the government expenditure gy in the

goods market clearing condition are well-identi�ed. Also, as mentioned above, two

Kimball parameters are totally unidenti�ed. Presumably gy plays a similar role to the

standard deviation of the government shock �g, through steady state consumption and

investment levels, gy is identi�able. Our result suggests that, for example, if we have

more observations, at least potentially gy and �w can be estimable in the standard DSGE

models.

3.2 Applying Simple Restrictions

Using the results of the baseline experiment, we have imposed a number of simple

restrictions to the benchmark model in order to improve the identi�cation. This is
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motivated by the coe¢ cient restriction in the linear econometric models. Speci�cally,

we have imposed (a) two Kimball parameters are set to be 10 (they are �calibrated�), and

(b) motivated by Canova and Sala (2009), we force indexation and Calvo parameters are

the same for goods price and wage �p = �w and �p = �w. These parameter restrictions,

of course, reduce the number of free parameters to be estimated. In the similar vein

to this exercise, one possible approach to deal with weakly identi�ed parameters is the

reduction of parameters by constructing a pro�le likelihood, in which we represent some

parameters as functions of other parameters.15

The normalized posterior variances for the restricted model are given in Table 7

and the Identi�cation Ratios of the restricted model is presented in Table 8. The main

�ndings are as follows. First, not surprisingly, the identi�cation of �p = �w and �p = �w

have improved dramatically. Second, the IRs for the other parameters are also improved,

although their IRs are still relatively low. Monetary policy parameters r� and ry do not

improve very much, though. Third, general tendency that we discussed above still

holds here again. For example, the trend growth rate is quite strongly identi�ed, and

parameters for the exogenous processes are relatively well identi�ed.

4 Further Issues in using the diagnostic indicator

In this section, we brie�y discuss some additional issues for the applied researcher to

consider in the estimation of structural models. First, in terms of the choice between

the Hessian and the posterior variance derived from the MCMC, we suggest that the

use of the Hessian is to be preferred. As we have shown, the results are almost identical

and as the additional computational burden to obtain the Hessian is much lower than

MCMC re-sampling.

Related to this, in this paper, to facilitate comparison, the Hessian is inverted in Table

7, due to the di¢ culty in computing the MCMC-based precision. However, to avoid

unnecessary inversion, it may be better to treat the Hessian as the precision of estimates:

i.e., examine the Hessian directly without inverting it. This step may be particularly

15We thank Hashem Pesaran for this suggestion, which we commend to future work.
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important in the case of weak identi�cation where the Hessian may become near singular

(or ill-conditioned). In such a case, we can examine the normalized precision, which is

simply the diagonal elements of the Hessian divided by the sample size T .

Second, not surprisingly, if sample size is too few, there is stochastic variation, which

reduces the reliability of the KPS indicator. Also, in the spirit of KPS, we are interested

in the data identi�cation. Hence, if the sample size is too small, almost all parameters

are identi�ed merely because of the prior. We need a large sample size to eliminate the

e¤ect of prior.

Third, there must be enough gap between n (shorter data) and N (longer data).

In Tables 4 and 6, we show the comparison between n = 5; 000 and N = 10; 000, but

their results are less similar to the results of n = 1; 000 and N = 10; 000. Actually, the

results of n = 1; 000 and N = 5; 000 are much more closer to those of n = 1; 000 and

N = 10; 000. We suspect that if n and N are too close, the indicator does not work very

well.

Fourth, we ought to be chary in any application of a mechanical cut-o¤ rule for the

cardinal value of IR at 1. We claim that, if a parameter exhibits a precision improvement

greater that 1, it is perhaps safe to judge it is well identi�ed. However, even if its speed

is slightly lower than 1, it may be still well identi�ed. The reasons are, as discussed

above, (a) we still have, though very large, �nite sample size, and (b) the role of the

prior is greater for smaller sample size. In our exercise, we used 0:8 to demarcate weakly

and well identi�ed parameters, but this number should be model dependent.

4.1 Sensitivity

We undertake two sensitivity analyses in this section. First we examine our results with

an additional random seed and then compare the results of the inverse Hessian to the

use of the Hessian directly. Figure 3 compares two identical uses of the KPS indicator

for di¤erent sample data. In this exercise, we use the same Smets and Wouters�(2007)

model to generate two arti�cial data sets by using two di¤erent random number seeds.

They are not surprisingly correlated to each other (correlation is 0.68). However, the
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�nding that two Kimball curvature parameters are not identi�ed is still clear for both

random seeds.16

Figure 4 compares the inverse Hessian based (variance-covariance based) and the

Hessian-based (precision based). As discussed previously, from the computational

viewpoint, we recommend to use the inverse Hessian rather than MCMC to obtain

asymptotic variance. However, if so, a natural conjecture is, to avoid inversion of

a (potentially) big matrix, we could use Hessian directly to investigate asymptotic

precision. Again, what we have found is, though there is a signi�cant correlation between

the variance based and the precision based methods, there are non trivial discrepancy

between them.

We can summarize what we have found as follows. First, we conclude that the only

parameters that are not identi�ed are the two Kimball parameters. This �nding is quite

robust throughout our experiments. Secondly, the Hessian based method is much better

than the MCMC method, because, while the results are identical, the computation time

is much shorter for the Hessian method. Third, we should not use 1 as a threshold value

for IR. Rather, as the IRs of the two Kimball curvature parameters show, if IR is near

n=T = 1; 000=10; 000, it could be the evidence that the parameter is unidenti�ed.

5 Conclusions

While several identi�cation indicators have been developed for DSGE models, the KPS

method is highly attractive in the sense that only it focuses on data identi�cation, i.e.

identi�cation without the help or dominance of the Bayesian prior. There may be some

use in combining the KPS method with other methods, for example, Iskrev�s (2010a) J2,

which relies only on the model structure without referring to the data availability. Hence

combining these distinct indicators helps us to detect the source of the identi�cation

failure. For example, if a parameter of a model passes the J2 criterion but not the KPS,

then we know such an identi�cation problem is because of the lack of su¢ cient data

16To aid comparison we have removed the observations with a very high IR. The underlying tables
are available on request.
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and vice versa. In addition, like other Hessian based indicators, the KPS method is also

subject to the Catch 22 problem: without a priori knowledge about the parameters that

are perfectly unidenti�ed, some trial and error may be required to obtain the likelihood

(or posterior) mode. In this respect, again, it may be wise to combine it with Jacobian

based methods, which do not typically rely on the data.

In our simple experiments, we �nd that many parameters in the Smets and Wouters

(2007) model, which works as a benchmark in many DSGE applications, are identi�ed

but some parameters related to (a) level, (b) monetary policy rule and (c) price and wage

stickiness may pose more of a problem. These �ndings are consistent with those in the

emerging literature and are also clearly demonstrated by the KPS measure of posterior

precision, as represented by the Identi�cation Ratio. Perhaps the clearest �nding is

that two Kimball curvature parameters are unidenti�ed, consistent with Iskrev (2010a).

Researchers may consider presenting the KPS statistic for every estimation presented

of a DSGE model so that better more meaningful inference can be derived as to the

usefulness or otherwise of the estimates for further analytical work.

In practice, we recommend to using the Hessian (rather than the posterior variance)

in KPS method, because of the computational consideration. Also, it may be better

to check the change between T = 1; 000 or 5; 000 and T = 10; 000, rather than that

between T = 10 and T = 10; 000. Finally, given the tendency in KPS, even if a

parameter exhibits a precision improvement slower than the order that is theoretically

suggested, mechanically judging it as poorly identi�ed may not be the best strategy, as

some restrictions may be brought to bear from economic theory to aid identi�cation.

To conclude a parameter is poorly identi�ed, its speed of precision improvement must

be low and stubbornly so with respect to various model restrictions. That said, the

simplicity of the KPS indicator and the extent to which such a widely used workhorse

model can be shown to be simply identi�ed might be considered a great comfort to those

using Bayesian estimation.

18



References

[1] An, S. and F. Schorfheide (2007). �Bayesian Analysis of DSGE Models.�

Econometric reviews, 26, pp.113-172.

[2] Andrle, M. (2010). �A Note on Identi�cation Patterns in DSGE Models.�Working

Paper Series, No. 1235, European Central Bank.

[3] Canova, F. and L. Sala (2009). �Back to Square One: Identi�cation Issues in DSGE

Models.�Journal of Monetary Economics, 56, pp.431-449.

[4] Consolo, A., C. A. Favero, and A. Paccagnini (2009). �On the Statistical

Identi�cation of DSGE Models.�Journal of Econometrics, 150, pp.99-115.

[5] Iskrev, N. (2008). �Evaluating the Information Matrix in Linearized DSGEModels.�

Economics Letters, 99, pp.607-610.

[6] Iskrev, N. (2010a). �Local Identi�cation in DSGE Models.� Journal of Monetary

Economics, 57, pp.189-202.

[7] Iskrev, N. (2010b). �Parameter Identi�cation in Dynamic Economic Models.�

Economic Bulletin and Financial Stability Report Articles, Banco de Portugal,

Economics and Research Department.

[8] Iskrev, N. and M. Ratto (2010). �Analysing Identi�cation Issues in DSGE Models.�

Mimeo, MONFISPOL papers, Stressa, Italy.

[9] Komunjer, I. and S. Ng (2011). �Dynamic Identi�cation of DSGE Models.�

Econometrica, 79(6), pp.1995�2032.

[10] Koop, G., M. H. Pesaran, and R. P. Smith (2013). �On Identi�cation of Bayesian

DSGE Models.�Journal of Business and Economic Statistics, 31, pp.300-314.

[11] Ratto, M., S. Tarantola, A. Saltelli and P. C. Young (2004). �Accelerated Estimation

of Sensitivity Indices Using State Dependent Parameter Models.�, In K. M. Hanson

19



and F. M. Hemez (eds), Sensitivity Analysis of Model Output, Proceedings of the

4th International Conference on Sensitivity Analysis of Model Output.

[12] Ratto, M. (2008). �Analysing DSGE Models with Global Sensitivity Analysis.�

Computational Economics, 31, pp.115-139.

[13] Ratto, M., W. Roeger, and J. Veld (2009). �Quest III: An Estimated Open-Economy

DSGE Model of the Euro Area with Fiscal and Monetary Policy.� Economic

Modelling, 26, pp.222-233.

[14] Sims, Christopher A, (2002). �Solving Linear Rational Expectations Models,�

Computational Economics, 20, pp.1-20.

[15] Smets, F. and R. Wouters (2007). �Shocks and Frictions in US Business Cycles: A

Bayesian DSGE Approach.�American Economic Review, 97, pp.586-606.

20



Figure 1: Identi�cation Ratio of MCMC and Inverse HEssian for T=10
T=100

21



Figure 2: Identi�cation Ratio of MCMC and Inverse HEssian for T=5;000
T=10;000
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Figure 3: Hessian measure with alternate random seed
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Figure 4: Inverse Hessian compared to precision measure
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Table 1: Log-linearized equations of the DSGE model of Smets and Wouters (2007)
(1) yt = cyct + iyit + zyzt + �

g
t

(2) ct =
h=

1+h=
 ct�1 + (1�

h=

1+h=
 )Etct+1 �

(�c�1)(WL=C)
�c(1+h=
)

(lt � Etlt+1)
+ (1�h=
)
(1+h=
)�c

(rt � Et�t+1 + �bt)

(3) it =
1

1+�
1��c it�1 + (1�
1

1+�
1��c )Etit+1 +
1

(1+�
1��c )
2'qt + �
i
t

(4) qt =
1��

Rk+(1��)Etqt+1 + (1�
1��

Rk+(1��) )r
k
t+1 � (rt � �t+1 + �bt)

(5) kt =
1��

 kt�1 + (1�

1��

 )it + (1�

1��

 )(1 + �


1��c)
2'�it

(6) kst = kt�1 + zt

(7) zt =
1�	
	 rkt

(8) rkt = �(kt � lt) + wt

(9) yt = �(�k
s
t + (1� �)lt + �at )

(10) �t =
�p

(1+�
1��c )�p
�t�1 +

�
1��c

1+�
1��c �p
Et�t+1 +

1
(1+�
1��c )�p

(1��
1��c�p)(1��p)
((�p�1)�p+1)�p

�pt + �
p
t

(11) �pt = �(k
s
t - lt) - wt + �

a
t

(12) wt =
1

1+�
1��c wt�1 + (1�
1

1+�
1��c )(Etwt+1 + Et�t+1)�
1+�
1��c �w
1+�
1��c �t +

�w
1+�
1��c �t�1

� 1
(1+�
1��c )�w

(1��
1��c�w)(1��w)
((�w�1)�w+1)�w

�wt + �
w
t

(13) �wt = wt � (�llt + 1
1�� (ct � �ct�1))

(14) rt = �rrt�1 + (1� �)(r��t + rY (yt � y
p
t )) + r�y[(yt � y

p
t ) + (yt�1 � y

p
t�1)] + �

R
t

(15) �at = �a�
a
t�1 + �

a
t

(16) �gt = �g�
g
t�1 + �

g
t + ��

a
t

(17) �it = �i�
i
t�1 + �

i
t

(18) �bt = �b�
b
t�1 + �

b
t

(19) �wt = �w�
w
t�1 + �

w
t + �w�

w
t

(20) �pt = �p�
p
t�1 + �

p
t + �p�

p
t

(21) �rt = �r�
r
t�1 + �

r
t

Note: The model has fourteen endogenous variables: y, output, c, consumption, i, investment, q, price

of installed capital, k, total capital stock, ks, the amount of capital used in production, z, capital

utilisation rate, rk, rental rate of capital, �, in�ation, w, wages, r, nominal interest rate, �w, wage

mark up and �w, price mark up. And the responses of fourteen endogenous variables are driven by

seven shocks: �a, total factor productivity, �i, aggregate investment, �b, consumer spending, �p, price

mark-up, �w, wage mark-up, and �r, monetary policy shock. As standard, the key behavioural

equations are obtained by deriving optimality conditions for household and �rm behaviour. These

decision rules are then linearised around their steady-state in standard fashion.This model and the set

of exogenous shock processes are estimated on time series data using Dynare.
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Table 2: Prior and posterior distributions

Prior Posterior
Par. De�nition Density Mean Std. Mode Mean Std.
' Investment adj. cost N 4.00 1.50 5.47 5.75 1.03
�c Inv. elats. intert. subst. N 1.50 0.37 1.42 1.38 0.14
h Consump. habit B 0.70 0.10 0.73 0.71 0.04
�w Calvo wage B 0.50 0.10 0.73 0.70 0.07
�l Elast. labour supply N 2.00 0.75 1.87 1.77 0.61
�p Calvo price B 0.50 0.10 0.65 0.65 0.06
�w Index. of wages B 0.50 0.15 0.60 0.57 0.13
�p Index. of prices B 0.50 0.15 0.22 0.25 0.09
	 Capital utilization B 0.50 0.15 0.54 0.55 0.12
� Fixed cost N 1.25 0.12 1.60 1.61 0.08
r� Response to in�ation N 1.50 0.25 2.02 2.04 0.18
�r Interest rate smooth. N 0.75 0.10 0.81 0.81 0.02
ry Response to output N 0.12 0.05 0.09 0.09 0.02
r�y Response to outp. gap N 0.12 0.05 0.22 0.23 0.03
� SS in�ation G 0.62 0.10 0.76 0.78 0.11
100(��1 � 1) Discount factor G 0.25 0.10 0.14 0.17 0.06
l SS hours worked N 0 2.00 0.72 0.63 1.07
100(
 � 1) Trend growth N 0.40 0.10 0.43 0.43 0.01
� Share of capital N 0.30 0.05 0.19 0.19 0.02
� Depreciation rate n.a. 0.025 n.a. n.a. n.a. n.a.
gy Government/Output n.a. 0.18 n.a. n.a. n.a. n.a.
�w Wage mark-up n.a. 1.5 n.a. n.a. n.a. n.a.
�w Kimball (wage) n.a. 10 n.a. n.a. n.a. n.a.
�p Kimball (price) n.a. 10 n.a. n.a. n.a. n.a.
�a AR prod. shock Beta 0.50 0.20 0.96 0.96 0.01
�b AR risk premium Beta 0.50 0.20 0.18 0.23 0.08
�g AR government spend. Beta 0.50 0.20 0.98 0.98 0.01
�qs AR invest. demand Beta 0.50 0.20 0.70 0.71 0.06
�ms AR monetary policy Beta 0.50 0.20 0.12 0.14 0.06
�� AR price mark-up Beta 0.50 0.20 0.91 0.14 0.05
�w AR wage mark-up Beta 0.50 0.20 0.97 0.97 0.01
!p MA price mark-up Normal 0.50 0.20 0.74 0.72 0.09
!g Prod. shock in G Normal 0.50 0.25 0.52 0.52 0.09
!w MA wage mark-up Normal 0.50 0.20 0.89 0.85 0.05
�a Std. prod. shock IG 0.10 2.00 0.45 0.46 0.03
�b Std. risk premium IG 0.10 2.00 0.24 0.24 0.02
�g Std. government IG 0.10 2.00 0.52 0.53 0.03
�qs Std. investment IG 0.10 2.00 0.45 0.45 0.05
�ms Std. mon. pol. IG 0.10 2.00 0.24 0.24 0.01
�� Std. price mark-up IG 0.10 2.00 0.14 0.14 0.02
�w Std. wage mark-up IG 0.10 2.00 0.25 0.24 0.02
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Table 3: Normalized posterior variances of structural parameters (generated by MCMC
method)

Parameter T = 10 T = 100 T = 1; 000 T = 5; 000 T = 10; 000
' 15.228 123.098 388.638 580.608 705.941
�c 0.982 1.600 4.399 7.434 9.576
h 0.079 0.260 0.412 0.521 0.481
�w 0.076 0.416 1.673 2.888 3.209
�l 4.958 32.318 108.535 169.368 184.441
�p 0.041 0.272 0.580 0.640 0.804
�w 0.223 1.628 5.004 5.903 5.852
�p 0.227 0.921 1.391 2.426 2.540
	 0.201 1.504 2.750 2.308 2.560
� 0.153 0.723 2.137 2.398 2.560
r� 0.527 3.777 13.923 21.490 21.875
�r 0.053 0.115 0.216 0.249 0.264
ry 0.024 0.152 0.186 0.225 0.225
r�y 0.023 0.099 0.275 0.334 0.333
� 0.105 0.674 4.533 9.725 11.902
� 0.076 0.542 1.579 2.821 3.409
l 42.190 52.170 238.712 404.481 450.140

 0.086 0.044 0.000 0.000 0.000
� 0.020 0.060 0.073 0.064 0.066
�a 0.277 0.045 0.018 0.027 0.025
�b 0.280 0.911 1.102 1.214 1.169
�g 0.332 0.050 0.011 0.013 0.013
�qs 0.388 0.731 0.632 0.657 0.641
�ms 0.365 0.801 1.176 1.181 1.253
�� 0.450 0.735 0.439 0.347 0.387
�w 0.192 1.075 0.036 0.027 0.027
!p 0.400 2.272 2.706 2.610 2.710
!g 0.627 1.064 1.729 1.564 1.612
!w 0.293 2.142 0.287 0.266 0.268
�a 0.075 0.159 0.165 0.167 0.174
�b 0.026 0.072 0.106 0.114 0.109
�g 0.267 0.163 0.183 0.168 0.169
�qs 0.157 0.520 0.357 0.379 0.365
�ms 0.010 0.024 0.043 0.042 0.041
�� 0.057 0.036 0.062 0.067 0.068
�w 0.043 0.064 0.081 0.089 0.089

Note: Normalized variance is the estimated variance times T . And the Identi�cation Ratio
shows the ratio of the Normalized variance for di¤erent T . A ratio greater than 1 shows that
convergence is faster than T .
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Table 4: Identi�cation Ratio (structural parameter generated by MCMC method)
T=10
T=100

T=100
T=1;000

T=1;000
T=5;000

T=1;000
T=10;000

T=5;000
T=10;000

�g 6.636 
 104.334 
 32.334 
 129.940 
 4.019
�a 6.220 �w 29.847 �w 1.340 �w 1.318 h 1.083

 1.950 !w 7.461 �� 1.267 �� 1.134 �a 1.047
�g 1.640 �g 4.669 	 1.192 � 1.110 �b 1.045
�� 1.595 �a 2.474 � 1.147 �g 1.081 �ms 1.042
l 0.809 �� 1.674 !g 1.105 	 1.074 �b 1.039
�w 0.669 �qs 1.457 �g 1.091 !g 1.072 �qs 1.037
�c 0.614 �qs 1.156 !w 1.082 !w 1.072 �qs 1.025
�� 0.612 �a 0.963 !p 1.037 �ms 1.053 �g 1.012
!g 0.589 �g 0.891 �ms 1.011 !p 0.999 �w 1.009
�qs 0.531 !p 0.840 �ms 0.996 �qs 0.986 r�y 1.005
�a 0.474 �b 0.827 �a 0.990 �qs 0.978 ry 1.001
�r 0.459 � 0.823 �qs 0.961 �b 0.973 �w 0.998
�ms 0.456 ry 0.817 �qs 0.943 �a 0.949 !w 0.991
�ms 0.419 �w 0.786 �� 0.935 �b 0.943 �g 0.991
�b 0.361 �b 0.682 �b 0.931 �ms 0.939 �w 0.984
� 0.340 �ms 0.681 �w 0.908 �� 0.910 r� 0.982
�b 0.308 �p 0.662 �b 0.908 �w 0.906 �� 0.973
h 0.306 h 0.631 �p 0.907 h 0.856 !g 0.970
�qs 0.302 !g 0.616 � 0.891 �w 0.855 � 0.968
�p 0.246 �� 0.575 �r 0.866 � 0.835 !p 0.963
r�y 0.232 �ms 0.554 �w 0.848 ry 0.828 �a 0.959
� 0.211 	 0.547 ry 0.827 r�y 0.827 �p 0.955
�w 0.182 �r 0.535 r�y 0.823 �g 0.825 �ms 0.942
�w 0.178 �p 0.469 �g 0.815 �r 0.816 �r 0.942
!p 0.176 �c 0.364 h 0.790 �p 0.722 � 0.937
ry 0.157 r�y 0.361 �a 0.680 �a 0.712 �l 0.918
� 0.155 � 0.343 ' 0.669 r� 0.637 	 0.902
�l 0.153 � 0.339 r� 0.648 �l 0.589 �w 0.900
�p 0.151 �w 0.325 �l 0.641 ' 0.551 l 0.899
� 0.140 ' 0.317 �c 0.592 �p 0.548 �� 0.896
r� 0.140 �l 0.298 l 0.590 l 0.530 � 0.828
�w 0.137 r� 0.271 �w 0.579 �w 0.521 ' 0.823
!w 0.137 �w 0.249 �p 0.573 � 0.463 � 0.817
	 0.133 l 0.219 � 0.560 �c 0.459 �p 0.796
' 0.124 � 0.149 � 0.466 � 0.381 �c 0.776

Note: Normalized variance is the estimated variance times T . And the Identi�cation Ratio
shows the ratio of the Normalized variance for di¤erent T . A ratio greater than 1 shows that
convergence is faster than T .
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Table 5: Normalized posterior variances of structural parameters (generated by H�1

method)

Parameter T = 10 T = 100 T = 1; 000 T = 5; 000 T = 10; 000
' 27.608 132.429 355.752 565.491 649.283
�c 0.963 1.639 4.735 7.712 8.214
h 0.054 0.266 0.431 0.527 0.464
�w 0.079 0.426 1.730 3.001 2.903
�l 7.648 34.600 103.932 159.983 162.949
�p 0.096 0.288 0.565 0.635 0.789
�w 0.330 1.914 5.100 5.898 5.608
�p 0.283 0.965 1.501 2.414 2.442
	 0.213 1.752 2.875 2.351 2.443
� 0.150 0.758 2.081 2.336 2.459
r� 0.565 3.689 13.964 21.550 21.082
�r 0.065 0.114 0.225 0.256 0.244
ry 0.016 0.152 0.187 0.227 0.221
r�y 0.022 0.101 0.270 0.330 0.322
� 0.114 0.565 4.606 9.590 11.700
� 0.066 0.555 1.630 2.766 2.609
l 46.177 37.808 239.787 402.043 449.101

 0.093 0.043 0.000 0.000 0.000
� 0.024 0.059 0.070 0.061 0.062
�a 0.320 0.029 0.017 0.026 0.024
�b 0.284 0.928 1.111 1.175 1.081
�g 0.488 0.047 0.010 0.013 0.013
�qs 0.289 0.791 0.665 0.691 0.650
�ms 0.751 0.823 1.258 1.257 1.124
�� 0.390 0.683 0.402 0.338 0.383
�w 0.005 1.115 0.033 0.026 0.026
!p 0.734 3.064 2.485 2.427 2.609
!g 0.679 0.994 1.738 1.556 1.610
!w 0.426 2.559 0.275 0.263 0.264
�a 0.025 0.162 0.158 0.161 0.162
�b 0.005 0.069 0.106 0.111 0.102
�g 0.142 0.152 0.179 0.165 0.169
�qs 0.051 0.455 0.350 0.373 0.368
�ms 0.006 0.022 0.043 0.044 0.041
�� 0.019 0.038 0.062 0.066 0.068
�w 0.006 0.063 0.082 0.090 0.088

Note: Normalized variance is the estimated variance times T . And the Identi�cation Ratio
shows the ratio of the Normalized variance for di¤erent T . A ratio greater than 1 shows that
convergence is faster than T .
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Table 6: Identi�cation Ratio (structural parameter generated by H�1 method)
T=10
T=100

T=100
T=1;000

T=1;000
T=5;000

T=1;000
T=10;000

T=5;000
T=10;000


 11.108 
 105.824 
 32.153 
 125.488 
 3.903
�g 10.492 �w 34.115 �w 1.276 �w 1.241 h 1.134

 2.160 !w 9.306 	 1.223 	 1.177 �ms 1.119
l 1.221 �g 4.477 �� 1.190 � 1.120 �b 1.087
�g 0.933 �a 1.713 � 1.154 �ms 1.119 �b 1.086
�ms 0.912 �� 1.700 !g 1.117 !g 1.080 �a 1.077
!g 0.683 �qs 1.302 �g 1.082 �g 1.061 �qs 1.063
�c 0.588 !p 1.233 !w 1.045 �� 1.048 �ms 1.061
�r 0.572 �qs 1.189 !p 1.024 �ms 1.045 � 1.060
�� 0.571 �a 1.021 �ms 1.000 !w 1.040 �w 1.052
�� 0.504 �g 0.851 �ms 0.985 �b 1.038 �r 1.050
� 0.412 � 0.848 �a 0.980 �b 1.028 �w 1.034
�qs 0.365 �b 0.835 �qs 0.963 �qs 1.024 r�y 1.028
�p 0.332 ry 0.816 �b 0.956 �a 0.975 ry 1.027
�b 0.306 �w 0.770 �b 0.946 !p 0.952 r� 1.022
�p 0.293 �ms 0.655 �� 0.941 �qs 0.951 �w 1.022
�ms 0.255 �b 0.653 �qs 0.938 �w 0.929 �g 1.020
!p 0.239 �p 0.643 �w 0.909 h 0.928 �qs 1.013
�l 0.221 h 0.616 � 0.891 �r 0.923 !w 0.995
r�y 0.214 �� 0.611 �p 0.891 �� 0.918 �a 0.995
' 0.208 	 0.609 �r 0.879 �w 0.909 �p 0.989
h 0.205 !g 0.572 �w 0.865 � 0.846 �l 0.982
� 0.202 �p 0.510 ry 0.823 ry 0.846 �g 0.981
� 0.198 �ms 0.509 h 0.819 r�y 0.841 �� 0.976
�w 0.186 �r 0.504 r�y 0.818 �g 0.806 �w 0.973
�w 0.172 �w 0.375 �g 0.790 �p 0.717 � 0.970
!w 0.166 r�y 0.372 �a 0.650 �a 0.700 !g 0.967
�a 0.155 ' 0.372 �l 0.650 r� 0.662 	 0.963
r� 0.153 � 0.364 r� 0.648 �l 0.638 � 0.950
	 0.122 �c 0.346 ' 0.629 � 0.625 �c 0.939
� 0.118 � 0.341 �p 0.622 �p 0.615 !p 0.930
�qs 0.113 �l 0.333 �c 0.614 �w 0.596 l 0.895
ry 0.104 r� 0.264 l 0.596 �c 0.577 �� 0.881
�w 0.097 �w 0.246 � 0.589 ' 0.548 ' 0.871
�b 0.071 l 0.158 �w 0.577 l 0.534 � 0.820
�w 0.005 � 0.123 � 0.480 � 0.394 �p 0.805

Note: Normalized variance is the estimated variance times T . And the Identi�cation Ratio
shows the ratio of the Normalized variance for di¤erent T . A ratio greater than 1 shows that
convergence is faster than T .
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Table 7: Normalized posterior variances of the restricted model

Parameter T = 10 T = 100 T = 1; 000 T = 5; 000 T = 10; 000
�c 0.655 2.373 3.825 6.883 5.634
h 0.088 0.372 0.335 0.407 0.425
�l 4.717 37.022 124.942 221.464 194.384
�p 0.034 0.364 0.349 0.390 0.382
�p 0.045 0.876 1.584 2.029 1.946
	 0.229 1.062 2.224 1.891 1.820
� 0.063 0.686 1.805 2.442 2.452
r� 0.236 2.649 9.502 17.370 19.702

 0.089 0.039 0.000 0.000 0.000
� 0.011 0.023 0.063 0.059 0.059
�a 0.016 0.020 0.019 0.022 0.022
�b 0.308 1.175 0.993 1.146 1.106
�g 0.127 0.303 0.017 0.015 0.015
�qs 0.233 0.963 0.756 0.651 0.652
�ms 0.228 0.617 1.104 1.285 1.070
�� 0.029 2.253 0.777 0.992 0.948
�w 0.074 0.228 0.016 0.020 0.022
!p 0.327 4.027 2.057 2.923 2.625
!g 0.080 0.541 1.097 1.309 1.298
!w 0.215 1.088 0.213 0.165 0.177
�a 0.422 0.149 0.177 0.172 0.178
�b 0.020 0.079 0.101 0.112 0.107
�g 0.025 0.075 0.138 0.157 0.160
�qs 0.202 0.420 0.474 0.399 0.387
�ms 0.003 0.024 0.032 0.036 0.038
�� 0.001 0.025 0.037 0.044 0.041
�w 0.005 0.070 0.059 0.060 0.060

Note: Variances are generated by H�1 method. Using the results shown by Table 3 and
4, following parameters are �xed at\\ their posterior means and not estimated: unidenti�ed
two steady state growth parameters, � and l, three parameters of monetary policy reaction
function, �r, ry, r�y, Also the two wage parameters �w and �w are set so that �w = �p and
�w = �p.
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Table 8: Identi�cation Ratio (the restricted model)
T=10
T=100

T=100
T=1;000

T=1;000
T=5;000

T=1;000
T=10;000

T=5;000
T=10;000

�a 2.825 
 91.604 
 35.955 
 135.608 
 3.772

 2.295 �g 17.435 !w 1.293 �qs 1.225 �c 1.222
�a 0.779 �w 14.398 �qs 1.190 	 1.222 �ms 1.201
�qs 0.480 !w 5.097 	 1.176 !w 1.206 �l 1.139
� 0.474 �� 2.901 �qs 1.162 �qs 1.160 !p 1.114
�g 0.421 !p 1.958 �g 1.135 �g 1.129 �� 1.054
�ms 0.370 �qs 1.274 � 1.077 � 1.074 �b 1.051
�g 0.328 �b 1.184 �a 1.030 �ms 1.032 �� 1.047
�w 0.326 �w 1.180 �w 0.988 �a 0.994 �p 1.043
�c 0.276 h 1.110 �b 0.901 �w 0.986 	 1.039
�b 0.262 �a 1.074 �p 0.897 �b 0.947 �b 1.036
�b 0.255 �p 1.043 �ms 0.894 �p 0.914 �qs 1.030
�qs 0.242 �qs 0.885 �g 0.880 �� 0.900 �p 1.019
h 0.237 �a 0.842 �b 0.866 �b 0.897 !g 1.008
	 0.216 �b 0.781 �ms 0.859 �ms 0.862 �a 1.000
!w 0.197 �ms 0.725 �� 0.854 �g 0.861 �qs 0.999
!g 0.147 �� 0.684 !g 0.838 !g 0.845 � 0.997
�l 0.127 �c 0.620 �a 0.827 �a 0.827 �w 0.997
�ms 0.119 �ms 0.559 h 0.822 �� 0.820 � 0.996
� 0.092 �p 0.553 �� 0.783 �p 0.814 �g 0.994
�p 0.092 �g 0.546 �p 0.781 h 0.788 �g 0.979
r� 0.089 !g 0.494 �w 0.776 !p 0.784 �a 0.965
!p 0.081 	 0.478 � 0.739 � 0.736 �ms 0.964
�w 0.073 � 0.380 !p 0.704 �w 0.718 h 0.959
�p 0.051 � 0.367 �l 0.564 �c 0.679 !w 0.933
�� 0.028 �l 0.296 �c 0.556 �l 0.643 �w 0.925
�� 0.013 r� 0.279 r� 0.547 r� 0.482 r� 0.882

Note: Variances are generated by H�1 method. Using the results shown by Table 3 and
4, following parameters are �xed at their posterior means and not estimated: unidenti�ed
two steady state growth parameters, � and l, three parameters of monetary policy reaction
function, �r, ry, r�y, Also the two wage parameters �w and �w are set so that �w = �p and
�w = �p.
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