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Pie
ewise Linear Hypersurfa
es using the Mar
hing CubesAlgorithmJonathan C. Robertsa and Steve HillbaUniversity of Kent at Canterbury, Computing Laboratory, Canterbury, England, UK.bRadan Computational Ltd. Ensleigh House, Granville Road, Lansdown, Bath, England, UKABSTRACTSurfa
e visualization is very important within s
ienti�
 visualization. The surfa
es depi
t a value of equal density (anisosurfa
e) or display the surrounds of spe
i�ed obje
ts within the data. Likewise, in two dimensions 
ontour plotsmay be used to display the information. Thus similarly, in four dimensions hypersurfa
es may be formed aroundhyperobje
ts.These surfa
es (or 
ontours) are often formed from a set of 
onne
ted triangles (or lines). These pie
ewise segmentsrepresent the simplest non-degenerate obje
t of that dimension and are named simpli
es. In four dimensions a simplexis represented by a tetrahedron, whi
h is also known as a 3-simplex. Thus, a 
ontinuous n dimensional surfa
e maybe represented by a latti
e of 
onne
ted n-1 dimensional simpli
es.This latti
e of 
onne
ted simpli
es may be 
al
ulated over a set of adja
ent n dimensional 
ubes, via for examplethe Mar
hing Cubes Algorithm. We propose that the methods of this lo
al-
ell tiling method may be usefully-appliedto four dimensions and potentially to N-dimensions. Thus, we organise the large number of traversal 
ases and major
ases; introdu
e the notion of a sub-
ase (that enables the large number of 
ases to be further redu
ed); and des
ribethree methods for implementing the Mar
hing Cubes lookup table in four-dimensions.Keywords: Mar
hing Cubes, four dimensions, hypersurfa
es, surfa
es1. INTRODUCTION AND MOTIVATIONWe live within three dimensional spa
e; seeing our world via a two dimensional proje
tion, whi
h is re
onstru
tedby our brain into a three dimensional model using motion, edge and depth 
ues. However, higher dimensions havebeen proposed and 
onsidered for many years; with the fourth dimension representing time, distan
e, a fourth spatial
oordinate and even a spiritual realm.Obje
ts within four and higher dimensions 
an be generated from natural extensions to plane or solid geometry,with ea
h three dimensional obje
t (plane, 
ube, 
one) having a four and higher dimensional equivalent (hyperplane,hyper
ube, hyper
one). Data sets with higher dimensions 
an be generated from simulations, 
ollated from statisti
sor sampled from real-life phenomena; many diverse �elds-of-study provide data with 
opious variables that 
an bedisplayed in a number of dimensions using various imaging te
hniques.Modern 
omputer graphi
s provide the ability to view, interrogate and understand obje
ts and phenomena thatexist in higher dimensions. For example, an image of a Klein bottle, with a twisted surfa
e, interse
ts itself withinthree dimensions, whereas within four dimensional spa
e the bottle 
an be depi
ted without the self interse
tion.1Geometry in higher dimensions 
an be (1) proje
ted down to lower dimensions, using a variety of proje
tionmethods in
luding parallel, perspe
tive and 
entral or (2) represented in other 
oordinate systems, in
luding ParallelCoordinates2 that depi
t the relationships and dependen
ies between N-Dimensional data (espe
ially geometry)within a two dimensional parallel axis 
oordinate system.Visualizations of n-dimensional data 
an be obtained by rendering the `surfa
e' of the data. The surfa
e 
reatedis one dimension less than the original data: for example, the surfa
es from two dimensional data 
reate 
ontour plots(one dimensional line segments in two dimensions) and three dimensional (volume) data produ
es two dimensionalfa
es in three dimensions. Hen
e, from a four dimensional data volume a hypersurfa
e is formed.a j.
.roberts�uk
.a
.uk http://www.
s.uk
.a
.uk/people/sta�/j
r/ b steve.hill�uk.radan.
om



A two dimensional 
ontour on a map, representing a parti
ular height above sea-level, 
an be 
reated using a
ontinuous 
onne
tion of straight line segments. Similarly, a 
ontinuous surfa
e within three dimensions 
an berepresented by a latti
e of two-dimensional polygons. Therefore, a 
ontinuous hypersurfa
e 
an be represented by alatti
e of n-dimensional simpli
es. These simplex elements 
an be 
al
ulated from how the `surfa
e' interse
ts a setof adja
ent n-dimensional 
ubes. A surfa
e at a parti
ular value (isosurfa
e) through sampled data 
an be realised atthe point of zero value, interpolated between any edge of an opposing sign. The signs at the n-
ube verti
es are foundby thresholding the spatial data at a dis
rete data point. Consequently, hypersurfa
es within higher dimensions 
anbe depi
ted using a latti
e of three-dimensional simpli
es (volumes), generated by lo
al evaluation through a sampleset of points.This paper dis
usses the problems, requirements and some solutions in implementing an n-dimensional isosurfa
ealgorithm from spatial data, using lo
al 
ell tiling methods. We fo
us on the generation of the n-dimensional geometryrather than the rendering or realisti
-representation (using say higher-dimensional light) of the n-dimensional image.Initially we present some ba
kground information. We then des
ribe the algorithms and te
hniques: �rstly froma theoreti
al viewpoint and se
ondly within a pra
ti
al framework; we des
ribe three table methods, extending theMar
hing Cubes Algorithm to four dimensions. Finally, we dis
uss other possible implementations and solutionswith their relevant merits and pitfalls, ending with 
on
lusions and possible future extensions.2. BACKGROUNDThere are (broadly) two 
avours of surfa
e mesh algorithms: (1) Planar Contours, that generate surfa
e over theboundary of adja
ent 
ontour paths3{5; and (2) Lo
al Cell evaluation, that 
an be further subdivided into: (a)Advan
ing Front, that �nds the surfa
e by growing a seed point on the surfa
e, from where the other surfa
esegments are found6,7; and (b) Complete Cell Evaluation, that evaluates ea
h 
ell's 
ontribution to the surfa
e:forming a surfa
e made from tiles.8{10 We use and extend the latter method to four and theoreti
ally higherdimensions. Moreover the advan
ing front te
hniques 
ould be likewise extended to n-dimensions.2.1. 3D Lo
al Cell Surfa
e GenerationThe lo
al 
ell tilers evaluate a single 
ell for its 
ontribution to the surfa
e. Two su
h methods in three dimensionsare by lookup (e.g. Mar
hing Cubes)9 and algorithmi
ally.11 An estimate of the position of the surfa
e interse
tionalong a parti
ular edge 
an be found by linear interpolation. Multiple surfa
es at the same threshold 
an be produ
edby the lo
al 
ell methods, but erroneous surfa
es due to the lo
ality of the surfa
e de
ision (by false positives or falsenegatives) 
an be produ
ed. Hill and Roberts12 and Ning and Bloomethal8 dis
uss some methods to disambiguatea 
ell and hen
e remove the erroneous surfa
es. Degenerate triangle pie
es, where the surfa
e-simpli
es be
omein�nitesimal, 
an also be 
reated (as a result of the interpolation pro
ess), slowing the rendering and in
reasingthe storage. However, de
imation13 or mesh displa
ement14 te
hniques 
an be used to redu
e the number of (tiny)polygons.2.2. Surfa
e Creation { the Use of Simpli
esThe lo
al 
ell tilers often use a 
ube (re
tilinear) 
ell representation, as in the Mar
hing Cubes Algorithm. Tetrahedral
ells have also been used,15 the advantage being that a �ner detailed surfa
e is 
reated and, that from lo
al signalternations only one surfa
e 
an interse
t the tetrahedron | there is no ambiguous fa
e. However more polygonsare usually generated15 and as the tetrahedra 
an be divided into a lo
al 
ube 
ell, in 
on�gurations of �ve or sixtetrahedra, ambiguities are still present: be
ause the isosurfa
e is 
reated by 
onsidering only neighbour data points.The ambiguities 
an be resolved using a twelve tetrahedra 
on�guration16 requiring an additional (tri-linear17 ortri-
ubi
18) interpolated 
enter point.Simpli
es are also used in the representation of the surfa
e mesh. All two and three dimensional graphi
 librariessupport their rendering and there are algorithms that eÆ
iently triangulate two and three dimensional areas.19



2.3. The Mar
hing Cubes Surfa
e AlgorithmA surfa
e 
an interse
t a 
ube in 256 (28) ways: this 
an be broken down into 14 
ases if mirror and rotationalsymmetry are 
onsidered or 15 
ases without the mirror operation. The 256 
omponents 
an be stored in a lookuptable 
ontaining appropriate surfa
e topology segments.The mar
hing 
ubes algorithm9 uses a binary threshold (the isosurfa
e value) on the verti
es of a 
ube to generatean eight bit (one for ea
h vertex) number that is used as the key into the lookup table. The algorithm `mar
hes'sequentially through the data, thresholding the eight neighbouring data-samples and looking up the index to 
olle
tthe surfa
e interse
tions at that position. The verti
es of the retrieved surfa
e triangles are then interpolated intothe position governed by the threshold value, appropriately shaded and rendered.2.4. N-dimensional geometryPer
eiving geometry within a higher dimensional spa
e is not intuitive. Therefore, we present some simple n-dimensional geometry fa
ts; for more information see:.1,20,21In three dimensions the rotations 
an be expressed as \rotations about ea
h axis", but this does not extend ton-dimensions. There is, in fa
t, one rotation per pair of axes, whi
h formulates to N(N � 1)=2 degrees of rotation.20Therefore, in four dimensions there are six rotations.There are many di�erent proje
tions from four dimensions to three, in
luding: (1) Orthographi
, where one
oordinate 
an be thrown away ; (2) Pinhole perspe
tive, where the �rst N � 1 
oordinates are s
aled by dividing by(FD�CN )=FL, FD being the Fo
al distan
e, FL the Fo
al Length and CN the nth 
oordinate; (3) Central, where thenth 
oordinate is shrunk into the N � 1 
oordinates: (x; y; z; w) = (xFL=(FD � w); yFL=(FD � w); zFL=(FD � w));
reating the popular hyper
ube depi
tion, where a 
ube is displayed within a 
ube.203. MOTIVATION AND DEFINITIONSA lookup table, to hold a 
omplete enumeration of the 
ases within three dimensions, 
ontains 256 elements (2n {where n is the number of verti
es). Therefore, there are 65536 (216) 
on�gurations for the vertex 
lassi�
ation on afour dimensional 
ube. If a Mar
hing Cube method was applied dire
tly to four dimensions the lookup table 
ouldbe
ome unmanageable; with an average of 20 tetrahedra (3D simpli
es) for ea
h major 
ase. Moreover te
hniquesto subdivide the problem domain would (a) simplify the algorithm for explanation and implementation and (b)hopefully provide far more eÆ
ient storage.Within this se
tion we (1) present how the major-
ases are generated; (2) des
ribe a se
ondary partition separatingthe major-
ases into sub-
ases; and (3) des
ribe the various transformations that are available and enumerate theirrespe
tive major and sub-
ases.3.1. Major-CasesIn n-dimensions ea
h 
ube has 2n verti
es ea
h of whi
h may be inside or outside the surfa
e, hen
e the set ofall possible 
on�gurations C 
ontains 22n elements. In Lorensen and Cline's a

ount9 of their lo
al 
ell tiler, theyidentify 14 major 
ases. These 
orrespond to sets of vertex 
on�gurations whi
h are 
losed under rotation, mirrorand vertex 
omplement.More formally, the major 
ases are established by partitioning C into smaller sets C1; C2; : : : ; Cm su
h that:Smi=1 Ci = C i.e. the set C is 
overed, and Tmi=1 Ci = fg i.e. the sets are disjoint. Most importantly, for all e 2 Ci,Ci is a re
exive transitive 
losure under the one-to-many relation: R(e) = f(e; T1(e)); (e; T2(e)); : : : ; (e; Tk(e)g whereea
h Ti represents a major 
ase invariant transformation, e.g. rotation, mirror or 
omplement. Problems with surfa
e
ontinuity imply that 
omplement may not be a desirable operation to in
lude (see below).



Dimension1 2 3 4Major Cases 3 6 23 496R Sub-Cases 2 5 12 272Major Cases 2 4 15 272R,C Sub-Cases 2 3 7 99Major Cases 2 6 22 402R,M Sub-Cases 2 5 11 209Major Cases 2 4 14 222R,M,C Sub-Cases 2 3 7 74Transformations: Rotation (R),Complement (C), Mirror (M)Table 1. Group sizes for the Major 
ases and Sub-
ases3.2. Sub-CasesIt is quite remarkable (and fortunate) that of 256 possible 
on�gurations in three dimensions, we need only 
onsider14 major 
ases (see10 for a dis
ussion). In three dimensions it is not too expensive to store all 256 
ases. In higherdimensions, however, the number of 
on�gurations explodes. Even the number of major 
ases grows rapidly. It turnsout that in four dimensions there are nearly as many major 
ases as their are 
on�gurations in three dimensions (seeTable 1). In higher dimensions, the geometry asso
iated with a major 
ase is also more 
ompli
ated. This promptsus to seek ways to redu
e further the size of the tables required.We 
an redu
e the number of 
ases if we allow major 
ases to be 
onstru
ted from a union of sub-
ases. Asub-
ase represents a single fragment of boundary and is de�ned to be an edge-
onne
ted (both verti
es have thesame status with respe
t to the threshold) fragment of a major 
ase.The set of sub-
ases 
an be 
omputed by examining ea
h major 
ase and dividing it into one or more edge-
onne
ted sub-
omponents. The sub-
omponents 
an then be identi�ed with their major 
ase equivalents along withappropriate transformations.In Table 1, we summarise the number of major and sub-
ases in one to four dimensions. As shown in the table,the number of 
ases vary depending on the operators used; this is exempli�ed by di�erent authors expressing themajor-
ases as being 14 or 15 
ases, whi
h depends on the use of the Complement operator. In Figure 1 we depi
t arepresentation of the 74 sub-
ases for four dimensions.The de�nition of a sub-
ase in this way makes some assumptions about the underlying surfa
e, and may lead toin
onsisten
ies in the resulting geometry (for example holes may appear). However, many other approa
hes lead tothe same de
isions being made. We return to these problems in Se
tion 4.2.4. IMPLEMENTATIONThe n-dimensional surfa
e is generated by 
onne
ting individual surfa
e elements (simpli
es). The pie
ewise surfa
esegments may be generated through lookup methods, su
h as the Mar
hing 
ubes or algorithmi
ally.11 Indeed,tetrahedral, rather than 
uberille 
ells, may be used, su
h as used by22 who additionally 
al
ulate a 
enter point inthe 
uberille 
ell.The simplex information 
an be subdivided and stored in many ways. The amount and orientation of the simpli
es,for a given 
ell, represents the most signi�
ant information { being used in every method.Further, we des
ribe our methods to store and retrieve the simplex information:Method 1 Dynami
 Simplex Enumeration { 
al
ulate ea
h simplex division dynami
ally as it is required.11Method 2 Complete simplex Enumeration { pre-
al
ulate and store ea
h simplex division within one large table.See Figure 2.



Figure 1. 74 Sub-
ases for four dimensionsMethod 3 Se
ondary Tables { pre-
al
ulating the simplex division for just the major-
ases or the sub-
ases. Wename these the `Major-
ase se
ondary table' and `Sub-
ase se
ondary table' methods, respe
tively.The latter two-table lookup s
hemes in
lude a primary table that holds information about either (a) the major-
ases or (b) the sub-
ases, with a se
ondary table 
ontaining the a
tual divisions of the major or sub-
ases, respe
-tively; as shown in Figure 2 as Method (3a) and (3b) respe
tively.Within this setup, the primary table 
ontains a list of two-tuples: an orientation with a se
ondary-index. These
ondary-index then provides the key into a table of either major-
ase or sub-
ase simpli
es. The orientationrepresents a matrix operation, transforming the simpli
es (of the se
ondary table) into the 
orre
t orientation forthe 
hosen surfa
e-interse
tion index of the primary table.4.1. Pre-Pro
essing { Table GenerationWe now des
ribe how the major and sub-
ases for the primary and se
ondary tables, respe
tively, are formed. Thedata is pro
essed sequentially as ea
h stage uses the results from the previous level.The Major-
ases. Two lists are 
reated, one to hold the sear
hed-
ases and another to hold the major-
ases.The next unmarked index is taken from the sear
h-list added to the major-
ase list and then exhaustively trans-formed into all other 
on�gurations whi
h are marked. The pro
ess then repeats for the next major 
ase until allthe indi
es have been sear
hed.The Sub-
ases. These are formed by dividing the major 
ases into their disjoint 
ases, using the edge-
onne
ted
riterion (as de�ned in Se
tion 3.2).
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Figure 3. Splitting an obje
t into tetrahedraTetrahedronizing the sub-
ases. Tetrahedronization is the four-dimensional analogue of triangulation. Ouraim is to split n-dimensional geometry into simpli
es. There is no 
anoni
al de
omposition of a hyper-surfa
e intotetrahedra, so any algorithm must make somewhat arbitrary 
hoi
es.In the 
ontext of this work, we are interested in de
omposing only the sub-
ases, and a simple strategy 
an bemade to work. The method pro
eeds by repeatedly 
hoosing a vertex and removing the tetrahedron asso
iated withthat vertex from the sub-
ase obje
t until a single tetrahedron remains. This pro
ess is depi
ted in Figure 3, andis similar to the te
hniques used in three dimensions. Unfortunately in four dimensions, the remnant sub-obje
tmay have verti
es with four, �ve or more in
ident edges making further subdivision diÆ
ult. Therefore, we use aba
ktra
king te
hnique to avoid this problem.A question remains | how do we 
hoose whi
h vertex to remove? Several strategies might be tried: for example,
hoose the �rst entry in the vertex list or take the vertex with the least 
onne
ting edges. Experiment suggests thatthe latter approa
h is most e�e
tive in this 
ase.The method pro
eeds by:1. The sub-
ase obje
t is represented as a list of verti
es, ea
h of whi
h is linked to a list of its neighbours. Initially,by 
onstru
tion, all verti
es have three 
onne
tions.2. Sele
t the next vertex (in order on the list) with the fewest in
ident edges, and remove it from the obje
t thusgenerating a tetrahedron or two tetrahedra. It is easy to split a vertex with three edge 
onne
tions into onetetrahedron or even four edge 
onne
tions into two tetrahedra, but ambiguities and diÆ
ulties o

ur whenthere are �ve or more edge 
onne
tions.



False negative

Complementary
Case

a

b

Topologically Correct SurfaceFigure 4. False negative appearing, from adja
ent 
omplementary 
ases3. Update the 
onne
tivity of the remaining obje
t. This update is a
hieved by 
onne
ting the verti
es of theremaining obje
t in the same 
on�guration as the 
onne
tivity of the base of the split tetrahedron.4. Determine if at a 
ertain level of vertex splitting all the verti
es are 
onne
ted to �ve or more edges. If so thenthe previous level is reinstated and the di�erent split attempted in 2.In our results, using the `fewest edges method', and only taking o� the maximum of two tetrahedra at on
e,ba
ktra
king o

urs for only three of the 74 sub-
ases.Creating the Orientation Matrix. The orientation matrix represents the transformation from the primary table(of major or sub-
ase indexes) into individual simplex elements and is stored as a 32 bit integer, with two bits for everyposition in the matrix. As all the rotations are by 90Æ, only values of �1; 0; 1 mapped onto 00; 01; 10 respe
tively, arerequired. The orientation matrix is 
al
ulated by rotating ea
h sub-
ase (from ea
h major 
ase) into the standardsub-
ase and 
al
ulating the inverse transformation matrix, of the whole operation.4.2. Inherent Ambiguities and Possible SolutionsAmbiguities may o

ur in surfa
es evaluated from lo
al 
ell interse
tions. These o

ur in the 
ells when the surfa
einterse
ts one fa
e of the n-
ube through ea
h of its four edges. Therefore, as a result of lo
al de
isions spuriousholes or additional surfa
e segments 
an be generated. Moreover, this fa
e o

urs in two dimensions and propagatesto higher dimensions, so any n-
ube that has an `ambiguous fa
e' is potentially an ambiguous n-
ube.There are many reported disambiguation strategies for the three dimensional lo
al 
ell tiling algorithms (see12,8)whi
h 
an be divided into two groups: (1) those that provide a solution from a stati
 analysis of the lo
al verti
esand (2) methods that require an extra sample point to generate an appropriate 
onne
ted surfa
e.Any 
orre
t disambiguation strategy needs to be 
onsistent, to generate a 
ontinuous 
onne
ted surfa
e. The orig-inal Mar
hing Cubes algorithm generates an in
onsistent surfa
e when adja
ent 
ubes of alternative (
omplementary)
on�guration are 
onne
ted,23 Figure 4a. This 
an be improved by individually triangulating the 
omplementary
ases,24 Figure 4b. This 
on�guration 
an be provided by an extended lookup table, with di�erent triangle 
on�g-urations for the 
omplementary 
ases. In general the amount of triangle 
ombinations required for ea
h ambiguousfa
e f for a given n-
ube is 2#f ,25 where #f is the number of ambiguous fa
es; but, in pra
ti
e only a sub-set ofthese 
on�gurations is required,24 being similar under rotation and generating a topologi
ally 
orre
t surfa
e.Similarly, this method 
an be extended to n-dimensions, where the 
omplementary 
ases are treated di�erently.Separate 
omplementary 
on�gurations also help to maintain the vertex-order of the simplex elements: as they 
anbe des
ribed in a 
lo
kwise order, relative to the surfa
e-obje
t, aiding the renderer.



Figure 5. Examples of Appli
ationThe sub-
ases are generated by separating the major 
ases into disjoint surfa
e elements, the same way as inthe Mar
hing Cubes9 and similar problems of surfa
e 
ontinuity may result. Consequently, these sub-
ases 
an besaid, depending on the separation te
hnique, to be ambiguous in form. Like the surfa
e 
on�gurations in threedimensions: 2#f possible sub-
ase 
on�gurations 
an be formed. One simple solution is provided by using separate
omplementary sub-
ase 
on�gurations for ea
h major 
ase.It 
an be argued that at high data-resolutions the anomalies be
ome unobservable, although at high magni�
ationsthe anomalies 
ould still be seen. Alternatively, a subdivision te
hnique 
ould be implemented: dividing the datauntil pixel sized 
ubes are formed, su
h as the Dividing Cubes algorithm,10 although magni�
ation, again, 
an reveala dis
ontinuous surfa
e.Other disambiguation strategies 
ould be used and extended to higher dimensions, in
luding using tetrahedral
ells, that provide unique surfa
e interse
tions (see: Se
tion 2.2), instead of 
ubi
al 
ells. A dilemma o

urs betweenthe `added advantage of the 
omplex-disambiguation strategy' and the `
osts involved in 
al
ulating and pro
essingthe strategy'. In pra
ti
e, the added 
omputation 
ost is insigni�
ant and although more simpli
es are generatedthey represent a `small in
rease' on the 
omplexity of the overall surfa
e. Conversely, the ambiguous 
ases withinthree dimensions infrequently o

ur: as Neilson and Hamann25 dis
overed.5. RESULTSOur n-dimensional surfa
e algorithm is useful for data visualization, where the data is sampled over a re
tilineargrid. Phantom data generated from analyti
 fun
tions is quite easy to generate and four dimensional fra
tal data orthe four dimensional 
ounter-parts of the three dimensional variants 
an be formed { hyper-
ube, 
one or sphere, forexample.5.1. Examples of Appli
ationIris Explorer on a Sili
on Graphi
s Indy has been used as the harness for our implementation. We have tested thealgorithm on a number of sampled data sets and generated appropriate results.Ea
h of the methods produ
e the same visual results, with the same tetrahedra 
on�gurations, a simple parallel(orthographi
) and perspe
tive proje
tion is used to generate the result. A voxel version of a four dimensional 
ube isdisplayed using the system, Figure 5. The surfa
e interse
tions are generated by linear interpolation of the thresholda
ross the edges of the 
ell; the upper images were generated using a low threshold, whereas the lower pair weregenerated using a middle threshold value.



5.2. Table SizesHere we des
ribe the memory usage of ea
h of the four methods des
ribed in se
tion 4.A tetrahedra 
ontains four verti
es, and ea
h vertex 
an be represented by an integer label, so, ea
h tetrahedra
an be stored in 4 bytes (one byte for ea
h vertex). Moreover, the verti
es of the tetrahedra are re
overed frominterse
tions along the edges of the lo
al 
ell, therefore, an alternative representation 
onsists of a two-tuple labelfor ea
h tetrahedra-vertex: relating to the edges of the hyper-
ube. The former 4-byte representation will be usedbelow.Method 1 The dynami
 method uses the least memory, but takes the longest to 
al
ulate.Method 2 The 
omplete simplex table 
onsists of a 65536 array with n tetrahedrons per index. Therefore, asea
h tetrahedron 
an be stored in 4 bytes, the number of tetrahedra in 1 byte, the array pointer in 4 bytesand there are 356817 tetrahedra for the whole (222 major-
ase) table: the table 
an be stored in 1.75M bytes(4�356817+5�65536).Method 3a The primary table for the major-
ases 
onsists of an array of 65536 (orientation, major-index) tuples:stored in (4 byte, 1 byte) portions. Therefore, the table 
an be stored in approximately 328K bytes (65536�5).However, many ar
hite
tures may pad the stru
ture to at least 6 or 8 bytes. The se
ondary table for the (222)major-
ases 
onsists of an array of pointers to an array of n tetrahedra, there are 2332 tetrahedrons so thetable 
an be stored in 10.2K bytes (4�2332+222�4).Method 3b The primary table using the sub-
ases, 
onsists of an array of 65536 pointers pointing to an arrayof (orientation, sub-index) tuples, stored with the size of the array { representing the number of sub-
asesper major index. Ea
h orientation and pointer 
an be stored in 4 byte portions. Therefore, as the wholetable 
ontains approximately 130800 sub-
ase indi
es, the table 
an be stored in approximately 916K bytes(65536�4+130800�5). The se
ondary table for the (74) sub-
ases 
onsists of 869 tetrahedra that 
an be storedin 3.8K bytes (4�869+74�4).5.3. Con
lusionsThe 
omplete simplex table (method 2) provides the advantage that all of the data is 
orre
tly orientated, so it 
anbe dire
tly applied to the data, and although the table is larger than the other methods its size is not too great(within four dimensions) to be stored on a lo
al ma
hine.The primary table for the major 
ases is about half the size of the sub-
ase primary table: due mainly to the useof pointers for the 2-tuple array. The reverse is true for the size of the se
ondary table: where the sub-
ase se
ondarytable is mu
h smaller; we postulate that this 
omparison would be even more distin
t in higher dimensions. However,the 
ombined size of the primary and se
ondary tables falls in favour of the major-
ases: due to the way the dataneeds to be stored.The sub-
ases, although using a �xed orientation disambiguation strategy, provide a 
on
ise representation:allowing the simpli
es to be 
al
ulated by a simple tetrahedronizing algorithm.6. RELATED APPROACHESAn n-dimensional surfa
e 
an be generated by many other methods. The following three parts des
ribe: (1) othermethods 
omparable with the hyper
ube approa
h presented herein; (2) related work; and (3) some 
omments onour possible future work.6.1. Similar Te
hniquesA hyper
ube 
an be imagined as multiple 
ubes: the hyper
ube surfa
e 
an therefore be evaluated with a series ofthree dimensional 
ubes (one for ea
h fa
e of the hyper
ube). In four dimensions a latti
e of 
onne
ted surfa
es(rather than volumes) would be 
reated. This latti
e 
ould then be displayed or triangulated before displaying,Figure 6B.



A B CFigure 6. Cube surfa
es: (A) hypervolumes, (B) hypersurfa
es, (C) hyperlinesIn the same manner, a two dimensional `
ube' 
an be evaluated through ea
h hyper
ube fa
e to 
reate a latti
eof 
onne
ted hyperlines, Figure 6C. Wyvill et al6 use the fa
es of a three dimensional 
ube (two dimensional square)to generate one dimensional lines that are joined to make surfa
es in two dimensions.An n-simplex20,26 
an be used to segment the 
ells unambiguously. Therefore, the n-data 
an be segmenteddire
tly into n-simpli
es. To 
reate a uniform 
ontinuous surfa
e the adja
ent n-simpli
es need to be mirror imagesof ea
h other, so an alternating pat
hwork of simpli
es are used.An advan
ing front te
hnique 
ould be adapted into four dimensions to 
reate a latti
e of tetrahedra.27 Hansonand Heng28 use a similar method: they divide the whole volume into tetrahedra and then proje
t ea
h tetrahedroninto the view volume. We use a 
omparable method that �rst sele
ts the hypersurfa
e part using a threshold andlo
al 
ell te
hnique, and then disse
ts the hypersurfa
e into tetrahedra whi
h are proje
ted and rendered.6.2. Related WorkFor many years, 
omputers have been used to generate pi
tures and manipulate higher dimensional obje
ts. Noll,29as early as 1967, 
reated a program to plot proje
ted images of n-dimensional obje
ts. He used these plots toprodu
e a \stereo-graphi
 movie of the three dimensional parallel and perspe
tive proje
tions of four dimensionalhyperobje
ts, rotating in four dimensional spa
e".Polygonising methods are also used. Bajaj30 impli
itly de�nes quadrati
 and 
ubi
 hypersurfa
es in n >= 3dimensional spa
e with a 
onstant or adaptive stepping pro
edure that 
reates a grid of points, forming polygonswhen 
onne
ted.Ray tra
ing 
an also be extended to higher dimensions: Ke and Panderanga31 display proje
tions of a fourdimensional Mandelbrot set use a ray tra
ing te
hnique.Hanson and Cross32 des
ribe a hybrid method of ray-tra
ing and s
an-
onverting to transform the four dimensionalimage to an equivalent three dimensional image. The problem is then redu
ed to a texture-mapping problem.However, visualizations produ
e abstra
t images proje
ted from higher dimensional data. Hanson states that\adding more visual detail may give even more 
lues".33 The visual detail 
an be generated by: perspe
tive proje
-tions, n-dimensional lighting, shading, obje
t-silhouettes and 
olour 
ues within a highly manipulative environment.Therefore, greater understanding 
ould be grasped if the data was presented by many abstra
t forms, within multipledire
tly manipulated and 
oupled displays, su
h as provided by the Waltz abstra
t visualization environment.34Hanson and Heng28,32 des
ribe methods to display and shade four dimensional images using a four dimensionallight model. A thi
kening strategy, is used, that ex
hanges ea
h point on the line with a small sphere, allowingshading to be applied to the `pseudo' line and in
reasing the 3D nature of the line.28,32Dire
t manipulation te
hniques 
an also be used. Van Wijk and van Liere35 display multidimensional s
alarfun
tions as two dimensional sli
es of data. The user 
an 
ontrol any view in the matrix of windows to 
ontrol thesli
e of ea
h of the other views. An overall impression of the multidimensional fun
tion is obtained. Feiner andBeshers36 have designed a model of \worlds within worlds", where three dimensional graphi
s are positioned withina three dimensional graph. The internal three dimensional graph 
hanges values as it is moved inside the se
ondarygraph by dire
t manipulation.



6.3. Possible Future WorkFurther resear
h should be 
arried out into the realism of the n-dimensional images and the understanding of four(or higher) dimensional images using visual 
ues gained from animation, n-dimensional shading and shadow e�e
ts.Dire
t manipulation te
hniques 
ould be in
orporated with a dynami
 version of the algorithm, to a
hieve rotationthrough the fourth and higher dimensions. Keeping a 
a
he of the last n-dimensional indi
es, tetrahedronized sub-
ases and major 
ase elements might be appropriate.7. DISCUSSIONWe have explorered the possibility of extending an isosurfa
e te
hnique to n-dimensions and implemented somealgorithms for four dimensions. The resear
h has produ
ed: (1) methods to enumerate major and sub-
ases; (2) asimple and e�e
tive tetrahedronizing algorithm for the sub-
ases; and (3) a method for major 
ases using sub-
asesand a 
ompa
t orientation method.Lo
al 
ell evaluation is ambiguous in n-dimensions: generating in
orre
tly pla
ed surfa
e simpli
es. The ambi-guities arise in two dimensions and propagate to higher dimensions; they 
an be disambiguated using algorithmsequivalent to the three dimensional strategies.Other n-dimensional surfa
e methods were proposed, in
luding, generating hypersurfa
es or hyperlines from thehigher dimensional data and mar
hing hypertetrahedra dire
tly through the higher dimensional spa
e. A 
onne
tedsurfa
e is generated when adja
ent simpli
es are pla
ed in an alternating 
on�guration.The table lookup is extensible to n-dimensions. However, as the dimensions in
rease, so the size of the tablein
reases; even with the sub-
ases the size of the table at (say) �ve dimensions (232) would be
ome impra
ti
ableand the time to 
al
ulate the major and sub-
ases would be lengthy. Within four dimensions the advantage in usingthe lookup table over and algorithmi
 method is slight: our experiments suggest that there is no signi�
ant speeddi�eren
e between ea
h method. Algorithmi
 surfa
e evaluation methods are probably most appropriate for higherdimensions.The sub-
ases, albeit using a �xed disambiguation strategy, allow the hyper-surfa
e segments to be tetrahedronizedby a simple algorithm.Finally, the sub-
ases provide an elegant method to split up the major 
ases, to easily des
ribe the individual
ases and to redu
e the number of 
ases in the higher dimensions.REFERENCES1. T. F. Ban
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