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15    Scoring and estimating score precision using IRT 

Anna Brown and Tim J. Croudace 

 

Chapter Overview 

The ultimate goal of measurement is to produce a score by which individuals can be 

assessed and differentiated. Item response theory (IRT) modeling views responses to test 

items as indicators of a respondent’s standing on some underlying psychological attributes 

(van der Linden & Hambleton, 1997) – we often call them latent traits – and devises special 

algorithms for estimating this standing. This chapter gives an overview of methods for 

estimating person attribute scores using one-dimensional and multi-dimensional IRT models, 

focusing on those that are particularly useful with patient-reported outcome (PRO) measures.  

To be useful in applications, a test score has to approximate the latent trait well, and 

importantly, the precision level must be known in order to produce information for decision-

making purposes. Unlike classical test theory (CTT), which assumes the precision with which 

a test measures the same for all trait levels, IRT methods assess the precision with which a 

test measures at different trait levels. In the context of patient-reported outcomes 

measurement, this enables assessment of the measurement precision for an individual patient. 

Knowing error bands around the patient’s score is important for informing clinical 

judgments, such as deciding upon significance of any change, for instance in response to 

treatment etc. (Reise & Haviland, 2005). At the same time, summary indices are often needed 

to summarize the overall precision of measurement in a research sample, population group, or 

in the population as a whole. Much of this chapter is devoted to methods for estimating 

measurement precision, including the score-dependent standard error of measurement and 

appropriate sample-level or population-level marginal reliability coefficients. 

Patient-reported outcome measures often capture several related constructs, the 
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feature that may make the use of multi-dimensional IRT models appropriate and beneficial 

(Gibbons, Immekus & Bock, 2007). Several such models are described, including a model 

with multiple correlated constructs, a model where multiple constructs are underlain by a 

general common factor (second-order model), and a model where each item is influenced by 

one general and one group factor (bifactor model). To make the use of these models more 

easily accessible for applied researchers, we provide specialized formulae for computing test 

information, standard errors and reliability. We show how to translate a multitude of numbers 

and graphs conditioned on several dimensions into easy-to-use indices that can be understood 

by applied researchers and test users alike. All described methods and techniques are 

illustrated with a single data analysis example involving a popular PRO measure, the 28-item 

version of the General Health Questionnaire (GHQ28; Goldberg & Williams, 1988), 

completed in mid-life by a large community sample as a part of a major UK cohort study.  

Common Factor Model and Item Responses 

Psychometric tools measuring patient-reported outcomes or health related quality of 

life (HRQoL) often necessitate the capture of several related constructs (Fayers & Machin, 

2007). For example, the Quality of Life Interview for the Chronically Mentally Ill 

differentiates seven sub-domains (Gibbons et al., 2007), each a distinct area of functioning. 

Hence, we will use multidimensional models as the basis (Gibbons, Immekus & Bock, 2007), 

and consider a one-dimensional model as the simplest special case.  

Let  1 2, ,..., T
   θ  be a set of T psychological attributes (traits). We assume that 

the latent traits are normally distributed random variables; they have the mean of zero, unit 

variance and are freely correlated (their covariance matrix is S). In a test with m items, each 

item is designed to elicit an internal response (denoted *
iu ), which depends on one or more 

attributes, as described by a common factor model: 

 *
1i i i i i iu                    . (15.1) 

In this expression, mi is the mean utility for the population of respondents; 1 2, ,...,i i Ti    are 

factor loadings of item i on each of the attributes, and i is the unique part (or error). The 

error terms are normally distributed random variables with the mean zero and are 
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uncorrelated with the common factors and among themselves, so that their covariance matrix 

2Ψ  is diagonal.  

 The internal response *
iu can represent, for example, the degree of agreement with the 

item or the value the respondent attaches to the item (item utility); however, this response 

tendency is not observed directly. The actual observed item response ui will typically 

constitute an option that the respondent chose from available options, either dichotomous 

(“yes”-“no”, “agree”-“disagree”) or polytomous (“never”-“sometimes”-“often”-“always”; or 

“strongly disagree” – “disagree” – “neutral” – “agree” – “strongly agree” etc.). In IRT 

models, the observed response ui is related to the latent response tendency *
iu  through a 

threshold process. For instance, it is assumed that the response is positive when the response 

tendency is over a threshold value i , and the response is negative otherwise: 

 
1      if   

0      if   
i i

i

i i

u
u

u





  
 

 
 . (15.2) 

In what follows we give formulae for the dichotomous case, mentioning how to 

extend them to polytomous cases in passing. All response models can be extended to the 

polytomous case by considering, for example, a graded response approach (Samejima, 1969), 

or from the Rasch modeling perspective, a partial credit model (Masters & Wright, 1997). 

Given the item-factors relationship (15.1) and the threshold relationship (15.2), the 

item response function for item i in a threshold / loading form is given by 

     1 1

2

...
P Pr 1 Φ i i Ti T

i i

i

u u
           
  

θ
-

, (15.3) 

where  Φ x  denotes the cumulative standard normal distribution function evaluated at x,  

and 2
i  is the residual variance for item i. Without loss of generality, we use the normal-

ogive link here. Alternatively, the logistic link function    L 1/ 1 xx e   can be used 

(Reckase, 2009). 

Because the continuous response tendency *
iu  is unobserved (only its dichotomization 

ui is observed), the variance 2
i cannot be identified in typical single-group models. It is 

customary to parameterize IRT models (e.g. McDonald, 1999) by letting  
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With this, the item response function (IRF) can be written in an intercept / slope form as 

    1 1P Φ ...i i i i Ti TP u         . (15.5) 

The multidimensional response model is flexible in terms of how many attributes can 

influence a particular item. For instance, every item in a multi-trait test might measure one 

trait only and therefore will have only one non-zero slope (we say that items “possess an 

independent-clusters basis”; McDonald, 1999, page 179). When this is the case, the IRF is a 

familiar s-shaped item characteristic curve. The IRF becomes a surface when the item 

depends on two attributes. In these two cases of low dimensionality, the IRF can be easily 

plotted. 

Latent Trait Estimation 

Latent trait scores can be estimated by treating the model parameters (item intercepts 

and slopes, trait covariances, etc.) as if they were known. This is reasonable if model 

parameters have been accurately estimated. When the model parameters are fixed to their 

estimated values, the probability of every item response depends only on the latent traits, and 

the fundamental approach to estimating the trait scores is to search for values that maximize 

the joint likelihood of each response pattern  1 2, ,... mu u uu . The maximum likelihood (ML) 

approach assumes local independence, that is, the item responses are independent after 

conditioning on the latent traits. The ML scores are found iteratively by maximizing the 

mode of the likelihood function  

       1
1

1 ii
m

uu

i i
i

l P P




 u θ θ θ . (15.6) 

Maximum likelihood estimation uses information from the item responses only and is 

philosophically uncontroversial (McDonald, 2011). The score, however, is undefined for 

some response patterns, notably for “perfect” patterns (for instance by answering “yes” to all 

items or selecting the top rating category such as “strongly agree”). The likelihood of such a 

pattern increases infinitely when the latent trait score increases.  The score is also undefined 

when non-keyed responses are given to all items (for instance by answering “no” or selecting 

the bottom rating category such as “strongly disagree”). Such extreme patterns can be quite 



5 

 

common in PRO measures, for example in screening tests.     

An alternative approach is to use prior information about the trait distribution in 

addition to the actual item responses. With this Bayesian approach, the likelihood of a score 

given the observed response pattern (posterior distribution) is computed from known density 

of the score in the population (prior distribution, usually standard normal), and the likelihood 

of the observed response pattern given the score (joint likelihood value used in ML 

estimation). Two alternative methods using this approach are expected a posteriori (EAP) 

estimation, which computes the mean of the posterior distribution; and maximum a posteriori 

(MAP) estimation, which maximizes the mode of the posterior distribution (Embretson & 

Reise, 2000). By adding information from the prior distribution, the problem of undefined 

trait scores for “perfect” patterns is overcome, that is, a score is always defined when the 

posterior approach is used.  

The EAP estimation is most often used when only one trait  is measured. The EAP 

score is computed as the ratio between the integral of the posterior function weighted by the 

latent trait , and the unweighted integral of the posterior function. The EAP scores are 

approximated using numerical integration 

  
   

   
1

1

EAP

m

q i i q q
q i

m

i i q q
q i

P u d

P u d





      
     

 

 
u

f

f
, (15.7) 

where q are quadrature points selected along the latent trait continuum. For a discussion 

regarding the number of points necessary for precise estimation see Thissen and Orlando 

(2001). It is evident that an EAP score is non-iterative and easy to compute when only one or 

two dimensions are involved. The EAP estimation, however, becomes computationally 

demanding when the number of traits increases, as the number of points on the 

multidimensional grid used for integration increases exponentially.  

The MAP scores are found iteratively by maximizing the mode of the posterior 

distribution  

         1
1

1 ii
m

uu

P i i
i

l P P




   
 u θ θ θ θ . (15.8) 

Finding the best set of scores optimizing the multidimensional function above requires 

iterative procedures using gradients. For one-dimensional models this seems a complication 
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compared to the non-iterative EAP; however, in multidimensional models this estimation 

method is much more efficient because it searches for the optimal set of theta values for all 

traits simultaneously and the number of iterations is unaffected by the number of traits. 

The posterior EAP and MAP approaches have been shown to achieve precise 

estimates with fewer items than the ML method; however, they are known to shrink the latent 

trait distribution towards the population mean. The amount of shrinkage depends on several 

factors, including the test length, and can be quite substantial in short tests (Thissen & 

Orlando, 2001). 

 

Standard Error of Measurement and Information 

Score estimates are only our best guess at estimating the true score, and inevitably, all 

estimation methods are associated with a certain degree of error. The likelihood of a response 

pattern u, or the posterior likelihood, is a function that is typically Gaussian in appearance 

and has a single peak. The mode (or the mean) provides a limited summary of the likelihood 

function. The width or the spread of the likelihood, on the other hand, indicates the degree of 

uncertainty around the estimated score – the narrower the spread, the more confident we can 

be that the true theta value is close to the estimated value. The spread of the likelihood for 

approximately Gaussian distributions is meaningfully described by its standard deviation. 

The standard deviation of the likelihood of a response pattern, therefore, is a measure of the 

standard error of estimation in IRT.  

For the EAP estimator, it is natural to compute the standard deviation from the mean 

(which is the estimated EAP score) directly, by taking values of the likelihood function at the 

quadrature points: 

  
      

   

2

1

1

EAP

SE

m

q i i q q
q i

EAP m

i i q q
q i

P u d

P u d





        
     

 

 


f

f
. (15.9) 

For the methods maximizing the mode of the likelihood function (ML and MAP), the 

variance of the score estimate is obtained as the inverse of the expected value of the second 

derivative of  l u θ or  Pl u θ  with respect to  (Fisher, 1921). The expected value of the 

second derivative of likelihood function is called the Fisher information 
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    2

2

lE
     

θθ
θ

 , (15.10) 

and the variance of the likelihood function (the squared standard error of the score) is the 

reciprocal of the Fisher information 

    
2 1

SE θ
θ

. (15.11) 

The Fisher information is inversely related to the error variance and therefore provides a 

measure of the test precision. Applying the general formula (15.11) to the ML estimator, we 

obtain for the one-dimensional case    1/MLSE     . The standard error of the MAP 

estimator involves the information of the posterior likelihood function instead: 

  
 

1
MAP

P

SE  





. (15.12) 

For the multidimensional case, the standard error of the MAP-estimated score for the latent 

trait a involves the directional posterior information evaluated at the point-estimates of the 

trait scores  1 2( ,  ,  , )T    θ    : 

    
1a

a
P

SE θ
θ

. (15.13) 

The following section shows how to compute the Fisher information in both one-dimensional 

and multidimensional cases. 

 

Item Information Function (IIF) 

When responses to test items depend on one latent trait, the maximum likelihood Item 

Information Function (IIF) for item i is given by  

  
 

   

2

1

i

i
i i

P

P P

  
  
    

 , (15.14) 

where  iP   denotes the first derivative of the item response function (McDonald, 1999). 
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For items with graded response categories, the item information can be derived from category 

response functions as follows (Samejima, 1969; Dodd, DeAyala & Koch, 1995): 

  
 
 

2

0

k ix

i
x ix

P

P

  
  

 . (15.15) 

A challenging feature of many PRO measures is their potentially multi-dimensional 

structure, whereby item responses may depend on two or more latent traits. When this is the 

case, the direction of information must also be considered (Ackerman, 2005; Reckase, 2009). 

The definition of item information is generalized to accommodate the change in slope with 

direction  taken from a point in the latent trait space 

    
   

2

1
i

i
i i

P

P P
   
  

θ
θ

θ θ
 , (15.16) 

where  1i iP u  q .
 
Let  be a vector of angles to all T axes that defines the direction from a 

point , and  iP θ  be the gradient in direction , which is given by (Reckase, 2009): 

              1 2cos cos ... cosi i i
i T

T

P P P
P

  
       

  α

θ θ θ
θ

1 2

. (15.17) 

For each item, we might consider one or more directions of information. Often, these 

would correspond to the direction(s) of the trait(s) in which we are interested. When 

computing the information along the axis a, the angle to a is 0 and therefore cos(a) = 1, 

whereas the angle to any other axis, say b, is determined by the correlation between a and 

b so that cos(b) = corr(a, b) (Bock, 1975). It follows that the information in direction of 

the trait a is given by: 

            corr , ... ... corr ,i i i
a i a T a

a T

P P P
P

  
         

  
θ θ θ

θ 1
1

. (15.18) 

It follows that in instruments measuring uncorrelated traits, only the partial derivative in the 

direction of the trait itself contributes to the information. However, for instruments involving 

correlated traits, partial derivatives in directions of other traits might contribute, adding 

information proportionately to the strengths of their relationships with the focus trait. In 

applications sections of this chapter we will provide specific information functions for 
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models commonly used to score responses to PRO measures. 

Test Information Function (TIF) 

When local independence holds, the Test Information Function (TIF) is simply the 

sum of the item information functions. In one-dimensional cases, the TIF is    
1

m

i
i

    . 

In multi-dimensional cases, the total information in direction  is the sum of all item 

information functions (15.16). Thus, the test information about trait a is: 

    
1

m
a a

i
i

 θ θ  . (15.19) 

So far, we have taken into account information provided by the item responses, i.e. 

the maximum likelihood (ML) information. When Bayesian estimators are used, information 

given by the prior distribution will also contribute to the latent trait estimation. The so-called 

posterior test information function,  P θ , reflects contributions provided by the item 

responses and the prior distribution. For a single latent trait, the standard normal prior 

distribution adds unity to the information across the latent trait continuum (Du Toit, 2003),  

     1P      . (15.20) 

For multiple latent traits, the multivariate standard normal prior with correlation 

matrix S adds to the ML test information function as follows 

     1a a
P a

    θ θ Σ  , (15.21) 

where 1

a

  Σ  is the ath diagonal element of the inverted latent trait correlation matrix (for  

proof, see Appendix B in Brown & Maydeu-Olivares, 2011). When all traits are uncorrelated, 

the term added to the ML test information in equation (15.21) equals unity.  When the traits 

are correlated positively, the term is greater than unity (and therefore the prior distribution 

contributes more information for the trait estimation).  

Reliability 

While the standard error functions (15.12) to (15.13) characterize the precision of 

measurement provided by an instrument completely, it may be convenient in applications to 
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offer a single index of precision. Such a single index is more likely to appeal to, and be 

understood by, the test user, and it enables a quick evaluation of a PRO measure’s overall 

measurement quality by third parties, such as regulatory authorities. Provision of simple 

indices is particularly beneficial for multi-trait measures, where the main challenge is to 

present and summarize the information functions in a comprehensible fashion. Contour plots 

and “clam shell” plots (see Ackerman, 2005; and Reckase, 2009) are already complicated 

when just two dimensions are involved, but with more dimensions, they become quite 

impractical.  

One such index, marginal reliability, was suggested by Green and colleagues (1984):  

 
2 2 2

2 2
1error error  

   
 

. (15.22) 

This coefficient follows the fundamental definition of reliability as the proportion of variance 

in the observed score due to true score (equal to observed minus error variance). Provided the 

standard error function is relatively uniform, the marginal reliability estimate will be 

representative of the test’s overall reliability, and may be used for comparison with classical 

reliability statistics. In addition, the reliability is an important quantity because it describes 

how closely the estimated trait resembles the latent (true) trait score: 

  corr( , )    . (15.23) 

There are two ways to compute the marginal reliability coefficient. One way, referred 

to as theoretical reliability (du Toit, 2003), involves averaging the squared standard error for 

all trait values in the theoretical distribution to obtain the error variance in (15.22): 

    2 2
error SE d





      . (15.24) 

Once the error variance has been estimated (usually by approximating the integral (15.24)), 

the marginal reliability is computed by assuming the latent trait score variance in (15.22) 

2 1  , giving 

 21 error    . (15.25) 

With multiple traits, the theoretical reliability procedure becomes unattractive since it 

involves multidimensional integration. An alternative approach, empirical reliability, 

involves averaging the squared standard errors of estimated trait scores in a sample to obtain 
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the error variance in (15.22). That is, the observed and the error variance are computed from 

the estimated trait scores  and their standard errors in a sample of N respondents: 

   22

1

1 N

j

jN 

       ,   2 2

1

1 N

error j

j

SE
N 

    . (15.26) 

The standard error is computed as appropriate for the estimator, using the standard deviation 

of the posterior likelihood (15.9) for the EAP estimator, the inverse of the Fisher information 

for the ML estimator, and the inverse of the posterior information (15.12) for the MAP 

estimator. Conveniently, some software packages such as TESTFACT (Bock et al., 2003) or 

Mplus (Muthen & Muthen, 1998-2012) compute the standard error of a score as part of the 

score estimation process1. 

The empirical reliability is very easy to compute for a single trait, but its 

computational simplicity becomes especially advantageous when dealing with multi-trait 

measures. The sample-based empirical reliability approach essentially uses the estimated 

scores  1j 2j( ,  ,  , )j Tj    θ   
 for every respondent j as a sample of points on the 

multidimensional grid.  

Typically, single reliability indices provide good summaries of measurement 

precision for instruments with relatively uniform test information functions. For instruments 

with peaked information functions, summary indices are unlikely to be representative 

indicators of precision for any ranges of the latent trait. In addition, Bayesian estimators tend 

to shrink the scores towards the population mean, particularly when the number of items is 

small. When this is the case, the observed variance 
2

  computed using (15.26) may be low, 

and the empirical index might underestimate the actual reliability.  

Scoring and Estimating Measurement Precision in Applications 

In the following sections, we show how test scores and their standard errors are 

estimated for a range of item response models popular in patient-reported outcomes 

applications. Four models – the unidimensional model, the correlated traits model, the 

second-order model, and the bifactor model – are included in the discussion. We illustrate all 

points made with the same data analysis example. 

                                                 
1 Mplus 7 provides standard errors for the estimated scores only when EAP estimator is used. 
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Data Example. The 28-item ‘scaled’ General Health Questionnaire (GHQ-28) in 

a general population birth cohort sample (the NSHD)  

The 28-item version of Goldberg’s General Health Questionnaire (GHQ-28; 

Goldberg, 1972; Goldberg and Hillier, 1979; Goldberg & Williams, 1988) is a popular 

instrument that was initially developed as a screening questionnaire for detecting psychiatric 

disorders in community settings and non-psychiatric clinical settings, such as primary care or 

general practice (Croudace et al, 2003; Goldberg et al. 1997). A vast literature of clinical and 

general population studies has indicated that the 28-item version of the GHQ2 performs well 

as a screening instrument for minor psychiatric disturbance and as an indicator of psychiatric 

morbidity. Although the GHQ-28 was developed to detect potential psychiatric cases by 

measuring level of non-specific psychiatric morbidity by probing for signs and symptoms, it 

is often considered as a potentially multidimensional measure. It can be used as a population-

wide measure of psychological distress, for example in the first stage of a two-stage 

epidemiological study of mental health. It is also a candidate outcome measure for clinical 

trials, as a primary or secondary measure of emotional distress.  

Respondents completing the GHQ questionnaire are asked to think about their health 

in general and any medical complaints they have had over the past few weeks. The version 

used here consists of 28 items designed to measure four a priory facets of mental health 

variation (four subscales): Somatic Symptoms, Social Dysfunction, Anxiety / Insomnia, and 

Severe Depression / Hopelessness. Each facet is measured with seven questions (for item 

content see Table 15.1), and responses are given by selecting one of four categories. These 

are indicated by a set of ‘verbal anchors’. On the copyrighted forms, no numbered scoring is 

displayed for each anchor and there is subtle variation in their wording, which varies 

according to the phrasing of the questions. The response categories refer to either absence of 

the symptom (‘not at all’), or presence of the symptom in relation to the “usual” amount – i.e. 

‘no more than usual’, ‘rather more than usual’, ‘much more than usual’, for instance: 

“Have you recently lost much sleep over worry?” 

(Not at all - No more than usual - Rather more than usual - Much more than usual) 

For some questions, response categories are unique but still follow the same pattern of 

                                                 
2 copyrighted instrument distributed by GL Assessment, see FAQ at 

www.gl-assessment.co.uk/health_and_psychology/resources/general_health_questionnaire/faqs.asp?css=1 
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comparison with the “usual” state of things, for instance: 

“Have you recently felt capable of making decisions about things?” 

(More so than usual - Same as usual - Less so than usual - Much less capable) 

The GHQ-28 has 20 items that are worded in terms of “psychological problems / 

distress” (i.e. negatively worded) as the former example question, and 8 items that are 

worded in terms of “psychological health” (positively worded) as the latter question. 

Regardless of whether the question is worded positively or negatively, the response 

categories are always presented in the order of increasing problems or symptomatic distress. 

Thus, the last category represents the most severe symptoms or the greatest psychological / 

emotional distress for all items. 

Our dataset comprises responses from the ongoing Medical Research Council 

National Survey of Health and Development (NSHD), also known as the British 1946 birth 

cohort. We refer to the wave of interviewing undertaken in 1999 when the participants were 

aged 53 (Wadsworth et al, 2003). At that time, 2091 respondents (1422 men and 1479 

women, about 99% of the total number of study participants) provided answers on all items 

of the GHQ-28, and this is the full-response-set sample we consider here.  

As would be expected, in this predominantly healthy mid-life community sample, 

most respondents selected either the first or the second response categories for most questions 

(corresponding to an absence or only a small amount of symptoms or distress). All item 

responses were positively skewed, particularly for the rather extreme items of the Severe 

Depression facet. Despite the large size of the dataset, the last response category yielded only 

single frequency figures for some items, and to avoid instability of parameter estimates we 

collapsed the two top response categories prior to any analyses, effectively resulting in the 

item coding 0-1-2-2.  

We start by exploring the factor structure of these data in Mplus3  (Muthén & Muthén, 

1998-2010) using diagonally weighted least squares (DWLS) estimation (the software 

default) based on the matrix of polychoric correlations (Muthén, du Toit & Spisic, 1997). 

Considering that the instrument was designed to measure four facets of psychological 

distress, we expect to find that four moderately correlated factors underlie the data. However, 

there is also a clear possibility of one general “psychological distress” construct underpinning 

the associations between these four related facets.  

                                                 
3 Analyses can also be performed using freeware FACTOR program, available on 

http://psico.fcep.urv.es/utilitats/factor/index.html 
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An exploratory analysis yielded five eigenvalues greater than one (12.9, 2.6, 2.2, 1.5 

and 1.1). As the ratio of the first to the second eigenvalue is very large, a strong general 

factor is evident, together with three or four further factors. Goodness of fit of this 

exploratory solution is 2 = 3917, df = 272, p < 0.001, RMSEA = 0.068, CFI = 0.959.  

A target rotation of the four-factor solution to a hypothesized structure (where items 

designed to measure a facet have zero loadings on all other facets) yielded what we consider 

a well-behaved solution. Items designed to measure a facet had large loadings on the 

corresponding factor and mostly near-zero loadings on the other three factors (see Table 

15.1). As expected, these four factors were moderately correlated (their inter-correlations 

ranged from 0.33 to 0.56). 

--------------------------------------------- 

INSERT TABLE 15.1 ABOUT HERE 

--------------------------------------------- 

Based on theoretical considerations governing the design of the GHQ-28 and the 

above exploratory solution, any psychometric model for this data should reflect the 

interrelated nature of the measured facets. These relationships could be modelled through a 

factor capturing variation between individuals on the primary psychological adjustment / 

distress continuum, and possibly further factors, that may exist over and above the general 

factor. In what follows, we consider four alternative models for the GHQ-28 data.  

The first model is a unidimensional model, in which one common factor explains all 

variation in the data (Figure 15.1a). This is the most basic IRT model and we use it here for 

illustration of the basic scoring principles.  

The second model is a correlated traits model, in which four freely correlated facets 

are indicated by their respective items (Figure 15.1b). This model is useful if the focus of 

measurement is on the four facets.  

The third model is a second-order model, in which a second-order factor explains 

common variance in the four facets (see Figure 15.1c). This model is useful when scores on 

the general factor as well as scores on its facets are of interest.  

The fourth and the last is a bifactor model, in which every item is influenced by two 

factors – the general factor and a group factor (Figure 15.1d). The general factor accounts for 

the common variance shared by all items. Group factors are “residual” dimensions, which 

account for any remaining common variance specific to the items forming the facets. The 

bifactor model is a useful representation of data where the general factor is of particular, but 
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not sole interest. 

----------------------------------------------- 

INSERT FIGURE 15.1 ABOUT HERE 

----------------------------------------------- 

Scoring under the Unidimensional IRT Model 

When the instrument items depend on one latent trait, the ML item information 

function (15.14) is calculated from the normal ogive item response function 

   Φi i iP       as follows (McDonald, 1999; page 284): 

    
   
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Φ 1 Φ
i i i

i
i i i i

       
        

 . (15.27) 

Here,  x  denotes a standard normal density function evaluated at x. Having 

computed the item information functions for all items, the ML test information is computed 

by adding all item contributions, and the posterior information is computed using (15.20). 

When the logistic link    L D Di i iP        is used4, the item information 

function (15.14) amounts to  

        2
D L D D 1 L D Di i i i i i              . (15.28) 

All formulae for item information involving the normal-ogive link function given further in 

this chapter can be adopted for the logistic link by using the general expression above. 

Illustration: GHQ-28 general factor scored under the unidimensional model 

It is important to note that the above formulae for unidimensional IRT models cannot 

be applied if the key assumption of local independence does not hold in the data. In 

particular, when local independence does not hold the test information cannot be decomposed 

into the sum of item information functions. We know that dependencies exist between items 

within the four facets of GHQ-28, however, for purposes of illustration we proceed as if the 

GHQ-28 really did measure only one underlying trait, “psychological distress”. This analysis, 

using the simplifying assumption of local independence, will be later compared with analyses 

                                                 
4 D=1.7 is the scaling constant used with the intercept and slope parameters from the normal ogive 

metric   
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using other models, and we shall investigate the extent to which the simplification affects the 

results.  

Item parameters were estimated according to the single factor model depicted in 

Figure 15.1a, using the DWLS estimator in Mplus software. We report the chi-square and 

other fit indices for this and subsequent models in Table 15.2. As expected, the model fitted 

the data poorly, with RMSEA and CFI/TLI indicating unsatisfactory fit. Specifically, this 

model failed to reproduce correlations between the items within the four facets. 

---------------------------------------------- 

INSERT TABLE 15.2 ABOUT HERE 

---------------------------------------------- 

The individual trait scores were estimated using two Bayesian methods - the EAP and 

the MAP. The EAP scores ranged from -2.96 to 3.52 (mean 0.03 and standard deviation 

0.90). The MAP scores range from -2.87 to 3.42 (mean 0.03 and standard deviation 0.89).The 

two sets of scores correlate almost perfectly, with the correlation being different from 1 in the 

fifth decimal place, and in the rest of this chapter we therefore use the EAP score only. 

The standard errors of the EAP score estimates were computed according to equation 

(15.9). Figure 15.2 shows the EAP standard errors plotted against the estimated trait scores 

for all individuals in the NSHD sample. For comparison, we also plot the standard errors 

computed from the Fisher information of the posterior likelihood function using equation 

(15.20). It can be seen that the standard error function based on the Fisher information traces 

the errors of the EAP scores almost perfectly. Figure 15.2 shows that for the most of the 

latent score range (between -3 and 3) the precision of measurement is good, with the standard 

errors below 0.5. 

---------------------------------------------- 

INSERT FIGURE 15.2 ABOUT HERE 

----------------------------------------------- 

The empirical reliability of the MAP sample scores (computed from Fisher 

information) is 0.899, and empirical reliability of EAP sample scores computed from the 

squared EAP standard errors is also 0.908. In this case, the two empirical estimators give 

similar results. We, however, suspect that this high reliability values are an overestimation, 

due to ignoring the local dependencies between items measuring the same facets in this 

simple model. 
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Scoring under the Correlated Traits IRT Model 

In measures where items each item indicates only one of T correlated facets f1, f2,…, 

fT (the items possess an independent-clusters basis), such as our hypothesized structure for the 

GHQ-28 depicted in Figure 15.1b, the one-dimensional theory applies when it comes to 

computing the ML item information and test information functions. Because each item 

response is conditional on a single trait, there is no difference between estimating trait scores 

by using a model with multiple correlated traits and by using separate unidimensional 

models, provided that the item parameters in both models are identical.  

There is, however, a difference between estimating the trait scores in univariate and 

multivariate fashion when Bayesian estimators are used. In a model with correlated traits, the 

latent trait correlations will be taken to account as a feature of the multivariate prior 

distribution. When the traits are associated, the population-based likelihood of having a 

certain score on one trait will vary depending on the levels of other traits. For example, in the 

GHQ-28 with its positively correlated facets, a combination of four scores that are all 1 

standard deviation below the population mean is more likely than a combination of scores 

where two facet scores are 1 standard deviation above and two facet scores are 1 standard 

deviation below the population mean. When the appropriate prior population density is used 

in Bayesian estimation, it increases the estimation precision by “borrowing” information from 

related trait scores. To quantify how much information is added by related scores, we refer to 

equation (15.21). 

Illustration: GHQ-28 facets scored under the correlated traits model 

The correlated traits model (see Figure 15.1b) was estimated using the DWLS 

estimator. Goodness-of-fit indices are reported in Table 15.2. As expected, the model fitted 

much better than the unidimensional model. After the model parameters were estimated, the 

individual responses were scored using the MAP estimator (since the EAP estimator is very 

computationally heavy with as many as four dimensions). Model-based correlations between 

the latent traits are given in Table 15.3. These correlations are used to assess the contributions 

from the prior multivariate normal distribution to estimation of each subscale score. Because 

the four facets are positively correlated, the prior information provided by each facet in 

(15.21) is greater than 1. For instance, the prior distribution adds impressive 3.33 to the 

information function for Anxiety / Insomnia subscale. 

--------------------------------------------- 
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INSERT TABLE 15.3 ABOUT HERE 

---------------------------------------------- 

The standard errors of the facet scores estimated in the multivariate fashion as 

described above are given in Figure 15.3 (a-d). Corresponding standard errors of the 

univariate score estimation (if the scores were MAP-estimated without the knowledge of the 

related facets) are shown for comparison. It can be seen that the multivariate scoring yields 

higher accuracy than the scale-by-scale univariate scoring when traits are correlated. 

Marginal reliabilities computed for each estimated facet are given in Table 15.4. It 

can be seen that the Severe Depression score shows particularly high shrinkage towards the 

population mode, producing low observed score variance (0.64). The empirical reliabilities 

for Somatic Symptoms and Anxiety subscales are above 0.8, but fall short of 0.7 for Social 

Dysfunction and Severe Depression. 

------------------------------------------------------------------- 

INSERT FIGURE 15.3 AND TABLE 15.4 ABOUT HERE 

-------------------------------------------------------------------- 

Scoring under the Bifactor IRT Model  

In this section, we use the general formulation for response functions and 

multidimensional information given earlier in this chapter to provide formulae necessary to 

compute the item and test information for bifactor models. Let g be a general factor 

measured by the instrument, and s1, s2,…, sT be T group factors (for instance, related to 

facets). The set of factors underlying item responses is therefore  *
1 2, , ,..., Tg s s s g . At this 

point, it is important to emphasize the difference in conceptual meaning between subscales / 

facets and “group factors”. In bifactor models, group factors do not have the same 

interpretation as facets in correlated traits models. Statistically, they are residuals left after 

accounting for the general factor, and therefore represent unique features common to groups 

of items that are not explained by the general factor. The group factors, therefore, cannot be 

thought of as ‘Anxiety’ or ‘Depression’ or whatever meaning we associate with facets – 

instead, they represent common features of ‘Anxiety’ or ‘Depression’ items that are not 

captured by ‘Psychological Distress’. 

  The general factor and the group factors are assumed mutually uncorrelated, have 

zero means and unit variances so that their distribution is multivariate standard normal 
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 *
1~ 0,TN g Ι , where I denotes the identity covariance matrix. In the bifactor model, the item 

response tendency is influenced by two factors – the general factor g and one group factor, 

say sa.  

 *
0 si i i ai a iu g      . (15.29) 

In the above expression, i is the intercept, 0i  is the slope parameter for the general factor g, 

ai  is the slope for the group factor sa, and i is the error. Assuming the error is distributed 

normally with the mean 0 and unit variance, the item response function given in the intercept 

/ slope parameterization is, therefore, the two-dimensional normal ogive  

      * *
01 Φi i i i ai aP P u g s     g g . (15.30) 

Because all the factors in this model are uncorrelated, the gradient in direction of the 

general factor g in equation (15.17) becomes 

      
*

*
0 0

i

g i i i i ai a

P
P g s

g


       



g
g , (15.31) 

where  x  is the normal density function evaluated at x. Thus, the IIF in direction of the 

general factor g for the bifactor model is 

      
   
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0 0Φ 1 Φ
i i i ai ag
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g s

g s g s

      
        

g . (15.32) 

Since the item information function is conditioned on both the general and the group 

factor, local independence holds and the IIFs are additive. The test information about the 

general factor g is the sum of all IIFs in the direction of g. This summation, however, will 

make the test information function for the general factor conditional on all group factors, 

although each item information function is only conditional on one group factor (in addition 

to the general factor). 

When prior knowledge about the population distribution is used for score estimation, 

the prior information must be added to the ML test information to compute the posterior test 

information. In the bifactor model, the latent covariance matrix is  = I and the information 

added in (15.21) is simply 1: 

      * * 1 * 1g g g
P ig

i

       g g g    (15.33) 
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Illustration: GHQ-28 general and group factors scored under the bifactor model    

The bifactor model illustrated in Figure 15.1d, with the latent factor variances set to 1 

and the item uniqunesses set to 1, involved estimating 28 slope parameters 0i related to the 

general factor, and 28 slope parameters , , ,Si Ai SDi Di    related to the four group factors sS, sA, 

sSD, sD. In addition, 56=28*2 category thresholds were estimated (two thresholds for each 3-

category item). Goodness-of-fit indices for this model are reported in Table 15.2. The model 

shows acceptable CFI/TLI, and it is an improvement compared to the correlated traits model. 

The person parameters (general and group scores) for the GHQ-28 were estimated using the 

MAP estimator. 

The properly conditioned and therefore additive item information functions (IIFs) for 

this model depend on two factors only (one general and one group factor) and can be plotted 

as surfaces. However, the test information function (TIF) in the direction of the general factor 

depends on five factors (the general factor as well as four group factors), and therefore cannot 

be presented easily.   

We use estimated scores for each person j ( ), , , ,Sj Aj SDj Djj
g s s s s     as sampled points on the 

multidimensional grid to summarize high-dimensional information functions, in the following 

manner. For each sampled point, item information functions will yield scalar values, the TIF 

for the general factor can be easily computed by summing the scalar IIF values. Finally, the 

standard errors can be computed and plotted against estimated values of the general factor for 

all individuals in the sample. Figure 15.4 illustrates such a scatter for the GHQ-28 data. It can 

be seen that the standard errors for most participants were below 0.4, and only two 

participants out of 2901 had the standard errors above 0.5. These larger standard errors were 

associated with low scores on the general factor ( = -1.78 and  = -2.48). The empirical 

reliability of MAP scores calculated from these standard errors is 0.901, very close to the 

estimate given by the unidimensional model. 

----------------------------------------------- 

INSERT FIGURE 15.4 ABOUT HERE 

------------------------------------------------ 

Scoring under the Second-Order IRT Model  

In measures with a second-order factorial structure (such as the model depicted in 

Figure 15.1c), common variance in T facets f1, f2,…, fT is explained by one general factor g, 
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and every item response tendency depends on one first-order factor (facet), say fa: 

 
*
i i ai a iu f     . (15.34) 

Here, i is the item intercept, ai  is the slope for the facet fa, and i is the error 

distributed with the mean 0 and unit variance (thus we keep the standard IRT intercept/slope 

parameterization for the measurement part of the model).  

Each facet factor, in turn, is an indicator of the general factor, g: 

 a a af g d   , (15.35) 

where da is a residual term, also called “disturbance” in structural equation modeling (SEM) 

literature. The residual terms are uncorrelated with the general factor and with each other. 

The structural part of the model in equation (15.35) is parameterized so that the general factor 

g and the facet factors f1, f2,…, fT have unit variances, i.e. the factor loadings a are 

standardized. It is convenient to work with standardized facet scores, and use the established 

formulae for the standard normal ogive etc. In order for the facet scores to be standardized, 

the disturbance terms must have variances   2var 1a ad    . 

It follows that the set of latent factors in the measurement model (15.34)

 1 2, ,..., Tf f f f is distributed  ~ 0,TNf Σ , where  is the covariance matrix 
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. (15.36) 

In the measurement model (15.34), item response tendencies depend on facet factors 

only and do not depend on the general factor. The item response function can be written as 

the standard normal ogive  

      1 Φi i i ai a
P P u f     f f  . (15.37) 

Because the item response tendency ui* depends on one facet fa only, and does not 

depend on the general factor, the partial derivatives with respect to the general factor and 

irrelevant facets are zero, and the gradient in direction of the general factor g in equation 

(15.17) becomes 
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The partial derivative with respect to fa in (15.38) is  
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f

  , (15.39) 

where  x  is the normal density function evaluated at x. It follows from (15.35) that the 

correlation between the general factor g and the facet factor fa is  corr ,a af g   , and the 

gradient is 

    g i ai a i ai aP f       f   . (15.40) 

Finally, the IIF in the direction of the general factor g for an item measuring the facet 

factor fa in the second-order model, parameterized as described above, is 

  
   

   
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 . (15.41) 

In the second-order model, local independence holds and the item information 

functions are additive. The TIF about the general factor g is the sum of all IIFs in the 

direction of g. This summation, just as it was the case with the bifactor model, makes the test 

information function for the general factor conditional on all facet factors, although each 

item information function is only conditional on one facet factor. 

When Bayesian methods are used for score estimation, the prior information must be 

added to the ML test information to compute the posterior test information. In the second-

order model, the general factor is estimated from continuous facet indicators, and the amount 

of information added by the univariate normal prior is 1 

     1g g
P  f f  . (15.42) 

An added advantage of the second-order model is that along with the scores for the 

general factor, scores for the facets can also be estimated. It follows from equation (15.37) 

that the ML item information in direction of the facet factor fa is  
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The TIF about the facet factor fa is the sum of all IIFs in the direction of fa. Just like in the 

model with correlated traits, relationships between the facet factors described by (15.36) will 

be taken to form the covariance matrix for the multivariate normal distribution used as a 

prior. To quantify how much information is added by related scores, we refer to equation 

(15.21). 

The Second-Order Model as a Special Case of the Bifactor Model 

If we substitute the expression for the facet factor (15.35) into the expression for the 

item response tendency (15.34), we obtain an expression of the response tendency as a direct 

function of the general factor and the residual (disturbance) term: 

 
*
i i ai a ai a iu g d       . (15.44) 

The only difference between this expression and the bifactor equation (15.29) is the naming 

convention for the residual / disturbance term, and choice of regression parameters (slopes). 

We keep notation for the disturbance terms da in the second-order model distinct from the 

group terms sa in the bifactor model only to emphasize that they have different variances in 

our chosen parameterization. Recall that while variances of the group terms in the bifactor 

model are set to 1, variances of the disturbance terms in the second-order factor model are set 

to 1 minus squared factor loading on the general factor ( 21 a  ). Otherwise, these entities 

have equivalent roles in the models and equivalent meaning. 

It follows that any second-order model can be equivalently parameterized as a bifactor 

model with some restrictions on slope parameters (Rindskopf & Rose; 1988). That is, the 

slope on the general factor in a bifactor representation of the second-order model is 

proportionate to the respective slope on the group factor, with one common proportion 

coefficient a for all items related to the same group factor sa: 

 0i ai a    . (15.45) 

Consequently, the bifactor model estimates twice as many slope parameters as there are 

items, while the second-order model estimates as many slopes on the group factors as there 

are items plus as many common facet coefficients as there are facets. Put simply, the second-

order model is nested within the bifactor model. 

 It is now clear that the expression for the IIF in the direction of the general factor for 

the second-order model (15.41) is identical to the expression for the bifactor model (15.32), 



24 

 

when the two models are parameterized as described. That is, in the bifactor model we set 

variances for the general, group and unique factors equal 1. In the second-order model, we set 

variances for the general, facet and unique factors equal 1 (this means that variances for the 

facet residuals/disturbances are constrained to 1 minus squared factor loading on the general 

factor). This parameterization ensures a familiar z-score metric interpretation, and scale, for 

all model-estimated factors. 

Illustration: GHQ-28 general factor and facets scored under the second-order 

model    

The second-order model for the GHQ-28 illustrated in Figure 15.1c, with the general 

and facet factors’ variances set to 1 (and recall that item uniqunesses are set to 1), estimates 4 

facet loadings on the general factor, and 28 item slope parameters relating to the four facet 

factors fS, fA, fSD, and fD. There are also 56=28*2 category threshold parameters (two 

thresholds for each 3-category item). Goodness-of-fit indices for this model are reported in 

Table 15.2. This model fitted much better than the unidimensional model and almost as well 

as the correlated traits model. The scores on the general factor and the facets were estimated 

using the MAP estimator.  

The resulting test information function (TIF) in direction of the general factor depends 

on all four facets, although information functions for each item depend on one facet only. 

This means that the properly conditioned and therefore additive item information functions 

can be plotted as curves; however, the 4-dimensional test information function cannot be 

plotted. Again, we use the sample-based approach to working with information functions 

here, as follows. 

Once the factor scores  ( ), , ,Sj Aj SDj Djj
f f f f=f      have been estimated for each individual 

j, they are used as sampled points. For each point, the item information functions yield scalar 

values, and the TIF for the general factor is easily computed by summing the IIFs. The prior 

contribution is then added as described by (15.42). Finally, the standard errors can be 

computed and plotted against the estimated values of the general factor for all individuals in 

the sample. Figure 15.5 illustrates this scatter for our GHQ-28 data example. It can be seen 

that the standard errors for most participants were below 0.4, and only one participant out of 

2901 had the standard error above 0.5. This larger standard error (SE = 0.54) was associated 

with a low score on the general factor ( = -2.32). The empirical reliability of MAP scores 

calculated from these standard errors is 0.891, lower than the estimate for the unidimensional 
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model, and the bifactor model. 

----------------------------------------------- 

INSERT FIGURE 15.5 ABOUT HERE 

------------------------------------------------ 

The standard errors of the facet scores were computed using the information function 

(15.43). The resulting standard error functions were very similar to the respective functions 

estimated under the correlated traits model. The empirical reliabilities for each facet are given 

in Table 15.4. It can be seen that they are very similar to the respective reliability coefficients 

for the correlated traits model. 

Evaluation of the Alternative Scoring Methods for GHQ-28 Data Example 

A range of scoring options for a typical, ordinal-response patient-reported outcome 

measure with a general-group structure was discussed and illustrated with the GHQ-28 

dataset. The unidimensional model, violating the assumption of local independence, showed 

poor fit to the data (see Table 15.2). The other models, which accommodated the 

multidimensional faceted structure of the GHQ-28 fitted the data nearly acceptably, and the 

bifactor model showed the best fit.  

Table 15.5 reports correlations between the general psychological distress scores 

estimated with the alternative scoring models. It can be seen that all methods yielded highly 

similar scores (the correlations ranged from .960 to .987). The lowest correlation was 

observed between our worst fitting model – the unidimensional model – and our best fitting 

model – the bifactor model. Figure 15.6 presents scatterplots for the general factor scores 

estimated under different models. It can be seen that there was slight departure from linearity 

in the relationship between the unidimensional scores and the bifactor scores, and the 

unidimensional scores and the second-order scores. The second-order model yielded general 

factor scores that were very close to the bifactor scores, and the relationship between these 

two sets of scores was linear. 

----------------------------------------------- 

INSERT FIGURE 15.6 ABOUT HERE 

------------------------------------------------ 

Reliability estimates obtained using the marginal (empirical) coefficients, which were 

fully conditioned on all latent traits in the multidimensional models, reached around .9 for all 

models. These estimates, however, are likely to be overly optimistic for the unidimensional 
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model, which ignored local dependencies between the items within facets and therefore likely 

overestimated the test information and underestimated the standard errors.  

We expect the bifactor reliability estimates to be an accurate reflection of the real 

measurement precision provided by this well-fitting scoring model. To examine how accurate 

the estimated scores really were for all models, we conducted a simulation study, where the 

bifactor model was the generating model for item responses. The estimated item parameters 

from the GHQ-28 bifactor model were used to generate true scores and categorical item 

responses for N = 2901 cases in 100 replications. The simulated item responses were scored 

using the same methods we applied to the real GHQ-28 dataset. The correlation between the 

true and the estimated scores on the general factor were computed. Recall that according to 

(15.23), the squared correlation between the true and the estimated score is a measure of test 

reliability.  

Results of this simple simulation study are reported in the last column of Table 15.4. 

The highest squared correlation between the true and the estimated score (the test reliability) 

is for the bifactor model (.869) and the lowest for the unidimensional model (.824). 

Comparing these figures with the reliability estimates in the same table, we can see that the 

test information methods overestimated the reliability slightly for the bifactor and the second-

order models (by 3.8% and 4.6% respectively), and more substantially for the unidimensional 

model (by 9.1%). The slight overestimation with the well-fitting bifactor model is likely due 

to remaining local dependencies between items within the Somatic Symptoms subscale. 

Overall, we conclude that the bifactor model is the most suitable for these data, and 

that it produces scores with good measurement precision that can be reasonably accurately 

estimated using the described sample-based methodology involving multidimensional 

information. When assessment on the general factor is desired, the second-order model is the 

second best from the fit and the measurement precision point of view; and it may be preferred 

to the bifactor model in situations when scoring on the subscales is also required.   

Conclusion and Discussion 

Which model is the most suitable for a particular measurement instrument should be a 

decision based largely on conceptual grounds, not merely model fit. Furthermore, particular 

measurement focus (e.g. whether the general factor or the facet factors are of interest) 

imposes practical requirements on the scoring model. Approaching the model choice from the 

theoretical perspective governing the instrument’s design, the GHQ-28 used as an example 
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patient-reported outcome measure was developed to measure four conceptually distinct 

constructs that were expected to show moderate to strong associations in most samples 

(clinical or general population). The correlated traits model is clearly suitable from this point 

of view. However, this model fails to capture any common variance existing among the 

subscales, and therefore is only suitable for measuring the facets but not the overall 

psychological distress. 

The second-order model, on the other hand, captures not only the facets but also the 

general factor underlying them. The researcher may consider the four health facets to be 

manifestations of the common construct (psychological distress), which represent specific 

features that go beyond this common view/summary. For example, the individual facets may 

have differential prognostic significance. In such a framework, it certainly makes sense to 

estimate and report individual scores on the four “subscales”, and the second-order model is 

well suited to this purpose.  

In the bifactor model, no familiar ‘subscale’ scores are estimated in addition to the 

general factor. Instead, group factors are estimated, which capture residual variance after the 

general factor has been accounted for. Although not commonly used, these residual scores 

can be also considered in applied research. We expect to see them exploited in longitudinal 

studies with repeated PRO measures, in parallel with examining a process of change in 

general score values. 

The second-order model would be the model of choice for understanding the GHQ-28 

from the perspective that gave rise to its four-subscale structure and the perspective of its 

classical scoring. If, however, the researcher believes that all individual variation is caused by 

the general psychological distress continuum, and common content shared by the items 

within each subscale is in fact a “method” factor related to specific manifestation of distress 

symptoms, the bifactor model is more suitable. It might also be the case that only some of the 

group factors are interpretable as method factors.  
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Tables 

Table 15.1. Standardized factor loadings in the oblique four-factor solution for GHQ-28. 

 

Item Wording 

Factor 1 
Somatic 

Symptoms
Factor 2 
Anxiety 

Factor 3 
Social 

Dysfunction 
Factor 4 

Depression 

S1 good health 0.53 0.39 

S2 need good tonic 0.62 0.36 

S3 run down 0.72 0.32 

S4 felt ill 0.69 

S5 pains in head 0.97 

S6 pressure in head 0.97 

S7 hot and cold spells 0.39 

A1 lost sleep over worry 0.79 

A2 difficulty staying asleep 0.67 

A3 constant strain 0.73 

A4 edgy 0.58 

A5 panicky/scared 0.49 0.33 

A6 everything on top of you 0.69 

A7 nervous 0.59 0.36 

SD1 manage to keep busy 0.52 

SD2 take longer time 0.55 

SD3 doing things well 0.95 

SD4 satisfied with tasks 0.86 

SD5 play a useful part 0.76 

SD6 making decisions 0.61 

SD7 enjoy daily activities 0.35 0.41 

D1 worthless 0.61 

D2 hopeless 0.72 

D3 not worth living 0.79 

D4 thoughts of suicide 0.95 

D5 nerves too bad 0.53 

D6 wishing dead 0.86 

D7 suicidal ideas 0.92 

 

Note. Loadings below 0.3 in magnitude are omitted. S = Somatic Symptoms, A = 

Anxiety / Insomnia, SD = Social Dysfunction, D = Depression. 
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Table 15.2. Goodness of fit for alternative GHQ-28 models. 

 

Model 
Chi-

square df RMSEA CFI TLI 
Unidimensional 15314 350 .121 .831 .818 
Second-order 5920 346 .075 .937 .931 
Correlated traits 5870 344 .074 .938 .932 
Bifactor 4142 323 .064 .957 .950 
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Table 15.3.  Estimated latent trait correlations under the Correlated traits model 

 S A SD D 

(S) Somatic Symptoms 1    
(A) Anxiety / Insomnia .70 (.01) 1   
(SD) Social Dysfunction .59 (.01) .60 (.01) 1  
(D) Severe Depression .54 (.02) .76 (.01) .57 (.02) 1 

 

Note. Standard errors are in parentheses. S = Somatic Symptoms, A = Anxiety / 

Insomnia, SD = Social Dysfunction, D = Depression. 
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Table 15.4. Marginal (empirical) reliabilities under alternative GHQ-28 scoring models  

 

Model Estimator S A SD D General 

 
2

corr( , )   

 
Unidimensional MAP     .899 

.824 
 EAP     .908 
Correlated traits MAP .817 .871 .666 .639 - - 
Second-order MAP .813 .867 .665 .607 .891 .852 
Bifactor MAP - - - - .902 .869 
 

Note. S = Somatic Symptoms, A = Anxiety / Insomnia, SD = Social Dysfunction, D = 

Depression. 
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Table 15.5. Correlations between GHQ-28 general distress scores estimated using alternative 

scoring models. 

Second-order Bifactor 

Unidimensional .987 .960 

Second-order .982 

 

Notes: Both EAP and MAP scoring for the unidimensional model yield identical 

correlations with the other models. 
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Figures 

 

Figure 15.1. Four alternative models for GHQ-28 item responses  

a. Unidimensional model 

 

b. Correlated traits model 

 

c. Second-order model 

 

d. Bifactor model 

 

Somatic 
(residual) 

S-01 
S-02 
S-03 
S-04 
S-05 
S-06 
S-07 

Anxiety / 
Insomnia 
(residual) 

Social 
Dysfunction 
(residual) 

Depression 
(residual) 

A-01 
A-02 
A-03 
A-04 
A-05 
A-06 
A-07 

SD-01 
SD-02 
SD-03 
SD-04 
SD-05 
SD-06 
SD-07 

D-01 
D-02 
D-03 
D-04 
D-05 
D-06 
D-07 

GHQ-28 

Somatic 

S-01 
S-02 
S-03 
S-04 
S-05 
S-06 
S-07 

Anxiety / 
Insomnia 

Social 
Dysfunction 

Depression 

A-01 
A-02 
A-03 
A-04 
A-05 
A-06 
A-07 

SD-01 
SD-02 
SD-03 
SD-04 
SD-05 
SD-06 
SD-07 

D-01 
D-02 
D-03 
D-04 
D-05 
D-06 
D-07 

GHQ-28 

Somatic 

S-01 
S-02 
S-03 
S-04 
S-05 
S-06 
S-07 

Anxiety / 
Insomnia 

Social 
Dysfunction 

Depression 

A-01 
A-02 
A-03 
A-04 
A-05 
A-06 
A-07 

SD-01 
SD-02 
SD-03 
SD-04 
SD-05 
SD-06 
SD-07 

D-01 
D-02 
D-03 
D-04 
D-05 
D-06 
D-07 

GHQ-28 

S-01 
S-02 
S-03 
S-04 
S-05 
S-06 
S-07 

A-01 
A-02 
A-03 
A-04 
A-05 
A-06 
A-07 

SD-01 
SD-02 
SD-03 
SD-04 
SD-05 
SD-06 
SD-07 

D-01 
D-02 
D-03 
D-04 
D-05 
D-06 
D-07 



37 

 

Figure 15.2. Standard errors for the general psychological distress factor under the 

unidimensional model, with distributions of estimated scores and standard errors. 

 

 

Note. Points represent standard errors of individual EAP scores; solid line is the 

standard error function derived from the Fisher posterior information. 
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Figure 15.3. Standard error functions for the four subscales in the GHQ-28 data 

example; univariate versus multivariate scoring using the MAP estimator. 

 

(a) Somatic Symptoms 

 

(b) Anxiety / Insomnia 

 

 

(c) Social Dysfunction 

 

(d) Severe Depression 

 

Note. Solid line is the standard error function for the multivariate estimation; dashed 

line is the standard error function for the univariate (scale-by-scale) estimation. 
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Figure 15.4. Standard errors of MAP general factor scores under the bifactor model in 

the GHQ-28 data example; fully conditioned on all latent factors. 
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Figure 15.5. Standard errors of MAP general factor scores under the second-order 

factor model in the GHQ-28 data example; fully conditioned on all latent factors. 
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Figure 15.6. Comparison of the GHQ-28 general factor score estimates under 

different scoring models. 
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