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Abstract 

Employing daily data of stock index and stock index futures, this paper 

empirically investigates the hedging effectiveness of time-varying hedge ratios 

of emerging futures markets using South Korea as a case.  This paper employs 

eight variants of GARCH models to estimate the hedge ratios along with the 

conventional methods, and compares the hedging effectiveness of these 

estimated hedge ratios across model specifications using both within-sample 

and out-of-sample forecasting performances.  In contrast to recent research 

findings, hedging performance based on a conventional OLS method 

outperforms the GARCH class models. 
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An Econometric Investigation of Hedging Performance of Stock Index Futures in 

Korea: Dynamic versus Static Hedging 

 

1. Introduction 

The last five decades have seen tremendous interest in modelling and forecasting 

of the optimal hedge ratios (OHR) and alternative hedging strategies applied to the 

commodity and financial futures.1 Stock index futures contracts, in particular, offer 

opportunities for unbundling the market and non-market components of risk and 

return to investment banks, security houses, fund managers and individual investors.  

Fund managers use stock index futures to alter, temporarily, the systematic risk of a portfolio 

without having to buy or sell its constituent stock.  They are routinely used in program trading 

and index arbitrage to achieve portfolio insurance.  Hedgers use the markets as a means to 

avoid the risk associated with price changes in the related cash markets.  The 

determination of optimal hedge ratio helps the investor to choose the optimal 

portfolios with suitable futures and a reasonable number of futures contracts.  

Consequently, a large body of empirical literature has accumulated in recent years 

examining the issues of relative effectiveness of sophisticated hedging methods over 

much simpler and intuitively appealing traditional hedging methods using currencies, 

commodities, stock indices, and interest rate products (Sultan and Hasan 2008). 

Given the plethora of literature, there is a gap in the current research strand.  

Most previous studies confined their attention to more developed and mature financial 

markets and exchanges.  Quite surprisingly, there has been little research to examine 

the behaviour of time-varying hedge ratios for emerging markets.2  This article, 

therefore, investigates the behaviour of dynamic hedge ratios in the stock and futures 

markets of South Korea, using alternative variants of GARCH models, and compares 

the hedging effectiveness of optimal hedge ratios across those models.  More 
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specifically, using daily data of the stock spot and futures markets of South Korea –

within the framework of bivariate standard GARCH, GARCH-BEKK, GARCH-

ECM, GARCH-X, and asymmetric GARCH-GJR, GARCH-DCC models – this paper 

estimates the time-varying hedge ratios over the period January 2000 to August 2017 

and compares the hedging performances of those hedge ratios.  In addition, we have 

employed two customised variants of GARCH models – namely the Markov 

switching volatility ARCH (MSVARCH) model (Hamilton and Susmel 1994, Turner 

et al. 1989), and the asymmetric non-linear smooth-transition generalised 

autoregressive conditional heteroscedasticity (ANST-GARCH) model (Anderson et 

al. 1999, Nam et al. 2001) – to capture regime-switching and asymmetric behaviour.  

None of the previous studies has employed these two variants of GARCH model. 

Our analysis contributes to the existing literature in the following ways: First, 

we have estimated the time-varying hedge ratios using longer time span and 

frequency of data.  A number of important events, regimes and episodes in the 

financial markets have characterised this long period.  These include the post-Asian 

financial crisis, the dot-com boom (until March 2000), aftermath of the bubble burst 

(after March 2000), the bankruptcy of WorldCom (July 2000-October 2000), a period 

of the stable and upward trending markets (April 2002-July 2007), the recent global 

financial crisis (August 2007-September/October 2008)3, and aftermath of the 

financial crisis followed by a period of great recession and euro-zone crisis. In a 

recent study on the forecasting performance of 125 variants of GARCH models, 

Laurent et al. (2012) note that during unstable periods such as the dot-com bubble, the 

superior models consist of sophisticated GARCH specifications such as orthogonal 

and dynamic conditional correlation (DCC) embedded with leverage effect.  During 

tranquil periods, GARCH with specifications such as conditional correlation and 
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symmetry in the variance perform well.  Finally, during the 2007-2008 financial 

crisis, GARCH specification with non-stationarity in the conditional variance process 

generates superior forecast.  The selection and use of eight alternative variants of 

GARCH model would successfully capture these varying features of asymmetry, 

regime shifts, and unstable and calm market conditions which are embedded in our 

data series.  Bivariate GARCH, GARCH-BEKK, GARCH-ECM, GARCH-X, and 

GARCH-DCC are the principal variants employed in previous research; the use of 

ANST-GARCH and MRVARCH would accommodate the issues of regimes shift, 

asymmetry and non-stationary variances, respectively. 

Second, we have evaluated the hedging performance using two non-

overlapping out of sample forecast to ameliorate sampling effect and to obtain more 

robust results.  Third, we have investigated the hedging effectiveness using two 

distinct frameworks of utility evaluations – i.e. (a) the mean-variance and (b) 

exponential utility approaches.  Fourth, we have computed the minimum capital risk 

requirement (MCRR) using those hedge ratios to ascertain the superiority of an 

alternative hedging strategy that holds capital adequacy requirement of the fund at a 

minimum level.  Given that hedge ratios of various portfolios are predictable, an 

investor always prefers a portfolio with a lower financial capital to reach the 

maximum of risk reduction. 

The stock and futures exchanges of South Korea represent a major exchange 

in the Asia Pacific region and within the global exchanges in terms of both market 

capitalisation and trading volume.  Furthermore, previous research on the Korean 

markets aimed at investigating the relative effectiveness of dynamic hedging yields 

mixed results with a number of studies found no evidence of outperformance of 

complex econometric models over a much simpler hedging method (see Alexander 
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and Barbosa, 2007, and Moon et al. 2009 and Copeland and Zhu 2010), and others 

found the comparative efficacy of more sophisticated econometric models (see Lai et 

al. 2009).  Sim and Zurbruegg (2001a) noted that the comparative performance of a 

constant hedge ratio vis-a-vis the time-varying hedge ratio improved in the South 

Korean market after the Asian financial crisis.  Given the significance of the Korean 

markets and the conflicting evidence, we attempt to re-assess empirically the 

comparative efficacy of dynamic hedging as an interesting case study. 

The paper is organised as follows: Section 2 describes and discusses the 

optimal hedge ratio and the eight GARCH models.  Section 3 presents a brief review 

of literature on the Korean market.  The data and preliminary diagnostics are 

described in Section 4.  Sections 5-7 offer the empirical results based upon estimating 

conventional and dynamic hedging models, and the final section offers a summary 

and conclusion. 

2. Estimation of Optimal Hedge Ratios and the GARCH Models 

2.1 The Hedge Ratio 

Johnson’s (1960) risk minimising hedge ratio h* is defined as 
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where Rc and Rf denote returns on spot and future indices.  The optimal hedge ratio 

(OHR) then is computed as the slope coefficient of the following regression, 

 tftct RR   ,        (2) 

where εt is an error term.4  A β = 0 implies unhedged position; β = 1 signifies a fully 

hedged position; and β < 1 implies a partial hedge. 
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It is now well-known in the literature that the conventional hedging model has 

shortcomings.  As the distribution of futures and spot prices are changing through 

time, h* which is expressed as the ratio of covariance between futures returns and cash 

returns and variance of futures returns, moves randomly through time (see Cecchetti 

et al. 1988, Baillie and Myers 1991, and Kroner and Sultan 1993).  Therefore eq. (2) 

should be modified as: 
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In eq. (3), conditional moments are changing as the information set, ΩT, is updated; 

consequently, the number of futures contracts held and the optimal hedge ratio will 

also change through time –  hence the t subscripts of hT
*.  Under the condition of 

time-varying distribution, the bivariate GARCH model is utilised to estimate the time-

varying hedge ratios to approximate the dynamic hedging strategies. 

2.2. Bivariate GARCH Model 

The time-varying hedge ratios are estimated from eight variants of GARCH 

models: standard GARCH, GARCH-ECM, GARCH-BEKK, GARCH-GJR and 

GARCH-X, GARCH-DCC, ANST-GARCH and MSVARCH.  The following 

bivariate GARCH (p, q) model is applied to returns from the stock cash and futures 

markets5, 

tty           (4) 
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where ),( f

t

c

tt rry   is a (2x1) vector containing stock returns from the cash and 

futures markets.  Ht is a (2x2) conditional covariance matrix, C is (3x1) parameter 

vector of constants, Ai and Bj are (3x3) parameter matrices, and vech is the column 

stacking operator that stacks the lower triangular portion of a symmetric matrix. 

To make the estimation amenable, Engle and Kroner (1995) have suggested 

various restrictions to be imposed on the parameters of Ai and Bj matrices.  A 

parsimonious representation may be achieved by imposing a diagonal restriction on 

the parameter matrices so that each variance and covariance element depends only on 

its own past values and prediction errors.  The following equations represent a 

diagonal vech bivariate GARCH (1, 1) conditional variance equation(s): 

)(( 1,1111
2

)1,1111,11   ttt HBACH      (7a) 

)()( 1,12221,2,1,1222,12   tttt HBACH      (7b) 

)()( 1,2233
2

1,233322   tt HBACH  .    (7c) 

In the bivariate GARCH (1, 1) model, the diagonal vech parameterisation involves 

nine conditional variance parameters. 

Using the bivariate GARCH model, the time-varying hedge ratio can be 

computed as 

ttt HHh ,22,12
* ˆ/ˆ

,
       (8) 

where tH ,12
ˆ  is the estimated conditional covariance between the cash and futures 

returns, and tH ,22
ˆ  is the estimated conditional variance of futures returns.  Since the 

conditional covariance is time-varying, the optimal hedge would be time-varying too. 

2.3. GARCH-ECM Model 

When the bivariate GARCH model incorporates the error correction term in 

the mean equation, it becomes the GARCH-ECM model which is presented as 
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ttt uy    )1( ,       (9) 

where ut-1 denotes the lagged error-correction term, retrieved from the cointegration 

regression.  Therefore, a bivariate GARCH-ECM model will be employed to account 

for the long-run relationship and basis risk (see Kroner and Sultan 1993).  Equation 8 

still represents the hedge ratio. 

2.4. Bivariate GARCH-BEKK Model 

In the BEKK model as suggested by Engle and Kroner (1995), the conditional 

covariance matrix is parameterised to 
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Eqs. (4) and (5) also apply to the BEKK model and are defined as before.  In eq. (10) 

kiA , i = 1,...q, k = 1,...k, and kjB  j = 1,...q, k = 1,..k are NxN matrices.  The GARCH-

BEKK model is sufficiently general that it guarantees the conditional covariance 

matrix, Ht to be positive definite, and renders significant parameter reduction in the 

estimation.  For example, a bivariate BEKK GARCH (1, 1) parametrisation needs to 

estimate only 11 parameters in the conditional variance-covariance structure.  The 

time-varying hedge ratio from the BEKK model is again represented by eq. (8). 

2.5. Bivariate GARCH-GJR Model 

Along with the leptokurtic distribution of stock returns data, empirical research 

has shown a negative correlation between current returns and future volatility (Black 

1976, Christie 1982).  This negative effect of current returns on future variance is 

sometimes called the leverage effect (Bollerslev et al. 1992).  Glosten et al. (1993) 

provide a modification to the GARCH model that allows positive and negative 

innovations to returns which have a different impact on conditional variance.6 Glosten 
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et al. (1993) suggest that the asymmetry effect can also be captured simply by 

incorporating a dummy variable in the original GARCH. 

2

11

2
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2
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2

  ttttt Iuu 
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where 11 tI  if 01 tu ; otherwise 01 tI .  Thus, the ARCH coefficient in a 

GARCH-GJR model switches between    and , depending on whether the 

lagged error term is positive or negative.  The time-varying hedge ratio based on the 

GARCH-GJR model is also expressed as eq. (8). 

2.6. Bivariate GARCH-X Model 

The GARCH-X model is an extension of the GARCH-ECM model as it 

incorporates the square of error correction term in the conditional covariance matrix.  

In the GARCH-X model, conditional heteroscedasticity may be modelled as a 

function of lagged squared error correction term, in addition to the ARMA terms in 

the variance/covariance equations: 
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A significant positive effect may imply that the further the series deviate from each 

other in the short run, the harder they are to predict.  The hedge ratio again is 

presented by eq. (8). 

2.7. Bivariate GARCH-DCC 

The preceding variants of the GARCH model assume constant correlation in the 

conditional covariance matrix.  Tse and Tusi (2002) developed the dynamic 

conditional correlational GARCH (GARCH-DCC) model by allowing the conditional 

correlation to vary over time.  The DCC model is often the most accurate in terms of 
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forecasting depending on the criteria (Engle 2002).  The bivariate covariance matrix 

of DCC can be expressed as 








































tf

fc

t

t

tf

tc

tftcf

tcftc

t h

h

h

h

hh

hh
H

,

,

,

,

2

,,

,

2

,

0

0

1

1

0

0




, (12) 

where t is the time-varying conditional correlation coefficient of spot and futures 

returns at time t.  The conditional correlation is specified as an autoregressive moving 

average process, 

  121121 )1(   ttt   .   (13) 

Eq. (8) is again used to compute the hedge ratio. 

2.8. ANST-GARCH 

The asymmetric non-linear smooth-transition generalised autoregressive 

conditional heteroscedasticity (ANST-GARCH) model was proposed by Nam et al. 

(2001).  Following Anderson et al. (1999) and Nam et al. (2001), we apply the 

ANST-GARCH model to capture the asymmetric effect on mean and variance 

equations.  The ANST-GARCH model has the following specification, 

1 2 1 1[ ( )]t t t tR F R          

2 2

0 1 1 2 1 0 1 1 2 1 1[ ] ( )t t t t t th a a a h b b b h F           
,
 

where 1|t t t tI v h   , (0,1)iid

tv N  

1

1 1( ) {1 exp[ ( )]}t tF    

    , the parameter, γ governs the speed of transition 

between volatility regimes and 1tI  is known information set at time t .  

The main difference between ANST-GARCH and GARCH models is that the 

former one measures regime-switching behaviour of volatility in the variance using 

the F  function.  A significant non-zero 2  indicates the existence of asymmetric 
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mean reversion; 1 2b b  represents persistence of a shock to the conditional variance.  

When   is nearly 0, 1F  and the ANST-GARCH turns out to a GARCH (1, 1) 

model. 

3.9. MSVARCH 

The regime-switching ARCH (RSVARCH) model combines regime-switching 

volatility with ARCH effects within each regime.  This model extends the switching 

ARCH model of Hamilton and Susmel (1994) by allowing all volatility parameters to 

switch across regimes.  The specification for the conditional variance for the 

RSARCH model is specified (see Hamilton and Susmel 1994 and Turner et al. 1989) 

as 

, tt t t t t Sr h      
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This study assumes that 2tS  .  
0, 1, 1,, ,

t t tS S S   are assumed to be non-negative to 

ensure positive conditional variance, and 
1, 1,t tS S  measures the persistence of 

shocks on conditional variance.  The corresponding Markov Chain transition 

probability is given by 
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probability of being in regime j . 

We estimate cash and futures markets’ returns, respectively, applying ANST-

GARCH and MSVARCH models in the first step, and then we compute the time-

varying hedge ratio as follows: 
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It is hypothesised that time-varying hedge ratios would be different across 

different variants of GARCH model.  Therefore, the next question that arises is: 

which one is more effective?  As stated earlier in this paper we apply all the above 

methods to estimate the hedge ratio, and compare their effectiveness.  We also 

compare the hedging performance of dynamic hedging strategies with traditional 

hedging methods. 

3.  Literature Review 

The search for alternative hedging strategies and modelling the optimal hedge 

ratio has generated considerable research at both theoretical and empirical levels for 

almost four decades.  This section has drawn only from the experience of South Korea 

and recent research to furnish readers with an overview of the state-of-the-art research 

in this area. 

Zanotti et al. (2010) investigate comparative efficacy of hedging performance 

of futures hedge ratios using daily data from electricity markets: Nord Pool, EEX and 

Power Next.  The study employed five alternative econometric models – static OLS, 

dynamic OLS, a constant correlation (CCC) GARCH, and two dynamic time-varying 

correlations models, namely GARCH-DCC and exponential DCC.  Their results 

suggest that the GARCH models attain maximum hedging effectiveness when 

volatility is relatively high.  In the case of Powernext which is the most recent and 

less liquid market, hedging does not lead to variance reduction.  In two other markets, 

future trading reduces the risk of electricity portfolios. 

Hatemi and Roca (2014) investigate the movements of optimal hedge ratio 

using weekly US and UK equity markets data spanning the period January 1999 to 
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September 2009, accounting for two potential structural breaks.  The empirical 

finding shows that there is one negative shift and one positive shift in the optimal 

hedge ratio in the US; while there is only one significant and positive shift in the 

optimal hedge ratio in the UK.  Hatemi and Roca (2014) contend that accounting for 

the structural changes in the hedge ratios tend to avoids frequent rebalancing and 

higher costs, which are associated with time-varying hedge ratios. 

Kenourgios et al. (2008) investigate the hedging effectiveness of S&P 500 

stock futures contract using weekly data spanning the period July 1992 to June 2002.  

The minimum variance hedge ratios (MVRs) are estimated using alternative methods 

– namely OLS, ECM, bivariate GARCH, EGARCH and GARCH-ECM models.  

Their results indicate that the optimal hedge ratio that incorporates nonstationarity, 

long-run equilibrium relationship and short-run dynamics is reliable and useful for 

hedgers.  Furthermore, the error correction model outperforms the conventional OLS, 

the ECM with GARCH errors, and the GARCH and EGARCH (1, 1) models in terms 

of risk reduction.  Their in-sample analysis also suggests that the ECM provides better 

forecast with about 12% reduction in RMSEs. 

Juhl et al. (2012) examine the effect of the hedge horizon on optimal hedge 

size and effectiveness in a cointegrated system using a simple regression method and 

an error correction model (ECM).  The study demonstrated that both specifications 

yield similar results in the case of hedge horizon.  That is, the estimated hedge ratio 

and regression R2 both tend to be small when price changes are measured over short 

intervals but, as the hedge horizon lengthened, both measures will converge toward 

one. 

Kawaller and Koch (2013) provide two recommendations for hedging 

practitioners attempting to qualify for special hedge accounting treatment.  First, they 
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propose an alternative measure to the traditional dollar offset ratio.  In this form, they 

suggest division by the starting value of the hedge item rather than division by the 

change in the value of hedged items.  This measure is less likely to exceed acceptable 

boundary conditions during periods of calm markets.  Second, they propose an 

alternative metric – the R2 analogue – which measures the proportion of total risk that 

would be mitigated if the hedger used the regression slope coefficient on the hedge 

ratio. 

Alexander and Barbosa (2007) conducted an out-of-sample performance test 

using daily observations of seven exchange indices from six equity markets (Brazil, 

France, Hong Kong, Korea, the UK and the USA): CAC 40, FTSE 100, Hang Seng 

Composite, IBOVESPA, KOSPI 200, NASDAQ 100 and S&P 500.  They found no 

evidence that complex econometric models, including GARCH, EWMA and ECM 

can improve the simple ordinary least squares hedge ratio. 

Moon et al. (2009) investigated the relative effectiveness of hedging performance 

based on alternative modelling techniques such as the conventional OLS, GARCH, 

and rolling OLS using the daily data of Korea Securities Dealers Automated 

Quotation (KOSDAQ) markets.  The result shows that the simple rolling OLS is 

superior to all the popular multivariate GARCH models.7 

Copeland and Zhu (2010) compared various dynamic hedge ratios with the 

standard OLS hedge ratios for six markets: Australia, Germany, Japan, Korea, the UK 

and the USA.  They found no clear benefits of using more sophisticated hedging 

models.  Copeland and Zhu (2010) contend that complex econometric models 

including GARCH introduce too much noise to provide a cost-effective hedge. 

Lai et al. (2009) have estimated optimal hedge ratios using daily data over the 

period January 1998 to June 2005 for five East Asian markets: Hong Kong, Japan, 
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Korea, Singapore and Taiwan.8 Their results show that hedge ratios constructed from 

a bivariate Copula-threshold-GARCH model are the best performing in variance 

reduction for all markets except Japan and Singapore. 

Sim and Zurbruegg (2001a) investigated the impact of the Asian financial market 

crisis on the hedging effectiveness of the South Korean index futures using daily data 

over the period May 1996 to March 1999 within the framework of a bivariate error-

correction GARCH model.  Their results indicate a decline in the persistence of 

conditional volatility within the market prices after the crisis.  As a result, the 

comparative performance of a constant hedge ratio vis-a-vis the time-varying hedge 

ratio improved after the Asian financial crisis. 

The general impression from the foregoing discussion is that the choice of optimal 

hedge ratio and the effectiveness of dynamic hedging is an issue of ongoing research 

to the financial practitioners and researchers.  Given the conflicting evidence of the 

relative effectiveness of dynamic hedging, we have re-examined the issue using eight 

variants of GARCH model to offer a more parsimonious time-series approach using a 

longer time span and more recent data from the Korean exchange. 

4. Data and Diagnostics 

The models are estimated using daily data spanning January 2000 to August 2017 

on stock indices and their counterpart futures contracts from South Korea.  Empirical 

evaluation of hedging performance using daily data has tremendous value for money 

managers, who adjust their portfolios as often as daily (Figlewski 1986).  The KOSPI 

200 index consists of 200 big companies of the stock market division of the Korea 

Exchange.  The KOSPI is calculated as current capitalisation (at the time of 

comparison) divided by the base market capitalisation.  KOSPI 200 is important 

because it is listed on futures and option markets and is one of the most actively 
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traded indices in the world.9,10  All futures price indices are continuous series.11  The 

data are collected from DATASTREAM International.  To avoid the sample effect 

and overlapping issue, two out-of-sample periods are considered, including a one-year 

period (2015) and a two-year period (2016 to 2017).  All models are estimated for the 

periods 2000-2014 and 2000-2015, and the estimated parameters are applied 

recursively for forecasting hedge ratios over the horizons of 2015 and 2016-2017. 

Descriptive statistics relating to the distribution of return indices are presented in 

Table 1.  These statistics are mean, standard deviation, variance, a measure of 

skewness, a measure of excess kurtosis (normal value is 3), the Jarque-Bera statistics, 

and unit root test results of cash and future price indices.  The table also presents 

higher order autocorrelation Q, and ARCH effects in the returns indices series.  The 

values of the skewness statistics indicate that the density function is negatively 

skewed for future return indices and positively skewed for the cash return indices.  

The values of the excess kurtosis statistic are greater than 2, which suggests that the 

density function has a fat tail.  The values of the Jarque-Bera statistic are high, 

suggesting that the return indices are not normally distributed.  Judged by the 

skewness, excess kurtosis and Jarque-Bera statistics, it can be inferred that the return 

indices exhibit 'fat tails' in both markets.  The data series have also been checked for 

stationarity using the Elliott-Rothenberg-Stock Dickey-Fuller generalised least 

squares (DF-GLS) unit root test.  The DF-GLS test results indicate that each of the 

return indices series has no unit root.  Tests for autocorrelation in the first moments 

using the Q(20) statistic indicate that none is present in any of the indices.  Finally, 

tests for ARCH using Engle's LM statistic generally support the hypothesis of time-

varying variances. 

5. Empirical Results 
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In this section we formally evaluate the effectiveness of conventional and time-

varying regression results of cash returns and future returns (eq. (2) by using the 

Cochrane-Orcutt method.  Here, daily spot changes in the index are regressed on daily 

changes in the nearby index futures contract.  Table 2 presents the results.  Parameter 

estimates of the future returns in eq. (2) represent the constant minimum variance 

hedge ratio (t-stats in parentheses).  The coefficient attached to the future returns 

variable is positive and highly significant.  The hedge ratio is found to be .9039.  This 

statistic indicates that a substantial portion of variability in the cash market is hedged 

using the futures instruments. 

The standard GARCH, GARCH-BEKK, GARCH-DCC, ANST-GARCH and 

MSVARCH models are estimated without the error correction term in the mean 

equation.  GARCH-ECM and GARCH-GJR incorporate the error correction term in 

the mean equation whereas the GARCH-X model incorporates the error correction 

term both in mean and variance equations.  The results are reported in Table 3.  For 

reasons of economy and brevity, we only report and discuss parameters that are of 

interest to us.12  The ARCH coefficients (A11 and A22) are significant.  These 

parameters indicate the amount of influence that past residuals have on current 

residuals.  The GARCH coefficients (B11 and B22) represent the influence of past 

volatility on future volatility.  The coefficients are positive and significant in all cases 

except for GARCH-GJR which produces negative effect on future volatility.  The 

parameters representing the error correction term (δ1) in the GARCH-GJR and 

GARCH-X models for cash market are negative, large and economically significant 

while they are small and positive for the GARCH-ECM model, at the conventional 

level of significance.  The size of coefficients ranges from -0.1584 (GARCH-X) to -

0.1545 (GARCH-GJR).  The absolute sizes of the parameters suggest that day-to-day 
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deviations really do have a significant impact on the absolute levels of the cash 

indices.  The error correction coefficient in the mean equation of futures return is 

positive and statistically significant in the cases of all three GARCH models of South 

Korea.13  Alternatively, the result may be interpreted as when an increase in short-run 

deviation lowers the cash returns but increases the future returns.  This is a 

distinguishing feature of the emerging markets as opposed to developed and mature 

markets where day-to-day deviations do not have much of an impact on the absolute 

levels of the cash and futures returns as such deviations are arbitraged anyway.  The 

error correction coefficients in the conditional variance equations are positive and 

significant in cases of both cash and futures returns.  This suggests that the further the 

series deviate from each other in the short run, the harder they are to predict. 

In Table 4, we present all parameter estimates of cash and futures markets’ returns 

from ANST-GARCH and MSVARCH models.  For the ANST-GARCH model all 

parameter estimates are significant.  The parameter, 02  and is significant which 

indicates that mean reversion is asymmetric for both markets.  The return is 

negatively correlated ( 01  ) under a shock for cash return, and return serial 

correlation is 0.03589 ( 021  ) under a positive shock.  Cash returns are 

positively correlated under a prior positive return shock, and the positive return shock 

is persistent.  In other words, the markets over-react to bad news while under-reacting 

to good news.  Compared to the futures market, the speed of mean reversion is slower 

in the cash market.  Turning to the MSVARCH model, based on the two-state 

assumption, all parameter estimates are significant at the 1% level, which indicates 

that ARCH effects are significant for both cash and futures markets.  The 

unconditional probability ranges from 0.0393 to 0.9607.  The MSVARCH model 
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displays strong persistence; the expected durations are 123 and 38 trading days for the 

cash market, while those for the futures markets are even higher. 

We further test for stationarity of the estimated hedge ratios.  Results are not 

reported here to save space.  The unit test results indicate that the dynamic hedge 

ratios are mean-reverting, signifying that the effect of a shock to the hedge ratios 

would eventually die out.  We also find that the hedge ratios follow the AR(1) process 

and the result shows that hedge ratios associated with all variants of GARCH models 

are positively serially correlated, which suggests that if a hedge ratio is large this 

week, it is expected to remain large next week in the absence of a new shock (Kroner 

and Sultan 1993). 

In-sample Variance Reduction 

There are four hedging strategies for within-sample and out-of-sample periods 

hedge ratio comparison –  no hedge, naive hedge, the conventional minimum variance 

hedge, and conditional hedge.  Within the conditional hedge the paper applies eight 

different GARCH models to estimate eight different hedge ratios for each market.  In 

the case of no hedge, the investor takes no position in the futures markets to offset 

market risk in the cash market.  In the case of naive hedge, the hedger takes a position 

in both markets by the same amount but in the opposite direction.  The conventional 

minimum variance hedge ratio is estimated using the OLS.  Finally, the conditional 

hedge is based on the time-varying hedge ratios obtained using the different GARCH 

modelling techniques. 

Comparison between the effectiveness of different hedge ratios is drawn by 

constructing portfolios implied by the computed ratios, and the change in the variance 

of these portfolios indicates the hedging effectiveness of the hedge ratios.  The 

portfolios are constructed as (Rc
t - ht

*Rf
t), where Rc

t is the log difference of the cash 
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(spot) prices, Rf
t is the log difference of the futures prices, and ht

* is the estimated 

optimal hedge ratio.14  The variance of these constructed portfolios is estimated and 

compared to represent portfolio risk.  We define variance reduction as 

Var(U) – Var(H) 

       Var(U), 

where Var (U) is the variance of a benchmark portfolio and Var (H) signifies variance 

of the minimum variance hedged portfolio. 

First, we examine the within-sample risk reduction performance of these 

models. The results are reported in the second and fifth columns of Table 5.  The 

GARCH-GJR variant exhibits the lowest risk reduction among dynamic hedging 

models.  In contrast, all variants of dynamic hedging models fail to outperform the 

traditional OLS method.  An investor would actually increase the risk of their 

portfolio using the conditional hedging model in the case of Korea.  This result is 

consistent with Alexander and Barbosa (2007), Moon et al. (2009), and Copeland and 

Zhu (2010). 

We compared a percentage in-sample variance reduction of the conventional 

OLS model with a given benchmark model.  There is a modest improvement in the 

OLS hedge compared with the naive hedge and different variants of GARCH models 

except the ANST-GARCH.  The worst performance is in the case of ANST-GARCH 

where the conditional models fail quite miserably.  The potential risk reduction of 

764.3% of traditional OLS hedging method compared with no hedge strategies is 

substantial in Korea.  Given the absolute lack of dominance of the conditional 

hedging model over the traditional method, an investor needs to carefully evaluate all 

possible hedging methods to identify the most appropriate hedging strategies that fit 

the data and the investor’s utility preference schedule. 
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Out-of-sample Variance Reduction 

Baillie and Myers (1991) contend that the more reliable measure of hedging 

effectiveness is indicated by a comparison of hedged portfolio variance performance 

using hedge ratios in the out-of-sample periods estimated by different methods.  

Therefore, we compare the hedging effectiveness of the different methods during two 

different non-overlapping out-of-sample time periods: from January 2015 to 

December 2015 (one year), and from January 2016 to August 2017 (nearly two 

years).  Two different lengths of out-of-sample periods are applied to check whether 

changing the length has any significant effect on the hedging effectiveness of the 

hedge ratios.  Two different lengths are also applied to avoid the sampling effect and 

overlapping effect.  All versions of the GARCH are estimated for the period 2000 to 

2014 first, and then the estimated parameters are applied to recursively forecast hedge 

ratios over the one-year out-of-sample time period.  Similarly the GARCH models are 

estimated over the period 2000 to 2015 and the estimated parameters are used to 

forecast hedge ratios over the longer out-of-sample time period. 

The third and sixth columns of Table 4 show the variance of the shorter out-

of-sample and percentage change in variance, respectively.  Among the models, OLS 

performs best. 

The fourth and seventh columns of Table 5 demonstrate the variance of the 

longer out-of-sample and percentage change in variance, respectively.  The results 

show that the out-of-sample portfolio based on OLS hedge outperforms all principal 

variants of GARCH models.  The standard GARCH outperforms other variants of 

GARCH models and ANST-GARCH does worst within the GARCH.  Changing the 

length of the out-of-sample period does not affect the performance of the hedge ratios 

much, over the different time horizons. 
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6. Evaluation of Hedging Performance using Utility Functions 

The reductions in the variance are quite small in the large majority of in-sample 

tests, but this is expected given that daily data have been applied.  As Kroner and 

Sultan (1993) contend, small size improvements in portfolio risk do not imply that the 

economic viability of the proposed strategy is questionable.  The GARCH-based 

portfolio should be applied if it makes the investor’s utility greater than the reduction 

in the return caused by the transaction cost incurred.  Therefore, we have investigated 

the economic significance of the time-varying hedge ratio within the utilitarian 

framework using two distinct approaches – i.e. (i) the mean-variance utility function, 

and (ii) the exponential utility function. 

The mean-variance utility function is augmented by the transaction cost 

)var()()( ***

fttctftctfttct RhRQRhRERhREU    ,  (9) 

where Q signifies the transaction cost to attenuate the utility level.  Following Kroner 

and Sultan (1993), we assume the expected return to the hedged portfolio to be zero 

and the value of the coefficient of risk tolerance (ψ) to be 4.  Therefore, the average 

utility from hedging in a given trading day is ).var(4 *
fttct RhRQ    In this paper 

we assume a typical round-trip cost of 0.00072% based on the KOSTAR future 

contract value.15 The results are reported in Table 6.  Evaluation of the mean-variance 

utility function (MV) shows that the OLS-based hedging strategy yields maximum 

expected utility.  The entries underneath the column ∆MV demonstrate the utility 

gains in the GARCH class models with respect to the OLS-based hedging strategy.  

For example, the utility loss for the GARCH-BEKK model with respect to OLS in 

South Korea is 2.03%. 
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An alternative measure of hedging performance in recent research has 

underscored the role of skewness and kurtosis of portfolio returns.16  As Alexander 

and Barbosa (2008) contend, the hedging performance evaluation based on the 

proportional variance reduction does not incorporate the effect of variance reduction 

on skewness and kurtosis.  The minimum variance hedged portfolio is designed to 

have very low return volatility, but a high kurtosis indicates that the hedge can be 

spectacularly wrong on just a few days and a negative skewness indicates that it 

would be losing rather than making money. 

Therefore, the second measure of hedging effectiveness which accounts for 

both skewness and kurtosis is derived from the following certainty equivalent (CE) 

exponential utility function17 

 )/exp()(  wwU  ,      (10) 

where w signifies wealth.  The exponential function has the property, U(w) = 

E[U(w)].  Using Taylor expansion of U(w) around the mean value and taking 

expectation operator up to the fourth term, and after suitable transformation, the 

certainty equivalent utility function may be approximated as 

 
32

2

2462 










 CE  ,     (11) 

where the third and fourth moments ])[( 3  wE  and ])[( 4  wE  signify 

skewness and kurtosis, respectively.  Eq. (11) indicates that when ψ > 0, there is an 

aversion to risk associated with increasing variance, negative skewness and increasing 

kurtosis. 

The results are reported in Table 6.  The entries underneath column CE show 

certainty equivalent utility associated with different hedging strategies.  The bold 

numbers indicate the maximum (minimum) (dis)utility.  Results show that the ANST-



24 
 

GARCH hedge yields best results for Korea, followed by the GARCH-DCC hedge.  

However, this method does not consider the issues of transaction cost and portfolio 

rebalancing. 

7. Hedging Effectiveness Minimum Capital Risk Requirement 

Given that hedge ratios of various portfolios obtained from GARCH models are 

predictable, fund managers always prefer a portfolio with a lower financial capital.  

One popular approach is the calculation of Value at Risk (VaR) using the in-house 

economic model to estimate the Minimum Capital Risk Requirements (MCRR).  In 

this section, we are evaluate hedging effectiveness by estimating and comparing 

Minimum Capital Risk Requirement (MCRR) for portfolio returns obtained under 

alternative hedging models. 

To obtain reliable VaR estimates and for computational ease, we have shortened 

our sample period using 10 years of observations.  For example, VaR estimates based 

on historical simulation calculate 5% worst-case scenarios using 500 observations; the 

Monte Carlo simulation requires 10,000 real and synthetic observations for the 

calculation of down-side risks.  Increasing the number of observations by going back 

further in time is not desirable to obtain precise estimates of MCRR.  Therefore, we 

truncate the sample period from January 2000 to December 2009.  To reduce the 

bulkiness of the results, we calculate the MCRR for the portfolio returns based on the 

estimated hedge ratios using standard GARCH, GARCH-BEKK, GARCH-ECM, 

GARCH-GJR and GARCH-X models. 

 We calculate the MCRR for 1-day, 10-day, 20-day, 30-day and 60-day 

investment horizons, by simulating densities of portfolio returns using Efron’s (1982) 

bootstrapping methodology which is based on a multivariate GARCH (1, 1) model.18 

The Monte Carlo simulation procedure used 10,000 simulated paths of portfolio 
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returns based on a GARCH (1, 1) model to generate an empirical distribution of the 

maximum loss. 

 Table 7 presents the estimates of the MCRR obtained from the condition of 

alternative hedging models.  The top panel of Table 7A presents MCRR for a short 

hedge (long cash, short futures) and the lower panel of the Table A shows the results 

for a long hedge (long futures, short cash).  For comparison purposes, we have also 

calculated the MCRR estimates from the comparable S&P 500 indices’ data.  Table 

6B presents the estimated MCRR of S&P 500.  The results are reported in terms of 

percentage returns.  The results show that for short hedge, there is a modest gain in 

using MCRR estimates based on the GARCH hedging models in the KOSPI 200 

compared to the unhedged position.  For the short hedge, BARCH-BEKK performs 

better among the GARCH class of models in most cases.  GARCH-X performs well at 

the one-day investment horizon.  For the long hedge, the standard GARCH 

outperforms other variants of GARCH models at the short investment horizon, while 

GARCH-ECM and GARCH-GJR outperform their competing models at 30-day and 

60-day horizons, respectively.  The short hedge position appears to require more 

MCRR than comparable the long hedge position does over out-of-sample investment 

horizons.  When we compare these results with those in Table 7B it is evident that, 

compared to the position in S&P 500, the position in KOSPI 200 requires far more 

capital under both short hedge and long hedge conditions.  These comparative results 

suggest that the position in a KOSPI 200 contract is more risky than the S&P 500 

position when compared with higher VaR results.  Therefore, the benefit of using 

GARCH-based conditional models to calculate the MCRR is more marginal in the 

case of KOSPI 200 than in the case of S&P 500. 

8. Summary, Implications and Conclusion 
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In this paper, we evaluate the effectiveness of the conditional hedging model 

in reducing the portfolio risk of an investor holding both cash stock and futures 

market positions using daily data and eight variants of the GARCH model – i.e. 

standard bivariate GARCH, GARCH-BEKK, GARCH-ECM, GARCH-X, GARCH-

GJR, GARCH-DCC, ANST-GARCH and MSVARCH.  The effectiveness of the 

hedge ratio is investigated by comparing the within-sample period (January 2000 to 

August 2017) and out-of-sample period performance of the different hedge ratios for 

two periods, January 2016-August 2017 and January 2015-December 2015 (one year).  

The two different lengths of out-of-sample periods are applied to investigate the effect 

of changing the length on the hedging effectiveness of the hedge ratios.  The two 

different periods are also applied to avoid sample effect and overlapping issues. 

 Results from within-sample show that, overall, all variants of dynamic 

hedging models fail to outperform the traditional OLS method.  Both shorter and 

longer out-of-sample period results show that the OLS hedge outperforms all 

principal variants of GARCH models.  The paper further investigates the economic 

significance of the time-varying hedge ratio within the utilitarian framework using 

two distinct approaches – i.e. (i) the mean-variance utility function, and (ii) the 

exponential utility function.  The OLS-based hedging strategy yields maximum 

expected utility compared to dynamic hedging models in the mean-variance utility 

framework.  Results based on exponential utility function suggest that the ANST-

GARCH-based hedging model yields maximum utility for portfolio investors.  

Finally, we have estimated the Value at Risk of portfolio positions based on various 

hedging models using Bootstrapping techniques.  The result shows that the benefit of 

using GARCH-based conditional models to calculate the MCRR is very modest in the 

case of KOSPI 200 compared to the case of S&P 500. 
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In the post-GARCH era, the issue of dynamic hedging received much 

popularity and acceptance due to the ability of the GARCH models to account for the 

co(variance) of portfolio and futures returns.  However, the modelling technique 

requires computational elegance and a high level of quantitative sophistication for an 

informed investor, despite the fact that there are critics of GARCH-based dynamic 

hedging models.  As Fink et al. (2005) contend, GARCH models can provide 

significant numerical optimisation challenges, most notably due to the joint difficulty 

of estimating a large number of parameters and a likelihood function which is not 

globally concave.  To alleviate the maximisation problem in the nonlinear estimation 

routine, the model requires a wide range of starting values.  Furthermore, hedging 

strategies based on GARCH models require frequent rebalancing of the portfolio 

positions.  The benefit of too frequent rebalancing tends to be offset by transaction 

costs.19 Copeland and Zhu (2010) contend that complex econometric models 

including GARCH introduce too much noise to provide a cost-effective hedge.  The 

testable implications of our results and previous research based on the stock futures 

data of Korea, together with the critical evaluation, suggest that investors would be 

better served by simply using the OLS hedge ratios and periodically updating the 

resulting hedge ratios using some simple and intuitively reasonable updating scheme, 

such as rolling-window hedge.20  Our results also imply that the comparative hedging 

performance based on the hedge ratios obtained from different econometric models 

applied depends upon the market under study and the length of forecasting horizon. 

 

Notes 

1. For example, see Working (1953), .Johnson (1960), Silber (1985) and Fortune (1989).  

2. However, studies of Sim and Zurbruegg (2001, Alexander and Barbosa (2007), Lai et al. 

(2009), Moon et al. (2009) and Hasan and Choudhry (2013) ) are exceptions. 

3. For a discussion, see Laurent et al. (2012). 
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4. The OLS estimation of the hedge ratio from eq. (2) is based on the assumption of time-

invariant asset distributions suggested by Ederington (1979) and Anderson and Danthine 

(1980). 

5. This section has drawn extensively from Hasan and Choudhry (2013). 

6. There is more than one GARCH model available that is able to capture the asymmetric effect 

in volatility.  According to Engle and Ng (1993), the Glosten et al. (1993) model is the best at 

parsimoniously capturing this asymmetric effect. 

7. Moon et al. (2009) estimated diagonal VEC GARCH, matrix diagonal GARCH, constant 

conditional correlation GARCH, BEKK GARCH, and principal component GARCH model. 

8. Lai et al. (2009) used the daily data of the Korea Stock Exchange Composite Price Index 

(KORCOMP) and the future price indices of KOSPI 200. 

9. On the Korea Stock Exchange, the Korea Stock Price Index 200 future was launched in May 

1996 and its trading contracts reached a volume of nearly 34 million by 2005 with a trading 

value of nearly 18 billion USD.  Alexander and Barbosa (2007) noted that the Korean Stock 

Exchange was the fifth-largest exchange for trading of index futures contracts in 2005 after 

the CME, Eurex, Euronext and the National Stock Exchange of India. 

10. The study of Alexander and Barbosa (2007) used KOSPI 200 data; Moon et al. (2009) utilised 

Korea Securities Automated Quotation (KOSDAQ) data while Lai et al. (2009) used the daily 

data of Korea Stock Exchange Composite Price Index (KORCOMP) and the future price 

indices of KOSPI 200 in their study. 

11. The continuous series is a perpetual series of futures prices.  It starts at the nearest contract 

month, which forms the first values for the continuous series, either until the contract reaches 

its expiry date or until the first business day of the actual contract month. At this point, the 

next trading contract month is taken. 

12. Many diagnostic tests are not reported or discussed to conserve space.  However, they are 

available upon request. 

13. The result is quite plausible, pointing to the notion that if the error correction term is 

statistically negative and significant in one equation, then the term would be positive in 

another equation in a bivariate model. 

14. In the case of the constant ratio the time subscript does not exist. 

15. Moon et al. (2009) reported that a typical round-trip cost is around 0.00072% of KOSTAR 

future contract value in the Korean market.  Yang and Lai (2009) noted that the transaction 

cost ranges between 0.005% and 0.01% in the major global exchanges which are trading 

financial contracts of DJIA, S&P500,, NASDAQ100, FTSE100, CAC40, DAX30 and 

Nikkei225.  Rossi and Zucca (2002) noted a transaction cost of 0.0015% in the Italian bond 

market. 

16. For example, see Cremers et al. (2004), Harvey et al. (2004) and Alexander and Barbosa 

(2008). 

17. This part is drawn from Alexander and Barbosa (2008). 

18. Interested readers are referred to Brooks et al. (2002), and Jorion (2007) for a detailed 

discussion. 

19. For example, see Sim and Zurbruegg (2001b) and Kofman and McGlenchy (2005) for a 

discussion. 

20. The study of Moon et al. (2009) shows that the simple rolling OLS is superior to all the 

popular multivariate GARCH models. 
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Table 1.  Descriptive statistics of stock spot and futures indices returns 

Statistics            Korea 

 Cash Return Future Return 

Mean .000192 .000186 

Variance .000224 .000270 

Std. Dev. .015623 .016436 

Skewness -.48056 -.370422 

Kurtosis 6.42395 5.48021 

Jarque-Bera 8023.29 5815.59 

Stationarity: t -13.210a -20.509a 

           t          t -26.461a -29.631a 

ARCH(1) 131.55 113.68 

Q(20) 45.390 52.870 

Note: t  and t are the Elliot-Rothenberg-Stock Dickey-Fuller 

generalised least squares (DF-GLS) unit root test statistics with 

allowance for a constant and a trend, respectively.  5% critical values 

of t  and t are -1.948 and -3.190 (see Elliot-Rothenberg-Stock 1996, 

Table 1). 

 

 

Table 2.  Bivariate regression results of the constant minimum hedge ratio model 

Country Constant Futures returns Diagnostic F-test 

Korea -.0000239 (0.3337) 0.9039* (207.53) R2 = .904  DW= 2.758 43071.0 
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Table 3.  Parameter estimates of conditional hedging model of South Korea 

Dependent 

Variable 

GARCH GARCH-ECM GARCH-X GARCH-

BEKK 

GARCH-GJR  GARCH-DCC 

1  8.52e-04a 

(3.40110) 

8.80e-04a  

(4.9373) 

7.19e-04a 

(3.7318) 

0.00072a 

(4.0239) 

-0.00077a 

(-0.9215) 

0.00088a 

(4.7178) 

1   8.58e-04a 

(4.7028) 

-0.15841a 

(-2.4553) 

 -0.1545a 

(1.0204) 

 

2  
8.56e-04a 

(3.3830) 

-0.18815a 

(-3.7958) 

7.07e-04a 

(3.5750) 

0.00071a 

(3.8913) 

0.00072a 

(3.4219) 

0.00088 a 

(4.6024) 

2  
 0.17158a 

(3.4120) 

0.23200a 

(3.5343) 

 0.18586a 

(22.776) 

 

C11 6.08e-06a 

(5.9458) 

7.66e-06a 

(9.0341) 

4.71e-06a 

(9.2329) 

0.00114a 

(4.6162) 

2.67e-04a 

(43.994) 

2.36e-06a 

(6.1163) 

A11 0.08251a 

(7.7332) 

0.07255a 

(13.167) 

0.07319a 

(18.376) 

0.16501a 

(3.5503) 

0.00643a 

(7.7089) 

0.08152a 

(15.406) 

B11 0.89684a 

(133.52) 

0.8981a 

(144.75) 

0.87924a 

(153.35) 

1.16134a 

(50.951) 

-0.02611a 

(-29.218) 

0.91552a 

(177.28) 

D11   0.60072a 

(9.5028) 

 0.00556a 

(2.8157) 

0.03532a 

(7.2070) 

C21 5.76e-06a 

(5.9076) 

7.41e-06a 

(9.0893) 

4.49e-06a 

(9.1054) 

0.00056b 

(2.1282) 

3.41e-04a 

(51.080) 

 

A12 0.07952a 

(7.4838) 

0.07056a 

(13.312) 

0.07008a 

(18.124) 

-0.12104 a 

(-2.6017) 

0.00325a 

(7.9915) 

 

A21    0.10537b 

(2.2897) 

  

B12 0.90045a 

(7.4838) 

0.90092a 

(150.41) 

0.88227a 

(156.47) 

0.22749a 

(9.3570) 

-0.29921a 

(-14.765) 

 

B21    -0.1990a 

(-8.6133) 

  

D21   0.60773a 

(9.5723) 

   

C22 5.73e-06a 

(5.6039) 

7.45e-06a 

(8.8712) 

4.48e-06a 

(9.0766) 

1.70e-08 

(4.8e-05) 

3.32e-05 a 

(12.521) 

2.42e-06a 

(6.6834) 

A22 0.08002a 

(7.5430) 

0.07137a 

(13.214) 

0.06983a 

(18.063) 

0.37806a 

(8.2707) 

0.00290a 

(7.4675) 

0.08067a 

(16.617) 

B22 0.90186a 

(41.955) 

0.90191a 

(147.85) 

0.88480a 

(163.37) 

0.75262a 

(31.997) 

0.8768 

(101.41) 

0.91650a 

(197.70) 

D22   0.60988a 

(9.3475) 

0.00114a 

(4.6162) 

0.00242a 

(2.7084) 

0.94694a 

(128.23) 

Ρ 0.95091      

L 31080.7 31934.2 31553.4 31201.436 31620.2 31248.0 

Φ 0.86967 0.89632 0.87033 0.92595 0.84582 0.90452 

Note: a, b and c imply significance at 1%, 5% and 10% levels, respectively; figures in parentheses 

underneath the coefficients are t-statistics.  ρ is the within-sample correlation coefficient between cash 

and futures returns.  Log-L is the log-likelihood and φ signifies the first-order serial correlation 

coefficient in the hedge ratio derived from an AR(1) model. 
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Table 4.  Parameter estimates from ANST-GARCH and MSVARCH models of conditional 

hedging model of South Korea 

Dependent 

Variable 

ANST-GARCH ANST-GARCH MSVARCH MSVARCH 

 
cR  

fR  cR  
fR  

  0.03927a 

(0.0000) 

0.04497 a 

(0.0000) 

0.05511a 

(2.8193) 

0.04598 b 

(2.0813) 

1  -0.02359a 

 (0.0008) 

0.06340 a  

(0.0000) 

  

2  
 0.05948a 

 (0.0002) 

0.02647 a 

(0.0000) 

  

     

0a ( 0 ) 
0.00003a 

(243.93) 

0.00009a 

(1320.18) 

0.98411a 

(59.799)  

1.38643a 

(64.239) 

1a ( 1 ) 
0.02013a 

(11.207) 

-.000003 a 

(-20.1956) 

0.32133a 

(11.152) 

0.29975a  

(10.952) 

2a ( 1 ) 
0.06049a 

(9.44036) 

0.17392 a 

(0.17392) 

0.78928a 

(59.799) 

0.43621a   

(64.239) 

0b  -0.00005a 

(-1185.3) 

-0.00008 a 

(100.564) 

  

1b  0.06076a 

(12.597) 

0.000003 a 

(16.0172) 

  

2b  0.04983a 

(3.7776) 

-0.21947 a 

(-1122.60) 

  

  12.7208a 

(13.052) 

14.1895 a 

(169.517) 

  

p    0.97712 a  

(22.181)   

0.96655 a 

(16.022) 
q    0.94382a 

(17.590) 

0.18226 a 

(12.286) 

     

     

ρ 0.95091    

L 9604.2475 5474.4020 -8332.0422 -7783.0395 

φ -0.01194  0.833523  

1    
0.2894 0.0393 

2    
0.7106 0.9607 

1d    
123.14 353.99 

2d    
38.82 275.37 

Note: a, b and c imply significance at 1%, 5% and 10% levels, respectively; figures in parentheses 

underneath the coefficients are t-statistics.  ρ is the within-sample correlation coefficient between 

cash and futures returns.  Log-L is the log-likelihood and φ signifies the first-order serial 

correlation coefficient in the hedge ratio derived from an AR(1) model. 
j is the unconditional 

probability of being in regime j  and 
jd  is the half-life or expected duration of the j-th state. 
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Table 5.  Portfolio variance reduction 

 
Variance Variance reduction 

 In-sample Out-of-sample 

2015 

Out-of-sample 

2016-2017 

In-

sample(%) 

Out-of-sample 

2015 (%) 

Out-of-sample 

2016-2017 

(%) 

No Hedge .006102 .004500 .006087 764.3 667.9 767.1 

Naïve Hedge .000747 .000610 .000725 5.807 4.095 3.276 

OLS .000706 .000586 .000702 - - - 

GARCH Hedge .000718 .000588 .000712 1.699 0.341 1.424 

GARCH-BEKK .000724 .000598 .000723 2.549 2.047 2.991 

GARCH-GJR .000708 .000588 .000774 0.283 0.341 10.25 

GARCH-ECM .000718 .000592 .000706 1.699 1.023 0.569 

 GARCH-X .000715 .000593 .000714 1.274 1.194 1.709 

GARCH-DCC .000721 .000607 .000720 2.124 3.583 2.564 

ANST-GARCH .005097 .002441 .004475  621.9 316.5 537.4 

MSVARCH .000766 .000599 .000753 8.498 2.2184 7.264 

Note: The fifth, sixth and seventh columns show percentage in-sample variance reductions of OLS 

hedge compared to other hedging models.  

 

Table 6.In-sample hedging performance using utility function 

South Korea Mean 

Return 

Volatility 

 

Skewness Kurtosis  MV ∆MV CE 

Unhedged .000958 .006102 -.480556a 6.423949a -0.02512  -0.008992 

Naive .000030 .000747 -.126914a 11.39052a -0.00370  -0.015411 

OLS .000024 .000706 -.160821a 12.05113a -0.00354  -0.009585 

BGARCH -.000068 .000718 -.169256 1.089971a -0.00359 1.35% -0.002630 

GARCHBEKK -.000106 .000724 -.118941       6.103481a -0.00361 2.03% -0.005409 

GARCH-GJR .000121 .000708 -.199432c 6.309633a -0.00355 0.02% -0061527 

GARCH-ECM 

 

-.000060 .000718 -.129846       6.230429a -0.00359 1.35% -0.006334 

GARCH-X .000002 .000715 -.135433 6.299222a -0.00358 1.01% -0055916 

GARCH-DCC -.000065 .000721 -.117880 6.164275a -0.00360 1.69% -0.005396 

ANST-GARCH .004535 .005097 -.170801 2.102226a -0.02110 475.93 0.0007512 

MSVARCH .000031 .000766 -.224045b 5.399300a -0.00378 6.89 -0.003812 
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Table-7A.  MCRR Estimates-GARCH Hedging Models for Korea 

 

Days 

    

Unhedged Naïve Hedge GARCH GARH-ECM GARCH-X GARCH-BEKK GARCH-GJR 

A. Long cash and short 

futures: 

       

1 0.075635 0.056136 0.048729 0.058819 0.048169 0.056367 0.055876 

10 0.239415 0.208204 0.224966 0.226590 0.232154 0.214631 0.220946 

20 0.351449 0.307227 0.334677 0.328243 0.317796 0.300063 0.320870 

30 0.432825 0.400145 0.402204 0.404677 0.393287 0.389864 0.413343 

60 0.628453 0.564234 0.584424 0.585854 0.615720 0.553359 0.586102 

B. Short cash and long 

futures: 

       

1 0.027731 0.070933 0.024168 0.024614 0.025477 0.024262 0.025129 

10 0.081347 0.221984 0.071695 0.075153 0.073658 0.073614 0.072380 

20 0.114920 0.311698 0.102648 0.106101 0.106098 0.105683 0.103278 

30 0.147357 0.387505 0.126995 0.123839 0.130989 0.132868 0.126748 

60 0.211694 0.570341 0.185841 0.187921 0.191762 0.191656 0.179441 
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Table-7B.  MCRR Estimates-GARCH Hedging Models for S&P500 

 

Days 

    

Unhedged Naïve Hedge GARCH GARH-ECM GARCH-X GARCH-

BEKK 

GARCH-GJR 

A. Long cash and short 

futures: 

       

1 0.016121 0.005997 0.00375 .003094 .003813 0.00305 .003485 

10 0.049140 0.012559 0.01267 .010474 .012311 0.01002 .011635 

20 0.069428 0.017497 0.01761 .015568 .016808 0.01445 .016137 

30 0.087110 0.020916 0.02106 .018259 .020674 0.01827 .020039 

60 0.128711 0.030758 0.03051 .027979 .029369 0.02758 .028397 

B. Short cash and long 

futures: 

       

1 0.019131 0.004082 0.00416 .00402 .00409 0.003691 .00404 

10 0.057588 0.012341 0.21231 .01209 .01245 0.011617 .01297 

20 0.083857 0.017751 0.0179 .01643 .01766 0.016770 .018207 

30 0.101431 0.022043 0.02181 .02189 .02206 0.020577 .02206 

60 0.146370 0.030871 .03112 .03108 .03065 0.029314 .03141 

 

 

 


