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Abstract 

This paper empirically estimates and forecasts the hedge ratios of three emerging European and one 

developed stock futures markets by means of seven different versions of GARCH model.  The seven 

GARCH models applied are bivariate GARCH, GARCH-ECM, BEKK GARCH, GARCH-DCC, 

GARCH-X, GARCH-GJR and GARCH-JUMP.  Daily data during January 2000-July 2014 from 

Greece, Hungary, Poland and the UK are applied.  Forecast errors based on these four stock futures 

portfolio return forecasts (based on forecasted hedge ratios) are employed to evaluate out-of-sample 

forecasting ability of the seven GARCH models.  The comparison is done by means of Model 

Confidence Set (MCS) and modified Diebold-Mariano tests.  Forecasts are conducted over two non-

overlapping out-of-sample periods, a two-year period and a one-year period.  MCS results indicate that 

the GARCH model provides the most accurate forecasts in five cases, while each of the GARCH-ECM, 

GARCH-X and GARCH-GJR models constitutes model confidence set in four cases at a reasonable 

confidence level.  Models selection based on modified Diebold-Mariano tests further corroborate 

results of the MCS tests.  Differences between the portfolio returns also indicate the high forecasting 

ability of GARCH-BEKK and GARCH-GJR models. 
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1. Introduction 

Since the seminal research of Working (1953), Johnson (1960) and Ederington (1979), 

there has been a significant level of interest in the modelling and forecasting of the optimal 

hedge ratios (OHR) and alternative hedging strategies applied to the commodity and financial 

futures.1  It is well known that the principal functions of futures markets are price discovery, 

hedging, speculation, and risk-sharing.  Hedgers use these markets as a means to avoid the 

risk associated with adverse price change in the related cash markets.  Careful selection of 

derivatives’ contracts is conditional upon the accuracy of OHR estimates and volatility 

forecasting techniques.  In the active derivatives’ market, decision making depends on the 

quality of the forecasts and, hence, forecasting of hedge ratios is important and meaningful 

for hedgers (Park and Antonovitz 1992). 

Given the plethora of literature, there are nevertheless serious gaps in the current 

research strand in two directions.  Firstly, from a risk management perspective, there have 

been limited attempts to evaluate the forecasting accuracy and performance of the estimated 

hedge ratios derived from different econometric models.2 Indeed, knowledge of forecasting 

ability of optimal hedge ratio/dynamic hedge ratio is important for understanding the role of 

futures markets in equity trading, program trading, index arbitrage, and the development of 

optimal hedging and trading strategies in fund management.  Secondly, most previous studies 

confined their attention to more developed and mature financial markets and exchanges.  

There have only been limited attempts to examine the behaviour of time-varying hedge ratios 

for emerging markets.3 Emerging equity markets now account for more than one-fifth of 

global equity market capitalization.  The burgeoning size of the emerging markets has been 

supported by a growing domestic investor base, including domestic institutional investors and 

increased financial integration with the rest of the world (Bailey 2010). 

This paper takes steps to address these gaps in the literature.  We investigate the 

behaviour of dynamic hedge ratios in three emerging European stock futures markets using 

alternative variants of GARCH models and compare the forecasting performance of these 

models.  More specifically, using daily data of the spot and futures stock markets of Greece, 

Hungary and Poland and the following seven variants –GARCH, GARCH-BEKK, GARCH-

ECM, GARCH-DCC, GARCH-X, asymmetric GARCH-GJR, and autoregressive jump 

intensity GARCH (GARCH-JUMP) models – we have estimated the time-varying hedge 
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ratios and compared the forecasting performances of these models of hedge ratios.4  The 

forecasting comparison is achieved by means of the Model Confidence Set (MCS) and 

modified Diebold and Mariano (MDM) tests.  We provide further analysis by statistically 

comparing the difference between the forecasted returns after adjusting for transaction cost 

from each model during both forecasting horizons.  This analysis may provide a way to 

choose the best model based on application rather than on a statistical criterion, such as MCS.  

Given the different methods available, the empirical question we address is: which 

econometric method provides the best forecast? This paper hopes to provide an answer to this 

question.  The forecast is conducted over two non-overlapping different lengths of forecast 

horizons.5 

These three markets are chosen for the following reasons.  First, all three markets are 

located in the European Union (EU) with varying degrees of economic and market 

conditions.  Hungary and Poland represent reforming Transition Economies from Eastern 

Europe while Greece represents a debt-ridden OECD country from the Eurozone which 

underwent a prolonged period of global financial and the Eurozone crises.  The FTSE group 

classified Hungary and Poland as advanced emerging markets as they represent upper- or 

lower-middle income gross national income (GNI) countries with advanced market structure 

or high GNI countries with less developed market infrastructure.  Second, these three 

emerging markets provide ample high-quality data on spot and futures stock prices to conduct 

a forecasting exercise. 

Although it is alleged that some emerging markets are characterised by low liquidity, 

thin trading, and considerable volatility and possibly with less informed investors with access 

to information, our sample countries contain reliable and long-spanning data series.  These 

markets underwent substantial changes in regulation and liberalisation which had encouraged 

wide participation in the market and led to more rapid impounding of information into 

prices.6 Furthermore, we have incorporated the experience of a developed market for a 

meaningful comparison of our results.  More specifically, we have added the data series from 

the UK market to investigate and offer a comparative flavour in our results. 

To the best of our knowledge, no previous study empirically investigates the out-of-

sample forecasting by different GARCH models of time-varying hedge ratios for emerging 

European stock futures markets and then compares the forecasting performance of these 

models. This is particularly true, taking into consideration that we apply the Model 

Confidence Set (MCS) to compare the forecasting ability of different models.  All this clearly 
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indicates the substantial contribution this paper makes to the literature.  Therefore, results 

presented in this paper have potentially important implications for academics, researchers, 

financial practitioners and policy-makers. 

Certain assumptions are important for quality forecasting.  These assumptions are the 

relationships between the cash and futures prices, the length of forecasting horizons, and the 

level of competition in the market.  Forecast of the hedge ratio is not plausible if the 

relationship between the cash and futures prices is not assured.  Further, according to Chen et 

al. (2004), the forecasting accuracy of different methods may be affected by the length of the 

hedging horizons.  A longer length of forecast horizon implies a more accurate forecast due 

to higher data numbers;7 thus, we apply two different lengths (one year and two years) of 

forecast horizons to observe the effect on the forecasting effectiveness of the models.  

Furthermore, the more competition there is in the market, the more difficult it is to forecast 

hedge ratios.  In a highly competitive market, competitors can change the course of future 

events after they make forecasts in order to make themselves more competitive, which then 

invalidates the forecasts. 

It is important to point out that the lack of a benchmark is an inevitable weak point for 

studies on time-varying hedge ratio forecasts.  The point estimation of the hedge ratio 

generated by the GARCH model is only a moderate proxy for the actual hedge ratio value; it 

is not an appropriate scale to measure a hedge ratio series forecasted with time variation.  

Evaluation of forecast accuracy is thus conducted by forecasting out-of-sample returns of 

portfolios implied by the forecasted hedge ratios.8  Summarising our results, following the 

MCS test, the GARCH model provides the most accurate forecasts in five cases, while each 

of the GARCH-ECM, GARCH-X and GARCH-GJR models constitutes MCS in four cases at 

a reasonable confidence level.  Models’ selection based on MDM tests further corroborates 

results of the MCS tests.  Results from the portfolio returns difference comparison also shows 

the superior forecasting ability of GARCH-BEKK and GARCH-GJR models. 

The remainder of this paper is structured as follows.  Section 2 describes the optimal 

hedge ratios and the seven GARCH models.  The Model Confidence Set (MCS) and Diebold-

Mariano tests are described in section 3.  Section 4 furnishes a brief literature review.  

Section 5 discusses the data and the basic statistics, while  section 6 analyzes the GARCH 

and MCS and modified Diebold-Mariano results.  The comparison between returns is 

provided in section 7.  Section 8 presents the conclusion. 
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2. Estimation of optimal hedge ratios and the GARCH models 

2.1 The hedge ratio 

Johnson’s (1960) risk-minimising hedge ratio h* is defined as 
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where rc and rf denote returns on spot and futures indices.  The optimal hedge ratio (OHR) 

then is computed as the slope coefficient of the following regression: 

 tftct rr   ,        (2) 

where εt is an error term.9  A β = 0 implies unhedged position; β = 1 signifies a fully hedged 

position; and β < 1 implies a partial hedge. 

It is now well-known in the literature that the conventional hedging model has 

shortcomings.  As the distribution of futures and spot prices are changing through time, h* , 

which is expressed as the ratio of  covariance between futures returns and cash returns and 

variance of futures returns, moves randomly through time (Cecchetti et al. 1988; Baillie and 

Myers 1991; Kroner and Sultan 1993).  Therefore eq. (2) should be modified as 
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In eq. (3), conditional moments are changing as the information set, ΩT, is updated; 

consequently, the number of futures contracts held and the optimal hedge ratio will also 

change over time – hence the t subscripts of hT
*.  Under the condition of time-varying 

distribution, the bivariate GARCH model is utilised to estimate the time-varying hedge ratios 

to approximate the dynamic hedging strategies. 

 

2.2  Bivariate GARCH model 

As stated above, the time-varying hedge ratios are estimated from seven variants of 

bivariate GARCH models: standard GARCH, GARCH-ECM, GARCH-DCC, GARCH-
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BEKK, GARCH-GJR, GARCH-X, and GARCH-JUMP.10,11  The following bivariate 

GARCH(p, q) model is applied to returns from the stock cash and futures markets: 

tty           (4) 

1/  tt ~ ),0( tHN        (5) 
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where ),( f

t

c

tt rry   is a (2x1) vector containing stock returns from the cash and futures 

markets,  Ht is a (2x2) conditional covariance matrix, C is (3x1) parameter vector of constant, 

Ai and Bj are (3x3) parameter matrices, and vech is the column-stacking operator that stacks 

the lower triangular portion of a symmetric matrix.  To make the estimation amenable, Engle 

and Kroner (1995) have suggested imposing various restrictions on the parameters of Ai and 

Bj matrices.  Using the bivariate GARCH model, the time-varying hedge ratio can be 

computed as 

ttt HHh ,22,12
* ˆ/ˆ

,
       (7) 

where tH ,12
ˆ  is the estimated conditional covariance between the cash and futures returns, and 

tH ,22
ˆ  is the estimated conditional variance of futures returns.  Since the conditional 

covariance is time-varying, the optimal hedge would be time-varying too. 

2.3 GARCH-ECM model 

When the bivariate GARCH model incorporates the error correction term in the mean 

equation, it becomes the GARCH-ECM model which is presented as 

ttt uy    )1(  .      (8) 

The lagged error-correction term ut-1 is retrieved from the cointegration regression between 

cash and futures stock prices.  Therefore, a bivariate GARCH-ECM model is employed to 

account for the long-run relationship and basis risk (see Kroner and Sultan 1993).12 

 

2.4 Bivariate GARCH-BEKK model 

In the BEKK model as suggested by Engle and Kroner (1995), the conditional covariance 

matrix is parameterised to 
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Eqs. (4) and (5) also apply to the BEKK model and are defined as before.  In eq.(9), kiA , i = 

1,...q, k = 1,...k, and kjB  j = 1,...q, k = 1,..k are NxN matrices.  The GARCH-BEKK model is 

sufficiently general in that it guarantees the conditional covariance matrix, Ht to be positive 

definite, and renders significant parameter reduction in the estimation.13 

 

2.5 Bivariate GARCH-GJR model 

Glosten et al. (1993) provide a modification to the GARCH model that allows positive 

and negative innovations to returns to have different impact on conditional variance.14  They 

suggest that the asymmetry effect can also be captured simply by incorporating a dummy 

variable in the original GARCH, 
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where 11 tI  if 01 tu ; otherwise 01 tI .  Thus, the ARCH coefficient in a GARCH-GJR 

model switches between    and , depending on whether the lagged error term is positive 

or negative. 

 

2.6 Bivariate GARCH-X model 

The GARCH-X model is an extension of the GARCH-ECM model as it incorporates the 

square of error correction term in the conditional covariance matrix (Lee 1994).  In the 

GARCH-X model, conditional heteroscedasticity may be modeled as a function of lagged 

squared error correction term - in addition to the ARMA terms in the variance/covariance 

equations: 
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A significant positive effect may imply that the further the series deviate from each other in 

the short run, the harder they are to predict. 

 

2.7 Bivariate GARCH-DCC 

The preceding variants of the GARCH model assume constant correlation in the 

conditional covariance matrix.  Tse and Tusi (2002) developed the dynamic conditional 



8 

 

correlational GARCH (GARCH-DCC) model by allowing the conditional correlation to vary 

over time.15  The DCC model is often the most accurate in terms of forecasting depending on 

the criteria (Engle 2002).  The bivariate covariance matrix of DCC can be expressed as 
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where t is the time-varying conditional correlation coefficient of spot and futures returns at 

time t.  The conditional correlation is specified as an autoregressive moving average process 

  121121 )1(   ttt   .    (13) 

 

2.8 Autoregressive Jump Intensity GARCH model 

The autoregressive jump intensity GARCH (GARCH-JUMP) model was proposed by 

Chan (2008) and Chan and Young (2006).  It provides a framework for incorporating the 

joint behavior of spot and futures prices with systematic jumps in prices.  These jumps can 
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prices.  The specification of the bivariate GARCH-JUMP model is defined as follows: 
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The common jump component Jt is defined as: 
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where Jt has a bivariate normal distribution with zero mean and variance matrix Δt.  The 

disturbance term and the common jump component are assumed to be independent. 

It is hypothesized that time-varying hedge ratios would be different across different 

variants of GARCH models.  Therefore, the next question arises: which model is more 

effective in forecasting the stock futures’ hedge ratio?  In this paper we apply all the above 

methods to estimate the hedge ratio in four stock futures markets, and compare how effective 

they are at forecasting performance. 
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Because the hedge ratio is not an observed entity, the hedge ratio generated by GARCH is 

not an appropriate scale to measure the hedge ratio series forecasted with time variation.  To 

assure forecast accuracy, examination of out-of-sample portfolio returns is a logical 

extension.  In this paper, evaluation of forecast accuracy is conducted by forecasting out-of-

sample portfolio returns implied by the forecasted hedge ratio.  The portfolios are constructed 

as f

tt

c

t rhr * , where c

tr  is the log difference of the cash (spot) prices, f

tr  is the log difference 

of the futures prices, and *

th  is the estimated or forecasted optimal hedge ratio.  The issue of 

a missing benchmark to assess the accuracy of time-varying hedge ratio forecast can thus be 

avoided by comparing the portfolio returns forecasted with the actual returns of the portfolio. 

Thus the forecasting and comparison are done via four steps.  In the first step, the seven 

GARCH models are applied to forecast the hedge ratios during the two forecast horizons.  In 

step two these forecasted hedge ratios are used to create the portfolio returns for the two 

forecast horizons based on the method provided above.  Step three involves the application of 

the MCS and MDM testing procedures to compare the forecasting ability of each model 

compared to the others.  Comparison based on the difference between the transaction cost-

adjusted portfolio returns is conducted in step four. 

 

3. 3.1. Model Confidence Set 

The Model Confidence Set (MCS) methodology as proposed by Hansen, Lunde and 

Nason (2011) provides a testing method for the model selection, and for comparing 

forecasting ability of different models.  The purpose of the MCS procedure is to delineate a 

set of best model(s), say M*, from a collection of models and, say M0, based on a data-

congruent and user-specified criterion.  According to Hansen et al. (2005; 2011), the MCS 

method has several advantages compared with other comparison techniques.  First, the 

procedure does not require a benchmark model to be specified.  It allows the flexibility 

whereby more than one model can be the superior model(s).  Second, it takes into 

consideration the limitations of the data.  Informative data will result in a MCS that contains 

only the best model.  Third, the testing method enables one to draw inferences about the 

significance that is empirically valid in the traditional sense.  This is a property that is not 

satisfied by the commonly used approach of reporting p-values from a multiple pairwise 
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comparison.  The Monte Carlo experiments demonstrate that the MCS has good small-sample 

properties. 

For expository convenience, the following analysis relies heavily on Hansen et al. (2011).  

The MCS methodology has two step-testing procedures – an equivalence test δM and an 

elimination rule, eM.16  The equivalence test is applied to the set of models M = M0.  If the 

equivalence test δM is rejected, there is evidence that the models in M are not equally ‘good’ 

and the elimination rule eM is used to eliminate a model with poor performance from M.  The 

procedure is repeated until δM is accepted and MCS is now defined by the set of surviving 

models.  The MCS method yields a p-value for each model in M and if the MCS p-value of 

model i is larger than the significance level α, we say model ‘i’ is the best ‘candidate’ in M0 

at significance level α.  That is, through a sequential testing procedure, the set of ‘surviving 

models’ satisfies the assertion    1)(lim *

1,

*

iin MMP . 

In the case of forecasting, the set of M0 contains forecasting models with index i = 1, 

2,…. m, and assumes that the set M = M0.  For equivalence test δM, we evaluate the 

forecasting models in terms of a loss function, such as mean absolute error (MAE), mean 

square error (MSE), and root mean square error (RMSE), and we denote the model i in time 

period t as )ˆ,( ,, titti YYLL  , where tiY ,
ˆ is the point forecast of Yt, with t = 1, 2, ….n.  We also 

define the relative performance variables and an auxiliary variable 

tjtitij LLd ,,,   for all 0, Mji   

)( ,tijij dE . 

In a pairwise comparison, the alternative model i is preferred to j if 0ij .  Therefore, the 

set of a superior model is defined by 

   0:{ 0*  ijMiM  for all }0Mj . 

The null and alternative hypotheses take the forms 

   0:, ijMoH    0:, ijMAH    for all Mji ,  

The hypotheses are tested using two tests which are based on multiple t-statistics.  If we 

define the relative sample loss statistics 

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ijd measures the relative sample loss between the i-th and j-th models, while 
id is the sample 

loss to the average across models in M,  this enables us to construct the t-statistics 
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equivalence test takes the form 
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These two formulations of null hypotheses correspond to the test statistics as follows: 
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.  The elimination rules corresponding to those 

two test statistics are 

   iMiM te  maxargmax,   
ijMjMiMR te  supmaxarg,
. 

As the distribution of each of the test statistics depends on unknown parameters, a block 

bootstrap procedure is used to estimate the distribution under the null.  For example, under 

the null hypothesis, we set the p-value of H0 as 
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where 
max},*max{ bTTI 

is the indicator function and 
*

max,bT  is the estimated bootstrap distribution 

of max ti.  As stated, if 0HP , we accept the null hypothesis, and we have the 

MMMCS  

*

1
ˆ)1(  .  In our study, all models that have PMCS higher than 0.10 will belong 

to this set of best-performing models. 

 

3.2 Diebold and Mariano Pairwise Tests 

Diebold and Mariano (1995) develop a test of equal forecast accuracy to test whether two 

sets of forecast errors, say te1 and te2 , have equal mean value.  Using MSE as the measure, 

the null hypothesis of equal forecast accuracy can be represented as 0][ tdE , 

where 2

2

2

1 ttt eed  .  Supposing, n, h-step-ahead forecasts have been generated, Diebold and 
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Mariano (1995) suggest that the mean of the difference between MSEs 
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where k is the k-th autocovarianceof td , which can be estimated as: 
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Therefore, the corresponding statistic for testing the equal forecast accuracy hypothesis is 

)(/ dVardS  , which has an asymptotic standard normal distribution.  According to 

Diebold and Mariano (1995), results of Monte Carlo simulation experiments show that the 

performance of this statistic is good even for small samples and when forecast errors are non-

normally distributed.  However, this test is found to be over-sized for small numbers of 

forecast observations and forecasts of two-steps ahead or greater.  

Harvey et al. (1997) further develop the test for equal forecast accuracy by modifying 

Diebold and Mariano’s (1995) approach.  Since the estimator used by Diebold and Mariano 

(1995) is consistent but biased, Harvey et al. (1997) improve the finite sample performance 

of the Diebold and Mariano (1995) test by using an approximately unbiased estimator of the 

variance of d .  The modified test statistic is given by 
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Through Monte Carlo simulation experiments, this modified statistic is found to perform 

much better than the original Diebold-Mariano test at all forecast horizons and when the 

forecast errors are autocorrelated or have non-normal distribution.  In this paper, we apply the 

modified Diebold-Mariano test (MDM). 

Two criteria – MSE and MAE derived from return forecasts – are employed to 

implement the MDM tests.  On each occasion, the tests are conducted to detect superiority 

between two forecasting models, and thus there are 20 groups of tests for each forecast 

horizon for each market.  
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Each MDM test generates two statistics, S1 and S2, based on two hypotheses: 

1. 1

0H : there is no statistical difference between the two sets of forecast errors.  

1

1H : the first set of forecasting errors is significantly smaller than the second. 

2. 2

0H : there is no statistical difference between the two sets of forecast errors. 

2

1H : the second set of forecasting errors is significantly smaller than the first. 

It is clear that the sum of the P values of the two statistics (S1 and S2) is equal to unity.  If we 

define the significance of the modified Diebold-Mariano statistics as at least 10% 

significance level of t distribution, adjusted statistics provide three possible answers for 

superiority between two rival models:  

1. If S1is significant, then the first forecasting model outperforms the second. 

2. If S2 is significant, then the second forecasting model outperforms the first. 

3. If neither S1 nor S2 is significant, then the two models produce equally accurate forecasts. 

 

4. Literature Review 

As stated earlier, the hedge ratio is the number of futures contracts needed to 

minimize the exposure of a unit’s worth of position in the cash market.  Studies in the late 

1970s and the early 1980s employed the traditional regression analysis which assumes that 

the optimal hedge ratio is time-invariant (see Johnson 1960 and Ederington 1979).  However, 

it is now well established that most asset return distributions are not normal, i.e. return 

distributions are time-varying with high skewness and high excess kurtosis.  As a 

consequence, the hedge ratio is also changing over time (Sultan and Hasan 2008, p.469).  The 

development of the generalised autoregressive conditional heteroscedastic (GARCH) 

modelling technique to deal with time-varying volatility has generated tremendous interest in 

the empirical investigations of the effectiveness of dynamic hedging that allows the hedge 

ratio to be time varying (Kroner and Sultan 1993).  Based on the evidence of time-varying 

distributions of spot and future prices, the dynamic hedging strategy has been proven superior 

to any alternative hedging strategy that holds the hedge ratio constant.  Therefore, a large 

body of empirical literature has accumulated since the late 1980s and up to recent years 

examining the issues of relative effectiveness of a sophisticated hedging method over much 

simpler and more intuitively appealing traditional hedging methods using currencies, 
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commodities, stock indices, and interest rate products employing ARCH and GARCH 

specifications (Sultan and Hasan 2008, p. 470). 

In previous studies different versions of the GARCH models have been used for 

forecasting volatility, time-varying beta, and hedge ratio among others, and then the models 

compared.  [See Bauwens, Laurent and Rombouts (2006) for a survey article on GARCH 

model and Hansen and Lunde (2005) for a comparison on volatility forecast model; Poon and 

Granger (2003) also provide an excellent survey of GARCH’s and other models’ forecasting 

ability.]  Given the dearth of literature, this section has drawn only from the area of hedge 

ratio forecasting using the GARCH class of model to furnish readers with an overview of the 

current state-of-the-art research. 

Laurent et al. (2012) examine forecasting accuracy of 125 variants of GARCH 

models using 10 assets from the New York Stock Exchange employing one, five and twenty-

day ahead conditional variance forecasts over a period of 10 years using model confidence set 

(MCS) and superior predictive test (SPA) tests.  The study reports that during unstable 

periods such as the dot-com bubble, the superior models consist of sophisticated GARCH 

specifications such as orthogonal and dynamic conditional correlation (DCC) embedded with 

the leverage effect.  During tranquil periods, GARCH with simple specifications such as 

constant conditional correlation and symmetry in the variance perform well.  Finally, during 

the 2007-2008 financial crises, GARCH specification with non-stationarity in the conditional 

variance process generates superior forecast. 

Zhang and Choudhry (2015) investigate the forecasting ability of five different 

GARCH models – bivariate GARCH, GARCH-BEKK, GARXH-X, BEKK-X, Q-GARCH 

based on four commodities – wheat, soybean, live cattle and live hogs.  Their results indicate 

that BEKK-type models perform best in the cases of storable products such as wheat and 

soybean.  The GARCH-GJR performs the best in the case of non-storable commodities, such 

as live cattle and hogs. 

Zhang and Choudhry (2016) examine the forecasting performance of four variants of 

GARCH models – the GARCH-BEKK, GARCH-DCC, GARCH-MIDAS and Gaussian 

Copula GARCH –and the Kalman filter method during the pre-financial crisis and crisis 

periods using MCS to estimate time-varying betas.  Their results are based on daily stock 

prices’ data of two large banks from Austria, Belgium, Greece, Holland, Iceland, Italy, 

Portugal and Spain.  Empirical results indicate that GARCH-BEKK performs the best during 
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the pre-crisis period and the Kalman filter outperforms the GARCH models during the crisis 

period. 

Choudhry and Hasan (2011) investigate the forecasting ability of five different 

variants of GARCH models – namely the bivariate GARCH, GARCH-ECM, GARCH-

BEKK, GARCH-X and GARCH-GJR – using daily stock indices’ futures data from 

December 1999 to December 2009 from Brazil, Hungary, South Africa and South Korea.  

Their results show that the BEKK model outperforms other models during the two-year 

forecast horizon and no model truly dominates in the shorter one-year forecast horizon.  

Overall, the bivariate GARCH model performs the worst.  Their results also imply that the 

forecasting superiority of the model applied depends on the underlying market and the length 

of the forecast horizon. 

The general impression from the foregoing discussion is that the forecasting accuracy 

of the optimal hedge ratio obtained from different variants of the GARCH model and the 

effectiveness of dynamic hedging is an issue of ongoing research to the financial practitioners 

and researchers.  Given the paucity of research regarding the forecasting performance of 

time-varying hedge ratios based on alternative variants of the GARCH model, we have re-

examined the issue using seven variants of the GARCH model to offer a more parsimonious 

time series approach using a longer time span and more recent data of both emerging and 

developed markets. 

 

5. Data and diagnostics 

The models are estimated using daily data spanning the period from January 2000 to July 

2014 on stock cash indices and their counterpart futures contracts from Greece, Hungary, 

Poland and the UK.  To avoid the sample effect and overlapping issue, two non-overlapping 

forecast horizons are considered – a one-year forecast horizon (July 2011-June 2012) and a 

two-year forecast horizon (July 2012-June 2014).  All seven models are estimated for the 

periods January 2001 to June 2011 and January 2001 to June 2012, and the estimated 

parameters are applied for forecasting over the forecast samples 2011-2012 and 2012-2014, 

respectively.  If the two forecasting periods are overlapping, the data for in-sample estimation 

are contaminated due to a certain amount of mutual data which may result in non-robust 

forecasting.  According to Harri and Brorsen (2002) non-overlapping subsamples can 

enhance the reliability and robustness of outcome, and simplify the interpretation of results. 
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The FTSE/ASE Large Cap Index consists of 25 of the largest and most liquid stocks that 

trade on the Athens Stock Exchange.  It was developed in September 1997 out of a 

partnership between the Athens Stock Exchange and FTSE International.  The BUX index is 

the official capitalisation-weighted index of the blue-chip shares listed on the Budapest Stock 

Exchange (BSE).17  Its futures and option products are available in the BSE derivatives 

section.  The Warsaw Stock Exchange WIG20 index is the blue-chip index and consists of 20 

of the biggest and the most liquid companies on the Warsaw Stock Exchange main list.  In 

March 2014 the market value of all the companies on WIG20 amounted to 43.6% of the 

Warsaw Stock Exchange main list total capitalisation.  The FTSE100 is a share index of the 

100 companies listed on the London Stock Exchange with the highest market capitalisation.  

All futures price indices are continuous series.18  The data are collected from Datastream 

International. 

Descriptive statistics of the distribution of cash and futures returns indicate that the 

density function is negatively skewed for both cash and futures returns for all markets except 

Greece.  The values of the excess kurtosis statistic are greater than 2 for all countries, which 

suggests that the density function for each country has a fat tail.  The values of the Jarque-

Bera statistic are high, suggesting that the returns are not normally distributed.  Judging by 

the skewness, excess kurtosis and Jarque-Bera statistics, it can be inferred that the returns 

exhibit 'fat-tails' in all markets.  The data series have also been checked for stationarity using 

the Augmented Dickey-Fuller (ADF) unit root test.  The ADF test results indicate that each of 

the returns series has no unit root.  Tests for autocorrelation in the first moments using the 

Q(20) statistic indicate that none is present in any of the returns.  Finally, tests for ARCH 

using Engle's (1982) LM statistic generally support the hypothesis of time-varying variances.  

These results are available from the authors on request. 

6. GARCH, MCS and modified Diebold-Mariano tests results 

Given that the GARCH results are quite standard, we only provide the GARCH 

results for Greece as an example.  The remaining GARCH results are available on request.  

Table 1 reports the estimated coefficients of GARCH, BEKK, GARCH-X, GARCH-ECM, 

GARCH-GJR, GARCH-DCC and GARCH-JUMP models for Greece from 2000 to 2014.19  

All coefficients are significant at the 5% significance level (except 1   at the 10% level), 

while coefficients µ1 and a22 in the GARCH-JUMP model are insignificant.  In other words, 
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the ARCH effect is insignificant in the futures equation of the GARCH-JUMP model.  For all 

GARCH models except in the GARCH-JUMP futures equation, the sums of parameters of 

ARCH ( 11a and 22a ) and GARCH ( 11b and 22b ) terms are close to unity, which indicates that 

the impact of ARCH and GARCH on current conditional variance is persistent and that the 

volatility clustering dies out slowly.  The unconditional variance/covariance terms ( 11c , 12c  

and 22c ) are small and significant, which suggests there are positive and significant 

interactions between the two log-prices.  The GARCH-ECM model includes error correction 

in the mean equation, and the error term is found to be significant for Greece.  The GARCH-

GJR model captures asymmetric information effects for Greece with small positive and 

negative effects on cash and futures markets, respectively.  The significance of square error 

correction of the GARCH-X model indicates that there exists cointegration between log-cash 

and log-futures prices. When  1A B   for the GARCH-DCC model, this implies that it is 

mean-reverting.  We obtain similar results for Hungary and Poland. 

Table 2 reports basic statistics of forecasted hedge ratio (OHR) from the seven 

GARCH models for all three markets from July 2011 to June 2012 in Panel A and from July 

2012 to June 2014 in Panel B, respectively.  In Panel A, the average OHR for Poland ranges 

from -0.01722 (minimum) to 0.001258 (maximum), but the means of OHR are close to 1 for 

Greece, Hungary, and the UK.  In other words, it is risker to hedge in Greece, Hungry, and 

the UK based on the high OHRs in these three countries.  The variance of OHRs for Greece, 

Hungary and the UK are also higher than that of Poland.  The skewness, kurtosis and J-B 

tests results indicate that the OHR series is non-normally distributed and slightly left-skewed, 

with a sharper peak for Poland.  For the cases of Greece, Hungary and the UK, the OHR 

series have higher peaks and fatter tails than normal distribution in the one-year forecasting.  

In Panel B, the two-year forecasts of OHR series tell a very similar story to that in Panel A; 

but the OHR series of Greece is less skewed, and with more left-skewed OHR for Hungary 

and the UK. 

In order to compare forecast accuracy of different variants of GARCH model, we 

employ both MCS and MDM Tests.  Table 3 reports the RMSE’s and the MCS p-values of 

the Model Confidence Set (MCS) on the forecasting accuracy of the seven GARCH models 

at both *

90%M  and *

75%M  confidence levels for all three markets.  Since the MAD (mean 

absolute deviation) criterion is less sensitive to outliers which may lead to greater mis-

predictions than the MSE-type method (Hansen et al.  2003), and because the RMSE method 
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produces larger values than the MSE when the mean square error is smaller than unity, we 

report the Root Mean Square Error (RMSEs) and MCS p-values for each forecasting model.  

We find that a low RMSE of forecasts is associated with a high MCS p-value, and this result 

is in line with the principle of the MCS approach that the models with high MCS p-values are 

more likely to be ‘the best’ models at a certain level of confidence.  Moreover, the results in 

* *

75% 90%M M are as expected. 

In the case of Poland, the GARCH-X, GARCH, and GARCH-JUMP are the top three 

models with smallest forecast errors at a 75% confidence level for one-year prediction.  

Among these three models, GARCH-X performs the best.  In addition, during the two-year 

forecast horizon, the GARCH-GJR, GARCH-BEKK, GARCH-ECM and GARCH-X models 

outperform other models in the set.  The GARCH-GJR model performs best among all four in 

the set with a 75% significance level.  In the case of Greece, the GARCH-DCC performs the 

best during one-year forecast horizons.  During the one-year forecast horizon, the 

*

75%M contains some more models, i.e., GARCH-ECM and GARCH-JUMP.  During the two-

year horizon, GARCH-GJR and GARCH-BEKK models are significant within the 

*

75%M confidence level, with GARCH-GJR being the best model in the set.  The GARCH-

DCC model outperforms all other models’ forecasts for Hungary during the one-year horizon 

and the GARCH-BEKK produces the best forecasts for two-year prediction.  In the case of 

the UK, GARCH-ECM and GARCH-X are the superior models for one-year and two-year 

predictions, respectively.  In addition, GARCH-ECM, GARCH and GACRH-GJR constitute 

the set of surviving models at a 75% significance level in the one-year forecast; GARCH and 

GARCH-GJR belong to the surviving set at a 90% confidence level in the longer forecast 

horizon. 

Generally, the GARCH model provides the most accurate forecasts given that it 

outperforms the other variants of GARCH model in four cases at the 75% confidence level 

and in five cases at the 90% confidence level.   Each of the GARCH-ECM, GARCH-X and 

GARCH-GJR models constitutes model confidence set in four cases at the 90% confidence 

level (each with three cases at the 75% confidence level).  GARCH-BEKK appeared in the 

model confidence set in three cases at the 75% level for the two-year forecast (Poland, 

Greece and Hungary).  The GARCH-ECM and GARCH-DCC are ranked as the second and 

third best forecasting models for the one-year forecast horizon, respectively.  For the two-

year forecast horizon, GARCH-GJR appears to be the best model in two cases (Poland and 
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Greece).  GARCH-X performs best in the two-year forecast horizon for Hungary and UK.  

The MCS results fail to point out any one particular type of GARCH model that has superior 

ability in forecasting the time-varying hedge ratio in these European stock futures markets. 

In Table 4, we present the results of the MDM to compare prediction accuracy 

between any two GARCH models for Greece.  Both MSE and MAE measurements are 

applied.  The MAE is stricter than the MSE method since the MAE produces “better” or 

“worse” when the MSE yields an insignificant difference between two models, and we say 

they are “equally” good.  For the one-year forecast, the GARCH-ECM is the superior model 

with the MSE method, while it is the second best after the DCC model under MAE.  For the 

two-year forecast, both methods prefer the GARCH-GJR model, and the GARCH-BEKK is 

the second best under both methods. 

A summary of the modified Diebold-Mariano and MCS tests results is presented in 

Table 5.  We find that the best models selected from the modified Diebold-Mariano test are 

all included in the MCS test.  In other words, these two test results are in line with each other 

and hence our findings are more persuasive. 

Generally speaking, GARCH-GJR and GARCH-BEKK models could be the first and 

second best candidates for two-year forecast of OHR in emerging European markets.  

GARCH-X and GARCH-ECM outperform other competing models for Poland and UK in the 

one-year prediction, respectively.  This result backs the claim by Poon and Granger (2003) 

that no one type of GARCH model is superior in forecasting; rather, superiority of 

forecasting performance depends upon several different factors.  In this paper, results are 

different based on the market under consideration, and the length of the forecast horizons. 

Figures 1 and 2 show the returns based on the forecast hedge ratios by all seven 

GARCH models and the actual returns over both forecast horizons for all four markets.  All 

estimates seem to move together with the actual return but, because of the high frequency of 

the data, it is difficult to say which method shows the closest correlation. 

7. Comparison of Returns 

We provide further analysis by statistically comparing the difference between the 

forecasted returns after adjusting for transaction cost from each model during both 

forecasting horizons.  This analysis may provide a way to choose the best model based on 

application rather than on a statistical criterion, such as MCS.  The forecasted returns 

adjusted for transaction cost (c) are based on Kroner and Sultan’s (1993) method which had 
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assumed a transaction cost of 0.01%.20 For example, the forecasted return from the GARCH 

model if we rebalance the futures position is crhrR f

ttgarch

c

t  *

,
ˆ , where c

tr  is the cash 

returns, f

tr  is the futures returns, 
*

,
ˆ

tgarchh  is the hedge ratio forecasted by the GARCH model, 

and c is the transaction cost.  We rebalance the futures positions if and only if the balanced 

position after accounting for the transaction cost yields higher return than the most recent 

balanced futures position.  In this way, we achieve all the transaction cost-adjusted returns 

series during both forecasting horizons. 

We test whether the transaction cost-adjusted returns from different models are 

significantly different from each other based on the MAE and MSE tests.  For example, the 

difference between GARCH and BEKK models’ forecasted returns is tested as 
| |garch bekkR R

  

and 
2( )garch bekkR R
being statistically different from zero, which is the paradigm of MAE and 

MSE tests.  If the statistical value of MAE and MSE tests is significant, we can conclude that 

the return series from two models are statistically different from each other.  Table 6 presents 

the results from the MAE and MSE tests.  For each country, 21 different MAE and MSE tests 

are run for each of the two forecast horizons.  All returns series are statistically different from 

each other at the 5% significance level during both the one-year and two-year forecast 

horizons.  This result clearly indicates the importance of selecting the right model to forecast 

the returns.
 

Given that the differences between the returns are significant, Table 7 presents the 

mean value of the transaction cost-adjusted forecasted returns from the seven GARCH 

models for all countries during both forecast horizons.  For Poland, GARCH-BEKK and 

GARCH-X provide the highest returns during one-year and two-year forecast horizons, 

respectively.  GARCH-X and GARCH-BEKK provide the highest returns for Greece during 

the one-year and two-year forecast periods, respectively.  For Hungary, GARCH-GJR 

provides the highest return during both the one-year and two-year periods.  For UK, 

GARCH-BEKK yields highest returns in both horizons. 

These results also fail to point out any one particular type of GARCH model that has 

superior ability in forecasting the time-varying hedge ratio in these European stock futures 

markets. In summary, the GARCH-BEKK and GARCH-GJR indicate the greatest 

effectiveness in terms of high forecasted returns.  This result backs the forecasting accuracy 
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of these models provided earlier by the modified Diebold-Mariano tests for longer forecast 

horizon. 

8. Conclusion 

This paper investigates the behaviour of dynamic hedge ratios in three emerging 

European stock futures markets using alternative variants of GARCH models and compares 

the forecasting performance of these GARCH models.  Using daily data of the spot and 

futures markets of Greece, Hungary, Poland and the UK and the following seven models, 

GARCH, GARCH-BEKK, GARCH-ECM, GARCH-DCC, GARCH-X, GARCH-GJR and 

GARCH-JUMP, we have estimated the time-varying hedge ratios and compared the hedge 

ratio forecasting performances of these models.  To the best of our knowledge no other paper 

has forecast the hedge ratios of emerging European stock futures markets.  Ability to forecast 

the optimal hedge ratios/dynamic hedge ratios is important for understanding the role of the 

futures markets in trading, program trading, index arbitrage, and the development of optimal 

hedging and trading strategies in fund management.  The forecasting of hedge ratios guides 

the hedger to choose the most appropriate portfolio and allows for portfolio adjustment in 

dynamic hedging. 

The tests are carried out in three steps.  In the first step we forecast the hedge ratio by 

means of the seven GARCH models.  In the second step, we create the out-of-sample 

portfolio returns based on the forecasted hedge ratio by the seven models, and in the third 

step we empirically compare the GARCH models in terms of forecasting accuracy.  These 

will provide evidence for comparative analysis of the merits of the different forecasting 

models.  The point estimation of the hedge ratio generated by the GARCH model is a 

moderate proxy for the actual hedge ratio value; it is not an appropriate scale to measure a 

hedge ratio series forecasted with time variation.  Evaluation of forecast accuracy is 

conducted by forecasting out-of-sample returns of portfolios implied by the forecasted hedge 

ratios.  The Model Confidence Set (MCS) and modified Diebold-Mariano tests are applied to 

compare the forecasting ability of the seven GARCH models.  The MCS is applied based on 

two confidence levels, *

90%M  and *

75%M .
 Application of the MCS approach makes this paper 

more unique in the literature. 

Results from the MCS fail to point out any one particular type of GARCH model that 

has superior ability over the other models in forecasting the time-varying hedge ratio in these 
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three emerging and one developed European futures markets.  In summarising the MCS 

results, the GARCH model provides the most accurate forecasts given that it outperforms the 

other variants of GARCH model in four cases at the 75% confidence level and in five cases at 

the 90% confidence level.   Each of the GARCH-ECM, GARCH-X and GARCH-GJR 

models constitutes model confidence set in four cases at the 90% confidence level.  The 

GARCH-ECM and GARCH-DCC are ranked as the second and third best forecasting models 

for the 1-year forecast horizon, respectively.  For the two-year forecast horizon, GARCH-

GJR appears to be the best model in the cases of Poland and Greece, and GARCH-X 

performs best in the 2-year forecast horizon for the UK.  The GARCH-BEKK model 

appeared in the model confidence set in three cases (Poland, Greece and Hungary) at the 75% 

level for the two-year forecast with the most superior model in the case of Hungary.  The 

MCS results fail to point out any one particular type of GARCH model that has superior 

ability in forecasting the time-varying hedge ratio in these European stock futures markets.  

The modified Diebold-Mariano test results also indicate that the models selected from the 

MDM test are incorporated in the model confidence set and therefore accord well with the 

MCS test results. 

We provide further analysis by statistically comparing the difference between the 

forecasted returns after adjusting for transaction cost from each model during both 

forecasting horizons.  This analysis may provide a way to choose the best model based on 

application rather than on a statistical criterion, such as the MCS.  In summary of these 

results, the GARCH-BEKK and GARCH-GJR models indicate the greatest effectiveness in 

terms of high forecasted returns.  This result backs the forecasting accuracy of these models 

provided earlier by the modified Diebold-Mariano tests for a longer forecast horizon. 

Results presented in this paper advocate further research in this field, applying 

different markets, time periods, length of forecast horizon, and methods.  This is particularly 

true for emerging stock futures.  There are potential insights to be gained from examining 

markets with different institutional features. 
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Notes 
1. The hedge ratio is simply the number of futures contracts needed to minimise the exposure of a unit’s 

worth position in the cash market. 

2. Zhang and Choudhry (2015) is an exception.  They estimate and forecast the hedge ratios in 

commodities’ futures markets. 

3. However, studies of Alexander and Barbosa (2007), Hasan and Choudhry (2013), Lai et al. (2009) and 

Moon et al. (2009) are a few exceptions, but  do not forecast the hedge ratios. 

4. In the post-GARCH era, the issue of dynamic hedging received much attention and acceptance due to 

the ability of the GARCH models to account for nonlinearity, volatility cluster, non-normality and time 

dependency in variance/covariance of portfolio and futures returns.  For this reason, we have chosen to 

study the forecasting accuracy of the dynamic hedge ratios using a framework of the GARCH class of 

models. 

5. Forecasting in this paper is conducted based on the rolling forecast. 

6. Stengos and Panas (1992) investigate the efficient market hypothesis in the Athens Stock Exchange for 

a number of selected stocks from the banking sector.  The study finds support for the ‘weak’ and ‘semi-

strong’ versions of the efficient market hypothesis. 

7. Longer period also includes changes in the market environment or unexpected events which render 

these assumptions less reasonable over a longer time horizon. 

8. Choudhry and Wu (2008) and Zhang and Choudhry (2015) also apply the same procedure. 

9. The OLS estimation of the hedge ratio from equation (2) is based on the assumption of time invariant 

asset distributions suggested by Ederington (1979) and Anderson and Danthine (1980). 

10. In this study, the sample size of the four futures is moderately large. Based on the central limit theorem, 

which states that the pattern of large samples approximately follows normal distribution statistically 

(Parks  1992), the error term (εt)  in the mean equation of the GARCH models is assumed to be 

conditionally normal, distributed with mean 0 and conditional variance tH . 

11. This section has drawn extensively from Hasan and Choudhry (2013). 

12. Kenourgios et al. (2008) show that ECM-GARCH outperforms simple error correction representation, 

GARCH and EGARCH models, in capturing properties of the hedge ratios on S&P500 stock index 

futures. 

13. For example, a bivariate BEKK GARCH(1,1) parameterisation requires the estimation of only 11 

parameters in superiority of BEKK over the GARCH-DCC. 

14. There is more than one GARCH model available that is able to capture the asymmetric effect in 

volatility. According to Engle and Ng (1993), the Glosten et al. (1993) model is the best at 

parsimoniously capturing this asymmetric effect. 

15. Peters (2008) shows that the DCC model outperforms naive sample on predicting a covariance matrix 

during in a short-run frame with high persistence. 

16. The equivalence test is similar to the equal predictive ability (EPA) which is proposed by Diebold and 

Mariano (1995) and Harvey et al. (1997).  However, the equivalence test constructs a test statistic 

which is more efficient than the EPA test on comparing a large number of models. 

17. The Budapest Commodity Exchange (BCE) and the Budapest Stock Exchange (BSE) merged in 

October 2005, which made the BSE one of the main derivatives’ centres in Central Europe.  The BSE 

played a significant role in the privatisation of many leading Hungarian companies.  The BSE was one 

of the first in the world which started to use free-float capitalisation weighting instead of the traditional 

market capitalisation weighting in October 1999. 

18. The continuous series is a perpetual series of futures prices.  It starts at the nearest contract month, 

which forms the first values for the continuous series, either until the contract reaches its expiry date or 
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until the first business day of the actual contract month. At this point, the next trading contract month is 

taken. 

19. The BHHH algorithm is used as the optimisation method to estimate the GARCH, ECM-GARCH and 

GARCH-GJR models, and the BFGS algorithm is applied for the rest of the models. 

20. Yang and Lai (2009) noted that the transaction cost ranges between 0.005% and 0.01% in the major 

global exchanges which are trading financial contracts of DJIA, S&P500,, NASDAQ100, FTSE100, 

CAC40, DAX30 and Nikkei225. 
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Table 1 GARCH models Results for Greece from 1 January 2002 -30 June 2014 

Variable GARCH BEKK GARCH-X ECM GJR DCC
 JUMP 

1  
6.22e-004 
[0.0091] 

0.00056 
[0.0244]

 
-4.92e-004 
[0.0000]

 
6.15e-004 
[0.0028]

 
5.95e-004 
[0.0129]

 
6.13e-004 
[0.0115]

 

0.03943 

[0.1296] 

 

1    
0.07430 

[0.0000]
 

6.29e-004 

[0.0030]
   

0.07896 
[0.00000] 

 

2  
6.53e-004 
[0.0098] 

0.00058 
[0.0362]

 
-2.69e-004 
[0.0000]

 
0.16964 
[0.0000]

 
5.60e-004 
[0.0285]

 
7.17e-004 
[0.0041]

 

 0.04992 

[0.0614] 

2    
-0.07530 

[0.0000]
 

0.19573 

[0.0000]
   

 0.03259 
[0.0813] 

11c  
2.36e-006 
[0.0000] 

0.00113 
[0.0000]

 
4.62e-004 
[0.0000]

 
2.54e-006 
[0.0000]

 
2.36e-006 
[0.0000]

 
1.53e-006 
[0.0000]

 

0.01765 

[0.0009] 

0.02369 

[0.0001] 

11a  
0.06518 

[0.0000] 

0.97206 

[0.0000]
 

0.50137 

[0.0000]
 

0.06492 

[0.0000]
 

0.06600 

[0.0000]
 

0.07983 

[0.0000]
 

0.07162 

[0.0000] 

0.07307 

[0.0000]
 

11b  
0.92877 
[0.0000] 

0.23207 
[0.0000]

 
0.50072 
[0.0000]

 
0.92828 
[0.0000]

 
0.92930 
[0.0000]

 
0.92019 
[0.0000]

 

0.91579 

[0.0000] 

0.91378 

[0.0000]
 

11d ( 1 )   
1.40e-003 

[0.0000]
  

-2.95e-003 

[0.0927]
  

  

22c  
2.78e-006 
[0.0000]

 
-0.00047 
[0.0000]

 
4.62e-004 
[0.0000]

 
2.853e-006 

[0.0000]
 

2.88e-006 
[0.0000]

 
1.65e-006 
[0.0456]

 

3.59188 

[0.0000] 

4.57732 

[0.0000]
 

22a  
0.06996 

[0.0000]
 

0.96833 

[0.0000]
 

0.50130 

[0.0000]
 

0.06791 

[0.0000]
 

0.06610 

[0.0000]
 

0.07605 

[0.0000]
 

0.08125 
[0.8818] 

0.07704 
[0.9341] 

22b  
0.92529 
[0.0000]

 

0.2483

8 
[0.000

0]
 

0.50080 
[0.0000]

 
0.92657 
[0.0000]

 
0.92480 
[0.0000]

 
0.92482 
[0.0000]

 

0.03188 

[0.0302] 

0.02445 

[0.0039] 

22d ( 2 ) 
 

 
 

1.44e-003 

[0.0000]
  

7.28e-003 

[0.0000]
  

  

12c  
2.46e-006 

[0.0000]
 

0.00123 

[0.0000]
 

4.60e-004 

[0.0000]
 

2.60e-006 

[0.0000]
 

2.50e-006 

[0.0000]
  

  

12a  
0.06653 

[0.0000]
  

0.49930 

[0.0000]
 

0.06535 

[0.0000]
 

0.06610 

[0.0000]
  

  

12b  
0.92746 

[0.0000]
  

0.49960 

[0.0000]
 

0.92793 

[0.0000]
 

0.92760 

[0.0000]
  

  

12d    
-7.13e-004 

[0.0000]
    

  

A      
0.04223 

[0.0000]
 

0.04115 

[0.0000]
 

B      
0.95302 

[0.0000]
 

0.94943 

[0.0000]
 

LLF 
20564.1

6 
20572.56 19308.61 20651.98 20579.19 -5805.58 

-6361.57 

Note: the p-value in square parentheses. The 11d ( 1 )
 
and 22d ( 2 ) for GARCH-X and GARCH-GJR models represent the short-run 

deviations from the long-run relationship between the cash and futures prices and asymmetric impacts of information respectively; A and B 
are parameters of dynamic conditional correlations.  In the DCC-JUMP model, we use a two-step procedure in which univariate GARCH 
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models are estimated for cash and futures return with possion-distributed jump, and then we estimate dynamic conditional correlation 
between these two returns. 

 

Table 2  Basic Statistics of forecasted OHR 

Models Mean Variance Skewness Kurtosis J-B 

Panel A Forecasted OHR from July 2011 to June 2012 

Poland 

GARCH 0.01258 0.00105  -0.85529* 15.9507* 2809.43* 

BEKK-GARCH 0.00292 0.01830 0.71457* 0.21339* 1.62235* 

ECM-GARCH 0.00325 0.00103 -0.01223 -0.18987 0.40011 

GARCH-X -0.01722 0.00049 -0.53712* 1.14013* 26.7885* 

GARCH-GJR 0.00069 0.00222 -0.05066 2.50911* 68.5768* 

GARCH-DCC -0.00573 .000004 -0.82199* -0.33889 30.6410* 

GARCH-JUMP 0.01159 0.00002 1.64984* 3.50773* 2394.59* 

Greece 

GARCH 0.89595 0.00356 -0.69475* 7.49785* 634.788* 

BEKK-GARCH -0.47702 59.6145 0.35635* 1.60233* 33.5736* 

ECM-GARCH 0.84978 0.00270 -2.33071* 9.39098* 1199.95* 

GARCH-X 0.90857 0.00462 -1.63878* 3.01181* 216.378* 

GARCH-GJR 2.02532 0.02817 -1.23526* 2.24682* 121.740* 

GARCH-DCC 0.73063 0.08615 1.55886* 4.03170* 283.558* 

GARCH-JUMP 0.75741 0.07538 1.20128* 2.27577* 119.553* 

Hungary 

GARCH 0.99542 0.00235 2.30019* 6.87723* 747.353* 

BEKK-GARCH 0.12629 8.54957 -0.20181 1.44792* 24.4766* 

ECM-GARCH 0.99623 .000007 -2.51187* 8.05249* 983.381* 

GARCH-X 1.01395 0.00101 3.83529* 14.6690* 2991.37* 

GARCH-GJR 1.09312 0.00393 0.54742* 1.26255* 30.4872* 

GARCH-DCC 0.98493 0.08950 0.72123* -0.42661 24.7012* 

GARCH-JUMP 1.17393 0.12987 0.67658 -0.54765** 23.0854* 

UK 

GARCH 0.97218 0.00043 -2.26954* 8.10985* 939.306* 

BEKK-GARCH 1.00852 0.04465 16.0333* 258.384* 737227* 

ECM-GARCH 0.90776 0.00028 1.33786* 1.58510* 105.183* 

GARCH-X 0.99975 0.00016 1.09365* 5.50986* 382.179* 

GARCH-GJR 0.98313 0.00014 -2.37271* 6.39869* 690.152* 

GARCH-DCC 0.99040 0.91916 1.62637* 1.82391* 151.239* 

GARCH-JUMP 1.41427 3.07472 2.69715* 7.29013* 897.838* 

Panel B  Forecasted OHR from July 2012 to June 2014 

Poland 

GARCH 0.01954 0.00083 0.04072 7.79323* 1318.58* 

BEKK-GARCH -0.00593 0.00912 0.12424 -0.08811 -0.08811 

ECM-GARCH 0.00672 0.00042 -0.12855* 1.43648* 46.2299* 

GARCH-X -0.01203 0.00309 -0.28278* 8.49466* 1573.40* 

GARCH-GJR -0.00164 0.00005 0.17601 3.12839* 215.146* 

GARCH-DCC -0.00475 0.00000 -2.13379* 8.09088* 1816.43* 

GARCH-JUMP -0.00849 .000004 -1.05989* 0.90741* 115.421* 

Greece 

GARCH 1.71951 5.00114 2.34169* 6.22534* 1317.45* 

BEKK-GARCH 0.83166 0.00409 -0.06966 2.54649* 141.192* 

ECM-GARCH 0.89378 0.00046 -1.49010* 2.12457* 290.792* 

GARCH-X 0.89076 0.00638 -0.07183 -0.07183* 19.7767* 

GARCH-GJR 0.55882 0.02636 0.56104* 0.24728 28.6596* 
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GARCH-DCC 1.18343 0.11354 0.79800* -0.27880 56.9843* 

GARCH-JUMP 1.19332 0.11326 0.11326* -0.45387* 47.7996* 

Hungary 

GARCH 0.85084 0.00536 -1.71627* 4.13219* 626.445* 

BEKK-GARCH 0.56015 0.33198 -0.80966* 3.74755* 361.798* 

ECM-GARCH 1.00109 .000001 -3.52009* 19.5979* 9413.64* 

GARCH-X 0.99694 0.00078 -19.4113* 405.419* 3600803* 

GARCH-GJR 1.17351 0.00312 -7.17938* 82.8376* 153439* 

GARCH-DCC 1.01520 0.04262 1.72828* 3.74724* 564.194* 

GARCH-JUMP 1.02564 0.04196 1.68353* 3.52642* 516.067* 

UK 

GARCH 0.99308 0.000006 -4.32020* 26.1339* 16447.1* 

BEKK-GARCH 0.99910 0.00001 -0.86582* 4.72799* 549.303* 

ECM-GARCH 1.00015 0.000004 -2.68025* 9.97747* 2784.85* 

GARCH-X 0.97142 0.00129 -0.92494* 2.18821* 178.233* 

GARCH-GJR 0.98888 0.00003 -4.64886* 32.2367 24436.1* 

GARCH-DCC 1.49113 0.19431 0.41312* -0.08226 14.9662* 

GARCH-JUMP 1.00586 1.00586 -0.12474* 1.95930* 529.089* 

Note: * and ** imply significance at the 5% and 10% levels, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The MCS result of forecasted returns from six GARCH models from 1 July 2011 to 30 June 2012 and 

from 1 July 2012 to 30 June 2014 for Poland, Greece and Hungary 

Horizons 01 July 2011- 30 June 2012 01 July 2012- 30 June 2014 

 RMSE MCS P-value RMSE MCS P-value 

Poland 

GARCH 1.62218 0.9995** 3.43027 0.0355 

BEKK-GARCH 1.62854 3.0e-04 2.26361 0.2380* 

ECM-GARCH 1.62484 5.0e-04 2.28748 0.1530* 

GARCH-X 1.62041 1.0000** 2.28747 0.1530* 

GARCH-GJR 1.62693 4.0e-04 2.20626 1.0000** 

GARCH-DCC 1.62403 0.0018 2.42847 0.0405 

GARCH-JUMP 1.62235 0.9918** 2.43228 0.0405 

Greece 



30 

 

GARCH 3.55601 0.0210 3.43027 0.0000 

BEKK-GARCH 8.17838 0.0024 2.26361 0.9808** 

ECM-GARCH 3.54233 0.9970** 2.28748 0.0135 

GARCH-X 3.55782 0.0210 2.28747 0.0210 

GARCH-GJR 4.08702 0.0016 2.20626 1.0000** 

GARCH-DCC 3.54035 1.0000** 2.42847 0.0132 

GARCH-JUMP 3.54681 0.3867** 2.43228 0.0000 

Hungary 

GARCH 2.10959 0.8182** 1.30593 0.3933** 

BEKK-GARCH 3.31353 0.0130 1.30108 1.0000** 

ECM-GARCH 2.11150 0.9332** 1.40640 4.0e-04 

GARCH-X 2.12103 0.0733 1.40359 0.2064** 

GARCH-GJR 2.16012 0.0733 1.53104 0.0000 

GARCH-DCC 2.10850 1.0000** 1.43820 4.0e-04 

GARCH-JUMP 2.21896 0.0733 1.44543 0.0689 

UK 

GARCH 1.67276 0.7962** 1.19292 0.1175* 

BEKK-GARCH 1.69792 0.0000 1.19888 0.0121 

ECM-GARCH 1.63447 1.0000** 1.19865 0.0186 

GARCH-X 1.69007 0.0973 1.17536 1.0000** 

GARCH-GJR 1.68040 0.7962** 1.18957 0.1221* 

GARCH-DCC 1.96301 0.0000 1.67403 0.0000 

GARCH-JUMP 2.68952 0.0000 1.20425 0.0000 

Note: The MCS p-values that are marked with * and ** are those in *

90%M   and *

75%M  correspondingly. 

 

 
 

Table 4 

MDM(Modified Diebold Mariano) test of forecasted error from GARCH models with normal 

distribution for Greece.  

(M)DM test of forecasted return for Greece 

         Measurement Models                                     one-year forecast two-year forecast 

MSE MAE MSE MAE 

GARCH vs. BEKK > > < < 

GARCH vs. GARCH-X = = < < 

GARCH vs. GARCH-ECM < < < < 

GARCH vs. GARCH-GJR > > < < 

GARCH vs.GARCH-DCC = < < < 

GARCH vs. GARCH-JUMP = < < < 

BEKK  vs. GARCH-X < < > > 

BEKK  vs. GARCH-ECM < < > > 

BEKK  vs. GARCH-GJR < < < < 

BEKK  vs.GARCH-DCC < < > > 

BEKK  vs. GARCH-JUMP < < > > 

GARCH-Xvs.GARCH-ECM < < = = 

GARCH-X vs.GARCH-GJR > > < < 

GARCH-X vs.-GARCH-DCC = < > > 

GARCH-X vs. GARCH-JUMP = < > > 

GARCH-ECM vs. GARCH-GJR > > < < 

GARCH-ECM vs. GARCH-DCC = = > > 
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GARCH-ECM vs. GARCH-JUMP = = > > 

GARCH-GJR vs. GARCH-DCC < < > > 

GARCH-GJR vs. GARCH-JUMP < < > > 

GARCH-DCC vs. GARCH-JUMP = > = > 

Note: >, < and = represent that the prior model outperform, underperform the latter one and it is 

insignificantly different from each other, respectively.  

 
Table 5 Summary of MDM and MCS tests 

Panel A  MDM test 

Market 
one-year forecast of return  two-year forecast of return 

MSE MAE MSE MAE 

Poland  X X GJR GJR 

Greece ECM DCC, ECM GJR GJR 

Hungary DCC DCC BEKK BEKK 

UK ECM ECM X, GJR X,GJR 

Panel B  MCS (Model confidence sets) 

Market one-year forecast of return  two-year forecast of return 

Poland  X,GARCH,JUMP GJR,BEKK,ECM,X 

Greece DCC, ECM GJR, BEKK 

Hungary DCC,GARCH,ECM BEKK,GARCH 

UK ECM,GARCH,GJR X,GJR,GARCH 
Table 6 

The t-statistic values of one-year and two-year return differences between any two models based on MAE and 

MSE approaches with transaction costs 

Horizon one-year returns two2-year returns 

model MAE MSE MAE MSE 

Poland 

GARCH vs. BEKK 8.06399* 2.94199* 10.76057* 2.65828* 

GARCH vs. GARCH-X 6.60445* 1.85906** 9.98922* 2.75284* 

GARCH vs. GARCH-ECM 7.43787* 1.93949** 14.41874* 5.11256* 

GARCH vs. GARCH-GJR 6.37187* 1.60611 10.22379* 2.69770* 

GARCH vs. GARCH-DCC 6.36599* 1.97172* 10.70681* 2.77652* 

GARCH vs. GARCH-JUMP 5.10348* 1.77783** 11.53454* 2.94018* 

BEKK  vs. GARCH-X 8.57518* 3.47916* 12.43313* 3.71529* 

BEKK  vs. GARCH-ECM 8.53660* 3.50507* 10.87245* 2.74619* 

BEKK  vs. GARCH-GJR 8.44514* 3.29570* 12.28435* 3.54855* 

BEKK  vs. GARCH-DCC 8.41961* 3.53539* 12.14018* 3.44253* 

BEKK  vs. GARCH-JUMP 8.74055* 3.63889* 12.07166* 3.39689* 

GARCH-Xvs.GARCH-ECM 11.04974* 4.20251* 10.27734* 3.13906* 

GARCH-X vs.GARCH-GJR 7.17681* 1.71367* 14.57496* 5.18786* 

GARCH-X vs. GARCH-DCC 8.91640* 2.68533* 14.49757* 5.26539* 

GARCH-X vs. GARCH-JUMP 9.28014* 3.08725* 14.71285* 5.25401* 

GARCH-ECMvs.GARCH-GJR 8.01653* 1.91181** 9.63062* 3.02722* 

GARCH-ECM vs. GARCH-DCC 10.81146* 3.94871* 9.59839* 2.99737* 

GARCH-ECM vs. GARCH-JUMP 12.80637* 5.87763* 9.61311* 3.00033* 
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GARCH-GJR vs. GARCH-DCC 7.65791* 1.84811* 13.92835* 5.45992* 

GARCH-GJR vs. GARCH-JUMP 7.75896* 2.25029* 14.81834* 5.17742* 

DCC-GARCH vs. GARCH-JUMP 12.75868* 5.40987* 16.58513* 6.29343* 

Greece 

GARCH vs. BEKK 
9.15712* 4.22039* 9.15712* 4.22039* 

GARCH vs. GARCH-X 9.12364* 3.96811* 9.12364* 3.96811* 

GARCH vs. GARCH-ECM 9.98748* 3.81031* 9.98748* 3.81031* 

GARCH vs. GARCH-GJR 15.48602* 5.69462* 15.48602* 5.69462* 

GARCH vs. GARCH-DCC 7.93239* 2.43865* 7.93239* 2.43865* 

GARCH vs. GARCH-JUMP 8.22864* 2.77665* 8.22864* 2.77665* 

BEKK  vs. GARCH-X 9.12612* 4.18990* 9.12612* 4.18990* 

BEKK  vs. GARCH-ECM 9.15796* 4.22137* 9.15796* 4.22137* 

BEKK  vs. GARCH-GJR 9.68935* 4.40805* 9.68935* 4.40805* 

BEKK  vs. GARCH-DCC 9.24522* 4.39673* 9.24522* 4.39673* 

BEKK  vs. GARCH-JUMP 9.23928* 4.37077* 9.23928* 4.37077* 

GARCH-Xvs.GARCH-ECM 11.16933* 4.55829* 11.16933* 4.55829* 

GARCH-X vs.GARCH-GJR 15.44705* 5.87776* 15.44705* 5.87776* 

GARCH-X vs. GARCH-DCC 7.41126* 2.23584* 7.41126* 2.23584* 

GARCH-X vs. GARCH-JUMP 7.77408* 2.51145* 7.77408* 2.51145* 

GARCH-ECMvs.GARCH-GJR 15.52706* 5.77295* 15.52706* 5.77295* 

GARCH-ECM vs. GARCH-DCC 8.31743* 2.63859* 8.31743* 2.63859* 

GARCH-ECM vs. GARCH-JUMP 8.67490* 3.02593* 8.67490* 3.02593* 

GARCH-GJR vs. GARCH-DCC 14.90226* 4.75762* 14.90226* 4.75762* 

GARCH-GJR vs. GARCH-JUMP 14.71840* 4.64995* 14.71840* 4.64995* 

DCC-GARCH vs. GARCH-JUMP 8.38648* 2.26182* 8.38648* 2.26182* 

Hungary 

GARCH vs. BEKK 9.93271* 4.86303* 13.07326* 2.96889* 

GARCH vs. GARCH-X 8.47295* 3.01724* 16.92977* 5.25520* 

GARCH vs. GARCH-ECM 9.76620* 3.63893* 15.69008* 4.69041* 

GARCH vs. GARCH-GJR 
13.02845* 5.69400* 21.38545* 7.38965* 

GARCH vs. GARCH-DCC 
12.78613* 6.20229* 10.57790* 3.78992* 

GARCH vs. GARCH-JUMP 
6.20229* 5.69487* 10.71311* 3.84708* 

BEKK  vs. GARCH-X 
10.02962* 4.93780* 13.46949* 2.78617* 

BEKK  vs. GARCH-ECM 
10.03614* 4.94215* 13.46037* 2.78577* 

BEKK  vs. GARCH-GJR 
9.99552* 4.90064* 14.90500* 3.02254* 

BEKK  vs. GARCH-DCC 
9.76999* 4.71208* 11.89416* 2.56707 
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BEKK  vs. GARCH-JUMP 
9.81453* 4.68105* 11.98361* 2.58093 

GARCH-Xvs.GARCH-ECM 7.75553* 3.18634* 1.50237 1.00207 

GARCH-X vs.GARCH-GJR 11.44965* 4.68776* 23.36169* 10.89808* 

GARCH-X vs. GARCH-DCC 12.26972* 5.54574* 11.59623* 3.84166* 

GARCH-X vs. GARCH-JUMP 10.22659* 5.44041* 11.48575* 3.86390* 

GARCH-ECMvs.GARCH-GJR 11.39013* 4.66721* 19.37696* 4.14699* 

GARCH-ECM vs. GARCH-DCC 12.55197* 5.66252* 11.29832* 3.95019* 

GARCH-ECM vs. GARCH-JUMP 10.34588* 5.43056* 11.19112* 3.97061* 

GARCH-GJR vs. GARCH-DCC 14.37652* 6.75520* 17.84009* 7.10806* 

GARCH-GJR vs. GARCH-JUMP 11.13233* 5.57021* 17.58360* 6.99232* 

GARCH-DCC vs. GARCH-JUMP 14.32880* 6.91991* 22.41342* 9.85487* 

UK 

GARCH vs. BEKK 2.61483* 1.04029 18.86601* 7.97946* 

GARCH vs. GARCH-X 16.42792* 7.89637* 23.93676* 11.39474* 

GARCH vs. GARCH-ECM 9.65045* 3.36398* 13.57086* 4.40393* 

GARCH vs. GARCH-GJR 7.66165* 2.62679* 14.77752* 5.49142* 

GARCH vs. GARCH-DCC 9.28450* 3.38804* 16.02728* 6.52568* 

GARCH vs. GARCH-JUMP 6.13515* 2.89315* 16.60063* 6.05627* 

BEKK  vs. GARCH-X 5.38538* 1.13996* 14.35796* 6.45847* 

BEKK  vs. GARCH-ECM 1.61520* 1.00593* 14.16196* 4.62882* 

BEKK  vs. GARCH-GJR 2.06868* 1.01681* 17.72814* 7.34491* 

BEKK  vs. GARCH-DCC 9.47420* 3.46555* 15.93696* 6.48621* 

BEKK  vs. GARCH-JUMP 6.22617* 2.89565* 15.55821* 5.33176* 

GARCH-Xvs.GARCH-ECM 17.71236* 9.18596* 14.33977* 4.58551* 

GARCH-X vs.GARCH-GJR 18.01952* 9.56535* 20.82805* 8.89108* 

GARCH-X vs. GARCH-DCC 8.86651* 3.34732* 15.97773* 6.49989* 

GARCH-X vs. GARCH-JUMP 6.04884* 2.89900* 15.27657* 5.01483* 

GARCH-ECMvs.GARCH-GJR 9.12039* 3.87387* 13.56677* 4.56190* 

GARCH-ECM vs. GARCH-DCC 9.40777* 3.35735* 16.05631* 6.50027* 

GARCH-ECM vs. GARCH-JUMP 6.14838* 2.86998* 17.09433* 6.47736* 

GARCH-GJR vs. GARCH-DCC 9.30333* 3.36408* 16.06653* 6.54984* 

GARCH-GJR vs. GARCH-JUMP 6.13009* 2.87360* 17.61973* 7.15780* 

GARCH-DCC vs. GARCH-JUMP 5.62051* 2.81245* 15.82613* 6.40764* 

Note: We test the return difference between the models by means of MAE and MSE statistics.  For example we 

test GARCH and BEKK models by testing if 
| |garch bekkR R

  and 

2( )garch bekkR R
are statistically different 

from zero, which is the paradigm of MAE and MSE tests.  If the statistical values of MAE and MSE tests are 

significant, we can conclude that the return series from the two models are statistically different from each other. 

The t-statistics of the MAE and MSE tests with null hypothesis of difference between return series are 0 and the 

rejection of null indicates that the return difference between two models is statistically significantly different 

from zero.  ‘*’ and ‘**’ represent that the statistical value are significant at 5% or 10% levels, respectively. 
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Table 7 

The mean value of one-year and two-year forecasted return series from seven GARCH models with transaction 

costs (TCs) 

            Models 

 

Country Horizon 

Mean of forecasted returns from the following models 

GARCH BEKK ECM GARCH-X GJR DCC 
JUMP 

Poland 

1-year 
-8.8e-

04（51） 

1.6e-

04（21） 

-9.1e-

04（88） 

-9.3e-

04(39） 

-8.9e-

04(54） 

-9.0e-

04（7） 

-8.9e-

04（30） 

2-year 
3.1e-

05（30） 

1.3e-05(29) 
-7.0e-06(27) 7.8e-05(60) 3.0e-06(51) 9.0e-06(25) 

-1.8e-

05（66） 

Greece 

1-year 
-1.6e-

04（28） 

-3.9e-04(47) 
-1.2e-04(50) -8.7e-05(87) -1.2e-04(66) -5.2e-04(11) 

-5.0e-

03（82） 

2-year 
-9.9e-

05（12） 
4.0e-06(57) -9.5e-05(34) -5.9e-04(22) -1.5e-04(13) 3.0e-06(9) 

2.6-

04（22） 

Hungary 

1-year 
-7.4e-

04（60） 

1.0e-04(32) 
-8.9e-04(9) -8.3e-04(89) 2.8e-03(28) 1.1e-04(21) 

-1.8e-

02（71） 

2-year 
-3.2e-

03（37） 

-2.8e-04(20) 
9.0e-06(22) 1.3e-05(67) 4.5e-04(72) -2.5e-04(42) 2.80e-05(15) 

UK 
1-year 

-1.1e-

04（55） 

1.4e-03(44) 
-1.3e-04(81) -8.3e-05(15) -8.6e-05(33) 4.1e-04(69) -2.6e-04(44) 

2-year -1.1e-04（6） -8.5e-05(31) -1.1e-04(45) -1.1e-04(38) -1.0e-04(3) -3.7e-04(56) -1.1e-04(90) 

Note: 1. Following Kroner and Sultan (1993), with transaction costs, the forecasted return from GARCH model 

is crhrR f

ttgarch

c

tgarch  *

,
ˆ  if we rebalance the futures position, and the return is 

f

ttgarch

c

tgarch rhrR *

,
ˆ  

without rebalancing, where 
*ˆ
garchh  is the hedge ratio from the most recent re-balancing at time t   and we 

balance futures position if and only if the balanced position yields higher return than the previous futures 

position, i.e.,  crhr f

ttgarch

c

t  *

,
ˆ  > f

ttgarch

c

t rhr *

,
ˆ .  In the same manner, we obtain other return series and the 

average value of each forecasted return series from six models, to test which model provides the highest return 

when transaction costs are considered.  
2. The times of rebalancing futures positions are included in parentheses for each country from six GARCH 

models when transaction costs are incorporated. 
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Figure 1 Graphs of one-year Out-of-Sample return forecasts 
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Figure 2 Graphs of two-year Out-of-Sample return forecasts 
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