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Rigorous Benchmarking in Reasonable Time

Tomas Kalibera

University of Kent, Canterbury
t.kalibera@kent.ac.uk

Abstract

Experimental evaluation is key to systems research. Because mod-
ern systems are complex and non-deterministic, good experimental
methodology demands that researchers account for uncertainty. To
obtain valid results, they are expected to run many iterations of
benchmarks, invoke virtual machines (VMSs) several times, or even
rebuild VM or benchmark binaries more than once. All this repe-
tition costs time to complete experiments. Currently, many evalua-
tions give up on sufficient repetition or rigorous statistical methods,
or even run benchmarks only in training sizes. The results reported
often lack proper variation estimates and, when a small difference
between two systems is reported, some are simply unreliable.

In contrast, we provide a statistically rigorous methodology for
repetition and summarising results that makes efficient use of ex-
perimentation time. Time efficiency comes from two key obser-
vations. First, a given benchmark on a given platform is typically
prone to much less non-determinism than the common worst-case
of published corner-case studies. Second, repetition is most needed
where most uncertainty arises (whether between builds, between
executions or between iterations). We capture experimentation cost
with a novel mathematical model, which we use to identify the
number of repetitions at each level of an experiment necessary and
sufficient to obtain a given level of precision.

We present our methodology as a cookbook that guides re-
searchers on the number of repetitions they should run to obtain
reliable results. We also show how to present results with an effect
size confidence interval. As an example, we show how to use our
methodology to conduct throughput experiments with the DaCapo
and SPEC CPU benchmarks on three recent platforms.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement Techniques.

Keywords Benchmarking methodology; statistical methods; Da-
Capo; SPEC CPU.

1. Introduction

Experimental evaluation is key to programming language and sys-
tems research. It has proved hard to do well. Programs are (possibly
surprisingly) non-deterministic, and their execution times can vary
significantly from run to run, or with different builds. Such varia-
tion makes it uncertain what the effect of, say, a particular optimi-
sation might be. The challenge to experimental computer scientists
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is to deal with this uncertainty, and to provide reliable estimates of
program speedup. The difficulty is to know how many experiments
to run, and to minimise the cost in experiment time without com-
promising the validity of the results. We show that, in most cases,
good experimental methodology is feasible without excessive cost.

We focus on execution time, the key measurement in, for exam-
ple, 90 out of 122 papers presented in 2011 at PLDI, ASPLOS and
ISMM, or published in TOPLAS (nos. 1-4) and TACO (nos. 1-2).
Unfortunately, the overwhelming majority of these papers reported
results in ways that seem to make their work impossible to repeat,
or did not convincingly demonstrate their claims for performance
improvement: 71 failed to provide any measure of variation (such
as variance or a confidence interval) for their results. This is unpar-
alleled in most other scientific and social scientific fields. It risks
reporting misleading results.

These risks are real. Advances in performance in our field are
often small (Mytkowicz et al [20] report a median of 10%) and so
can fall within the bounds of measurement error. In a case study of
Java VM/DaCapo benchmarking, Georges et al [9] show how poor
methods of repeating and summarising experiments led to mislead-
ing results. Ignoring systematic bias in code layout in experiments
with SPEC CPU benchmarks can also deliver misleading results
[20]. Even if reported speedups are relatively large, a rigorous study
should estimate the measurement error.

While it is disappointing that all this evidence seems to have had
little impact on practice in our field, maybe it is understandable.
Researchers find themselves faced with the task of running ever
more experiments in order to deal with these problems. Thus they
run multiple iterations of a benchmark for each VM execution
and run each VM execution multiple times. Variations in Unix
environment size and in link order, and randomised algorithms in
compilers (producing different binaries for the same code) all seem
to impose further requirements for repetition [1, 9, 15, 20]. For
example, running the SPEC INT benchmarks to measure speedup
of a compiler optimisation against a base, using 30 different linking
orders, takes 3 days on a recent platform. Running the DaCapo
2006 and 2009 benchmarks [3] to compare two systems, using 20
executions and 10 iterations, also takes almost 3 days.

We renounce any catalogue of despair. We show that good ex-
perimental methodology is feasible: we can cater for variation in
performance without excessive repetition in most cases. Our ap-
proach is to adapt experiment design to the problems that a par-
ticular platform and benchmark present. In our experience, re-
search groups run the same benchmarks on the same systems for
years. This is done for a good reason, as otherwise the performance
changes due to, say, improvements of a garbage collector under
study could be confused with performance changes due to operat-
ing system upgrades. In this setting, an initial investment into di-
mensioning benchmark experiments will pay off. As common in
most statistical analyses of data, this does involve some manual
steps. In most projects this is a one-off investment but, of course,
any major change to the system would necessitate re-dimensioning.


ACM STAFF
This is an updated version of this Paper. The author corrected an error which was introduced in the production of the article. The correction is to equation (2), second line,  in section 9.2. You can download the originally published article from the supplement section in the ACM DL: 
http://dx.doi.org/10.1145/2555670.2464160


Note that repetition is most needed where most non-determinism
occurs in the experiment. We show how to establish the repetition
counts necessary for any evaluation to be valid, and sufficient to
provide the most precise result for a given experimentation budget.
We show how to estimate the error bounds both to evaluate the per-
formance of a single system and to compare execution times of a
baseline and a new version of a system: such ratios are commonly
used but hardly ever qualified with error bounds. As an example,
we apply our methodology to a case study of the performance of
DaCapo and SPEC CPU benchmarks. Our contributions are:

e We explain the shortcomings of statistical methods commonly
used in our field. Instead, we offer a sound method based on
effect sizes and confidence intervals.

e We provide an observational study of non-determinism in the
DaCapo and SPEC CPU benchmarks.

e We offer a sound experimental methodology that makes best
use of experiment time. We establish, both formally and in
practice, the optimum number of repetitions of experiments to
achieve the most precise results for a given experiment time.

e We compare our methodology with heuristics-based practice,
and show that the latter often leads to either too few or too many
experiments.

e We revisit the question of the effect of code layout on the
performance of DaCapo and SPEC CPU and show that it is less
important than prior work had shown.

2. Related Work

When running SPEC CPU benchmarks, Mytkowicz et al [20] found
a number of sources of significant measurement bias, i.e. a system-
atic error in the measurement of systems that might favour one sys-
tem over another. These included the Unix environment size and the
link order (the order in which . o files are given to the linker), which
affect the memory layout of data and code, and hence memory hier-
archy (cache, virtual memory) performance. Mytkowicz et al sug-
gest eliminating this bias by randomising the experimental set-up.
Because of the expense of running benchmarks with many different
link orders, they used only the ‘training’ sizes for the benchmarks.
We repeated their experiments and confirmed the impact of link
order for training sizes. However, our experimental methodology
made it feasible to consider SPEC’s full ‘reference’ sizes, where
we found that, although there was variation, it was very small (Sec-
tion 7.2).

Getting the experimental methodology right is crucial because,
as Georges et al [9] demonstrate, different methodologies can lead
to different conclusions. They advocate running multiple iterations
of each Java benchmark within a single VM execution, and multiple
VM executions. In each execution, a number of initial iterations is
dropped to warm up the benchmark before it is deemed to have
converged to steady state. They establish the warm-up number on
the fly by finding the first window of N (say, 10) iterations that
seems stable (the relative width of 95% confidence interval for the
mean is less than 5%). The sample mean of such a window is used
to summarise this execution of the VM.

The DaCapo’09 benchmark harness also tries to detect steady
state automatically, but reports one iteration per VM execution. It
keeps calculating relative variation (the ratio of standard deviation
and mean) over windows of three iterations until it drops below
3%, at which point the benchmark is deemed to have converged:
the time of one iteration is used as the summary. We observe that
these two automated methods do not perform well, as they often
lead to either too few experiments, hence failing to get to a steady
state, or far too many (Section 6.3).

The compilation strategy of Java VMs is non-deterministic.
Which methods are JIT-compiled and when is determined by sam-

pling method execution. One way to reduce variation between VM
executions is always to compile to the same plan. Ogata et al [22]
use a sampling compiler to capture a compilation plan and then,
for measurements, a replay compiler which compiles methods ac-
cording to this plan. Georges et al [10] advocate compiler replay
with multiple plans to avoid any bias introduced by a fixed compi-
lation plan. They summarise with fixed-effects analysis of variance.
However, this technique can be used only for very similar systems,
where forcing the same compilation plan could still give results
representative of real executions.

Stabiliser [7] is an LLVM-based compiler and runtime environ-
ment for code, stack and heap layout randomisation. It changes
the layout randomly at regular intervals during one execution of a
benchmark, in order to reduce the need for repeated execution. One
benefit is that the sources of layout bias (such as the environment
size [20] or link order) need not be identified by the experimenter.
On the other hand, the results may include far more variation than
in real systems, and hence can mislead. Our approach is less intru-
sive, but expects the experimenter to find potential sources of bias.
If layout is the cause of bias, our methodology could be combined
with Stabiliser. Our approach also applies to systems where online
re-randomisation is not yet available, such as JVMs.

3. The Challenge of Reasonable Repetition

We have seen how variation can be introduced at several stages
of a benchmark experiment (iteration, execution, compilation and
so on). Three kinds of variables influence the outcomes of exper-
iments. Values of controlled variables (such as the platform we
choose, the heap size or compiler options) and how they impact
the results are of interest for the evaluation. Random variables
(such as the time between hardware interrupts or scheduling or-
der on a multi-processor) change frequently in a random or non-
deterministic manner. We are interested in the statistical properties
of our results in face of random variables, but not in the individual
values of these variables. Uncontrolled variables happen to be fixed
for most or all of an experiment, but are beyond our control. If these
impact the results, they cause bias and mislead. Hence, the experi-
menter’s first task is to identify uncontrolled variables that impact
results and modify the experimental system so that these become
either controlled or random. For example, randomising link order
turns an uncontrolled variable into a random one.

Experiment design is a statistical discipline which deals with
how to run experiments efficiently given a set of controlled and ran-
dom variables (see e.g. Maxwell & Delaney [18] for more details
and references to the literature). The goal of benchmarking exper-
iments is typically to estimate (a confidence interval for) the mean
execution time of a given benchmark on one or more platforms, that
is for a relatively small set of combinations of values of controlled
variables. Note that the mean is a property of the underlying prob-
ability distribution of the population of random execution times.
In practice we can never know this mean or the distribution, but
a confidence interval can tell us something about what that mean
might be. If we use sound experimental methodologies in our stud-
ies, each time constructing a 95% confidence interval for the mean,
we can expect that overall in 95% of cases our intervals will have
covered the true means. Often the goal is also to estimate speedup
(65 of the 90 papers in our survey): such an estimate should also be
qualified by a confidence interval.

The challenge we address here, and also the next step of the
experimenter, is to design efficient experiments (repetitions and
repetition counts) given the random variables present. A further
challenge is to identify and get rid of the uncontrolled variables.

Think of a benchmarking experiment as a sequence of actions,
starting with building the benchmark and system under test (e.g.
a virtual machine or a compiler — we call this compilation) and



ending with providing a single execution time measurement. If
this sequence included neither random nor uncontrolled variables
turned to random, the design would be trivial — just run once and
take the result. But in reality a number of random variables in the
sequence will influence the measurement. Some take effect before
the measured operation starts and influence it indirectly, others act
during it.

This necessitates repeating the sequence a number of times, at
least from the point where the first random variable takes effect.
Suppose compilation was not random (it was deterministic and
performance did not depend on code layout): in this case we would
not have to repeat it. In contrast if, say, the start-up of a VM
execution includes some random variation, then we must repeat
VM executions but can do this with the same binary. We refer to
points of potential repetition as levels of the experiment (not to
be confused with a ‘factor level’ in ANOVA). The highest level
is the first source of variation in the experiment sequence, e.g.
compilation. The lowest level is the operation measured (e.g. an
iteration of a benchmark).

Through repetition we get a number of measurements and typ-
ically we calculate a confidence interval. The more repetitions
made, the narrower (‘more precise’) is the interval. At the very
least, repetition must be done at the highest level that has random
variation to avoid bias, but sometimes repeating at lower levels can
reduce experimentation time without sacrificing precision.

In the rest of this paper, we consider how to design experiments
that will deliver reliable results at the least cost in experimentation
time. We explore how many repetitions are needed, at which levels,
and for what price in terms of experimentation time. Although our
approach is general, as an example we consider benchmarking with
two suites, DaCapo and SPEC CPU, and three levels (repeating
iteration, execution and compilation).

4. The Challenge of Summarising Results

As we observed above, it is still uncommon in our discipline to
report results with any degree of statistical rigour despite the efforts
of Georges, Mytkowicz and others [9, 10, 20]. Often the plausible
argument is made that, if performance improvements are large
(e.g. 2x or more), there is no need for statistical machinery to
prove that they are real. However, improvements reported in the
programming languages field are often small enough (e.g. about
10% [20]) to necessitate some statistical demonstration that they do
not come about by chance. Moreover, even a large speedup should
come with error bounds estimate to allow rigorous quantification
and comparison of different studies. Where researchers have used
statistical techniques, these have often been significance tests.

Significance testing. Quantification of performance change with
statistical significance [13, 16] tests whether it is likely that two
systems have different performance. The decision is based on the
probability that the observed difference (or a larger one) in the
(sample) means of the two systems would occur if the (true) means
were the same. This probability, the p-value, is compared against
a pre-defined threshold, the significance level (i.e. 5%). If the p-
value is smaller then the null hypothesis, that the two systems have
the same performance, is rejected.

Problems with statistical significance testing have long been
known. The method is deprecated in other disciplines [, 6, 21, 25],
and some journals explicitly require alternative methods [12]. First,
significance testing does not provide the metric we are ultimately
interested in, a reliable estimate of e.g. the ratio of the execution
times of two systems. The test is also vulnerable to the number of
measurements used. The larger the sample size is (the more mea-
surements we have), the more unlikely even a very small difference
becomes. In practice this means that a large sample size (and in our
field it is easy to generate very large samples) will nearly always

lead to the decision that there is a ‘statistically significant’ differ-
ence in performance, even if the true difference is so small that
it is of little interest; statistical significance methods confuse sam-
ple size and practical relevance [6]. Statistical significance tests are
also notoriously hard to interpret. This may be because they do not
give us the answer to what we want to know but instead offer temp-
tations, such as the belief that the p-value is actually the probability
that the systems have the same performance. The interpretation of
the results of statistical tests is sufficiently tricky that even some
statistics textbooks have got it wrong (examples are given by Co-
hen [6]).

Visual tests. An alternative is to construct confidence intervals
for the two systems under test and to examine whether they overlap.
If they do not, then one can conclude that it is likely that the systems
differ in performance [9, 16]. Jain [13] adds another step, falling
back to a statistical test if the intervals overlap only slightly, i.e.
if the centre of neither interval lies within the other. An advantage
of the visual test is that it gives a clear measure of the size of the
difference in mean performance, while the intervals also show the
uncertainty of the systems in isolation. However, although this is
a useful aid for an analyst, a visual test still does not tell us what
we want to know (an estimate for the ratio of the performances of
the two systems and its error bound) and, in contrast to a statistical
test, lacks any rigorous semantics as its error is not known. It is
actually rather conservative. For example, with 95% confidence
intervals, the probability of error is not 5%, but less than 1% under
the normality assumption [23].

Normality. Researchers in our field commonly assume that the
Central Limit Theorem justifies their use of parametric methods
such as a t-test or analysis of variance on data that is not normally
distributed. Informally, the theorem states that the average of a suf-
ficiently large number of independent and identically distributed
(i.i.d.) random variables tends to follow a Normal distribution. Al-
though the theorem does not fully justify this assumption, para-
metric methods have been found to be robust under various sets
of conditions [2, 24]. Our summarising method is based on anal-
ysis of variance, and we provide a full derivation and discuss its
assumptions in our technical report [14]; we also demonstrate an
alternative non-parametric method.

Effect size. Better methods are available. In section 9.3, we show
how to construct an effect size confidence interval. Summaries can
be as simple as “we are 95% confident that system A is faster than
system B by 5.5% =+ 2.5%”. Such a statement is more natural than
those derived from significance testing and less open to misinter-
pretation: it quantifies the size of the change, gives its error bound
and indicates how certain this result is.

RECOMMENDATION: Analysis of results should be sta-
tistically rigorous and in particular should quantify any
variation. Report performance changes with effect size
confidence intervals.

In summary, sound experimental methodology is an increasing
concern for the computer science research community. On one
hand, it is clear that our field lags behind the standards expected by
other sciences for reporting experimental evaluations. This has led
to the foundation of Evaluate Collaboratory (http://evaluate.
inf.usi.ch/) to promote better experimental practice. On the
other hand, researchers are unclear as to how to make best use of
their time to run and report experiments without sacrificing rigour.
This paper is a contribution towards resolving that dilemma.

5. Benchmarks and Platforms

Benchmarks For JVM experiments we use DaCapo 2006 and
2009 benchmarks (2006-10-MR?2 and 9.12-bach) running on Open-
JDK 7 (version 7u2, build 13, November 17, 2011) compiled with


http://evaluate.inf.usi.ch/
http://evaluate.inf.usi.ch/

Table 1. Platforms Used in the Case Study.

Linux CPU GHz | LLC Mem.
P1]3.0.0 64bit [ 4x16(x1) AMD Opteron 2.1 | 12M L3 | 64G
P2{2.6.38 64bit | 2x4(x2) Intel Xeon 227 |8ML3 |12G

P3]3.0.0 64bit | 1x4(x2) Intel Core i7 34 |8ML3 |16G
P412.6.35 64bit | 1x2(x1) Intel Core 2 24 |4ML2 |4G
P5|2.6.35 32bit | Ix1(x2) Intel Pentium4 3.2 | IML2 |4G

gcc version 4.7. These benchmarks are widely used in garbage col-
lection and VM research. We report only those benchmarks that run
without crashing on the VM. We run the ‘large’ and ‘small’ sizes of
each workload, using the default production settings of the VM and
letting the benchmark harness scale the workloads to all available
processors.

For gcc experiments we use CINT (integer benchmarks) from
the SPEC CPU2006 benchmark suite, version 1.2. SPEC CPU
benchmarks are widely used for C/Fortran compiler and CPU per-
formance measurements. We build the benchmarks with gcc 4.7
using the O3 optimisations, and run the ‘train’ (smallest) and the
‘reference’ (standard) sizes.

Platforms We use 5 different platforms, each running a version
of Ubuntu Linux. In Table 1, 2x4(x2)’ denotes a system with 2
physical processors, each with 4 cores and 2-way hyper-threading.
Platforms P1 and P2 have non-uniform memory access. We disable
all system services that might interfere with measurements.

6. Repeating Iterations

Researchers are typically interested in steady state performance, so
we restrict our study to this case. Performance in the steady state
should be ‘somewhat’ stable, without clear trends, and particularly
without any obvious overhead of VM or application initialisation.
We cannot take /ive measurements before this state is reached.

We identify an initialised state and an independent state of
benchmark execution. We call a state independent if the execu-
tion times of the benchmark iterations are (statistically) indepen-
dent and identically distributed. A state is initialised — the lower
bar — when iterations are no longer subject to obvious and signifi-
cant initialisation overhead. Such overhead may be due to dynamic
linking, filling I/O buffers for data/code, or just-in-time compila-
tion. Independence means that the duration of an iteration is not af-
fected by earlier iterations in the same execution. By definition, ‘in-
dependent’ implies ‘initialised’. We believe that most researchers
would regard an independent state as ‘steady’, and so i.i.d. is a well-
defined sufficient condition for the steady state. We also believe that
‘initialised’” would be widely accepted as a necessary condition for
a steady state.

Random factors, such as context switches, scheduling order or
Java heap layout, can affect performance, so repetition at the iter-
ation level or higher is needed. Repeating iterations is experimen-
tally cheaper since there is no need to wait for a new execution (or
higher level operation) to reach a steady state.

Note that it does not makes sense to repeat measurements unless
the system has reached an independent state. If measurements are
not i.i.d., the variance and confidence interval estimates will be
biased. The first question to ask is, therefore, does a benchmark
reach an independent state and, if so, after how many iterations?

Aside: some researchers might repeat statistically dependent it-
erations and then include, say, their average in further summary [9].
This approach is not incorrect if the results are correctly interpreted,
but the risk of misinterpretation is high. It redefines what is mea-
sured. For example, rather than asking “how long does it take to run
1 iteration”, it asks “how long does it take to run 10 iterations” (di-
vided by 10). Any variance then relates to the ‘10 iterations’ rather
than the ‘one iteration’. This approach always requires repetition at

a higher level to avoid bias and to form the confidence interval. We
would not encourage this practice.

6.1 Independent State

Our first study is to investigate whether DaCapo benchmarks reach
independent state. We run three executions of each benchmark with
300 iterations per execution (note that we do not expect researchers
to run this many iterations). DaCapo and other Java benchmark
suites (such as the SPEC JVM ones) allow iterations to be repeated
within a single VM execution. On the other hand, SPEC CPU
benchmarks provide only one measurement per execution of a
benchmark binary: we address this later.

In the first step, we inspect run-sequence plots (of iteration dura-
tion against iteration number), looking for an iteration after which
the data seem stable, that is with no regularities or patterns. We al-
ways take the maximum of the three executions, but in most bench-
marks the executions agree very closely. We discard the unstable
prefix. In the second step we check whether the remaining data are
statistically independent. If they are, we have found the point at
which the benchmark iterations become independent. Otherwise,
we conclude that the benchmark does not reach an independent
state in reasonable time (running 300 iterations of many of the
large-size DaCapo benchmarks takes far more time than is feasi-
ble for a particular experiment).

To reduce time, we support this manual process with an inter-
active R script. In the first step, the user clicks on a run-sequence
plot to indicate the point at which the data seem stable (this takes
a few seconds per benchmark execution). In the second step, the
script displays three plots for each benchmark execution: an auto-
correlation function (ACF) plot, a lag plot, and a run-sequence
plot with the consecutive measurements connected (details below).
Each of these plots can reveal dependencies, and each is offered in
two versions — one for the measured data and one for that data ran-
domly reordered. The two versions make the interpretation easier:
the experimenter simply looks for a systematic, significant differ-
ence between the real and the randomised plots. With some practice
this takes less than a minute per benchmark (for all 3 executions).

Lag plots and ACF plots (also called correlograms) are com-
monly used to detect whether a time-series data set is random or
not. Given a series Y, a lag plot for a given lag h plots the points
(Y%, Yi—n). Interpretation is easy: any pattern detected in a lag plot
indicates some dependency. We check lag plots for lags 1-4, using
both iteration order and randomly reordered data (all plotted on one
screen by our script). For example, the lag plots in Figure 1(a) show
strong auto-dependency in iterations of lusearch9.’

An auto-correlation plot shows, for each lag h, the correlation
of the series Y; with its lagged version Y;_j: cor(Yy,Yi_p) =
E[(Y: — uy)(Yien, — py)] /0%, where y1 and o are the mean and
variance of Y. By definition, the value is always between -1 and
1. It is 1 for lag h = 0, but for larger values of h, independent
data should have correlations mostly small in absolute value and
in the range shown between the horizontal dotted lines (which
bound the values expected from random noise) in Figure 1(b).
Any systematic structure in the correlations, even if small, is an
additional indication of a dependency. Figure 1(b) shows the ACF
for the same lusearch9 data as the lag plot.

We applied this method to ‘small’ and ‘large’ DaCapo bench-
marks on platforms P1 and P2. Table 2 shows which combinations
reached an independent state. We found that the (in)dependence
patterns agreed in most cases for different benchmark executions.
However, results for ‘small’ sizes disagreed significantly with those
for ‘large’ sizes: clearly one cannot use the ‘small’ sizes as a short-
cut to identify the number of iterations required by ‘large’ bench-

! Lusearch9 stands for lusearch from DaCapo 2009.
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Figure 1. Iteration durations for lusearch9 (left) and randomly re-ordered (right), large size, Jikes RVM running on P2.

marks to achieve independence. The patterns also disagree between
platforms.

Over half the DaCapo/OpenJDK benchmarks reach an indepen-
dent state. Column 2 of Table 3 shows the number of iterations
required for this independent warmup. These figures are JVM de-
pendent: Jikes RVM gave different results.

RECOMMENDATION: Use this manual procedure just
once to find how many iterations each benchmark, VM
and platform combination requires to reach an indepen-
dent state.

In our previous research, manual inspection of detailed perfor-
mance data also helped to reveal bugs that did not lead to crashes,
thus saving not only experimentation but also debugging time.

6.2 Initialised State

Many benchmarks do not reach an independent state in reasonable
time (Table 2). So how should we run these benchmarks? Most have
strong auto-dependencies: a gradual drift in times, trends (grad-
ual increase and decrease), state changes (abrupt change in results
after some number of iterations), systematic transitions between

durations (e.g. odd-numbered iterations show one time and even-
numbered ones another), and so on. By choosing which iterations
to take, we influence the result significantly (by fens of percent).
This is problematic for on-line algorithms that often choose dif-
ferent iterations in different runs, platforms or VMs — they use
an expensive methodology to distinguish performance differences
of only a few percent, but the algorithm incorporates noise many
times larger.

RECOMMENDATION: If a benchmark does not reach an
independent state in a reasonable time, take the same
iteration from each run.

The trends tend to be consistent across runs, and so we would
take the first iteration for which each benchmark is initialised, i.e.
the largest initialised warmup over all VMs and platforms in our
experimental setting. Column 1 of Table 3 shows the initialised
warmups of all the ‘large’ benchmarks on our platforms, estab-
lished manually through inspection of the first 50 iterations of each
execution (from their run-sequence plots). This took only a few
seconds per benchmark execution.



Table 2. Independent State in DaCapo/OpenJDK.

Small Large
P2 Pl P2 Pl
avrora9 | X X X X
bloat6 | - - X X
chart6 | - - - X
eclipse6 | x X X X
eclipse9 | x x X X
fop6| x - X -
fop9| - - - -
h29| x x X X
hsqldb6 | - - X -
jython6| x x - -
jython9| - x - -
luindex6 | x X - -
luindex9| - x X X
lusearch6
lusearch9 | x x X X
pmd6| - - X
pmdo| - - - X
sunflow9 | - x X -
tomcat9 | x - - 00X
tradebeans9 | x x - X
tradesoap9 | x X - 00X
xalan6 | - - X X
xalan9 | - - X X

x reached independent state

- did not reach independent state

Table 3. Number of Iterations to Warmup DaCapo/OpenJDK.

Platform P1 Platform P2

& & . . £ G

S £ g ¢ |¥£ § g O
avrora9 2 128 4 1 3 8 3 6
bloat6| 2 3 9 o 2 4 8§
chart6| 10 88 10 7 3 4 1
eclipse6| 3 14 5 11 5 7 7 4
eclipse9 3 9 4 1 2 14 4 1
fop6| 6 6 4| 10 180 7 8
fop9| 6 10 20 6 9 16
h29| 0 19 3 0 3 0 4 0
hsqldb6 3 4 1 6 6 8 15
jython6 3 5 2 3 5 2
jython9| 3 4 1 3 4 1
luindex6 6 4 48] 13 4 8
luindex9| 11 19 7 8| 10 85 7 8
lusearch9 3 5 5 247 2 37 5 33
pmd6 3 134 4 1 7 4 1
pmd9 3 48 5 2 5 5 3
sunflow9 3 10 oo 0 0 20 oo
tomcat9 5 39 8 8 9 6 8
tradebeans9 2 5 4 5 2 4 1
tradesoap9 | 3 5 5 1 2 4 1
xalan6 2 2 29 00 6 13 15 139
xalan9 3 9 8 42 3 31 5 2

6.3 Experimentation Time Savings

Table 3 shows number of iterations for warmup determined by
the DaCapo’09 harness and by Georges’ method [9]. We show
maximums over three runs. We observe that the heuristics do not
do very well. There are cases when they give a warmup longer
than the independent warmup (e.g. lusearch9 on P1), which would
waste experimentation time. In other cases they give a warmup
shorter than the initialised warmup (e.g. luindex6 on P2), making
any results prone to initialisation noise and hence unusable. This is
not to pick particularly on these two heuristics. Automated on-line
heuristics attempt to take a decision after a few iterations, as they
are designed for real runs. This renders them less reliable than our
once per benchmark/JVM/platform manual method where we look
at 300 iterations. The heuristics sometimes detect independence too
late, but will always waste time on benchmarks that never reach
independence.

The second question to ask is, therefore, how many iterations
should be run with benchmarks that do reach an independent state?
We can run a benchmark to independence and then collect a number
of iterations, or we can repeatedly run it only to its initialised state
and collect one iteration. The former method can save experimen-
tation time if there is higher variation between iterations rather than
between executions, the initialised warmup plus the VM initialisa-
tion before the first iteration is large, and the independent warmup
is small. We examine the tradeoffs between the levels to repeat be-
low.

7. Repeating Executions

The lowest level at which we can repeat a SPEC CPU benchmark is
executing a binary; thus the issues are similar to those faced when
repeating DaCapo iterations. For DaCapo, the interest is whether
there are any random factors that impact results at the execution
level. Hence, we discuss repeating executions for these two suites
separately.

7.1 Variation in Execution (DaCapo)

We focus on DaCapo benchmarks that reach an independent state
by their 11th iteration or sooner. If a benchmark does not reach in-
dependence by this time, we simply run it to its initialised state, and
take only one live iteration. Our approach is however independent
of such a threshold.

To find out if there is random variation exclusively at the exe-
cution level, we ran 30 executions of each benchmark, each with
40 iterations, on OpenJDK/P1. We compare the execution varia-
tion with the iteration variation (Table 4). By iteration variation
we mean the variation of iterations within a single execution. By
execution variation we mean the variation between means of exe-
cutions. A non-trivial execution variation that is much larger than
the iteration variation shows that there are random factors that im-
pact results at the execution level that we need to handle. The vari-
ations in Table 4 are normalised by the mean. We define these mea-
sures mathematically in Section 9.4 and give more sophisticated
estimates in Section 9.2.

Table 4 shows that lusearch9 has very high execution variation
(30%) and much higher than the iteration variation (3%). Xalan6
and bloat6 also have high variation at execution level, as does
xalan9 to some extent. The execution variations of the remaining
three benchmarks are below 0.5%, so we conclude that they do not
have significant random variation at the execution level.

7.2 Initialisation, Independence (SPEC CPU)

SPEC CPU benchmarks can run only one iteration per execution.
Under SPEC rules each binary should be executed 3 times (5
executions were used in [20]). The benchmarks are quite long



Table 4. Percentage Variation.
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Iteration | 14.1 0.8 3.3 1.5 0.8 7.0 35

Execution| 3.7 04 303 04 04 9.1 10

Measured with DaCapo/OpenJDK on P1.

running, so we first check if repetition is really needed, i.e. if
there is any initialisation noise (necessitating warmup) and if the
measurements are i.i.d.. For this we ran 30 executions of each
‘large’ CINT benchmark binary on platforms P3 and P4. On P3,
all the measurements from each benchmark were i.i.d. so warmup
was unnecessary, allowing us to execute each binary only once. On
P4, 10 out of 12 CINT benchmarks had the same nice property.

The exceptions were mcf and gobmk, both of which still can
be immediately considered in an initialised state, but then are auto-
dependent through at least the first 20 executions (mcf increasing,
gobmk decreasing execution times). It would be infeasible with
these two benchmarks to reach an independent state as the 20 it-
erations already take nearly 4 hours (even if they became indepen-
dent later, which we did not check). As in the case of the DaCapo
benchmarks that do not reach independent state in reasonable time,
we would just take the first execution in the initialised state, that is
the first execution.

Thus, in summary, on our two platforms, it is reasonable to use
only one execution of each benchmark binary rather than the de-
fault of 3 (2 as warmup), thereby saving about 7 hours of experi-
ment time.

It may be regarded as questionable whether reaching a steady
state is even desirable with the SPEC benchmarks. Although the
SPEC rules require repetition, the start-up performance of these
benchmarks may be closer to their real usage. Our numbers sug-
gest that this discussion is a distraction: based on results on our
platforms, only one execution is necessary.

8. Repeating Compilation

If any random variation is due to compilation of our VM, compiler
or benchmark, we must repeat the compilation and evaluate mul-
tiple binaries. The same applies if performance depends on code
layout, in which case we should randomise the layout to avoid bias.

To investigate the performance implications of code layout we
patched the gcc compiler to randomise the order of functions
within each module (source file) compiled, the order of modules
compiled/linked and the order of functions globally during link-
time optimisations (LTO), a recent feature of gcc. We use LTO with
the SPEC CPU benchmarks thus randomising their layout fully.
OpenJDK does not yet build with LTO, but its modules are linked
in large batches, so the layout is substantially randomised by our
patch as well. This randomises the VM itself but not the application
code’s layout, and thus there is no direct runtime overhead.

8.1 DaCapo

To check whether DaCapo/OpenJDK benchmarks are sensitive to
code layout, we compared relative variation in 30 executions, each
with a different binary, against variation in 30 executions of the
same binary on platform P1. We always took the 10" iteration from
each execution. Of 24 DaCapo benchmarks, 8 had a variation over
binaries larger than that over executions, but the difference was
never more than a single percentage point, except for antlr6 where
the variation was 9% over binaries and 3% over executions. We also
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Figure 2. Relative variation with randomising and original gcc
(reference size).

carried out a similar experiment with Jikes RVM, randomising the
layout of the VM classes, but the variation over binaries was only
up to one percentage point larger than that over executions.

In summary, while code layout performance impact has been
reported for other systems [11, 15, 20], we found little evidence of
this problem with DaCapo on our platforms despite looking hard.

8.2 SPEC CPU

We repeated Mytkowicz et al’s experiment with link order [20] on
platforms P3, P4 and P5 to see if our systems’ performances are
sensitive to link order. We ran all the ‘training” CINT benchmarks,
with 30 binaries differing in link order, each binary 5 times, and
taking the Sth execution from each. We calculated the relative vari-
ation for each benchmark. As a baseline, we repeated exactly the
same experiment without link order randomisation. We confirmed
the earlier result that nearly all the benchmarks had a higher vari-
ation with the link order randomisation than without, and some by
a large margin (e.g. xalancbmk 4% vs. 1% and libquantum 1.9%
vs. 0.3% on P3). Furthermore, we found that some benchmarks
had statistically significantly worse performance with randomised
link order (xalancbmk by 4% and libquantum by 2.6%). An ex-
perimenter would clearly have to decide if the goal of their study
is performance, independent of code layout (as we believe is com-
monly the case), or the performance of a given layout. Note that the
gcc compiler would not normally change the code layout (these ex-
periments were performed without LTO).

However, real benchmarking must use reference size bench-
marks. Does code layout impact them in the same way? The ex-
periments above cannot be run with reference sizes, because the
benchmarks run for too long. However, we showed in Section 7.2
that it suffices to run each binary just once with the reference size.
So we ran every benchmark 30 times on platform P3, each time
for a different binary. We repeated this once for randomised builds
and once for non-randomised (the default) in order to compare the
variations again. As we used LTO for our randomised binaries, we
also used it with the baseline binary. With each benchmark the vari-
ation was higher with the randomised layout (Figure 2), although
the variation was quite small overall (1.7% with xalancbmk, 1.6%
with mcf and below 1% with all the other benchmarks). Only with



xalancbmk and mcf was the performance with randomisation con-
sistently worse — by 3.3% with xalancbmk and by 6.8% with mcf
(both statistically significant).

Nevertheless, repeating with different code layouts is still use-
ful to avoid bias if the goal is to evaluate layout-independent per-
formance. It can be done quite cheaply as there is no need for per-
execution warmup. The only added cost is re-compiling a bench-
mark before execution, which is comparably cheap as these bench-
marks are long running. However, the experimenter needs to be
aware that layout randomisation can impact performance consis-
tently, and not just introduce noise. To find out the case on a given
platform, one would have to run initial experiments.

9. Multi-level Repetition

With many experiments (such as those DaCapo benchmarks that
reach an independent state), we want to repeat executions and take
multiple measurements from each. Adding repetition at the high-
est level will always increase the precision of the result (narrow
the confidence interval). But, in some cases, increasing repetition
at a lower level may do so more cheaply. The trade-off is between
the degree of variation caused at each level and the cost of repe-
tition. Repetition at the iteration level is cheap (once a benchmark
has reached independence, the added cost is just the measured time
of that new iteration). Repetition at the execution level is more ex-
pensive because, as we add a new execution, we have to wait for
it to reach independence — the cost depends on the length of the
independent warmup and also on application initialisation before
the first iteration (non-trivial in e.g. tradebeans9 and tradesoap9).
The cost of repetition at the compilation level is the time to com-
pile, which again can be non-trivial (e.g. OpenJDK takes about 20
minutes to compile on our platforms).

These trade-offs can be formulated mathematically in order
to determine the optimum number of repetitions that should be
performed at each level to get the most precise result for a given
experimentation time. The inputs for this optimisation are the costs
(independent warmup, time to compile, etc.) and measurements
from an initial experiment. From these measurements, one can
estimate the variances at the different levels. The outputs are the
optimum repetition counts (at all but the highest level) to use
for real experiments later. As long as the variances in the real
experiments are similar to those in the initial experiments, the
repetition counts remain optimal. The interval estimation, however,
uses only estimates/data from the real experiments, so that the
results are sound even if the variances change.

Such a method has been derived for three-level experiments
[15]. Here we generalise that method to an arbitrary number of lev-
els and make a technical improvement to the variance estimators.
Kalibera and Tuma [15] used statistically biased variance estima-
tors when calculating the repetition counts, and hence the counts es-
tablished were not optimal (the expected value of a biased estimator
of the sample variance is not equal to the true variance of the un-
derlying distribution). Their variance estimator of the sample mean
was also biased, making the confidence interval too wide. Too wide
an interval would lead to wasting experimental time and increase
the chance of failing to detect a true difference in systems. Full
proofs and derivations are available in our technical report [14] and
more background can be found in McCulloch et al [19] or Searle et
al [26]. In Section 9.4 we show how to apply our general method to
find optimum repetition counts for DaCapo.

9.1 Initial experiment

Let us consider repetition at levels 1 (the lowest) to n (the highest).
First, run an initial experiment. We denote parameters of the initial
experiment in sans serif font (e.g. ‘ri’) and those for the real
experiment in serif font (e.g. ‘r1’). Choose the repetition counts

(exclusive of any warm-up iterations needed), rq,...,ry, at each
of these levels to be some arbitrary yet sufficient value; 20 may
be a good choice but use 30 if possible. If there are many levels
for the initial experiment, reduce experimental time by using fewer
repetitions (say, 10) at lower levels if you must. It makes sense only
to include a level at the top of the hierarchy (n) where you know
some repetition is needed. For example, we ruled out the impact of
VM code layout on DaCapo benchmarks earlier (on our platform),
so we would not include compilation.

Including other levels (n — 1 and below) is purely for optimi-
sation of the experimental time, as repetition there is never needed
for correctness. If including all levels where repetition is possible
would be infeasible, design several initial experiments with differ-
ent inner levels omitted (though always including the highest level),
e.g. just compilation and iterations, but not executions. If the opti-
mal repetition count at any level in these partial experiments ends
up being 1, it is best not to repeat at that level in the real experiment.

In the initial experiment, gather the costs of repetition at each
level, c1,...,cp—1, i.e. the time added exclusively by that level.
The dimensioning process assumes that these costs do not change
much between experiments, which follows our experience. With
a 3-level experiment (iterations, executions and compilations), we
have:

ci;  time to get an iteration (iteration duration)
co  time to get an execution (time to independent state)
c3  time to get a binary (build time)

In this initial experiment, also take the measurement times,
which we denote Y, ;,, where j1 = 1...ri1tojn, = 1...rp.
These are indexed by the experiment levels (highest to lowest), e.g.
Y5,1,3 would be the third non-warmup iteration time from the first
execution of the second binary in that 3-level experiment.

Calculate arithmetic means of these measurements for different
levels. For instance, the mean across experiments at all but the
highest level (for which the j,™ repetition is used) is denoted
Y, e---e,ie.indexes that vary are denoted by bullets.

N——

n—1

9.2 Variance Estimators

After running the initial experiments, we calculate n unbiased
variance estimators, T%,..., T2 from the repetition counts r; and
the measurements Y, .;,. These estimators describe how much
each level contributes independently to variability in the result.
First, calculate S2, the biased estimator of the variance at each level
i, 1 <1< n:

1 1
$? = (1
Hk:i-H re ri —1

'n i
g E an..‘ji.'--.7an.‘.j,;+1.~--.
Jn=1 Jji=1 i—1 i

Then obtain each T2 as follows:

T s,

2
Vi.l<i<nT? = sﬁfﬁ. 2

ri—1

If T? < 0 (or at least very small — note T? denotes an esti-
mator, not some value squared), then this level of the experiment
induces little variation so repetitions at this level can be removed
from the real experiment. This is semantically equivalent to run-
ning the initial experiment again with fewer levels.



9.3 Real Experiment: Confidence Interval

Once we have these variance estimators and costs, the optimum
numbers of repetitions at levels 1 to n—1 for the real benchmarking

experiments on the same platform are 1, ..., 7rp—1:
. . C; T?
Vi.l<i<n, r;= . 3)
¢ Ti,

In the real experiment, we use these optimal repetition counts,

Ti,...,7yn. Note that this formula does not give the optimum repe-
tition count for the highest level. This is because the optima found
(r1,...,rn—1) are independent of the number of repetitions cho-

sen at that level. More repetitions can always be added at that level
during the real experiment to improve the results’ precision and the
counts already found will remain optimal.

Recalculate the variance estimator S2 in the same way as before
but using the optimal repetition counts and the measurements from
the real experiment. Note that although S2 is a biased estimator of
the variance at the highest level, it is the right estimator to use in
the confidence interval formula (4): technical details can be found
in our technical report [14]. Then calculate as before the arithmetic
means, Y, e-.-e and Ye...e (denoted Y hereafter).

N—— N——

n—1 n

The asymptotic confidence interval with confidence (1 — «) is:
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n— n—1

where timg, is the (1 — 5 )-quantile of the ¢-distribution with
v = r, — 1 degrees of freedom.

Observe that, for a single-level experiment, the interval is the
standard asymptotic interval based on Student’s ¢ distribution (used
in most statistical literature and elsewhere [9, 13, 16]). Note also
that the multi-level interval is the same as if we had used a single-
level interval for the means of all data from all but the highest level
(e.g. binary means).

RECOMMENDATION: For each benchmark/VM/platform,
conduct a dimensioning experiment to establish the op-
timal repetition counts (equation 3) for each but the top
level of the real experiment. Re-dimension only if the
benchmark/VM/platform changes.

9.4 DaCapo Executions vs. Iterations

We applied our optimisation method to suitable DaCapo bench-
marks, i.e. those with random variation at the execution level and
which reach independence in a reasonable time. In Section 7.1 we
identified these as bloat6, lusearch9, xalan6 and xalan9 (on P1). In
Section 8.1 we found no random variation at the compilation level
with these benchmarks, so we are optimising a 2-level experiment,
looking for the optimum number of iterations per execution.

Cost c; is the iteration duration: we use the average of all live
measurements. Cost ¢z is the time to the first live measurement,
which includes VM startup, application startup, and iterations for
independent warmup. We take the average from all executions (we
instrumented DaCapo to print the current time when an iteration
starts, relative to VM start). We show the results in Table 5. We
normalise the variance estimates T7 and T2 by the mean iteration
duration giving variations t; = \/TT2 /Y. They are very similar to
the biased estimators 1/S?/Y in Table 4, so the less sophisticated
method we used for that table worked quite well. Count r; is
the optimum number of live iteration measurements to take from

Table 5. Optimum Iteration Count with DaCapo.

|cils] cals] t1[%)] t2[%]]| 71

bloat6| 35.5 110.0 14.0 27110
lusearch9| 1.7 123 34 303| 1
xalan6| 10.8 246 7.2 89| 2
xalan9| 6.7 71.8 3.5 0.8]15

each of the benchmarks. Note that lusearch9 has an optimum of
only 1 measurement: it has a very high execution variation so
experimenter time is much better spent repeating whole executions
rather than iterations.

10. Measuring Speedup

Typically, we want to compare two systems, e.g. one with a new
optimisation against a base system without, and usually in terms of
the ratio of their execution times. Of the 90 papers from our survey
that evaluated execution time, 65 reported execution time ratios.
Unfortunately, confidence intervals for the execution time ratio are
rarely shown in our field (only 3 papers from our survey attempted
that). Here we show one way to calculate such intervals and derive
how to choose repetition counts.

The interval we show is by Fieller [8] and has been known since
the 1950s, though it has not to our knowledge been used before
for computer performance evaluation. The calculation of another
confidence interval for the ratio has been proposed for computer
simulations [17]. That interval is based on the delta method, but
their case was sampling from a finite population rather than infinite
which we need here. Also, their interval depends on the normal
distribution of the ratios (more details in Cochran [4]). The Fieller
interval which we show here does not make this assumption. Our
technical report [14] includes more details.

10.1 Confidence Interval

A confidence interval for the ratio can be constructed as follows.
Let Y be the average of all live measurements from the old system
and Y that from the new system. We estimate the ratio as Y/ /Y.
We can calculate an asymptotic (1 — «) confidence interval as:

?.?q:\/ (77 (7 - ) (7 = 2)

Y  —h?

2 2
h = tQQ V& h = tZQ VSL
PR V 2vr,

The variance estimators for the old and new system, 52 and S’2
are derived as in Sections 9.2 and 9.3. h and k' are the half-widths
of the confidence intervals for the single systems (Section 9.3).

(&)

where

10.2 Repetition Counts

We have shown how to establish repetition counts for single sys-
tems in isolation. With a little algebra, it can be shown how the
relative half-widths of the single-system intervals relate to the half-
width of the interval for the ratio. Let e, €’ be the relative half-
widths of the systems in isolation:

e=h)Y ¢ =NW/V
The half-width of the interval for the ratio, e, is
Y
_ % . 1_162 e+ e? — 22

We are normally interested only in narrow intervals for the single
systems, say with a half-width below 10%. Hence, we can approx-



Table 6. Suggested Repetitions with DaCapo.

§$ . sg Executions
§ g for precision
S &
& 1% 1.5% 2.5% 5%
avrora9 2 1 14 18 5
bloat6 3 10 99 46 18 7
chart6 10 1 8 5
eclipse6 3 1 33 16 8
eclipse9 3 1 6
fop6 6 1 10 6
fop9 6 1 12 7
h29 0 1 13 7 5
hsqldb6 3 1 12 7
jython6 3 1 15 8 5
jython9 3 1 10 6
luindex6 6 1 8 5
luindex9 11 1 9 6
lusearch9 3 1 00 oo 548 139
pmd6 3 1 52 25 11 5
pmd9 3 1 5
sunflow9 3 1 70 33 14 6
tomcat9 5 1 14 8 5
tradebeans9 2 1 24 12 6
tradesoap9 3 1 5
xalan6 2 2 311 140 52 15
xalan9 9 15 10 6

imate the second term: (1 — e?) = 1. Similarly, e*¢’? = 0. Hence,

!

e%%\/eZ—&-e’Q 6)

Note that, if we were comparing one system with itself, the relative
width of the ratio interval would be 1/2 times wider than the inter-
val for the system itself. If two systems have similar performance
and their intervals are no wider than e relative to the mean, then the
ratio interval would be no wider than ev/2. The better (faster) the
new system is, the narrower will be the confidence interval for the
ratio.

Finally, and fortunately, this result says that optimising the num-
ber of repetitions for a single system, as described in previous sec-
tions, also optimises for the ratio of execution times in two systems.

RECOMMENDATION: Always provide effect size confi-
dence intervals for results (equation 4 for single systems
or 5 for speedups).

11. Good Repetition Counts

As we have shown, the required and optimum numbers of repeti-
tions depend on the platform, VM, and benchmark.

Table 6 summarises the repetition counts we established for
the DaCapo benchmarks on platform OpenJDK/P1. The highest
experimental level here is execution — the more executions we
take, the narrower confidence interval we get. The table shows
approximately how many repetitions would be needed to get a
confidence interval with a half-width that is within 1%, 1.5%,
2.5% or 5% of the mean. We do not show counts of fewer than 5
executions as they could hardly be used to get the variance estimate
right (the confidence interval uses only the variance estimate at the
highest level, so it is fine to have smaller repetition counts at the
other levels). If 1000 iterations are not enough for a given precision,
the table shows the co symbol. The number of executions (highest-

Table 7. Suggested Repetitions SPEC CPU.

Executions = Builds
for precision
0.5% 1% 1.5% 2%
astar 4 (5)
bzip2 4 (5
gcc 4 (5)
gobmk 6
h264ref| 4 (5)
hmmer 3 (5
libquantum | 14 6
mcf| 42 13 7 5
omnetpp 7
perlbench | 12 5
sjeng 6
xalancbmk | 48 14 8 ©6

level repetitions) can be established on-line, by adding repetitions
until the confidence interval is sufficiently narrow.

Table 7 summarises the repetition counts for SPEC CPU bench-
marks on platform P3, compiling with a layout randomising gcc.
The counts are those required to provide 95% confidence intervals
with half-widths of 0.5%, 1%, 1.5% and 2% of the mean; each bi-
nary is executed exactly once. Five of the benchmarks are so stable
that fewer than 5 executions already give a half-width of 0.5%. We
would still run 5 executions of these, though, to get the confidence
interval estimate. For half-widths of 1% and higher, we again do not
show repetition counts below 5. The benchmarks are much more
stable than DaCapo. Xalancbmk and mcf have consistently worse
performance with randomisation — if benchmarking of a fixed lay-
out is sought, the variance would be smaller and it would suffice to
run 5 executions of both for a 0.5% interval half-width.

12. Summary

Rigorous performance evaluation requires benchmarks to be built,
executed and measured multiple times in order to deal with random
variation in execution times. Researchers should provide measures
of variation when reporting results.

Benchmarks such as DaCapo or SPEC CPU require very dif-
ferent repetition counts on different platforms before they reach an
initialised or independent state. Iteration execution times are of-
ten strongly auto-dependent: i.e. the benchmark does not reach a
steady state, and hence automatic detection of steady state, such as
that used in the DaCapo harness or the method recommended by
Georges [9], is not applicable. By choosing different iterations in
different runs, these heuristics can create an error of tens of percent.
‘We believe that currently proposed or implemented heuristics have
proved insufficient to detect independence accurately. We show that
manual identification of independence is both necessary and pro-
vides a feasible technique, when applied as a one-off analysis for
each system. Accurate and robust automation of this inspection is
an open problem.

One benefit of our technique is that it made it feasible to repeat
earlier experiments on the effect of code layout [20], but using the
reference size of SPEC CPU benchmarks. In contrast to the earlier
experiments that could use only training sizes, we find the effect
of code layout to be small for reference sizes. Similarly, we found
no significant impact on the performance of DaCapo benchmarks
when we used the gcc compiler to randomise the code layout of
the HotSpot JVM.

To capture variation, experiments need to be repeated. Experi-
mentation time can be reduced by repetition at multiple levels (e.g.



compilation, execution, iteration) rather than always repeating at
the highest level (e.g. compilation). However, there is no need to re-
peat at a level if the variation introduced by that level is small (e.g.
at the compilation level when the effect of code layout is small). We
provide a statistically rigorous method that identifies the optimal
number of repetitions to perform at each level for a given experi-
mentation budget. Our method saves experimenter time. Although
this dimensioning experiment is expensive, it does not need to be
repeated unless the system (e.g. benchmark/VM/platform) changes.
For most research groups, this investment will be amortised over a
few years. We have applied our method to the DaCapo and SPEC
CPU benchmarks on several platforms. However, it is essential that
experimenters do not use our dimensioning results at face value but
apply our method to their systems, where their results are likely to
differ.

RECOMMENDATION: Benchmark developers should in-
clude our dimensioning methodology as a one-off per-
system configuration requirement.

We exhort researchers to report confidence intervals for their
results and show how to derive these for experiments repeated at
multiple levels, both for single systems and for reporting speedups
between systems. Our methods reported here correct, generalise
and extend earlier work [15]; a full description and proofs are
available in our technical report [14].

Acknowledgements We thank the anonymous reviewers for their
thoughtful comments and suggestions which have improved the
presentation of this work. We are also grateful to Howard Bowman
and to members of the Evaluate Collaboratory for many useful
discussions. Finally, we are grateful for the support of the EPSRC
through grant EP/H026975/1.

References

[1] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed op-
timization of Java. In Proceedings of the 17th annual ACM SIGPLAN
conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA). ACM, 2002.

[2] S.Basuand A. DasGupta. Robustness of standard confidence intervals
for location parameters under departure from normality. Annals of
Statistics, 23(4):1433-1442, 1995.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analy-
sis. In Proceedings of the 21nd annual ACM SIGPLAN conference on
Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 169-190. ACM, 2006.

[4] W. G. Cochran. Sampling Techniques: Third Edition. Wiley, 1977.

[5] R. Coe. It’s the effect size, stupid: What effect size is and why it is
important. In Annual Conference of the British Educational Research
Association (BERA), 2002.

[6] J. Cohen. The Earth is round (p < .05). American Psychologist,
49(12):997-1003, 1994.

[7] C. Curtsinger and E. D. Berger. Stabilizer: Statistically sound per-
formance evaluation. In Proceedings of the eighteenth international

conference on Architectural support for programming languages and
operating systems (ASPLOS). ACM, 2013.

[8] E. C. Fieller. Some problems in interval estimation. Journal of the
Royal Statistical Society, 16(2):175-185, 1954.

[9] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In Proceedings of the 22nd annual ACM
SIGPLAN conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA). ACM, 2007.

[10] A. Georges, L. Eeckhout, and D. Buytaert. Java performance eval-
uation through rigorous replay compilation. In Proceedings of the
23rd ACM SIGPLAN conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA). ACM, 2008.

[11] D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a source of noise
in JVM performance. In Component And Middleware Performance
Workshop, OOPSLA, 2004.

[12] C. Hill and B. Thompson. Computing and interpreting effect sizes.
In Higher Education: Handbook of Theory and Research, volume 19,
pages 175-196. Springer, 2005.

R. Jain. The Art of Computer Systems Performance Analysis. Wiley,
1991.

[14] T. Kalibera and R. E. Jones. Quantifying performance changes with
effect size confidence intervals. Technical Report 4-12, University of
Kent, 2012.

[15] T. Kalibera and P. Tuma. Precise regression benchmarking with ran-
dom effects: Improving Mono benchmark results. In Proceedings of
Third European Performance Engineering Workshop (EPEW), volume
4054 of LNCS. Springer, 2006.

[16] D. J. Lilja. Measuring Computer Performance: A Practitioner’s
Guide. Cambridge University Press, 2000.

[17] Y. Luo and L. K. John. Efficiently evaluating speedup using sampled
processor simulation. I[EEE Computer Architecture Letters, 3(1):6-6,
2004.

[18] S. E. Maxwell and H. D. Delaney. Designing Experiments and Ana-
lyzing Data: a Model Comparison Perspective. Routledge, 2004.

[19] C. E. McCulloch, S. R. Searle, and J. M. Neuhaus. Generalized,
Linear, and Mixed Models. Wiley, 2008.

[20] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Proceeding
of the 14th international conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). ACM, 2009.

[21] S. Nakagawa and I. C. Cuthill. Effect size, confidence interval and
statistical significance: a practical guide for biologists. Biological
Reviews, 82(4):591-605, 2007.

[22] K. Ogata, T. Onodera, K. Kawachiya, H. Komatsu, and T. Nakatani.
Replay compilation: Improving debuggability of a just-in-time com-
piler. In Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA). ACM, 2006.

[23] M. E. Payton, M. H. Greenstone, and N. Schenker. Overlapping
confidence intervals or standard error intervals: What do they mean
in terms of statistical significance? Journal of Insect Science, 3(1996),
2003.

[24] D. Rasch and V. Guiard. The robustness of parametric statistical
methods. Psychology Science, 46(2):175-208, 2004.

[25] R. M. Royall. The effect of sample size on the meaning of significance
tests. American Statistician, 40(4):313-315, 1986.

[26] S.R. Searle, G. Casella, and C. E. McCulloch. Variance Components.
Wiley, 1992.

[13

[t



