University of

"1l Kent Academic Repository

Bowman, Howard, Faconti, Giorgio and Massink, M. (1999) Towards Integrated
Cognitive and Interface Analysis. Technical report.

Downloaded from
https://kar.kent.ac.uk/21874/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical Report 1-99

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21874/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Towards Integrated Cognitive and Interface Analysis

Howard Bowman', Giorgio Faconti? and Mieke Massink?
!Computing Lab, University of Kent at Canterbury, Canterbury, Kent, CT2 7NF, UK
2 CNR-Istituto CNUCE, Via S. Maria 36, 56126 - Pisa - Italy

Abstract: Using cognitive architectures to anal-
yse the usability of human-computer interfaces is
an extensively investigated strategy. A particularly
powerful way to perform such analysis is through
syndetic modelling, where both the interface and
the chosen cognitive model are described in the same
specification framework; allowing the combined be-
haviour of the two to be analysed. This paper pro-
poses LOTOS as a syndetic modelling language. We
highlight four reasons why syndetic modelling is so
difficult and show how the LOTOS notation ad-
dresses each of the four.

Keywords Syndesis, Cognition, Formal Method,
LOTOS

1 Introduction

The next generation of human-computer interfaces
will be extremely complex, incorporating sophisti-
cated interaction mechanisms, such as gestural and
multi-modal interaction. Furthermore, it is clear
that if these interaction mechanisms are used in
an unconstrained manner interfaces can be devel-
oped which are very difficult to use. As an illus-
tration [DBMD95] shows how the combination of
mouse-based pointing gestures and spoken phrases
in the MATIS system [NC95] is not as effective as
expected due to the demands of competing cognitive
resources.

Thus, there is a clear need to assess how cogni-
tively demanding particular interaction tasks are.
The standard approach to such assessment is to con-
struct a prototype system implementation and per-
form user trials. However, this is both time consum-
ing and expensive. Thus, along with many others,
we consider how cognitive models can be used in
making such an assessment.

A powerful approach to such assessment is to de-
scribe both the interface and the chosen cognitive
model in the same notation and then analyse the
cognitive behaviour in the context of the particular
interface. The term syndetic modelling has been
used to describe such combined specification and
analysis [DBMD95].

However, such an integrated approach to speci-
fication and analysis is very demanding. In par-
ticular we can highlight the following four major
difficulties:-

1. General Specification Principles

A description notation which is appropriate for
modelling both the cognitive and interface be-
haviour must be identified. The key to such
a quest is to locate “general” structuring and
interaction paradigms (i.e. means to structure
systems into components and mechanisms by
which components can interact).

2. Incomplete Understanding of the Cogni-
tive
Firstly, cognitive behaviour is highly complex in
nature and secondly, our understanding of it, as
represented by existing cognitive architectures,
is far from complete. Thus, giving a complete
description of cognitive behaviour is certainly
not possible and appropriate abstractions have
to be employed.

3. Scalability

Although an obvious requirement, the need for
scalability is without doubt critical. In par-
ticular, a full description of any non-trivial
cognitive architecture will necessarily be very
large and, in addition, interface behaviour can
be extremely complex. Thus, syndetic speci-
fications will certainly have two main (large)
components, each of which will contain sub-
components. In addressing this issue of scal-
ability we seek specification structuring tech-
niques which have two characteristics:

(a) Compositional. We would like to be able
to build up specifications in a composi-
tional manner by adding new components
without having to break the encapsulation
of existing components.

(b) Hierachical. A major aspect that supports
scalability is the ability to build up speci-
fications in a hierarchical manner, for ex-

ample, at a particular level of decomposi-
tion, being able to wrap up a complex be-
haviour in a component and use the result-
ing component at a higher level of specifi-
cation. This implies that we need to allow
components to themselves be structured
in terms of components. Note that some
techniques fail in this respect by either be-
ing completely flat, e.g. petri nets' or only
allowing one level of component structure,
e.g. (timed) automata approaches such as
UPPAAL.

4. Interpretation of Results

The complexity of the cognitive and interface
specifications can make it difficult to inter-
pret the combined behaviour in a user/designer
friendly manner. This is especially the case if
the chosen specification notation is formal in
nature, which will be the case in this paper and
the user/designer is not a formal methods ex-
pert. To resolve this problem, techniques are
required for systematically hiding parts of spec-
ifications. Thus, enabling only the points of be-
haviour that are relevant to a particular analy-
sis to be seen.

LOTOS. This paper does not claim that all these
requirements can be fully realised with the current
state of research, rather it strives to make a non-
trivial contribution to their realisation. Our pro-
posal in this respect is to use a process calculus
as the syndetic modelling notation. From within
the process calculus canon we have selected LOTOS
[BB88] because it has been used relatively exten-
sively in HCI modelling. However, its use in mod-
elling cognitive behaviour is new.

There are many reasons for selecting LOTOS (and
process calculi in general), see for example [Bow98];
here we concentrate on how it addresses the four re-
quirements for syndetic modelling just highlighted.
In fact, the body of the paper will be structured
in terms of each of these requirements, each section
explains how our LOTOS based approach addresses
a particular requirement. However, it is important
to note that the discussion here arises from a large
body of work on using LOTOS to model cognitive
behaviour, which is reported in [Bow98].

In addition, it is beyond the scope of this paper
to give a full introduction to LOTOS. Thus, a cer-
tain knowledge of the notation is assumed. Also,
throughout the paper we use a reduced LOTOS no-
tation in order to simplify presentation. For exam-
ple, gate lists are not included in process definitions.

LAlthough hierarchical petri nets to some extent resolve
this problem.

from store - to store
image record

input of * transform C to X
code C

transform C to Y

9000000000000000

iy

transform C to Z
input array

Figure 1: General ICS Subsystem Format

ICS. The cognitive model chosen is Interacting Cog-
nitive Subsystems (ICS) [Bar98]. [BM99] argue that
the cognitive theories typically employed in HCI,
e.g. the GOMS family of models, are directed to-
wards the analysis of low-level, well specified, cogni-
tive functions, such as predicting performance times
for particular tasks and that consequently they have
limited scope. In contrast, ICS attempts to provide
a “unified” general purpose cognitive framework and
this broad scope is crucial when modelling in inter-
actionally rich settings as are characteristic of multi-
modal interfaces. In addition, there has been previ-
ous work, e.g. [DBMD95] on applying ICS in HCI,
which we will build upon.

We now give a very brief review of ICS, for a com-
plete presentation of the architecture the interested
reader is referred to [Bar98].

Information Flows and Representations. The
basic “data” items found in ICS are representations.
This term embraces all forms of mental codes, from
“patterns of shapes and colour” as found in visual
sensory systems; to “descriptions of entities and re-
lationships in semantic space” as found in semantic
subsystems [Bar98]. We assume a set Rep of rep-
resentations which contains a null element, denoted
null.

These representations are past amongst the com-
ponents of the architecture, being transformed from
one code to another in each component. Thus,
the architecture can be seen as an information flow
model.

Subsystems. The components of the architecture
are called subsystems and all subsystems have the
same general format, which is shown in figure 1.
Each subsystem itself contains components. For ex-
ample, representations received by a subsystem are
stored in the input array.

Each subsystem contains a set of transformations
which take representations from the input array, ap-
ply some transformational operations to them and
then relay a new (transformed) representation to a
target subsystem.

MPL
— =<
mpl_prop prop_mpl
=1 PrOP — obj_mpl
—] <
prop_obj obj_prop
eye vis L= |]
—_— VIS 0OBJ
vis_obj

Figure 2: A Reading Configuration

We do not consider the image record here, see
[Bow98] for a discussion.

The Architecture. Rather than present the full
ICS architecture, which would be difficult within
the confines of this paper, we concentrate on a par-
ticular configuration of the architecture - a reading
configuration, shown in figure 2.

Each subsystem is a specialization of the general
subsystem format just highlighted. The roles of the
subsystems shown are:-

e Visual (VIS) - receives representations from the
eyes encoding “patterns of shapes and colour”,
i.e. light wavelength (hue) and brightness;

e Morphonolexical (MPL) - works with an abstract
structural description of entities and relation-
ships in sound space, i.e. lexical identities of
words, their status and order;

e Object (0BJ) - works with an abstract structural
description of entities and relationships in vi-
sual space, e.g. attributes of objects: shape and
relative position;

e Propositional (PROP) - works with descriptions
of entities and relationships in semantic space,
i.e. gives semantic meaning to entities and high-
lights the semantic relationships between enti-
ties;

The possible transformations between subsystems
are shown in figure 2.

Multiple Flows and Blending. Sources of rep-
resentation flows are typically sensory subsystems,
e.g. VIS. Each representation is then relayed within
the architecture by the occurrence of transforma-
tions2. Multiple flows can exist in the architecture

2There is actually a debate concerning how representa-
tions are relayed through the architecture. Here we assume
discrete transformation firing. This is a reasonable abstrac-
tion for our purposes.

at the same time.

The architecture accommodates a number of dif-
ferent outcomes when multiple flows are received.
However, the interesting one is if an output trans-
formation acts on a representation which is a com-
bination of two (or more) “competing” input repre-
sentations. This possibility leads to the concept of
blending.

Representations from different flows can be
blended to create a composite representation. How-
ever, the nature of the blending depends upon the
cognitive task being considered. For example blend-
ing might only be possible if the two representations
are, in some appropriate sense, consistent [Bar98].

2 General Specification Prin-
ciples

Here we consider the two issues of fully general
structuring and interaction principles.

2.1 Structuring

A common approach to the disciplined construc-
tion of software systems is the use of abstract well-
defined structures as a way of packaging the de-
scription of system components into units that can
be used as building blocks. In the area of soft-
ware development this has lead to structuring prin-
ciples such as schemas in Z, processes, modules and
classes.

The principle structuring construct in LOTOS is
the process. A process is an autonomous and con-
currently evolving entity.

Each process contains a number of interaction
points at which it can communicate with its en-
vironment, i.e. with the other concurrently evolv-
ing processses. We view the notion of a process as
a suitably general structuring paradigm to underly
syndetic modelling. This is testified to by the obser-
vation that basic components of both the cognitive
architecture and the interface can be modelled as
LOTOS processes, see subsection 2.3.

2.2 Interaction

Clearly in a model constructed with autonomous
components a mechanism needs to be provided
which enables components to interact. Furthermore,
if our chosen notation is going to be appropriate
this interaction paradigm must be primitive enough
to underly inter-component communication in both
the interface and the cognitive domain. We believe

that the process calculi interaction paradigm is suf-
ficiently primitive.

Processes in process calculi interact by perform-
ing a synchronous rendez-vous/handshake. When
both processes are ready, an atomic® synchronisa-
tion and associated transfer of data occurs. Such
primitive interactions yield the process calculus con-
cept of an action. The primitive nature of such an
interaction paradigm can be seen from the obser-
vation that more complex interaction mechanisms,
such as asynchronous or shared memory communi-
cation, can be constructed from action based inter-
action and can thus be viewed as derived behaviour
[Hoa85, Mil89].

Furthermore, interaction in the cognitive domain
can be constructed using the synchronous rendez-
vous. Interaction in ICS is based on transformation
occurences. Such events are modelled in the LOTOS
interpretation as action executions. For example,
the action instance,

vis_obj?r:Rep

models the 0BJ subsystem receiving a representation
(which will be bound to the variable r) from VIS on
the transformation vis_obj.

2.3 Illustration

As an illustration, we offer the following examples of
an interactor based interface and an ICS description

in LOTOS:-

e Interface Interactors. For the structured de-
scription of interactive software interactor mod-
els have been developed [FP90]. Interactor
models form an abstract framework for the de-
scription of components within an interactive
system. The generic interactor model can be
specialised to focus attention on particular is-
sues of system behaviour by embedding the ba-
sic interactor model into a particular language
or modelling approach.

The LOTOS Interactor Model (LIM), describes
interactor behaviour in LOTOS. It organises
the actions used to describe system behaviour
along three dimensions: type of action (control
or information), originator (application or user
side), and direction (input and output). The in-
teractor is considered as an entity that is able
to mediate between the user and the applica-
tion side. It gives feedback on user generated

3This assumption of atomicity is important because it jus-
tifies the interleaving interpretation of concurrency, which is
central to the process calculus approach. For example, simu-
lation tools are predicated upon interleaving.

Application
output receive input send side

output input
trigger trigger
PE— ———

User

input receive +
p side

output send

Figure 3: External view of interactor

output receive input send

V
)‘ Collection l lAbSlraclion l
output

trigger uc

mc

lPresentation = Measure *‘

T me

input
trigger

output send input receive

uc: update collection, me: measure echo, mc: measure control

Figure 4: Internal view of interactor

input and it uses trigger events to indicate fur-
ther input and output. An external view of a
LIM-interactor is given in figure 3.

It shows the communication to the user and the
application side of the interface and the triggers
for input and output.

The internal view of a LIM-interactor is shown
in figure 4. The structure has been based on
the Computer Graphics Reference Model, but
the information processed by a LIM interactor
does not need to be graphical. The interactor
consists of four (sub)processes. In the collection
an abstract representation of the information is
kept that is manipulated and represented by the
interactor. The presentation part gets the ab-
stract representation when the collection is trig-
gered. It uses this representation to make infor-
mation perceivable to the user or to pass it on
to a lower-level interactor. In the measure com-
ponent input from the user is collected. When
this component is triggered it passes the input
to the abstraction component, where it is con-
verted into an abstract representation that can
be passed on to the application or to a higher
level interactor.

The following is an example of a LIM-interactor
modelling the behaviour of a generic Logical In-
put Device (LID) [FFZ94].

M:= iml; me; M [1 ... [1 imj; me; M

1

itl; me; M [... [
P :=me ; eo ; P
A

itm; mc; M

mc ; od ; A

The LID is specified as the parallel composition of
a Measuring (M), a Presentation (P) and an Ab-
straction (A) component which are all specified as
LOTOS processes. The actions iml to imj model
the input received by the Measure process. The
actions it1 to itj model the input triggers. The
action mo is the output sent by the presentation
and od the output generated by the Abstraction
process.

A LID is then specified as the parallel composition
of the above processes appropriately synchronized
with me and mc hidden:

LID := hide me,mc in ((P ||| A) |[me,mc]| M)

e JCS. All ICS subsystems have the same general for-
mat, which is shown in figure 1. Consequently, the
LOTOS subsystem descriptions also have a general
format. For example, the 0BJ subsystem would be
defined as:

0BJ(iA:inArr,...) :=

(vis_obj?rl:Rep; exit(...)

Il prop_obj?r2:Rep; exit(...)

(* Input Ports *)

[11

(obj_mpl!tranOM(get(iA)); exit(..)

1] obj_prop!tran0OP(get(id)); exit(..)

11 obj_lim!tranOL(get(iA)); exit(..))

(x Output Ports *))

>> accept rl,r2:Rep in 0BJ(#(r1,r2,0,0),...)

which uses a data structure iA to model the input
array?; get and tranON are data operations which
respectively get and transform the relevant element
from an input array; and >> is sequential composi-
tion.

Thus, the subsystem performs all its five transfor-
mations (two input, vis_obj and prop-obj, and
three output, obj mpl, obj_prop and obj_lim) inde-
pendently and then recurses (through the sequen-
tial composition), updating the input array on the
way.

Assuming we have process definitions for all sub-
systems we can build the top level behaviour of
ICS using parallel composition. As an illustration,
the reading configuration shown in figure 2 can be
modelled using the following top level composition
of subsystems:

(C VIS(...) I[vis_objll OBJ(...))
| [obj_prop,prop_objl| PROP(...))
| fobj_mpl,prop_mpl,mpl_prop]| MPL(...)

4 Actually there are other data structures which it is be-
yond the scope of this paper to discuss.

3 Incomplete Understanding
of the Cognitive

To address the problem that cognitive behaviour is
only partially explained, suitable levels of abstrac-
tion to describe cognitive models must be identified.
We believe that the abstraction techniques provided
by process calculi facilitate such a level of specifica-
tion.

There is a spectrum of available modelling tech-
niques, see figure 5, with the two extremes being
programming based approaches, such as those typ-
ically used to implement cognitive models, e.g. the
LISP programs underlying SOAR, and abstract uses
of mathematical logic, e.g. temporal logic®. A weak-
ness of the former approaches is that they are often
too prescriptive, forcing a particular “mechanistic”
interpretation on the cognitive model, leaving it un-
clear which aspect of the programs behaviour results
from the cognitive model and which arises from im-
plementation decisions. In formal terms programs
only characterise a single implementation. In con-
trast, abstract logical techniques can characterise
a set of possible implementations. Thus, enabling
specification which is not prescriptive about imple-
mentation details. However, logical descriptions of-
ten express global properties across the entire sys-
tem. Consequently, such approaches often fail to
reflect the underlying component structure of the
system being modelled. In addition, they typically
fail to support execution of a specification, even in
a simulated form.

Process calculi can be seen to sit between these
two extremes, see figure 5. Firstly, the LOTOS spec-
ification we have given certainly reflects the com-
ponent structure of the ICS model, e.g. we have
a LOTOS process for each ICS subsystem. This
makes the specification easier to understand and to
maintain. Previous Modal Action Logic [DBMD95]
based descriptions of ICS have not so directly re-
flected this component structure. Secondly, they en-
able simulated execution using tools such as LOLA
and Smile [LOT8S].

Thirdly, process calculi provide techniques for
avoiding overprescriptive description. In particu-
lar, they facilitate loose specification by allowing
descriptions to contain non-determinism.

Non-determinism arises naturally in process cal-
culi as a by-product of concurrency, since a pro-
cess cannot look inside a concurrently evolving pro-
cess, to know what it can do, it views its behaviour

5Note that here we do not mean logic programming ap-
proaches, rather we refer to pure abstract logic, which in
contrast to Prolog say, does not contain framing of data.

more
abstract

Unstructured Logic Based
Approaches

~
-

- .
< Process Calculi)
\ -
N ——_ -

Programming Solutions

Figure 5: The Spectrum of Available Modelling
Techniques

structured
moreas
implementation

obj_prop
>

Figure 6: Blending

as non-deterministic. However in addition, non-
determinism can be used to avoid prescriptive de-
scription of behaviour. Specifically, many possible
behaviours can be included in the same specifica-
tion, with the choice between them left unspecified.

Furthermore, non-determinism possesses very
nice mathematical properties. For example,

Any property that holds over a specifica-
tion S will also hold over any specification
that is “more deterministic” than S.

This means that any property we can prove about
an abstract (i.e. non-deterministic) specification will
also holds over any more concrete (i.e. more deter-
ministic) specification.

As an illustration, we can define a hierachy of in-
terpretations of blending. For example, assume that
obj_prop acts upon a blend of representations ri
and r2 (which have been placed in the 0BJ input
array from VIS and PROP), see figure 6. There are
a number of possible ways of generating the new
representation r:

1. r€Rep, i.e. r is randomly chosen from the set

More
Deterministic

Figure 7: Hierarchy of Non-determinism

of all representations;

2. r=r1 V r=r2, i.e. r is a random choice of r1
and r2;

3. cons(rl,r2) = r=comp(rl,r2) and
—cons(rl,r2) = r=null
if r1 and r2 are “consistent” then compose
them together otherwise return null.

Thus, 1. is the most non-deterministic solution, as
shown in figure 7. Note that although the extreme
non-determinism inherent in 1. makes the solution
cognitively strange, i.e. r has no relation to r1 or
r2, this is still an analytically useful interpretation.
Specifically, for analysis of many cognitive proper-
ties we will only be interested (or may only need to
be interested) in the blending which occurs at cer-
tain subsystems and we can leave all other blending
completely unspecified, i.e. we do not care what rep-
resentation is selected.

4 Scalability

LOTOS enables construction of large system speci-
fications in a compositional and hierachical manner.

o Compositionality. The LOTOS parallel opera-
tor, | [G]I, is compositionally powerful. New
behaviour can be added incrementally with-
out breaking the encapsulation of existing pro-
cesses. Furthermore, the operator can either be
used structurally (i.e. to add components found
in the target system) or conjunctively (i.e. to
add “global” constraints, in the style of logical
conjunction). The latter possibility yields the,
so called, constrainted oriented style of speci-
fication which has been argued to be a major
benefit of LOTOS.

e Hierarchical. Processes can themselves contain
processes and thus, can contain concurrenct be-
haviour. As a syndetic modelling illustration of
this hierarchy of concurrency. We can describe
the top level behaviour of a syndetic analysis
as:

Interface(...) |[G]| ICS(...)

where the two constituent processes could be
defined in the style shown in section 2, each of
which contains concurrent behaviour, and G is
the set of common actions between the inter-
face and ICS, e.g. control of a mouse interactor
either directly (or indirectly) via the 1im hand
ICS transformation.

behaviour of the specification at certain
interaction points.

2. Verification. Tools can be used, such as
testing and model checking, to automati-
cally determine whether the syndetic spec-
ification satisfies certain properties. With
testing, the property is coded as a test pro-
cess and then the specification is analysed
to see if it will pass or fail the test. With
model checking the property is coded in

temporal logic and then the model checker
automatically analyses whether the synde-
Process calculi come with a powerful set of tools for tic specification satisfies the property.

analysing and interpreting specifications. 3. Logical Deduction.

5 Interpretation of Results

Although powerful,

. . . simulated execution and verification tech-
e Compaction. Firstly, the complexity of the

complete specification of both the interface and
the cognitive architecture can, in some way, be
hidden using the LOTOS hiding operator. This
allows a set of actions to be hidden from the en-
vironment. Thus, if the set of actions that are
relevant to a particular analysis can be identi-
fied, all other actions can be hidden. For ex-
ample, if we are interested to observe/analyse
the behaviour of ICS only at its sensory and ef-
fector ports, we can do this by hiding all other
actions, here the set of actions G, i.e.,

hide G in ICSC(...)

Furthermore, state spaces containing internal
behaviour, can be reduced by applying equiv-
alences, such as weak bisimulation and testing
equivalence [Hoa85, Mil89]. These equivalences
relate specifications that are in some appropri-
ate sense, indistinguishable to an external ob-
server. Importantly, observably indistinguish-
able specifications may have very different in-
ternal behaviour, the level of internal complex-
ity of which can vary dramatically.

Analysis. A number of the available process
calculi analysis techniques can be employed in
the context of syndetic modelling. We list three
techniques.

1. Simulated Ezxecution. Tools such as LOLA
and Smile [LOTS88] enable specifications
to be executed in a simulation environ-
ment. The approach is that the spec-
ification is run, with the user of the
tool interactively resolving choices and
non-determinism (automated resolution of
such branches is also possible). Simulated
execution can be combined with internal
action compaction by just observing the

niques can not be applied in all situations.
For example, when properties about infi-
nite state space systems are considered,
deductive reasoning is typically required.
This can either be performed in the pro-
cess calculus using axiomatizations of such
calculi or in an associated logic.

6 Complete Architecture

[Bow98] describes a specification and then analysis
of ICS in the context of a number of cognitive prop-
erties. Unfortunately, it is beyond the scope of this
paper to fully describe this body of work, however
we summarise it here.

e LOTOS Specification. Using the principles
highlighted in the previous sections of this pa-
per, a LOTOS specification of ICS is given. Se-
mantically, LOTOS specifications can be inter-
preted as a set of state sequences, called inter-
vals. States in these intervals contain a dis-
tinguished variable which indicates the action
that occurs at the state. Thus, new states are
entered when actions are executed. We let Q(P)
denote the intervals of P.

e Goal Formulation Logic. We introduce an inter-
val temporal logic which can be used to formu-
late cognitive properties of ICS. This is based
upon the logic Mexitl which was described in
[BCKT97]. This logic is interpreted over the in-
tervals described in the last bullet point. Thus,
giving us a semantic link between LOTOS and
interval temporal logic.

e (Case Study. We analyse the capabilities of
ICS to perform certain multi-modal tasks.
These tasks have arisen from assessment of the
MATIC system and have also been considered

in [Bow98] and in [DBMD95]. For example, a
typical negative property that we analyse is:

(Vrl 7'é 1“2)
ICS |= ~ ®(speak(r;) A ®located(rs))

where, IC'S is the LOTOS specification of ICS;
S E ¢ states that the specification S satisfies
the formula ¢; r; are representations and ©
holds over an interval which contains a subin-
terval where v holds. Informally, this property
states that it is not possible to speak one rep-
resentation and locate (i.e. point at with, say a
mouse) a different representation at the “same”
time®.

A typical positive property would be:

(Vr) (3o € QUICS))
o F ®(speak(r) A @ located(r))

which, informally, states that it is possible to
speak and locate the same representation at the
“same” time.

e Analysis. Simulation and deductive reasoning
are used to perform this analysis. Specifically,
we verify properties of the form of the above
negative property using deductive reasoning in
the interval temporal logic. This reasoning uses
an axiomatization of the logic. In contrast, pos-
itive properties are verified constructively us-
ing the simulation tool LOLA. Thus, a fulfill-
ing trace is interactively constructed through
simulated execution of the specification.

7 Conclusions

We have motivated the use of LOTOS in syndetic
modelling. LOTOS has been used in modelling the
human-computer interface before. However, our use
of the notation for modelling cognitive behaviour is
new. In addition, we believe that LOTOS provides
an interesting alternative to Modal Action Logic
which has typically been used in syndetic modelling.
Our main preference for LOTOS is that we be-
lieve it provides an appropriate level of abstraction
for integrated interface and cognitive specification
and analysis, since it sits between prescriptive (pro-
grammed) and very abstract (logical) modelling no-
tations.

6Actually, the use of different representations here is
slightly subtle, to be more precise r; and rz denote repre-
sentations with different psychological subjects.

[Bar9g|

[BBS8S]

[BCKT97]

[BM99]

[Bow98]

[DBMDY5]

[FFZ94]

[FP90]

[Hoa85]

[L.OTS8]

[Mil89]

INC95]

References

P.J. Barnard. Interactive cognitive subsystems:
Modelling working memory phenomena with a
multi-processor architecture. In A. Miyake and
P. Shah, editors, Models of Working Memory.
Cambridge University Press, 1998.

T. Bolognesi and E. Brinksma. Introduction to
the ISO Specification Language LOTOS. Comp.
Networks and ISDN Systems, 14(1):25-29, 1988.

H. Bowman, H. Cameron, P. King, and
S. Thompson. Specification and Prototyping of
Structured Multimedia Documents using Inter-
val Temporal Logic. In Int. Conf. on Temporal
Logic, Applied Logic Series. Kluwer, July 1997.

P.J Barnard and J. May. Representing cognitive
activity in complex tasks. Human-Computer In-
teraction, 1999. to appear.

H. Bowman. An interpretation of cognitive
theory in concurreny theory (long version).
Technical Report 8-98, Computing Labora-
tory, University of Kent at Canterbury, 1998.

http://www.cs.ukc.ac.uk/pubs/1998/646 /index.local.

D.J. Duke, P.J. Barnard, J. May, and D.A. Duce.
Systematic development of the human interface.
In APSEC’95, Second Asia Pacific Software En-
gineering Conference, Brisbane. IEEE Computer
Society Press, December 1995.

G. Faconti, A. Fornari, and N. Zani. Visual repre-
sentation of formal specification: an application
to hierarchical logical input devices. In 22, 1994.

G. Faconti and F. Paterno. An approach to the
formal specification of the components of an in-
teraction. In Furographics’90. North Holland,
1990.

C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

LOTOSPHERE. LOTOS Integrated Tool En-
vironment. LOTOSPHERE Project, 1988.
http://wwwtios.cs.utwente.nl/lotos/lite/.

R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

L. Nigay and J. Coutaz. A generic platform for
addressing the multimodal challenge. In Proceed-
ings of ACM CHI’95, pages 98-105. ACM Press,
1995.

