University of

"1l Kent Academic Repository

Steen, Maarten, Derrick, John, Boiten, Eerke Albert and Bowman, Howard

(1999) Consistency of partial process specifications. In: Haeberer, A.M.,

ed. Algebraic Methodology and Software Technology 7th International Conference.
Lecture Notes in Computer Science . Springer, Berlin, Germany, pp. 248-262.

ISBN 978-3-540-65462-9.

Downloaded from
https://kar.kent.ac.uk/16653/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-49253-4 19

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Proceedings Paper

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/16653/
https://doi.org/10.1007/3-540-49253-4_19
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Consistency of Partial Process Specifications

Maarten Steen, John Derrick, Eerke Boiten, Howard Bowman

Computing Laboratory, University of Kent at Canterbury
Canterbury, Kent CT2 7NF, UK. M.W.A.SteenQukc.ac.uk

Abstract. The structuring of the specification and development of dis-
tributed systems according to viewpoints, as advocated by the Reference
Model for Open Distributed Processing, raises the question of when such
viewpoint specifications may be considered consistent with one another.
In this paper, we analyse the notion of consistency in the context of for-
mal process specification. It turns out that different notions of correctness
give rise to different consistency relations. Each notion of consistency is
formally characterised and placed in a spectrum of consistency relations.
An example illustrates the use of these relations for consistency checking.

1 Introduction

There is a growing awareness in distributed software engineering that the de-
velopment of complex distributed systems can no longer be seen as a linear,
top-down activity. It is now widely advocated to structure the specification and
development of such systems according to, so called, viewpoints. Prominent ex-
amples of viewpoint oriented development models are the Reference Model for
Open Distributed Processing (RM-0DP) [9], the Viewpoint Oriented Software En-
gineering (VOSE) framework [5], and object oriented analysis and design models,
such as [2].

In contrast with the traditional ‘waterfall’ model of development, where an
initial, abstract specification is stepwise refined to a final, concrete specifica-
tion, viewpoint models allow specifiers to split up the complete specification of
a complex system into a number of viewpoint specifications each concentrating
on a particular concern or aspect of the system. Individual viewpoint specifica-
tions can then be developed further relatively independent of one another. The
RM-0DP, for example, defines five viewpoints — enterprise, information, compu-
tational, engineering, and technology — from which distributed systems may be
described.

One of the main problems in any multiple viewpoint approach to specification
is defining and establishing that the various viewpoint specifications are con-
sistent with one another. This problem becomes particularly challenging when
we consider that different specification techniques may be applicable to different
viewpoints. The oDP information viewpoint, for example, can be expressed quite
naturally in z, whereas LOTOS is considered more suitable for the computational
viewpoint [16].

In some viewpoint models consistency is defined as a simple set of syntac-
tic constraints. The Booch method [2] (supported by the Rational Rose! tool)
for object oriented design, for example, requires that there is a corresponding
operation in a Class Diagram for each message in a Sequence Diagram. Here,
however, we are concerned with behavioural, or semantic, consistency.

In this paper, we analyse the consistency problem for a substantial number of
process algebraic specification techniques. Process algebra provides a rich theory
for the specification of behaviour. Therefore, this work should provide the for-
mal foundations for consistency checking techniques for more ‘user-friendly’ be-
havioural specification notations, such as State Charts and Sequence Diagrams.
In fact, the consistency relations identified in this paper are directly applicable
to all specification formalisms of which the semantics can be expressed using
labelled transition systems, traces, refusals or failures, e.g., csp [8], ccs [15],
and Object-Z [6].

2 Process Specification

We introduce a simple process algebraic language similar to ccs and ¢sp for the
description of process behaviour. The syntax is borrowed from LOTOS [1]:

Pu=stop| ;P |P[P|PIA]P|hidedinP|X

Here it is assumed that a set of action labels L is given. Then, o € LU{7}; 7 ¢ L
is the unobservable, or internal, action; A C L; and X is a process name. We will
assume that a definition exists for each process name used. Process definitions
are written X := p, where p is a behaviour expression that can again contain
process names, including possibly X itself, thus making the definition recursive.

Semantically, process behaviour can be modelled in many different ways. In
the following, we consider labelled transition systems, traces, refusals and some
combinations of the latter two.

2.1 Labelled Transition Systems

Definition 1. A labelled transition system is a structure (S, L, — ,s¢), where
S is a set of states, L is a set of action labels, — C S x (LU{7}) xS is a
transition relation, and sq € S is the initial state.

Each behaviour description is associated, in the usual manner, with a labelled
transition system through the axioms and inference rules given in Table 1.

Often labelled transition systems are considered to be too concrete to ab-
stractly specify system behaviour. It is therefore customary to interpret process
specifications via, so called, implementation relations [13,3]. These are relations
between a domain of implementations and a domain of specifications that for-
malise a particular notion of correctness. They may, for example, abstract from

! Rational Rose is a trade mark of the Rational Software Corporation.

Table 1. Inference rules

Fa;p—p
p-p Fpllg-—*p'
q-q Fpllg—*¢
p-Lpag A FpllAllg 29" [[A]l ¢
¢, a¢g A FpllAllg 2 p|[A]l ¢’
p—2p,q-"q,ac A pl[A]l¢-p' |[All ¢
p—5p,ag A F hide A in p - hide A inp’
p-Hp ac A F hide A in p - hide A inp’
p-5p, X :=p FX -9

the internal behaviour of an implementation and only verify whether the ex-
ternally observable behaviour corresponds to the behaviour described in the

specification.

2.2 Traces and Refusals

Let L* denote the set of all strings over the set of observable actions L. Elements
of L* are also called traces. The empty string, or empty trace, is denoted € and o
is used to range over L*. Concatenation of traces is represented by juxtaposition.

In Table 2 the notion of transition is generalised to traces. We further define
Tr(p), the set of traces of a process p, Out(p, o), the set of possible actions after
the trace o, and Ref(p, o), the sets of actions refused by a process p after the

trace o:

Definition 2.

Tr(p) “{oel|pZ)
Out(p, o) def {a €L | I ep=>p andp’é}

€ p a
Ref(p,o) L (X CL |3y ep=Sp andVac X opf =5}

Table 2. Trace relations

Notation Meaning

€

0

(

T

"

)*, i.e., the reflexive and transitive closure of

p==p Jq,¢ ep=q-5q =

p=>

' ep=p/

g
p=~ Aplep=p

2.3 Implementation Relations

A large number of implementation relations has been defined over labelled tran-
sition systems [7]; each one capturing a different notion of correctness. In this
paper, we consider only the most prominent trace and/or refusal based imple-
mentation relations from process algebra. Our selection is largely based on a
pioneering study on implementation relations by Brinksma et al. [3].

Definition 3. Let p,s € P be processes, then we define the following relations:

name denotation definition

trace refinement p<gr S Tr(p) C Tr(s)

trace equivalence DRy S Tr(p) = Tr(s)

conformance pconf s Vo € Tr(s) e Ref (p,0) C Ref(s,0)
reduction pred s p<ir s and pconfs

extension pexts s <¢rp and pconf s

testing equivalence P e S preds and sredp

Perhaps the simplest implementation relation is trace refinement. It only
verifies that the implementation cannot perform sequences of observable actions
(traces) that are not allowed by the specification. This is useful for capturing,
so called, safety properties. However, we cannot use it to specify that anything
must happen. Trace equivalence is slightly stronger in that it requires that the
implementation and specification have the same possible traces. Another notion
of validity is captured by the conformance relation (conf), derived from testing
theory. It requires for each trace of the specification, that the implementation
can only refuse to do whatever the specification refuses after that trace. The
reduction relation (red), sometimes referred to as testing preorder or failure
preorder, is the intersection of trace refinement and conformance. It gives rise to
a specification technique with which one can specify both that certain actions
must happen and that certain traces are not allowed. The ezxtension relation,
on the other hand, allows that more traces are added in the implementation, as
long as the implementation is still conformant to its specification. The strongest
implementation relation considered here is testing equivalence. It requires that
the observable behaviour of implementation resp. specification cannot be distin-
guished through external testing.

Process specifications, and in fact any other trace/refusal based specifica-
tions, can be interpreted under any of the implementation relations defined above
to yield a different specification formalism [10] for system behaviour. In a mul-
tiple viewpoint approach to specification potentially all these formalisms may
be used simultaneously. Below, we show how different viewpoints may require
different implementation relations to adequately capture their intended meaning.

2.4 Example Viewpoint Specifications

Consider the specification of a simple vending machine using the oDP view-
points. (It is outside the scope of this paper to give definitions for the five oDP
viewpoints. The interested reader is referred to [14] or the standard itself [9].)

From the enterprise viewpoint one might like to specify the following
policies, divided in permissions and obligations:

Permissions The system is permitted to exhibit any of the following traces
of behaviour: {¢, coin, coin.coffee, coin.tea, coin.coffee.coin, coin.tea.coin, . . .}.
This could be captured by the following specification, when interpreted under
the trace refinement relation (<¢,):

Perm := coin; (coffee; Perm [| tea; Perm)

Obligations The system user is obliged to always first insert a coin into the
machine. The following specification captures this. Here we have decided to
interpret the specification under the extension relation (ext), so the specifi-
cation does not prohibit any other behaviour.

Obl := coin; stop

From the computational viewpoint the system is viewed as a computa-
tional object providing a computational interface upon which its environment
(the user) can invoke one of three operations: coin, coffee and tea.

Comp := T coin; (7; coffee; Comp [] 7; tea; Comp)
[[7: coffee; Comp
[[7: tea; Comp

If the coin operation is invoked, the system will respond by offering its envi-
ronment either coffee or tea. In case one of the other two operations is invoked
by the environment, the system will return to its initial state. Non-determinism
is used to indicate that not all of these operations need to be present in an
implementation. Therefore, any reduction (red) is considered a correct imple-
mentation.

From the engineering viewpoint the system might be viewed as being
composed of two components, a money handler (MH) and a drinks dispenser
(DD), that communicate via a channel. As the channel is only introduced for
internal communication it is hidden from the environment. The following speci-
fication of the engineering viewpoint is interpreted under the testing equivalence
relation (=e).

Eng := hide channelin MH |[channel]| DD
MH := coin; channel; MH
DD := channel; (coffee; DD [] tea; DD)

The obvious question now is whether all these viewpoint specifications are
consistent with one another.

3 Consistency

The purpose of this section is to define (necessary and sufficient) conditions for
viewpoint specifications to be consistent. For the moment we will concentrate

on binary consistency, i.e., consistency between two specifications. Informally,
we call two specifications consistent if, and only if, they have at least one im-
plementation in common, i.e., if there is an implementation that satisfies both
specifications. The definition of consistency is thus parameterised on the notion
of correctness that each specification is subjected to. As we have shown above,
different viewpoint specifications may be subjected to interpretation under dif-
fering implementation relations. Therefore, each combination of implementa-
tion relations, imp, , imp,, gives rise to a different consistency relation, denoted

Cimpl,imp2 .

Definition 4. Let imp,,imp, be implementation relations, then consistency
between specifications subject to imp, and specifications subject to imp, is a
binary relation Cimp, imp, such that, for any si,s, € P,

def . .
51 Cimp, ,imp, 52 £ Jp e Pepimp, sy A pimp, ss.

Considering <i,, =, conf, red, ext and =, as instantiations for imp, and
imp, in the definition of binary consistency, we obtain 36 different notions of
consistency. Whenever imp, = imp,, we speak of balanced consistency, denoted
Cimp- Section 3.1 deals with these (six) cases. The issue of unbalanced consis-
tency, the remaining 30 cases, is discussed in section 3.2. Omitted proofs may
be found in [17].

It is useful sometimes to use the following alternative characterisation of
consistency as the composition of two implementation relations:

Proposition 5. For any two implementation relations imp,,imp,,

. —1 .
Cimpl,imp2 =1mp; o1lmp,.

3.1 Balanced Consistency

This section largely summarises results from [18], where we considered only the
balanced consistency problem.

Since both specifications (in the binary case) are subject to the same imple-
mentation relation, binary, balanced consistency is a symmetric relation.

Proposition 6. For any implementation relation imp, Cipy = (Cimp) ™"

We consider the six cases of binary, balanced consistency, denoted C?mp for
imp € {<¢, =, conf, red, ext, ~. }. For two of these, imp is instantiated with
an equivalence relation. It is easily established that the consistency relation
is equal to the implementation relation in those cases. Of the four remaining
balanced consistency relations, three turn out to hold for any two specifications.

Theorem 7.

2
1. Cztr = Ritr
2. C?w = Rte

~te

3. C%, =PxP
4' Cgonfszp
5- szt:PXP

Proof. The first two results follow from the symmetry and transitivity of =y,
and =.. The remaining cases are proved by exibiting a bottom element in the
respective refinement lattices. Such a bottom element is presented by a pro-
cess — such that Vs ¢ —imps. The existence of such a bottom element implies

consistency, since s1 Cip 52 < 3p ® pimps; A pimp ss.

3. Vs estop <y, s, hence stop is the required bottom element.

4. Define a process Run, that can perform all possible traces and never refuses
any action, as follows?:

Run := ¥{a; Run | a € L}

Observe that, Vo € L* e Ref (Run, o) = {#}. Therefore, Vs e Run conf s.
5. The process Run, defined above, also has more traces than any other process,
i.e. Vse Tr(Run) = L* O Tr(s). Therefore, Vs ¢ Run ext s. O

The following theorem gives a sufficient condition for two specifications (say
s; and s9) to be consistent with respect to reduction. The condition requires
that s; and s, can at least refuse all the actions they may not both do after a
certain trace.

Theorem 8. Let 51,85 € P be two specifications, then s1 C2.q 2 if:
Vo € Tr(s1) N Tr(sz) @ L\(Out(s1,0) N Out(s2,0)) € Ref(s1,0) N Ref (s2,0)
Proof. See [18].

3.2 Unbalanced Consistency

Unbalanced consistency is more complicated than the balanced case. First of all,
there are many more cases of unbalanced consistency. Moreover, unlike balanced
consistency relations, unbalanced ones are not symmetric. However, there is a
close relationship between Cimp, imp, and Cimp,,imp, -

Proposition 9. For any two implementation relations imp, , imp,,

a1
Clmp2,lmp1 - Cimpl,impg .

Since it is easy to derive the inverse of a relation (just swap the arguments),
this proposition gives an easy recipe for deriving Cimp,,imp, from the relation
with the implementation relations reversed Cimp, imp,- It halves our problem of
finding 30 consistency conditions.

For the remaining 15 cases, observe that all implementation relations are re-
flexive. The following proposition therefore allows us to derive at least a sufficient
condition for consistency to hold in each of these cases.

2 The operator X generalises the choice operator (_[] -).

Proposition 10. Given a consistency relation Cimp, imp,, such that imp, is
reflexive,
1mp, g Cimpl,imp2 -

Proof. From reflexivity of imp;, it follows that Id C imp;'. And, by mono-
tonicity of o, Id C impl_1 = imp, C impl_1 0impy = Cimp, ,imp, - O

Under the condition that the inverse of imp,; is stronger than imp, and
imp, is a transitive relation, imp, is both a necessary and sufficient condition.
This result applies to six of the remaining cases.

Theorem 11. Given a consistency relation Cimp, ,imp,; Such that

— imp, s reflexive,
— imp, 12'5 transitive, and
— 1mp; C imp,,

then Cimp, imp, = iMp; .

Proof. By Prop. 10, we have imp, C Cimp, imp,. In the other direction, we
derive by monotonicity of o and transitivity of imp,, that imp; * C imp, =
impl_1 oimp, C imp, oimp, C imp,. O

Corollary 12.

. Czteétr = <tr
Czte,z“ = Rtr
Cztemed =red
Czte7ext = ext
Cz“,gn = Str
. Cext,gtr = Str

S G o e ~

Since testing equivalence is stronger than all other implementation relations,
and because it is an equivalence, we almost always have Cx,.imp, = imp,.
The only case that is missing, is when imp, = conf. Even though conf is not
transitive, we still have the same result.

Theorem 13. (Cx

~te,

conf = conf

Proof. By Prop. 10 we have conf C (Cx,_ cons. For inclusion in the other direc-
tion, observe that, by Prop. 5 and symmetry of &, Cx,.,conf = ~te 0 conf. We
now prove = o conf C conf by extensionality: Vsq, so € P,
81 ~te 0 conf sy
& dp e 51 ~ie p A pconf sy
& 3pe (Vo € L* o Ref(s1,0) = Ref(p, o))
A (Yo € Tr(sz) @ Ref(p,0) C Ref(s2,0))
= Vo € Tr(s2) ® Ref(s1,0) C Ref(s2,0)

& 51 conf sy

Of the remaining consistency relations, one holds for any two specifications.

Theorem 14. Cext.conf =P X P

Proof. Use the same witness as in the proofs of €2, ¢ = C2s = P X P. 0

The remaining two consistency relations with ext coincide with trace refinement.
Theorem 15.

1. Cztr,ext = Ztr
2. Cred,ext =2t

Proof. In one direction, inclusion follows by a simple monotonicity argument:

1. Since ext C >y, it follows that Cx,, ext = Rtr 0 Xt C Ry 0 > = >y
2. Since red™! C >, and ext C >¢r, it follows that Cred,ext = red !oext C
Zr 0 Zgr = Zir.

In the other direction, we need to exhibit a common implementation for any two
specifications s, so such that s; >y, s2. In both cases, such a common implemen-
tation is given by the deterministic process with the same traces as s;. O

In an earlier version of this paper, we defined a relation cons C P x P at
this point (see definition 18) and proposed that being in this relation provided
a sufficient and necessary condition for four of the remaining consistency rela-
tions, viz. C<,,,conf, C<. red, Cred,conf, and Cx,, conf- However, we now know
this not to be the case. Although cons is indeed a precise characterisation of
Cr,.conf (see theorem 19) and it plays a role in the characterisation of Cx,, red
(see theorem 20), Cay,, cont does not coincide with the other three aforementioned
consistency relations. We can, however, establish a relative ordering between the
four relations.

Proposition 16.

1. Cgtr,red = Cgtr,conf
2. Cz“,conf C Cgt,,conf
3. Cred,conf C Cgt,,conf

Proof.

1. Firstly, since red C conf, it follows that C<,, rea = >tr ored C >, o conf =
C<.,conf. Secondly, suppose dpep <, s; Apconf sy, but p fcr $9. There must
then be a o € Tr(p) N Tr(s2) such that a € Out(p, o)\ Out(sz, o) for some
a € L. However, then {a} € Ref(s2,0) so we can remove the a-transition
from p without invalidating that p <(; s; and pconf s3. Now, let p' be the
process constructed from p by removing all these violating transition and we
clearly have p’ <, s1 and p' red ss.

2. Since =iy C >y, it follows that Ca,,,cont = =troconf C > oconf =
C<.,,conf- Moreover, there exist specifications s, so such that s; C<,, conf 52,
but =(s1 Ca,,conf S2) (see example 17).

3. Since red ! C >y, it follows that Cred,conf = red ! oconf C >, oconf =
C<., conf. Moreover, there exist specifications s, s such that s C<,, conf 52,
but —(s1 Cred,cont S2) (see example 17). O

Example 17. Consider the following specifications:

s1 := a; stop [| b; stop
s9 = T; a; stop [| b; c; stop

then we have s C<,, conf S2, because a; stop is a common implementation, but
not s1 Cx,,,conf 52 and not si Cred,conf S2. In the latter two cases, any common
implementation would have to perform b initially and then refuse ¢ to be an
implementation of s;, but such a process can never be conformant to s, which

requires ¢ after b. O

Definition 18. Define a relation cons C P x P as follows:

pconsq & o € Tr(p) N Tr(q) o (L\ Out(p,0)) € Ref(q,0).

The relation cons characterises Cx,, conf, as is shown in the following theorem.
In order for a process p to be ‘trace-conf consistent’ with a process ¢, ¢ must
be able to refuse everything that p cannot do after a certain trace ¢ common to
both p and gq.

Theorem 19. Cx,, cont = cONS

Proof. Firstly from left to right. Assuming that Ip e p=is1 A pconf s, we
need to show that s; consss. Suppose not. By definition of cons this means
that L\ Out(s1,0) & Ref(s2,0) for some trace ¢ € Tr(s;) N Tr(s2). From the
assumption that p=e, sy it follows that Out(p,o) = Out(s;,o) and therefore
that L\ Out(p, o) & Ref (s2,0). However, for p to be a valid process (e.g., see [12,
p. 62]), we must have L\ Out(p, o) € Ref (p, o), which contradicts that p conf s,.

Secondly, from right to left. Assume s; cons s5. Next, construct a process p
with the following traces and refusals:

Tr(p) = Tr(s1)
Ref(p,0) = Ref(sa,0), if 0 € Tr(s2)
Ref(p,0) = p(L\ Out(p,0)), if 0 € Tr(p)\ Tr(sz)

It immediately follows that p ~; s1 and p conf s5. However, it still needs to be
verified that the combination of traces and refusals satisfy certain properties in
order for them to define a valid process (e.g., see [12, p. 62]). Most of these prop-
erties follow trivially from the given definitions, but the following may require
some formal justification:

X € Ref(p,0) = X U (L\Out(p,0)) € Ref (p,0)

By contradiction: suppose XU(L\ Out(p, o)) & Ref(p, o) for some o € Tr(p) such
that X € Ref(p,0).If o € Tr(ss), then we have a straightforward contradiction,

because then L\ Out(p,o) € Ref(p,o) by definition. Otherwise, there must be
some a € L\Out(p,o) such that {a} € Ref(p,o), since X € Ref(p,o). From
the fact that Tr(p) = Tr(s1), we also know that a ¢ Out(s1,0). However,

then it follows by s cons sy, that {a} € Ref(s2,0), which contradicts that
{a} & Ref(p, o), because Ref (p,o) = Ref(s2,0) by definition. O

Theorem 20. Cx,, red = <¢rNcons

Proof. In one direction, a simple calculation suffices:
Crrred = Rgr © red = x; O(Str N COIlf)
C (=4 0 <¢r) N (=4 0 conf) = <, Ncons

In the other direction, assume s; <¢; s2 and s; cons sy for some s;,ss. By
$1 cons sy, we have p =4, s1 and p conf s; for some p. By s1 <, $2, it then follows
that p <, s2 and therefore that pred s,. O

3.3 Summary of Consistency Results

By instantiating the general definition of binary consistency with the implemen-
tation relations defined in section 2.3, 36 different notions of consistency were
obtained. For most of these notion of consistency a necessary and sufficient con-
dition has been derived, in the form of a characterising relation, under which two
specifications can be considered consistent. Eventhough we did not yet find such
characterising relations for C<,, conf = C<., red a1d Cred,conf, We conjecture that
they exist nevertheless. In the following we denote these two unknown relations
cs; and cso, resp. The obtained results are summarised in Table 3.

In order to verify the consistency of two specifications sq, so interpreted via
implementation relations imp,,imp,, respectively, look up the relation in the
row labelled by imp; and the column labelled by imp,. Say this is a relation
C. Now, if s; C s, then 51 Cimp, ,imp, 52 holds.

Table 3. Consistency conditions

|| <ir | Rir | conf| red | ext | Rote

<u||P x P Ztr CS1 CS1 Ztr Ztr

Rir|| <tr Rty cons |<¢;Ncons| >y Rty
— = — -7

conf|cs;!| cons™' |PxP| csy ! |P x Plconf
—1 1 3 T

red|| cs; >ir N cons cSo Cred > | red
ext| < <¢r P xP <tr PxPlext !

el <tr Rir conf red ext Rite

Fig. 1 relates the consistency relations in terms of their relative strength. The
strongest consistency relation (=) can be found at the bottom of the spectrum;
the weakest relation (P x P) at the top. A line between two relations indicates

Fig. 1. The spectrum of consistency relations

that the lower one is included in the higher one. It is always sufficient to verify
a strictly stronger relation rather than the required notion of consistency.

The relationships depicted in the bottom half of Fig. 1 are mostly well-known
results from the literature [13,12,3]. The other relationships between consis-
tency relations usually follow from a straightforward monotonicity argument as
in Prop. 16 or directly from the definitions.

3.4 Consistency Checking Example

Using the results obtained above, we can now verify the pair-wise consistency of
the specifications in Sect. 2.4:

Obl, ext) and (Perm, <) are consistent, because Obl <y, Perm.

Obl, ext) and (Comp, red) are consistent, because Obl <;, Comp.

Eng, ~.) and (Obl, ext) are consistent, because Eng ext Obl.

Perm, <i,) and (Comp, red) are consistent, because Permred Comp, which
is a sufficient condition for consistency by Prop. 10.

= (
- (
= (
- (

— (Eng, ~¢) and (Perm, <) are not consistent, because Eng £, Perm. The
problem here is that Eng has a trace <coin.coin>, which is not allowed by
Perm. This is due to the concurrency in Eng.

— (Eng, =4.) and (Comp, red) are not consistent, because Engr¢d Comp. Al-
most the same problem as above. Eng cannot refuse to do a coin-action, after
the initial coin, whereas Comp cannot do such an action.

The main problem with the engineering specification is that it allows a new coin
to be inserted already before the last drink has been taken. The inconsistency
can be resolved here by adding another synchronisation between the two parts
of the engineering specification (the same channel can be used for this):

NewEng := hide channelin MH |[channel]| DD
MH := coin; channel; channel; MH
DD := channel; (coffee; channel; DD [] tea; channel; DD)

With such a synchronisation in place the money handler will refuse the next coin
until the previous drink has been taken out. The new engineering specification
is consistent with both the permissions from the enterprise viewpoint and the
computational specification.

With the revised engineering specification the set of viewpoint specifications
is also globally consistent — there exists an implementation that satisfies all
four specifications. The common implementation is the engineering description
NewEng (see Fig. 2).

Perm Obl Comp NewEng
<ir \ext re Rte
NewEng

Fig. 2. Global consistency

4 Conclusion

We have presented characterisations of all possible, i.e., balanced and unbal-
anced, binary consistency relations between six different trace and/or refusal
based specification formalisms for process behaviour. These consistency rela-
tions are vital if formal specifications are to be used in a multiple viewpoint
approach to specification, as is advocated, e.g., by the RM-0ODP [9].

Various other approaches to partial process specification have been suggested
in the literature [4, 11, 12], some with associated consistency conditions. However,
those authors do not consider, what we have called, unbalanced consistency
relations.

Ongoing research at the University of Kent focuses on the ‘translation’ of
the consistency relations to consistency checking techniques and tools for more
‘user-friendly’, graphical specification notations. The main question here is “what
implementation relations are (implicitly) assumed by specifiers of State Charts,
Sequence Diagrams, etc?”

Another topic for further study is how to deal with specifications at dif-
ferent levels of abstraction. A single action in an enterprise specification may
correspond to a more complicated behaviour in the computational specification.
In order to support consistency checking between such specifications, we need
to consider also implementation relations that incorporate some form of action
refinement.

Acknowledgements

We would like to thank Guy Leduc for his comments on an earlier version of this
paper.

References

1. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25-59, 1987.

2. G. Booch. Object oriented design with applications. Benjamin/Cummings, 1991.

3. E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their imple-
mentations and their tests. In Protocol Specification, Testing and Verification VI,
pages 349-360. IFIP, 1987.

4. R. Cleaveland and B. Steffen. A preorder for partial process specifications. In
J. C. M. Baeten and J. W. Klop, editors, CONCUR ’90: Theories of Concurrency:
Unification and Eztension, LNCS 458, pages 141-151. Springer-Verlag, 1990.

5. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: a framework for integrating multiple perspectives in system development.
International Journal on Software Engineering and Knowledge Engineering, Spe-
cial issue on Trends and Research Directions in Software Engineering Environ-
ments, 2(1):31-58, March 1992.

6. C. Fischer and G. Smith. Combining CSP and Object-Z: Finite or infinite trace
semantics. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors,
FORTE/PSTV’97, pages 503-518, Osaka, Japan, November 1997. Chapman &
Hall.

7. R. J. van Glabbeek. The linear time — branching time spectrum II; the semantics
of sequential systems with silent moves (extended abstract). In E. Best, editor,
CONCUR’93, LNCS 715, pages 66-81. Springer-Verlag, 1993.

8. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

9. ISO/IEC JTC1/SC21/WGT. Basic Reference Model of Open Distributed Process-
ing. ISO 10746, 1993. Parts 1-4.

10.

11.

12.

13.

14.

15.
16.

17.

18.

K. G. Larsen. Ideal specification formalism = expressivity + compositionality
+ decidability + testability + ---. In CONCUR’90. Theories of Concurrency:
Unification and Eztensions, LNCS 458, pages 33-56. Springer-Verlag, 1990.

K. G. Larsen. Modal specifications. In J. Sifakis, editor, Automatic Verification
Methods for Finite State Systems: Proceedings, LNCS 407, pages 232-246. Springer-
Verlag, 1990.

G. Leduc. On the Role of Implementation Relations in the Design of Distributed
Systems using LOTOS. PhD thesis, University of Liege, Belgium, June 1991.

G. Leduc. A framework based on implementation relations for implementing LO-
TOS specifications. Computer Networks and ISDN Systems, 25:23—-41, 1992.

P. F. Linington. RM-ODP: The Architecture. In K. Raymond and L. Armstrong,
editors, Open Distributed Processing II, pages 15—-33. Chapman & Hall, February
1995.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Sinnott and K. J. Turner. Modeling ODP viewpoints. In H. Kilov, W. Harvey,
and H. Mili, editors, Workshop on Precise Behavioral Specifications in Object-
Oriented Information Modeling, OOPSLA 1994, pages 121-128. OOPSLA, Octo-
ber 1994.

M. W. A. Steen. Consistency and Composition of Process Specifications. PhD
thesis, University of Kent at Canterbury, May 1998. Submitted for examination.

M. W. A. Steen, H. Bowman, and J. Derrick. Composition of LOTOS specifica-
tions. In P. Dembinski and M. Sredniawa, editors, Protocol Specification, Testing
and Verification XV, pages 87-102. Chapman & Hall, 1995.

