
Steen, Maarten, Derrick, John, Boiten, Eerke Albert and Bowman, Howard
(1999) Consistency of partial process specifications. In: Haeberer, A.M.,
ed. Algebraic Methodology and Software Technology 7th International Conference.
Lecture Notes in Computer Science . Springer, Berlin, Germany, pp. 248-262.
ISBN 978-3-540-65462-9.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/16653/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-49253-4_19

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Proceedings Paper

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/16653/
https://doi.org/10.1007/3-540-49253-4_19
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Consistency of Partial Process Speci�cationsMaarten Steen, John Derrick, Eerke Boiten, Howard BowmanComputing Laboratory, University of Kent at CanterburyCanterbury, Kent CT2 7NF, UK. M.W.A.Steen@ukc.ac.ukAbstract. The structuring of the speci�cation and development of dis-tributed systems according to viewpoints, as advocated by the ReferenceModel for Open Distributed Processing, raises the question of when suchviewpoint speci�cations may be considered consistent with one another.In this paper, we analyse the notion of consistency in the context of for-mal process speci�cation. It turns out that di�erent notions of correctnessgive rise to di�erent consistency relations. Each notion of consistency isformally characterised and placed in a spectrum of consistency relations.An example illustrates the use of these relations for consistency checking.1 IntroductionThere is a growing awareness in distributed software engineering that the de-velopment of complex distributed systems can no longer be seen as a linear,top-down activity. It is now widely advocated to structure the speci�cation anddevelopment of such systems according to, so called, viewpoints. Prominent ex-amples of viewpoint oriented development models are the Reference Model forOpen Distributed Processing (rm-odp) [9], the Viewpoint Oriented Software En-gineering (vose) framework [5], and object oriented analysis and design models,such as [2].In contrast with the traditional `waterfall' model of development, where aninitial, abstract speci�cation is stepwise re�ned to a �nal, concrete speci�ca-tion, viewpoint models allow speci�ers to split up the complete speci�cation ofa complex system into a number of viewpoint speci�cations each concentratingon a particular concern or aspect of the system. Individual viewpoint speci�ca-tions can then be developed further relatively independent of one another. Therm-odp, for example, de�nes �ve viewpoints | enterprise, information, compu-tational, engineering, and technology | from which distributed systems may bedescribed.One of the main problems in any multiple viewpoint approach to speci�cationis de�ning and establishing that the various viewpoint speci�cations are con-sistent with one another. This problem becomes particularly challenging whenwe consider that di�erent speci�cation techniques may be applicable to di�erentviewpoints. The odp information viewpoint, for example, can be expressed quitenaturally in z, whereas lotos is considered more suitable for the computationalviewpoint [16].

In some viewpoint models consistency is de�ned as a simple set of syntac-tic constraints. The Booch method [2] (supported by the Rational Rose1 tool)for object oriented design, for example, requires that there is a correspondingoperation in a Class Diagram for each message in a Sequence Diagram. Here,however, we are concerned with behavioural, or semantic, consistency.In this paper, we analyse the consistency problem for a substantial number ofprocess algebraic speci�cation techniques. Process algebra provides a rich theoryfor the speci�cation of behaviour. Therefore, this work should provide the for-mal foundations for consistency checking techniques for more `user-friendly' be-havioural speci�cation notations, such as State Charts and Sequence Diagrams.In fact, the consistency relations identi�ed in this paper are directly applicableto all speci�cation formalisms of which the semantics can be expressed usinglabelled transition systems, traces, refusals or failures, e.g., csp [8], ccs [15],and Object-Z [6].2 Process Speci�cationWe introduce a simple process algebraic language similar to ccs and csp for thedescription of process behaviour. The syntax is borrowed from lotos [1]:P ::= stop j �;P j P [] P j P j[A]j P j hideA in P j XHere it is assumed that a set of action labels L is given. Then, � 2 L[f�g; � 62 Lis the unobservable, or internal, action; A � L; and X is a process name. We willassume that a de�nition exists for each process name used. Process de�nitionsare written X := p, where p is a behaviour expression that can again containprocess names, including possibly X itself, thus making the de�nition recursive.Semantically, process behaviour can be modelled in many di�erent ways. Inthe following, we consider labelled transition systems, traces, refusals and somecombinations of the latter two.2.1 Labelled Transition SystemsDe�nition 1. A labelled transition system is a structure (S;L; �! ; s0), whereS is a set of states, L is a set of action labels, �! � S � (L [f�g) � S is atransition relation, and s0 2 S is the initial state.Each behaviour description is associated, in the usual manner, with a labelledtransition system through the axioms and inference rules given in Table 1.Often labelled transition systems are considered to be too concrete to ab-stractly specify system behaviour. It is therefore customary to interpret processspeci�cations via, so called, implementation relations [13, 3]. These are relationsbetween a domain of implementations and a domain of speci�cations that for-malise a particular notion of correctness. They may, for example, abstract from1 Rational Rose is a trade mark of the Rational Software Corporation.

Table 1. Inference rules` �; p ��! pp ��! p0 ` p [] q ��! p0q ��! q0 ` p [] q ��! q0p ��! p0; � 62 A ` p j[A]j q ��! p0 j[A]j qq ��! q0; � 62 A ` p j[A]j q ��! p j[A]j q0p ��! p0; q ��! q0; � 2 A ` p j[A]j q ��! p0 j[A]j q0p ��! p0; � 62 A ` hideA in p ��!hideA in p0p ��! p0; � 2 A ` hideA in p ��!hideA in p0p ��! p0; X := p ` X ��! p0the internal behaviour of an implementation and only verify whether the ex-ternally observable behaviour corresponds to the behaviour described in thespeci�cation.2.2 Traces and RefusalsLet L� denote the set of all strings over the set of observable actions L. Elementsof L� are also called traces. The empty string, or empty trace, is denoted � and �is used to range over L�. Concatenation of traces is represented by juxtaposition.In Table 2 the notion of transition is generalised to traces. We further de�neTr(p), the set of traces of a process p, Out(p; �), the set of possible actions afterthe trace �, and Ref (p; �), the sets of actions refused by a process p after thetrace �:De�nition 2.Tr(p) def= f� 2 L� j p �=)gOut(p; �) def= fa 2 L j 9p0 � p �=) p0 and p0 a=)gRef (p; �) def= fX � L j 9p0 � p �=) p0 and 8a 2 X � p0 a=6) gTable 2. Trace relationsNotation Meaning�=) (��!)�, i.e., the re
exive and transitive closure of ��!p a�==) p0 9q; q0 � p �=) q a�! q0 �=) p0p �=) 9p0 � p �=) p0p �=6) 6 9p0 � p �=) p0

2.3 Implementation RelationsA large number of implementation relations has been de�ned over labelled tran-sition systems [7]; each one capturing a di�erent notion of correctness. In thispaper, we consider only the most prominent trace and/or refusal based imple-mentation relations from process algebra. Our selection is largely based on apioneering study on implementation relations by Brinksma et al. [3].De�nition 3. Let p; s 2 P be processes, then we de�ne the following relations:name denotation de�nitiontrace re�nement p�tr s Tr(p) � Tr(s)trace equivalence p�tr s Tr(p) = Tr(s)conformance p conf s 8� 2 Tr(s) �Ref (p; �) � Ref (s; �)reduction p red s p�tr s and p conf sextension p ext s s�tr p and p conf stesting equivalence p�te s p red s and s red pPerhaps the simplest implementation relation is trace re�nement. It onlyveri�es that the implementation cannot perform sequences of observable actions(traces) that are not allowed by the speci�cation. This is useful for capturing,so called, safety properties. However, we cannot use it to specify that anythingmust happen. Trace equivalence is slightly stronger in that it requires that theimplementation and speci�cation have the same possible traces. Another notionof validity is captured by the conformance relation (conf), derived from testingtheory. It requires for each trace of the speci�cation, that the implementationcan only refuse to do whatever the speci�cation refuses after that trace. Thereduction relation (red), sometimes referred to as testing preorder or failurepreorder, is the intersection of trace re�nement and conformance. It gives rise toa speci�cation technique with which one can specify both that certain actionsmust happen and that certain traces are not allowed. The extension relation,on the other hand, allows that more traces are added in the implementation, aslong as the implementation is still conformant to its speci�cation. The strongestimplementation relation considered here is testing equivalence. It requires thatthe observable behaviour of implementation resp. speci�cation cannot be distin-guished through external testing.Process speci�cations, and in fact any other trace/refusal based speci�ca-tions, can be interpreted under any of the implementation relations de�ned aboveto yield a di�erent speci�cation formalism [10] for system behaviour. In a mul-tiple viewpoint approach to speci�cation potentially all these formalisms maybe used simultaneously. Below, we show how di�erent viewpoints may requiredi�erent implementation relations to adequately capture their intended meaning.2.4 Example Viewpoint Speci�cationsConsider the speci�cation of a simple vending machine using the odp view-points. (It is outside the scope of this paper to give de�nitions for the �ve odpviewpoints. The interested reader is referred to [14] or the standard itself [9].)

From the enterprise viewpoint one might like to specify the followingpolicies, divided in permissions and obligations:Permissions The system is permitted to exhibit any of the following tracesof behaviour: f�; coin; coin.co�ee; coin.tea; coin.co�ee.coin; coin.tea.coin; : : :g.This could be captured by the following speci�cation, when interpreted underthe trace re�nement relation (�tr):Perm := coin; (co�ee; Perm [] tea; Perm)Obligations The system user is obliged to always �rst insert a coin into themachine. The following speci�cation captures this. Here we have decided tointerpret the speci�cation under the extension relation (ext), so the speci�-cation does not prohibit any other behaviour.Obl := coin; stopFrom the computational viewpoint the system is viewed as a computa-tional object providing a computational interface upon which its environment(the user) can invoke one of three operations: coin, co�ee and tea.Comp := � ; coin; (� ; co�ee; Comp [] � ; tea; Comp)[] � ; co�ee; Comp[] � ; tea; CompIf the coin operation is invoked, the system will respond by o�ering its envi-ronment either co�ee or tea. In case one of the other two operations is invokedby the environment, the system will return to its initial state. Non-determinismis used to indicate that not all of these operations need to be present in animplementation. Therefore, any reduction (red) is considered a correct imple-mentation.From the engineering viewpoint the system might be viewed as beingcomposed of two components, a money handler (MH) and a drinks dispenser(DD), that communicate via a channel. As the channel is only introduced forinternal communication it is hidden from the environment. The following speci-�cation of the engineering viewpoint is interpreted under the testing equivalencerelation (�te).Eng := hide channel in MH j[channel]j DDMH := coin; channel; MHDD := channel; (co�ee; DD [] tea; DD)The obvious question now is whether all these viewpoint speci�cations areconsistent with one another.3 ConsistencyThe purpose of this section is to de�ne (necessary and su�cient) conditions forviewpoint speci�cations to be consistent. For the moment we will concentrate

on binary consistency, i.e., consistency between two speci�cations. Informally,we call two speci�cations consistent if, and only if, they have at least one im-plementation in common, i.e., if there is an implementation that satis�es bothspeci�cations. The de�nition of consistency is thus parameterised on the notionof correctness that each speci�cation is subjected to. As we have shown above,di�erent viewpoint speci�cations may be subjected to interpretation under dif-fering implementation relations. Therefore, each combination of implementa-tion relations, imp1; imp2, gives rise to a di�erent consistency relation, denotedCimp1;imp2 .De�nition 4. Let imp1; imp2 be implementation relations, then consistencybetween speci�cations subject to imp1 and speci�cations subject to imp2 is abinary relation Cimp1;imp2 such that, for any s1; s2 2 P,s1 Cimp1;imp2 s2 def() 9p 2 P � p imp1 s1 ^ p imp2 s2:Considering �tr, �tr, conf , red, ext and �te as instantiations for imp1 andimp2 in the de�nition of binary consistency, we obtain 36 di�erent notions ofconsistency. Whenever imp1 = imp2, we speak of balanced consistency, denotedC2imp. Section 3.1 deals with these (six) cases. The issue of unbalanced consis-tency, the remaining 30 cases, is discussed in section 3.2. Omitted proofs maybe found in [17].It is useful sometimes to use the following alternative characterisation ofconsistency as the composition of two implementation relations:Proposition 5. For any two implementation relations imp1; imp2,Cimp1;imp2 = imp�11 � imp2 :3.1 Balanced ConsistencyThis section largely summarises results from [18], where we considered only thebalanced consistency problem.Since both speci�cations (in the binary case) are subject to the same imple-mentation relation, binary, balanced consistency is a symmetric relation.Proposition 6. For any implementation relation imp, C2imp = (C2imp)�1.We consider the six cases of binary, balanced consistency, denoted C2imp forimp 2 f�tr;�tr; conf ; red; ext;�teg. For two of these, imp is instantiated withan equivalence relation. It is easily established that the consistency relationis equal to the implementation relation in those cases. Of the four remainingbalanced consistency relations, three turn out to hold for any two speci�cations.Theorem 7.1. C2�tr = �tr2. C2�te = �te

3. C2�tr = P � P4. C2conf = P � P5. C2ext = P � PProof. The �rst two results follow from the symmetry and transitivity of �trand �te. The remaining cases are proved by exibiting a bottom element in therespective re�nement lattices. Such a bottom element is presented by a pro-cess ? such that 8s � ? imps. The existence of such a bottom element impliesconsistency, since s1 C2imp s2 , 9p � p imps1 ^ p imps2.3. 8s � stop�tr s, hence stop is the required bottom element.4. De�ne a process Run, that can perform all possible traces and never refusesany action, as follows2:Run := �fa; Run j a 2 LgObserve that, 8� 2 L� �Ref (Run; �) = f;g. Therefore, 8s � Run conf s.5. The process Run, de�ned above, also has more traces than any other process,i.e. 8s � Tr(Run) = L� � Tr(s). Therefore, 8s � Run ext s. utThe following theorem gives a su�cient condition for two speci�cations (says1 and s2) to be consistent with respect to reduction. The condition requiresthat s1 and s2 can at least refuse all the actions they may not both do after acertain trace.Theorem 8. Let s1; s2 2 P be two speci�cations, then s1 C2red s2 if:8� 2 Tr(s1) \ Tr(s2) � Ln(Out(s1; �) \Out(s2; �)) 2 Ref (s1; �) \Ref (s2; �)Proof. See [18].3.2 Unbalanced ConsistencyUnbalanced consistency is more complicated than the balanced case. First of all,there are many more cases of unbalanced consistency. Moreover, unlike balancedconsistency relations, unbalanced ones are not symmetric. However, there is aclose relationship between Cimp1;imp2 and Cimp2;imp1 .Proposition 9. For any two implementation relations imp1; imp2,Cimp2;imp1 = C�1imp1;imp2 :Since it is easy to derive the inverse of a relation (just swap the arguments),this proposition gives an easy recipe for deriving Cimp2;imp1 from the relationwith the implementation relations reversed Cimp1;imp2 . It halves our problem of�nding 30 consistency conditions.For the remaining 15 cases, observe that all implementation relations are re-
exive. The following proposition therefore allows us to derive at least a su�cientcondition for consistency to hold in each of these cases.2 The operator � generalises the choice operator ([]).

Proposition 10. Given a consistency relation Cimp1;imp2 , such that imp1 isre
exive, imp2 � Cimp1;imp2 :Proof. From re
exivity of imp1, it follows that Id � imp�11 . And, by mono-tonicity of �, Id � imp�11) imp2 � imp�11 � imp2 = Cimp1;imp2 . utUnder the condition that the inverse of imp1 is stronger than imp2 andimp2 is a transitive relation, imp2 is both a necessary and su�cient condition.This result applies to six of the remaining cases.Theorem 11. Given a consistency relation Cimp1;imp2 , such that{ imp1 is re
exive,{ imp2 is transitive, and{ imp�11 � imp2,then Cimp1;imp2 = imp2 :Proof. By Prop. 10, we have imp2 � Cimp1;imp2 . In the other direction, wederive by monotonicity of � and transitivity of imp2, that imp�11 � imp2)imp�11 � imp2 � imp2 � imp2 � imp2. utCorollary 12.1. C�te;�tr = �tr2. C�te;�tr = �tr3. C�te;red = red4. C�te;ext = ext5. C�tr;�tr = �tr6. Cext;�tr = �trSince testing equivalence is stronger than all other implementation relations,and because it is an equivalence, we almost always have C�te;imp2 = imp2.The only case that is missing, is when imp2 = conf . Even though conf is nottransitive, we still have the same result.Theorem 13. C�te;conf = confProof. By Prop. 10 we have conf � C�te;conf . For inclusion in the other direc-tion, observe that, by Prop. 5 and symmetry of �te, C�te;conf = �te � conf . Wenow prove �te � conf � conf by extensionality: 8s1; s2 2 P ,s1�te � conf s2, 9p � s1�te p ^ p conf s2, 9p � (8� 2 L� �Ref (s1; �) = Ref (p; �))^ (8� 2 Tr(s2) �Ref (p; �) � Ref (s2; �))) 8� 2 Tr(s2) �Ref (s1; �) � Ref (s2; �), s1 conf s2 ut

Of the remaining consistency relations, one holds for any two speci�cations.Theorem 14. Cext;conf = P � PProof. Use the same witness as in the proofs of C2conf = C2ext = P � P . utThe remaining two consistency relations with ext coincide with trace re�nement.Theorem 15.1. C�tr;ext = �tr2. Cred;ext = �trProof. In one direction, inclusion follows by a simple monotonicity argument:1. Since ext � �tr, it follows that C�tr;ext = �tr � ext � �tr ��tr = �tr.2. Since red�1 � �tr and ext � �tr, it follows that Cred;ext = red�1 � ext ��tr ��tr = �tr.In the other direction, we need to exhibit a common implementation for any twospeci�cations s1; s2 such that s1�tr s2. In both cases, such a common implemen-tation is given by the deterministic process with the same traces as s1. utIn an earlier version of this paper, we de�ned a relation cons � P � P atthis point (see de�nition 18) and proposed that being in this relation provideda su�cient and necessary condition for four of the remaining consistency rela-tions, viz. C�tr;conf , C�tr;red, Cred;conf , and C�tr;conf . However, we now knowthis not to be the case. Although cons is indeed a precise characterisation ofC�tr;conf (see theorem 19) and it plays a role in the characterisation of C�tr;red(see theorem 20), C�tr;conf does not coincide with the other three aforementionedconsistency relations. We can, however, establish a relative ordering between thefour relations.Proposition 16.1. C�tr;red = C�tr;conf2. C�tr;conf � C�tr;conf3. Cred;conf � C�tr;confProof.1. Firstly, since red � conf , it follows that C�tr;red = �tr � red � �tr � conf =C�tr;conf . Secondly, suppose 9p�p�tr s1^p conf s2, but p�tr s2. There mustthen be a � 2 Tr(p) \ Tr(s2) such that a 2 Out(p; �)nOut(s2; �) for somea 2 L. However, then fag 2 Ref (s2; �) so we can remove the a-transitionfrom p without invalidating that p�tr s1 and p conf s2. Now, let p0 be theprocess constructed from p by removing all these violating transition and weclearly have p0�tr s1 and p0 red s2.2. Since �tr � �tr, it follows that C�tr;conf = �tr � conf � �tr � conf =C�tr;conf . Moreover, there exist speci�cations s1; s2 such that s1 C�tr;conf s2,but :(s1 C�tr;conf s2) (see example 17).

3. Since red�1 � �tr, it follows that Cred;conf = red�1 � conf � �tr � conf =C�tr;conf . Moreover, there exist speci�cations s1; s2 such that s1 C�tr;conf s2,but :(s1 Cred;conf s2) (see example 17). utExample 17. Consider the following speci�cations:s1 := a; stop [] b; stops2 := � ; a; stop [] b; c; stopthen we have s1 C�tr;conf s2, because a; stop is a common implementation, butnot s1 C�tr;conf s2 and not s1 Cred;conf s2. In the latter two cases, any commonimplementation would have to perform b initially and then refuse c to be animplementation of s1, but such a process can never be conformant to s2, whichrequires c after b. utDe�nition 18. De�ne a relation cons � P �P as follows:p cons q def() 8� 2 Tr(p) \ Tr(q) � (LnOut(p; �)) 2 Ref (q; �):The relation cons characterises C�tr;conf , as is shown in the following theorem.In order for a process p to be `trace-conf consistent ' with a process q, q mustbe able to refuse everything that p cannot do after a certain trace � common toboth p and q.Theorem 19. C�tr;conf = consProof. Firstly from left to right. Assuming that 9p � p�tr s1 ^ p conf s2 weneed to show that s1 cons s2. Suppose not. By de�nition of cons this meansthat LnOut(s1; �) 62 Ref (s2; �) for some trace � 2 Tr(s1) \ Tr(s2). From theassumption that p�tr s1 it follows that Out(p; �) = Out(s1; �) and thereforethat LnOut(p; �) 62 Ref (s2; �). However, for p to be a valid process (e.g., see [12,p. 62]), we must have LnOut(p; �) 2 Ref (p; �), which contradicts that p conf s2.Secondly, from right to left. Assume s1 cons s2. Next, construct a process pwith the following traces and refusals:Tr(p) = Tr(s1)Ref (p; �) = Ref (s2; �); if � 2 Tr(s2)Ref (p; �) = }(LnOut(p; �)); if � 2 Tr(p)nTr(s2)It immediately follows that p�tr s1 and p conf s2. However, it still needs to beveri�ed that the combination of traces and refusals satisfy certain properties inorder for them to de�ne a valid process (e.g., see [12, p. 62]). Most of these prop-erties follow trivially from the given de�nitions, but the following may requiresome formal justi�cation:X 2 Ref (p; �)) X [(LnOut(p; �)) 2 Ref (p; �)By contradiction: supposeX[(LnOut(p; �)) 62 Ref (p; �) for some � 2 Tr(p) suchthat X 2 Ref (p; �). If � 62 Tr(s2), then we have a straightforward contradiction,

because then LnOut(p; �) 2 Ref (p; �) by de�nition. Otherwise, there must besome a 2 LnOut(p; �) such that fag 62 Ref (p; �), since X 2 Ref (p; �). Fromthe fact that Tr(p) = Tr(s1), we also know that a 62 Out(s1; �). However,then it follows by s1 cons s2, that fag 2 Ref (s2; �), which contradicts thatfag 62 Ref (p; �), because Ref (p; �) = Ref (s2; �) by de�nition. utTheorem 20. C�tr;red = �tr \ consProof. In one direction, a simple calculation su�ces:C�tr;red = �tr � red = �tr �(�tr \ conf)� (�tr ��tr) \ (�tr � conf) = �tr \ consIn the other direction, assume s1�tr s2 and s1 cons s2 for some s1; s2. Bys1 cons s2, we have p�tr s1 and p conf s2 for some p. By s1�tr s2, it then followsthat p�tr s2 and therefore that p red s2. ut3.3 Summary of Consistency ResultsBy instantiating the general de�nition of binary consistency with the implemen-tation relations de�ned in section 2.3, 36 di�erent notions of consistency wereobtained. For most of these notion of consistency a necessary and su�cient con-dition has been derived, in the form of a characterising relation, under which twospeci�cations can be considered consistent. Eventhough we did not yet �nd suchcharacterising relations for C�tr;conf = C�tr;red and Cred;conf , we conjecture thatthey exist nevertheless. In the following we denote these two unknown relationscs1 and cs2, resp. The obtained results are summarised in Table 3.In order to verify the consistency of two speci�cations s1; s2 interpreted viaimplementation relations imp1; imp2, respectively, look up the relation in therow labelled by imp1 and the column labelled by imp2. Say this is a relationC. Now, if s1 C s2, then s1 Cimp1;imp2 s2 holds.Table 3. Consistency conditions�tr �tr conf red ext �te�tr P � P �tr cs1 cs1 �tr �tr�tr �tr �tr cons �tr \ cons �tr �trconf cs1�1 cons�1 P � P cs2�1 P � P conf�1red cs1�1 �tr \ cons�1 cs2 C2red �tr red�1ext �tr �tr P � P �tr P � P ext�1�te �tr �tr conf red ext �teFig. 1 relates the consistency relations in terms of their relative strength. Thestrongest consistency relation (�te) can be found at the bottom of the spectrum;the weakest relation (P � P) at the top. A line between two relations indicates

uP � Pucs1 ucs1�1ucons ucons�1ucs2 ucs2�1uC2reduconf uconf�1u�tr u�tru�tr \ cons u�tr \ cons�1uext uext�1ured ured�1u�tru�te

������ HHHHHH������ ZZZZZZ��������
ZZZZZZTTTTTTTTTT

ZZZZZZ,,,,,,,,,
LLLLLLLL

������ ����������
lllllllll

������@@@@@@@@@
���������

���������
@@@@@@@@@

HHHHHHHHHHHH������������@@@@@@ ������bbbbbbbbbbbbbbb
"""""""""""""""@@@@@@ ������

������������
AAAAAAAAAAAA

Fig. 1. The spectrum of consistency relationsthat the lower one is included in the higher one. It is always su�cient to verifya strictly stronger relation rather than the required notion of consistency.The relationships depicted in the bottom half of Fig. 1 are mostly well-knownresults from the literature [13, 12, 3]. The other relationships between consis-tency relations usually follow from a straightforward monotonicity argument asin Prop. 16 or directly from the de�nitions.3.4 Consistency Checking ExampleUsing the results obtained above, we can now verify the pair-wise consistency ofthe speci�cations in Sect. 2.4:{ (Obl, ext) and (Perm, �tr) are consistent, because Obl�tr Perm.{ (Obl, ext) and (Comp, red) are consistent, because Obl�tr Comp.{ (Eng, �te) and (Obl, ext) are consistent, because Eng extObl.{ (Perm, �tr) and (Comp, red) are consistent, because Perm redComp, whichis a su�cient condition for consistency by Prop. 10.

{ (Eng, �te) and (Perm, �tr) are not consistent, because Eng�tr Perm. Theproblem here is that Eng has a trace <coin.coin>, which is not allowed byPerm. This is due to the concurrency in Eng.{ (Eng, �te) and (Comp, red) are not consistent, because Eng red/ Comp. Al-most the same problem as above. Eng cannot refuse to do a coin-action, afterthe initial coin, whereas Comp cannot do such an action.The main problem with the engineering speci�cation is that it allows a new cointo be inserted already before the last drink has been taken. The inconsistencycan be resolved here by adding another synchronisation between the two partsof the engineering speci�cation (the same channel can be used for this):NewEng := hide channel in MH j[channel]j DDMH := coin; channel; channel; MHDD := channel; (co�ee; channel; DD [] tea; channel; DD)With such a synchronisation in place the money handler will refuse the next coinuntil the previous drink has been taken out. The new engineering speci�cationis consistent with both the permissions from the enterprise viewpoint and thecomputational speci�cation.With the revised engineering speci�cation the set of viewpoint speci�cationsis also globally consistent | there exists an implementation that satis�es allfour speci�cations. The common implementation is the engineering descriptionNewEng (see Fig. 2).
NewEng

Perm Obl Comp NewEng
@@@@@@@

@I
BBBBBBB

BM
�������

��
�������

���tr ext red �teFig. 2. Global consistency
4 ConclusionWe have presented characterisations of all possible, i.e., balanced and unbal-anced, binary consistency relations between six di�erent trace and/or refusalbased speci�cation formalisms for process behaviour. These consistency rela-tions are vital if formal speci�cations are to be used in a multiple viewpointapproach to speci�cation, as is advocated, e.g., by the rm-odp [9].

Various other approaches to partial process speci�cation have been suggestedin the literature [4, 11, 12], some with associated consistency conditions. However,those authors do not consider, what we have called, unbalanced consistencyrelations.Ongoing research at the University of Kent focuses on the `translation' ofthe consistency relations to consistency checking techniques and tools for more`user-friendly', graphical speci�cation notations. The main question here is \whatimplementation relations are (implicitly) assumed by speci�ers of State Charts,Sequence Diagrams, etc?"Another topic for further study is how to deal with speci�cations at dif-ferent levels of abstraction. A single action in an enterprise speci�cation maycorrespond to a more complicated behaviour in the computational speci�cation.In order to support consistency checking between such speci�cations, we needto consider also implementation relations that incorporate some form of actionre�nement.AcknowledgementsWe would like to thank Guy Leduc for his comments on an earlier version of thispaper.References1. T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation languageLOTOS. Computer Networks and ISDN Systems, 14:25{59, 1987.2. G. Booch. Object oriented design with applications. Benjamin/Cummings, 1991.3. E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS speci�cations, their imple-mentations and their tests. In Protocol Speci�cation, Testing and Veri�cation VI,pages 349{360. IFIP, 1987.4. R. Cleaveland and B. Ste�en. A preorder for partial process speci�cations. InJ. C. M. Baeten and J. W. Klop, editors, CONCUR '90: Theories of Concurrency:Uni�cation and Extension, LNCS 458, pages 141{151. Springer-Verlag, 1990.5. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-points: a framework for integrating multiple perspectives in system development.International Journal on Software Engineering and Knowledge Engineering, Spe-cial issue on Trends and Research Directions in Software Engineering Environ-ments, 2(1):31{58, March 1992.6. C. Fischer and G. Smith. Combining CSP and Object-Z: Finite or in�nite tracesemantics. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi, editors,FORTE/PSTV'97, pages 503{518, Osaka, Japan, November 1997. Chapman &Hall.7. R. J. van Glabbeek. The linear time { branching time spectrum II; the semanticsof sequential systems with silent moves (extended abstract). In E. Best, editor,CONCUR'93, LNCS 715, pages 66{81. Springer-Verlag, 1993.8. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.9. ISO/IEC JTC1/SC21/WG7. Basic Reference Model of Open Distributed Process-ing. ISO 10746, 1993. Parts 1{4.

10. K. G. Larsen. Ideal speci�cation formalism = expressivity + compositionality+ decidability + testability + � � � . In CONCUR'90. Theories of Concurrency:Uni�cation and Extensions, LNCS 458, pages 33{56. Springer-Verlag, 1990.11. K. G. Larsen. Modal speci�cations. In J. Sifakis, editor, Automatic Veri�cationMethods for Finite State Systems: Proceedings, LNCS 407, pages 232{246. Springer-Verlag, 1990.12. G. Leduc. On the Role of Implementation Relations in the Design of DistributedSystems using LOTOS. PhD thesis, University of Li�ege, Belgium, June 1991.13. G. Leduc. A framework based on implementation relations for implementing LO-TOS speci�cations. Computer Networks and ISDN Systems, 25:23{41, 1992.14. P. F. Linington. RM-ODP: The Architecture. In K. Raymond and L. Armstrong,editors, Open Distributed Processing II, pages 15{33. Chapman & Hall, February1995.15. R. Milner. Communication and Concurrency. Prentice Hall, 1989.16. R. Sinnott and K. J. Turner. Modeling ODP viewpoints. In H. Kilov, W. Harvey,and H. Mili, editors, Workshop on Precise Behavioral Speci�cations in Object-Oriented Information Modeling, OOPSLA 1994, pages 121{128. OOPSLA, Octo-ber 1994.17. M. W. A. Steen. Consistency and Composition of Process Speci�cations. PhDthesis, University of Kent at Canterbury, May 1998. Submitted for examination.18. M. W. A. Steen, H. Bowman, and J. Derrick. Composition of LOTOS speci�ca-tions. In P. Dembi�nski and M. �Sredniawa, editors, Protocol Speci�cation, Testingand Veri�cation XV, pages 87{102. Chapman & Hall, 1995.

