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Abstract

The failure processes of repairable systems may be impacted by operational and

environmental stress factors. To accommodate such factors, reliability can be mod-

elled using a multiplicative intensity function. In the proportional intensity model,

the failure intensity is the product of the failure intensity function of the baseline

system that quantifies intrinsic factors and a function of covariates that quantify

extrinsic factors. The existing literature has extensively studied the failure processes

of repairable systems using general repair concepts such as age-reduction when no

covariate effects are considered. This paper investigates different approaches for

modelling the failure and repair process of repairable systems in the presence of

time-dependent covariates. We derive probabilistic properties of the failure pro-

cesses for such systems.
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1 Introduction

1.1 Motivation

In reliability theory, the failure process may be described using a multiplicative intensity func-

tion that is the product of a baseline failure intensity function of the system and a function

of time-dependent covariates. When repair modifies the argument (e.g. the virtual age of the

system ii ) of the baseline intensity function (for example, a repair can bring the system to a

younger virtual age) but has no effect on the argument of the function of the time-dependent

covariates, the argument in the baseline intensity function and the argument in the function

of the time-dependent covariates become asynchronous. This leads to technical difficulties in

estimating the probability of system failure at a given time point. This paper addresses this

issue and studies the probabilistic properties of the failure process in this circumstance.

Knowledge of the effect of repair is important for determining optimum maintenance policy

(Scarf, 1997; Dekker & Scarf, 1998; Wang, 2002; Xiang, 2013; Zhong & Jin, 2014; Kirschen-

mann, Popova, Damien, & Hanson, 2014) and modelling the repair effect has attracted con-

siderable research (e.g., Malik, 1979; Nakagawa, 1988; Kijima, 1989; Doyen & Gaudoin, 2004;

Guo, Liao, Zhao, & Mettas, 2007; Wu & Zuo, 2010). The repair effect can be accommodated

by a number of means, such as modification of the failure intensity or reduction of the virtual

age of the system. Readers are referred to Doyen and Gaudoin (2004) and Wu and Zuo (2010)

for more detailed discussion of such maintenance models. In practice, the failure process of a

system may be influenced by operational and environmental stress factors. Such influence can

be accommodated by models such as:

λo(t) = λb(t)ϕ(t), (1)

where λo(t) is the failure intensity function of the system that is working in the field, in its oper-

ating environment, under the effect of extrinsic factors and that is referred to as the operational

system hereafter, λb(t) is the baseline intensity function of the system—which is referred to as

ii The virtual age concept was introduced by Kijima (1989): suppose a system fails at calendar age X

since new and a repair of the system has the effect of modifying the system age to X0(X0 < X), then

X0 is called virtual age of the system.
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the baseline system in what follows—when the system is not subject to the effect of extrinsic

factors, and ϕ(t) is a function of covariates that quantify such extrinsic factors. When ϕ(t) is an

exponential function of the covariates, the model (1) is the proportional intensity model (e.g.,

Jiang, Landers, & Rhoads, 2006).

When one models the failure process of repairable systems with time-dependent covariates, an

issue arises: mathematically, do we consider that a repair affects λb(t) or that it affects λo(t)?

Consideration of this issue leads to one of the following three modelling assumptions.

Assumption A. Ignore extrinsic effects and model the failure probability and the repair effect

only through λb(t).

Assumption B. Assume repair modifies the intensity function of the operational system in a

synchronised manner so that in the case of an age reduction ω after a repair, λo(t) becomes

λo(t− ω) (where ω > 0), which implies that λo(t− ω) = λb(t− ω)ϕ(t− ω).

Assumption C. Assume repair only affects λb(t) while still accounting for the effect of ex-

trinsic factors through the covariates.

While existing models of repair use the approach in Assumption A, this is not useful for mod-

elling the reliability of systems subject to both intrinsic and extrinsic effects. Assumption B will

accommodate extrinsic effects but it assumes that extrinsic factors are modified to the same

degree of age reduction ω as the baseline system. However, in practical applications repair of

the baseline system may not influence the covariate effects. As such, Assumption B may only

be valid if ϕ(t) can be modified to ϕ(t−ω) after repair. If the failure intensity function becomes

λo(t − ω) = λb(t − ω)ϕ(t − ω) after repair, then one can simply analyse λo(t) as a whole and

existing methods can be applied. With Assumption C, the difficulty is that a repair may bring

the baseline system to a younger stage, ω time units younger, say, but that this causes the

following two problems. Firstly, the arguments in λb(t) and in ϕ(t) will become asynchronous.

That is, after a repair, λb(t) may become λb(t− ω) but ϕ(t) may remain the same (with ϕ(t)

unaffected by the repair). Secondly, the relationship λo(t) = λb(t− ω)ϕ(t) may not hold.

This paper considers the failure process of repairable systems with time-dependent covariates

under Assumption C, and further assumes that λo(t) = λb(t− ω)ϕ(t) holds after repair.
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1.2 Related work

Starting with the work of Malik (1979), modelling the repair effect has been well studied in the

literature. Published research to date includes the following methods.

Methods relating to the lifetime distribution function. This category models system sur-

vival times after each repair with a lifetime distribution function, Fn(t), that changes with

n, the number of repairs that the system has experienced. Examples include: the geometric

process (Lam, 1988), in which Fn(t) = F (an−1t), and where a(> 0) is an estimable parameter,

and F (t) is the lifetime distribution of the new system; and the extended Poisson process

(Wu & Clements-Croome, 2006), in which Fn(t) = F ((αan−1 + βbn−1)t), α, β, a, and b are

estimable positive parameters.

Methods relating to the failure intensity function. This category assumes that repair

modifies the failure intensity. For example, a model proposed in Wu and Zuo (2010) assumes

that the failure intensity function of a system after the nth repair is linearly related to that

before the nth repair. More detailed discussion of models in this category can be found in

Nakagawa (1988), Doyen and Gaudoin (2004), and Wu and Zuo (2010).

Methods relating to the virtual age of the system. This category assumes that repair

modifies the age of the system. For example, a model proposed in Kijima (1989) assumes

that the virtual age of a system immediately after its nth repair is linearly related to that

before the nth repair. More discussion of models in this category can be found in Nakagawa

(1988), Kijima (1989), Doyen and Gaudoin (2004), and Wu and Zuo (2010).

While we have used the term repair in the above discussion, such repair may correspond to

maintenance action carried out preventively (planned) or correctively (unplanned, following

failure). In this paper the new results that we derive will however be concerned only with

(unplanned) repair that follows failure. This is because the probability of system failure fol-

lowing planned preventive maintenance can be derived easily as the time such maintenance is

conducted is pre-specified (e.g., Wu & Zuo, 2010).

Many other models measuring the repair effect have been developed (see Wu & Zuo, 2010)

for a more detailed discussion). These models, however, do not consider scenarios in which the

failure processes of systems are impacted by extrinsic factors quantified through covariates,

especially time-dependent covariates, although Guo et al. (2007) considers a special scenario in
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which ϕ(t) in equation (1) is assumed to follow a power law. When dealing with time-dependent

covariates, one has to be very careful since there are some complications that arise with such

scenarios. Kalbfleisch and Prentice (2002) point out that there are two types of time-dependent

covariates: external and internal covariates. External time-dependent covariates are those whose

values do not depend on the failure process. For example, when studying how long someone

remains employed, the economic environment (quantified through e.g. the inflation rate) is

essentially external to the individual’s employment duration. Internal time-dependent covariates

are often the measurements taken on the subjects. Since these time dependent measurements

can only be taken when the subjects are under observation, the distribution of these covariates

usually carries information on the failure process. Coming back to reliability theory and taking

the reliability of a buried water pipeline as an example, external time-dependent covariates

can quantify usage rates such as water pressure, and environmental stress factors such as soil

properties and the pressure from the above ground, and internal time-dependent covariates

can quantify the material properties of the pipe. In this paper, covariates are assumed to be

external in the sense of Kalbfleisch and Prentice (2002).

1.3 Contribution and importance of this work

Derivation of the probability of failure for systems under Assumption A or Assumption B is

established. The difficult case deals with Assumption C, in which the argument in the base-

line intensity function and the argument in the function of the time-dependent covariates are

asynchronous. It is this difficult case that we will consider in the paper and the development of

theory for this case is the key contribution of our work.

The paper has important managerial implications. In asset management, planning maintenance

regimes is one of the most important activities. This requires asset managers to understand the

probability of failure of the assets in order to optimise maintenance intervals, to make their fiscal

plans, etc. The models in this paper capture, in a better way than existing models, the effect of

intervention upon the performance of a system that functions within a wider environment. The

models therefore advance the state-of-the-art in intervention planning, and offer asset managers

theoretically established methods that can be used in their projects.

Although this paper is developed using examples and terms such as repair and maintenance

5



borrowed from reliability theory, its results and discussion can also be applied to any situa-

tions when recurrent events can be modelled with the multiplicative intensity function. Such

applications can be found in scientific studies, medical research, marketing research, etc. In sci-

entific studies each subject may repeatedly experience a certain phenomenon; medical examples

of recurrent events are multiple infection episodes and tumour recurrences, and in marketing

research examples of recurrent events include repeated purchases of a certain product. For ex-

ample, Andersen and Gill (1982) built a proportional intensities model to describe admissions

to psychiatric hospitals among women giving birth. One of the time-dependent covariates is the

age of the women. It is obvious that for an individual patient, illness may respond to medical

treatment but that such treatment could not change the age of a patient. In this example,

models in which treatment (or, maintenance) does not influence covariates but does influence

the baseline intensity of failure would seem appropriate.

1.4 Overview

The rest of the paper is structured as follows. Section 2, describes the failure intensity functions

for different scenarios and lists definitions and assumptions. Section 3 offers a general discussion

of possible methods of applying existing repair models to repairable systems with a time-

dependent covariates. Section 4 describes our main results for modelling the failure process of a

repairable system under Assumption C. Section 5 presents a numerical illustration of our new

results. We finish with a conclusion.

2 Intensity functions

This section defines the failure intensity functions for both operational and baseline systems.

Note we assume no planned preventive maintenance is applied; repair is carried out on failure.

When maintenance is planned the probability of system failure can be easily derived, as dis-

cussed earlier. We assume that maintenance times are negligible. Notation used in the paper is

shown in Table 1.
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Table 1
Notation table
{Nb(t)}t≥0 number of failures of the baseline system in (0, t], a stochastic process

{No(t)}t≥0 number of failures of the operational system in (0, t], a stochastic process

Hb(t) history of failures of the baseline system in (0, t]

Ho(t) history of failures of the operational system in (0, t]

Vb,n virtual age of the baseline system immediately after the nth repair

Vo,n virtual age of the operational system immediately after the nth repair

λ(t) failure intensity of the new baseline system

λb(t) failure intensity of the baseline system

λo(t) failure intensity of the operational system

z(t) a covariate, defined for t ≥ 0; only one covariate is assumed

Z (t) Z (t) = {z(τ) : τ < t}, the covariate history

ϕ(.) a function

Tb,n successive failure times of the baseline system, starting from Tb,0 = 0

To,n successive failure times of the operational system, starting from To,0 = 0

2.1 Intensity functions for the baseline system

The failure process of the baseline system is defined by the stochastic process {Nb(t)}t≥0 and

characterised by the intensity function

λb(t) = lim
∆t→0

P{Nb(t+ ∆t)−Nb(t) ≥ 1|Hb(t)}
∆t

(2)

where P{Nb(t+ ∆t)−Nb(t) ≥ 1|Hb(t)} is the probability that the baseline system fails within

the interval (t, t+ ∆t), given the history of failures Hb(t). Here, we will consider the situations

in which the repair effect can be expressed either as a modification of failure intensity or as a

modification of the virtual age.

• When the repair modifies the failure intensity, the failure intensity is given by

λb(t) = F (λ(t), λ(Tb,1), λ(Tb,2), . . . , λ(Tb,Nb(t))) (3)

where F (.) is a strictly positive and non-decreasing function. In the case Nb(t) = 0, λb(t) =

λ(t). For example, if the repair effect is measured by the arithmetic reduction of intensity

model (ARI1) (see (Doyen & Gaudoin, 2004) for details), we have

λb(t) = λ(t)− ρ0λ(Tb,Nb(t)), (4)

and F (λ(t), λ(Tb,1), λ(Tb,2), . . . , λ(Tb,Nb(t))) = λ(t)− ρ0λ(Tb,Nb(t)), where ρ0 ∈ [0, 1].
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• When the repair effect modifies the virtual age of the system, the failure intensity is given

by

λb(t) = λ(G (t, Tb,1, Tb,2, . . . , Tb,Nb(t))), (5)

where G (.) is a strictly positive and non-decreasing function. For example, if the repair effect

is measured by the arithmetic reduction of age model (ARA1) (Doyen & Gaudoin, 2004), we

have

λb(t) = λ(t− ρ1Tb,Nb(t)). (6)

and G (t, Tb,1, Tb,2, . . . , Tb,Nb(t)) = t− ρ1Tb,Nb(t), where ρ1 ∈ [0, 1].

2.2 Intensity function of the operational system

The failure process of the operational system is defined by the stochastic process {No(t)}t≥0

and characterised by the intensity function

λo(t) = lim
∆t→0

P{No(t+ ∆t)−No(t) ≥ 1|Ho(t),Z (t)}
∆t

. (7)

As we can see λb(t) defined in Eq. (2) is not impacted by the covariate history Z (t) but λo(t)

defined in Eq. (7) is impacted by the covariate history. This creates a technical difficulty in the

calculation of the probability of failure following repair that we discuss now.

3 The effect of repair in the presence of a covariate

When considering the repair effect on a system modelled with Eq. (1), one may make one of

the three assumptions: Assumptions A, B, and C. Let us re-discuss these three assumptions

below in the context of virtual age reduction at repair.

Assumption A. Here covariate(s) is (are) ignored so that λo(t) = λb(t) and repair effects are

captured in equations (3) and (5).

Assumption B. After repair, λo(t) becomes λo(t−w). That is, the repair takes effect on both

the baseline system and the covariate. Thus, both λb(t) and z(t) are influenced by main-

tenance activities to the same extent. Under this assumption, one can derive the following

result:

λo(t) = M (λb(t), ϕ(t)), (8)
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where M (λb(t), ϕ(t)) is a synchronized form of ϕ(t) with λb(t) with respect to both time

and functional form. For example, under Assumption B and repair effect shown in Eq.(4),

λo(t) becomes

λo(t) = F (M (λb(t), ϕ(t)),M (λb(To,1), ϕ(To,1)), . . . ,M (λb(To,No(t)), ϕ(To,No(t)))

= λ(t)ϕ(t)− ρ0λ(To,No(t))ϕ(To,No(t)). (9)

Under Assumption B and repair effect shown in Eq.(6), λo(t) becomes

λo(t) = M (λb(G (t, To,1, To,2, . . . , To,No(t))), ϕ(G (t, To,1, To,2, . . . , To,No(t))))

= λ(t− ρ1To,No(t))ϕ(t− ρ1To,No(t)). (10)

Eqs. (9) and (10) essentially imply that repair affects both the operational system and the

covariate to the same extent. As can be seen from Eqs. (9) and (10), ϕ(t) changes after a

repair.

Assumption C. Here repair affects λb(t) and not ϕ(t), but we still wish to take account of

extrinsic factors through a covariate. We now discuss the main focus of this paper: investi-

gating the failure process of repairable systems with time-dependent covariates under this

assumption.

4 Modelling the failure process under Assumption C

In this section, we derive the probability of system failure at time t under Assumption C.

4.1 ϕ(t) = ϕ0 (ϕ0 is constant)

When ϕ(t) = ϕ0, the covariates are time-independent. In this case, Eq. (1) becomes

λo(t) = ϕ0λb(t) (11)

For both age reduction models and intensity modification models, determining the probability

of system failure at time t proceeds as in Section 2.1.

9



4.2 When the repair effect is modification of the failure intensity

In this case, Eq. (3) becomes λo(t) = F (λ(t), λ(To,1), λ(To,2), . . . , λ(To,No(t)))ϕ(t). This is be-

cause repair simply modifies the intensity function, so that the arguments of the intensity func-

tion of the baseline system and the covariate remain untransformed and they remain synchro-

nised, and determining the probability of system failure at time t is in principle straightforward.

This implies that for the ARI1 model Eq. (4) becomes λb(t) = λ(t)ϕ(t)− ρ0λ(To,No(t))ϕ(t).

4.3 When the repair effect is modification of age

Now, determining the probability of system failure at time t becomes more difficult. In this

subsection, we will consider the probability of system failure when age reduction in the baseline

intensity is according to the ARA1 model. The age reduction model ARA1 shown in Eq. (6)

can be derived from one of the virtual age models (Kijima, 1989).

Let ρn denote the degree of the nth repair effect, where ρn ∈ [0, 1] (where n = 1, 2, . . . ), Vb,n

the virtual age of the baseline system immediately after the nth repair (where Vb,0 = 0), and

Xb,n the time between the (n− 1)th and the nth repair of the baseline system. Then the ARA1

model implies,

Vb,n = Vb,n−1 + ρnXb,n (12)

Here ρnXb,n is the virtual age increase of the baseline system between the (n − 1)th and the

nth repair.

If Eq. (12) is assumed, then a repair takes effect on λb(t), but not ϕ(t). This causes a problem

on Eq. (1), as explained in the following.

(a) After a repair on the baseline system, λb(t) can be changed. The change may follow, for

example, the pattern shown in Eq. (3) or that shown in Eq. (5). ϕ(t), however, may stay

unchanged. This can lead to the following two scenarios:

(a.1) Model (1) may not hold any more; and

(a.2) Model (1) still holds.

(b) In case one assumes (a.1), deriving the probability of system failure becomes impossible,

as the function λo(t) for some time t following repair cannot be derived.
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(c) If the above scenario (a.2) holds, then the following issue arises: the concept of the virtual

age can only be used for a system with a given form of λo(t) for the operational system.

We hence need to assume that λb(t) and λo(t) share the same form, or they are conjugate

failure intensity functions. The term conjugate is borrowed from the concept of the con-

jugate distributions used in Bayesian statistics. The virtual age of the operational system

immediately following the nth repair is then,

Vo,n = Vo,n−1 +X ′o,n (13)

where Vo,0 = 0, and X ′o,n is the virtual age increase of the operational system between the

(n− 1)th and the nth repairs.

Let Xo,n denote the time between the (n− 1)th and the nth repair of the operational system.

Unlike model (12) in which the virtual age increase between repairs equals ρnXb,n, deriving

an explicit relationship between X ′o,n and Xo,n is not possible as the level of the repair effect

on the operational system is unknown. It should also be noted that Vb,n and Vo,n are different

as Vo,n is influenced by the covariate z(t). Thus, deriving the failure process becomes more

complicated if the model in Eq. (13) is used. This is because repair modifies the argument of

the intensity function, which results in the fact that the virtual age of the operational system,

i.e., the argument in the intensity function, differs from (or smaller than) the argument of the

covariate. Below we resolve this issue.

Let F̄b,i(t) and F̄o,i(t) be the survivor functions after the ith repair of the baseline system and the

operational system, respectively, where i = 1, 2, . . . , F̄b,i(t) = 1−Fb,i(t), and F̄o,i(t) = 1−Fo,i(t).

F̄b,0(t) and F̄o,0(t) are the survivor functions of the baseline system and the operational system

prior to the first failure, respectively. Then one can easily obtain F̄b,0(t) = exp{−
∫ t

0 λb(u)du}

and F̄o,0(t) = exp{−
∫ t

0 λo(u)du}. It should be noted that λb(t) is specified whereas λo(t) is

unknown.

Let ρn = ρ in the model shown in Eq. (12), where ρ > 0. It then follows that

Vb,n = ρ
n∑
i=1

Xb,i. (14)

where
∑n
i=1Xb,i = To,No(t).

Denoting the virtual age of the baseline system by y, according to (Kijima, 1989), the survivor
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function of Vb,n, denoted by Ḡb,n(x), is given by

Ḡb,n(x) = Ḡb,n−1(x) +
∫ x

0

F̄b,0(y + x−y
ρ

)

F̄b,0(y)
dGb,n−1(y). (15)

where Gb,n−1(y). = 1− Ḡb,n−1(y) and x > 0.

4.3.1 General case

In this subsection, we assume that the form of z(t) is unknown.

Let E ={the event that the covariate is not influenced by a repair conducted on the baseline

system}. E implies: when the baseline system approaches the virtual age y, the age (or calendar

time) of the covariate is y/ρ.

Then we have the following Lemma.

Lemma 1 The probability that the operational system fails after the nth repair if the virtual

age before the repair is y, is given by

Pr{Xo,n ≤ x|Vo,n−1 ≥ y} = 1− exp{−
∫ x+y

y
λb(u)ϕ(u+

(1− ρ)y

ρ
)du} (16)

The proofs of Lemma 1 and the other lemmas and theorems can be found in the Appendix.

Denote the distribution of Vo,n by Go,n(x). Then we have the following lemma.

Lemma 2 For model (13), one obtains

Ḡo,n(x) = 1−Go,n(x)

= Ḡo,n−1(x) +
∫ x

0
exp{−

∫ y+x−y
ρ

y
λb(u)ϕ(u+

(1− ρ)y

ρ
)du}dGo,n−1(y). (17)

Let

gx,ρ(y) =

 exp{−
∫ y+x−y

ρ
y λb(u)ϕ(u+ (1−ρ)y

ρ
)du}, if y ≤ x,

1, if y > x.

Then, Eq. (17) can be re-written as

Ḡo,n(x) =
∫ ∞

0
gx,ρ(y)dGo,n−1(y) (18)

Lemma 3 If both ϕ(u) and λb(u) are non-decreasing, gx,ρ(y) is increasing with respect to ρ.
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Let A1, A2, . . . and B1, B2, . . . denote random sequences of the repair effect ρ1, ρ2, . . . at re-

pairs 1,2, . . . . Further let SAo,n =
∑n
i=1 Xo,i|{ρ1 = A1, ρ2 = A2, . . . , ρn = An} and SBo,n =∑n

i=1 Xo,i|{ρ1 = B1, ρ2 = B2, . . . , ρn = Bn}, that is, conditional on the degree of the ith repair

effect being Ai, and Bi respectively, i = 1, 2, . . . , n.

For non-negative random variables X and Y , we denote X ≺d Y if E[f(X)] ≤ E[f(Y )] for

any increasing function f . The ordering ≺d is called the stochastic ordering. Then we have the

following theorem.

Theorem 1 If both ϕ(u) and λb(u) are non-decreasing and A ≺d B, then E[SAo,n] ≥ E[SBo,n]

for all n ≥ 1.

The assumption A ≺d B implies that the sequence A possesses a better maintenance effect

than the sequence B.

4.3.2 A special case

ϕ(t) in model (1) can take different forms. For example, in the case that model (1) is the

proportional intensity model, ϕ(t) = exp{βz(t)}, the value of z(t) can be assumed to be constant

in an interval but varying from one interval to the other. The approaches of Meyer (1990) and

Han and Hausman (1990) follow this strategy. That is,

ϕ(t) =
m∑
i=0

υiI[τi,τi+1)(t) (19)

where τ0 = 0, τm+1 = ∞, 0 < υ0 < υ1 < ... < υm, and I[τi,τi+1)(t)=1 if t ∈ [τi, τi+1) and 0

otherwise.

In the following, we look at the scenario when ϕ(t) takes the form shown in Eq. (19).

Let H0(t, τk) = exp{−
∫ t
τk
λb(u)du}. Then from Eq. (1) and Eq. (19), one can obtain the relia-

bility of the operational system as follows.

Lemma 4 The reliability distribution of the operational system is given by

F̄b,0(t) = I[τ0,τ1)(t)H0(t, τ0) +
m∑
k=1

I[τk,τk+1)(t)H0(t, τk)
k−1∏
j=0

H0(τj+1, τj)

 . (20)
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and

F̄o,0(t) = I[τ0,τ1)(t)(H0(t, τ0))υ0 +
m∑
k=1

I[τk,τk+1)(t)(H0(t, τk))
υk

k−1∏
j=0

(H0(τj+1, τj))
υj

 . (21)

Denote

H(t, s) = I[τ0−s,τ1−s)(t)(H0(t, τ0 − s))υ0

+
m∑
k=1

I[τk−s,τk+1−s)(t)(H0(t, τk − s))υk
k−1∏
j=0

(H0(τj+1 − s), τj − s))υj


Then we have the following Lemma.

Lemma 5 The distribution of the virtual age of the operational system is given by

Ḡo,n(x) = Ḡo,n−1(x) +
∫ x

0

H(y + x−y
ρ
, (1−ρ)y

ρ
)

H(y, (1−ρ)y
ρ

)
dGo,n−1(y). (22)

4.3.3 Some remarks

As reviewed above, many repair models have been proposed in the reliability literature (Nakagawa,

1988; Kijima, 1989; Doyen & Gaudoin, 2004; Wu & Zuo, 2010). From Section 4, it can be seen

that models—such as the ARIm and ARI∞ in Doyen and Gaudoin (2004), or those linear

maintenance models in Wu and Zuo (2010)—proposed on the basis of reduction of failure in-

tensity can be directly used to model repairable systems with time-dependent covariates. If

age-reduction models that are more complicated than ARA1—such as the virtual age model II

in Kijima (1989), ARAm and ARA∞ in Doyen and Gaudoin (2004), or those nonlinear main-

tenance models in Wu and Zuo (2010)—are applied to model (1), it is still possible to derive

the lifetime distribution of the operational system after repair, or the failure process. This will

be our future work.

Assumption B assumes that extrinsic factors quantified by a covariate can be maintained to the

same extent as the baseline system. Assumptions A and C on the other hand do not assume

this. This section briefly discusses maintenance of extrinsic factors. In some real situations,

extrinsic factors represented by a covariate may be maintainable. For example, the pressure

of water flowing inside a buried pipeline can be adjusted and therefore can be considered as

maintainable, or the pressure from above ground may also be maintainable (on repair a pipeline

may be re-routed, etc.). In the literature, however, little attention has been devoted to consider
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the effect of maintainable extrinsic factors and hence covariates on the system failure process.

It should be noted, however, there is the following difference between maintenance of baseline

systems and maintenance of extrinsic factors. From the perspective of reliability theory, the

effect of maintenance on λo(t) or λb(t) can be estimated with observed data such as time

between failures, but it cannot be measured with measurement instrument. For example, in the

Kijima model (Kijima, Morimura, & Suzuki, 1988), the virtual age can be estimated but is not

measurable. In contrast, the effect of a maintenance intervention on z(t) is typically measurable.

For example, the change in the internal or external pressure on a buried water pipeline before

and after a maintenance can be measured. That is, the extent to which maintenance (of the

covariate) of the internal pressure adjusts the water pressure on the pipeline is known.

5 A numerical example

To validate the deviations in Section 4 , this section presents a numerical example. Suppose

that λb(t) = β
αβ
tβ−1, where α = 200, and β = 1.5. Assume that

ϕ(t) =

 2, if t ≤ 140,

10, if t > 140.

Consider the scenarios under Assumptions A, B, and C, respectively. We assume the repair

model is the ARA1, as shown in Eq. (12), under the three assumptions. We generate survival

times up to and including the 5th repair with Monte Carlo simulation using 20,000 repetitions.

The average survival interval after the nth repair (n = 0, .., 4) are shown in Table 2, where

n = 0 means the survival time from new. Table 2 essentially shows the average time between

two adjacent repairs under the three assumptions for ρ = 0.2, ρ = 0.4, ρ = 0.6 and ρ = 0.8,

respectively. For example, 180.30 in cell (3,2) in Table 2 is the average time to first failure over

the 20,000 simulations under Assumption A, and 97.77 in cell (3,3) is the average time to first

failure over the 20,000 simulations under Assumption B. The last row includes the sum of the

survival intervals in the same column. For example, the value 746.33 in cell (8,2) is the sum of

the values 180.30, 158.86, 144.05, 135.22 and 127.90 in column 3.

It can be seen that under Assumption C (for which the extrinsic factor represented by the

covariate is not maintained at repair), the survival time after repair decreases dramatically in

15



comparison to Assumption A. This is because under assumption A failures are not influenced

by the covariate. Under Assumption B we see that the survival time after the 1st repair is

longer than under assumption C. This is because under B the extrinsic factor represented by

the covariate is maintained at repair. Further, the size of this difference is greater for smaller ρ

(greater repair effect), see figure 1. For survival times after the 2nd, 3rd repair, this difference

(between A and B) is less pronounced because, by the time of the 2nd and 3rd repair, the virtual

age of the system is large enough for the dramatic rise in the intensity (the intensity is 5 times

larger when the virtual age exceeds 140) to have an effect even when both the extrinsic factor

represented by the covariate is maintained at repair (assumption B) and ρ is small. Simulation

variation accounts for the differences on the first row (average survival time to first failure)

within each assumption. These observations confirm that the survival times post-repair behave

as we would expect.

Table 2

Average survival time following repair and average total time to failure following the 4th repair, for

different values of ρ, the repair effect, under Assumptions A, B and C.

ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

n A B C A B C A B C A B C

0 180.30 97.77 97.77 180.31 97.44 97.44 179.74 97.52 97.52 181.25 98.01 98.01

1 158.86 92.99 62.00 145.42 82.61 59.33 134.58 72.82 57.09 125.92 63.13 55.30

2 144.05 26.87 26.98 127.58 22.87 22.49 116.44 20.46 19.86 106.00 19.03 17.78

3 135.22 23.79 24.92 116.23 19.18 20.12 103.55 16.54 17.19 95.31 14.98 15.36

4 127.90 23.09 24.07 107.63 18.45 19.26 95.87 16.03 16.59 87.40 14.45 14.76

Total 746.33 264.51 235.74 677.17 240.55 218.64 630.18 223.37 208.25 595.88 209.6 201.21

Fig. 1. Average total time to failure following the 4th repair under assumptions B (extrinsic factor

maintained) and C (extrinsic factor not maintained) vs the size of the repair effect ρ.
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6 Conclusions

Modelling the repair effect plays an important role in optimisation of maintenance policies. The

existing methods for modelling the repair effect have not considered time-dependent covariates

that can influence the failure process of systems. This needs to be studied as maintaining a

repairable system does not imply that extrinsic factors quantified through covariates are also

maintained. For example, a maintenance action on a system may restore the system to a younger

status, but it does mean that the covariates of the system will be also brought to a younger status

or have the same virtual ages as the system. This causes a problem in that the argument in the

baseline intensity function and the argument in the covariates are unsynchronized. Particular

models such as the proportional intensity models in condition-based maintenance are becoming

popular and highlighted by researchers and practitioners. It is important for maintenance policy

modellers to recognise the problem of asynchronicity after repair. This problem is tackled in

this paper.

This is the first paper to investigate a class of multiplicative intensity models in which mainte-

nance intervention (service, preventive maintenance, or repair) not only modifies the baseline

intensity but also the arguments of covariates. The baseline intensity quantifies intrinsic factors

that affect system reliability; the covariates quantify the level or value of extrinsic factors that

affect system reliability. Thus we are the first to develop models of repair in which both intrinsic

and extrinsic factors are influenced by maintenance intervention and in which the extent of the

influence upon intrinsic factors may be different from that upon extrinsic factors.

The findings of this paper include:

• when the effect of the covariates on maintained systems is time-independent, existing ap-

proaches to modelling the repair effect for the baseline system can be directly applied to

model that for the operational system;

• when the effect of the covariates on maintained systems is time-dependent and the repair

effect models are based on reduction of failure intensity, existing approaches to modelling

repair effect for the baseline system can be directly applied to model that for the operational

system;

• when the effect of the covariates on maintained systems is time-dependent and the repair

effect models are based on reduction of age, existing approaches to modelling repair effect
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for the baseline system cannot be directly applied to model that for the operational system;

• we develop new results to consider this last case.

As we mentioned in the discussion section, our future work is to study situations when more

complicated age-reduction models are applied to the baseline systems and the argument in the

covariates is not synchronised with the argument in the baseline failure intensity. The difficulty

here is that it is not easy to find a function that can map the argument in the baseline function

to the argument in the covariates.
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Appendix

• Proof of Lemma 1. If Vo,n−1 = y, then from Eq. (13), the actual calendar time for which the

operational system has been operated is y/ρ, that is,
∑n−1
i=1 Xb,i = y/ρ. In other words, at the

time when the system has a virtual age y after the (n − 1)th repair, the covariates is aged

y/ρ. Hence, we can obtain the following derivation.

Pr{Xo,n ≤ x|Vo,n−1 ≥ y} = Pr{(Xb,n ≤ x) ∩ E |Vo,n−1 ≥ y)}

=
Pr{(Xb,n ≤ x) ∩ E ∩ Vo,n−1 ≥ y)}

Pr{Vo,n−1 ≥ y}

=
Pr{(y ≤ Xb,0 < x+ y) ∩ E }

Pr{(Xb,0 ≥ y) ∩ E }

=
exp{−

∫ y
0 λb(u)ϕ(u+ (1−ρ)y

ρ
)du} − exp{−

∫ x+y
0 λb(u)ϕ(u+ (1−ρ)y

ρ
)du}

exp{−
∫ y

0 λb(u)ϕ(u+ (1−ρ)y
ρ

)du}

=1− exp{−
∫ x+y

y
λb(u)ϕ(u+

(1− ρ)y

ρ
)du}. (23)

In the above steps, the event that the virtual age of the operational system immediately after

the (n−1)th repair is y is equivalent to the event that the age of the baseline system is older

than y and the covariate is not influenced by a repair conducted on the baseline system. That

is, Pr{Vo,n−1 ≥ y} = Pr{(Xb,0 ≥ y) ∩ E }. Also, Pr{(Xb,n ≤ x) ∩ E ∩ Vo,n−1 ≥ y)} = Pr{(y ≤

Xb,0 < x+ y)∩ E } by definition. Thus,
Pr{(Xb,n≤x)∩E∩Vo,n−1=y)}

Pr{Vo,n−1=y} =
Pr{(y≤Xb,0<x+y)∩E }

Pr{(Xb,0≥y)∩E } , and this

proves the lemma. 1. 2

• Proof of Lemma 2.

According to Eq. (23), one obtains

Ḡo,n(x) = Pr{Vo,n > x}

= Pr{(Vo,n > x) ∩ (Vo,n−1 > x)}+ Pr{(Vo,n > x) ∩ (Vo,n−1 ≤ x)}

= Pr{Vo,n−1 > x}+ Pr{(Vo,n > x) ∩ (Vo,n−1 ≤ x)}

=Ḡo,n−1(x) +
∫ x

0
Pr{(Vo,n > x) ∩ (Vo,n−1 ≤ x)|Vo,n−1 = y)}d(Pr{Vo,n−1 ≤ y})

=Ḡo,n−1(x) +
∫ x

0
Pr{(Vo,n−1 + ρXb,n > x) ∩ (Vo,n−1 ≤ x) ∩ E |Vo,n−1 = y)}dGo,n−1(y)

=Ḡo,n−1(x) +
∫ x

0
Pr{(Xb,n >

x− y
ρ

) ∩ E |Vo,n−1 = y)}dGo,n−1(y)

=Ḡo,n−1(x) +
∫ x

0
exp{−

∫ y+x−y
ρ

y
λb(u)ϕ(u+

(1− ρ)y

ρ
)du}dGo,n−1(y). (24)

This proves Lemma 2. 2
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• Proof of Lemma 3.

As
∫ y+x−y

ρ
y λb(u)ϕ(u + (1−ρ)y

ρ
)du is decreasing in ρ, exp{−

∫ y+x−y
ρ

y λb(u)ϕ(u + (1−ρ)y
ρ

)du} is

increasing in ρ. Hence, gx,ρ(y) is increasing in ρ.

• Proof of Lemma 4.

We first establish Eq. (21). The proof of Eq. (20) is similar. From Eq. (1) and Eq. (19),

F̄o,0(t) = exp{−
∫ t

0
λb(u)ϕ(u)du} = exp{−

∫ t

0
λb(u)

m∑
i=0

υiI[τi,τi+1)(u)du} (25)

If t ∈ (τ0, τ1), then

exp{−
∫ t

0
λb(u)

m∑
i=0

υiI[τi,τi+1)(u)du}= I[τ0,τ1)(t) exp{−υ0

∫ t

0
λb(u)du}

= I[τ0,τ1)(t)(H0(t, τ0))υ0 (26)

If t ∈ (τk, τk+1) with k ≥ 1,

exp{−
∫ t

0
λb(u)

m∑
i=0

υiI[τi,τi+1)(u)du} =
m∑
k=1

I[τk,τk+1)(t)(H0(t, τk))
υk

k−1∏
j=0

(H0(τj+1, τj))
υj

 .
(27)

Combining Eqs. (26) and (27), one can obtain Lemma 4. 2

• Proof of Lemma 5.

exp{−
∫ y+x−y

ρ

y
λb(u)ϕ(u+

(1− ρ)y

ρ
)du} =

exp{−
∫ y+x−y

ρ

0 λb(u)ϕ(u+ (1−ρ)y
ρ

)du}
exp{−

∫ y
0 λb(u)ϕ(u+ (1−ρ)y

ρ
)du}

=
H(y + x−y

ρ
, (1−ρ)y

ρ
)

H(y, (1−ρ)y
ρ

)
. (28)

By mimicking the proof process of Lemma 4, and substituting the above quantity into Eq.

(17), one can easily obtain Lemma 5. 2

• Proof of Theorem 1.

From Lemma 1, the survivor function F̄o,n(x) of Xo,n is given by

F̄o,n(x) =
∫ ∞

0

(
exp{−

∫ x+y

y
λb(u)ϕ(u+

(1− ρ)y

ρ
)du}

)
dGo,n−1(y). (29)

Hence E[Xo,n] =
∫∞

0

∫∞
0

(
exp{−

∫ x+y
y λb(u)ϕ(u+ (1−ρ)y

ρ
)du}

)
dxdGo,n−1(y).

Suppose y1 > y2 > 0. Since both ϕ(u) and λb(u) are non-decreasing, λb(u)ϕ(u+ (1−ρ)y1
ρ

) ≥

λb(u)ϕ(u+ (1−ρ)y2
ρ

). The interval (y1, x+y1) has the same length as (y2, x+y2), but y1 > y2 and

y1 +x > y2 +x, hence the area under the curve λb(u)ϕ(u+ (1−ρ)y
ρ

) within (y1, x+y1) is greater
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than that within (y2, x+ y2). Then we have
∫ x+y1
y1

λb(u)ϕ(u+ (1−ρ)y1
ρ

)du ≥
∫ x+y2
y2

λb(u)ϕ(u+

(1−ρ)y2
ρ

)du, which implies
∫∞

0

(
exp{−

∫ x+y
y λb(u)ϕ(u+ (1−ρ)y

ρ
)du}

)
dx is decreasing in y. It

follows that V A
o,n−1 ≺d V B

o,n−1 implies E[XB
o,n] ≤ E[XA

o,n], where V A
o,n−1 is the virtual age of the

operational system immediately after the (n − 1)th repair and the repair effect is A and a

similar definition applies to V B
o,n−1. Thus, by definition, E[SBo,n] ≤ E[SAo,n] for all n ≥ 1. 2
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