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Abstract

While object-orientation has been widely accepted as an important programming
paradigm, teaching object-orientation remains difficult. Experience reports suggest
that some problems can be avoided by teaching object-orientation as the first language
in an introductory course. However, other problems remain, in particular languages
and environments are regularly criticised as unsuitable and overly complex.

This thesis discusses aspects of object-oriented languages and environments that
affect their suitability for first year teaching. General requirements for languages and
environments are identified and used as a means to judge the suitability of the most
popular systems in use today. The discussion shows that none of the currently availa-
ble systems is suitable for object-oriented first year teaching.

A new integrated software development environment and language called Blue is pre-
sented. Blue overcomes the problems identified and opens new possibilities for
teaching and learning object-oriented programming. The Blue language and environ-
ment are highly integrated and specifically designed for teaching. This focus allows
the provision of tools and techniques not available in other systems. The Blue
language is small and clean and the environment supports visualisation and
sophisticated interaction facilities.

In this thesis, both the language and the environment are described in detail. Design
decisions and alternatives are discussed and compared to other systems on the market.



iii

Acknowledgments

Many people had contact with and made contributions to the Blue project since it
started four years ago. Although Blue started as my PhD project, it could not have
grown to its current state without the input of these people. Blue has become much
more than just my project: it has been used by many students and teachers, and this
could never have happened without generous support by others.

The most important input came from Professor John Rosenberg, my supervisor, who
was part of all design decisions throughout the whole lifetime of this project.

Oscar Bignucolo implemented the Blue compiler, a substantial part of the Blue
system. In doing so, he produced one of the most reliable parts of the system while
often having to respond to my changing requests for features, which he handled in im-
pressively short times. I thoroughly enjoyed working with him.

Axel Schmolitzky designed the Blue GUI library, which was then implemented
mainly by Michael Cahill and Ute Toberer. Michael Cahill also created the Blue CD
which was handed out to students and greatly helped with the acceptance of the
system.

Jeff Kingston helped design the Blue collection library Ð his knowledge and ex-
perience was very welcome. He also implemented this library.

Stefanie Fetzer implemented part of the Blue abstract machine and also wrote the first
version of the Abstract Machine Manual.

Jeff Kingston, Alan Fekete, Tony Greening, Judy Kay and Nicole Lesley produced a
textbook for a computer science introductory course using Blue.

Heather McCarthy worked on an improved design for a library browser for Blue.

I also have to thank the Basser Department of Computer Science at the University of
Sydney as a whole for taking the brave step of deciding to use the Blue system for
teaching their first year course and the students at the department for patiently putting
up with the systemÕs initial shortcomings. Many students also contributed through
their never ending energy in finding and reporting bugs.

I am further indebted to some people for personal support and encouragement that
have laid the foundation for this work, sometimes many years ago, and without whom
I would not have been able to finish (or even start) this thesis.

Firstly, I am forever grateful to my parents who convinced me of the value of a good
education and enabled me to study.



iv

I have to thank my good friends Detlef Rudolph, who first introduced me to com-
puters and awoke my interest in these machines, and Axel Schmolitzky, who helped a
great deal in maintaining the fun of it while we were studying. Axel also gave
valuable comments on a first draft of this thesis. Damien Watkins read large parts of
this work, and gave helpful feedback.

I am grateful to Professor J. L. Keedy who has opened many doors for me that have
turned out to be important in my life, one of which was the one to Australia.

Very special thanks go to Professor John Rosenberg who, as my supervisor, not only
provided the most excellent help and supervision I could wish for, but also was of
great importance to me privately when I arrived in this then foreign country. His
support enabled me to find my way and build a new life in Australia.

Finally, I thank my wife Leah for all her love and understanding during these years.
She put up with my long work hours and at the same time managed to cope with a
pregnancy and the birth of our daughter Sophie, who is now seven months old.

mk, 9 September1998



v

Table of contents

1 INTRODUCTION 1

2 REQUIREMENTS FOR A TEACHING SYSTEM 4

2.1 ADVANTAGES OF OBJECT-ORIENTATION FOR FIRST YEAR TEACHING 4

2.2 REQUIREMENTS FOR THE LANGUAGE 5

2.2.1 Language requirements overview 6
2.2.2 Language requirements in detail 7
2.2.3 How simple should a language be? 14

2.3 REQUIREMENTS FOR THE ENVIRONMENT 15

2.3.1 Environment requirements overview 16
2.3.2 Environment requirements in detail 16

2.4 SUMMARY 21

3 LANGUAGES 23

3.1 C++ 24

3.2 SMALLTALK 28

3.3 EIFFEL 32

3.4 JAVA 35

3.5 OTHER LANGUAGES 39

3.6 SUMMARY 41

4 ENVIRONMENTS 42

4.1 BACKGROUND 42

4.2 ENVIRONMENTS FOR OBJECT-ORIENTATION 44

4.2.1 Object support 45
4.2.2 Visualisation support 47

4.3 ENVIRONMENTS FOR TEACHING 49

4.4 SOME ENVIRONMENT EXAMPLES 50

4.5 SUMMARY 54

5 THE BLUE SYSTEM - AN OVERVIEW 55

5.1 GETTING STARTED 56

5.2 EDITING AND COMPILING 57

5.3 CREATING OBJECTS 59



vi

5.4 INTERFACES 61

5.5 USING LIBRARY CLASSES 62

5.6 DEBUGGING 62

5.7 SUMMARY 63

6 THE BLUE LANGUAGE 64

6.1 INTRODUCTION 64

6.2 THE OBJECT MODEL 66

6.2.1 What is an object? 66
6.2.2 Storage of objects 70
6.2.3 Object creation 71
6.2.4 Manifest classes 71

6.3 THE TYPE SYSTEM 74

6.3.1 Type safety 74
6.3.2 Types vs. classes 75
6.3.3 Predefined types 76
6.3.4 Type conformance 77

6.4 CLASSES 77

6.4.1 Constructor classes 77
6.4.2 Enumeration classes 78
6.4.3 Encapsulation 79

6.5 ROUTINES AND PARAMETERS 80

6.5.1 Structure 80
6.5.2 Parameters and result variables 83
6.5.3 Multi-assignments 84

6.6 DESIGN BY CONTRACT 85

6.6.1 Pre and post conditions 85
6.6.2 Class invariants 86

6.7 COMMENTS 87

6.7.1 Compulsory comments 88
6.7.2 Interface comments vs. implementation comments 89

6.8 VARIABLES 90

6.8.1 Undefined variables 90
6.8.2 Nil 91

6.9 STATEMENTS 93

6.9.1 Assignment and assignment attempt 93
6.9.2 Procedure call 96
6.9.3 Return from routine 96
6.9.4 Assert statement 97

6.10 ALIASES 97

6.11 CONTROL STRUCTURES 99

6.11.1 Conditional 99
6.11.2 Selection 101
6.11.3 Iteration 103

6.12 EXPRESSIONS 104

6.12.1 Equality 104



vii

6.12.2 Set membership 109
6.12.3 Object creation 109

6.13 INHERITANCE 113

6.13.1 Inheritance - the Swiss army knife 114
6.13.2 Inheritance for subtyping 114
6.13.3 Inheritance for code reuse 115
6.13.4 Problems with inheritance 116
6.13.5 Inheritance in Blue 116
6.13.6 Inheritance and creation 117
6.13.7 Access protection 119

6.14 GENERICITY 120

6.14.1 Unconstrained genericity 120
6.14.2 Operations in generic classes 121
6.14.3 Constrained genericity 122
6.14.4 Genericity and conformance 122

6.15 CONCEPTS NOT INCLUDED IN BLUE 123

6.15.1 Multiple constructors 124
6.15.2 Function overloading 124
6.15.3 User defined infix operators 125
6.15.4 Explicit blocks 126
6.15.5 Routine parameters 127
6.15.6 Immediate objects 127
6.15.7 Multiple inheritance 128
6.15.8 Iterators 129

6.16 SUMMARY 130

7 THE BLUE ENVIRONMENT 131

7.1 INTRODUCTION 131

7.2 KEEPING IT EASY Ð THE USER INTERFACE 133

7.3 THE PROJECT 134

7.3.1 Working with structure 134
7.3.2 Design notation 137
7.3.3 System abstraction 138

7.4 EDITING 138

7.4.1 Class views: interface and implementation 138
7.4.2 Graphical vs. textual editing 141
7.4.3 Alternatives 142

7.5 COMPILING 144

7.5.1 Invoking the compiler 144
7.5.2 Display of error messages 145

7.6 INTERACTING WITH OBJECTS 146

7.6.1 Calling interface routines 146
7.6.2 Linguistic Reflection 150
7.6.3 Composition 152
7.6.4 Inspection of objects 152
7.6.5 A word on testing 154
7.6.6 Execution without I/O 156
7.6.7 Pedagogical benefits 156



viii

7.7 RUNTIME SUPPORT 157

7.7.1 Error detection 157
7.7.2 Instruction counting 159

7.8 DEBUGGING 160

7.8.1 Integration 160
7.8.2 Functionality 160

7.9 BROWSING CLASS LIBRARIES 162

7.9.1 Browsing 164
7.9.2 Searching 165
7.9.3 Integration 165
7.9.4 Documentation 165
7.9.5 Additional functionality 166
7.9.6 The libraries 167

7.10 GROUP SUPPORT 167

7.11 SUMMARY 170

8 IMPLEMENTATION 172

8.1 IMPLEMENTATION ENVIRONMENT 172

8.2 SOFTWARE ARCHITECTURE 173

8.3 THE COMPILER 175

8.4 THE ABSTRACT MACHINE 176

9 EXPERIENCE 177

9.1 RUNTIME ENVIRONMENT 177

9.2 FEEDBACK 177

9.3 STABILITY 178

9.4 PROBLEMS 178

10 FUTURE WORK 181

10.1 COMPLETION AND ENHANCEMENTS 181

10.1.1 Completion 181
10.1.2 Enhancements of functionality 182
10.1.3 Enhancements of implementation 184

10.2 EVALUATION 185

10.3 SUPPORT MATERIALS 185

10.4 PORTING TO OTHER PLATFORMS 186

10.5 FOLLOW-ON PROJECTS 186

10.6 SUMMARY 187

11 CONCLUSION 188



ix

APPENDIX A: RELATED DOCUMENTS 190

APPENDIX B: DOWNLOAD LOCATIONS 192

APPENDIX C: CD CONTENTS 193

REFERENCES 194



x

Table of figures

FIGURE 5.1: THE BLUE MAIN WINDOW ......................................................................................................... 56
FIGURE 5.2: EDITOR WINDOWS SHOW THE SOURCE OF CLASSES.................................................................. 57
FIGURE 5.3: DISPLAY OF COMPILER ERROR MESSAGE IN AN EDITOR WINDOW............................................ 58
FIGURE 5.4: AN OBJECT ON THE OBJECT BENCH........................................................................................... 59
FIGURE 5.5: OBJECT MENU ENABLES INTERACTIVE ROUTINE CALLS........................................................... 60
FIGURE 5.6: INTERFACE OF A BLUE ROUTINE............................................................................................... 60
FIGURE 5.7: THE LIBRARY BROWSER........................................................................................................... 61
FIGURE 5.8: SOURCE OF A CLASS WITH BREAKPOINT................................................................................... 62
FIGURE 6.1: AN EXAMPLE OF A BLUE CLASS................................................................................................ 65
FIGURE 6.2: ASSIGNMENT OF OBJECTS ......................................................................................................... 72
FIGURE 6.3: STRUCTURE OF A CLASS............................................................................................................ 78
FIGURE 6.4: STRUCTURE OF AN ENUMERATION CLASS ................................................................................ 79
FIGURE 6.5: STRUCTURE OF A ROUTINE........................................................................................................ 81
FIGURE 6.6: STRUCTURE OF A ROUTINE IN INTERFACE VIEW....................................................................... 82
FIGURE 6.7: FORMAT OF A CLASS COMMENT................................................................................................ 88
FIGURE 6.8: INTERFACE AND IMPLEMENTATION COMMENTS IN IMPLEMENTATION VIEW .......................... 89
FIGURE 6.9: ROUTINE IN INTERFACE VIEW ................................................................................................... 89
FIGURE 6.10: STRUCTURE OF A LOOP ......................................................................................................... 103
FIGURE 6.11: OBJECTS AND EQUALITY....................................................................................................... 105
FIGURE 7.1: THE BLUE MAIN WINDOW ....................................................................................................... 132
FIGURE 7.2: INHERITANCE AND USES ARROWS IN THE PROJECT DISPLAY ................................................. 135
FIGURE 7.3: IMPLEMENTATION VIEW OF A CLASS ...................................................................................... 139
FIGURE 7.4: INTERFACE VIEW OF A CLASS.................................................................................................. 140
FIGURE 7.5: ICONS INDICATE WHETHER A CLASS HAS BEEN COMPILED .................................................... 144
FIGURE 7.6: AN ERROR MESSAGE REPORTED BY THE COMPILER ............................................................... 145
FIGURE 7.7: INTERFACE OF CLASS ÒPERSONÓ............................................................................................. 147
FIGURE 7.8: OBJECT CREATION DIALOGUE................................................................................................. 148
FIGURE 7.9: AN OBJECT ON THE OBJECT BENCH......................................................................................... 149
FIGURE 7.10: CALLING A ROUTINE ON AN OBJECT ..................................................................................... 149
FIGURE 7.11: ROUTINE CALL DIALOGUE FOR ÒCHANGENAMESÓ............................................................... 150
FIGURE 7.12: RESULT DIALOGUE FOR FUNCTION ÒGETNAMESÓ ................................................................ 150
FIGURE 7.13: OBJECT INSPECTION DIALOGUE ............................................................................................ 152
FIGURE 7.14: INSPECTION OF ÒADDRESSÓ OBJECT..................................................................................... 153
FIGURE 7.15: DISPLAY OF A RUNTIME ERROR ............................................................................................ 158
FIGURE 7.16: THE INSTRUCTION COUNTER................................................................................................. 159
FIGURE 7.17: SETTING A BREAKPOINT........................................................................................................ 160
FIGURE 7.18: THE EXECUTION CONTROLS.................................................................................................. 161
FIGURE 7.19: DISPLAY OF CALL SEQUENCE AND VARIABLES .................................................................... 162
FIGURE 7.20: THE BLUE LIBRARY BROWSER.............................................................................................. 163
FIGURE 7.21: CLASS DISPLAY IN A GROUP PROJECT................................................................................... 168
FIGURE 8.1: APPLICATION STRUCTURE OVERVIEW .................................................................................... 173



1

1 Introduction

Object-oriented programming has, in recent years, become the most influential
programming paradigm. It is widely used in education and industry, and almost every
university teaches object-orientation somewhere in its curriculum. The software
community more or less agrees that teaching object-oriented programming is a good
thing. It elegantly supports the concepts that we have been trying to teach for many
years, such as well structured programming, modularisation and program design. It
also supports techniques for approaching problems that have only more recently made
their way into the curriculum: programming in teams, maintenance of large systems
and software reuse. In short, object-oriented programming seems to be a good tool for
teaching those programming methodologies that we consider important.

Teaching object-oriented programming, however, remains difficult.

Many reports of the experience of those attempting to teach object-oriented program-
ming include a long list of problems with many different aspects of the systems used.
(We will discuss these in more detail later.) Why is it difficult? Or, to be more
precise, why does the teaching of object-oriented programming seem to be more
difficult than the teaching of structured programming?

Before we attempt an answer to this question, we should look at one other aspect of
this problem: when should object-oriented programming be taught?

For a long time, object-oriented programming was considered an advanced subject
that was taught late in the curriculum. This is slowly changing: more and more
universities have started to teach object-orientation in their first programming course.
The main reason for doing this is the often cited problem of the paradigm shift.
Learning to program in an object-oriented style seems to be very difficult after being
used to a procedural style. Anecdotal evidence (e.g. in [Stroustrup 1994]) indicates
that it takes the average programmer 6 to 18 months to switch his or her mind set
from a procedural to an object-oriented view of the world. Experience on the other
hand also shows, that students do not seem to have any difficulty understanding
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object-oriented principles if they encounter them first. It is the switch that is difficult,
not object-orientation.

For teaching programming, the lesson is clear: if we want to teach object-orientation,
we should do it first. The path to object-orientation through procedural programming
is unnecessarily complicated. Students first learn one style of programming, then they
have to Òun-learnÓ the previously learned, before we show them how to do it ÒrightÓ.

Unfortunately, many text books use procedural programming as a pathway to object
concepts. One of the main influences in this is the language C++ [Stroustrup 1991],
which has evolved as the most widespread object-oriented language over the past
years. Its popularity in industry (which is best explained by historic developments)
has led to it being often used for teaching as well. C++ is a hybrid language that
supports procedural (ÒC styleÓ) programming and object-oriented programming. It
was developed as an extension to C. This has led to a misunderstanding: many people
view object-orientation as just another language construct that can be taught after
control structures, pointers and recursion. This is a serious mistake.

Object-orientation is an underlying paradigm that shapes our whole way of thinking
about how to map a problem onto an algorithmic model. It determines in fundamental
ways the structure of even simple programs. It cannot be Òadded onÓ to other
language constructs; rather it replaces the fundamental structure of procedural
programming.

Because of this, we firmly believe that object-oriented concepts should be taught from
the very beginning. If it is seen as necessary that students can also program in a
procedural style, then a procedural language can be introduced later. The paradigm
shift backwards (from object-orientation to procedural) is much easier. Programmers
can just think about it as writing the complete solution within one class (a solution an
object-oriented programmer might not be very happy about, but easy enough to
understand).

Having come to this conclusion, we can now ask the question about the difficulties in
teaching object-orientation more precisely: Why is it difficult to teach object-oriented
programming to first year students?

In our view, it is not object-orientation in principle that causes the problems, but the
tools available to teach it. Programming languages used are too complex and
programming environments Ð if they exist at all Ð are too confusing. Some systems
used for teaching were really developed for professional software engineers, making it
difficult for first year students to cope; others were not ÒdevelopedÓ at all but grew
out of historic coincidences.

In short: in our view the reason for all the trouble is that the wrong languages and
environments are being used.

That, of course, immediately leads to the next question: What tools should we use?
What should a good language and environment for teaching object-oriented
programming look like?
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This is the question that we try to answer in this thesis. Chapter 2 provides a detailed
discussion of requirements for a teaching system for object-oriented programming.
What characteristics should a language and an environment have to be useful for
teaching? In chapters 3 and 4 we discuss existing systems and compare them with our
requirements. We point out why we came to the conclusion that none of them is ideal
for teaching. Chapters 5, 6 and 7 give a detailed description of the Blue system Ð our
attempt to design a system that is better suited to the task. Readers who already agree
with us on shortcomings of existing systems might like to start reading at chapter 5,
which gives an overview over the Blue system, to determine whether this work is
interesting to them.

Chapter 8 gives an overview of the implementation of the Blue system and chapter 9
reports some experiences with its use for teaching first year students. Chapters 10 and
11 describe some future projects and our conclusions.
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2 Requirements for

a Teaching System

In the previous chapter, we have already mentioned some arguments for teaching an
object-oriented language in first year. It is not really the topic of this work to argue
why the use of an object-oriented language in first year is advantageous Ð we take this
as a premise and investigate how to best teach object-oriented programming in first
year. We will, nevertheless, summarise here some arguments for the use of object-
orientation for first year teaching to provide a basis for later discussion. The reasons
for using an object-oriented language give us some aims on which to base the
requirements for such a language.

This is followed by a discussion in detail of the requirements for a system for teaching
object-oriented programming. These requirements fall into two categories: require-
ments of the language itself, and requirements of the programming environment.
(These requirements have been published in a much shorter form in [K�lling 1995].)

2.1 Advantages of object-orientation for first year teaching

Several arguments strongly support the use of an object-oriented language in first
year:

· Object-orientation encourages well structured programming, which is one of the
most important lessons we try to convey to first year students.

·  Re-using existing code can be taught in addition to the development of new
code, leading to a more realistic perception of the tasks expected of a
programmer.
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·  The opportunity for students to make use of ready-made objects in their
applications opens a wide range of possibilities for real-world problems and
interesting examples and exercises. Skublics et al. [Skublics 1991], for example,
write: ÒWith Smalltalk, it is easier to use examples which model the real world
problems which students understand and enjoyÓ. LaLonde and Pugh report the
same experience [LaLonde 1990]. This is true for object-oriented programming
in general, not only for Smalltalk in particular.

· Important software development concepts, such as evolution and reuse, can be
introduced and experienced through object-oriented techniques at an early stage.

· Problems with the paradigm shift in moving between object-oriented and non-
object-oriented environments seem to be reduced. It has been found that many
students whose first programming language is a procedural language, such as
Pascal, experience problems in adjusting to the object-oriented paradigm
[Decker 1993, Ryba 1997, Skublics 1991, Temte 1991]. On the other hand,
switching from an object-oriented language to a non-object-oriented one is not
anticipated to cause as much difficulty (provided the syntax is not too different)
[Decker 1993]. If introduced as a first programming style, object-orientation is
quickly accepted as ÒnaturalÓ by beginners [B�hm 1997].

·  Object-orientation currently is the most popular paradigm in industry. This
provides a strong motivation for students, since they learn state-of-the-art
technology that they can use in their later careers.

All of these arguments support the idea of using the object-oriented paradigm in
teaching programming in the first year of a computer science course.

Unfortunately when one examines the object-oriented languages which are available,
all reveal major deficiencies which make them inappropriate as a first year teaching
language. We would contend that there is a major need for a new object-oriented
programming language specifically designed for teaching. Such a language would
serve a similar purpose to that of Pascal in the 1980s.

To support that claim, we will now identify the requirements of an object-oriented
teaching language. These requirements then serve as a means of measurement to
judge the suitability of various existing languages, and will later serve as a guideline
to design our own system.

2.2 Requirements for the language

The requirements for object-oriented languages in general have often been discussed
in the literature. Many arguments have been brought forward for and against specific
language constructs; every possible feature has been argued for and against. The
question as to whether or not multiple inheritance is necessary, for example, has
sparked ongoing disputes, often carried out with religious fervour.
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General discussions like those are often pointless and unproductive. Languages are
not good or bad per se; they are good or bad for a specific purpose. A language that is
bad in one context can be excellent in another (or vice versa). It is more a question of
the right tool for the right job: it is pointless to argue whether a hammer is better than
a screwdriver if you are not arguing in the specific context of what you want to do.

The following discussion of requirements for an object-oriented language is in the
context of the use as a teaching language for beginners. The following criteria should
be met by a language to be useful as a teaching language for first year students.

We first list the criteria in a brief form, and then go on to elaborate in more detail.

2.2.1 Language requirements overview

·  Clean concepts Ð The language should support clean, simple and well-
defined concepts. This applies especially to the type system, which will
have a major influence on the structure of the language. The basic concepts
of object-oriented programming, such as information hiding, inheritance,
type parameterisation and dynamic dispatch, should be supported in a
consistent and easily understandable manner.

·  Pure object-orientation Ð The language should exhibit ÒpureÓ object-
orientation in the sense that object-oriented constructs are not an additional
option amongst other possible structures, but are the basic abstraction used
in programming.

·  Safety Ð It should avoid concepts that are likely to result in erroneous
programs. In particular it should have a safe, statically checked (as far as
possible) type system, no explicit pointers and no undetectable uninitialised
variables.

·  High level Ð The language should not include constructs that concern
machine internals and have no semantic value. This includes, most
importantly, dynamic storage allocation. As a result the system must provide
automatic garbage collection.

·  Simple object/execution model Ð It should have a well defined, easily
understandable execution model.

· Readable syntax Ð The language should have an easily readable, consistent
syntax. Consistency and understandability are enhanced by ensuring that the
same syntax is used for semantically similar constructs and that different
syntax is used for other constructs.

·  No redundancy Ð The language itself should be small, clear and avoid
redundancy in language constructs.

·  Small Ð The language should be as small as possible (while including all
necessary features). This is different from avoiding redundancy: not only
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should there be only one way to do one thing, but concepts which we do not
want to discuss should not be present in the language.

·  Easy transition Ð The language should, as far as possible, ease the
transition to other widely used languages, such as C++, Java [Arnold 1996]
and Smalltalk [Goldberg 1989].

·  Correctness assurance Ð It should provide support for correctness
assurance, such as assertions and pre and post conditions.

·  Environment  Ð Finally, the language should have an easy-to-use
development environment, including a debugger, so that the students can
concentrate on learning programming concepts rather than the environment
itself.

Note that some issues, such as efficiency, which are often considered extremely
important for production programming languages, are of little significance for a
teaching language; it is only required that the language be able to be supported in a
teaching environment with reasonable response time. Similarly, it is not important
that the language be flexible enough to develop real-world applications (e.g. by the
inclusion of operations such as arbitrary bit manipulation) Ð it is not intended to be
used for this purpose.

We now discuss the points listed above in more detail.

2.2.2 Language requirements in detail

1 Clean concepts

The concepts that we want to teach should be represented in the language in a
clean, consistent and easy-to-understand way. In particular, they should be
represented in the same way we want to talk about them when teaching. We should
avoid presenting a model of a construct in lectures in one way and using a
language that implements variations of the model (or does not implement the
model at all). We should also not let the language dictate what we have to talk
about in first year lectures.

When we, for instance, talk about the object model of programming, we want to
present a consistent, easy-to-understand model as the basis of discussion. We can
then talk about message passing and object methods. In that case we would not
want a language that forces us at implementation time to insert definitions about
which functions are or are not dynamically dispatched. This is not part of the
conceptual model at this point, and the language should not force us down to this
level. We also do not want to be forced to think about memory layout or other
machine details. The implementation language should reflect the level of
abstraction that we want to use for our conceptual models.



CHAPTER 2: REQUIREMENTS FOR A TEACHING SYSTEM

8

2 Pure object-orientation

The expression Òpure object-orientationÓ is chosen to mean the opposite of
ÒhybridÓ languages Ð languages that support the object-oriented but also non-
object-oriented paradigms. (C++, for example, is a hybrid language.)

Many people have argued for hybrid languages, in particular for C++, on the basis
that the hybrid character of the language might ease the entry to object-oriented
programming for students with prior programming experience [Biddle 1994,
Stroustrup 1994]. If a student knows C already, a hybrid language like C++ might
provide an easy entry path. Object-orientation could be gradually added to an
existing body of knowledge, making understanding of the problems easier by
flattening the learning curve.

While this argument sounds plausible at first, it is fundamentally flawed.

It is true that many students enter universities with prior programming experience,
and it would be foolish to ignore this fact, or not to try to exploit its benefits. On
the other hand, it is often the case that students come into the institution with a
self-taught ÒcowboyÓ style of programming that in no way resembles the good
programming practices which we try to convey. In teaching, we have to make sure
that those students change their habits over time. Changing oneÕs habits, however,
is harder than learning new ones. The problem is described in detail by a group of
computing experts in [Pancake 1995].

The danger with hybrid languages is that students with prior programming ex-
perience in a procedural language are not encouraged to change their style. On the
contrary Ð they can write programs for a long time, believing them to be object-
oriented, while missing all of the important concepts. Experience shows that
beginning students often believe their work to be finished as soon as the compiler
accepts their program. Equally, as soon as a C++ compiler accepts their code, they
believe that they have written an object-oriented program. Of course, this might
not be the case at all. The fact that a C++ compiler accepts non-object-oriented C
programs as valid input, turns out to be a hindrance rather than a help in getting
students to write object-oriented programs.

The requirement of a pure object-oriented language is a requirement that the
language should force students to write all code in an object-oriented style. Classes
should be the fundamental mechanism for structuring code and objects the basic
runtime construct. No code should exist independent of a class.

3 Safety

The principle of safety is that errors that can easily be detected by the compiler or
the runtime system should be detected. Furthermore, they should be detected early,
and clear messages should be given about their cause. If error-prone constructs can
be avoided altogether, they should be avoided.
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While this statement sounds obvious, it is far from being the current state of affairs
in some of todayÕs most popular languages. An example of this principle is a good
type system: the language should be strongly and, as far as possible, statically
typed. Languages such as C++ and even Eiffel [Meyer 1992], which are not type
safe, can cause fatal execution errors at runtime, which students (and often
professionals as well!) find very hard to debug. Dynamically typed languages such
as Smalltalk have a similar drawback: the point of detection of the error might be a
long way away (in time and location) from the actual source of the problem. This
makes understanding and eliminating program errors an unnecessarily difficult
task.

Other examples of safety are checking of array bounds or checking for the use of
uninitialised variables. Constructs known to be problematic should be avoided,
where possible. Explicit pointers, for example, are known by every programming
teacher as a source of major difficulties for students. Their use in a programming
language can be avoided altogether Ð several programming languages do not
require pointers to be explicitly dereferenced. Pointer arithmetic has no place in a
first year programming course.

An argument often brought forward against this is efficiency. Pointer arithmetic
saves time, checking array boundaries is expensive, and so on. The answer is:
efficiency is in our context not of major interest. The issues of learning about
efficiency and having an efficiently executing system are quite separate. ÒWhile
students need to learn how to write efficient programs, efficiency is not itself a
primary goal of their programsÓ [Tewari 1994, p321].

This is one of the key points of our argument: a teaching language does not have to
meet all the criteria for an industry-strength production language. The requirements
for teaching are different. It is possible to meet the teaching requirements better
than it is currently done in existing languages if we are prepared to pay with other
aspects, such as efficiency, that are not as essential for a teaching language.

4 High level

The programmer should not need to be concerned about machine internals. Tasks
that can easily be carried out by the compiler or the runtime system should not be
the responsibility of the programmer.

The most prominent example of a violation of this requirement is the explicit
management of dynamic storage. Putting the responsibility for storage
management into the hands of a programmer (especially if it is a beginning
student) is unnecessary and leads to frustrating experiences. The problems with
errors that are hard to find due to dangling pointers, double deallocation, or other
forms of memory corruption are well known and form one of the hardest-to-debug
groups of errors in programming in general. All of this can be avoided by using a
system that provides automatic garbage collection.

The benefits of garbage collection are indeed so overwhelming that many modern
languages use it even in a production environment. While in industrial contexts
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there are arguments both ways (efficiency against productivity and correctness),
for teaching languages the choice is clear. Explicit memory management poses
problems for the student that distract from understanding the more fundamental
principles.

5 Simple object/execution model

The model of execution should be simple and easy to understand. This includes the
object model and/or the memory model. Many languages distinguish between, for
example, two different kinds of memory layout for objects: objects on the stack
and objects on the heap. Some languages require some objects to be explicitly
allocated while others are allocated automatically. Some of these differences might
be necessary internally. None of them, however, should be visible in the language
itself.

6 Readable syntax

The syntax used should be easily readable and consistent. There are many reasons
for this. First of all, a readable program is more likely to be correct. While readable
syntax, of course, does not guarantee correctness, there are regular cases where
errors are discovered in programs that are present only because a programmer did
not understand another part of the code. If we assume that readability increases
understandability, then the case for readability is clear. But does readability really
increase understandability? The case might be different for beginners and
experienced programmers, but we believe the answer is yes in both cases. Before
we go further into this, let us state more clearly our view of the meaning of
readability.

The most important aspect is that we favour keywords over symbols. Words are
much more intuitive than symbols Ð carefully chosen keywords can reveal most of
the semantics of many instructions. This makes the language both easier to learn
and its programs easier to read. A good example of how the reliance on symbols
can be detrimental to clarity is C++: in this language, great emphasis is put on
having only a small number of keywords. The results are such bizarre constructs as
the use of the word static at three different locations in the grammar with three
unrelated meanings, or the use of the symbols Ò= 0Ó after a function header
(suggesting an assignment!) to indicate deferred functions. None of this is clear to
an uninitiated reader, and even programmers with some experience are often
struggling to remind themselves correctly of the semantics of these constructs.

A readable language has many advantages for teachers and students. Teachers are
often reluctant to learn a new language only to teach a new course. Programs of a
well designed language can be immediately readable for anyone who is
experienced in another language with similar concepts. Pascal, for example, is
easily understandable for an experienced C programmer (but not the other way
around). In this way, a readable language takes a burden off the teachers who have
to learn the language themselves. For students it means that they can, after only a
very short time, take educated guesses at the meanings of programs. Many people,
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for example, when they get a textbook about a programming language, really read
only the programming examples in that book. This should not be considered
ÒwrongÓ Ð learning by example is a powerful way of learning that we all apply at
some time. The easier the examples are to understand, the better it works. We
should try to exploit and encourage this way of learning. Keywords also can be
looked up in the index of a good textbook Ð an important point for a teaching
language.

Another aspect of readability is consistency. The same syntax should be used for
same semantics, different syntax for different semantics. The fact that in C, for
example, a function definition and a function call can be syntactically identical
serves no purpose other than to confuse programmers. On the other hand, the fact
that C++ has references to variables as well as pointers to variables, which serve
roughly the same purpose, but must be used syntactically differently, is hard to
justify as well.

For both beginners and experienced programmers readability has clear advantages.
It makes the learning of the language easier and helps to reduce the number of
errors. Maybe a lesson should be taken here from the art of writing language as it
has developed over many centuries. In the writings in human languages it has long
been recognised that the fundamental aim for useful or aesthetically pleasing
writing is in the effect on the reader, not the speed of the writer. This is true for all
forms of writing, from technical manuals to poetry. The quality of the writing lies
in the way that it is able to convey meaning to the reader Ð easy understandability
for technical documents, emotional association for poems. In none of these cases
would the writer dream of arguing that some of the words should be saved because
the reader can still work out the meaning, and the writer has to type less. On the
contrary: writing is done for the reader.

In an age in which we have recognised that programmers actually spend much
more time reading programs text than writing them, and in which we agree that
reading and understanding code may be more difficult than producing it, writing
for the reader should become an accepted principle in computing as well. Gone is
the time when programming can be considered as Òwriting for the machineÓ. With
improving compiler technology, producing a program understandable to a machine
has become the easier part. Producing a program that is understandable to humans
is the real challenge.

7 No redundancy

ÒNo redundancyÓ means that for everything we want to do in the language, there
should be one, and only one, way to do it.

Redundancy is often connected with flexibility and efficiency: having different
constructs to achieve the same task is often useful to optimise code. These
alternative constructs might differ in low level details such as performance,
memory layout, etc. To write efficient code it may be essential to influence these
low level details.
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For beginners flexibility leads more often to confusion than to efficiency. Having
three different mechanisms for the same thing, which differ in sometimes subtle
detail, might pose problems for students when they cannot make a complete
judgement as to the effects of their choice. An example is again taken from C++:
several mechanisms exist to create an object. It can be created automatically,
explicitly or with a Òcopy constructorÓ. Some objects must be explicitly deleted,
some must not. Some are in danger of being deleted twice, if the programmer is not
very careful. The flexibility here is detrimental for first year teaching. Some
language constructs that increase flexibility for experts increase confusion in
beginners.

8 Small

The language should be as small as possible while including all important features
that we want to discuss in the first year programming course. Use of larger
languages like Eiffel or C++ usually requires the instructor to teach a subset of the
language. We do not consider that a good solution. One obvious problem is that
students use parts of the language that are not in the officially sanctioned subset
(because they read examples from a textbook). The teacher then needs to explain
why it should not be used, or accepts its use and is forced to deal with it.

With a small language students can reach the point at which they know all of the
language constructs. This is psychologically very important. If students write their
programs knowing that there are still several chapters to come in their text book
introducing new, mysterious constructs, they always retain a degree of insecurity.
With many problems they try to solve they cannot be sure whether they are really
doing it the right way, whether there is not another construct just around the corner
that would solve the problem in a much easier, more elegant way. We consider it
important to get to a point where we can say to a student: ÒThis is all. You have
now seen all of the available constructs; from now on programming is not about
learning new constructs any more, but about how to put them together.Ó We
believe that this allows a student to focus better on algorithms and design aspects,
rather then spending too much time on specifics of many single constructs. Pascal
and LISP are languages where this is possible, which is often a reason for their use
in first year teaching.

Which particular language features should be part of a teaching language and
which should not is open to debate and often not easy to decide. This question will
come up again frequently over the following chapters, and we will present our
opinion on this issue.

9 Easy transition

An essential aspect of any teaching language is that what is learnt by using it must
be relevant to what is needed later.
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The result of this argument is often that a language that is popular in industry (like
C or C++ or, increasingly, Java) is used for first year teaching. This might not be
the best choice.

Most institutions are not free of forces from the Òreal worldÓ Ð we have to teach
our students to program in a language that is relevant to industry. But it is a wrong
conclusion that this means that we have to start teaching in C++. Most people
would agree that, by the time students leave a university, they should be competent
programmers in an industry-relevant language. This only means that students
should end up with strong, say C++, skills, but not that they must start with it. On
the contrary: We, as teachers, have to ensure that students learn programming as
opposed to a programming language. We must make sure that we teach them the
principles, and not just the details of one system that happens to be around at the
time. Most people working with computers today, who left university more then
five years ago, do not use the languages they learned at university. They use
languages that became popular only after they finished their education (such as
C++, Eiffel, Java, Visual Basic, etc.). It will be the same for our next students:
most of the time they will not use the languages we teach them.

For us this means that we have to teach them the principles of programming. We
might do this in any language we think appropriate. (See also [Knudsen 1988] for a
good discussion of the difference between teaching programming principles and
teaching a programming language.) On the other hand, they should not leave our
universities without being able to use a current real-world language. This means
that the language used for first year teaching should be relevant to current
industrial languages. Concepts learned with the teaching language must be easily
transferable to the next language.

If we think of designing a language especially for teaching first year students, then
this means that we should not take a revolutionary approach. We should not try to
do everything completely differently, or invent radically new concepts. We must
ensure that we use language constructs that are relevant to other languages.

10 Correctness assurance

Many software engineering principles are now taught in first year programming
courses. Among those are techniques such as programming by contract, which
relies on the use of pre and post conditions, and correctness support through, for
instance, class invariants.

The language used for teaching should support these as first class language
constructs. While pre and post conditions, for instance, can be emulated in many
languages (with assertions or comments) their existence as a separate construct
much better reflects the importance that we now give them. Students take these
techniques much more seriously if they are supported by the language rather than
given in style guidelines.
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11 Environment

The language must have a good graphical integrated program development
environment to support it. The environment must hide details of the underlying
operating system and allow students to focus on the programming task at hand.

One of the reasons, why teaching object-oriented programming has been difficult
in beginnersÕ courses is the complexity of the environment. Students often have no
prior computing experience. To be able to use an object-oriented language, a
student typically has to learn to use an editor, a compiler, and to execute a
program. He/she has to be able to manage multiple source files, handle directory
structures, manipulate (move or delete) files, etc. The effect of this is that we spend
the first few weeks talking more about the environment than the language.
Problems with existing environments fall into two categories: they are either non-
existent (i.e. Unix or a DOS shell is used) or they are complex environments
developed for professional software engineers. Both of these cause problems.

We would like an environment that, firstly, lets us concentrate on the programming
language rather than the operating system, and secondly, supports the object-
oriented paradigm.

The environment is, in fact, one of the most important points in this list of
requirements. A suitable language can be unusable for teaching because of a lack
of an environment. If we were to rate them in importance, the environment
requirement alone would probably be as important as all the other points together.

Since the environment is so important, and since it is not at all clear what it means
to have a ÒgoodÓ environment that Òsupports the object-oriented paradigmÓ, we
will discuss the requirements for the environment in much more detail below.

Some of the requirements listed above contradict each other. The inclusion of
software engineering constructs such as pre and post conditions and class invariants,
for instance, and the goal that the language should be small are in conflict. For a good
teaching language it will be essential to strike a good balance between these
conflicting goals. There will, of course, always be discussions about how small is too
small, whether really all redundancy can or should be removed, and so on. For the
design of a teaching language it is important to use these requirements as guidelines to
design decisions and weigh the effects of different requirements against each other.
They are not a straightforward recipe to create the perfect language, but they are a
basis on which to judge the suitability of a particular language for first year teaching.

2.2.3 How simple should a language be?

All of the points above aim at making a language easier to use and avoiding un-
necessary errors. A counter argument often brought against this is that students should
encounter these difficulties so that they can learn to cope with them. A language, the
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argument goes, should have explicit memory management, because students should
learn to use it.

While we agree with the statement that students should learn about these things, we
strongly disagree that it should be in the first year. The question is when students learn
these things, and what they learn first.

In our view, students should first learn the important principles of programming with
a clean language that supports those. They should then (after about one year) switch
to another programming language where they can start learning all the details
necessary for optimisation or low level programming. It is a question of what comes
first. In our view, algorithms and correctness come before optimisation. We do not
want to be forced to teach about obscure details before we introduce the principles. A
small and simple language allows us to teach in the sequence we think best. It does
not mean that all other aspects should not be encountered at all.

2.3 Requirements for the environment

Environments for teaching and the requirements for those environments are much less
discussed in the literature than the languages themselves. It seems that, when aca-
demics argue for or against a particular teaching language, a lot of energy is spent on
examining language features, and comparatively little on discovering benefits or
drawbacks of the programming environment. The reason might be partly historic: for
early languages there were no substantially different environments. If a department
used a Unix machine, for example, it was clear that the environment would be the
Unix shell.

This has changed considerably within the last decade. First of all, substantially
different environments have become available. This development was to a large
degree driven by the spread of integrated graphical environments on PCs. Today the
same language can be used from a command line prompt or from within an integrated
graphical environment, creating vastly different programming experiences.

Secondly, better environments have become necessary. Earlier introductory courses
focused on the development of algorithms in procedural or functional languages. To
do this, an editor and a compiler was all that was needed for the practical part of the
work. Modern courses now use object-oriented languages and subject material taught
includes testing, debugging and code reuse. This creates the need to deal with
multiple source files and multiple program development tools from the very start. To
give a beginning student a chance to cope with this increased complexity, better
environment support is needed.

As object-oriented languages became more popular, developments in environment
research and languages were brought together and integrated environments for object-
oriented languages emerged.
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In examining the requirements and the suitability of environments for our task, two
aspects are of particular significance: support for object-orientation and suitability for
teaching.

2.3.1 Environment requirements overview

We can group the requirements into seven categories:

1  Ease of use Ð The environment must be suitable for first year students. A
student should not have to spend a lot of time learning how to use the environ-
ment. It should be intuitive and non-threatening.

2 Integrated tools Ð Important software development tools, such as the compiler,
the debugger and a class browser, should be closely integrated into the
environment.

3  Object-support Ð The environment should support classes and objects as its
basis of construction. It should allow interaction with and manipulation of
objects.

4  Support for code reuse Ð Code reuse has often been named as one of the
primary motivations for object-oriented programming. To teach realistic and
good programming practice, a system must enable both the use of library
classes and the building of class libraries.

5 Learning support Ð Some techniques valuable to learning programming, such
as visualisation, experimentation and interactive testing, should be supported.

6  Group support Ð Students working in teams on a common project must be
possible.

7 Availability Ð The environment must be available at reasonable cost and must
be executable on available infrastructure.

As above, we now discuss these requirements in more detail.

2.3.2 Environment requirements in detail

1 Ease of use

One of the most important factors in deciding about the suitability of a software
development environment for teaching is ease of use. The environment must be
easy enough to manage for inexperienced students to be useable for programming
tasks after a very short time. This virtually implies that the environment must have
a graphical user interface. The tasks that have to be managed by the environment
internally are quite complex: file management, editing, compilation, management
of compilation dependencies, debugging, browsing, testing, execution, etc. Even
with this incomplete list it is clear that the available options are not trivial to



CHAPTER 2: REQUIREMENTS FOR A TEACHING SYSTEM

17

master. Relying on a textual interface in non-trivial systems has been shown to
require a steeper learning curve, especially for inexperienced users.

Ease of use also means the hiding of unnecessary detail. Operating system details,
for example, such as file management details, should be managed by the
environment automatically, while letting the user work at a higher level of
abstraction. When a user creates some classes, for instance, there is little interest in
the number of files and in which subdirectories information about these classes are
stored. In a good environment, it should be possible to operate for a long time
without the need to be proficient in the use of the underlying operating system.
This would avoid a common problem for first year courses: while the subject of the
course is programming, the first two or three weeks are actually spent mainly on
explaining operating system commands. This is necessary to get to the point where
students know enough to use the computer system to type in, compile and execute
their programs.

Most existing systems fail to meet our ease-of-use requirements. They typically
suffer from one of two common problems: too little support or too much support.
Both make them unsuitable for teaching first year students.

The first category is that of systems that rely on a loose collection of (at least
partially) text based tools. They provide a command line interface (typically Unix
or DOS) and little integration. An editor and a compiler are used as separate tools,
which communicate through the user: the compiler uses line numbers to indicate
locations of errors, and the user must locate the corresponding lines him/herself in
the editor to correct the error. A rich set of file management commands is needed
(listing, copying, deleting, etc.). Sometimes some of these tools provide graphical
interfaces (an editor or a debugger). Nevertheless, the interface of the separate
tools is typically different enough that the use of each additional tool is a major
task that requires a significant amount of separate instruction and practice. The
effect of this usually is that some tools, such as debuggers or class browsers are not
used in the first year, because the time required to become familiar with them is
not available.

The second category of available systems is that of very sophisticated integrated
environments or CASE tools. These systems are often very powerful: integration
between components can provide new functionality and a unified Òlook and feelÓ.
The user interface is typically graphical.

The problem with this second category of system is that those that are available
today are all developed for professional software engineers. They require experts
to use them. Typically dozens, often hundreds, of functions are available to the
user for many sophisticated tasks. For a professional software engineer it can be
worthwhile to spend several months becoming an expert in the use of a powerful
system, since it can pay off in increased productivity or quality of work over many
years to come. For a teaching situation with beginners it is impossible. A system
that is too powerful can be as unusable as a system that is too weak.
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What is needed is a system that is simple enough to be useable for beginners after a
very short time, yet powerful enough to provide many of the tasks of software
development easily or automatically.

2 Integrated Tools

The requirement of tool integration is a direct result of the ease-of-use requirement.
Above, we have already hinted at some advantages of an integrated system. The
integration of tools can have many benefits:

· A unified interface. If the interface of all components appears in a unified way,
the use of additional components is easier to learn.

·  Smaller interfaces. Often, one tool can make use of an interface already
provided by another tool. A debugger, for instance, can use the text display
provided by an editor to mark the current execution position, or to let the user
specify the location of a breakpoint. This results in fewer different interface
components for the user to learn.

·  Increased productivity. Integration can easily provide shortcuts for the edit Ð
compile Ð execute cycle. If, for example, the compiler detects an error, it can
open an editor window and highlight the corresponding location in the source
code. The step of finding the line and column of the error can be automated. The
same can be done for runtime errors if the execution of the program is
integrated as well (e.g. via a virtual machine).

·  Better functionality. Often, a tool can provide additional functionality by
making use of information that was generated by another tool. An editor can, for
example, provide language dependent functions (such as structure editing or
pretty printing) by making use of the parser in the compiler (without writing a
second parser, as is done in some systems). Even more interesting in our context
is the automatic generation of class interface views in an editor by using symbol
table information generated by the compiler. This goes far beyond the ability of
a general purpose (non-integrated) editor, especially since it involves
information from other files (such as inherited routines).

Systems that support the use of non-integrated tools have some advantages as well.
The main one is the ability to use previously known tools for a common task, thus
avoiding the need to learn to use a new tool. The most common example is the
ability of an environment to let users use a text editor of their choice. Many
experienced users have become very familiar with one editor and resent being
forced to use another one.

A second advantage may be the availability of many general purpose tools for a
system that is used as the basis for a non-integrated environment. Unix, for
example, provides a large number of tools (e.g. for text formatting, counting
words, printing, etc.) that might be used if a Unix shell is chosen as the
development environment.



CHAPTER 2: REQUIREMENTS FOR A TEACHING SYSTEM

19

These advantages, however, do not outweigh the advantages of integrated systems.
For beginners especially, the arguments for non-integrated systems are weak. First
year students typically are not experts in the use of a particular text editor, and they
do not know a relevant number of tools on a given platform. And even for more
experienced users the disadvantages of an integrated system can be made less
serious by providing a good environment: a text editor, for instance, that can be
adapted to usersÕ preferences with regard to key bindings, or a good set of tools
which are easy to learn. The advantages of integration, on the other hand, benefit
all kinds of users.

3 Object support

Many existing software development environments have evolved over time. They
were originally developed for non-object-oriented languages and later adapted for
object-orientation. This adaptation, however, usually fails to exploit the possibi-
lities that come with object-orientation Ð they are, in their character, still structured
(not object-oriented) environments.

The major shortcoming of these environments is the lack of support for objects.
While the language is designed around classes and objects, the environment still
manages files and produces a program (a single executable). In an object-oriented
environment the user should be able to reason about, and interact with, classes and
objects. The environment should represent the classes involved in a project and
their relationships. It should also let the user create and interact with objects of any
class. The result is the availability of important testing facilities: the programmer
can create and inspect different objects, compare them, or pass objects as
parameters to other objects.

The ability to create and test objects of any class without the need to write test
drivers encourages incremental development. Classes can be tested separately from
each other much more easily, and many debugging problems can be avoided.

Another aspect of object support is closely related to another requirement: learning
support (discussed below). Direct interaction with objects can greatly improve
understanding of object-oriented concepts.

4 Support for code reuse

The facilitation of reuse of existing code is one of the main motivations for object-
oriented programming. In teaching, we must aim at giving our students a realistic
impression of the task of programming. We must try to include as many real
programming experiences into students exercises as possible, for students to
understand the issues of software development and to form good habits.

Because of this, it is important to facilitate the reuse of existing code from the very
beginning. The development environment must provide a class browser that lets a
student find out about existing library classes. It should also have the ability to
build new libraries of classes that the student has written. These can then be reused
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later by him/herself or by other students. This is important to enable students to
experience the need to write code for reuse.

5 Learning Support

The environment must support some techniques that are known to support learning
of programming concepts. Among those are:

· Visualisation. The structures talked about when teaching object concepts should
be, as far as possible, made visible on the screen. It is a common experience of
teachers teaching object-oriented programming, that it is initially difficult for
some students to think in terms of classes. The reason for this might be that all
they ever see on the screen are lines of code. If students are expected to think
and talk about classes, then the classes (and their relations) should be visually
represented. The same can be said about objects at runtime: relationships
between objects are better understood when made visible. We can even go
further: if we expect our students to think about program design before coding,
and if the tool we use to talk about program design is a graphical notation, then
a student should be able to create this graphical notation in the environment as a
starting point during the process of system development. We do not only require
an environment to visualise existing code structures, but to edit the visualisation
as part of system development.

·  Interaction / experimentation. To provide a hands-on approach by enabling
interaction with classes and objects can greatly increase the understanding of
object-oriented concepts. The ability to experience the notion that, for example,
many objects may be created from one class, and that those objects behave
similarly, but have a separate identity and a different state, can greatly help in
clarifying the relationship between classes and objects. Equally, the experience
of stepping through code and seeing the effect of control structures and
watching the value of variables change can contribute a great deal to the
understanding of writing code.

It is interesting to note that the Òlearning supportÓ aspects are not only useful in
educational systems. Visualisation and interaction can greatly benefit professional
software developers as well, since in non-trivial programming projects it is often
necessary to ÒlearnÓ something about the software artefact the programmer is
manipulating. Visualisation of class structures is one of the most prominent
features of many professional CASE tools.

6 Group Support

Another characteristic of programming in the real world is the need to work in
teams. The success of object-oriented languages is partly due to their advantages in
group projects. Ideally, we also want to teach our students about the techniques
needed for teamwork. To do this, it is essential that the environment has some form
of support for group work.
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It should be possible for a group of students to simultaneously work on different
parts of a system under development, and to have a controlled system integration
process. Some form of group communication mechanism would also be beneficial.

7 Availability

Some of the requirements mentioned so far are implemented in existing CASE
tools. There is, however, one serious problem with some of those tools: cost. Being
developed for professional use with large companies as customers in mind, the
pricing of some of those tools is outside the reach of many university departments.
In addition to that, some of them require very sophisticated hardware (either very
fast machines or large memory). In order to be useful as a university teaching
language, a system must be available at reasonable cost, and it must be able to run
on commonly available hardware. ÒCommonly available hardwareÓ can mean
different things: ideally, it would be available on different platforms. It should be
available for Intel PCs, preferable under MS-Windows, since this is the most
commonly used platform by students. If it is available for Unix to be run in a
multi-user environment with terminals, then the resource requirements of the
system (processor time and memory) must be such that a typical university
machine can serve at least several dozen terminals concurrently. It is, of course,
unclear what Òa typical university machineÓ is, but we can at least say that a
system that requires the latest, fastest system on the market will not be of use to
many institutions.

None of the requirements named above is really new. Each of them has been
implemented in some existing system. (Existing systems will be examined in chapter
4.) The combination of these requirements, however, is what is really important in our
context. In particular the combination of the requirement of ease-of-use with that for
fairly sophisticated technical support may at first glance seem contradictory. We are
asking for a powerful system that appears simple to the user. The degree to which this
combination is achieved will be the determining factor in assessing the suitability of
systems for first year teaching.

2.4 Summary

We have, in this chapter, discussed the characteristics that an object-oriented teaching
language and environment should have. We have seen that the requirements for a
teaching system are different from those of a professional production system, and that
those of an object-oriented system are different from a procedural one.

As mentioned earlier, we believe that no existing system meets the requirements. No
existing system is, therefore, ideal for teaching. Furthermore, we believe that no
existing system is suitable for teaching, since each of them fails to meet the
requirements in substantial ways.
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In the next chapter we proceed to examine existing languages and environments in
more detail. As we discuss each system, we will substantiate this claim with concrete
examples.
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3 Languages

In this chapter we examine the most commonly used object-oriented languages. Many
papers have been published comparing different aspects of a variety of languages (e.g.
[Blaschek 1989, Henderson 1993, Kristensen 1996, Schmidt 1991]). Most of those,
however, concentrate on technical aspects of the languages themselves, rather than
assessing their suitability for teaching. Mazaitis [Mazaitis 1993] has compared several
attempts to incorporate object-oriented programming into the curriculum and
comments on experiences with languages and environments used. She writes in her
summary: ÒHowever, the experiences of teaching the courses revealed common
problems: difficulties with the language chosen, inadequacies in existing support
tools, and the amount of time students need to become proficient with a new
paradigm, environment, language and set of tools.Ó In this chapter we assess each
language and identify the potential difficulties in relation to teaching.

When comparing languages, there is always the question of how many and which
languages to look at. Since language comparison is not the main topic of this work, it
is not our aim to survey as many languages as possible. We want, however, to survey
the important languages. So which languages are important?

The languages that are important in our context are modern or mainstream object-
oriented languages. We will not examine procedural languages, since one of our
premises was that we want to teach object-oriented programming. This places
languages like C or Scheme outside our area, although some people elsewhere still
argue for their use in teaching.

But even restricting ourselves to object-oriented languages, there are too many to
consider them all. Countless languages with small follower communities exist (e.g.
Dee [Grogono 1994a] or Turing [Holt 1988]), and many new highly interesting
experimental languages are being developed all the time (e.g. Self by Sun
Microsystems [Ungar 1987] or Dylan by Apple Computers [Apple 1994]).

So the first real question is: How do we select the languages to survey?
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Our decision was to take advice from work already completed by other people: lang-
uages that other institutions have chosen for their first year teaching should be worth
considering. Many people have thought about this question before: Which language
should we use for teaching in first year? A language chosen by one or more other
institutions must have something speaking in its favour. Languages that were not
selected by any institution should also not emerge as a winner if we repeat the
examination. So we assume that we can safely omit them from our survey.

The languages that we, according to this process, found to be the important ones are
C++, Java, Eiffel and Smalltalk. Each of these has been examined in detail for their
suitability for first year teaching by being evaluated against our requirements. This
chapter gives a summary of these evaluations.

3.1 C++

C++ [Stroustrup 1991] is fast becoming an industry standard and probably the most
popular object-oriented language (although Java is gaining ground quickly). Countless
books have been written about C++ and many implementations are available. There
are several conferences and journals exclusively aimed at the discussion of C++
related topics.

C++ has the advantage of being very industry-relevant. It is currently one of the most
important languages for a graduate of a computing degree to be familiar with. It is
adopted in industry projects because of its flexibility, efficiency and wide availability.

1 Clean concepts

Whatever can be said in favour of C++, it is not that it represents any abstract
concepts in a clean way. Two of the most influential design decisions in the
development of C++ were to retain full backwards compatibility with C and to
regard efficiency in time and space as a main goal. (Stroustrup stated that Òtime
and space overheads above those for C are considered unacceptable for C++Ó [Ellis
1990].) Both those characteristics have the effect that the representation of many
important language constructs is heavily influenced by low level considerations
that distinguish the concrete representation from the abstract concept. Often, subtle
implementation details need to be understood to use fundamental constructs
correctly.

2 Pure object-orientation

C++ is a hybrid language that supports object-oriented programming as well as
non-object-oriented programming, leading to the temptation to develop solutions
that are not really object-oriented. This is particularly a problem for those already
familiar with C, which is the case for an increasing number of students entering
computer science courses. Learning object-oriented concepts becomes more diffi-
cult because the language does not enforce or encourage their use.
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3 Safety

One of the most serious criticisms of C++ is its lack of type safety. Sakkinen
[Sakkinen 1992] states that Òalmost all its higher level constructs and protections
can be corrupted and circumvented at will by low-level manipulationsÓ and comes
to the conclusion that Òthe C language is so unsafe that striving to a total or almost
total upward compatibility from C cannot result in a good general-purpose object-
oriented language.Ó Although C++ has attempted to improve some of the problems
often criticised in the type system of C, it remains a weakly typed language that
features numerous constructs with the potential to easily circumvent the type
system.

The explicit dynamic storage allocation in C++, in combination with the lack of
garbage collection, also greatly increases the risk of errors. Often C programs that
have been tested and used for some time have Òmemory leaksÓ and other bugs that
are caused by improper storage handling. In C++ this problem is more serious,
since deallocation is often associated with a function call. A missing deallocation
omits this function call and this can cause a much greater variety of unwanted
effects than just disappearing memory.

4 High level

C++ includes numerous constructs for low level manipulations. Bit operations and
pointer arithmetic, for instance, are frequently used in typical C++ programs.

The use of explicit storage management, mentioned above, not only allows but
forces the programmer to think at an unnecessarily low level.

5 Simple object/execution model

The object model supported by C++ is clearly the most complex of the languages
included in this survey. This is caused in part by C++Õs support for pointer and
non-pointer (ÒautomaticÓ) variables, as well as the semantics of some important
constructs.

This point can be illustrated by an examination of the object creation mechanisms
in C++. There are three different methods of object creation Ð automatic, explicit,
or by assignment Ð which all differ in minor aspects. In the first case objects are
destroyed automatically, including an automatic call to the destructor function; in
the second case objects are not automatically destroyed; in the third case the
objects are created without a call to the constructor function and calling the
destructor can be a problem (but it may be called automatically, anyway). The
subtleties of this are extremely difficult to explain to students.

An example of overly complex operation semantics is the definition of the dyna-
mic dispatch mechanism. Functions are dynamically dispatched only if the variable
through which the object is accessed is a pointer variable and the operation called
has been explicitly defined as a dynamically dispatched function (Òvirtual func-
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tionÓ in C++ terminology). This definition is extremely confusing at times.
Combined with the fact that it is permitted to overload a non-virtual function, this
definition opens up a whole range of possibilities for errors and misunderstandings.
The flexibility inherent in this construct has no benefit in a teaching situation, since
the justification of its existence consists exclusively of efficiency reasons.

6 Readable syntax

Readability is another negative point for C++. Its syntax is overly terse and has as
one of its most obvious features its favouritism of symbols over keywords. This is
partly caused by the philosophy of C, which tried to avoid a large number of
keywords, (a philosophy that has been carried over into C++) and was then
maintained through the goal of backwards compatibility: Since language keywords
are not syntactically distinguished from user defined identifiers, they live in the
same name space as identifiers. So every addition of a keyword potentially renders
a set of existing programs illegal.

As a result of this, C++ often overloads the same keyword for different purposes or
uses unintuitive symbolic constructs. An example is the definition of deferred
functions (functions declared but not defined in a class, which must subsequently
be defined in a descendant class). These are called Òpure virtual functionsÓ in C++.
The syntax in C++ is:

virtual void f () = 0;

By employing a syntax similar to variable assignment, the meaning of the construct
is hidden and the declaration becomes unreadable to a non-C++-programmer. Even
experienced programmers in other object-oriented languages would have difficulty
understanding the meaning of this construct. The simple replacement of Ò= 0Ó with
a keyword such as Òdeferred or ÒabstractÓ, would result in a reader familiar with
object-oriented concepts understanding the code.

There are numerous similar examples in the language.

7 No redundancy

The decision to keep C++ upwards compatible with C has led to the evolution of a
large number of redundancies and surprising interactions of concepts, and greatly
increases the complexity of the language.

In many cases several different language constructs exist for the same semantic
concept and these sometimes differ in subtle ways. This makes reading as well as
writing C++ an unnecessarily difficult task. One example has been given above
when we discussed the object model: redundant constructs exist for object creation.

Another example of confusion introduced through redundancy are the differences
in relation to reference arguments as compared with constant pointer arguments.
Consider the following two declarations:
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void function1 (int *const arg);

void function2 (int& arg);

Both declarations serve the same purpose and behave in similar ways. When
calling the functions, however, a different syntax must be used:

function1 (&i);

function2 (i);

In this example, we have two constructs to accomplish the same task, but with
different syntax. This is clearly a violation of good language design principles.

8 Small

Because of its numerous redundancies, C++ is not a small language. In addition,
many constructs interact in subtle ways which make it necessary to learn many
details and dependencies of constructs (e.g. the interactions of arrays and default
constructors).

9 Easy transition

Transition is not an issue for C++. Since it is an industry-relevant mainstream
language no transition is necessary.

10 Correctness assurance

C++ allows the programmer to write correctness assurance constructs through
ÒassertÓ statements and comments. Pre and post conditions are, however, not
explicitly supported by the language, so it is left to programmersÕ discipline to
make consistent use of this technique. For a teaching language this is not a
desirable situation.

11 Environment

Numerous environments are available for C++. They range from simple command
line shells with stand-alone compilers and editors to graphical integrated
environments. Many vendors offer compilers and environments, and several free
versions are available.

The list of problems mentioned here could easily be extended. Many other problems
have been pointed out and discussed in much detail in the literature (e.g. [Joyner
1996, Pohl 1988, Sakkinen 1992]). Detailed discussion of all of them would exceed
the space we want to devote to this language.

Overall, C++ is one of the worst candidates for our needs.
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The problems associated with C++ are widely reflected in comments of teachers who
have tried to teach C++ to undergraduate students (e.g. [Berman 1994, Mazaitis
1993]). While the adoption of C++ as a first programming language was rapidly
increasing in 1994 to 1996 (especially in the United States, greatly helped by the
selection of C++ as the language to be used nationwide for the Òadvanced placementÓ
test of final year school students [Abelson 1995]), it has since declined. Warnings and
experience reports seem to have led to a greater reluctance to use C++ in introductory
courses. When the GI (ÒGesellschaft f�r InformatikÓ, German professional computer
science society) recently published a special edition of its journal ÒInformatik
SpektrumÓ discussing languages for teaching object-orientation [GI 1997], C++ was
not seriously considered anymore. Almost every one of the six main articles in that
journal commented on the weaknesses and difficulties of C++ in this context.

To provide a somewhat more balanced view, we should also mention that not all
people share the view of C++Õs inherent problems for teaching (e.g. [Biddle 1994,
Decker 1994]). Numerous papers have been published with tips and tricks for
teaching C++ in a certain way, so that specific problems may be avoided, overcome
or at least lessened. DÕSouza [D'Souza 1995], for example, suggests that it is not
harder to learn C++ than Smalltalk, if it is taught properly (but he agrees that it is
harder to teach a good C++ course). This is, in our experience, certainly not true.
Personal experience with teaching C++ has shown an incredible number of examples
of cases where students had severe problems in completing their work because of
errors caused by ambiguities, syntactic quirks or semantic pitfalls that do not exist to
that extent in any other language included in this survey.

Although the above discussion of problems with C++ is not exhaustive, it is obvious
that the issues raised disqualify C++ as a candidate for a first year teaching language.

3.2 Smalltalk

Smalltalk [Goldberg 1989] is sometimes referred to as Òthe most object-orientedÓ
language. It carries object-orientation further than other languages. Smalltalk states
that Òeverything is an objectÓ and very consistently sticks to this rule. Even control
structures in the language are considered objects. This consistency makes it attractive
as a teaching language.

1 Clean concepts

Most fundamental concepts of object-orientation are supported in a clean and
consistent manner. Smalltalk adds almost no overhead in its concrete
representation that is not reflected in its abstract model.

Some constructs, though, which are now accepted as being important to object-
orientation, are not well represented in the language. An important example is the
poor support for implementation and interface distinction. In Smalltalk, all
methods are automatically public and all data automatically private. This,
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combined with the lack of special constructor functions and an encapsulation
model that prevents class methods from accessing instance data, make it necessary
to write initialisation methods as public operations, even though they should never
be publicly called. They are typically tagged with a comment declaring them
private, and it is hoped that clients follow this recommendation. The same problem
occurs in other situations.

This lack of support for an important concept is understandable in the light of
SmalltalkÕs age Ð at the time of its definition not much experience with object-
orientation existed. It is nonetheless unfortunate in the context of a teaching
language.

2 Pure object-orientation

Smalltalk is a pure object-oriented language. It enforces the development of code
in an object-oriented style and, consequently, the programmer must adopt an
object-oriented way of thinking about problems and solutions. Because of the
extension of the object concepts to language elements themselves (e.g. classes are
objects) it can be considered ÒpurerÓ than other languages.

3 Safety

The main drawback of Smalltalk is its lack of static typing. Sakkinen [Sakkinen
1992], in a discussion of programming languages, distinguishes languages for
Òexploratory programmingÓ and languages for Òsoftware engineeringÓ. The former
aim at great dynamism and run-time flexibility, the latter have static typing and
other features that aid verifyability and/or efficiency. It should be clear from the
discussions in preceding chapters that we aim to prepare students in the
programming course for a software engineering view of the world, thus favouring
languages of the second kind. Smalltalk clearly is a representative of the first
group. It was developed with a requirement in mind that the user be able to rapidly
change the application structure [Goldberg 1995a].

Smalltalk is not statically typed and, as a result, type errors will not be detected
until run-time. In the worst case, errors may not be detected at all, if, for example,
the program is not thoroughly tested and not regularly used (as is often the case
with studentsÕ assignments). When an error is detected, it can be very difficult to
locate its cause. Because of the dynamic nature, the time and location of detection
of the error can be far removed from its actual source. (This, of course, is also
possible in statically typed languages, but the chance of it happening is far greater
with dynamic typing.) The error messages in those cases are necessarily less
precise and less helpful. There is a high probability that students will be confused
and unable to understand the problem given their typically poorly developed
debugging skills.
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4 High level

Smalltalk consistently operates at a high level. It provides automatic garbage
collection and hides low-level details.

5 Simple object/execution model

The execution model is clear and consistent. All objects are accessed via
references, all methods are dynamically bound and operations behave in a uniform
manner.

6 Readable syntax

SmalltalkÕs syntax is another characteristic, which we view as a drawback. It is
alternately referred to as ÒsimpleÓ and ÒobscureÓ. Both are true in some sense. It is
simple in that it is composed of only a few syntactic concepts and structures. Thus,
it is simple in the same sense in which LISP syntax is simple. In another sense,
SmalltalkÕs syntax is obscure. This, unfortunately, is the sense that is important to
our discussion: readability. The unification of concepts in Smalltalk, the view, for
instance, that even control structures are objects, results in a syntax that is less
readable and less intuitive than the ALGOL-style syntax adopted by many other
languages (e.g. Pascal, Modula, Eiffel).

Although syntax is to a great extent a question of experience (and thus the
argument that Òthey just have to get used to itÓ is often brought forward), we
should not ignore two certain aspects of experience. Firstly, many students entering
university courses today have prior experience with a programming language, and
we would be foolish not to try to build on this experience. Secondly, we want the
experience gained by students in our course to be as helpful and relevant to future
work as possible. In both respects, adopting an ALGOL-like syntax seems to be
beneficial.

7 No redundancy

Smalltalk has a very small set of language constructs (most operations are
represented through method calls) and avoids redundancy.

8 Small

The size of Smalltalk can be viewed in two ways. The language itself (in terms of
the number of constructs) is small; the Smalltalk system, however, is large.
Smalltalk usually offers a huge class library. Since everything in Smalltalk is an
object, extensive use must be made of the library from the very beginning.
Virtually all publications about teaching Smalltalk, although generally positive
about the system as a whole, report problems coping with the size of the class
library. Tempte [Temte 1991], in a paper describing his experiences with teaching
Smalltalk, writes: ÒIt is easy to underestimate the difficulty of learning to use
Smalltalk effectively. Smalltalk is not an isolated language but a programming
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system which uses very simple language syntax ... in conjunction with a very large
class library within an interactive environment. Software development requires
facility (sic) not only with the object-oriented paradigm but also with the library
and the environment.Ó  He goes on to state that more time than expected had to be
devoted to teaching about the structure of the library. Similarly, Skublics [Skublics
1991] reports that a survey of students after a course using Smalltalk indicated that
they found the existing class library overwhelming; LaLonde and Pugh [LaLonde
1990] report students to be Òmore apprehensiveÓ because of the Òsheer amount of
code provided by the Smalltalk libraryÓ (although they were very positive about
the use of Smalltalk in general).

We stated earlier that the teaching language should be small, so that the students do
not feel overly intimidated or lost in the programming system. This requirement
must also include those class libraries which students necessarily encounter. We do
not at all argue against the use of class libraries in general. On the contrary: we
think that experience with the use of library classes is essential to foster a culture
of good programming practice and software reuse. But similar criteria to those
which we apply to the evaluation of the language proper must also be applied to
the libraries used in the first year course. In this respect the Smalltalk environment
is overwhelming. Because of the nature of the Smalltalk system, a considerable
amount of time must be spent getting acquainted with the structure of the class
library. A related criticism is the complexity of the tools provided in the
environment. The feeling of being lost in the system is as often caused by
complexities of the class browser as the library itself. These issues will be further
discussed in chapter 4.

9 Easy transition

Transition to other object-oriented languages may, on the surface, seem less than
ideal, since SmalltalkÕs syntax and class model is considerably different from most
other languages. On the more fundamental issues of object model and object-
oriented techniques, however, Smalltalk provides a clear picture that is easily
transferable to other systems.

10 Correctness assurance

Smalltalk does not provide any support for pre and post conditions or class
invariants.

11 Environment

It must be counted in favour of Smalltalk systems that they always include an
integrated development environment. Even though we criticise it as being too
complex in some parts, it provides many aspects that are clearly helpful and
desirable in a teaching environment. The manner of object interaction, for instance,
provides an immediacy for experimentation and testing that goes far beyond that
provided by most other programming environments.
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SmalltalkÕs view, on the other hand, of programming as modification and
extension of a global universe which merges the view of libraries and the current
application, often leads to confusion. This aspect is further discussed in chapter 4.

3.3 Eiffel

Of all the languages surveyed, Eiffel [Meyer 1992] probably comes closest to
fulfilling our language requirements. It is statically typed, supports object-oriented
concepts in a clean way, avoids redundancy and has a clear, easily readable syntax.
This combination makes it a better candidate than any other language.

Comments by teachers who have used Eiffel in university courses reflect this view.
The reaction is generally positive as far as the language itself is concerned, with a list
of minor criticisms [N¿rmark 1995, Ryba 1997].

1 Clean concepts

Eiffel represents most concepts in a clean way. There are some exceptions though.
Eiffel has, for example, two different storage modes for objects, the normal
(reference) mode and ÒexpandedÓ (value) mode. This is unfortunate from a
pedagogical point of view. Its only purpose is to increase runtime efficiency, with
no justification at a conceptual level. The effect of supporting these two modes is
that programmers are forced to think about implementation details during class
design (since some designs, such as self referencing structures, can only be
implemented with one of the alternatives).

2 Pure object-orientation

Eiffel uses object-concepts throughout and does not support hybrid programming.

3 Safety

The system is mostly type safe. Eiffel is statically typed and most errors are
detected at compile time. Some typing holes exist which introduce the possibility
of fatal errors at runtime, but these cases are rare enough not to pose a serious
problem for a first year teaching context.

4 High level

Automatic garbage collection is a standard feature of Eiffel systems, avoiding one
of the worst areas of low-level operations (manual memory management). Some
low-level operations exist, but they are unobtrusive Ð programmers are not forced
to deal with them. Eiffel can be considered as fulfilling our Òhigh levelÓ
requirement.
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5 Simple object/execution model

EiffelÕs object model is not as simple as would be desirable. It is unnecessarily
complicated through the use of two different storage modes (discussed above).

Its attempt to support a very large number of constructs sometimes leads to overly
complex structures. N¿rmark [N¿rmark 1995] points out an example: the common
idiom in which a redefined routine in a subclass calls the original routine in the
superclass. To do this in Eiffel, it is necessary to inherit the superclass twice (!),
redefine the routine in one inherited version, rename it in the other and select the
first one. The fact that a technique such as repeated inheritance is necessary for
such a common pattern is extremely unfortunate. This use of inheritance does not
fit well with the main purpose of inheritance as specialisation which we try to
convey in first-year courses.

This example shows that the complexity of the language cannot be ignored by
teaching a subset1. As Meyer himself put it [Meyer 1992, p500]: Ò... the idea of
orthogonality, popularised by Algol 68, does not live up to its promises: apparently
unrelated aspects will produce strange combinations, which the language
specification must cover explicitlyÓ. Advanced features of the language (repeated
inheritance) affect the appearance or behaviour of other features (superclass calls).

6 Readable syntax

EiffelÕs syntax is based on the tradition of ALGOL and Pascal and makes extensive
use of readable and meaningful keywords. Like other languages in this tradition, it
is easily readable and enforces a very clear code structure. For a teaching language,
this is an ideal style.

7 No redundancy

Redundancy is mostly avoided in Eiffel. In most cases there is one well defined
way of using a technique.

8 Small

While Eiffel mostly avoids multiple constructs for the same concept, it supports a
large number of concepts. This makes Eiffel large, even though it has little
redundancy. It contains numerous constructs which cannot be included in a first
year course. The way to deal with this problem would be to teach a subset of Eiffel
Ð a solution which we have found to be undesirable (see discussion of principle 8,
section 2.2).

                                                  

1 Eiffel is complex in a different way than C++. C++ is redundant. Complexity often arises from too
many different ways to achieve the same thing. Eiffel is not redundant, just large Ð it covers many
constructs and techniques. EiffelÕs complexity is therefore justifiable, since it has a purpose.
Nonetheless it is undesirable for introductory courses.
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9 Easy transition

Eiffel defines its constructs (small scale constructs such as loops as well as object-
oriented concepts) in a clear way close to accepted mainstream views. The skills
learnt with Eiffel should be easily transferable to many other languages.

10 Correctness assurance

Sophisticated support for pre and post conditions as well as class and loop
invariants is included in the language. Design by contract is supported better than
in any of the other languages surveyed.

11 Environment

The most fundamental problems with Eiffel are not with the language itself, but
with the libraries and the programming environment. The libraries are far too
extensive and too specialised for an introductory course. They are described by
teachers and students as overwhelming and difficult to navigate [Mazaitis 1993,
N¿rmark 1995]. The collection class library, for example, is extremely hard to
understand and difficult to use. The linked list class, which will be used in many
first year projects, has more than 50 interface routines!

The most severe problem is the environment. Currently, only a handful of Eiffel
implementations exist. Of the few that are available, even fewer include a
graphical development environment. The most sophisticated and most widely used
Eiffel environment is ÒEiffelBenchÓ from ISE. But even this environment, the most
promising for our purposes of those available, is unsuitable for use by first year
students. In a report about using it in a fifth-semester course, N¿rmark [N¿rmark
1995] described it as low in quality and unreliable. He describes numerous severe
problems with the environment: compilation is too slow (even though three
different compilation modes are provided), the different compilation modes (which
are only meant to save time) are inconsistent, and it is difficult to use. In a student
survey, 37% of the students said that they chose not to use it (and used a Unix
editor and shell instead). Of those who used the graphical environment, 64.7%
found the experience ÒnegativeÓ or Òvery negativeÓ, 35.3% judged it as ÒneutralÓ
and no one (0%) described it as ÒpositiveÓ or Òvery positiveÓ. N¿rmark concludes
that it Òis not good enough for teaching purposesÓ.

The problems with the environment are not only implementation deficiencies
which will be solved once reliability is increased. Many problems lie in the design
of the environment itself. This issue will be further discussed in chapter 4.

Considering the importance we attach to the environment of an object-oriented
language in a first-year course, this is a serious problem. The environment is
needed to hide some of the complexity inherent in the implementation of object-
oriented technology (such as the need to deal with multiple files) from the student.
The Eiffel environment, on the other hand, adds complexity. Eiffel (at least as it is
currently available) must therefore be considered unsuitable. Unfortunately, since
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the language is large and not easy to implement, it is unlikely that better alternative
implementations will become available in the near future.

3.4 Java

Java [Arnold 1996] is very quickly becoming one of the most popular object-oriented
languages on the market. Never before has a language spread so quickly and been
taken up by so many programmers in such a short amount of time. (Never before has
a language been pushed with such an immense organised marketing effort, either!)

Unfortunately, the reasons for its popularity have as much to do with the marketing
push and with coincidental side aspects as with the quality of the language itself.
Three aspects, among all others, can be identified that lead to the great success of
Java:

1 Java was the first language that was integrated into web browsers and could thus
be used to write ÒappletsÓ, programs running in a web page. With the boom of the
world wide web at the same time, Java became popular for all things connected
with the web.

2 Java translates to machine independent byte code, which is then interpreted. This
principle is far from being new, but since Sun has managed to convince virtually
all operating system vendors to include Java virtual machines in their system,
instant platform independence can be achieved. This coincides with a situation
where more than enough processing power is available for many applications even
in common desktop PCs. Thus, developers are starting to consider platform
independence (implying cost and time savings) more important than maximum
possible efficiency.

3 Java has cleverly been marketed as Òa better C++Ó. It uses syntax similar to C++,
and has been compared to it from the very beginning. While this marketing
approach is misleading, since Java is fundamentally different from C++ in the
design of just about every interesting aspect of object-oriented programming (and,
from a language design point of view, closer to languages such as Modula-3), it
has greatly helped its acceptance. Firstly, compared with C++, Java really does
look clean and simple. (But then again, so does just about any other language.) By
managing to be compared only to C++ most of the time, Java has managed to
present itself clearly as the better choice. Secondly, because of its apparent
similarity to C++, many more programmers are willing to learn to use the
language. Generally, programmers are very reluctant to switch to new languages.
Few have the time and the energy to keep up with the developments as new
languages are published year after year. The fact that the low level constructs are
similar to C and C++ made many people believe that they know half of the
language already, and learning the rest would be an easy task. (This might or
might not be true Ð generally the syntax and low level constructs, such as loops
and conditionals, are not the most difficult thing to learn in a language.)
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In a more sober analysis Java still looks like a well designed language, but not like the
final solution to all our problems, as the hype makes one believe.

1 Clean concepts

Many of the important concepts of object-orientation are represented in a fairly
clean way. On the positive side is the handling of multiple inheritance: Java
supports separate type inheritance through a concept called interfaces. It allows
only single class inheritance, but multiple type inheritance. This is a very good
compromise which allows the programmer to use much of the functionality
provided by multiple inheritance while avoiding most of its problems.

On the negative side are numerous small problems. Simple types, for instance, are
not regarded as classes. This sometimes causes problems, so a second type Ð a
class type Ð is defined for each simple type. As a result, there are types boolean
and Boolean, one of which is a class and the other is not. The duality exists for all
the predefined scalar types.

The language forces some of the more advanced concepts into the foreground very
early. This is most prevalent in the very first function: the main function that every
application needs to provide. The required signature for this function is

public static void main (String[] args)

There are several concepts used in this line that a teacher might not want to
introduce at this point: static functions, the void return type, array parameters. Yet
this is necessarily the first code that students see. (It gets worse if the class uses
input: then an exception declaration has to be added to the signature.)

So while each concept on its own is well represented (except for syntactical
aspects, discussed below), the fact that they cannot be initially avoided introduces
problems.

2 Pure object-orientation

Java is basically a pure object-oriented language. Used properly, all code is part of
a class, and classes are the basic unit of code structure. The notable exception is
again the main function. It is declared static (making it a class function), although
it is logically not part of the class, but used to start up the application. As long as
the main function is only used to initiate the execution, the application is purely
object-oriented. Unfortunately, some text books start by introducing small
programs entirely written inside the main function. This example has nothing to do
with object-orientation and should be avoided.

3 Safety

Java is type safe with a combination of static and dynamic type checks. Most
constructs are statically type-checked with some constructs being checked at
runtime, potentially throwing exceptions.
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4 High level

Most language constructs operate at a high abstraction level. Most importantly,
Java provides automatic memory deallocation through garbage collection.

One commonly supported concept in object-oriented languages that is missing in
Java is support for genericity. Genericity (sometimes called parametric polymor-
phism) is the ability to instantiate class patterns with type parameters so as to
easily generate a family of classes that share their code and functionality. It is a
powerful mechanism that is essential in the construction of a good collection
library. The collection library, in turn, is essential for first year programming to
provide interesting examples early in the course, and to encourage reuse. Collec-
tions, such as lists or bags, are typically among the first library classes used by
students in their programs. They are ideal for experiencing the benefits of reuse,
since they provide important functionality to students in an easy way, allowing
them to write programs that they would not otherwise be able to write.

The lack of genericity affects students in two ways: firstly, they cannot learn about
this important concept, which they will later encounter in other languages.
Secondly, the collection library (implemented with inheritance instead of
genericity) does not provide static type safety. When implementing collections
with inheritance, the element type of the collection is typically defined to be the
common superclass of all objects, called Object in Java. This mechanism has the
disadvantage that it does not guarantee monomorphic collections Ð that is that all
elements in any one collection are of the same type Ð and makes it necessary to
explicitly cast the type back to the original before elements can be used again.2

5 Simple object/execution model

JavaÕs object model is reasonably simple and straightforward. The restriction to
storing all objects by reference greatly simplifies the language. Some more obscure
constructs exist (such as static initialiser blocks, code written in a class, but outside
any function), but they can easily be avoided. The inheritance mechanisms are well
thought out and elegant.

6 Readable syntax

The syntax is a weak point in Java. It uses C/C++ syntax which we have already
criticised above. This syntax is known to inhibit readability in several ways.
Firstly, its favour of symbols over keywords, which allows a very terse program
text, makes it unintuitive and harder to read. Secondly, the flexible style of this
syntax (its mix of statements and expressions, for instance) leads to the

                                                  

2 These remarks apply to the Java collection library at the time of writing. Java is still very much in a
definition phase, and it is likely that the definition of the standard collection library will be changed.
The elegance and simplicity of the solution using generics, however, cannot be achieved with any
definition relying on inheritance instead.
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development of distinct coding styles. Each style may be valid and consistent, but
maintenance (the need to read other peopleÕs programs) is negatively affected. It
reintroduces the need for style guidelines. The fact, for example, that it allows an
arbitrary mix of public and private definitions in a class does not serve a useful
purpose. Its effect is that the interface of that class may be scattered throughout the
whole text, making it unnecessarily hard to read. Java also retains some of C++Õs
more obscure keywords. The use of the term static to declare class methods, for
example, is based on a technical detail and is unintuitive at a higher level.

A more detailed description of the problems associated with the C style syntax can
be found in [Joyner 1996, Pohl 1988, Sakkinen 1992].

7 No redundancy

Java generally avoids redundancy in its constructs. It retains, however, some
redundancy in the low-level operators which it copies from C++. One example is
the provision of four ways to increment a counter:

count++;
++count;
count += 1;
count = count + 1;

The reason for the existence of these constructs is that it makes code optimisation
easier for certain architectures. Compiler technology has come a long way since
this was really an issue: today good code optimisers can generate identical code
from all four of those statements.

8 Small

Java includes several advanced concepts and constructs which prevent it from
being a small language. They include separate type inheritance, support for threads
and synchronisation, exceptions and nested classes. People will argue about
whether this is an advantage or a disadvantage. Some of these (e.g. type
inheritance as mentioned above) can be useful. Others might be too advanced for
first year teaching. Generally, teachers will not always agree on which of these
concepts should be covered in the first year and which should not. A first year
course will not normally have the time to cover all of them, so teachers will
necessarily have to fall back on teaching a language subset.

9 Easy transition

Java itself is quickly becoming an industry relevant language, so transition to
another language might not be as important as with some of the other languages.
Several universities currently teach C++ after about one year of Java, arguing that
the syntactical similarity makes the switch easy. Whether the transition to C++
really is easy or not is an open question. On the one hand, the low level syntax
similarities allow very direct application of already acquired knowledge. On the
other hand, Java uses the same syntax for some constructs with different semantics.
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Here, the use of similar syntax may be more misleading than helpful. Not much
experience with this issue has been gathered and published yet.

10 Correctness assurance

Pre and post conditions are not supported in Java. This, together with the lack of
support for genericity, is the most unfortunate omission in the language.

11 Environment

The most commonly used environment for Java is the Java Development Kit
(JDK), provided free of charge by Sun Microsystems. It provides a compiler and a
runtime system with a very basic command line interface.

Many other environments have been developed now, or are under development.
Prices, quality and availability vary greatly Ð these issues will be discussed in the
next chapter.

In addition to the characteristics discussed above, JavaÕs considerable popularity must
be counted as an advantage. It provides great motivation for students.

Early reports of teaching Java (e.g. [Allen 1998, Goedicke 1997]) are mostly positive
(although, because of comparison mostly to C++, of limited scope). Some problems
are repeatedly mentioned [Allen 1998, Clark 1998]: user interaction, especially text-
based input, is too confusing; students have to deal with pieces of code that cannot be
explained (at that stage), leading to discouragement and apathy; the relationship
between simple types and their object equivalents (e.g. int and Integer) causes
problems; and exception handling is obtrusive and cannot be initially avoided.

Overall, Java is not a bad language for teaching (just as Smalltalk and Eiffel are not
bad languages either), but it has significant shortcomings that prevent it from being an
ideal teaching language.

3.5 Other languages

Some other languages that are sometimes named as candidates for teaching might be
worth mentioning. These languages did not make it into our shortlist and were not
analysed in detail. Here we present some reasons why they were not considered more
seriously.

Beta

Beta [Madsen 1993] is a very modern object-oriented language with interesting
language constructs. Its outstanding characteristic is the use of a single syntactic
structure (the ÒpatternÓ) for the representation of a wide variety of concepts. Routines,
classes and processes, for example, are all represented by a pattern. This generality
provides a powerful tool, since operations applicable to a pattern (passing as a
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parameter, for example) are automatically available for a range of constructs. We felt
that this unification does not aid the student in understanding the respective roles of
the different concepts. The unification, in the context of first year teaching, becomes a
disadvantage, since the resulting techniques remain largely unused, but simple
concepts are clouded. Several other aspects, such as the fact that Beta does not
enforce information hiding, contributed to the decision not to consider Beta further.

Sather

Sather [Omohundro 1991] can be seen as a cross between C++ and Eiffel. Its
development started explicitly to create a Òsimpler EiffelÓ. Unfortunately, it adopts
some of the characteristics that we mentioned as problematic in the discussion of
C++.

These are:

·  the inclusion of untyped objects and a reduction in the level of static type
checking. Some type checks are static while others are dynamic.

· the need to explicitly identify dynamic dispatch. This is done in Sather on the
basis of a variable holding an object reference. Only specifically marked
variables will cause method calls to be dynamically dispatched.

Overall Sather operates at too low a level for good conceptual development. The
reason for this approach is the aim for high efficiency of the resulting code, which is
not a major concern for us.

Ada

Ada [DoD 1983] was, at the time we conducted our initial survey, not seriously
considered because it did not provide essential object-oriented constructs. Since then,
a new version of Ada (Ada95) has been released that supports object-orientation. This
has certainly made it more interesting, but other characteristics still speak against
Ada. The main problem is its size. Ada is a huge language (in terms of language
constructs). While this might be desirable for an all-purpose programming language,
it is certainly too daunting for first year students to learn. Defining and teaching a
subset would be unavoidable Ð a situation that we identified as undesirable in chapter
2.

Ada95 also has disadvantages in the style in which its object-oriented features are
implemented. Object-orientation is added onto the pre-existing ÒpackageÓ construct,
with the result that some undesirable features remained in the language while some
object-oriented features are implemented in unusual ways. For example, the receiver
class of a message must be named as a method parameter, rather than the method
being implicitly part of the class. On the other hand, functions may be written in a
package that do not have the class as parameter Ð these are then independent (non-
class) functions. This is further complicated by the fact that the programmer must be
aware of the controlling parameters for dynamic binding. Dynamic binding is not
automatic, and constructor functions are not available in a straightforward way. All of
these details make Ada95 unsuitable for an introduction to object-orientation.
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Oberon

Oberon [Wirth 1988a] is not a pure object-oriented language, but a hybrid. Code may
be written in an object-oriented or a non-object-oriented style. The prerequisites
discussed earlier stated that such languages are undesirable.

3.6 Summary

A survey of the languages commonly used for teaching object-orientation reveals
problems with all of them. The problems are of a different nature and of different
scale for each of these languages. Two methods of analysis are available to us:
experience reports from teachers who have used the language in practice and a
comparison of the language against our requirements listed in chapter 2.

Experience reports are mixed in their conclusions, but a general trend can be found.
Object-orientation itself was seen unequivocally as a powerful and valuable teaching
tool, while almost all authors reported problems with specific languages and systems
they used. Most of the studies reported difficulty in switching to the object-oriented
paradigm from the procedural approach.

In analysing the languages, the language itself and the programming environment
used both have to be considered. A well designed language is only half of what we
need and is rendered useless by the absence of a suitable environment. With some
languages, the environment was the source of the most serious problems. Thus,
programming environments will be discussed in more detail in the next chapter.
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4 Environments

The programming environment is the second major determining factor in the percep-
tion students gain of the programming process. It has a large influence on the degree
with which students can concentrate on the programming problem rather than become
distracted by secondary issues. The programming environment can fundamentally
shape the way programmers think about programming [Dumas 1995]. Yet, in
discussions about introductory programming languages, the environment is often
ignored. While teachers discuss at length benefits and drawbacks of particular
languages, arguments about the suitability of particular environments are rare.

When using an object-oriented system for first year teaching, the environment
increases in importance compared to the use of a procedural system. Since even small
programs typically involve several files, issues such as multi-file-editing, compilation
dependencies and linking become immediately relevant. A good environment that
manages these issues is essential in order to let students focus on the programming
task. In fact, it seems that many of the problems reported in the literature with
teaching object-orientation have their roots in the use of unsuitable environments.

In this chapter we discuss the background and characteristics of some existing de-
velopment environments, from early ÒtraditionalÓ systems to modern object-oriented
integrated packages. We will point out shortcomings of existing systems and discuss
what a good object-oriented environment should look like, emphasising again issues
especially important for first year teaching. Some of the arguments presented here
have been published in shorter form in [K�lling 1996b].

4.1 Background

Concurrent with the development of object-oriented languages we have seen major
improvements in program development environments. Whereas early systems simply
provided an editor and a compiler, modern programming environments provide facili-
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ties such as source code control, library management, support for group work, version
control and integrated edit/compile/test/debug environments.

The focus of recent research in software development environments has been on a
wide variety of problems that confront professional software engineers. They include
emphasis and support for collaboration between multiple programmers [Smith 1997],
debugging facilities [Baecker 1997, Ungar 1997], testing [Clarke 1988], low-level
language (syntax) support [Fry 1997], cross development [Dumas 1995], design
[Winograd 1995] and the software process [Notkin 1988].

As object-oriented languages have grown in popularity there have been attempts to
bring together environment and object-oriented technologies [Haarslev 1990, Holt
1994, Meyer 1993]. Environments were developed that support the development of
programs in object-oriented languages, sometimes supported by object design tools.
In most cases the approach has been to adapt an existing software development
environment to an object-oriented language. Such attempts have not, in general,
managed to capture the potential advantages offered by object-orientation.

The most significant reason for the failure to fully exploit the possible benefits is that
existing systems concentrate on abstractions that are appropriate for procedural
languages. Consequently they provide support for development of procedural
programs, management of source files, organisation of test data, etc. An object-
oriented development environment should provide support for classes and objects as
the fundamental abstraction. Attempting to use mechanisms designed for procedural
program development to develop objects is not necessarily appropriate.

As a simple example, consider testing. A procedural program development
environment will provide support for testing procedural programs. This would
include setting up of input data, capture of output data and comparison of the actual
output with some expected output data. An object development environment will
provide an object test facility. This should allow interactive invocation of the interface
routines of an object Ð a quite different paradigm than that required for procedural
programs. An object-oriented test environment has several potential advantages,
which include support for incremental development and the removal of the need to
write test programs.

The lack of truly object-oriented development environments has created major
difficulties for teaching object-oriented technology. In particular, students have major
conceptual difficulties and tend to write procedural programs in an object-oriented
language. This is particularly prevalent when using hybrid languages. If we expect our
students to fully embrace object-orientation then we must provide them with an
appropriate program development environment.

In systems traditionally used in many universities, such as Unix, program
development has been based around a textual command line environment, where a set
of separate tools is provided to support the development process. These tools
(typically an editor, a compiler, a debugger and a make facility) are based on concepts
developed in the 1960s and have not changed much since their introduction. They are
basically stand-alone tools and have only been slightly enhanced to cope with the
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increased complexity issues and new programming paradigms. The make command,
for example, a tool intended to help manage the complex compilation process for
large systems with source code that is spread over multiple files, often becomes a
complexity problem itself.

This situation has been dramatically improved by the appearance of integrated
graphical programming environments, which are most prevalent on personal com-
puters. These environments are able to significantly reduce the management overhead
in software development, integrating editors, compilers and debuggers into one
coherent system, thus significantly reducing the complexity of the overall software
development task. All tools are seen as part of the overall process to build an
application and link smoothly together. A debugger, for instance, can use the editor to
point to source lines corresponding to code currently being executed.

4.2 Environments for object-orientation

The next logical step in improving software development tools is to unify the new
language facilities with advanced development environments. Although Smalltalk
was integrated into a sophisticated environment from the time it was first
implemented, more recent object-oriented languages seem to have initially overlooked
this aspect of software development and have tended to focus on text based interfaces.
Only relatively recently, when actual use of new object-oriented languages has
become more widespread to a large variety of users and projects, has this deficiency
been noticed. This has provided an impetus for the development of graphical,
integrated environments for object-oriented languages. Several environments for the
more popular languages, such as C++, Eiffel and Java, have now been produced.

Fundamental deficiencies exist in most current development environments for object-
oriented languages. The main problem is that the particular requirements and the
potential of object-oriented systems have not been understood and utilised to assist the
software development process. While there are numerous environments for object-
oriented languages, few of them are object-oriented environments. This difference is
important to understand.

A traditional program development environment can easily be adapted to support an
object-oriented language. But this straightforward approach results in half-hearted
solutions. The object-oriented paradigm and associated software development tech-
niques have both their own requirements and potential benefits. Applying tools deve-
loped for procedural systems to an object-oriented language fails to fully meet the
changed requirements and cannot exploit all the benefits that object-orientation offers.
A real object-oriented environment will have a different set of tools and exploit the
object paradigm to offer functionality not available in procedural systems. The object-
oriented model should not stop at the application / environment boundary. It should be
extended to include the environment to allow users to use the same conceptual models
when thinking about the interaction with environment components as they do when
thinking about interactions of objects in the application domain.
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The main shortcomings of existing environments can be divided into two groups:
insufficient object support and insufficient structure visualisation and manipulation
techniques. If the environment is being used for teaching first year students, a third
problem arises: complexity. We will explore the first two issues in this section and
then discuss the aspects specific to introductory teaching in section 4.3.

4.2.1 Object support

Traditional procedural development environments facilitate the design and construc-
tion of programs . The basic entity they operate on is source code and their
functionality revolves around the convenient manipulation of source code. The
ultimate goal is to produce a program, an algorithm description with exactly one entry
point that can only be built and executed after all its parts are (in some sense)
completed. No notion of runtime objects exists within the environment, since those
objects cannot exist independently from an active execution of a program. All data
available outside the execution is in the form of files. Consequently, the environment
has only to deal with source and data files.

When these environments were adapted to object-oriented languages, source files
were replaced by class descriptions. Typically more source files exist in the object-
oriented environment than in the procedural form. In addition, these files have more
relationships with each other, e.g. usage and inheritance relations. Tools have been
added to the environment to manage these class files and some of their relationships.
The general paradigm of the environment, however, has not changed. The
environment is still used to build an application with exactly one entry point that can
be compiled and executed only after all its parts have been completed. This is the
program-oriented paradigm.

The object-oriented paradigm is based on the idea that objects exist independently of
each other, and that operations can be executed on them. Consequently, a user in a
true object-oriented development environment should be able to interactively create
objects of any available class, manipulate these objects and call their interface
routines. The composition of objects at the user level should be possible [Booch 1986,
Evered 1995, Gold 1991, Goldberg 1984]. This has also been referred to as an
instance-centred environment [Gold 1991].

Such a facility, if provided, leads to the possibility of incremental application de-
velopment, familiar from Smalltalk systems. Any individual class can be tested inde-
pendently as soon as it is completed. Testing then becomes much more flexible than
in procedural systems. In most current object-oriented environments, objects have to
be wrapped in a non-object-oriented main program or script to create and invoke the
first object or objects. A direct call of object interfaces is not possible, since object
instances are not supported by the environment. In short: the programmer must fall
back to the procedural paradigm to start and test a program. Thinking in two mind-
sets is required: one for thinking about the model of the application itself and one for
thinking about environment interactions.
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To avoid this problem, classes and objects should be the main abstractions used for
user-level interaction in the environment. They should be treated as user level objects
on which the user can perform operations by interacting with them through their
interfaces.

Classes have been made the main mechanism of code structuring in several environ-
ments, partially meeting our demand. The style of interaction, however, often does not
resemble anything close to an object-oriented model. Rather than interacting with
classes by invoking operations (such as ÒeditÓ, Òcreate objectÓ or Òcreate new classÓ)
on the class, the user often deals with files instead. The files store the classÕs
representation, and the operations executed by the user (Òopen fileÓ, Òsave fileÓ)
operate on a different conceptual level than the one the user should be thinking about.

The ability to interact with objects has been neglected in most existing environments.
The only widely available programming environments fulfilling many of our demands
are Smalltalk environments. These, however, suffer from other problems, most of
which have been discussed above (section 3.2).

A few environments, however, have been developed explicitly with goals similar to
those stated here. The one that comes closest in its stated objectives is EiffelBench, an
integrated development environment for the Eiffel language. Eiffel and EiffelBench
have the advantage of not being derived from a procedural predecessor. The develo-
pers have thought about appropriate mechanisms for working in an object-oriented
context. Meyer, in a description of EiffelBench [Meyer 1993], discusses in detail the
question of what characteristics an object-oriented environment should have. He
states five principles, most of which we agree with. The realisation of these ideas in
EiffelBench, however, seems to violate most of his own principles. MeyerÕs principles
are:

1  Method-environment consistency: A development environment meant to
support a particular method or language must rely on a consistent set of user
interaction conventions which closely parallel the concepts promoted by the
method or language.

2 Data abstraction: In an object-oriented environment, the basic way of working
must be through direct manipulation of visual representations of developer
abstractions.

3  Object-oriented tools: In an object-oriented environment, each tool must be
based on an object type (not on a type of operation).

4 Semantic consistency: An object-oriented environment must enable its users,
for any symbol (textual, graphical, or otherwise) representing a development
object in the user interface, to select the object through its symbol and apply
any operation that is semantically valid for the object, regardless of the
symbolÕs context.
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5 Typed environment: In an object-oriented environment supporting a statically
typed language and methods, the environmentÕs visual conventions should
display and enforce the type constraints on development objects.

While these principles are a good guideline, they are not realised in the EiffelBench
environment (although the developers claim that they are). Principle 2, for example, is
a very important one: developer abstractions should be directly manipulatable. Yet
EiffelBench offers no facility to interact with object instances Ð clearly one of the
most important developer abstractions. The objects the environment recognises are
development entities, such as classes and variables, but not the objects with which the
application under development is concerned. And even this restricted set of objects is
handled in an inconsistent way. The interaction mechanism passes object
representations to object tools Ð a mechanism that much more closely resembles the
passing of the object as a parameter than the invocation of an operation on the object.
The environment interaction style therefore is procedural, not object-oriented.

Principle 1 demands method-environment consistency, yet at the language level oper-
ations are invoked by selecting a method from the objectÕs interface, while in the
environment it is done by passing the object as a parameter to a tool. Principle 5
touches on a related subject: the type in the language is represented by its class,
which, in turn, is defined by its name and features (the interface). If operations were
selected directly from the interface of each developer object (rather than passing the
object as a parameter) then the type check would be implicit (no routine could be
called that is not in the interface). The requirement demanded in principle 5 is, in fact,
only necessary because EiffelBench does not support an object-style invocation of
operations. The mechanism used in EiffelBench also makes it necessary to invent an
explanation for other apparent inconsistencies. A routine, for example, can be passed
to the class tool (an apparent type violation). This is explained with inheritance-based
conformance, although it is hard to see how a routine is a descendent of a class.
Overall, the principles stated here highlight the right problems, but the realisation in
EiffelBench fails to properly achieve any of the goals.

The problems identified with this example exist in most development environments.
The ability to interact with objects for testing and development is generally missing Ð
in most systems the situation is even worse than in EiffelBench. The effect of this lack
of interactivity is especially serious for teaching systems. For initial learning of the
object-oriented concepts, mechanisms to support experimentation and direct
manipulation are particularly valuable. The ability to interactively create several
objects from a class, and then to call interface routines on each of these objects, serves
much better to clarify the roles of classes and objects in programming than a textbook
could ever achieve.

4.2.2 Visualisation support

The second major shortcoming of object-oriented programming environments is the
lack of appropriate visualisation mechanisms. Graphical visualisation techniques (e.g.
as in [McDonald 1990]) should be used to display relationships between classes and
objects. For example, inheritance and usage relations as well as call structures could
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be shown. While thinking in terms of diagrams is common at the design level and
most CASE tools provide support for graphics to model program structures, this is not
well represented in programming environments. Even though the relations between
objects are the most important factor in the design of an object-oriented system, little
support exists in development environments for their management with modern
visualisation and manipulation techniques. This lack of support discourages the use of
graphical representations by students.

Again, EiffelBench provides a good example to illustrate this point. Meyer [Meyer
1993] describes in detail how EiffelBench tools can be used to inspect the class
hierarchy of a system. A user can navigate from a class to its superclasses, from there
to its clients, on to its subclasses, and so on. At each stage a textual view of the
current class is presented which may be used to get information about the related
classes. If the classes were represented graphically, including their inheritance and
uses relationships, more information could be conveyed quickly and much more
easily. Not only sub- and superclasses would be obvious to the viewer, but also other
relations (such as siblings, which are not directly mentioned in each class) would be
immediately visible.

An environment should make use of both graphical and textual representations.
Studies (e.g. [Petre 1995]) have shown that neither text nor graphics can be
considered generally superior for representation tasks. Both have their place. The
advantage of adding a graphical notation is the ability to provide richer secondary
cues. Graphical secondary notation (such as proximity, grouping and white space) can
offer immediate access to information that is difficult to extract from the textual
representation.

Manipulation using the graphical or textual representation of a class should be
possible interchangeably. This means, for instance, that it should be possible to
graphically edit the inheritance relationships of the classes in an application. The
changes made graphically should automatically be reflected in the source code of the
classes. The same should work the other way around: if a class is specified as an
ancestor in the source code of another class, this relationship should automatically be
reflected in the graphical representation.

Most existing environments for object-oriented languages today lack all of these
features. All command line based environments, such as Unix shells, obviously lack
facilities for visualisation. Class and object relationships, which are a fundamental
part of the programming process, are not sufficiently visualised and poor modelling
techniques for these are provided. Also, the integration of the tools involved in the
development process is typically poor.

Graphical systems for most languages support only some of these requirements. Most
graphical systems provide good tool integration, but lack support for object-oriented
characteristics as described above. Some advanced professional object-oriented
development environments, such as Visual C++ or Delphi, use graphical support only
to build the user interface of an application, but neglect the internal structure of the
program itself. This is not the kind of graphical support that is helpful to beginning
students. The use of a graphical user interface builder might be helpful to construct



CHAPTER 4: ENVIRONMENTS

49

good looking programs (which can be a positive factor for motivation), but it should
only be a second step in the process of learning how to develop computer programs.
The first and fundamental issue is to understand the abstraction process Ð the
underlying structure used to model the problem domain. The graphical user interface
detracts from these issues and conveys a completely misleading picture about the
character of object-oriented programming.

Graphical techniques should be used to visualise exactly the things we want students
to concentrate on in the first course: how to structure a program. A colleague in a
discussion recently mentioned a problem that he had in his course. He was teaching
Eiffel and remarked that most of his students had difficulties in grasping the concept
of classes and objects. Considering the environment they used (an editor and compiler
run from a Unix shell), this is not surprising. How can we expect students to think in
terms of classes and objects if all they ever see on the screen are lines of code?

4.3 Environments for teaching

Some environments exist that provide graphical representations of program structure
as discussed in the previous section. Many of these are dedicated CASE tools, but
some are programming environments. The Mj¿lner Beta environment [Knudsen 1993]
is an example of an advanced programming environment that meets many of our
demands about structure visualisation and text/graphics integration. The reason we
have not discussed those systems in more detail has to do with an additional problem:
complexity.

Just as we argued in the context of the programming language that the requirements in
a teaching context are different from those for an industry strength production
language, the requirements for the environment differ as well.

The problem with existing advanced environments is that they were developed for
professional software engineers (with very few exceptions). In the context of users
who are professional software engineers a powerful but complex environment is
appropriate. A software engineer may spend several weeks or months becoming really
familiar with a good environment Ð a price that is worth paying if the tool is to be
used for the next few years. Examples of this are the Dylan environment [Dumas
1995] and the Mj¿lner Beta environment. Both are (in very different ways) advanced,
modern object-oriented environments, and both are clearly aimed at programming
professionals. The Dylan environment, for instance, provides sophisticated
mechanisms for customisation and user defined groupings Ð mechanisms that are
valuable for experts but tend to confuse beginners.

The main focus of recent research in software development environments has been on
support for professional software engineering issues, such as support for distribution,
collaboration, testing and support for the complete software process. Little has been
done to address the problems associated with beginning students and, as a result, none
of the existing environments is appropriate for teaching in first year.
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In the development of a software system, trade-offs have to be made. One of these
trade-offs is the one between ease of use/intuitivity and the power of the system.
Generally, the more powerful the system is made, the more difficult it becomes to use.
Many design decisions would be made very differently if the system is designed
explicitly for beginners instead of professionals.

For teaching, we need a system that is easy to learn and intuitive in its use. It must be
powerful in the areas that are important to us (namely direct interactivity and
visualisation) and still provide a simple interface. Designing such a system includes as
many decisions about what functionality to leave out (because its importance rates
lower than the goal of maintaining simplicity) as those about intuitive interfaces to
important functionality.

4.4 Some environment examples

We cannot, in the scope of this work, discuss a comprehensive list of environments in
detail. There are too many of them, and new ones appear every month. Individual
environments should be judged against the principles we have discussed above. We
will, however, comment on some individual environments as an example of some of
the most common shortcomings of popular systems.

Smalltalk environments

Some of the most interesting systems in our context are Smalltalk environments. They
provide a browser to support the use of the library classes. Programming as a process
of modelling with a combination of user-defined classes and reuse of existing libraries
is presented elegantly and in a very consistent manner. They also provide the high
level of interactivity and object support that we demand from a good teaching
environment. The effect of this is highlighted by a quote from Adele Goldberg:
ÒSmalltalk denotes fun and success. Developers learn how to create software systems
by changing existing applications, and redefining existing tools. Tangible results are
immediate and rewardingÓ [Goldberg 1995b]. This immediate feedback and reward
and the sense of fun created by it represents the most powerful support in teaching
programming to beginning students for which a teacher can wish. Every teaching
environment should try to create this sense of fun through interactivity and
immediacy. Of special interest in this context is the Portia environment [Gold 1991],
an extension of traditional Smalltalk environments with greater emphasis on direct
manipulation of objects.

Smalltalk, however, lacks other important facilities: no visualisation tools for class
relations are available. The main problem with this lies in the Smalltalk language
itself: since it is not statically typed, it is not possible to extract usage relations from
its source code. No indication exists before runtime as to the call relationships
between classes. Inheritance relationships as shown in the browser do not present the
relationships of one application but rather the whole Smalltalk environment and so the
browser is not used as an application modelling tool. Smalltalk blurs the distinction
between the environment and the application under development.
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Reports about the use of Smalltalk systems for teaching also point to another problem:
its size. While the language itself (in terms of the number of constructs) is small, the
class library and tools are large and often confusing. Several authors reported diffi-
culties with the students ability to cope with the environment [LaLonde 1990,
Skublics 1991], especially that experimentation and self directed learning was not
working well because students were overwhelmed by the system. They also found
that the functionality of the browser should be limited, since its power and flexibility
caused more problems than it solved.

EiffelBench

We have already discussed many of the characteristics of EiffelBench above, when
we used it to illustrate the arguments about object support and visualisation (sections
4.2.1 and 4.2.2). In short: while it was developed with appropriate goals and in-
tentions, it fails to support objects and visualisation in a satisfactory way. In addition
to this it presents other problems. The most severe is the complexity of its interface.
Students (and many experienced programmers) generally have difficulties coming to
grips with the meaning of the many interface controls, most of which are labelled with
obscure icons that do not convey any intuitive meaning. Another problem is the
quality of this environment. After using it for several years for teaching, N¿rmark
[N¿rmark 1995] described it as low in quality and unreliable. He names compilation
speed, incorrect compilation, primitive text editing capabilities and a difficult-to-use
interface as some of the problems.

Borland C++

Borland C++ is a typical example of an environment that evolved from an earlier,
procedural predecessor and inherited many of its characteristics. It has been extended
to support object-orientation, but in many cases this appears as a half-hearted, second-
best solution. For this review we evaluated Borland C++ version 5.03.

The environment is based around a project which, in turn, is a collection of files. Files
can be made to loosely correspond to classes, but nothing enforces such a relation-
ship. Also, as is the convention in C++, classes typically consist of at least two files (a
header file and an implementation file). The problem becomes apparent when we
consider the connection with the class diagram. Borland C++ provides a simple, auto-
matically generated diagram showing classes involved in the current project. This
diagram cannot be edited, but a class name can be double-clicked to open its source.
This operation, however, only finds and opens the header file Ð it is left to the user to
find the implementation.

Borland C++ provides no support for runtime objects or testing. The implementation
is stable, although it still suffers from a number of errors (such as occasional mistakes
in its dependency analysis and resulting incorrect compilation).

                                                  

3 All tests of environments were carried out on a 120 MHz Pentium processor machine with 32MB
main memory under MS Windows 95.
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It uses the Microsoft help system as a replacement of a class browser. As a result, the
class documentation is separated from its implementation. This becomes a problem if
teachers add their own classes to libraries Ð no help is available for those through the
normal tools. BorlandÕs help texts are often minimal, full of jargon and do not include
fundamental information. The system is difficult to navigate and students typically do
not manage to use the help system in their first semester.

Visual Age

Visual Age is an integrated development environment developed by IBM which is
available for different languages, including Smalltalk, C++ and Java. The
environment evaluated for this project was Visual Age for Java, version 1.0.

Visual Age borrows much of its interface principles from early Smalltalk environ-
ments. It uses a browser that can display the packages and classes in the system. The
browser is divided into panes very similar to those known from Smalltalk-80: one
pane shows a list of packages, another one a list of classes in a selected package, a
third the functions in the selected class. A bottom pane displays the code for one
selected function. The user always views and edits one function at a time. As soon as
the function is saved it is automatically compiled. This is intended to create an
Òimmediate executionÓ environment: as soon as a class is written, it can be executed.
All of this is very similar to the interface of Smalltalk environments. There are,
however, some differences.

One immediately noticeable difference is compilation speed. Because compilation is
automatic and fairly slow, the user is regularly interrupted and forced to pause to wait
for the system to catch up. When a data member is entered into a 20-line class, for
example, the system is unresponsive for more than 30 seconds while automatic
recompilation takes place. Overall, the speed of the system (or lack thereof) becomes
a serious annoyance when trying to work with it for an extended period.

Visual Age also inherits most of the complexity from Smalltalk, and adds additional
complexity of its own. The browser is used to display an overview of the complete
Java universe (merging the view of the current application with the view of all
existing class libraries), just as Smalltalk does. It offers several different views of this
universe as well as different specialised browsers. Overall, the functionality far
exceeds what is practical to be learnt by first year students. It is evident from the
interface alone that Visual Age is aimed at a professional programmer who needs to
spend considerable time to familiarise himself/herself with the environment.

Object creation and interaction is not supported in the environment. The tools are
aimed at generating one monolithic application which can then be executed as a
whole (with the advantage of Java that each class can have its own main function,
effectively allowing different entry points to the application; this can be used for
slightly more flexible testing). A graphical application structure is not provided.
Classes in the libraries and the application are presented as a nested list. A graphical
interface is provided for building graphical user interfaces for user applications.
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Overall, Visual Age is a typical example of a system that does not support the object
concepts at the environment level, and is clearly aimed at professionals, making it
much too complex to use for first year students. It cannot be considered suitable for
introductory education.

Visual C++

Visual C++ is an integrated development environment from Microsoft Corp. It exists
in almost identical form for other languages (e.g. Visual J++, a Java version). The
language independent part of the environment is sometimes referred to as the
Microsoft Developer Studio. We evaluated Visual C++, version 5.0.

Visual C++ is clearly a very mature environment with many well thought out features.
It has a highly flexible user interface which can be easily and quickly customised for
personal preference or specific tasks. Toolbars can be easily enabled or hidden, they
can be present in free floating windows or at fixed screen locations (which Microsoft
terms ÒdockedÓ toolbars). Output can often be presented in separate windows or in
panes arranged in a single window, with easy and flexible pane arrangement.
Extensive help is provided in easily accessible format.

Unfortunately, though, this maturity is only present in the traditional areas which were
already present in procedural environments, not in specific support for object-
orientation. All the areas that we emphasised most in our requirements, visualisation
of class relationships, object support, direct object interaction and ease-of-use, are not
supported well (or not supported at all) in this system.

Classes are displayed in a list, and no class relationships are graphically shown.
Objects cannot be interactively created or invoked Ð they do not exist as an
abstraction in the environment. Extensive file management is necessary to set up a
project. The environment includes a large number of functions and options which are
only interesting for professional development and have a strong intimidating effect on
beginners. When creating a project, for example, the user must choose from a list of
14 possible project types (such as creating a program, a dynamic library, a static
library, etc.). The user must also carefully think about directory structures, file names
and locations and absolute path names. A new user is immediately confronted with
this complexity problem: when starting the system, the standard interface presents 9
menus with 96 menu items, 27 toolbar buttons, three window panes, one of which
contains 6 overlapping sheets of information. In addition, numerous contextual menus
can be popped up which offer even more functions. Overall, it is obvious that this
environment is aimed at a more expert user who needs the full flexibility of professio-
nal software development and is expected to spend considerable time learning to use
the system. The target group clearly is not first year students, and trying to use it in
such an environment would lead to complexity problems without offering the
advantages of good object-oriented support.
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4.5 Summary

The programming environment is an important, often neglected, part of the program-
ming experience. It can shape in fundamental ways the mental models which students
develop while learning to program. By doing this, it has a major influence on the
ability of students to understand software development concepts and the degree to
which they can cope with the problem of learning to develop computer programs.

Some of the main requirements for the environment are similar to those for the
language: it should present the underlying concepts and tools in a consistent manner,
and it should not be overly complicated to use. This means in particular that we need
an object-oriented environment which is simple enough to be used for teaching.

Many of the environments on the market today are not object-oriented. They support
object-oriented languages, but they fail to support and exploit object-orientation at the
environment level. It is essential that we provide a more appropriate environment if
we wish our students to produce truly object-oriented programs and to capture the
potential of object-orientation.

Those environments which offer good support for object concepts are too complex to
be effectively used in a first year teaching course. Problems with environments have
been identified as the most common problems with teaching object-orientation to
undergraduates. Mazaitis [Mazaitis 1993], investigating this issue, concludes: ÒIt
seems that before pure languages, Smalltalk and Eiffel, are more widely accepted,
they must come bundled with support tools tailored to studentsÕ needs.Ó

While some research has been done into teaching environments, some into integrated
programming environments and some into object-oriented environments, those
branches have not been combined to produce an integrated, object-oriented teaching
environment. The effect of this is that currently, in most courses that teach object-
oriented programming to beginners, environments that were developed for
professional software engineers and often originally for procedural languages are
used. As a result, object-orientation is not well represented and students are distracted
from important issues by a need to struggle with overly complex environments.
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5 The Blue System -

An Overview

The preceding chapters were concerned with describing the problem of teaching
object-oriented programming. We have discussed the characteristics of an ideal
teaching system, and we have examined shortcomings of existing systems.

The remaining chapters of this work provide a solution. We describe the Blue system
Ð our attempt to create a language and an environment that meets the requirements for
an object-oriented teaching language. A brief overview of the language and the
environment has been given in [K�lling 1996a] and [K�lling 1996b], respectively.
The description here is much more detailed and includes extensive background
information and argumentation on alternatives and reasons for decisions taken.

Blue is an integrated system Ð it is a programming language and it is a software
development environment. Both of these aspects of Blue are important, and both are
described in detail in the following chapters.

We have already, on several occasions, mentioned some of the potential advantages of
integrated systems. Blue makes strong use of integration: the language and the
environment influence each other. Because of this, we start by giving an overview of
the Blue system as a whole. This overview serves to give an overall impression of the
character of Blue, and acts as a basis to discuss separate aspects in more detail in the
following chapters.
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5.1 Getting started

Blue provides a complete environment for the software development task. All aspects
of the work, editing, compiling, debugging and execution, are initiated from within
the environment. To work in Blue, the Blue system is started from the operating
system interface. From then on, Blue hides the underlying operating system.

A graphical interface is used to communicate with the user. From the main window,
which is displayed when the system starts up, a Blue project can be opened with a
standard dialogue. The main window then shows a graphical representation of the
class structure of the current project (Figure 5.1).

Figure 5.1: The Blue main window

Each class in the current project is represented by an icon on the screen. The
appearance of the icon gives some information about the class: Colour and fill
patterns indicate, for instance, whether the class has been compiled since being last
edited and whether it was imported from a library. Arrows between classes indicate
relationships. A single-lined arrow indicates a uses relation (a class declares variables
or parameters of another, sometimes called client relation), a double-line arrow
indicates inheritance (a class is a subclass of another). Classes can be introduced and
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arranged on the screen by the user. Relationships can be set up by drawing arrows
from one class to the other in a manner similar to a simple drawing program. Once the
relationship is established, the Blue system manages the layout of the arrows.

5.2 Editing and compiling

Users can double-click a class icon to open an editor window showing the source of
that class. Multiple editor windows may be opened at any time (Figure 5.2). A class
that has just been newly created is automatically given a source skeleton which
contains the basic elements of a Blue class. This skeleton can then be filled in to
define a new class.

Figure 5.2: Editor windows show the source of classes

Relationships between classes are also represented in the textual form of the class (the
source code). They may be edited graphically or in the text, and the other
representation is automatically updated accordingly. Both representations are kept
consistent at all times.
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After editing the class, it can be compiled from within the editor by clicking on a
button in the editorÕs toolbar.4 If an error is detected by the compiler, the offending
token is highlighted and an error message is displayed in the message area of the
editor (Figure 5.3).

Figure 5.3: Display of compiler error message in an editor window

The main window also has a ÒCompileÓ button in its toolbar. Using this button causes
the whole project to be compiled. This involves a complete dependency analysis and
compilation of all classes that need to be compiled in the appropriate order. (Unix
users may think about this function as make, with the difference that no makefile
needs to be written.) Again, if the compiler detects an error in one of the classes, it
opens an editor window to highlight the location of the error and displays an error
message.

                                                  

4 All editor functions can also be activated via the keyboard.  Many can be activated through menus,
and the most commonly used are presented in the toolbar.
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5.3 Creating objects

After a class has been successfully compiled, objects of that class can be created. It
does not matter whether there are still uncompiled classes in the project Ð it is not
necessary for the complete project to be compiled. Objects that are created in this way
are represented by an object icon on the object bench (Figure 5.4).

Figure 5.4: An object on the object bench

Each object on the object bench is available for immediate direct interaction. Any of
its interface routines may be interactively called. A mouse click on the object will
show a pop-up menu listing the available interface routines of that object (and two
additional commands, inspect and remove) (Figure 5.5). An interface routine may be
called by selecting it from that menu.
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Figure 5.5: Object menu enables interactive routine calls

Routines in Blue have an optional parameter list and an optional list of return
variables, both of with may contain one or more values. Figure 5.6 shows an example.

find_element (val: Value, reset: Boolean) Ð> (found: Boolean, elem: ListEntry)

== Find the next element with value ÔvalÕ. If ÔresetÕ is true, the search is
== started from the beginning of the list. Returns Ôfound=trueÕ if an
== element was found, and the element itself in ÔelemÕ. If no such element
== exists, Ôfound=falseÕ is returned and the value of ÔelemÕ is undefined.

Figure 5.6: Interface of a Blue routine

The entry in the routine pop-up menu indicates whether the routine has parameters
and/or return variables. If it has parameters, calling the routine will first result in a
dialogue5 being displayed that lets the user enter values for the parameters. Predefined
values (such as integer or real numbers) as well as other objects from the object bench
may be used. If the routine returns values, those will be displayed in a function result
dialogue. Routines without return values may just change the internal state of the
object, and thus have no immediately visible effect. To check whether such a routine
worked as expected, the inspect command from the object menu may be used to open
a dialogue that displays the values of the instance variables of the object.

                                                  

5 The term dialogue is used throughout for a user interface window which is typically displayed
temporarily to let the user enter or view some data.
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5.4 Interfaces

Once a class has been compiled, it might be used by another class. In this case, the
implementation of the class is no longer of interest. It should be sufficient to know the
interface of the server class.

For this situation, the editor provides an interface button. Pressing this button toggles
the view from the implementation view (the full source) to a display of the class
interface. The interface contains class and interface routine information, including
signatures, comments and pre and post conditions. It also contains all inherited
routines and information about the class from which they were inherited. For classes
that have been compiled, the interface view is the default view. Library classes may
be configured in a way that does not permit the viewing of the implementation and
provides only the interface view.

Figure 5.7: The Library Browser
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5.5 Using library classes

Apart from creating new classes in a given project, classes may be taken out of a class
library and added to the project. A class library browser is provided to find and
inspect existing classes in the libraries (Figure 5.7). The browser supports browsing
and keyword searching, as well as detailed inspection and the creation and mainten-
ance of the usersÕ own, personal libraries.

Libraries are sorted into different sections. The section list on the left of the browser
window shows the available sections. The section view on the top right shows all
classes in the currently selected section, as well as their relationships. Sections are
usually arranged in a way that positions semantically related classes close together.

A class may be selected by clicking on its icon in the section view. The lower half of
the browser window shows information about the class currently selected. The user
can also double-click the icon to open an editor window displaying the full class
interface.

Once a class has been chosen, it may be imported into the current project by selecting
a command from the menu. Its icon then appears in the project window, and the class
may be used like any other class in the project (although its source cannot be
changed). Classes imported from a class library are shown in the project view in a
different colour to indicate their special status.

5.6 Debugging

Two simple but powerful debugging tools are provided: single stepping and the
inspection of variables and the stack.

Figure 5.8: Source of a class with breakpoint

For both of these techniques, breakpoints are typically set somewhere in a class. A
breakpoint may be set directly from the edit window. The class display has an
execution bar at the left of the source line display. A simple click into this bar sets a
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breakpoint in the corresponding line. The breakpoint is indicated by a stop sign in the
execution bar (Figure 5.8).

When, during execution, a breakpoint is reached, an edit window with the source is
displayed, and a control window with execution controls appears. These execution
controls allow the user to step through the code. The current line of execution is
marked in the source display with an arrow in the execution bar (Figure 5.8).

The control window can be expanded to show the function invocation sequence (the
stack) and the values of variables.

5.7 Summary

The Blue environment provides facilities to graphically define and edit the class
structure of an application. The classes involved can easily be edited and compiled
with a few simple-to-use, powerful commands of the environment. The graphical
representation or its textual equivalent may be manipulated, and both are kept
consistent at all times. Complex problems, such as dependency analysis, compilation
in the right order, and the processing of circular dependencies, are handled
automatically without the need for user intervention.

Objects of any class may be created as soon as the class is compiled. These objects
can be inspected, and operations defined on these objects may be performed. This
provides a powerful method for interactive testing.

Reuse of previously written classes is easily possible through the use of a class
browser that lets the user inspect and select classes for use in the current project. Class
libraries include Blue standard library classes as well as libraries built by users or
groups of users themselves.

Fundamental debugging techniques are available with minimal overhead of new tool
interfaces. The edit window is used for the definition as well as display of
breakpoints. The use of the debugging facilities is straightforward and intuitive.
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6 The Blue

Language

This chapter describes the major concepts of the Blue language. It is not a complete
language reference. Many details are omitted, and some features are not described
completely. The intention is not to provide a full language specification, but rather to
introduce and explain the major design decisions that were made while developing the
language. For a full language specification, see [K�lling 1997a].

6.1 Introduction

Before describing details about language constructs, it is helpful to obtain a general
impression of the language by looking at some example code. Figure 6.1 shows part
of an example class for this purpose. The example shown (a simple stack class imple-
mented using an array) is a generic class with one generic parameter, named
ELEM_TYPE. It can later be instantiated with any type as the actual generic para-
meter.

At the top of the class is a comment block describing the general purpose and
functionality of the class (the double equals sign is a comment symbol). The body of
the class is divided into three sections: the internal part, the interface part and the class
invariant. The internal part is further divided into variable declarations and routine
declarations (not used in the example). The interface part consists of a creation routine
and interface routine definitions. Routine definitions include lists of parameters and
return values, a routine comment, optional pre and post conditions and the routine
body.
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class Stack <ELEM_TYPE> is

=============================================================
== Author: M. K�lling / Jeffrey H. Kingston
== Version: 1.1
== Short: Stack of ELEM_TYPE with variable size
=============================================================

uses

internal

var
elements: Array <ELEM_TYPE>
numElements: Integer

interface

creation is
== create a new, empty Stack; O(1) cost

do
elements := create Array <ELEM_TYPE> (20)
numElements := 0

post
isEmpty

end creation

routines

push (elem: ELEM_TYPE) is
== push elem; O(1) cost plus resizing cost

do
if numElements = elements.size then

elements.setSize (2*numElements)
end if
numElements := numElements + 1
elements.putElem (numElements, elem)

post
not isEmpty

end push

pop -> (elem: ELEM_TYPE) is
== pop elem; O(1) cost

pre
not isEmpty

do
elem := elements.getElem (numElements)
numElements := numElements - 1

end pop

isEmpty -> (empty: Boolean) is
== true if empty; O(1) cost

do
empty := (numElements = 0)

end isEmpty

invariant
numElements >= 0

end class

Figure 6.1: An example of a Blue class
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6.2 The object model

One of the fundamental decisions in designing an object-oriented programming
language is the design of the object model. What are objects? How do they behave,
what is their relationship to each other, and how do they interact? How are they
stored, and how are they created?

6.2.1 What is an object?

The most fundamental question is: What is an object? The spectrum in existing
object-oriented languages is wide. Some languages (e.g. Smalltalk) declare that Òall
information in the system is represented as objectsÓ [Goldberg 1989, chapter 6].
Simple data types, classes and even control structures are implemented as objects.
Other languages (such as C++) regard only data of some user-defined, ÒlargeÓ data
types as objects. Instances of simple types (such as integer numbers and characters)
are not objects, nor are the classes themselves. Even user-defined data does not have
to be an object. Java takes a compromise route: Simple data types (e.g. integer) are
not classes (and instances are therefore not objects), but there is also an integer object,
for cases when it is needed.

The issues can be summarised in the following four questions:

Are control structures objects?
Are classes objects?
Are all user-defined data structures objects?
Are scalar/builtin types objects?

In the following sections we discuss each of these questions.

Are control structures objects?

Smalltalk takes the object-oriented paradigm further than any other language. Not
only are instances of data objects, but the elements of the programming language
themselves are objects, which can receive messages and return results like any other
object. The language constructs follow the model of the data on which the language
operates.

While this idea has a fascinating appeal to language designers (because of its striking
elegance and uniformity) we believe that this view is not helpful for beginning
students. One problem is that the treatment of control structures as objects (with
message passing syntax for the use of control structures) results in very unusual
syntax for program control. For example, the following Pascal statement

if (x > y) then
begin
   max := x; index := index + 1;
end

becomes in Smalltalk:
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x > y ifTrue: [max <- x.
               index <- index + 1]

We believe the Smalltalk syntax not to be as easy to read initially as the Pascal
syntax. Moreover, most other mainstream languages (C++, Java, Eiffel, Ada) use a
syntax that is much closer to the Pascal variant. Because of the principles of
readability, and the role of Blue as an entry point to other mainstream languages, Blue
does not regard control structures as objects. Control structures are independent of
data types.

An interesting approach to a related topic is implemented in the language Beta. Beta
defines a pattern as a syntactical unit. A pattern is a very powerful construct which
can be used to represent a wide range of language entities, such as classes, routines,
processes and block structures. The idea is similar to the Smalltalk approach: using a
unified model for representing various language entities results in a very elegant and
powerful system. Because an instance of a class and an instance of a process, for
example, are described in the same fashion, processes automatically become objects
and can be treated in the same way as objects.

For Blue, we have decided not to attempt such a unification of concepts. While
powerful once it has been mastered, it can cause considerable confusion for beginners.
Both readability and clarity of concepts suffer under such a unification. Different
language elements, such as a data item and a control structure, are inherently different
and can be used in different ways. Equally, a routine is not the same as a class.
Making them look the same does not help beginners understand their respective
purposes and their differences. For the teaching of concepts it is best to represent each
of the concepts in its own, clear style. The expressiveness of the language will
necessarily suffer, but the clarity won by this decision is well worth the trade-off.

Are classes objects?

The question as to whether classes are objects is closely related to the previous one. In
Smalltalk, for instance, objects are instances of a class. Classes themselves are also
objects, and thus instances of another class (a meta class). By defining this, Smalltalk
has a powerful mechanism for reflection. Since classes are objects, they may be
dynamically created. In this way, Smalltalk can dynamically introduce new types (and
thus new code) into a running application.

Most other languages (especially statically typed languages) do not regard classes as
objects. Classes are compile time constructs, which do not exist at runtime. Objects
are runtime constructs which do not exist at compile time. This distinction makes the
respective roles of classes and objects very clear. For similar reasons to those given
for the previous question, Blue adopts this view. The distinction of different concepts
serves to add clarity and emphasises their respective purposes.

Java tries to get the best of all worlds: while classes and objects are orthogonal
concepts, it adds a standard class library for reflection. This library allows the user to
create and compile classes dynamically, thus adding the power of reflective systems.
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Whether a mechanism like this would be helpful for Blue does not need to be decided
at this point. Since this is implemented through a class library, it does not impact on
the language design.

Are all user-defined data structures objects?

We have basically answered this question in the requirements section. One of the
requirements we listed was that the language should be a pure object-oriented
language. We did not want a hybrid language. Following this requirement dictates that
all user defined structures should be objects. All code users write is part of a class.
Blue does not support functions independent of classes.

Are scalar types objects?

Are instances of simple, built-in data types, such as integers, characters, booleans,
etc., objects? There are many arguments either way.

Efficiency and syntax are frequently used arguments against the view of simple data
as objects. It is not efficient, it is often argued, to implement integer numbers as
objects. The memory and runtime overhead would be too great. The second argument
is syntax: if integers were objects, for consistency reasons they should use object
method syntax for invoking their operations. Adding the numbers 3 and 4, for
example, should be written as

3.add (4)

rather than the more customary

3 + 4

This syntax, because of its unfamiliarity, might negate the advantage of having a
unified concept and cause more confusion than the proposed benefits.

The main argument for the definition of simple data as objects is unification of
concepts. The whole object model could then be explained by one general concept
without the need for seemingly arbitrary exceptions. Passing an integer as a
parameter, for instance, would be no different to passing a user-defined object. There
is one conceptual problem, though. Objects must generally be created before they can
be used. But do we really want to force a programmer to have to create the numbers 3
and 4 before they can be added? This would be impractical and counter-intuitive.

Another strong argument for viewing simple data as objects comes from generic
composition. All object-oriented languages support polymorphism. It is available
through inheritance and, in many languages, through genericity. Making a distinction
between simple data items and objects might lead to problems with combining them.
A generic list class, for instance, might accept any object type as its generic type
parameter. Thus, it allows the creation of a list of persons as well as a list of buttons.
But can a simple type be used where an object is expected? In other words, can we
create a list of integers? If a distinction is made between simple types and objects, this
might lead to problems.
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Blue takes the view that all data are objects. In this aspect Blue differs from most
mainstream object-oriented languages, with the notable exception of Smalltalk, which
also views all data as objects. However, it differs from Smalltalk in many details.

The fact that all dynamic structures can be explained with a unified model is
especially attractive for a teaching language. The disadvantages, however, must be
addressed. The first was efficiency. There are two aspects to this. Firstly, since Blue is
a teaching language, conceptual elegance takes precedence over efficiency. We can
afford to make efficiency sacrifices. Secondly, the fact that simple types are
conceptually the same as objects does not necessarily mean that they have to be
implemented in the same way. Several optimisations are possible (and Blue
implements them) for handling operations on simple, built-in object types in a more
efficient way than general object operations. This can be achieved transparently
without affecting the conceptual model.

The second disadvantage was syntax. To overcome this problem, Blue introduces a
feature called ÒaliasesÓ. An alias allows a second, more convenient syntax for selected
operations. So, for example, the expression

3 + 4

is an alias for the operation

3.add (4)

This allows the use of familiar syntax and eliminates the need to understand object
calls to write the first, simple programs.

Some languages, Smalltalk and C++ for instance, use another solution to the same
problem. In those languages, the syntax for object calls is defined to allow the symbol
+ as a valid method call. Thus the problem does not directly arise. No choice needs to
be made as to whether to use object call syntax or infix notation because the infix
notation is object call syntax. Blue does not follow this path because of the more
complex object call syntax, problems with coherent interpretations (such as operator
precedence) and the resulting potential for misuse. Since infix notation is a valid
routine call syntax, it is available to all objects, including user defined ones. This
makes it possible to use it in places where its meaning is not intuitively clear, possibly
resulting in less readable code. (This issue is further discussed in section 6.15.3.) The
difference with the alias mechanism is that it is a construct that is available for only a
few, pre-defined operations. It is not available to the programmer as a general purpose
mechanism, thus ensuring that all other object calls share a common syntax. Aliases
are discussed in more detail in section 6.10.

The third problem was that of object creation. A user does not want to create integer
numbers before being able to use them. This problem is solved through the
introduction of manifest classes in Blue, as described in section 6.2.4.
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6.2.2 Storage of objects

It is common to distinguish two different types of storage for objects: immediate
storage (the address of the object is represented by a variable) or storage by reference
(sometimes called pointer variables, the address of the object is the content of a
variable).

Some languages, such as C++, even require different syntax to access features of
objects of these different storage types. Immediate objects are accessed through dot
notation, e.g.

myObject.feature1

whereas objects stored by reference are accessed through an ÒarrowÓ symbol:

myObjectÐ>feature1

In a well designed language this distinction in syntax is not necessary. The compiler
could know about the storage class of this object and automatically produce the right
code (as it does, for instance, in Eiffel). But there are still important differences.
Recursive or circular structures can be built only with references, not with immediate
objects. Assignments and equality tests might behave differently, since they might or
might not involve a copy operation. The question of identity of an object is
fundamentally different (see detailed discussion in section 6.12.1). In short: in many
cases it is necessary for a programmer to know exactly whether he/she is dealing with
an immediate object or a reference.

Supporting these two concepts violates the principle of avoiding redundancy.
Immediate objects provide no functionality that could not be achieved with reference
objects as well. (The opposite is not true, though.) The sole reason for supporting
immediate objects is efficiency. Immediate objects allow faster variable and routine
access by avoiding one indirection. This argument is not sufficient for justifying the
inclusion of this concept in a teaching language. Blue therefore supports only
reference types. All variables store references to objects.

A second advantage of this decision is that the lifetime of variables and objects is
separated. The lifetime of immediate objects, commonly stored on the stack, is
typically bound to the lifetime of the variable. Reference objects increase orthogo-
nality by separating these issues. CLU [Liskov 1981] takes the same approach, and a
good summary of the reasons is given in [Liskov 1992].

Java follows a similar route. It also supports only references to objects. But it fails to
achieve the same degree of uniformity because of the distinction between simple data
types (which are not objects and are stored as immediate data) and object types. In
Blue, the uniform use of objects by reference together with the definition of simple
data items as objects, leads to a very simple and clean object model as the basis of the
language. Variables always store references, assignment is assignment of references,
and the default equality checks equality of references. Object identity is always
preserved (assignment never duplicates an object).
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6.2.3 Object creation

Through this object model, the creation of objects is greatly simplified. The creation
of objects is always explicit.

Languages with immediate objects often define different kinds of creation
mechanisms: explicit creation for reference objects and implicit creation for
immediate objects (the object is automatically created when the variable comes into
existence). C++ defines a third creation mechanism, a Òcopy constructorÓ that is
implicitly executed through assignment.

Restricting storage to reference objects allows Blue to employ only one mechanism
for object creation.

6.2.4 Manifest classes

One of the most difficult problems in unifying the object model is to accommodate for
simple data types, such as integers, boolean values and enumerations. Ideally, we
would like to view them as objects, but we do not want to be forced to create them
before we can use them. We would like to be able to just write

a := a + 7

without the need for creating a 7-object first in a separate statement.

There are essentially two possibilities in the interpretation of the symbol Ò7Ó in order
to achieve this goal: it could be interpreted as an object constructor, or as a constant
reference to an object that already exists.

The language Dee uses a variation of the first alternative. Literals are regarded as
constructors. There are several disadvantages with this approach. Firstly, the
constructor rule has to be expanded (since it is no longer true that objects are only
created through an explicit ÒcreateÓ expression) and secondly, equality becomes more
complicated. Since potentially more than one 7-object can exist, equality cannot be
taken to be identity. Consider:

if 7 = 7 then ...

We would certainly expect this condition to be true, but we would have created two
different 7-objects! Dee solves this problem by defining the 7-symbol to be a
constructor the first time it is used, and a reference to the constructed object for every
additional use. While this solves the problem of having two 7-objects, the definition
does not seem as elegant as we would like. Equality issues are discussed in more
detail in section 6.12.1.

The second approach is followed by Smalltalk. Literals are considered constant
references to objects. In Smalltalk it is, however, never explained where these objects
come from, when and how they are created. They just magically exist in the Smalltalk
universe. This introduces a special case in the object world, since most objects must
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be created by the user, while some are already there. At the conceptual level, all
objects are equal and nothing explains this difference.

In Blue, we deal with this issue by introducing the concept of manifest classes. We
distinguish these from ÒnormalÓ classes by referring to those as constructor classes.

These two kinds of class differ in the way their objects come into existence. Construc-
tor classes are those with which we are familiar from most object-oriented languages.
Initially, no objects of these classes exist. They can be created by executing a creation
instruction which creates the object and executes a creation routine defined in the
class. Manifest classes, on the other hand, define their objects by enumeration. All
possible objects of these classes are automatically created at system startup, and the
class defines identifiers by which these objects can be referenced. So instead of
providing a construction method for objects, manifest classes provide the objects
themselves. No additional objects can be created at runtime.

The classes ÒIntegerÓ and ÒBooleanÓ, for example, are manifest classes. All their
objects automatically exist, and references are provided to access them. The symbols
Ò3Ó and ÒtrueÓ are constant references to the objects representing the integer number 3
and the boolean value true, respectively.

This approach has, of course, similarities with the solutions in Smalltalk and Dee. The
difference, however, is that now the distinction is made at the logical level. The object
model explicitly recognises these two different types of classes, and differences
between numbers and complex objects can be understood independently of
implementation concerns. They cease to be anomalies or special cases at a technical
level. This reduces the danger of misunderstandings on the side of the programmer.

Figure 6.2: Assignment of objects

This definition, together with the storage model, behaves intuitively in all cases of
arithmetic and assignment. For example, assume we have a variable n of class Integer.
The symbol 42 is a constant reference to the object representing 42 (Figure 6.2a). An
assignment

n := 42

assigns the reference to the 42-object to the variable n (Figure 6.2b). Since all
assignments are reference assignments, and equality checks are reference equality
checks, the expression

n = 42

Ò42Ó
42

n

a: before assignment b: after assignment

Ò42Ó
42

n
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will afterwards be true. It is important, though, that no further objects of manifest
classes can be created, and that objects of manifest classes cannot be cloned. If it were
possible for two 42-objects to exist, then two variables could both contain 42 and still
not be equal. Allowing no additional creation for manifest classes avoids this
problem.

Again, it is interesting to compare this to SmalltalkÕs view of simple types as objects.
Their pre-existence makes them similar to BlueÕs manifest classes, but no explicit
distinction between these and other classes is made. This leads to a problem with
object equality. Because these kinds of object are not different from general objects,
they can be cloned (as every other object can). Cloning a number object (e.g. the
object representing 42) results in the existence of two distinct 42-objects6. To ensure
that

42 = 42

is still true, the equal sign cannot be taken to mean object identity. To deal with this
problem, Smalltalk defines two different equality operators: a == b test object identity
(a and b are the same object), and a = b tests object equality (a and b have the same
state). Manifest classes avoid the need for these two operators.

An important aspect of the manifest class model is the separation of concepts (an
improvement in orthogonality): implicit creation is separated from predefined types.
This leaves the possibility of the combination of implicit creation and user-defined
types. Blue allows this combination for the definition of enumerations. Enumerations
often do not fit in well with object-orientation and, as a result, most languages do not
include them at all. Manifest classes allow us to provide a genuine object-oriented
definition of enumerations that is seamlessly integrated into the object model.
Enumerations are discussed in section 6.4.2.

Manifest classes are also loosely related to the concept of mutable and immutable
objects in CLU, in that manifest objects are immutable while constructor objects are
mutable. This is coincidental, though: it would easily be possible to define a language
construct that allows the definition of immutable constructor objects (as CLU does).
The concepts are in fact quite orthogonal. Blue does not support the explicit definition
of immutable objects. But the fact that manifest objects are immutable allows very
efficient implementation. These objects fit in the variables directly (manifest objects
are not larger than pointers) without using the indirection of a reference, and storing
them there is safe since they are immutable. Even though this means that assignment
now does copy an object, this is not detectable by any program Ð it is an invisible
implementation optimisation. This ensures that integer arithmetic, for example, can be
implemented efficiently.

                                                  

6 Some Smalltalk systems implement this differently: the clone operation then does not, in fact, clone
the integer object but is effectively a null operation. This, however, only shifts the problem to another
area: instead of introducing a special case for equality a special case for the clone operation is defined.
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Note that the distinction between manifest and constructor classes is a conceptual
difference, not a technical one, and that it is on a class basis and not on a variable
basis. In this respect it differs greatly from the immediate storage/reference storage
distinction in other languages. Our distinction influences how objects come into
existence, which is a semantic definition, and is defined in the class, which already
holds semantic information about the class and objects of it. There can never be
confusion over how a variable can be accessed, whether recursive structures are
possible or when objects get duplicated, as there often is with the duplicate storage
model. All objects are accessed in a uniform manner.

Object vs. values

A related issue is the distinction of objects and values in programming, as it is
discussed by MacLennan [MacLennan 1982]. Values are abstractions which are
immutable. It does not make sense to discuss identity of values, to duplicate them or
to share them. Objects, on the other hand, represent entities in the model to be
represented by the program. They can be instantiated, changed and destroyed, and
they have state. Integers and enumerations, such as 2 or red, are values.

This distinction is usually not represented clearly in programming languages. The
problem is that program objects are used to implement both values and objects in the
model. In our approach, manifest classes represent values in the problem domain
while constructor classes represent objects in the problem domain. It has been argued
that the two relationships name«object and object«value should be treated
separately and independently [Grogono 1994b]. We contend that the situation where
two objects represent the same abstract value does not have a sensible meaning. It
leads to confusion and should be avoided.

Blue provides unique, immutable objects for values and general objects for problem-
domain-objects. The concept of a value here is bound to a simple data type, where
general objects are typically compound objects with internal structure.

The missing combination Ð unique, immutable objects for user-defined compound
objects Ð cannot be as easily dismissed as multiple objects for values. This is,
however, an area for further programming language research and lies outside the
requirements for a teaching language.

The discussion of the use of manifest classes has been summarised in [K�lling
1998a].

6.3 The type system

6.3.1 Type safety

Blue is type safe. It is strongly typed and also what we might call Òlargely statically
typedÓ. According to the definition given by Cardelli and Wegner [Cardelli 1985], a
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language is strongly typed if it is type consistent, i.e. it is guaranteed that no type
errors can occur at runtime. This may involve runtime checks to avoid those errors.

ÒStatically typedÓ is a stronger requirement. A language is statically typed if the type
of every expression can be determined by static program analysis. ÒStatically typedÓ
thus is not an interesting characteristic in the comparison of object-oriented language
since, by definition, no object-oriented language can be statically typed. Part of
object-orientation is the provision of polymorphism, either in the form of inheritance
or through parametric polymorphism. This implies that the type of expressions
denoting objects is not statically known. One of the achievements of object-oriented
programming is, in fact, to have found a way to get rid of the straight jacket of static
typing in a well defined manner that still guarantees type safety. Static typing is,
however, desirable for most other language constructs.

When we say that Blue is Òlargely statically typedÓ, we mean that dynamic type
information is only used to support the basic polymorphism concept, subtyping with
dynamic method dispatch, which is an essential characteristic of all object-oriented
languages. No other construct involves implicit runtime checks (although there is one
construct, the assignment attempt, that performs an explicit runtime check). Blue
therefore, is as statically typed as it can be, consistent with its design principles.

Most importantly, though, since the dynamically typed polymorphism constructs
(inheritance and genericity) are constructed in such a way that type safety is
guaranteed (even though the exact type is not statically known), Blue is statically type
safe. In practice, this is the characteristic that we are most interested in for a teaching
language. It implies that all type errors are detected at compile time and can be
reported early and at the real source of the error.

6.3.2 Types vs. classes

We often use the expressions type and class as synonymous. As long as no generic
classes are involved, this is unproblematic Ð a one-to-one relationship exists between
a non-generic class and a type. Each class provides exactly one type. We can interpret
the phrase Òx is of class AÓ as a short hand form of Òx is of the type provided by class
AÓ.

The distinction between type and class becomes important, however, in the context of
genericity. Here the terminology differs in different languages. In Blue, we call the
generic source text a class, while each specific instantiation is a type. Consider, for
instance, a generic class Stack:

class Stack <T> is
  ...
end class

In this example, Stack is a class while Stack<Integer> or Stack<String> are
types. A generic class, thus, is a generator for a potentially unlimited set of types.
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6.3.3 Predefined types

Blue provides six predefined classes: Integer, Real, Boolean, Enumeration, String and
Array. Predefined classes differ from other classes in that they do not need to be
explicitly imported via the ÒusesÓ clause. They are automatically known in all classes.

There is no character class in Blue. Where characters are needed, strings of length one
can be used instead. This eliminates an entire predefined class and avoids common
problems with characterÐstring compatibility.

Strings are manifest classes. A string literal, such as "This is a string" therefore
is a constant reference to a unique string object, not a string constructor. The reasons
for this decision are related to equality considerations for strings. They are discussed
in detail in section 6.12.1 (Equality).

The decision to include Array as a predefined type has been a contentious issue. The
Array class is a generic collection class that holds a number of objects of another
class. It has this in common with other collection classes, such as lists, stacks and
queues. These other collection classes are provided in standard class libraries, which
may be included into a Blue project and imported into a class via the ÒusesÓ clause. It
could be argued that the class Array should be implemented in the same manner Ð as
one of the collection library classes that may be imported through the library browser.
It may even be argued that this would have educational value: often arrays are
misused out of laziness. Their immediate availability and familiarity leads many
students to use arrays in situations where the use of other collections, such as trees,
lists or hash tables, would be preferable. Removing the special status of arrays (as, for
example, Eiffel has done) might encourage the use of more appropriate data
structures.

We decided nonetheless to give arrays their special status by pre-defining them. The
reason is that we see arrays as fundamentally different to other collections. Arrays are,
for instance, the only collection class that cannot be implemented in Blue itself. They
are an intrinsically lower level construct than other collections. We see arrays not so
much as a collection class but rather a means for the implementation of collection
classes. Two educational considerations have led us to the decision to provide
predefined arrays: firstly, we wanted to enable students to learn to implement their
own collection classes (for instance, in a data structures course) without relying on
other collection classes. Predefining the array makes clear that it is a lower level
construct. Secondly, we wanted students to become familiar with the concept of
arrays to prepare them for other languages that might follow Blue. Most languages
support arrays as a basic data type, and we considered preparation for this essential.
This is a case where we did not decide for maximum uniformity or simplicity, exactly
because this is an educational language. In a modern general purpose language we
would regard the provision of arrays through class libraries rather than as predefined
classes a cleaner solution.
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6.3.4 Type conformance

A variable a may be assigned to a variable b if the type of a conforms to the type of b.
A type A conforms to a type B if it is either the same type or a subtype of B.

Subtypes are established by inheritance. Inheritance always creates both a subclass
and a subtype relationship. These cannot be separated in Blue. Inheritance is defined
in a way that ensures substitutability of subclasses for superclasses, and thus
establishes a true subtype relationship. Consider the following definitions:

class B is
  ...
end class

class A is B
  ...
end class

var
  a : A
  b : B

These definitions declare a class A as a subclass of class B and two variables of these
class types. Consider further the following assignments:

b := a
a := b -- ERROR

The first assignment is legal (a conforms to b because A inherits from B), while the
second one is not. Inheritance is discussed in detail in section 6.13. Type conformance
with generic classes is discussed in section 6.14.4.

6.4 Classes

All code in Blue is written in classes. Classes are the basic unit of structuring code.
Typically, code is displayed on a class basis. All routines which are part of a class are
displayed together. (Note that this does not necessarily mean that each class is stored
in one file. While this might be true, it is an implementation issue. Files do not exist
as a concept in the Blue environment.) A Blue user may open a class and view its
code. The storage technique used for the class is irrelevant. What is important is that
each view of a class shows all routines that belong to a class, and only those that
belong to that class.

6.4.1 Constructor classes

User-defined classes can be constructor classes or enumeration (manifest) classes.
This section describes constructor classes.

Each class has a rigid structure. Figure 6.3 shows an overview; Blue keywords are
shown in bold. The syntax follows the Pascal/Eiffel tradition that requires a fixed
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sequence of syntactical elements, rather than the C/C++ tradition that allows the
definitions of types, variables and routines in arbitrary order.

class classname is superclass
== class comment

uses other classes

internal

var
variable declarations

routines
internal routine definitions

interface

creation routine

routines
interface routine definitions

invariant
class invariant

end class

Figure 6.3: Structure of a class

Requiring a strict order of class elements provides a solid framework in which to learn
a good programming style. It makes it easy to find definitions when they are needed,
and it makes it easy to decide where to put them. It is possible to provide a template
for a class containing this framework to a user starting to write a new class. This
greatly eases the difficulties of beginners when writing their first classes.

It is our experience that in every concrete teaching situation an attempt is made to
structure code in a similar way anyway. Typically students are told to follow style
guidelines that define where and when to write declarations and code. The use of style
guidelines is a half-hearted attempt to convince programmers to use good practice.
With beginners, whom we want to convince to use good practice, sometimes against
considerable resistance, having a system that enforces a style that we consider good
makes life much easier. A teaching system does not need to provide the greatest
flexibility. It should rather decide what good programming practice is, and then it
should enforce the use of it wherever possible. The class structure is only the first of
several examples of this in Blue.

6.4.2 Enumeration classes

Language designers and users have long argued about whether enumerations should
be included in a programming language. With the advent of structured programming
and Pascal, it seemed accepted that they are a useful construct that increases code
quality. Wirth, the creator of Pascal, however, seems to have changed his mind: his
latest language, Oberon, does not include enumerations.
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Opinions in published comments range from statements that enumerations are
ÒuselessÓ and that Òprogrammers do not want to use themÓ [Pohl 1988], and that they
are ÒsuperfluousÓ [Delft 1989] and Òexcess redundancyÓ [Lins 1990] to strong
defences that state that they result in less work and more understandable and
maintainable code [Cashman 1991, Sakkinen 1991].

We strongly believe that the inclusion of enumerations enables programmers to write
more readable code. A routine which might fail to complete its task, for example, can
return a meaningfully named result value, instead of returning an integer number. The
inclusion of enumeration types in object-oriented languages, however, was typically
awkward (as in C++, where they do not fit into the object model) or non-existent
(Eiffel, Java). Blue, through the introduction of manifest classes, combines
enumerations with objects and provides a unified model.

The structure of enumeration classes is shown in Figure 6.4.

class classname is Enumeration
== class comment

manifest enumeration list

end class

Figure 6.4: Structure of an enumeration class

ÒEnumerationÓ is a predefined abstract class. It provides (amongst others) predecessor
and successor routines, which can then be used for all enumeration classes. For
example, given the class

class Colours is Enumeration
== some sample colours

manifest red, green, blue, yellow, purple

end class

the following loop could be written:

col := red
loop

exit on col = nil
process (col)
col := col.succ

end loop

Currently no further routines can be defined by the user for enumeration classes.
Whether a language could be defined where user-defined manifest classes can have
user-defined methods warrants further investigation.

6.4.3 Encapsulation

Blue provides, as most other object-oriented languages, information hiding through
encapsulation. In most languages, encapsulation is based either on objects (e.g.
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Smalltalk, Eiffel) or classes (e.g. Simula, C++) with Beta being a notable exception Ð
encapsulation in Beta may be defined explicitly and is not necessarily bound to the
class structure.

Blue supports class based, rather than object based, encapsulation. This means that
objects of the same class can access each otherÕs internal data. The internal part of a
class is only protected from access by objects of another class.

This decision reflects the goal we have in mind with the education of students with
Blue: software engineering. We want students to learn to understand software
engineering issues, and try to provide a language in which those can be learnt.

From a software engineering perspective, information hiding is important for program
maintenance. It guarantees localisation. The area of visibility of an instance variable,
for example, is the class in which it is defined. This localisation is crucial for enabling
changes in the implementation of programs. It defines the part of the program that
may be affected by a change made by a maintenance programmer.

For this, in our view, most important aspect of information hiding, only class based
encapsulation is necessary. Accessing data of an object from within another object of
the same class is not a problem, since changes in the internal structure affects both
objects anyway (since they are of the same class). The argument that encapsulation is
needed to protect one objectÕs implementation from internal changes in another object
does not hold for objects of the same class.

On the other hand, access to internals of other objects of the same class allows us, for
example, to write ÒcloneÓ routines, which produce an object as a copy of another
object. Since this cloning might involve copying of data that is not available through
the interface, access to the internal part of the other object is crucial. We might use
this to write, for example:

new_object := old_object.clone

We will argue below (section 6.12.3) that the ability to write such clone routines is
needed since cloning cannot generally be automated in a programming language.

6.5 Routines and parameters

6.5.1 Structure

Routine declarations follow a similarly strict structure to the class as a whole. The
skeleton of a routine is shown in Figure 6.5. The reasons for enforcing a strict
structure are the same as for the class in general: it makes it easy to find declarations
and enhances readability. It has been argued (for example in [Stroustrup 1991]) that
declarations of variables should be permitted anywhere in the code. This would
enable the programmer to declare variables at the point of the first assignment, thus
avoiding the declaration of uninitialised variables. While the idea of avoiding
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uninitialised variables is a good one, scattering variable declarations through the code
is strongly detrimental to readability. Often, when modifying a code segment, a
programmer has to check the name or type of a variable. Having a position within the
code for declarations that can easily be located helps program maintenance. Blue
enforces a separate variable declaration section and employs a separate mechanism to
deal with the issue of uninitialised variables (see section 6.8: Variables).

routine-name ( parameter-list ) Ð> ( result-list ) is
== routine-comment

pre
precondition

var
variable declarations

do
routine body

post
postcondition

end routine-name

Figure 6.5: Structure of a routine

Routine name

The first word of a routine declaration is the name of the routine. It is not preceded by
a keyword or symbol. This, together with the recommended indentation, lets the
routine names stand out, making it easy for a programmer to find a routine
declaration. Elevated to a principle, we could call this an example of Òsyntax structure
for human readabilityÓ (as opposed to readability for a compiler, which is so often the
motivation for syntactic constructs in programming languages). Since readability
improves maintainability, which in turn is a major software engineering concern, we
could also claim this to be Òsyntax structure for maintenance supportÓ or Òsyntax
structure for software engineeringÓ. To see the effect of this structure, let us compare
it to the C++ syntax, where the routine name can be preceded by several other
definitions:

// C++ declarations:

virtual const int* get (int n);

static void put (int i, char c);

-- Blue declarations:

get (n: Integer) -> (res: Integer)

put (i: Integer, s: String)

Both examples declare the routines ÒgetÓ and ÒputÓ. Comparing the two examples, it
is obvious that, when searching through a class interface for the declaration of a
routine, the Blue format is more convenient. In the Blue version these names are easy
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to locate while quickly scanning down a page. The C++ format makes it much harder
to identify the routine name in the definition.

The routine name is repeated at the end of the routine body. Again, this can increase
readability, especially if routines are longer than just a few lines. Many teachers have
recommended this as a programming style using many different languages (usually as
a comment at the end of the routine). Again, styles should be supported by the
compiler if possible to emphasise their importance and to form good habits. The
inconvenience of additional typing can be avoided by providing an editor which
supports the automatic insertion of the name at the end.

Routine comment

The routine comment is compulsory. Blue will report an error if no comment is
present. (See section 6.7 for more details on comments.)

Pre and post conditions

Pre and post conditions offer a formal mechanism to specify (partially) the constraints
and effects of a routine. They are supported through specific keywords at the
beginning and the end of the routine body. Although the behaviour of pre and post
conditions can be simulated with most other languages by using comments and
assertions, their support as separate language elements emphasises their importance
and leads to a much more conscious approach by students in dealing with this issue.

The use of pre/post conditions is also supported by the environment. When a class is
first created, a class skeleton for that class is automatically generated. This class
skeleton contains a first routine skeleton. The editor then supports the insertion of
additional routine skeletons as a built-in editor command. Those generated skeletons
include definitions of pre/post conditions. Our experience shows that, once a default
placeholder is there, students often think about and write an appropriate condition,
rather than deleting the existing default.

Details of pre and post conditions and the Òdesign by contractÓ principle are discussed
in section 6.6.

routine-name ( parameter-list ) -> ( result-list ) is
== routine-comment

pre
precondition

post
postcondition

Figure 6.6: Structure of a routine in interface view
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Routine interface

The routine signature, the comment and the pre/post conditions are part of the routine
interface. The post condition is located at the end of the routine when looking at the
implementation. This reflects the logical sequence of evaluation: the post condition
must hold after the execution of the body. In the interface view, however, (which is
automatically generated by the environment) the post condition appears directly under
the pre condition. Figure 6.6 shows the structure of a routine interface.

6.5.2 Parameters and result variables

Routines have an optional parameter list and an optional list of result variables. Only
one kind of parameter passing mechanism exists: all parameters are passed by value.
(Remember, though, that all variables hold references Ð the reference is passed by
value, resulting in pass-by-reference semantics for the objects themselves.) Result
lists are, as their name suggests, lists of variables. Thus a routine can return more than
one value. Consider the following routine.

findElem (index: Integer) -> (found: Boolean, elem: Element) is
== Return element at 'index'. If it exists, 'found' is true
== and 'elem' is the element. If not, 'found' is false and
== 'elem' is nil.

var
e : Element

do
... -- code left out
found := true
elem := e

end findElem

Here, the routine returns two values, found and elem (which may be useful if nil is a
valid value for elem, and thus cannot be used to indicate failure). The result values are
named (defining a result variable) and values are returned by assigning to those
variables. The compiler reports an error if the routine body does not contain an
assignment to each result variable, and the runtime system reports an error if any of
the variables are undefined at the time of the return of the routine.

This mechanism provides a substantial simplification compared to many other
languages. There is only one way to pass information into a routine, and there is one
mechanism to get information back. Many languages provide different kinds of
parameters (value, reference, in/out parameters) in addition to function results. This
creates unnecessary complications for students. Conceptually, it is hard to justify why
a function returns one value as a function result, but if it wants to return two values, it
must use reference parameters (or one reference parameter and a function result). Two
different mechanisms are used to serve the same purpose. Providing one kind of
parameter and one kind of (multiple) return mechanism overcomes these inconsisten-
cies and reduces the number of required concepts.

Purists sometimes argue that a function should return only one result. If several pieces
of information are needed, the function should return an object containing that
information. While this is possible, the overhead in practice is relatively high.
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Creating an extra class for the result objects is necessary, and in reality is often
avoided. We believe that there is no justification for forcing the programmer (even a
beginner) to add additional complexity if a clean, simple mechanism can be provided
to achieve the same task.

6.5.3 Multi-assignments

To be able to return multiple values from a routine call, it is necessary to have a way
to receive multiple values. The multi-assignment provides this mechanism.

Assignments have a list of variables on their left hand side and an expression list on
their right, e.g.

a, b := 42, 99

Each of the values on the right is assigned to the corresponding variable on the left.
All expressions on the right hand side are evaluated before any assignment takes
place. A routine call with multiple return values evaluates to a value list and can thus
be used on the right hand side of a multi-assignment. The findElem function defined
above, for instance, may be called in the following manner:

success, element := findElem (2)

The multi-assignment is also useful in another situation. Swapping values of two
variables becomes very easy:

a, b := b, a

The assignment is the only place where a routine call which returns multiple values is
legal. In lists of actual parameters, where technically a routine call resulting in
multiple values could be allowed to represent multiple actual parameters, we decided
against allowing those calls. We considered that case more likely to result in
confusion than usefulness.

The parameter and return value mechanism together with the multi-assignment has
several advantages:

· It reduces the number of concepts (avoids redundancy).
· It increases readability of the routine declaration.
· It clarifies semantics of the routine call.

The first point has been mentioned above: by avoiding different kinds of parameter
passing mechanism, the number of (partly redundant) concepts is reduced.

The second point may be open to discussion, but we believe the Blue style to be more
readable than, say, the Ada95 style of parameter declarations (Ada95 was chosen for
comparison here, because it places emphasis on syntactical clarity of parameter
passing modes). Consider:
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{ Ada: }
procedure m (a: in out Integer; s: out string, b: in Boolean)

-- Blue:
m (a: Integer, b: Boolean) -> (new_a: Integer, s: String)

Blue forces an ordering onto the parameter list: in parameters are named first, results
(out parameters in Ada terminology) are separated. Ada allows arbitrary ordering of
parameters. Supplying two separate lists is more easily readable than mixing
declarations in one list. Note that the Ada inout mode of parameter a is represented in
Blue by two variables: a in the parameter list and new_a in the result list.

A more important detail is the third point: the routine call. Consider the Ada case:

m (p1, p2, p3);

This example shows a call of the routine declared above. At the location of the call it
is not determinable which of the parameters are in, out or inout parameters. Compare
this with the Blue alternative:

p1, p2 := m (p1, p3)

Here, it is clearly determinable at the routine call that p1 and p2 are changed by the
routine, while p1 and p3 are passed in (p1 thus has an inout behaviour).

The argument is not merely readability or convenience. The Blue style adds useful
semantic information to routine calls without introducing additional language
mechanisms (in fact, while reducing the number of used mechanisms). This is an
additional quality not found in any of the languages surveyed.

6.6 Design by contract

The Òdesign by contractÓ principle described by Bertrand Meyer in his introduction to
Eiffel [Meyer 1988] is a powerful mechanism to encourage clear specifications of
routines and clean programming principles. It also often enables the early detection of
program errors. All of these aspects are strongly desirable for a teaching language,
and Blue provides language constructs to support these principles in a manner very
similar to Eiffel.

The language elements needed to support these principles are pre and post conditions
and class invariants.

6.6.1 Pre and post conditions

Pre and post conditions are part of a routine definition. They have been briefly
mentioned in section 6.5, where their position in relation to other elements in the
routine specification was shown. Pre and post conditions are optional. They typically
consist of a boolean expression which is checked at runtime and results in a runtime
error if it fails. If such an error occurs, the source of the class containing the condition
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is displayed, the condition is highlighted, and an error message indicates that a pre or
post condition was violated.

A condition consists of a single boolean expression (as opposed to conditions in
Eiffel, which consist of a list of expressions). This is technically equivalent, since
multiple conditions can easily be concatenated into a single expression by joining
them with a logical ÒandÓ operator. This was done to maintain an unambiguous
context-free grammar for the language. (Since Blue does not use semicolons at the
end of statements or conditions a list of boolean expressions may lead to ambiguity in
the grammar.)

Another difference between Blue and Eiffel is that in Blue pre and post conditions
may contain comments. These may be used for conditions that cannot be expressed in
source code (e.g. that a particular item has been sent to a printer, that some
information was written to the terminal, etc.). To be exact, pre and post conditions in
Eiffel can contain comments, but these comments do not become part of the interface
of the routine, and thus are not considered to be part of the pre or post condition. In
Blue these comments form part of the routine interface - see section 6.7. Conditions
are always checked at runtime. There is no mechanism to switch checking of pre and
post conditions off.

As in Eiffel, pre and post conditions are inherited by subclasses and can be modified
only in ways that ensure that the subclass still meets the superclass specification.

6.6.2 Class invariants

A class invariant is a boolean expression, defined at the end of a class, that must be
true at all stable states of the class. A stable state is each state in which the class could
be observed from the outside Ð more precisely: a stable state exists at the beginning
and the end of every externally invoked routine call (see [Meyer 1988, p158] for a
more detailed discussion of invariants and stable states).

As opposed to invariants in Eiffel, the invariant in Blue is never part of the interface
of the class. Eiffel distinguishes between internal and external invariants. Conditions
which use internal instance variables or routines are considered implementation
conditions and do not appear in the interface (Òshort formÓ in Eiffel terminology) of
the class. Conditions which only contain references to public variables or routines
(ÒfeaturesÓ in Eiffel) are considered public invariants and become part of the Òshort
formÓ.

Interface invariants mainly serve the purpose of making statements about instance
variables. Statements about routine values need not be included in the invariant, since
they can be made in the post condition of the routine. The uniform access principle
that Eiffel states is broken in this respect. Consider a feature ÒcountÓ in an Eiffel list
class:

count : Integer
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In Eiffel, this feature could be represented by either a routine (a parameterless
function) or an instance variable. This is known as the principle of uniform access Ð it
should not be observable from the outside how the feature is implemented. This gives
the implementor freedom of choice and the possibility of later changing the
implementation without affecting clients. We might add the invariant

invariant
count > 0

If count is indeed implemented by a variable, this is the only way to express this
constraint. If count is implemented by a routine, however, we might alternatively
write:

count : Integer -- Eiffel code
ensures

Result > 0

In this version, the same constraint is expressed in the interface by a post condition
rather than an invariant. Here the uniform access principle breaks down, since Eiffel
does not allow post conditions to be expressed for variables. This is in fact the whole
purpose of interface class invariants: to express those constraints for variables that
would have been expressed in post conditions if it were implemented as a function. (It
would, in fact, be more consistent if Eiffel allowed those conditions for variables and
removed invariants from the interface. This would textually move the constraints
closer to the feature to which they are referring, and uphold the principle of uniform
access.)
In Blue, since variables cannot appear in the interface, there is no need for invariants
to appear in class interfaces. All invariants are implementation invariants used for
error checking rather than for specifying class semantics. They appear in the
implementation view only.

6.7 Comments

All comments in Blue are line oriented. They start from the comment symbol and
extend to the end of the line. There are no block comments in Blue.
This definition avoids misunderstandings through long comments. Using a block
comment over a larger area might be misleading if a maintenance programmer looks
at lines of code in the middle of the comment. The start and/or end of the comment
might be outside the currently visible screen area, and the code might give a wrong
impression, namely that source code is present while in fact it is commented out. Line
comments avoid this problem. Since every single line needs to be preceded by the
comment symbol, commented sections are immediately recognisable.

The typical criticism of this style is that it is tedious to insert or remove long blocks of
comments in this way, e.g. when a whole routine is to be commented out. This,
however, is a pure editing problem, and it should be treated as such. To overcome it,
the editor should provide convenient ways to insert and remove blocks of comments.
In the Blue environment, a block of source code may be highlighted and
(un)commented with one keystroke.
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Editing problems should not be solved by compromise in language design, especially
if clarity and readability may suffer as a result.

6.7.1 Compulsory comments

Blue enforces the presence of some comments in a class. A comment has to be present
at the beginning of each class (below the header) and in the header of each routine.
The purpose of these comments is to describe the entire class and each routine,
respectively. While the compiler actually enforces only the presence of a comment
symbol (it can never enforce the presence of a meaningful comment), and thus this
enforcement is theoretically almost meaningless, it serves in practice as a strong
encouragement to write comments. Enforcing the presence of a comment sends a
strong signal to the student, indicating that comments are considered to be an intrinsic
part of the class. In our experience, students take language elements much more
seriously if the compiler supports them, than they do if only given as style guidelines.

class Person is

====================================================
== Author: M. K�lling
== Version: 1.1
== Date: 12 July 2001
== Short: Person class for university management project.
==
==  The class Person implements objects representing a person in a university
==  management project. It contains information common to all persons in
==  the university ...
==
====================================================
...

end class

Figure 6.7: Format of a class comment

Writing comments is further encouraged by the environment. The automatically
generated class skeleton contains comment patterns to be filled in, and some
comments are displayed in the interface view (see interface comments, next section).

The class comment also includes four keywords that are recognised by the
environment: author, version, date and short (Figure 6.7). They are used to provide
information about author, version and modification date of the class as well as a one
line description. These specifications, when present, are recognised by the class
browser and can be used for specific searching of the class library. A search can be
made, for instance, for classes written by a specific author. When a class is displayed
in the browser, these specifications are displayed in appropriate fields.
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6.7.2 Interface comments vs. implementation comments

Blue supports two kinds of comments. Interface comments are defined by the double
equals sign (==). Their purpose is to provide information about the functionality of
the class or its routines. Interface comments may appear only at specified locations in
the source: in the header of the class, in the header of each function and in pre and
post conditions. They are visible in the interface of the class. Implementation
comments are defined by a double minus sign (ÐÐ). Their purpose is to provide
information about the implementation of a class. They may appear anywhere in the
source and are ignored by the compiler. Both kinds of comments are terminated by a
new line.

Figure 6.8 shows the implementation view of a routine that makes use of interface and
implementation comments. Figure 6.9 shows the interface view of that same routine.

printInfo (cols: Integer) is
== Print out the information in this container formatted into 'cols'
== columns on screen. Items are sorted alphabetically.
Ð Ð To print the information the internal tree is traversed and each
Ð Ð node is displayed separately. To achieve alphabetical sorting, items
Ð Ð must be processed in infix order.

pre
cols > 0

do
... Ð ÐÊcode goes here (left out for space reasons)

post
== Items have been displayed on screen

end printInfo

Figure 6.8: Interface and implementation comments in implementation view

printInfo (cols: Integer)
== Print out the information in this container formatted into 'cols'
== columns on screen. Items are sorted alphabetically.

pre
cols > 0

post
== Items have been displayed on screen

Figure 6.9: Routine in interface view
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6.8 Variables

All variables, if they have a value at all, hold references to objects. In addition to that,
they may be undefined or nil, as explained below.

6.8.1 Undefined variables

Variables may or may not be initialised at declaration. For example:

var
name : String
n :    Integer := 42
cnt :  Integer := getNumElems (1, true)

Variables are a combination of type, state and value. If a variable is not initialised, its
state is undefined. An attempt to use an undefined variable is noticed at runtime and
results in a runtime error. The use of a variable is its appearance on the right hand side
of an assignment or in an actual parameter list. Routine results are checked at the time
of return from the routine.

This catches a common error made by beginning students. Checking for uninitialised
variables is a case where Blue, by concentrating on a teaching situation, can provide
better support for students than other systems. Undertaking the checks costs in both
time and space. In a language intended for commercial production, efficiency would
take precedence over error checking, and those checks would not be justifiable. (In
fact, the only other language known to us which defines such checking is CLU, but
this part of the language definition was never implemented in the compiler [Liskov
1992]. Java defines related, but slightly different semantics: access to variables which
may be uninitialised is considered an error. The checking is done by using compile
time flow analysis, and cases that cannot be decided at compile time are simply
disallowed.)

Alternatives to this mechanism would have been to force initialisation at point of
declaration, or to automatically initialise all variables to some default value. Both
schemes have drawbacks.

Forced initialisation

Forcing initialisation effectively means that declarations should be allowed anywhere
in the code. At the point of Blue declarations (before the start of a routine) sensible
initial values are often not known, thus making forced initialisations meaningless
(because they would only force the programmer to initialise variables to some
meaningless value). Meaningful initialisation values are often only known halfway
through a routineÕs body. To achieve meaningful variable initialisation at declaration
point, the declaration must be allowed at the point at which the variable is first used.
C++, for instance, follows this approach.

We have already argued that variable declarations scattered through the code are
detrimental to readability. (This is magnified in languages with nested blocks that
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allow multiple nested declarations of the same variable name.) C++, by allowing
scattered declarations and not demanding variables to be initialised (together with the
inability to check for the use of uninitialised variables) provides the worst of all
worlds.

Automatic initialisation

The other alternative, automatic initialisation, also is not appropriate for a teaching
language. There are three possible scenarios, all of which are negative:

1  The user forgets to initialise the variable; the variable is automatically
initialised to a value that is semantically illegal in the context (e.g. nil for a
variable that is expected to refer to an object). In this situation, the
initialisation is no better than no initialisation at all. The program will fail, as
it would have without any initialisation.

2  The user forgets to initialise the variable; the variable is automatically
initialised to a value that is semantically legal in the context (e.g. 0 for an
integer variable). In this case, the user will be ÒprotectedÓ from detecting a
program error. Because the value is legal, it will not result in an (immediate)
error, but it may nonetheless be wrong and cause wrong results. It is only
detected later. This is the worst case for a teaching language, because
programming errors may go unnoticed altogether.

3  The user intentionally omits the initialisation of the variable because the
default value is the intended initial value (i.e. the user exploits the automatic
initialisation). The only real effect of this case is to save typing of a few
characters (the explicit initialisation), thereby reducing readability (since the
reader must know the default value for each particular type of variable). It is
also not clear whether the initialisation was consciously or unconsciously
omitted. It seems worth the effort on the writers part of including the
initialisation explicitly in these cases to clarify the semantics to the reader.

The Blue mechanism combines the best features of all schemes: all declarations are
placed in a well-defined location, variables may be initialised if a sensible initial value
is known (with the initial value clearly readable in the source text) and the use of
uninitialised variables is always detected.

6.8.2 Nil

A variable of any type may hold the special value nil. Since all variables hold
references to objects, all variables, including simple types such as Integer or Boolean,
can hold the nil value. Nil indicates that the variable currently does not hold any



CHAPTER 6: THE BLUE LANGUAGE

92

reference.7 Nil differs from all other legal values of the type (i.e it is not, for instance,
0 for integer variables).

Nil therefore is special, since it does not seem to conform to the strongly typed system
that Blue otherwise enforces. Consider:

var
  a : Integer
  b : MyClass

...
a := nil
b := nil

The type of nil cannot be determined - it is assignment compatible with all types.
Most other languages face the same issue, and there are different technical tricks to
provide an answer to this problem. (Note that this only poses a problem for the
theoretical foundation, the type system. It is not normally a problem in practical
application.)

Blue, like Pascal, uses an overloaded nil value. Nil is considered to represent a value
of every type (therefore a potentially unlimited number of nil values exist) and the
overloaded assignment automatically assigns the nil value of the right type to the
variable.

Beta, on the other hand, defines a class named ÒNoClassÓ, which implicitly inherits
from all existing classes. Nil is of this class and therefore, by subtyping rules,
assignment compatible to all types. Eiffel uses the same construct with a class named
"None".

An early development version of Blue answered this question by using the state and
value distinction. A variable has a state in addition to its value. We have already
discussed the undefined state. A variable has the state valid if it has been assigned a
value. (Once a variable leaves the undefined state, it can never return to that state. No
test for undefined exists. A programmer in a well written program always knows
when a variable is undefined.)

The earlier version considered nil to be a state rather than a value. This subtle
distinction avoids the type problem. To meet the requirement of consistent syntax
(Òsame syntax for same semantics, different syntax for different semanticsÓ),
however, the change to the nil state should not be written as an assignment (since it is
a semantically different operation). We therefore defined built-in commands to set
and test for nil:

                                                  

7 Note that this does not mean that simple types must be implemented as a reference type. In fact, in the
current Blue system they are not. However this is an implementation optimisation and does not affect
the conceptual model.
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set_nil (a)

if is_nil (a) then
  ...
end if

A side effect of this definition was that nil could not be easily passed as a parameter.
This problem prompted us to view nil as a value rather than a state, and to accept the
overloading of its type.

6.9 Statements

The statements in Blue are
· assignment
· assignment attempt
· procedure call
· return
· assertion

and control structures (which are discussed later).

6.9.1 Assignment and assignment attempt

The assignment is a multi-assignment and was discussed in section 6.5.3. An
assignment attempt is written with a ?= symbol:

a ?= b

The assignment attempt uses the same symbol and the same semantics as Eiffel
[Meyer 1992, p 330]. It is used to attempt an assignment from a superclass variable to
a subclass variable. Consider:

class A is
== This is the superclass
...

end class

and

class B is A
== B inherits from A
...

end class

If we have variable declarations:

var
a : A
b : B

then an assignment

a := b
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is legal because of the subtype relationship. (A subclass in Blue also establishes a
subtype relationship. Subclassing and subtyping are inseparably linked Ð see section
6.13: Inheritance.) An assignment

b := a

on the other hand, is illegal because it is not type safe. The assignment attempt,
however,

b ?= a

is legal. On execution the dynamic type of a is checked, and if it is of type B or one
of its subtypes the assignment is executed. If its dynamic type does not conform to B,
then nil is assigned.

We debated for a long time whether the assignment attempt should be a part of Blue.
There were doubts about its usefulness and necessity in a language. One can argue
that usually, when an assignment attempt is used, the program is badly designed.
Improving the design can, in most cases, lead to the elimination of the assignment
attempt from the code. Let us consider an example.

Assignment attempts are necessary when a programmer knows or suspects that an
object is of a subtype of the statically known type, and needs to access operations of
that subtype. This is the case if we use a polymorphic list. As an example here, we can
use a list of animals in an environmental simulation. ÒAnimalÓ would be an abstract
superclass of, say, the classes ÒSharkÓ, ÒSheepÓ and ÒLionÓ. The simulation would
hold a list of animals, and once in every time interval it would go through the list to
activate each particular animal to do whatever it is supposed to do. Let us assume that
sharks swim, sheep eat and lions hunt.

In a na�ve implementation, we might need to ÒcastÓ the animal object back to its
dynamic type in order to call the routine shark.swim, sheep.eat and lion.hunt.
The following code fragment illustrates this technique:

animals.initScan
loop

anAnimal := animals.getNext
exit on anAnimal = nil -- end of list
aShark ?= anAnimal -- try shark
if aShark <> nil then

aShark.swim
else

aSheep ?= anAnimal -- try sheep
if aSheep <> nil then

aSheep.eat
else

aLion ?= anAnimal -- try lion
if aLion <> nil then

aLion.hunt
end if

end if
end if

end loop
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This is unfortunately the way in which the assignment attempt is mostly used by
inexperienced programmers, and it is indeed bad design. This pattern is inelegant,
unnecessarily complicated and a hindrance to system maintenance and extendability.
It does not make use of one of object-orientationÕs most powerful features: dynamic
dispatch. For this example, a better design would use an ÒactÓ routine in the abstract
class ÒAnimalÓ (as a deferred routine), call the ÒactÓ routine for each animal in each
time interval, and leave it up the animal itself to determine what kind of action it
wishes to perform (swim, eat or hunt). Here is the modified code.

animals.initScan
loop

anAnimal := animals.getNext
exit on anAnimal = nil -- end of list
anAnimal.act

end loop

This code is clearly shorter, more elegant, and does not need to be changed when new
animal subclasses are introduced to the system.

The argument so far suggests that we exclude the assignment attempt from the
language. It is regularly misused and seems to invite bad design.

There are, however, valid uses of the assignment attempt. An example is found in the
collection class library in the Blue system (a standard library that is part of the system
distribution). Here we have an abstract class ÒListÓ with two subclasses, ÒLListÓ and
ÒIndexListÓ. ÒLListÓ and ÒIndexListÓ are different implementations of the List type (a
linked list implementation and an array implementation, respectively). Both share a
common interface.

One of the routines in the List interface is ÒappendÓ. This routine joins two lists into
one by appending one list to the other. The parameter to this routine is of type ÒListÓ.
This means that not only two array lists or two linked lists may be merged, but also an
array list can be appended to a linked list and vice versa.

In the implementation of this routine, the assignment attempt is used. This allows the
code to distinguish between the two possible parameter types (linked list or array list)
and to use different techniques to join the two lists. Using an assignment attempt
could have been avoided by using the common interface operations to access the list
elements separately. This, however, would have significantly affected performance of
the operation. It would have resulted in the provision of a routine with exponential
runtime behaviour in a standard collection library where a routine with constant
execution time should have been available. This is not acceptable.

Note that we have previously argued that performance is not of paramount concern in
our system. This, however, applies to constant performance degradation of student
programs, not to bad programming. We can accept a system that executes programs,
say, 20 times slower than a professional system, but we cannot accept a system that
uses exponential algorithms where linear or even constant time algorithms should be
used. The reason is that this (order of execution time) is something that we might
want to teach to our students. It is important that our own libraries then make use of
good algorithms.
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For the assignment attempt, this means two things:

· It is not used very frequently, and it can easily be misused.
· There are some examples where its use is necessary.

The problem with excluding the assignment attempt from the language, though, is that
its effect cannot be achieved with any combination of other existing constructs. The
argument, used at other places in this discussion, that infrequently used constructs
should be excluded because their replacement by a (less convenient) combination of
other constructs is acceptable, cannot be applied here. The assignment attempt is not
only a convenient form to express an operation, it is the only form available for these
semantics.

We have therefore decided to include the assignment attempt in the language,
although this is one of those rare occasions where students must be warned to think
very carefully when they use it, about whether its use is really necessary.

6.9.2 Procedure call

Procedures (routines without return values) may be called by stating their name and
parameter list. For example:

printValues (32)

initData

drawRect (4, 4, 100, 100, true, red)

The actual parameter list must match the formal parameter list in the routine
definition. If no parameters are present, no parentheses are used.

6.9.3 Return from routine

A return statement may be used anywhere in a routine to exit immediately from that
routine:

show is
== display this element on standard output

do
if name = nil then

return
end if
...

end show

If the routine has result parameters, all the result parameters must be assigned before
returning from the routine. While some people have argued against allowing a return
from the middle of a function we are convinced that it can in many cases lead to a
simplification of code structure. Some examples of this are shown in [Roberts 1995].
For first year students, and in fact, for general programming, it is counter productive
to force the construction of code patterns more complex then necessary for the sake of
theory (since theory, namely formal proof of correctness, is the main argument against



CHAPTER 6: THE BLUE LANGUAGE

97

allowing this construct). We will continue this line of argument in section 6.11.3,
when we discuss similar criticism in the context of loop exits.

6.9.4 Assert statement

Assertions serve the purpose of supporting correctness and increasing locality of error
detection. By using assertions, errors in programs can be detected in some cases that
might otherwise go unnoticed for a longer time. They also help in detecting errors
earlier, thus indicating the error closer to its real source. This can greatly reduce
debugging times.

Assertions take a boolean expression as a parameter and cause a runtime error if that
expression evaluates to false. For example:

assert (head <> nil)

assert (obj.isValid)

The semantics of assertions in Blue are the same as in many other languages or
libraries. Their inclusion in the language encourages reasoning about correctness and
good programming style.

6.10 Aliases

An interesting issue arises from conflicting goals of two different requirements: on the
one hand we want uniformity and a small number of underlying concepts. On the
other hand we want the language to be simple and intuitive. There are cases,
especially when pre-existing knowledge is involved, in which these two goals can
come into conflict.

An example is the treatment of simple types and mathematical operations. We have
argued, on the one hand, that simple data items should be objects, and that they should
be treated as such. This leads to a uniform object concept which is advantageous for
understandability. Convention, on the other hand, uses infix notation for some
mathematical operations. When using those operations, these two goals contradict
each other. Adding two numbers m and n, for example, should, according to the first
principle, be represented as:

m.add (n)

This, however, looks unfamiliar to students, although they are comfortable with the
concept of addition. The following notation is more familiar:

m + n

The attempt to make a language easy and intuitive should take existing knowledge
into account and exploit it to achieve its goal. A simple program, for example, such as
ÒHello worldÓ or a program adding two numbers, should be easy to write without too
many unnecessary explanations. Achieving that goal would be easier if the familiar
infix notation were to be used.
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To overcome this apparent conflict, Blue uses aliases. Aliases provide an alternative
syntax for some constructs. In the case above, for example, both alternatives are legal.
The first one (m.add (n)) is the ÒrealÓ notation that conforms to the object model.
The second notation (m + n) can be regarded as a shorthand notation for the first one.

Another example of an alias is a print statement to perform text output operations. A
print command is available for this purpose:

print ("Hello world.")

print ("The answer is: ", n)

print ("a=", a, "  b=", b, "c=", c)

This print command is an alias that calls the write operation of the terminal object.
(terminal is a predefined constant which refers to an object of class TextTerminal.
This object controls the standard I/O terminal.) Thus the three print instructions listed
above are shorthand notations for the following statements:

terminal.write ( str ("Hello world.") )

terminal.write ( str ("The answer is: ", n) )

terminal.write ( str ("a=", a, "  b=", b, "c=", c) )

The operation str used in this statements is itself an alias that is a shorthand for
calling the toString and concat functions on its parameters. For example:

str (a, b, c)

is an alias for

a.toString.concat (b.toString.concat (c.toString))

In other words, the str function converts all of its arguments to strings and
concatenates them to form one result string8. This string may then be printed out,
using the terminal routine write, which expects one string parameter.

The concept of aliases serves several purposes. Aliases can be initially introduced to
students as statements in their own right. A student can, for instance, be shown how to
write a hello-world routine:

helloWorld is
== Print the string "Hello world" to standard output

do
print ("Hello world")

end helloWorld

The meaning of this instruction is immediately and intuitively clear. Equally, adding
two numbers is easy to understand:

                                                  

8 The str alias may be used with every type that defines a toString operation. toString is defined for all
predefined classes and may be defined in user-defined classes.
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add (num1:Integer, num2:Integer) -> (sum:Integer) is
== Return the sum of num1 and num2

do
sum := num1 + num2

end add

Both of these examples can easily be explained to beginners by initially making use of
intuition and pre-existing knowledge. The underlying object model is initially hidden,
avoiding the need for long explanations or hand waving.

Later, when objects and operations on objects are introduced, and students understand
the principle of calling operations on objects, these aliases can be resolved. Students
can then be told that those aliases are shorthand notations for normal object
operations. This approach provides both an easy entrance into programming and a
consistent model where everything falls into place once the student reaches the stage
of examining advanced issues.

Aliases are only available for a small number of operations on the predefined classes.
Users cannot define their own aliases. Their purpose is only to ease the first stage of
programming. The use of aliases as a general, user-defined mechanism would be
detrimental to the general readability of the code.

6.11 Control structures

Three control structures are supported in Blue: a conditional (if statement), a selection
statement (case or switch statement) and an iteration instruction (loop statement).

6.11.1 Conditional

The conditional uses the common if-then-else syntax. For example:

if n > 0 then
...

else
...

end if

The else part is optional. The bodies of the then and else parts are statement lists, not
single statements as in some other languages (Pascal, C++). The advantage of single
statement bodies is that an if with a single conditional statement can be written
without the need to indicate the end of the if statement, e.g. in C++:

if (n > 0) // C++ code
cout << "positive";

More than one conditional statement can be grouped with a block symbol ({} in C++,
begin/end in Pascal). The following is a C++ example:
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if (n > 0) { // C++ code
cout << "positive";
res = 1;

}

In Blue, the if-then instruction forms an implicit begin of a compound statement that
must always be terminated with an end if keyword, e.g. for a one line conditional:

if n > 0 then
print ("positive")

end if

and for a conditional with more than one statement:

if n > 0 then
print ("positive")
res := 1

end if

Always requiring the end if keywords adds uniformity and clarity to if statements.
Some programmers object to the extra line that is required when an if statement has
only one conditional line. That inconvenience is easily offset, however, by the
substantial gain for beginners in avoiding situations such as the following code in
C++:

if (n > 0) // C++ code
cout << "positive";
res = 1;

In this case, only the first statement is conditional, although indentation suggests that
the programmer intended to include both lines in the body of the if statement. This
error leads to legal (but wrong) code and can thus be hard to debug.

One advantage of single statement if statements, however, is the possibility of an
elegant syntax for sequential ifs. The following code segment (C++)

if (...) {
...

}
else {

if (...) {
...

}
else {

if (...) {
...

}
}

}

can be conveniently reformatted as
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if (...) {
...

}
else if (...) {

...
}
else if (...) {

...
}

With compound if statements, as in Blue, the original structure

if ... then
...

else
if ... then

...
else

if ... then
...

end if
end if

end if

would turn, after an attempt at restructure, into

if ... then
...

else if ... then
...

else if ... then
...

end if end if end if

The disadvantage, when formatting it as a sequential structure, is the need for the
collection of end if keywords at the end. To overcome this problem, Blue (as many
other languages) uses an elseif keyword to replace the two separate else if keywords:

if ... then
...

elseif ... then
...

elseif ... then
...

end if

6.11.2 Selection

The term selection refers to a construct that selects one out of several code segments
for execution. It is represented in many languages as a case or switch statement. The
Blue selection statement uses the keyword case and value sets as case labels:
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case val of

{0..10}: setColour (blue)
print ("low")

{11..80}: print ("medium")

{81..99}: print ("high")

{100}: setColour (red)
print ("top")

end case

The value after the case keyword can be an arbitrary expression. The label sets may
contain single values, value ranges (as shown above) or lists of values. In addition to
this, a default case may be provided through the else keyword. Example:

case terminal.getChar of

{" ", "\n", "\t"}:
handleWhitespace

{"a".."z", "A".."Z"}:
handleLetter

{"0".."9"}:
handleDigit

else
handleError

end case

If the value does not match any of the labels and no default branch is provided, none
of the statements nested in the case statement is executed. This is not an error.

This selection statement is very flexible and convenient to use. The real question here
is: is it needed?

The selection statement violates at least one of our design principles: avoiding
redundancy. Each case statement can also be implemented as a series of if statements.
This is a case of conflicting principles where a choice has to be made, based on the
perceived importance of each principle in each individual case. The major argument
against the inclusion of the case statement is the avoidance of redundancy. The
statement is not essential for general programming. However, this must be balanced
with the requirements of simplicity, readability and for easy transition to other
languages.

Using case statements can, in some cases, lead to more readable code than does the
use of chained if statements. It adds expressiveness and convenience that make
programming of some selections easier than it would be with if statements. Also, most
other languages have a case statement in some form. Since Blue programming is not a
stand-alone skill, but is meant as a preparation for the use of other languages, the case
statement serves as a preparation for similar constructs in other languages.

Since the goal was to design a small language, but not necessarily the smallest
language possible, there is some room for trade-off. We considered the case statement
simple enough not to contradict the goal of a ÒsimpleÓ, Òeasy-to-understandÓ



CHAPTER 6: THE BLUE LANGUAGE

103

language, and decided in this case to follow the argument of convenience and easing
of the transition to other languages and included the statement in the language.

This is, however, not an isolated case. Many constructs exist in languages where the
arguments may be made both ways in a similar manner. The decision cannot always
be the same. If all disputable constructs were included, the language would
automatically become large and redundant. If all were excluded, we would specify a
minimal language that might be academically interesting, but not a good tool for
introductory programming. Designing this language is largely a decision about where
to draw the line. There is no golden rule in making this decision. Much comes down
to experience, convictions and opinions. We have been largely guided by our
experience in teaching first year students, and our own ideas as to what should be
taught in an introductory computing course. This way, some concepts (such as
concurrency) have been excluded from the language altogether, since we do not want
to teach them in our first year course. The goal that the language be small is more
important than the attempt to cover every possible aspect. The question as to what the
important concepts are that must be included into a first year language would be
answered differently by different people. Some institutions, for example, teach
concurrency in their first year course. We tried to reach a compromise that we hope is
widely acceptable.

This question can be discussed in context with several other constructs. The next
section (iteration), for instance, discusses another borderline case where the decision
was made the other way.

6.11.3 Iteration

There is only one kind of loop structure in Blue. The loop is defined with the
keywords loop ... end loop.

The loop construct can be used to achieve the semantics of while, repeat and for loops
as well as more general definitions (Figure 6.10).

loop
statement-list
exit on condition1
statement-list
{ exit on condition2
statement-list }

end loop

Figure 6.10: Structure of a loop

Each statement list can be empty. A loop may contain one or more exit statements. By
replacing several loop constructs with a single one, we apply the principle of avoiding
redundancy, thus easing teaching and learning of the language, without losing
readability. It has also been argued (e.g. in [Roberts 1995]) that internal loop exits
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make it easier to implement some common algorithms and should be supported in an
introductory language.

The issue of inclusion of an explicit for loop was also somewhat contentious. Again,
similar arguments to those for the inclusion of the case statement could be made:
convenience and the preparation for other languages (many of which have for loops)
speaks for it, redundancy speaks against it. The alternatives to these constructs (case
statement and for loop) have prompted us to decide differently in these two cases. The
alternative to the case statement (chained if statements) is a clumsy programming
idiom that can be considered bad programming style (especially considering that
some compilers optimise case statements much better than chained if statements.
While this efficiency is not paramount in a first programming course, it might be
desirable to form the right habits from the start to avoid bad programming styles
later).

The alternative to the for loop on the other hand, the use of a general loop with
explicit counter incrementing, is a completely acceptable idiom. We felt that nothing
would be won through the inclusion of the for loop. On the contrary, the explicit
increment of the loop counter might help some students to more easily understand the
operation of a loop. In this case we did not see a justification to violate the principle
of redundancy.

6.12 Expressions

Expressions in Blue are

· equality (=)

· type equality (is)

· function call

· set membership (in)

· object creation (create)

· self reference (this)

Most of them are very straightforward: they are not very different from equivalents in
many other languages. Only some of the more interesting considerations will be
discussed here. They concern equality, set membership and object creation.

6.12.1 Equality

The question as to what equality means must be addressed by every object-oriented
language. The semantics of equality checks are, in fact, not as simple as it might seem
at first glance [Grogono 1993]. There are at least three different possibilities which
are in use in different languages: identity, shallow equality and deep equality. The
expression a = b can mean any one of these in different contexts in different
languages.
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Identity means that a = b is true if a and b refer to the same object. It would not be
true if a and b refer to different objects, even if all attributes of a and b are the same.
In Figure 6.11, a and b are identical. Identity is also referred to as reference equality.

Shallow equality means that a = b is true if all the attributes of the objects to which a
and b refer are identical. Shallow equality can be implemented easily with a bitwise
comparison of the memory space that represents the two objects. Identity implies
shallow equality. In Figure 6.11, c and d are Òshallow equalÓ, but e and f are not.

Deep equality means that a = b is true if each attribute in a and b is either identical or
deep equal. e and f in Figure 6.11 are Òdeep equalÓ9. Deep equality is implied by both
identity and shallow equality. In this sense deep equality is the ÒweakestÓ form of
equality and identity is the ÒstrongestÓ.

Figure 6.11: Objects and equality

These three types of equality are often used because they are convenient: all three
equality checks can easily be generated by a compiler (in case of deep equality, the
compiler might need to use tag bits to prevent infinite loops if the structure to be
compared has circular references). There is a problem though: none of these might be
appropriate in certain circumstances.

The first kind, identity, is useful in many situations, and available in every object-
oriented language. It is not enough, though. Especially in languages that support
immediate variables (variables that do not store a reference to an object, but the object
itself), equality cannot be defined as identity, since every assignment for those objects
involves a copy operation. No two immediate objects would ever be equal. But
shallow and deep equality also typically do not make much sense, at least not for non-
trivial objects. Even with reference semantics another kind of equality is needed. In
non-trivial systems equality of objects is often defined as something between deep
and shallow equality.

                                                  

9 In this figure, integers are represented as immediate values, not as objects. This is consistent with the
majority of programming languages, but not true for Blue. In the figure, two occurrences of Ò42Ó are
considered identical. In Blue, both would contain a reference to the 42-object.
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To check whether we want to regard two objects as equal in a certain context, we
might require some attributes to be compared by identity and others deep, while some
attributes may be allowed to be different altogether. In a library system, for instance,
two books might well be considered equal if they have the same title, author and
ISBN, although their library specific item-number might be different [Grogono 1991].
We call this kind of equality semantic equality. A common distinction for this purpose
is between intensional and extensional equality (used, for example, in [Grogono
1991]). Two objects are intensionally equal if they have the same representation and
extensionally equal if they have the same abstract value. Intensional equality
corresponds to deep equality and extensional equality is equivalent to semantic
equality.

The problem with semantic equality is that it cannot be automatically generated by the
compiler. A mechanism must be provided for the user to define semantic equality.

Now we can come back to the language: what do we mean when we write a = b ?

One of the main considerations is that, at least for simple types like numbers, we want
equality after assignment. Consider:

a := b
if a = b then
  ...
end if

a := 42
b := 42
if a = b then
  ...
end if

In this example, we would hope that a is in fact equal to b in both if statements.
Anything else would be highly confusing. This means that the definition of the equal-
operator is heavily influenced by the definition of assignment and the object model.

In Smalltalk, even integers can be cloned, so equality cannot be taken as reference
equality (since otherwise the same integers might not be regarded as the same). If
literals are regarded as object constructors, equality by identity also poses a problem.
Consider:

a := 42
b := 42

Here, a and b would refer to different objects (two distinct 42-objects which have just
been constructed). In many other languages (e.g. C++, Java) integers are always
stored as immediate values, thus they cannot be identical.

In all those languages, equality therefore cannot mean identity, but is typically defined
to be shallow equality. This is fine for simple types, because they do not have a
complex structure. We stated earlier, however, that for complex objects shallow
equality is typically useless. Identity and semantic equality are needed here.



CHAPTER 6: THE BLUE LANGUAGE

107

The effect is that in all these languages equality can mean different things in different
contexts.

In Smalltalk, the operator == defines identity. The operator = has the same value by
default, but is Ð also by default Ð redefined for all simple types to be semantic equality
(which is equivalent to shallow equality in most implementations). Thus, by default,
the operator = is semantic equality for simple types and reference equality for
everything else (but can be redefined to be semantic equality by the implementor of a
class).

Dee, which is interesting to compare because it is one of the few languages which also
defines simple types as objects, has a similar discrepancy: the = operator means
shallow equality for simple types and semantic equality for user-defined classes (with
the responsibility for implementing the = operation lying with the user Ð no default is
provided). This approach, where the = operator calls a routine of the object, has one
serious problem: it cannot work if that object is nil. Consider:

if a = nil then
...

end if

If the = operator calls a routine on object a, then in the case where this condition is
true it is also invalid (and results in a runtime fault, such as an exception) since a does
not refer to an object.

Dee also has a routine called ÒsameÓ, which may be inherited from a predefined
ÒAnyÓ class, to check for identity.

In C++, the == operator represents shallow equality if the operands are immediate
types and identity if they are pointer types. It may be redefined by the user to
represent semantic equality.

The drawback of these definitions is that the same operator must be made to represent
different functionality in different contexts in order to behave sensibly for both simple
types and complex objects.

In Blue, this problem has been overcome. Through the introduction of manifest
classes and the exclusive use of reference variables, we can define the = operator to
always represent identity. This works as expected for simple types since manifest
classes cannot be created or cloned at runtime (see section 6.2.4). For complex
objects, identity is the desired equality in many cases (since all objects are referenced
indirectly and assignment does not duplicate the object). In those cases where
semantic equality is different from identity, an ÒequalÓ routine may be defined in the
class. This routine is in no way special Ð it is a normal interface routine of a user-
defined class. Two objects can then be compared as in the following code example:

if a.equal(b) then
  ...
end if
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The advantage of this definition is consistency: The equal operator (=) has the same
semantics in every context, while semantic equality, which is inherently context
specific, is invoked through a user-defined name.

Strings and equality

An interesting case to investigate is the handling of the class ÒStringÓ in this context.
Programmers coming from older languages tend to group strings with complex
objects, not with simple types (this is especially true for string objects that can grow
and shrink dynamically). This grouping is based on the knowledge of how those data
types are stored: since a string of this kind cannot be stored on a stack, it is considered
a complex object. This grouping is based purely on technical considerations and has
no justification in the logical model.

In Blue, strings are, in fact, manifest classes. The reason lies in the way we think
about equality.

String literals, such as "This is a string" can be interpreted in two different ways:
they can be defined as constructors for string objects (Dee uses this approach) or as
constant references to string objects (i.e. manifest objects as in Blue).

The reason for viewing them as manifest objects is that we tend to regard two strings
made up of the same characters to be the same. Consider:

name := "Leah"
if name = "Leah" then
  ...
end if

Intuitively, we would assume the condition in the if statement to evaluate to true. In
our mind, there is only one string "Leah"; we typically do not regard two of those
strings as different.10 (This is fundamentally different for other kinds of objects: we all
know that, for instance, two people, even though they have the same first name and
the same last name, can still be two different people!)

For this reason, the class ÒStringÓ is a manifest class; all strings logically exist, and
string literals are references to those string objects. An effect of this definition is that
strings are immutable. The Blue string class defines no procedures that change the
string. If, for example, the characters in a string are to be converted to upper case,
Blue uses a function, as shown in this example:

command := command.toUpper

The routine ÒtoUpperÓ is a function that returns a reference to a different string.
Similarly, all other string manipulation routines, which are typically defined as
procedures in other languages, are defined as functions in Blue. (Of course, a good

                                                  

10 Dee achieves the expected semantics with the trick mentioned earlier: only the first occurrence of the
string is considered a constructor. The second one references the same string.
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compiler may include optimisations in the code to avoid the copying of strings in
many cases.)

6.12.2 Set membership

Blue provides set literals. These literals can be used in boolean expressions to check
membership of a value in a set of values. For example:

if a in {1, 2, 3} then
  ...
end if

Sets can be expressed by enumeration (as shown above), by using ranges of values or
a combination of both. Valid sets include:

{1, 5, 8}

{3..15}

{"a.."z", "A".."Z"}

{Monday..Friday} -- using enumeration "Weekday"

Set literals are only used in connection with the ÒinÓ operator and in case statements
(see above). They are included in the language because they can significantly increase
readability in cases where one value has to be checked against a set of given values.
Their use in case statements makes those a very flexible and useful construct. Allow-
ing their use in general boolean expressions is consistent and convenient.

Set literals are, as their name suggests, only available as literals. No variables can be
declared of these types. (Where general set types are needed, the ÒSetÓ class from the
standard collection library should be used.) They can be regarded as a convenient
form of writing combinations of other boolean expressions (=, <, >), provided to
increase readability. The expression

a in {0, 10..20, 30..40}

for example, is equivalent to

a = 0 or (a >= 10 and a <= 20) or (a >= 30 and a <= 40)

6.12.3 Object creation

How do objects come into existence?

There are several different techniques in use in different languages. They can be
explicitly created by the programmer, they can be implicitly created by the runtime
system, or they can be implicitly created by certain operations. Some languages also
provide a cloning operation.

C++, for instance, uses all of these methods. Explicit creation is done using the new
operation. Variables that do not contain references (called automatic variables in
C++) create an object automatically as soon as they come into existence (e.g. local
variables of a routine each time the routine is called). And the assignment operator, by
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default, may create a new object (depending on the exact type of the value being
assigned). C++ has, for this case, a mechanism called the copy constructor. This
causes a confusing combination of object creation mechanisms that often makes it
difficult to keep track of object identity.

Languages that only use references to objects (and do not store objects in variables
directly) typically define much simpler object creation rules. There is no need for
automatic creation or copy constructors.

The issues connected to literals and the creation of simple types have already been
discussed in sections 6.2.3 and 6.2.4. Here we concentrate on the creation of user-
defined objects.

Object creation in Blue

The only way objects in Blue are created at runtime is via the create instruction,
which has to be explicitly issued by the programmer. Objects are never implicitly or
automatically created. An example of this construct is:

p1 := create Person

Creation of an object also involves the execution of the creation routine. There is
always exactly one creation routine with the special name creation. If this routine has
parameters, then the actual parameter list follows the type name in the creation
instruction. Consider a ÒPersonÓ class with the following creation routine interface:

creation (name: String, age: Integer)
== Create person with "name" and "age"

pre
name <> nil and age <> nil

In this example, the creation routine expects two parameters, ÒnameÓ and ÒageÓ. A
creation instruction for an object of this class needs to provide values for those two
parameters:

p1 := create Person ("John", 21)

The specifier after the create keyword specifies the type, not only the class. The
difference between the two is not obvious in our examples so far, but it will become
apparent as soon as we take generic classes into account. A list of Persons, for
instance, is created like this:

pList := create List<Person> (99)

(It does not matter what the parameter 99 means in this example - it is a fictitious
parameter shown to demonstrate a parameter list in the creation of a generic class.)

More details about the distinction between types and classes, and of generics in
general, are given in section 6.14.

The creation routine is defined in a fixed location in the classÕs source. It appears as
the first definition after the ÒinterfaceÓ keyword, before the ÒroutinesÓ keyword. This
rule visually separates the creation routine from other routines in an attempt to hint at
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the fact that this routine is different from normal interface routines (since it is
implicitly invoked by the ÒcreateÓ operation and cannot be called at any other time).
An example can be seen in the code example at the beginning of this chapter (Figure
6.1, page 65).

Creation expression vs. creation statement

Several alternatives for the syntax of creation instructions were considered. The first
question is: Should the creation instruction be a statement or an expression? Eiffel, for
example, chose the statement solution. A creation instruction in Eiffel may look like
this:

!!p1.make ("John", 21)

The double exclamation mark is the creation operator, Òp1Ó is a variable and ÒmakeÓ
is the name of a creation routine. The main difference in using a statement for creating
an object is that the variable becomes a syntactical part of the creation instruction and
the assignment of the new object to the variable a semantic part of the operation. In
the Blue example we have achieved the same effect by combining the creation
instruction with an assignment to a variable. The assignment, however, is a separate
instruction. The creation instruction itself is just the expression

create Person ("John", 21)

By assigning the result of this expression to a variable, we can achieve the same as the
Eiffel expression shown above:

p1 := create Person ("John", 21)

Using an expression to create the object has advantages both in clarity and flexibility.
Clarity is improved because the assignment symbol makes it very clear that the value
of the variable on the left hand side is changed. The same symbol that indicates the
assignment of a value to a variable is used. In the Eiffel version, the syntax does not
clearly suggest that the variable Òp1Ó is changed by this operation.

Flexibility is improved by allowing the creation of an object without the immediate
assignment to a variable. The new object could, for example, be passed as a
parameter. Consider the following example:

myHash := create HashTable (create StringComparator)

In this case, a hash table is created that expects a comparator object as a parameter to
its creation routine. This comparator object is created as well, and immediately passed
to the hash table. With creation instructions as statements, this nesting of creations is
not possible. We would need separate instructions and a temporary variable to achieve
the same result.

Routine syntax vs. keyword

Another question to consider is whether creation should be invoked by calling a
creation routine with (more or less) normal routine call syntax, or whether a new
keyword (or symbol) should be used. Blue, as we have shown, uses the keyword
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create. Let us consider the alternatives. Since the name ÒcreationÓ is known to be the
name of the creation routine, a call to this routine might be enough to signify creation
of an object. This might be written as

p1.creation ("John", 21)

or

p1 := Person.creation ("John", 21)

The first example is very similar to the Eiffel construct. (We would not need a special
creation operator, since the name of the creation routine is fixed and can be
recognised. Eiffel allows several constructors with user defined names, so an operator
is needed to indicate creation.) Its great disadvantage is syntactic inconsistency: the
operation looks like an object routine call, yet the semantics of the operation are
fundamentally different. This violates our aim of syntactic consistency. A result, for
example, is that the rule ÒAn uninitialised variable may not be used for an object
callÓ does not quite hold any more. Now we would have to add the exception Òunless
the routine called is a creation routineÓ. Similarly, the rule that states that an object
routine call does not change the variable that is used in the call (only the object to
which the variable refers) and the rule that states that variable values are only changed
by assignment would have to be extended with additional cases. These complications
of the language rules are clearly undesirable.

Such problems are avoided in the second version shown above. Here syntactic
consistency for assignment and variable access are maintained. Instead, we use the
class name rather than a variable name to indicate creation. We effectively introduce
operations (the creation routines) that belong to a class rather than to an object. This,
on the other hand, violates our rule that the identifier before the dot in an object
routine call is a variable. It also immediately poses the question as to whether it
should be allowed to call other routines on the class rather than on an object, and thus
suggests the introduction of class routines.

We decided that we do not want to include class routines in Blue. They seem to be
very rarely needed (if at all) and do not justify the addition of a new construct. They
provide nothing that could not be achieved with existing constructs.

This leaves us with a situation where this syntax for object creation would be a special
case, standing alone against general syntactic rules. Special cases like this should be
avoided.

The disadvantage of the solution chosen for Blue is that it requires the introduction of
a new keyword. Some language designers are very reluctant to use keywords and
make it one of their priorities to keep their number as low as possible. (This is very
obvious in C and C++. Even in Eiffel, Meyer has chosen a symbol here instead of a
keyword Ð the double exclamation mark. This seems inconsistent with the rest of the
design of Eiffel and appears to be a strange exception in an otherwise well designed
language.)
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While we agree with the aim of avoiding unnecessary keywords, it clearly ranks lower
than the aims of clarity and consistency. In this case the use of a keyword so clearly
improves readability and consistency that it seems well worth the trade-off.

Cloning

Another mechanism that is provided by some languages to create new objects is
cloning. Cloning creates the object by copying an existing object. There are two
reasons that led us to consider cloning an unnecessary feature for a first-year
language.

The first reason is that it is not often necessary to clone user-defined objects at all
[Grogono 1994b]. Providing a built-in clone function seems like overkill for those
few cases where it is actually needed. The number of uses does not justify a separate
language construct.

The second reason is that in most cases, cloning cannot be correctly automated at all.
The problem is very closely related to that of deep and shallow equality as discussed
in section 6.12.1. As with equality, it is not clear when cloning an object, how shallow
or how deep the object should be cloned. Eiffel, for instance, defines two different
clone functions, one for deep cloning and one for shallow cloning. For most classes in
real systems, however, cloning their objects with either one of them would be
incorrect. Only a small subset of objects is correctly cloned by copying all data
shallow or all data deep. Typically, a non-trivial object is correctly cloned by a
combination of deep and shallow cloning of its fields. For correctness assurance of
systems it is better to force the user to define the clone operation explicitly to ensure
that the clone operation has been adapted to the particular class. Enabling incorrect
cloning when the class designer has not provided a clone function is error-prone.

For these reasons Blue does not provide a built-in clone operation. Each class
designer might decide to provide a clone operation when needed, but this operation is
in no way special. It is a normal interface routine that internally uses the built-in
create operation to create the new object.

6.13 Inheritance

Inheritance is one of the most fundamental, yet least understood constructs in object-
oriented programming languages. Most authors agree that inheritance is one of the
ingredients that make a language Òobject-orientedÓ. A language without inheritance is,
in most classifications in todayÕs literature, not considered to be object-oriented.

The importance people place on inheritance is well deserved. This construct allows
application designs which are significantly different, and usually superior, to those
possible with previous imperative languages. Designs making intelligent use of
inheritance often have advantages in clarity, flexibility and maintainability.
Inheritance is also invaluable in supporting code reuse through libraries and
frameworks. On the other hand, inheritance is often misused.
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Discussing misuse of inheritance is a difficult topic, since the programming language
community currently does not agree on what constitutes good use of inheritance, and
what is misuse. Different authors argue quite strongly for different uses of inheritance,
and no viewpoint has proven to be the clear winner in this discussion as yet. We will,
nonetheless, point out some of the issues connected to inheritance and state our view
on which the inheritance construct in Blue is based.

6.13.1 Inheritance - the Swiss army knife

Inheritance is, in some sense, the Swiss army knife of programming language
constructs: a flexible tool useable for a variety of completely unrelated tasks. Evered
et al. [Evered 1991] for instance, have identified sixteen distinct uses of inheritance.
Several authors in recent programming language literature have argued that separate
constructs should be developed to support some of the uses distinctly that are
currently handled through inheritance [America 1990, Evered 1991, LaLonde 1991].
The inheritance construct, therefore, has been likened to the ÒgotoÓ statement in
earlier languages: It is very powerful and very flexible. Through its flexibility,
however, it is possible to use it in ways that have negative effects on the system
design. Thus, as languages evolve, the construct is replaced with several more
restrictive constructs which reflect different ÒgoodÓ uses that the original one allowed.
For the ÒgotoÓ statement, these are loops, procedures, return statements, etc. Equally,
the inheritance construct might be replaced with alternative constructs in future
languages.11

The most important distinction in the different uses of inheritance seems to be the one
between its use for subtyping and its use for code reuse. We discuss these two in some
more detail.

6.13.2 Inheritance for subtyping

Inheritance is often said to establish an Òis-aÓ relationship. Consider the following
example:

class Person is
  ...
end class

class Student is Person
  ...
end class

This example declares two classes: the base class Person and a derived class Stud-
ent. Student inherits from Person. A pair of classes related by inheritance is often
also called superclass and subclass, or parent and child class.

                                                  

11 These languages are not really in the future. Several experimental and research languages already
exist. Theta [Liskov 1995] and POOL-I [America 1990], for example, address this problem. These
languages are, however, not widely used, and probably never will be. For mainstream languages, this
development clearly still is in the future.



CHAPTER 6: THE BLUE LANGUAGE

115

Here we have a clear case of an Òis-aÓ relationship: we can say that a student is a
person. In the programming context this means that the class Student inherits the
attributes (variables and routines) from the class Person, and that a subtype
relationship is established12. This subtyping enables polymorphism: an object of type
Student may be used where an object of type Person was expected. This is logically
correct, because we know that every student is a person. It can be guaranteed to be
technically correct, because a student object has all the attributes expected from a
person object. Note, however, that for this to work, the subclass only needs to inherit
the interface of the superclassÕs attributes, not its implementation.

This subtyping and the associated polymorphism is one of the most important uses of
inheritance.

6.13.3 Inheritance for code reuse

Inheritance may be used to reuse existing code in a new context. An example is a
stack which inherits an array that forms the core of its implementation:

class Array<T> is
  ...
end class

class Stack<T> is Array<T>
  ...
end class

In this case, the stack inherits all the attributes of the array and can thus provide space
to store data. It is not an Òis-aÓ relationship, though. A stack is not an array. We can,
for instance, not access element number 5 in the stack. This becomes even clearer in
another example, taken from [Meyer 1992, p 279]:

class POINT -- Eiffel syntax
inherit TRIGONOMETRY

...
end

Here the class POINT inherits the class TRIGONOMETRY. This is not meant to say that
ÒPoint is a TrigonometryÓ (thus creating a subtype), but is done purely to be able to
call TRIGONOMETRYÕs routines from within POINT. A further possibility with this use
of inheritance is to inherit the same class twice to acquire two copies of a data
attribute of the superclass. (This is actually used in [Meyer 1992, p 173].) Inheriting
the same class twice has no meaning in the sense of inheritance as a subtyping
relationship.

A side effect of this use of inheritance is that we have to modify the inherited
interface. A stack might not want to allow the random access that its superclass, the
array, provides. It might want to remove the corresponding routine from its interface.

                                                  

12 In the literature that discusses the different semantics of inheritance mechanisms it is also pointed out
that an Òis-aÓ relationship is not the same as subtyping. It is not our aim here to go into the details of
this discussion; interested readers are referred to [LaLonde 1991].
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Another stack, this time implemented by inheriting from a queue, might want to
rename the inherited ÒdequeueÓ operation to ÒpopÓ and the ÒenqueueÓ operation to
ÒpushÓ. In this case the two classes do not form a subtype relationship. Some
mainstream languages provide mechanisms to do this (e.g. private inheritance in C++
and Smalltalk).

6.13.4 Problems with inheritance

The problem with inheritance in most mainstream languages is that inheritance for
subtyping and inheritance for code reuse cannot be separated. In those languages, the
examples given above (e.g. Stack inheriting from Array) automatically form a
subtype relationship. This leads to a wide variety of problems that might result,
depending on the details of the language, in runtime errors or protection violations
(such as breaking of encapsulation). In effect, if a class wants to form a subtype
relationship, it automatically also inherits the code. If it wants to inherit the code, it
also becomes a subtype.

For Blue, we did not attempt to introduce a new set of constructs to properly address
all of these problems. This area is clearly an open research issue at this stage.
Different proposals to address these questions have been made, but none has yet
become really successful in practice. We do not see it as our task to develop new
language constructs, but to identify and simplify mechanisms proven successful, and
to provide those for teaching.

Instead, we tried to define an inheritance mechanism that provides for those uses of
inheritance that are more or less uncontroversial, and provides for them in a clear and
simple way. We tried to discourage the use of inheritance where it is done purely for
efficiency reasons and thereby distorts the underlying model.

For us, this effectively means that we defined an inheritance mechanism that supports
Òis-aÓ relationships and subtyping, but discourages inheritance for pure code reuse.

Typically, when code reuse is the aim of the use of inheritance, the same effect can be
achieved by establishing a ÒusesÓ (clientÐserver) relationship. The class Stack, for
example, inherits from Array to make use of some of its functionality. It could also
achieve this by declaring an internal instance variable of type Array. This variation is
slightly less efficient, and it requires the programmer to qualify routine names with
the object name in routine calls. It might also mean that inherited functions, which
should appear in the interface of the subclass, need an equivalent function to be
defined to pass the call on to the inherited function. On the other hand, it ensures that
the interface of the subclass is clean Ð it contains no routines that should not be there
Ð and that renaming or hiding of interface routines is not necessary.

6.13.5 Inheritance in Blue

Blue defines a simple, straightforward inheritance mechanism. Only single
inheritance is supported, and the inherited interface cannot be modified. In particular,
inherited routines cannot be renamed or hidden. This discourages the use of
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inheritance where no real Òis-aÓ relationship (specialisation) is intended. Routine
interfaces cannot be changed. Parameter types, which can be modified in many other
languages, must remain the same in Blue. Covariance (as, for instance, in Eiffel) is
not supported because of the associated typing problems. Contravariance (e.g. in
Sather) was not seen as generally useful. No variance (insisting on unchanged
parameter types) is sufficient in almost all situations and avoids a wide variety of
typing problems that would have been hard for first year students to understand.

One possible criticism of this decision is that the students do not get trained in other,
perfectly valid uses of inheritance. Inheriting for code reuse without inheriting the
parentÕs interface is a powerful technique that cannot be achieved in Blue.

Our answer to this argument is that this is again, as with some other programming
techniques, a question of maturity. We do not argue that those techniques are bad or
should not be used at all. We do argue, though, that their application in a first course
clouds the meaning of the inheritance relationship and makes it harder to understand
the issues connected to the application of this flexible mechanism. We argue for a
stepwise introduction of inheritance techniques: As a first step, inheritance is
introduced as a clear specialisation (Òis-aÓ) relationship. Later (in a second
programming course, using a language other than Blue) other, more advanced uses of
this construct can be introduced. We strongly believe that by restricting the
inheritance construct and the number of cases where it is sensibly applied, we clarify
the issue of inheritance and its related problems.

Syntactically, inheritance is specified by naming the parent class in the class header.
For example:

class Car is Vehicle
== A class to represent a car in a traffic simulation
...

end class

Here the class Car inherits from Vehicle. The effect of this relationship is that all
instance variables and all routines (including the internal routines) are inherited by the
subclass. The only exception is the creation routine Ð it is never inherited.

6.13.6 Inheritance and creation

Inheriting the creation routine interface is almost never useful. Each class initialises
its instance data in its creation routine, and only in very special cases (in the absence
of any instance data to be initialised) does a class not need its own creation routine.
This means that the inherited creation routine must, at the very least, be redefined to
initialise the new instance data as well as the inherited data.

But this is usually not enough. Redefinition in Blue, as mentioned above, is not
allowed to change the interface of the routine. The initialisation of the instance data,
however, is often done through the supply of values via parameters and necessitates a
change in the parameter list of the creation routine (usually the addition of
parameters). Thus, the creation routine is fundamentally different from other routines.
It is also different in another respect: It can never be polymorphic. When creating an
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object, it cannot happen that a user does not know the exact object type and that the
object is accessed through a variable of one of its supertypes. Thus, changing the
parameter list for the creation routine is not a problem of type safety or runtime
safety. The parameter list can safely be changed here without compromising the static
type safety of the system.

In this sense, the creation routine clearly is not a normal routine and requires special
treatment.

The effect of the creation routine interface not being inherited is that a subclass can
define its own creation routine with its own parameters. It is, however, often useful to
call the parents creation routine from within the childÕs creation routine. In fact, this is
almost always a good idea in well written classes. Some languages try to automate
this (e.g. C++). There is a problem with the automatic execution of the parentÕs
creation routine, though, namely the parameters. The system cannot automatically
know which actual parameters to pass to the parentÕs creation routine. C++ tries to
overcome this problem by demanding either a special creation routine without
parameters, or a manually inserted call. Blue always requires a manually inserted call,
since we do not believe that a parameterless creation routine leads to good
programming practice. The effect would be that instance variables remain
uninitialised, or that a separate initialisation routine must be used, thus separating
creation from initialisation and increasing the chance of incorrect programs.

Blue provides a mechanism for calling the original of redefined routines from the
parent class. For example:

class Car is Vehicle
== A class to represent a car in a traffic simulation
...

interface

creation (loc: Location, numberOfSeats: Integer) is
== Create a car with ...

do
super!creation (loc)
numSeats := numberOfSeats

end creation

...
end class

The creation routine of Car receives a location and a number of seats as parameters.
We assume that the parent class, Vehicle, has a creation routine that expects the
location as a parameter. This routine is called with the ÒsuperÓ keyword. ÒsuperÓ has
the effect that the implementation of the corresponding routine from the parent class
is executed. This can be done in routines other than the creation routine if a routine
implementation was redefined. In the next line, we assume that an instance variable
numSeats exists in this class, which is initialised here.

The super keyword uses an exclamation mark, rather than the dot notation, to make
the routine call. This is deliberately chosen to indicate the different semantics of the
two constructs. Let us first consider the alternative, using dot notation here. The
superclass call shown above would become
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super.creation (loc)

Java, for instance, uses this syntax for this construct. The problem with this is a
violation of the consistency requirement in our aim of readability. In that requirement
we stated that the same syntax should be used for semantically similar constructs and
different syntax for different constructs.

The dot notation is defined as expressing a call of an interface routine of another
object, which is named before the dot. None of this is true here. In the case of the
superclass call, we do not necessarily call an interface routine, it is not another object
(but the current object) and the part before the dot does not name an object but
specifies a scope. Thus, the superclass call mechanism is fundamentally different
from object calls expressed through dot notation. This difference should be reflected
syntactically.

6.13.7 Access protection

In Blue, subclasses have full access to internal routines and variables of the
superclass. Some other languages allow the same access (e.g. Eiffel), some do not
(e.g. Smalltalk). In C++ and Java, access can be regulated by the superclass
implementor. The superclass can specify three access levels: private, which only the
class itself can access, protected, accessible by the class and its subclasses, and
public, which is accessible by all classes.

With Blue, we follow the Simula/Eiffel model which defines only two levels of access
protection (named internal and interface in Blue) and allows subclasses access to the
internal data. This reflects our view of the inheritance relationship as a much closer
one than a client/server relation between classes. Elegant implementations would
often be hampered by forbidding subclass access to internal features. Many patterns,
for example most models of a graphical user interface (GUI) library, require internal
routines of library classes to be redefined by user-defined subclasses. In the GUI
example, these are action routines which are called through an internal mechanism as
a result of the activation of the user interface component (such as a button click), and
which can be redefined to perform an action associated with the component. The
alternative, to move those routines into the interface so as to allow them to be
redefined, represents bad interface design and should be discouraged.

The flexibility of the C++ approach of providing three levels of access is sometimes
helpful to express constraints on a class. In general, however, we consider its value as
not very high at the beginnersÕ level. Its application is mostly in advanced class
patterns, and we do not think that an entry level language increases its clarity by
providing a third access level. We have, therefore, decided in this case on the side of
simplicity of the language and restricted Blue to two levels of access.
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6.14 Genericity

Blue provides a straightforward mechanism for generic classes (also referred to as
parametric polymorphism). Genericity has been treated poorly in some recent
programming languages. C++ did not include it in early version and added it (under
the name templates) only in later language revisions. Its syntax is poor and the
implementation in current compilers still often unsatisfactory. Java does not include
genericity at all.

The reason for not including generic classes in the language seems to be mostly
implementation problems. Especially with Java, which was developed by a
commercial company, the Òtime-to-marketÓ figure seems to have taken precedence
over good language development.13

Genericity is an important and powerful concept in object-oriented programming.
Maybe its most important role is in the ability to provide a good library of collection
classes. Collections classes (lists, stacks, sets, hash tables, etc.) are immensely
important for the teaching and development of good software and are an ideal
example for teaching the idea of reuse. They can be written in a much easier and safer
way with genericity than without.

Genericity, though sometimes regarded as an ÒadvancedÓ concept, is very easy to
understand and to use. It has two facets: the use of an existing generic class and the
development of a new one. We are convinced that learning of good object-oriented
software development benefits greatly from the ability to make use of generic
collection classes. Lists, for example, should be used early in a first course in many
cases where they are the appropriate data structure, rather than falling back on using
an array, because the use of lists seems not teachable. Rather than teaching the use of
an inappropriate data structure only because it seems easy (the array), we should make
the use of the appropriate data structure simple. Genericity can do just that.

In practice, there is no need to teach the two sides of genericity together. We favour
an approach where the use of existing generic classes is introduced very early. It is
straightforward and easy to understand. The development of new generic classes can
be left to much later in the course.

6.14.1 Unconstrained genericity

Unconstrained or general genericity is the standard case: a class can take any type as
its parameter. Consider an example of a generic class List:

                                                  

13 Sun, the developer of Java, has now called for proposals for adding genericity to the language.
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class List <ELEM_TYPE> is
== Generic list class
...

interface
...
append (element: ELEM_TYPE) is

== append ÔelementÕ at end of list
pre

element <> nil
...

end class

The generic class definition lists a name in its header (here ELEM_TYPE), which
defines a type. This type is instantiated when the generic class is used and may be
used as a type name within the generic class. We can, within List, declare variables,
parameters or return values of this type, as shown with the parameter of the append
routine.

When another class wants to use List, it has to provide a type parameter wherever the
List type is used. For example:

class MyClass is

== Example using List class

  uses List

internal
var

myList : List<Integer>

interface

creation is
== Create an object of this example class

do
myList := create List<Integer>

end creation

...
end class

In this example, we see the two locations where the type name is used: at the
declaration of the variable myList and in the creation of a new object. In both cases,
the only difference between a generic and a non-generic class is the appended type
parameter in angle brackets. All access to routines of list objects is then fully type
checked.

6.14.2 Operations in generic classes

In the generic class itself, the real type of the generic parameter is not known at
compile time. (In Blue, generic classes do not need to be recompiled for every
instantiation. Only one copy of the code exists for all instances of the generic class.)
This means that operations on the generic type cannot always be type-checked. There
are two possible solutions to this problem: the introduction of dynamic type checking
for these instances, or avoiding the operations. Blue uses the second alternative. Static
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type checking is such a valuable tool, especially in a teaching language, that it takes
precedence over most other constructs.

As a result, only operations that are known to be valid for all types can be performed
on the generic parameter. These operations are assignment and equality check. All
other operations are illegal, since they cannot be known to be applicable. Assignment
and equality check are enough to implement most general container classes.

6.14.3 Constrained genericity

A simple extension to genericity exists for those cases where additional operations on
the generic parameter are needed: constrained genericity. For example:

class SortedList <ELEM_TYPE is Comparable> is
== Sorted list of elements
...

interface
...
insert (element: ELEM_TYPE) is

== insert ÔelementÕ into the list at its appropriate
== position
pre

element <> nil
...

end class

The difference in this example is the introduction of Òis ComparableÓ after the
generic parameter. The parameter is said to be constrained by the class Comparable.
We assume here that Comparable is an existing class that provides, for instance, a
greaterThan function.

The effect of this constraint is that SortedList can only be instantiated with
Comparable or one of its subtypes. In return, we can now use the operations of class
Comparable on the generic parameter. The insert routine, for example, can use
greaterThan to find the position in the list to insert the new element.

It must be admitted that the use of constrained genericity is limited for general
purpose classes through the restriction in Blue to single inheritance. A class that
already has a superclass cannot be made directly to inherit from Comparable to be
insertable in a sorted list. This problem can, however, be overcome in many cases.
Often the superclass itself can be made to inherit from Comparable, thus passing the
operations on to its subclass. Also, some cases of problem specific classes (as
opposed to general purpose container classes) can make good use of this mechanism.

6.14.4 Genericity and conformance

Conformance with generic classes is a logical extension of conformance for simple
classes. Conformance is established by a subtype relationship, which in turn is defined
by the principle of substitutability. Consider:
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class IntegerList is List<Integer>
  ...
end class

In this example, IntegerList is a real subtype of List<Integer>, and thus the types
conform. But:

class Person is
  ...
end class

class Student is Person
  ...
end class

var
  personList : List<Person>
  studentList : List<Student>

Here, studentList cannot be assigned to personList, since List<Student> is not a
subtype of List<Person>. (On first sight it might appear that they are substitutable,
but this is misleading. If we were allowed to assign a List<Student> to a
List<Person> variable, then a Person object could be entered into the Student list Ð
which is an error since all objects in that list are expected to be at least of type
Student.)

Two uses of a generic class with the same type parameters denote the same type, and
are therefore assignment compatible:

var
  list1 : List<Integer>
  list2 : List<Integer>

...

list1 := list2 -- legal, both are of same type

Blue uses type equivalence by type identity (two structurally identical types are still
two distinct and incompatible types). The definitions above refer to the same type.
Blue does not create two distinct List<Integer> types.

6.15 Concepts not included in Blue

The previous sections in this chapter were mostly concerned with discussing language
elements of the Blue language. We have tried to also point out alternative routes that
could have been taken, to compare our solutions to those chosen in other languages
and to discuss the advantages and disadvantages of those alternatives. We have tried
to justify why particular decisions were made.

Since this discussion was structured along the lines of the Blue language definition, it
did not include discussion of concepts that were excluded from the language
altogether. This last section in this chapter serves to partly correct this shortcoming.
We discuss some common constructs that could have been included but were not, and
argue our case in the attempt to justify their exclusion.
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6.15.1 Multiple constructors

Most object-oriented languages provide the ability to define multiple constructors.
These constructors might have a common name and be distinguishable by their
parameter list, or they might even have different names and be identified as a
constructor by some other means (e.g. a keyword associated with the constructor
function or a specific constructor section in the source definition).

We decided against providing the ability to define multiple constructors. The main
reason is that the constructor, while looking very similar to an interface function, is a
very special construct. It is important for the understanding of very fundamental
concepts to understand this difference. Moreover, this understanding has to be gained
by the student quite early in the course. It is therefore important to have as clear a
distinction as possible between the constructor and other interface routines. Allowing
multiple constructors increases the danger of confusing these different constructs.

There are examples where multiple constructors clearly are desirable to model a given
problem, and most descriptions of languages providing multiple constructors give one
of these examples when introducing the topic. The number of these examples,
however, does not seem large enough to risk misunderstandings about fundamental
concepts early in the course.

Providing user-defined names for constructors (as, for instance, in Eiffel) makes them
look very similar to normal interface routines. Providing multiple constructors with
the same name would introduce function overloading Ð a construct against which we
argue in the next section.

6.15.2 Function overloading

In Blue, function names cannot be overloaded within a class.14 This is true for both
user-defined functions (a class cannot offer two functions with the same name) and
for the overloading of standard functions (such as > or >=, see section 6.15.3).

The case for name overloading of user-defined functions is often argued by giving
examples of semantically related functions with different parameter types. A class
defining objects to which values can be added, for instance might offer two functions:
one to add integer values and another one to add floating point values. The semantics
of these functions would be the same (with only a small technical difference in their
parameter types), so it could be justified to give them the same name, say ÒaddÓ:

                                                  

14 We are referring here explicitly only to overloading within one class. Overloading between classes
is, of course, possible: Different classes may have routines with the same names. This is essential to
allow independent development and, in fact, a pre-requisite for one of object-orientationÕs strongest
mechanisms: polymorphism.
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class FunnyNumber is
...

interface

add (value: Integer) is
== add an integer value to this number

add (value: Real) is
== add a real value to this number

end class

While this example seems sensible, it is not really superior to an alternative without
overloading. In such an alternative we would name the functions ÒaddIntÓ and
ÒaddRealÓ. The gain from function overloading is minimal Ð in fact, many people
would argue that the second version is clearer. On the other hand, significant potential
for misuse is avoided, where overloading might be unwisely used for functions that
differ in their semantics more than here, and where similar semantics are falsely
suggested.

From the point of view of supplying a useful development environment, name
overloading also introduces additional problems. Enforcing different names for
different functions makes searching for function definitions or function calls much
easier for users by avoiding the location of name duplicates representing different
functions.

6.15.3 User defined infix operators

Infix operators (such as +, <, >=) cannot be defined for user-written classes. Again,
their potential for misuse and confusion is greater than the advantage which their
application brings.

As in the case of function overloading, there are some examples where the use of infix
operators (overloaded or not) for user-defined classes is reasonable. The commonly
cited example is the definition of a class ÒComplexÓ for the representation of complex
numbers. Since numbers can be added, the use of the standard arithmetic operators
might be desirable here. This would allow the programmer to write

c1 + c2

 for complex number objects instead of

c1.add (c2)

which is the standard syntax used without infix operators. The problem with these
operators is that their good uses are few, whereas their misuses are many. Students
might easily be tempted to use infix operators for the wrong reasons. Since the
notation is short and concise, it might be used where the functionality of the operation
does not really justify the automatic semantic association. But even if the use seems
justified, it might not be optimal. Consider a list class that has an operation to add an
element. A programmer might decide to use the + operator to name this operation.
One can then write:

myList + newElement
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Although the association of the addition symbol makes some sense, in that the
element is added to the list, there are better ways to express this operation with named
operations. For example:

myList.append (element)
myList.insertBeforeCurrent (element)

These examples are clearly more specific. Their names convey information not only
about the fact that the new element is added, but also about where in the list it is
added.

Most of the time (in fact, in all cases where the class represents an entity that is not
directly taken from commonly used mathematics) the + symbol is not an optimal
routine name. While we are trying to teach students to write readable programs, part
of which is careful naming of operations, it would be counterproductive to offer a
mechanism that works against this goal.

Another problem with user defined infix operators are the associations automatically
connected to them, which are not guaranteed to be valid any more. If, for example, we
allow the redefinition of the greater-than operator (>), we could write

a > b

for our own objects. In many cases this might be sensible. There is, however, no
guarantee that the operator <= is the inverse operation (that is, that not (a > b) implies
(a <= b)). There is, in fact, no guarantee that the inverse operation is defined at all.
Yet, a user of the class might easily assume this relationship.15

In light of these arguments it seems that the absence of user-defined infix operators
might well contribute more to clarity of programs than their presence.

6.15.4 Explicit blocks

Some languages, especially structured procedural languages like Pascal or C, provide
explicit, user-defined blocks which may be used in addition to blocks implicitly
created by procedures and functions. These blocks serve mostly to create a new name
space in which new variables may reuse names of variables in outer blocks. The use
of explicit blocks is especially beneficial in very long sequences of sequential code.

In well written object-oriented programs the routines tend to be much shorter than in
programs written in a procedural style. Experience indicates that explicit blocks are
never really needed to structure the code. The two-level structure provided by classes
and routines provides a sufficient organisation of the name space.16

                                                  

15 Ada has, in fact, made an attempt to overcome this problem. When a < operator is defined in Ada,
the >= operator is automatically defined as its negation.

16 In large systems, a third level is very useful: a ÒpackageÓ or ÒclusterÓ that can group several classes
into one unit. This, however, is another structure larger than a class, not smaller than a routine.
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6.15.5 Routine parameters

Passing routines as parameters is a powerful mechanism in programming languages.
However, it does not fit well with the object-oriented paradigm. In our model of
object-orientation, all code that exists is part of a particular class. When executed, it is
executed as an operation of an object of that class. Passing pieces of code around to
other routines or other objects cannot be easily fitted into this model. We would
necessarily have to compromise the underlying concepts.

As a side remark for those people insisting on the necessity of routine parameters we
can add that they can be simulated using classes and inheritance. We have to define a
superclass with the routine signature to be passed and subclasses with the routine in
question being redefined in every subclass. This, admittedly clumsy, technique is
consistent with the object-oriented model and can be used for those cases where
routine parameters really are deemed essential.

6.15.6 Immediate objects

In Blue, as in several other languages, all variables contain references. Immediate or
expanded variables (variables which hold the object directly, rather than a reference to
it) do not exist.

The reason is the great simplification in the language through the omission of this
construct. Immediate variables only serve efficiency; everything that can be done with
them can also be done with reference variables. This cannot be said the other way:
reference variables are essential, since some structures (e.g. recursive structures such
as lists) cannot be implemented without references.

The resulting complexity with immediate variables does not only lie in the necessity
for users to keep track of and distinguish these two storage modes. It also greatly
complicates other parts of the language design. Two of the constructs affected are
assignment and equality, which we have discussed in some detail above (relevant
parts of this discussion are in sections 6.2.3, 6.2.4, 6.12.1 and 6.12.3). Problems
arising have to do with the assignment and comparison of immediate variables (issues
of deep or shallow operations) and with operations combining immediate and
reference variables (e.g. assignment from an immediate to a reference variable and
vice versa). The effect of this becomes clear by examining the Eiffel description
[Meyer 1992]. Eiffel supports reference and immediate variables. In the specification
of the language, tables are given listing all possible combinations of reference and
immediate variables with separate definitions given for the meaning of the = and :=
operators for every case.

An interesting trend can be seen concerning this issue in programming languages.
Pure reference semantics were first used by research languages that had difficulties
being accepted in industry (e.g. Smalltalk). In every industry strength language it was
thought necessary to provide immediate variables for efficiency (e.g. C, C++). Eiffel
tried to introduce a language aimed at industry with only reference types, but quickly
relented. The first version (published in 1988) had a simple and clean design
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supporting only references. The second version (1992) introduced immediate types to
counter industry criticism of inefficiency. With the Java boom in 1996 it seems that
for the first time industry is prepared to accept a language supporting only references.
We might have reached a stage where people have enough processing power in their
machines that, for many tasks, they can afford to spend some of it on supporting
easier, faster and more correct programming.

6.15.7 Multiple inheritance

Multiple inheritance is not supported in Blue. The question as to whether it should
was discussed for a long time during the language design phase, and some early users
felt very passionately about it, either for or against.

First of all, it has to be emphasised that multiple inheritance is not necessary for
object-oriented programming. Every problem that can be solved with multiple
inheritance can also be solved with single inheritance or, in fact, without inheritance
(although the multiple inheritance solution is more elegant for some problems).
Smalltalk, for instance, is an example of a language supporting only single
inheritance, which has been used very successfully for implementing a wide range of
real life designs.

The decision against multiple inheritance is not based on an assumption that it is not
useful. In some cases it is. Some problems are solved more elegantly through multiple
inheritance. The decision was made to avoid complicating the language.

Including multiple inheritance makes it necessary to deal with a range of connected
issues such as naming conflicts and repeated inheritance. Additional language
constructs would have to be provided to support these issues. In addition, multiple
inheritance is most often useful when the inheritance relationship is not used for
specialisation, but for code reuse. If we were to accept this, we would have to
radically change the inheritance semantics described earlier to allow at least hiding of
inherited routines. Overall, the resulting complication of the language is not worth the
benefit in a first year teaching context. The problems that would significantly benefit
from multiple inheritance are too infrequent at that stage to justify the increased
complexity.

Java has since presented a fairly elegant approach covering the middle ground. It
supports a concept of interfaces, a class definition without an implementation and
without data attributes. It then allows multiple inheritance of these interfaces, but not
of other classes. This approach allows many of the benefits of multiple inheritance
while avoiding many of the problems. It was not published at the time we started to
design Blue, and a similar approach was not considered. In retrospect, interfaces
might offer a solution for the presentation of multiple inheritance in a teaching
language.
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6.15.8 Iterators

Iterators are used to provide an easy and flexible way to traverse collections of
objects. Most of all, they provide a mechanism that allows multiple concurrent or
nested iterations to be performed safely and correctly.

Blue does not allow iterators to be specified in any satisfactory way. This is not so
much a conscious decision against the use of iterators, but an unfortunate effect of the
current definition of the language. Iterators are, in fact, a very useful and elegant
construct. We have not yet been able to decide on an easy and elegant way to allow
the inclusion of iterators in Blue.

In other languages, two different approaches to iterators exist: user-defined and
language-defined iterators.

In the user-defined approach, the system designer defines an iterator class together
with the collection class. A user of the collection can then create any number of
independent iterator objects. The advantage of this approach is that it needs little
explicit language support and thus does not complicate the language definition. The
reason it cannot be applied in Blue is that the iterator class, to be implemented in any
sensible way, needs access to the internals of the collection class. In Blue, a class
cannot give another class access to its internals. The language support needed
therefore is selective export (the ability to make some routines accessible by only
certain classes - Eiffel uses this technique) or a ÒfriendÓ mechanism like in C++
(allowing certain classes or routines unrestricted access to class internals). The
alternative possible in Blue, moving the necessary internals into the publicly
accessible interface, represents such bad design that it should not be considered.

In the second approach, iterators are supported by explicit language constructs. The
advantage of this approach is the simplicity and elegance that can be achieved for the
user of an iterator, and possibly readability of the code. CLU and Sather both define
iterators as part of the language.

We did not define either construct, selective export or explicit iterators, for Blue. The
reason was to keep the language small and to concentrate on the use of proven, often-
used constructs. (We must admit, though, that we made exceptions to this rule in other
parts of the language definition, e.g. the use of multiple return values of routines.) In
hindsight, this is one area that might benefit from review in a possible future version
of the language. Deciding on and including a way to provide iterators would probably
be a valuable addition to the tools for teaching and learning a good programming
style.

In the meantime, the Blue collection library defines collections with a traversal state.
The collection object itself stores the information about the current element during
traversal. The disadvantage of not allowing nested traversals does not, fortunately,
often come into effect in first-year programs. But if it does it might produce an error
that is hard to debug for beginning students.
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6.16 Summary

In this chapter, we have presented the constructs of the Blue language. We have
compared them to other languages and alternatives and discussed the issues that
influenced the decision for and against particular constructs. We have seen that
language design is a complex task with numerous interdependencies of constructs and
issues that make it impossible to discuss constructs in isolation of each other.

Now that the reader has seen our demands for a teaching language (in chapter 2) and
our solution in this chapter, we hope that our initial claims (that a language can be
made more appropriate for first year teaching) have been vindicated. Our earlier claim
that all other mainstream object-oriented languages include language constructs
detrimental to introductory teaching has now been substantiated through comparisons
with examples from those languages and we have shown simpler and more consistent
solutions in Blue.
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7 The Blue

Environment

7.1 Introduction

The main aim of the Blue environment can be summarised in the following two goals:

· to provide an environment which encourages the students to think in terms of
objects and classes, and

· to provide an environment that is so easy to use that it does not distract from the
task of learning to design and implement a program.

To achieve these goals, details of the underlying operating system are hidden and a
point and click world, in which classes and objects are the fundamental concepts of
abstraction, is presented. We assume that bit-mapped displays will be used so that we
can make extensive use of graphics.

Figure 7.1 illustrates the desktop presented to students when they log on to the
system. Blue has a notion of projects. A project is a group of classes which relate to a
particular application. On entry to the system the student chooses the project on which
they wish to work. This main window is often referred to as the project window.
Apart from the pull-down menu bar at the top of the window, it has three components:
a toolbar, a class structure overview and the object bench. The toolbar at the left is a
set of push-buttons which activate frequently used operations. As each class is created
it is represented in the class structure overview by a box, with the name of the class at
the top. The ÒclassesÓ may be moved around the screen and inheritance and client
relationships can be created using the arrow buttons. These relationships are
represented graphically using lines and arrows. Different colours, patterns and
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symbols are used to mark different kinds and states of classes. This includes
information as to whether the class has been compiled and its category, e.g. abstract
class, library class, etc. The object bench is discussed in section 7.6.

Figure 7.1: The Blue main window

Students are encouraged to begin their design of an application by creating the
required classes. They should think about the relationships between these classes and
represent them graphically. Only when the overall class structure has been determined
should they start to think about the interfaces and the code.

The text associated with a class may be viewed and edited by double clicking on the
class (or selecting a class and pressing the ÒShowÓ button). The editor is language
sensitive and provides specific functionality for convenient insertion of Blue code.
Either the interface of the class or its implementation may be viewed. There is only
one representation of the text internally, so it is impossible for these to get out of step
with each other.

Compilation of classes or the whole project is achieved by a single click on a button
in the project window. The environment automatically keeps track of changes to
classes and dependencies. Only classes that need to be recompiled will be recompiled.
This removes the need for students to become familiar with systems such as ÒmakeÓ,
allowing them to concentrate on the basic programming concepts and techniques.
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A central feature of Blue is the ability to create instances of classes dynamically.
When the ÒCreateÓ button is pressed, a dialogue is shown which prompts for the
constructor parameters and an instance of the selected class is created. This instance is
displayed in the bottom section of the main window, known as the object bench. An
interface routine of an instance may be called by selecting it from an associated pop-
up menu. Again, Blue prompts for the parameters. Object instances may be composed
and passed as parameters to each other. The results of an object invocation are
displayed and if a result is an object it can be placed on the object bench. This allows
interactive testing of components as they are developed.

A standard console object exists that displays a standard output window and acts as
standard input. Alternatively, an application can open its own windows.

The environment also provides a class browser and a debugger. All of these compo-
nents and the issues associated with their design are discussed in more detail in the
remaining sections of this chapter.

7.2 Keeping it easy – the user interface

The Blue system uses a graphical user interface with the usual interface components
such as buttons, menus, etc. It provides a graphical, editable display of the class
structure of the project currently under development.

It seems that we, in computer science education, have for a long time not made the
best use of our own technology. We are training our students in the skill of developing
Òuser friendlyÓ applications. We teach about user interfaces and the use of our
technology to ease the tasks at hand. Yet in our own teaching we tend to use systems
that do not make good use of these techniques. While we are teaching about how to
use a computer for other tasks, we are not using the computer to its best effect for the
learning and teaching task itself. This is, admittedly, not true for every institution, but
the number of universities, for instance, still relying on text based command line
interfaces for first year programming is still significant. And even in conventionally
used graphical environments, good support for well known techniques such as
experimentation, interaction and visualisation is often poor.

The main argument against the extensive use of graphics has long been the
availability problem. There is little benefit in designing systems relying on technology
that is not commonly available in the targeted user community. Colour graphics
systems, however, are so common now that assuming their availability does not seem
to be a serious restriction anymore.

The extensive use of graphics has several benefits. First of all, by providing a
graphical user interface (GUI) built from standard components, a system is much
easier to use for novices than systems with comparable functionality and a text based
interface. Most of the students coming into university today have prior experience
with computers and graphical interfaces. They are familiar with menus, buttons,
windows and a mouse. GUIs support exploration and self guided learning by making
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it easier to find out about the functionality of the system. Secondly, graphics allow us
to better support visualisation techniques. One of the central features of the Blue
environment is the graphical display of the project structure. Sometimes the old
saying Òa picture is worth a thousand wordsÓ really is true. (Although it must be
viewed critically in the context of programming Ð it is not always clear what a picture
really expresses or, as Petre asks [Petre 1995]: ÒDoes a given picture convey the same
thousand words to all viewers?Ó)

Thirdly, graphics are fun. It is obvious that students like working with graphical
systems much more than working with text-based counterparts. Even though some
studies have shown that text based systems can be superior for certain interface tasks,
the psychological effect Ð that things seem easier or seem faster Ð should be taken
seriously. In a paper comparing graphical and textual representations [Petre 1995], the
author states: ÒThe importance of sheer likability should not be underestimated; it can
be a compelling motivator. In general, affect may be as important as effectiveness.
The illusion of accessibility may be more important than the reality.Ó

The Blue interface aims to appear clear and to be easy to use. The challenge lies in the
design of a system that has all the functionality of a full software development
environment but appears simple and non-threatening to the user. One of the important
factors in this respect is the number of visible interface components on the screen at
any time. Blue uses relatively few menus and few buttons in its main window. Users
can very quickly know or guess the functionality of most of the buttons on screen.
This creates an important effect: users can feel relatively confident while working in
the environment from a very early stage. Being confronted with a large number of
mysterious buttons at the very beginning can have a very strong negative effect on the
user; an immediate feeling of resignation and insecurity is often the result.

To support clarity, most of the buttons have text labels rather than icons for
identification. Text on the button serves as a much better hint to its functionality than
do most icons.

The issues mentioned here Ð simplicity, clarity, support for exploration Ð influence the
design of each of the systemÕs components and will be discussed further as each of
these components is presented in more detail.

7.3 The project

7.3.1 Working with structure

As mentioned above, the project window is the first window users see when starting
up the Blue system. The project structure (classes and their relationships) is displayed
on the screen. The effect of this is that the first thing users see and interact with are
classes. This meets a goal stated earlier in our discussion: that an object-oriented
environment should support classes as its fundamental unit of abstraction.
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The effect is twofold. Firstly, students are immediately aware of structure and classes
as the basic structuring unit. When we start teaching with Blue, the first thing we
show to the students is an existing project including a handful of classes. Students see
the project representation and are shown how to execute the application. After
experimenting for a while with the application itself, they are encouraged to explore
its implementation: to look at the source code, to make guesses as to the meaning of
certain statements and to make small modifications (such as a change to a string literal
in the program). With relatively little guidance they encounter the full
editÐcompileÐexecute cycle and very quickly get accustomed to it. All this happens in
their very first lab class. An implicit effect of the visualisation of the project structure
is that students understand, from the very beginning, the idea that an application is a
set of cooperating classes. These classes are distinct entities, they each have their own
source code, and they form relationships with each other. All of this is conveyed
implicitly by the visualisation and interaction technique; not one word of instruction
has to be given about this in the laboratory class.

Figure 7.2: Inheritance and uses arrows in the project display
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The second aspect of the structure display takes effect in more advanced exercises:
when students create a new project from scratch. (Note that we treat this as an
advanced exercise. The first things students do is to read and modify existing projects.
There they deal with the modification or implementation of single classes. Starting a
new project from scratch involves creating a new class structure Ð an exercise that is
done later in the course.) The Blue interface ensures that no code can be written
before a class has been created. The environment structure strongly encourages the
creation of the project structure before writing lower level code. The classes can be
created interactively and are then represented by an icon on the screen. They can be
manually arranged and relationships can be defined. Using the arrow buttons from the
toolbar allows the insertion of class relations in a similar fashion to the manner in
which lines are drawn in a simple drawing program. The arrow can be dragged from
one class to another to establish a relationship.

Blue distinguishes two kinds of relationships in its display: inheritance and ÒusesÓ
relations. Inheritance relationships are represented by a double arrow while uses rela-
tionships are represented by a single arrow. The arrows also differ in layout and
colour to be clearly distinguishable on screen (Figure 7.2).

This presentation of a project is quite different to the presentation in most existing
development environments. All the popular systems evaluated in chapter 4 make use
of graphical user interfaces, but rely on text based interface components to give infor-
mation about the project and the classes. The project is typically represented as a
textual list of classes that does not convey much information about structure or
relationships between these classes. The list typically serves only as information about
the existence of the classes in the project and as a shortcut to open the classÕs source
code. Library classes used in the application are typically not listed. All significant
work (reading, understanding, editing the project) is done in a textual view of a single
classÕs source code. Thus, the student is immediately forced to think at the code level
of an application and must invest considerable mental effort to deduce the logical
application structure.

We have for a long time, in teaching well structured programming, told students to
think about program structure first, before starting to write low-level code. This is true
for structured programming approaches just as well as for object-oriented ones.
Students tend to need a lot of convincing to take this design issue seriously. Since all
that is done on the computer itself is the typing in of the code, this is seen as the ÒrealÓ
programming task. Creating a design in advance is frequently seen as a nuisance that
they are forced to do before the programming work is done (instead of regarding it as
part of the programming task). Consequently, students often do not take the design
phase seriously enough and spend too little effort thinking about it.

The Blue system, by incorporating the class structure into the machine manipulated
part of the programming task, has the effect that students take the creation of the
structure more seriously. The interface almost forces them to think about class
structure before they can start writing code.

The layout of the class diagram on screen is semi-automatic. The position of the
classes can be manipulated manually (by dragging the icon) and the arrows are layed
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out automatically. The layout algorithm attempts to create an aesthetically pleasing
diagram, for example by trying to avoid unnecessary crossing of arrows. This
approach has proven to be very successful. Classes can usually easily be arranged in a
way that provides a clear and well layed out project overview.

7.3.2 Design notation

As we have seen, Blue uses a very simple design notation. The structure display
shows classes, their names, inheritance relationships and uses relationships (Figure
7.2). This diagram is considerably simpler than notations commonly used for
professional software engineering, such as Booch Diagrams, OMT or UML Class
Diagrams. Those notations record more information about both the classes and their
relationships.

In UML, for instance, class representations include a list of operations (interface
routines) and data (instance variables) in addition to the class name. Relationships are
distinguished as generalisation (inheritance), composition (a special kind of a ÒusesÓ
relationship) and other uses relations called ÒassociationsÓ. Associations are annotated
to distinguish, for example, Òpart ofÓ, ÒcontainsÓ, ÒmemberÓ, ÒmanagesÓ and
Òcommunicates withÓ relations (and many more).

We consider such a detailed notation as inappropriate for introductory teaching. It is
undoubtedly valuable for professional software development, but poses too much of
an overhead and distraction from more fundamental issues in an introductory course.

Much simpler systems have been developed to support teaching and learning of
object-oriented concepts on a more informal level. The best known is the use of CRC
cards [Beck 1989]. CRC stands for ÒClass, Responsibility, CollaborationÓ. The CRC
card method uses index cards (one per class) to record each classÕs name, its tasks
(responsibilities) and other classes with which it cooperates (collaborations). The
class cards can then be arranged on a table to form a class diagram.

The Blue diagram is more closely related to CRC cards than to the professional design
notations. It shows (as do CRC cards) the class name and the collaborators. It allows a
manual layout that provides additional cues through layout options such as order and
grouping (e.g. classes can be shown close together to indicate a close relationship). It
does not, however, show responsibilities at the diagram level.

The Blue diagram is not intended to replace CRC cards (or equivalent design tools),
but rather to complement them and provide a link between design and the coding
stage. We have had very positive experiences with the use of CRC cards for teaching
object-orientation to beginners. One of the important aspects of CRC cards is that it is
a method that does not use a computer. The direct interaction and possibilities of
simultaneous manipulation by several people, which results from their real physical
existence (as opposed to a representation on a computer screen), is very valuable. The
Blue diagram  provides a simple tool to record the work done with CRC cards and
continue the development process in a seamless way.
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7.3.3 System abstraction

Users interact directly with classes by positioning them on screen, opening them (to
see or edit their source code) and creating objects from them (see below). Throughout
the whole interaction process the underlying operating system is hidden. Files, for
example, do not appear as part of the programming task. The source of a class may be
edited (see section 7.4, below), but the user does not need to worry about the
technology used to store the text.

Equally, when a project needs compiling, all the user has to do is to click the
ÒCompileÓ button in the toolbar. This compilation operation does a full dependency
analysis and compiles all classes that need recompilation. It takes care of a number of
subtle, but important details. When a class is modified, for example, the algorithm
will recognise correctly whether a change was made to the interface or to the
implementation only. It will then, depending on the result, decide whether clients of
this class need recompilation. Circular dependencies are also handled correctly. If
necessary, an interface analysis is done first to ensure that mutually dependant classes
are compiled correctly. (The menu also contains operations to compile selected
classes, or to force a recompilation of the whole project. Users are still in control to do
what they want. But the ÒintelligentÓ compilation is by far the most frequently used
compilation operation.)

Both these examples (automatic storage management for classes and compilation
management) show that the user « system interaction is at a logical level, not a
technical one. Users interact with logical abstractions (classes, not files) and they
perform logical operations while being freed from technical considerations.

When we, in an earlier chapter, listed characteristics that a good object-oriented
environment should have, one of the central issues was the support of classes and
objects as the fundamental units of abstraction. We have seen how classes are
supported in Blue. Support of objects will be discussed in section 7.6. Before we go
on to objects, however, we discuss some operations on classes in more detail: editing
and compiling.

7.4 Editing

7.4.1 Class views: interface and implementation

The editor is fully integrated into the Blue environment. It does not appear as a
separate tool, but rather as a function of each class: the class can be opened. It is, in
fact, more than an editor in the strict sense of the word, since it provides functionality
beyond that of text editing, such as displaying the interface of a class. It can better be
thought of as a viewer of class details (with the ability to edit some of the details).
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Figure 7.3: Implementation view of a class

From the project window, a show operation can be invoked on a class by double-
clicking the class icon or clicking the ÒShowÓ button. This operation will open a
window displaying class details Ð either the source or the interface of each class. The
two views are usually referred to as the implementation view and the interface view
(Figure 7.3 and Figure 7.4). Which view a user wants to see depends on the context:
during development or maintenance of a class, the implementation view is used. After
the implementation of a class is finished (e.g. while a client class is being developed)
only the interface view is needed.

The interface view not only includes the routine headers, but also pre and post
conditions and interface comments. (Section 6.7.2 introduced the distinction between
interface comments and implementation comments in Blue.) Thus, the interface
provided by the interface view does not only provide syntactical information, but
serves as full documentation of the class.

Multiple classes can be opened at the same time. The views may be toggled by using
the ÒInterfaceÓ toggle button in the toolbar of the editor. When a class is opened, the
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view that was last used is initially displayed. If the class has not been opened in this
session, the operation depends on the compilation status of the class: if it is compiled,
the interface view is shown; if not, the implementation view is used.

Figure 7.4: Interface view of a class

The interface view can only be shown when the class has been compiled. (For
uncompiled classes the ÒInterfaceÓ button is greyed out.) The information shown in
the interface view is constructed from the symbol table produced by the compiler.
This is possible because of the tight integration of the environmentÕs components. The
compiler produces the symbol tables and stores them after compilation for future
reference. They are then used by the editor (for presenting the interface view), by the
project manager (to check whether an interface of a class was modified) and by the
debugger.

Constructing the interface view from the symbol tables rather than the source has two
advantages: firstly, the information used to display the interface has been checked by



CHAPTER 7: THE BLUE ENVIRONMENT

141

the compiler and is thus guaranteed to be syntactically correct. The class has been
successfully compiled and thus the displayed interface is indeed available. Secondly,
using the symbol table makes it easier to include inherited information correctly and
makes it possible to display meta information.

Including inherited information in the interface view is important in its typical use.
While the implementation view is used during development of the class and contains
only the source of that particular class, the interface view is typically displayed when
a class is being used by a client class. In this situation the user typically wants to
know what operations can be invoked on objects of this class (and what the exact
interfaces of those operations are). This clearly includes inherited operations. When
using an object it does not make any difference whether an operation was defined
locally or inherited. Consequently, the interface of a class consists of all routines,
inherited or not. All of these are shown in the interface view.

A maintenance programmer, however, after checking the interface of a class, may
need to find a routineÕs implementation. In that situation it would be a disadvantage to
make inherited operations appear the same as locally defined ones Ð the programmer
might have to search through a hierarchy of parent classes to find the implementation
of the routine. Here, compiler meta information can be used to help. From the symbol
table, the information about the class originally defining the routine (and whether it
has been redefined) is read and displayed in the interface view (see Figure 7.4).

Viewing interfaces is important in all object-oriented systems. Eiffel environments
also provide tools to produce interface views (one tool called ÒshortÓ to display the
interface of locally defined routines and a tool called ÒflatÓ for the inclusion of
inherited attributes; the combination of ÒshortÓ and ÒflatÓ provides a complete
interface of a class, similar to the Blue interface view.) While early versions of these
tools did not include comments, the latest versions do: they recognise some comments
placed at special locations as interface comments. C++ systems use another approach.
In C++, the programmer must provide separate header files, which serve as interface
descriptions. This makes it necessary for the programmer to duplicate information.
The routine headers and associated comments have to be typed twice. It also has the
effect that inconsistencies can appear very easily when a change is made, for example,
in the comment in the implementation file but not in the counterpart in the interface
file. Providing tools to automatically generate interface views from a single source
removes the necessity to duplicate information and avoids inconsistencies.

7.4.2 Graphical vs. textual editing

The implementation of a class may be edited. The editor provides full standard text
editing capabilities and several advanced and specialised features. It may be used by
students unfamiliar with editing techniques as a simple GUI editor using mainly the
mouse and pull-down menus. However, it also has a powerful and configurable
command set allowing more experienced users to perform more complex operations.
Several Blue specific functions are supported, such as the insertion of skeletons of
frequently used code structures (loops, conditionals, routines, etc.). It is, like the rest
of the Blue environment, designed to be easy to use initially to support beginners, but
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to be able to be used in a more powerful way as the experience of the user grows. The
aim is to support beginners, but not to keep them on a beginners level for a long time.
A full editor manual is available [K�lling 1997b].

The editor is tightly integrated with the project manager and the compiler. When a
new class is created in the project window, a code skeleton is automatically created.
The initial source is a valid (but empty) Blue class. This ensures that a project can
immediately be compiled after classes have been added (so that the user can work on
one class at a time, without having to open all classes created in a project before the
first full compilation).

The automatically created skeleton together with the strict class structure of Blue
make it very easy for students to recognise where different aspects of the source, such
as variables and routines, have to be inserted.

The project can be edited graphically (by inserting arrows into the class structure
diagram, as discussed above) or textually in the editor. Both views are kept consistent
at all times. If, for example, an inheritance arrow is inserted graphically, the source of
the class is automatically updated. When the class is opened, the inheritance definition
is visible in textual form. (If the class was open at the time of the insertion of the
arrow, the source code is immediately updated on the screen.) The reverse case also
works: when a definition of a uses or inheritance relationship is added to the source of
a class, the project diagram will be updated as soon as the class is saved. Closing a
class view automatically saves the source, so the standard sequence of opening a
class, modifying its definition and then closing it leaves a diagram that always reflects
the current relationships. To achieve this effect, the editor cooperates with the
compiler. After saving the classÕs source, it calls the compiler to perform a superficial
parsing of the class to extract the information about its superclass and used classes.
The compiler then reports the result to the project manager, which updates the
graphical project representation. This analysis is, even for large classes, fast enough
that it is not noticeable in normal interactive operation.

It is important to allow both graphical and textual editing. In the early stages of
program design and class structure definition, we do not want students to have to
descend to the lower level of source code definition to specify their applicationÕs
structure. Relationships should be specified using a higher level tool (the graphical
structure editor). Later, however, when the source code is under development, a user
must have the opportunity to make changes without being forced to leave one tool and
use another one, only because a definition was originally made using that other tool.
At the same time it is, of course, essential that the information displayed in both tools
is consistent.

7.4.3 Alternatives

Initially, it does not seem very sensible to implement yet another text editor. Many
good editors are already available and many users have their preferred editor. In fact,
discussions about the relative benefits of particular editors frequently take just as
much the form of religious debates as discussions about programming languages.
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Users feel strongly about their tool of choice, and it would be a benefit to allow them
this choice.

However, there are obvious problems. Much of the benefit of the system described
above comes from the tight integration and specialised features of the Blue editor. We
have seen examples of its close cooperation with the project manager and the
compiler, and in the next sections we will discuss equally tight integration with the
debugger and the library browser.

All of this could not be achieved to the same degree with a standard editor. Even if the
integration could be partially achieved with a highly customisable editor, such as
Emacs, this would not solve the problem. Allowing the use of standard editors only
makes sense if there are several editors available to be used in conjunction with the
Blue environment (otherwise we would not give the user a choice either, but still
prescribe one particular editor). We cannot see how functionality even remotely
resembling that provided by the present Blue system could be achieved with standard
text editors such as ÒviÓ.

There are, however, some aspects which may serve to alleviate the situation. Firstly,
the expected users of the environment are largely beginners, not professional software
engineers. Beginners often have not yet developed such a strong preference for a
particular editor. They are more willing to use a new editor, particularly since the
Blue editor provides better functionality than the editors the students are most often
accustomed to Ð those which are typically available on Windows systems. In an
environment for software professionals the question of supporting different editors
might well be decided differently.

Secondly, the editor provides user-definable key bindings. With this functionality, the
key bindings can usually be defined to resemble many other editors. Thirdly, for those
users who regularly use Blue and also do other editing tasks and are irritated by the
use of different editors, another solution is available: the Blue editor can be used for
all other editing tasks as well. A stand-alone version of the editor (named Red) has
been developed as a general purpose text editor. Many students who start
programming with Blue indeed use Red for all other editing tasks during first year and
in later years of study.

This makes the situation slightly better than with most other environments. Almost all
graphical integrated development environments supply their own text editor which
cannot be replaced by another editor of choice. In comparison, the Blue editor offers
better functionality then most, and the fact that it is available as a stand alone text
editor can serve to avoid having to use multiple editors.
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7.5 Compiling

7.5.1 Invoking the compiler

The compiler, just as the other environment tools, does not appear as a separate tool,
but is integrated into the project interface. We have already mentioned the ÒCompileÓ
button in the project window: it performs a sophisticated dependency analysis and
compilation sequence, possibly involving several compilation phases to deal with
circular dependencies. An operation to compile individual classes is also provided in
the project window.

The compiler also cooperates with the editor. It can be invoked from within the editor,
and it uses the editor for the display of error messages.

Figure 7.5: Icons indicate whether a class has been compiled

Compilation is initiated from within the editor by clicking on a ÒCompileÓ button in
the editor toolbar (see Figure 7.3) or by a keyboard shortcut to invoke the same
function. The compile button in the editor has a different functionality from the
ÒCompileÓ button in the project window Ð it compiles only the class currently being
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viewed. This is consistent with the object-oriented view of the world: ÒCompileÓ in
the project window invokes the compile operation on the project, whereas ÒCompileÓ
in the class window invokes the class compile operation. The tools themselves can be
viewed as objects which provide operations to be performed on them.

Once a class has been compiled, its appearance in the project diagram changes.
Compiled classes appear solid, whereas uncompiled classes are striped (Figure 7.5).

Figure 7.6: An error message reported by the compiler

7.5.2 Display of error messages

When the compiler detects an error in a class, it displays the class source, highlights
the region of the error and displays an error message in the information area of the
editor (Figure 7.6). Displaying the class source may involve opening the class,
bringing its window to the front, de-iconifying its window or switching from interface
to implementation view. No file name or line number information needs to be handled
by the user Ð the environment automatically processes this information and finds and
displays the relevant code fragment. The user can then immediately edit the class and
remove the error. The error messages have been carefully worded to be
comprehensible to beginners. Jargon is avoided as much as possible, and the messages
attempt to give precise information as to the source of the problem.

Good error messages make a big difference in the useability of a system for
beginners. Often the wording of a message alone can make all the difference between
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a student being unable to solve a problem without help from someone else and a
student being able to quickly understand and remove a small error. The first student
might be delayed for hours or days if help is not immediately available (and even in a
class with a tutor it may take several minutes for the tutor to be able to provide the
needed help). Enabling students to understand errors by themselves avoids a lot of
frustration and frees the tutorÕs time for more important tasks. This can be achieved to
a large degree through the use of carefully worded messages and is a goal well worth
the investment of significant effort.

The quality of messages that a compiler can produce is significantly influenced by the
grammar of the language itself and the compiler technology used. In languages like
C++, so many ambiguities exist that it is impossible to avoid producing very general
or misleading messages. Blue has been carefully designed to provide a type of
grammar and a degree of redundancy within the grammar that enables the generation
of good error messages in most cases. The grammar has been designed to be an LL(k)
grammar (with k=2 in the case of Blue). This enabled us to use a recursive descent
compiler Ð a compilation technique that lends itself more easily to the production of
good error messages than LR compilers.

In case of an error during compilation, the Blue compiler displays only the first error
message and aborts Ð no attempt at error recovery is made. In an earlier design, we
discussed an alternative where the compiler attempts to detect all errors in a class. It
would somehow mark the errors in the source, but only the first error can be initially
displayed (the others might not be on the same screen). The editor would then have a
ÒNext ErrorÓ button that takes the user to the location of the next error.

In practice, that design has proved to be unnecessarily complex. Compilation in Blue
is so fast (usually under a second for a class of 2000 lines) that the ÒCompileÓ button
works as a de-facto ÒNext ErrorÓ button. After the first error is fixed, the user just
clicks ÒCompileÓ again and the next error will be highlighted almost immediately.
This has several advantages: the compiler is simpler (because no error recovery has to
be attempted) and the error messages are more accurate (because incorrect messages
caused by preceding errors are avoided). The same strategy is applied by the Visual
Age environments, while most other systems display a list of errors which can then be
used to locate all found errors. The problem often is that, after the first error in the list
has been fixed, following messages are inaccurate and misleading.

Some more issues concerning the implementation of the compiler are discussed in
chapter 8.

7.6 Interacting with objects

7.6.1 Calling interface routines

As soon as a class within a project is compiled, objects of that class may be created.
(A brief description of this interaction mechanism has been published in [Rosenberg
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1997a].) Interactively creating objects is done by selecting the class and clicking the
ÒCreateÓ button. (Clicking the right mouse button on a class provides a shortcut to the
same function. Shortcuts exist for many frequently used functions. They will not
generally be mentioned here. For a full description of environment functions and their
shortcuts, see [K�lling 1998b]).

This operation is similar to interactively sending a ÒnewÓ message to a class in a
Smalltalk environment. An instance is interactively created and available for
operation. No equivalent of this operation is available in common environments for
more recently developed, statically typed programming languages.

class interface Person is

===================================================
== Author:  M. K�lling
== Version: 1.0
== Date: 8 June 1998
== Short:   Person class for university management project
==
==  The class Person implements object representing a person in a
==  university management project.  It contains information common
==  to all persons in the university...
==
===================================================

creation (firstName : String, lastName : String, age : Integer)

== Create a new person with given name and age.

pre
lastName <> nil and age <> nil

  routines

changeNames (firstName : String, lastName : String)

== Change the names for this person

pre
lastName <> nil

changeAge (newAge : Integer)

== Set a new age for this person

pre
newAge <> nil

getNames -> (firstName : String, lastName : String)

== Return both names of this person

getAge -> (age : Integer)

== Return age of this person

end class

Figure 7.7: Interface of class ÒPersonÓ
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Invoking the creation operation on a class results in a normal object creation,
including the execution of the creation routine. As an example, we will use a class
ÒPersonÓ which stores some information about a person and provides interface
routines to change and access that information. This class is not meant to be complete
or really useful in any sense Ð it is used here only as an example to demonstrate the
Blue object interaction facilities. The interface of the class is shown in Figure 7.7.

Figure 7.8: Object creation dialogue

When the create operation is invoked a dialogue is displayed to let the user enter
routine parameters (Figure 7.8). At the top of this dialogue, the interface of the
creation routine is displayed. The interface includes the routine header and the routine
comment. Further down is a text field for entering parameter values. Under the
parameters is another field to provide a name for the object to be created. A default
name is provided and is often adequate. The name will be displayed on the object
bench after it has been created. The large area in the middle of the dialogue is a
(currently empty) list of previously used parameter lists. It is provided for
convenience during testing of a class: previously made calls can be easily repeated by
selecting a parameter combination from the list.

Once the dialogue is filled in and the OK button is clicked, the object is created and
displayed on the object bench (Figure 7.9). The object is then available to the user for
direct interaction. Many different objects of the same or different classes may be
created and stored on the object bench at the same time.
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Figure 7.9: An object on the object bench

Clicking on the object with the right mouse button displays a menu that includes all
interface routines of that object (Figure 7.10). Also included in the menu are two
special operations available for all objects: inspect and remove. The remove operation
removes the object from the bench when it is no longer needed. The inspect operation
is discussed below (section 7.6.4).

Figure 7.10: Calling a routine on an object

Symbols in the routine menu indicate whether a routine has parameters or return
values. When a routine is selected from the menu, a call to that routine is executed. If
the routine has parameters, a parameter dialogue similar to the one seen at the creation
of the object is displayed (Figure 7.11). On the click of the OK button the routine is
executed and, if the routine returns results, the result values are displayed in another
dialogue. Figure 7.12 shows a function result dialogue for a call to the routine
ÒgetNamesÓ. Again, at the top of the dialogue window the interface of the called
routine is displayed. Below, the actual call is shown in standard Blue syntax (the
name of the called object, the routine name and Ð if present Ð actual parameters). This
is followed by a list of the result values of the function. For each result its name, type
and value are displayed.
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Figure 7.11: Routine call dialogue for ÒchangeNamesÓ

Figure 7.12: Result dialogue for function ÒgetNamesÓ

7.6.2 Linguistic Reflection

To execute an interactive call, the Blue environment uses linguistic reflection. A class
is constructed internally that includes the interactive call as the only statement in its
creation routine. This class is then passed to the compiler to be translated. An object
of the resulting class is instantiated which, as part of the creation, executes its creation
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routine and with it the interactive call. Result values are stored in this internal object
and can then be extracted for display in the result dialogue. To illustrate this technique
let us consider an interactive call to the following routine:

extract (line: String, o: Object) -> (word: String, valid: Boolean)

The actual call we want to execute is

parser.extract ("input line", object1)

We assume that parser and object1 are the names of objects on the object bench.
To execute this call, the Blue system internally creates the source for another class,
usually referred to as the shell class. The source code created for our example call
would look like this:

class __SHELL__ is
== shell class for interactive call

uses Parser, Object

internal var word: String
      valid: Boolean

interface

creation (parser: Parser, object1: Object) is
== execute interactive call

do
word, valid := parser.extract ("input line", object1)

end creation

end class

The interactive call is then executed by creating an object of the shell class. Creation
of the shell object automatically includes the execution of the interactive call as part
of its creation routine execution.

The shell class is constructed to have one instance variable for every return value of
the interactive call. The return values are stored in those variables and can, after the
call, be retrieved from the created object to be displayed to the user. The display of
the return values is, in fact, nothing else than an inspection of the shell object (see
Inspection of objects, section 7.6.4).

Several advantages are associated with this technique. Firstly, the parameter list does
not need to be parsed and evaluated by the project management part of the system.
The compiler is used for this purpose, thus avoiding duplication of equivalent code.
The project manager sets up only the parameter list for the shell creation routine,
which contains only object references. Secondly, error messages for mistakes found in
the parameter list are produced by the compiler and are thus guaranteed to be the
same messages that would be produced for the same error in a non-interactive call.
This increases consistency in the environment. Thirdly, the only call ever to be
initiated by the object bench (the call to the shell creation routine) has a simple and
known interface. Most importantly, it has only object parameters, no literals. This
greatly simplifies the implementation. The interactive call, having an arbitrary
parameter list, is turned into an internal call completely handled by the runtime
system.



CHAPTER 7: THE BLUE ENVIRONMENT

152

The result of the facilities described so far (interactive creation of objects, interactive
routine calls and result display) is that a project can be incrementally developed.
There is no need to complete all classes in a project before the first tests can be
performed. Instead, each class can be tested as soon as some of its routines have been
completed without the need to write special purpose test code. This possibility
dramatically changes the style of work available to the developer.

7.6.3 Composition

During the interactive testing of the system, objects accessible on the object bench
may be composed, i.e. one object may be passed as a parameter to the routine of
another object. If, for instance, a project includes a database class and a person class
with the intention of creating a database of persons, then objects of these classes may
be combined. Several person objects could be created. Then a database object is
created and its ÒaddPersonÓ routine is invoked. When the routine call dialogue is
visible on the screen, a click on one of the person objects on the object bench will
enter its name into the parameter field of the routine call dialogue. The object will be
passed as a parameter. This can be done repeatedly to add all the persons from the
object bench to the database.

7.6.4 Inspection of objects

Sometimes objects contain data which is not directly accessible through interface
routines. For this situation the inspect operation is provided. Using the inspect
operation (by selecting it from the object menu or, as a shortcut, double-clicking the
object) opens the object and reveals its internals. Figure 7.13 shows the dialogue
displayed as a result of inspecting a person object.

Figure 7.13: Object inspection dialogue
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For this example, we have modified the above definition of the class ÒPersonÓ to
include address and employer variables, so that we can show how more complex
objects can be inspected. The address variable holds a reference to another user-
defined object of class ÒAddressÓ; the employer variable refers to another person.

The names, types and values of all instance variables of this object are shown. For
manifest objects, which have a simple textual representation, values are shown as
literals. For variables holding more complex objects only the state of the variable is
displayed (whether it is undefined, contains nil or an object reference). Those
variables may then in turn be inspected by double-clicking on the variable or selecting
the variable and then clicking the ÒInspectÓ button. Another window will be opened
displaying the internals of that object. An example is shown in Figure 7.14 for the
inspection of the address object.

Figure 7.14: Inspection of ÒAddressÓ object

Note that we are able to examine any object reachable from an object available on the
object bench. Sometimes it can become clumsy to repeatedly navigate through object
references to reach an object we wish to examine. The ÒGetÓ button on the inspection
dialogue (Figure 7.13) allows a reference to any existing object to be placed on the
object bench so that it can be re-examined at a later time. This also allows the user to
interactively call interface routines of objects that were created internally.

Overall, inspection of objects assists users in thoroughly testing objects of any class
by allowing users to observe the effect of routine executions on internal data.
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7.6.5 A word on testing

The design and implementation of error-free programs is an extremely difficult task,
even for experienced computing professionals. It is therefore not surprising that
students have great difficulty in producing well debugged programs. This is further
compounded by the fact that most students do not undertake rigorous testing of their
code. The interaction and inspection mechanisms described above can help to address
this problem.

As experienced programmers it is obvious to us that when we develop new programs
we must also test them. Why is this not obvious to students? The answer may well lie
in the fact that students begin by writing very small programs, so small that in most
cases it is difficult to argue the case for any serious testing. The classic example of
this is the infamous "Hello World" program.

The effect of the decomposition of the program into classes and the reuse of existing
library code in an object-oriented environment means that students can work on larger
projects earlier in the course. They need not write all of the code for the project
themselves; they can write just a few of the classes and these can then be integrated
with those provided.

However, this advantage in terms of structure is itself an obstacle in terms of testing.
Typical object-oriented programs will have a number of classes. We would encourage
students to test each of these classes individually before combining them to form a
solution to the problem. In order to do this, test programs must be developed. There
may well be one test program for each class. Since a class typically has several
methods, these test programs can become quite lengthy and complex. In fact it would
not be unusual for the test program to be longer than the class being tested. The
development of such test programs can easily become more of an obstacle for the
students than the development of the original classes themselves.

Clearly what is required are better tools for testing. In particular we would like to
reduce the amount of code which must be written in order to test classes. Ideally no
special testing code should have to be written.

Testing is typically divided into two classes of test cases: black box testing and white
box testing. Black box testing uses the observable behaviour of a program unit (a class
or a routine) to judge its correctness. It uses the program as a black box, observing
only input and output. White box testing observes the internal workings of the code
by monitoring control flow and/or internal state of objects at arbitrary times. Black
box testing does not always serve to ensure correct execution of a routine (especially
in incomplete classes) since the effect of a routine call may be purely on the internal
data of an object that is not directly observable from the outside. Information hiding Ð
a valuable concept for software engineering Ð becomes a hindrance for testing.

The traditional method of dealing with testing is Òtest driversÓ (programs making calls
to the class to be tested) for black box testing and ÒdebugÓ statements in the code or
the use of debuggers for white box testing. All of these cause problems. The problems
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of test drivers Ð their complexity Ð has been mentioned above. What about white box
testing?

First, ÒdebugÓ print statements could be added into the class code to print out relevant
internal data when methods are called. This has several associated problems. The
insertion of new test code could well introduce errors in itself. (Most teachers are
familiar with the situation where students come with an error in a program, stating
that they have not changed anything Ð just having added a ÒprintÓ statement.) In
addition, if there are several classes, the volume of output can become difficult to
interpret.

An alternative solution is to use a symbolic debugger to insert breakpoints and
examine the data. This requires the student to become familiar with the debugger at a
very early stage. Since we would like students to test the very first class they write, it
may be unrealistic to expect them to learn to use the debugger at the same time.

The interaction mechanisms in Blue can help to solve these problems. Interactive
routine calls provide facilities for very flexible black box testing. An advantage is not
only that test driver programs do not need to be written, but also that a sequence of
tests can be adjusted depending on previous test results. The total sequence does not
need to be decided before the first test is run.

Object inspection provides a simple, very straightforward mechanism for white box
testing. The internal state of objects can be observed to monitor state changes. This
does not mean that a more sophisticated debugger is not needed Ð a debugger can
provide additional test facilities and, in fact, Blue also includes a debugger (described
later). But it means that sensible testing can be done even before the use of a debugger
is introduced to students.

Finally, there is a record facility in Blue which will textually record all interactive
object creations, method invocations, return values, text input and text output. This
may be used by students as part of an assignment submission to document the testing
that was done.

Without good test support a move to an object-oriented language may well have the
effect that testing is done in an even less adequate manner by students than in
traditional environments because a test program must be written for each class. In
addition, the encapsulation of data within classes complicates testing.

Since these tools are a part of the standard environment and are simple enough to use
to test the first programs written by a student, testing is actively encouraged and
considered to be a part of the normal program development cycle. We expect this to
result in an improvement in the reliability of student programs and a better
appreciation by the students of the importance of thorough testing.



CHAPTER 7: THE BLUE ENVIRONMENT

156

7.6.6 Execution without I/O

An interesting effect of the direct interaction and inspection mechanisms is that
significant code can be written, executed and tested without the need to use
conventional input/output constructs.

In traditional systems it is essential to teach output, at least, very early in the course,
probably in the first or second week. Output usually is essential in order to see a
visible result from a program. Output of results allows a program to be tested and it
provides motivation for students because they can see the results of their efforts. Input
may be delayed a little longer, but is required as soon as we wish students to write
programs which have some controlling parameters.

While these aspects make it necessary to teach about input and output early, there are
some arguments against this. By its very nature I/O does not fit in well with
programming language design. Every language designer has encountered the problem
that the task of including useable I/O facilities invariably seems to make it necessary
to break some of the rules or design principles of the language. In many languages
with clean and simple concepts I/O is the Òodd one outÓ.

The fact that I/O is special is mainly related to the problem of type conversions in a
typed language: I/O to and from a terminal or a file is typically represented by a
character stream, while the data expected may be an integer, a string or any other
type. Another argument is convenience: while routines in many languages have a
fixed number of parameters with fixed types it has proven practical to have an output
statement that allows a variable number of parameters with different types. The
results are constructs like the ÒwriteÓ statement in Pascal, which breaks language rules
about parameter lists, ÒprintfÓ and ÒscanfÓ functions in C, which are awkward and
error prone, or the use of operator overloading in C++ Ð a concept which is usually
not discussed in the first few weeks.

Avoiding I/O statements for the first few weeks of instruction may well serve to
convey a cleaner picture about concepts underlying the programming language
[Rosenberg 1997b].

7.6.7 Pedagogical benefits

The facilities described in this section Ð interactive object creation, interactive routine
calls and object inspection Ð lead to a number of benefits for learning and teaching
object-oriented programming:

·  Incremental development. Projects can be incrementally developed and tested.
There is no need to even syntactically complete a whole application. As soon as
one class (or even one routine) is completed it can be compiled, objects can be
created, executed and tested. This leads to greater motivation (results are visible
more quickly) and a better ability to cope with errors (since early errors can be
found and removed before more errors are made, avoiding the harder to find
cases of multiple interacting errors). This advantage is, in fact, not only relevant
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in a learning/teaching situation, but would be beneficial for software
development in general.

·  Class/object distinction. Students often have difficulty understanding the rela-
tionship between classes and objects. Allowing the direct creation of and inter-
action with objects greatly facilitates the understanding of these fundamental
issues. The pure act of creating a number of objects from a class demonstrates in
a powerful way the respective roles of the concepts. If a student has, for
example, a class ÒPersonÓ and creates three different people with different
names, the role of the class and the role of each object becomes much more
directly understandable.

· Programming without I/O. As we have argued above, it might lead to a clearer
understanding of the abstraction concepts if routine calls are taught before
language exceptions (like I/O operations) are shown.

· Testing support. Good testing, essential to all serious software development, is
supported much better than in conventional systems.

· Interface/implementation distinction. The distinction between the interface and
the implementation of an object Ð itself an important concept Ð is clarified.
Since only the interface operations are visible to a human user when directly
interacting with an object the concept that this is the only part of an object
visible to other objects seems a logical conclusion.

Overall, the interaction facility provided by the object bench constitutes one of the
most powerful and most valuable learning and teaching mechanisms in the Blue
environment.

7.7 Runtime support

7.7.1 Error detection

The Blue system offers sophisticated runtime support for the detection of
programming errors. Runtime errors cause the Blue application to gracefully
terminate and the user is informed of the cause and location of the error. This is done
in a similar fashion to the reporting of compilation errors: the source window is
displayed, the region of the error is highlighted and an informative message is
displayed in the information area of the source window (Figure 7.15).
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Figure 7.15: Display of a runtime error

Error detection and graceful termination is provided for all possible runtime errors.
They include

· pre condition or post condition violation: A client fails to meet the pre condition
or the server does not meet the post condition.

· invariant violation: The class invariant does not hold. This indicates an internal
error in a class.

· undefined variables: The attempted use of an undefined variable is detected and
reported (see example in Figure 7.15).

·  undefined return values: An error is reported if a function returns without
assigning values to all of its return variables. (If the body of the function
contains no assignment statement for the return variable at all, the error is
detected at compile time.)

· stack overflow: Stack overflow, most commonly caused by infinite recursion, is
detected and reported.

Some of these examples highlight one of the aspects of the advantage that explicit
teaching systems can have over general purpose systems used in a teaching context:
better error checking. The use of undefined variables, for example, is a very common
error among first year students. Most systems, however, do not check at runtime for
this error. The result is most commonly a system crash (which, depending on the
operating system and environment, may even terminate the whole environment or
operating system). In any case, the student does not get any information about the
cause or the location of the error.
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The reason that this checking is usually not done is efficiency. Performing these
checks costs time (the time to do the check) and space (Blue stores additional
information about each variable, including information as to whether it has been
initialised). Since this checking is only needed at development time and, in a perfectly
debugged program, has no positive effect, most system providers decide against
providing these checks (although the existence of a perfectly debugged program may
well be doubted!). In an industry project, saving space and increasing efficiency is
still seen as much more important than early error detection. This is an example where
the needs of professional environments and the needs of a teaching environment
directly contradict each other. The decision to concentrate on a teaching context as the
intended area of use has given us the ability to provide better support for the student.
The result can be less frustration (because a student can find and remove errors that
otherwise would have made it necessary to wait until help is available), more correct
software (because assertion violations may point to errors that would otherwise have
gone unnoticed) and better support for self-directed learning.

7.7.2 Instruction counting

Blue offers an instruction counter to measure approximate relative performance of
operations. The counter counts instructions executed by the Blue virtual machine.
While this measure cannot be taken as an exact reflection of performance (since some
machine instructions execute faster than others) it is good enough to give a correct
impression in almost all cases. If, for example, a student were to compare two sort
algorithms, the instruction counter can be used to measure their relative performance.
Since usually two algorithms to be compared perform similar instructions, the result is
of acceptable accuracy.

Figure 7.16: The instruction counter

The counter is hidden by default, since it is not typically used very early in a course.
Thus, the interface is initially not cluttered with elements for unused features. Display
of the counter can be enabled through an option in a ÒpreferencesÓ dialogue. When it
is enabled the counter and a reset button appear in the lower right corner of the main
window (Figure 7.16). It is updated after every interactive call. The number of
instructions in several calls may be accumulated in the counter, or it may be reset after
a call.

The instruction counter is a useful tool when learning about algorithm efficiency and
complexity.
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7.8 Debugging

7.8.1 Integration

In keeping with the spirit of the tools we have discussed so far, the debugger is
integrated with the other parts of the system. The goal, from the usersÕ perspective,
was to avoid the common student perception that the debugger is an additional,
complicated tool. This would have hindered the acceptance of the debugger by users.

Today, in most first year courses, a debugger is not used. The reason usually is lack of
time. Considerable time already has to be spent on becoming familiar with other tools
(editor, compiler, file system, etc.) and teachers are reluctant to further reduce the
time spent on programming concepts. The effect is that, although most teachers agree
that a debugger would be a useful tool in the studentsÕ effort to understand the
concepts of programming, this tool is not being used.

Blue overcomes this problem by reducing the number of concepts and controls used
by the debugger to keep it simple and by shifting some of the controls into tools that
are already familiar. Breakpoints, for example, can be set directly from within the
editor.

Figure 7.17: Setting a breakpoint

7.8.2 Functionality

We have already seen other parts of the Blue system that support debugging:
interactive object creation, direct interaction with and inspection of objects. (This is
what we call Òdebugging without a debuggerÓ.) The result is that the debugger
functionality can be reduced to three simple concepts to provide all the debugging
means necessary for a teaching environment:

· breakpoints. The ability to set breakpoints at arbitrary places in the source code.

·  single stepping. The ability to institute step-by-step execution to observe a
programÕs control flow and state changes.
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·  inspection. The ability to inspect temporary variables (local variables and
parameters) and the call sequence.

The first tool, a breakpoint, is easily used. A user can set a breakpoint by just clicking
into a side bar next to the source line in the editor. A stop symbol appears to indicate
the breakpoint (Figure 7.17). This is an example of using a debugging technique
without the need for the introduction of a new tool.

When the breakpoint is reached during execution, it is handled in a similar fashion to
runtime errors. The source window is displayed, the current line is highlighted, and a
message is shown informing the user that a breakpoint has been reached. At the same
time, an ÒExecution ControlÓ window is opened. This window contains some simple
buttons that enable the user to control the continuation of the execution (Figure 7.18).

Figure 7.18: The execution controls

The execution controls let the user perform a single step (with the option to step into
or step over a function call), continue, stop or terminate the execution. The stop
function gives a user the ability to stop an execution without setting a breakpoint. If,
for instance, a function runs for an unexpectedly long time and the user suspects that
the machine might have entered an infinite loop, he/she could stop the execution (the
current source line would be displayed) and examine the state of the application. The
execution can then be either resumed or terminated.

To examine the state of variables and the call sequence, the execution window can be
extended by clicking on the arrow button in the upper right corner (Figure 7.19).

On the left side of this window the sequence of currently active function calls is
shown in a stack-like manner. On the right, the values of instance variables and local
variables (including parameters and return variables) are displayed. Double-clicking
an object variable opens an ÒinspectÓ window to examine the internals of that object
(just as double-clicking objects on the object bench opens their inspect windows).
Other active routines may be selected in the call sequence on the left to display their
instance and local variables.

Overall, these three mechanisms, breakpoints, single stepping and variable inspection,
provide, in conjunction with the object bench interactions, all the necessary
debugging facilities in a manner that is easy to use, easy to learn and easy to
remember. Students typically have no problems, after being told or having read about
these features, making effective use of them almost immediately.



CHAPTER 7: THE BLUE ENVIRONMENT

162

Figure 7.19: Display of call sequence and variables

7.9 Browsing class libraries

Using class libraries is an important part of modern programming, and reuse of library
classes is a fundamental software development technique. To be effective, a course
based on an object-oriented language must integrate the use of libraries at an early
stage in the curriculum [Tewari 1994]. It has frequently been observed that
introducing the practice of reuse into existing organisations is very difficult. Many
programmers rather reimplement classes than reuse existing ones. Three character-
istics have been identified as prerequisites for the acceptance of reuse:

·  the programming language must support a mechanism for reuse of existing
code,

· the environment must ensure that the effort of finding an appropriate class to be
reused is smaller than writing it again, and

· a culture must be established in which the programmer views the reuse of class
libraries as an intrinsic part of normal programming.

The first point has been addressed by object-oriented languages. A substantial part of
the hope that object-oriented languages may improve the quality of software being
developed has to do with the possibility of greater reuse. The other two points,
however, have initially been neglected.

The second point Ð finding classes Ð can be addressed with better tools. A good class
browser is needed that allows a programmer to search and browse libraries of existing
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classes easily. The third point Ð reuse culture Ð is best addressed by teachers. If reuse
is conveyed as normal part of programming from the very beginning, the difficulties
associated with requiring an attitude shift later on are avoided.

For a teaching context this means that a good, easy to use browser is an important part
of the environment.

The Blue browser can be opened by selecting the ÒLibrary BrowserÓ command from
the ÒToolsÓ menu. The main browser window is shown in Figure 7.20.

Figure 7.20: The Blue library browser

The browser uses a pane based design with three panes. Pane based designs have
successfully been used in several other systems, e.g. in Smalltalk-80 [Goldberg 1984]
and the Dylan environment [Dumas 1995]. At the top left a list of library sections is
shown. Each section groups related classes together. On the top right a graphical
representation of the currently selected section is shown in the same manner in which
Blue projects are presented. In the bottom pane detailed information about the
currently selected class is displayed. This includes the class comment and a list of
interface functions. The bottom pane is updated each time the user clicks on a class
icon to display the details of the selected class. The class icon may also be opened
(with a double-click) in the same manner as classes in user projects are opened to
display its full interface or (depending on permission) its implementation.



CHAPTER 7: THE BLUE ENVIRONMENT

164

7.9.1 Browsing

When browsing the library, a user first examines the list of sections in the library and
selects a section which most likely includes classes for the task at hand. The section is
then presented using the same graphical display used for a project.

It has often been argued that a browser should enable the user to find related classes.
Relevant relationships are super- and subclasses, used classes and clients, and other
classes with related functionality. Some existing browsers provide functionality to
find some of those related classes.

The graphical display used in Blue provides all of this information in an easily
understandable manner. Inheritance and uses relationships are immediately obvious,
and even semantically related classes which have no technical relation can be visually
associated by placing them close to another class in the same section. If, for example,
a programmer looks for a list class, the classes ÒStackÓ and ÒQueueÓ (and other
collection classes) will also be visible on screen, encouraging the programmer to also
examine and consider those classes for use.

When a suitable class is found, the programmer can select the class and invoke the
ÒUse class in projectÓ command from the ÒClassÓ menu. The class will then appear in
the current project, identified as a library class by its colour. Library classes in a
project can be opened, read, called and used like other classes in the project. They
cannot be edited, though.

The concept of browsing classes is significantly different from browsing in a
Smalltalk system. The first noticeable difference is the graphical presentation. While
the Smalltalk browser displays a single class tree as a nested list, the Blue browser
uses several independent library sections and graphics for representation. Dividing the
library into sections makes it easier to find relevant classes and to switch between
related classes. The graphical display visualises relationships. In Smalltalk,
inheritance relations are displayed through the list nesting structure (by indenting
subclasses under their superclass). Client relationships, however, are not displayed. It
is, in fact, not possible in Smalltalk to extract client information from a class
definition, since Smalltalk code is not statically typed. Call relationships between
classes are only known at runtime.

The main difference, however, between browsing in Smalltalk and in Blue is the clear
distinction between the current project and the libraries in Blue. In Smalltalk the
browser presents a unified view of the ÒuniverseÓ which includes all user-defined and
library classes. This unification, while consistent and powerful, has been named as
one of the most serious problems for beginners in dealing with Smalltalk environ-
ments (see chapter 4). The distinction between the current project and the libraries in
Blue, and the process of explicitly importing library classes into the project, greatly
simplify the appearance of the project under development and ease studentsÕ
understanding of the environment.
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7.9.2 Searching

Another important browser function is searching. The browser provides a ÒFind
classÓ command that displays a find dialogue. In this dialogue details about the search
can be specified. This includes the search string, the search context and the set of
classes to be searched.

The search context gives the user the option to search in the whole class source, in the
interface of a class, in comments only, in routine names only, by author name or any
combination of these. The set of classes to be searched can be restricted to the current
section, the whole library or all classes in all known libraries.

Search results are then displayed in a list. Selecting a result in that list displays the
class by opening its section and highlighting the class.

7.9.3 Integration

The browser closely cooperates with the compiler. This integration provides the basis
for better functionality than would be achievable with a stand-alone browser.

The information used and displayed in the browser is not taken from the classesÕ
source text, but from the symbol table produced during compilation. The compiler
stores the symbol tables and makes them available to the browser. This ensures that
the information shown in the browser is syntactically correct. It also provides a simple
mechanism to allow different levels of access to library classes. Creators of libraries
can, for example, decide whether they want to allow read access to the source text of
the library or not. This can then be implemented by using the access restrictions of the
underlying operating system. Because the source is not otherwise used for browsing, a
library can be searched, browsed and used with access to only the code and symbol
tables. An author can easily deny access to the source and still provide a fully
functional library. One example where this may be used is in the context of student
assignments. A teacher can provide a sample solution in a library which students can
execute to examine the behaviour of the program, but without having the ability to
view the source code.

On the other hand, the author of a library may wish to allow access to the source. In
the library of collection classes in the current Blue system, for instance, all source
code is readable by users. They serve as useful examples of well written Blue code
that students might find interesting to look at and study.

7.9.4 Documentation

A class library should not only provide the code of useful classes, but also its
documentation. Users need to know the signatures and the semantics of library
routines.

Many systems separate these issues and use two different tools to provide these two
sides of the same coin. Borland C++, for instance, uses the standard C++ include
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mechanism for the inclusion of library classes and provides documentation for those
libraries through a separate help system. This mechanism is error prone, duplicates
effort and is not easily extensible. It is error prone because it can easily happen (and
does regularly happen) that the implementation and the documentation get out of
sync. Library classes might be changed or added, while the documentation is not
updated. It duplicates effort because the creator of a library class is forced to write
explanations twice: once in the class interface and once in the help system. (In the
case of C++ it is, in fact, often written three times: in the implementation file as well.)
And it is not extensible because it is not always equally easy to add library classes and
help files. In the Borland system, for instance, user classes may be added into the
library collection for general inclusion, but help information cannot be added,
effectively leaving the user-defined library classes without documentation.

Java tries to overcome some of these problems with a similar construct as Blue:
interface comments. Certain comments in the Java classes are especially marked as
interface documentation and can be extracted by a separate tool (called ÒJavadocÓ).
This creates documentation for a class. This mechanism avoids the duplication of
effort: documentation is only written once (in the class source) and automatically
extracted for outside documentation. It does not, however, solve the problem of
outdated or missing documentation. It may still happen that a classÕs code is updated
while its documentation is not, leaving the user with incorrect information. It also
does not guarantee the availability of documentation.

In Blue, the documentation is written only once in the classÕs source code. It is then
stored together with the class in its symbol table. The classÕs code and its documen-
tation cannot be separated. This guarantees the accuracy and availability of the
documentation (as far as it has been written by the author). The class browser doubles
as a help system that can display detailed information about interfaces and semantics
of classes and routines.

7.9.5 Additional functionality

The description so far reflects the current implementation that derives its design from
an early prototype. Currently work is under way to implement an improved library
browser which provides additional functionality to improve the usefulness of class
libraries. The new design includes two new areas of functionality: improved library
management and library creation.

The library creation facilities allow users to create their own class libraries easily. A
student then can, over time, create a private collection of useful classes and store them
in a personal library that may be searched and browsed with the standard browser.
Libraries can also be created by work groups for current projects. The creator of a
library can specify access restrictions. This allows individual libraries to be kept
private or to be published for the whole world to use. The access model used is
similar to the three level Unix model that distinguishes the user, a work group and the
rest of the world.
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The library management facilities let every user configure the browser to offer access
to different libraries. In effect, they make libraries known to the browser. By default,
each browser will offer access to the Blue standard library and a personal, private user
library. Other libraries can then be added to the browser. These are included in a
menu for easy access to all known class libraries.

7.9.6 The libraries

As with other parts of the programming environment, the requirements for libraries
used for teaching differ from those used in professional software development. Tewari
and Gitlin [Tewari 1994] state that Òmost discussions about the design of object-
oriented libraries revolve around the need of professional programmers. However, we
should not assume that the needs of students are identical with the needs of
experienced software engineers. In fact, there are a number of areas in which the two
differ.Ó The primary requirements for a teaching context are ease of use and clarity.
This means that, as with the environment as a whole, the libraries used should be
specifically designed for a teaching system. If a library is complicated and the student
needs to study it for a long time before it can be effectively used, its value is greatly
reduced. It will then detract from other concepts the student is investigating. Tewari
and Gitlin [Tewari 1994] observe that many libraries are unsuitable for teaching
because Òmany commercial vendors seem fixated on supplying every possible option
imaginable. The extensive features add to the difficulty of using the library without
necessarily adding to its pedagogical value.Ó

Blue currently offers four library sections: collection classes, graphical user interface
(GUI) classes, input/output classes (such as files), and ÒutilityÓ classes (such as date
and time classes). All of these were designed to offer an interface that is easy to
understand and to use.

A discussion of the details of the library design is beyond the scope of this work. The
interested reader can download the Blue system from one of the locations listed in
Appendix B. The system distribution includes the libraries.

7.10 Group support

Teaching object-orientation in a first year course represents a well known paradigm
shift in the language area. A second, much less discussed paradigm shift is slowly
being introduced in the teaching area: a shift from algorithm-based courses to
software engineering oriented courses.

Traditionally, the introductory programming course had a strong focus on the algo-
rithmic aspect of programming. With the introduction of object-orientation and the
recognised importance of a solid software engineering foundation for all program-
mers, many first year courses are slowly shifting this focus: software engineering
topics, such as readability, maintenance, commenting, testing, correctness assurance
and modularisation, have found their way into introductory courses. This shift of
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focus is not often discussed in the literature. Many courses make this shift quietly and
gradually, but most introductory courses make it. One important part of this new
software engineering focus is group work.

Working in teams poses a whole range of additional problems to those faced while
working alone. While few first year course designers would consider the introduction
of a formal software process into the introductory course, many use group work to
give the students exposure to the problems faced when working in a team, and to
teach some of the technical and organisational solutions to group work problems.
Some of the advantages of object-orientation are, in fact, much more clearly visible
when working in a group (e.g. information hiding and the interface/implementation
separation). Teachers increasingly regard teaching about group work as being more
important than teaching individual wizardry [Goldberg 1995a]. All this leads to the
conclusion that a teaching environment should provide facilities to support group
work.

Figure 7.21: Class display in a group project

The Blue environment offers file locking mechanisms to ensure correct group support.
A ÒGroupÓ menu contains the relevant commands.

One of the aims was to keep the group work mechanism unobtrusive while it was not
needed. It should not be necessary for users to perform explicit lock or check
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out/check in operations while working alone on a project. To achieve this, each
project can be declared a Ògroup projectÓ or a Òsingle user projectÓ. A new project is a
single user project by default.

When single user projects are opened by a user, a lock is automatically created that
prevents other users from editing or executing the same project. When a second user
opens the project, a message is displayed informing him/her that it is already in use by
another user. This message also contains the name of the user who owns the lock, so
that he/she may be contacted if necessary.

If several users want to work on one project simultaneously, the project can be
declared a group project. This activates a more sophisticated locking system on a class
basis.

The locking system used is explicit. Users have to declare their intention to edit or
execute a class before they can do so. In group projects, the locking state of each class
is visually displayed (Figure 7.21).

The state of each class is displayed using colour and symbols in the lower left corner
of a class.

When a user opens a group project, all classes initially appear grey. This indicates that
the user cannot currently edit or execute these classes. To do so, the user must execute
one of the following operations (available in the ÒGroupÓ menu):

· Take Class for Editing. This command places the class under the userÕs control.
He/she may edit and execute the class, other users cannot edit or execute it.
They can, however, open the class for reading. A class that is ÒtakenÓ is marked
with an edit symbol. Automatic communication exists between all instances of
the environment currently displaying the same project. The edit symbol appears
on the class in every userÕs display to indicate that the class is currently being
edited by someone. For the user who has taken the class, it is also presented in
normal colour. Thus, if a user sees a normal coloured class with the edit symbol,
the class can be edited. If a grey class has the edit symbol it is being edited by
another user (and cannot be taken by anyone else).

·  Lock Class. This command locks the class to prevent all editing. The class is
then shown in normal colour with a lock symbol and the user can execute the
class. This is useful because a user, in order to execute a class, must have taken
or locked the class to be called and all classes it depends on (we cannot allow a
supplier class to be edited or recompiled by one user while another user tries to
execute it). In a situation where one user edits and tests a class A, a second user
edits and tests a class B and both classes use a third class C, the class C can be
locked to ensure that both users can execute it, but nobody can change it at the
same time. This implies that more than one user can lock a class at any time. A
class locked by another user appears grey and with the lock symbol. It may then
be locked by other users as well. For each user who holds a lock the class
appears in normal colour, indicating that it can be used. (As a general rule, the
normal coloured Ð non-grey Ð subset of the project is available for use.) The
lock symbol will be displayed on the class until the last user releases the lock.
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This mechanism allows easy-to-use, secure access to projects by multiple users at the
same time.

Another approach, even easier to use, has proven unworkable: implicit locking. It
would have been nice to avoid the necessity to explicitly ÒtakeÓ and ÒlockÓ classes,
and to let the environment handle the synchronisation automatically (as it does on the
project level for single user projects). As long as we only consider editing, this is
possible. Opening an editor could lock the class and prevent other users from editing
it at the same time (although it might lead to annoying situations: if a users edits a
class, closes the editor in order to test the changes and finds a problem, another user
might in the meantime have opened the class so that the first user cannot continue the
coding task). If we also consider execution, the automatic model breaks down. Since a
client class is not being edited, it is not locked, and nothing would prevent another
user from editing and recompiling a class while another user executes it. The idea of
making the code files private (so that every user has an own copy of the code to allow
other users to recompile while the first user can still execute) was discarded. This
method would have lead to inconsistencies: if one user edits a class and another user
still has an old copy of code available, then the source does not match the code being
executed. Trying to debug a program in that situation becomes impossible.

The mechanism chosen Ð explicit locking with implicit communication Ð seeks an
acceptable compromise: the system is still reasonably easy to use and, at the same
time, provides enough flexibility to allow simultaneous execution as well as editing.

7.11 Summary

In this chapter we have discussed the Blue environment. While many different aspects
were discussed, three ideas emerged as the important principles underlying the Blue
design: simplicity, visualisation and interaction.

Simplicity refers to the ease-of-use aspect of the environment: while it provides
sophisticated functionality in many respects, it still presents an interface that is easy to
use and understand for beginners. It avoids the cognitive overload often present in
advanced programming environments. The interface is consistent so that users can,
after having understood some basic principles, explore the environment on their own
by experimentation and guessing. It has been shown that users can guess possible
actions in a software system which are close to previous experiences, while it is
difficult to suggest new possibilities through the interface [Dumas 1995]. For Blue,
this means that beginners need some amount of initial instruction, but that the
consistent interface then enables them to expand their knowledge through self
directed learning very quickly. The combination of sophisticated functionality, clarity
and simplicity presents a unique opportunity for use in a teaching situation and is not
found in any other environment.

Visualisation is used to represent the application structure. This represents a shift
from a pure coding environment to a software development environment that includes
the design process. Visualising class structures and objects provide an invaluable help
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in teaching and learning about object-oriented principles. It helps students to
understand classes, class relationships and class design. Making the structure visible
encourages more conscious creation and discussion of designs.

Interaction refers to the ability to create and execute objects interactively. It is also
represented in debugging tools that allow the interactive examination of object or
machine state. Direct interaction is a powerful tool that helps in understanding of
programming principles (e.g. the classÐobject relationship), debugging, testing, and
many other aspects of the software development process. It helps students to more
quickly obtain a deeper insight into the principles behind the software development
task.

While the Blue environment was developed explicitly as a teaching environment, and
the techniques employed are beneficial in this situation, the use of these techniques is
not restricted to teaching. A similar combination of tools Ð visualisation and inter-
action Ð together with other sophisticated development tools may well be valuable in
professional software development environments. While the visualisation aspect has
been used in various CASE tools, the direct interaction facility is typically not
supported. The possibilities of integrating these techniques into professional environ-
ments seem worth further investigation.
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8 Implementation

In this chapter we present a very brief overview of the Blue implementation
architecture and briefly discuss selected topics of interest. Space does not permit a
more extensive discussion of implementation concerns.

8.1 Implementation environment

Platform

Blue was originally implemented on Solaris 2.5 in C++, using the GNU compiler g++,
X Windows and Motif. It was ported to Linux and currently runs stably on numerous
different Linux systems. A port to Microsoft Windows is almost complete, although it
has not been fully debugged and is not yet suitable for distribution. The source
currently consists of about 85,000 lines of code (including comments and white
space).

Programmers

The implementation was completed over the last three years by the author and a
second programmer, employed by the Basser Department of Computer Science at the
University of Sydney. The programmer, John Bignucolo, was responsible for the
implementation of the compiler; the author was responsible for the remaining parts of
the system.

Language and programming guidelines

Blue is implemented in a strictly object-oriented style in C++. All code is part of a
class (with the exception of a main function and one-line Motif callback routines)
with strict adherence to information hiding. A programming standard was used that
excludes many of C++Õs more questionable features. Public variables, for instance,
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are treated as read-only throughout, and only reference (pointer) variables are used to
refer to objects. Immediate variables are used for scalar types only.
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Figure 8.1: Application structure overview

8.2 Software architecture

Figure 8.1 shows a high level overview of most of the system. The central element is
a class manager which manages all classes in the current project. Each class held in
the class manager potentially refers to its symbol table and a set of code objects.
(These only exist when the class has been compiled.) One code object exists for each
routine in the class. Each class also has an associated source file (marked with a blu
suffix) which is created and initialised to a default class skeleton at class creation
time.

At the top left of the diagram is the project manager. It is responsible for the display
of the main window and the handling of the main user interaction. It also maintains
the project description file (pdf) which stores high level information about a project.

When a class is opened for editing, the class invokes the editor (named Red) and
passes to it the relevant source file. Each time the source is saved the editor signals
back to the class, which in turn notifies the project manager to update the classÕs
dependency arrows.
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When a user performs a compile operation on a class, the class sends its source file to
the compiler. The compiler produces a symbol table, which is handed back to the
class for later reference, and an assembly language file (marked with an aml-suffix,
indicating an abstract machine language file). It then invokes the assembler, which
creates code objects for each routine in the assembly language file and enters them
into the class. The assembly file can then be removed.

The symbol table and the code objects are saved to disk for permanent storage, but are
also held in memory for immediate use. When a project is opened, the code and
symbol tables for all compiled classes are loaded into main memory. The symbol
table and code files are marked with sym and amc (abstract machine code) suffixes,
respectively.

The abstract machine consists of four major parts: the abstract machine engine (AME),
which performs the instruction executions, a stack, a heap and a controller. The
controller provides the machineÕs interface to the project manager (and thus, in-
directly, to the user). Its interface includes operations such as starting, stopping or
single stepping the machine.

The heap holds a set of objects, each of which has a reference to its class. The
machine engine has several registers, such as the current object register (CO), the
current class register (C C ) and the current routine register (C R). The current
instruction pointer (often referred to as program counter) is stored in the code object
itself. When an interface routine of an object is called, the machine pushes the current
register set onto the stack, retrieves the reference to the new class from the object to
be called and uses the routine number as an index to retrieve a reference to the
required code object from the class. (The reference to the object and the routine
number are provided as parameters to the call instruction). The reference to the class
and the code object are stored in registers to optimise future references. On return
from the routine the previous state is restored from the stack.

The Blue system executes two threads concurrently. The main thread handles all user
interaction, class management, editing and compilation. The machine thread executes
the virtual machine and thus, indirectly, Blue user code. The threads communicate via
semaphores. The dual thread architecture allows the user interface to remain respon-
sive while user programs execute. It enables the user, for instance, to stop the virtual
machine via a user command if it seems to be in an infinite loop.

The implementation overview in Figure 8.1 omits the class browser and the debugger.
The class browser is a modified copy of the project manager and a class manager. It
has a slightly different interface and different functionality, but shares much of the
internal structures and code with the original. The debugger has links to most other
major components of the system.
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8.3 The compiler

The Blue compiler is a recursive descent compiler, implemented using ANTLR [Parr
1995]. ANTLR is a parser generator developed at Purdue University which generates
well structured and readable C++ code from a LL(k) grammar (with arbitrary k; in
case of Blue k=2). We chose ANTLR over other parser generators because it generates
a recursive descent parser, rather than an LR parser. Recursive descent parsing allows
better control over the production of error messages. Since the quality of error
messages is an extremely important issue for the overall useability of beginnersÕ
systems, this was the determining factor in the decision for ANTLR.

The compiler is used for various levels of analysis of the source code in Blue. When
the editor window for a class is closed, the class passes its source to the compiler to
perform a dependency analysis. In this operation, only information about the classÕs
name, its superclass and supplier classes is extracted. This information is reported
back to the class to be represented in the project view. When a class is compiled, a full
compilation is started initially. This includes a check whether supplier classes have
been compiled. If not, those are compiled first. If, during this process, a circular
dependency is detected, the compilation is aborted, and a header compilation and an
interface compilation are performed first. The header compilation collects information
about generic parameters of a class. The interface compilation analyses the full class
interface and builds its symbol table. Both operations are applied to all uncompiled
classes in the project. Finally, a full compilation is initiated again as requested in the
initial operation. This time circular dependencies are not a problem, since all inter-
faces are known and supplier classes do not need to be compiled first.

This algorithm ensures that the most common case where no circular dependencies
exist executes efficiently (since only one compilation pass is needed), while the more
complex case is still handled correctly. (Note that even in projects with circular
dependencies the most common case is the one that does not involve interface compi-
lation, since rarely is the whole project compiled. Due to incremental compilation
each run of the compiler typically involves only a few classes.)

When the source of a class is changed, the class is marked as uncompiled. Whether its
clients also need recompilation depends on the interface of the changed class: if the
change affected only the internals, clients are still correct. If, however, the interface
was changed, all clients have to be recompiled as well. To deal with this situation,
each class retains its previous symbol table before a compilation is started. After a
successful compilation, it compares the old symbol table to the new one to determine
whether the interface was changed. If it was, all clients are notified and are them-
selves marked as uncompiled. The comparison of the interfaces stored in the two
symbol tables is executed at a logical level: names, number and types of routines and
parameters are compared, not the source text. As a result an interface will correctly be
recognised as unchanged even if, for example, the layout of a routine header was
changed.
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8.4 The abstract machine

The Blue abstract machine is a very simple register/stack machine executing a
custom-built machine language. The machine has eight registers. Machine instruc-
tions are designed specifically to support Blue language operations. While many in-
structions are simple (such as register load instructions) some perform complex
operations. An example are common string operations. String concatenation, for
instance, is supported by a machine instruction. This avoids duplicating tasks in the
Blue compiler that have already been solved in the underlying implementation
language.

The stack is used to save the machine state when routines are executed and for
passing and returning parameters. All objects are stored in the heap. The machine
includes a straightforward mark-and-sweep garbage collector. A detailed description
of the machine and its instruction set can be found in [Fetzer 1998].
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9 Experience

The Blue system was used for first year teaching by the Basser Department of
Computer Science, University of Sydney, for the first time in 1997. It was used with
beginning students for two semesters, after which the students switched to C++. Blue
was used again for the introductory course in 1998 and, at the time of writing, is still
being used.

9.1 Runtime environment

The first year course at the Basser Department has about 750 students. The system
was run on a dual processor Sun Sparc Ultra machine (running Solaris 2.5) with about
120 X-terminals connected. Roughly 60 of these terminals were used to run Blue at
any time (the other terminals were used by second and third year students for other
tasks).

The Blue system used about 1.2 Megabytes of main memory for its first instantiation
and an additional 150 Kilobytes for each additional copy running simultaneously.
(The memory increase for additional copies is small since much of the code used is in
shared libraries.) 60 concurrent copies were comfortably supported by the existing
hardware in both memory requirements and processor speed.

9.2 Feedback

Unfortunately, no formal evaluation of the effect and effectiveness of the Blue system
on students and their learning experience has yet been undertaken. It was recognised
very early on that such an evaluation is highly desirable, but the required work is
outside the scope of this PhD thesis. A formal evaluation is planned for the near future
(see Future Work, chapter 10).
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We have, however, collected feedback from students in the form end-of-semester
surveys and from teaching staff (lecturers and tutors) through informal interviews.
The feedback shows that students felt generally comfortable in working with the Blue
environment after a very short time and that they felt in control most of the time.
Teaching staff uniformly reported clear advantages of the environment and the
language when compared to the system used previously at the Department (Pascal and
a Unix command line interface). They reported a very high degree of satisfaction with
both the language and environment design.

Because of the informality of the methods used for gathering feedback, no clear
conclusions can be drawn. But the anecdotal evidence points to a positive effect of the
system on students and teachers and gives an encouraging starting point for a more
formal analysis in the future.

9.3 Stability

One of the criticisms often brought forward against the use of new, little-tested
systems is the probable presence of bugs in the application. This problem was also
present in the Blue system.

The first semester of use ran unexpectedly smoothly with only few problems which
could be fixed very quickly. Students were developing relatively simple applications,
and the implementation seemed well tested and debugged for this level of use. In the
second semester students started developing more complex applications and un-
covered more bugs. They wrote many programs using combinations of constructs that
had not been fully tested (such as complex combinations of circular dependencies and
genericity). While there were an increased number of bugs, we could usually fix
problems quickly or at least offer a work-around, so that no student was held up very
long by system problems. There was, however, a significant list of known bugs for
several months. The problems lasted until the middle of the first semester 1998. By
that time a version of the system was produced that runs very reliably in the present
circumstances.

9.4 Problems

In the Department of Computer Science at the University of Sydney, the Blue system
was generally considered clearly superior, compared to competing systems, in terms
of its design and functionality. After a careful comparison of different options Blue
was chosen as the first year teaching language. There are, however, problems inherent
in the use of Blue that need to be recognised and addressed.

Stability

Stability, discussed above, is an important factor in all software and often a potential
problem in new and locally developed systems. The fact that Blue had not previously
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been used in a real-world teaching situation was a matter of concern. We tried to
address this problem by providing a bug-reporting system and technical help line (via
email and newsgroups) through which we dealt with arising questions and tried to
remove problems quickly.

Textbook

One of the major problems was the lack of a textbook for Blue. A good textbook is a
great help in running a course, both for the students and instructors. We instead
recommended a small set of books to students and provided extensive course notes.
The recommended books included language independent books on object-oriented
programming as well as books using other languages for examples. For one of those
books we reimplemented all examples, which were originally written in C++, in Blue
and made them available to the students. The course notes included selected parts
from other books, chapters written locally on specific issues and a Blue language and
environment manual.

For the second year in which Blue was used at Sydney University, the teaching staff
has written an extensive introductory text book for use with Blue. This book covers
general introductory topics as well as Blue language issues.

Popularity

One argument against the use of Blue was that it was not widely known. Since
students have not heard of it before, it was argued, it will be less popular and less
motivating than, say, C++ or Java. Our experience does not confirm this fear. We told
students very clearly and very honestly why we chose Blue as the teaching language,
namely that we believe that the use of Blue can teach them principles which are later
applicable to many languages, and that the understanding of those principles is more
important at this stage than the knowledge of specific details of a particular language.
Students generally seemed to understand or at least accept that argument, and we were
not confronted with demands to use a more ÒhypedÓ language.

Availability

One of the aims was to make Blue available to students for working at home on perso-
nal computers. Unfortunately, the port to Microsoft Windows, the most commonly
used system on home PCs, was not available on time. To somewhat alleviate the
problem we provided a CD to students that contained a modified Linux system and
the Linux version of Blue.17 The Linux system could be installed alongside Windows
in the same file system. To run Blue, the machine had to be booted in Linux and Blue
could then be executed.

                                                  

17 The CD and the Linux system on the CD were prepared by Michael Cahill, at the time an honours
student at the Basser Department of Computer Science.
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Surveys show that about half of the students installed and used this system at home. A
considerable number, however, had problems with the installation and some time and
extensive help was needed to get the Linux system working on their machines.

Overall, this solution is clearly only second-best, since installing a Linux system
invariably causes regular difficulties and requires some skills that not all students
have at that stage. Providing an easy-to-install Windows system still remains the goal,
and work on the Windows port continues.
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10 Future Work

The Blue project is an ongoing project that is still under development and will be for
some time. The work still to be done falls into five different categories:

· Completion and enhancements

· Evaluation

· Support materials

· Porting to other platforms

· Follow-on projects

10.1 Completion and enhancements

Work listed in this section includes functionality that was included in the original
Blue design, but was so far not implemented (completion), and additions or modifi-
cations to the originally specified design, typically a result of experience with the
current system (enhancements).

10.1.1 Completion

Group work

The group work mechanism described in section 7.10 has not been fully implemented.
It represents an important part of the environment for teaching a course with a
software engineering focus, since group work is an essential skill to be learned by
programmers. The implementation of this part is well under way and will be
completed shortly.
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Library browser

As described in section 7.9.5, an improved design for the class library browser has
been developed. The design extends the browserÕs functionality to include the
creation, management and use of multiple libraries. It allows personal libraries to be
created and libraries to be shared between individuals or groups. We expect this
extension to have a positive effect on the studentsÕ experience, because it takes reuse
beyond the idea of reusing standard libraries. It makes it easy for students to build
their own collection of reusable classes and thus does not only encourage reuse, but
also writing for reuse.

At the time of writing the design of the new library browser has been completed and
implementation has started.

GUI library

A graphical user interface library has been developed. This library will allow the
creation of Blue programs with graphical interfaces. The library is not essential for the
content of the introductory course Ð graphical interfaces are not necessary for learning
the basics of good program development. (In fact, if used too early or too extensively,
graphical user interfaces can convey a misleading impression of object-orientation to
the student. It is important, when teaching about classes and objects, to demonstrate
their applicability to real world problems outside the computing domain.) GUIs can,
however, have a very positive effect on student motivation. Students like to work with
graphical interfaces, and the fact that they can produce programs with professional
looking front ends creates a sense of excitement. This factor should be exploited by
the teacher, and a good class library should include classes for graphical interfaces.

The GUI library has been defined and implemented. It is currently in the debugging
stage.

10.1.2 Enhancements of functionality

Additional libraries

The class libraries currently supplied cover only the most essential functionality
(collections, input/output, GUIs and some utility classes, such as time, date and
random). BlueÕs functionality and flexibility could be significantly enhanced by
adding additional class libraries. Libraries for some form of persistence (e.g. with
operations for saving objects to disk) and libraries for database connectivity would be
especially useful. Currently no such libraries exist.

Heap display

A display of objects currently existing on the heap would extend the visualisation
techniques used from the static (class) model to the dynamic (object) model. Dis-
playing those objects and their relationships would help in debugging and could
increase the understanding of object-oriented concepts.
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Inspection of objects currently provides some of the functionality necessary for
visualising the object structure. Objects can be examined and the references between
objects can be uncovered. This technique is, however, only aimed at examining single
objects or a small number of them. As the number of objects increases, the view
provided by object inspection (which consists of a number of seemingly unrelated
dialogue boxes) fails more and more to present an easily understandable picture of the
relationships between objects.

A heap display would show all objects currently in existence, or a subset of them.
References between objects would be displayed, and the object state would be indi-
cated (either permanently on screen or made available on demand). It would not be
feasible to always display all objects, since thousands might exist at any one moment.
The display of several thousand objects would, in most cases, not be helpful. A heap
display tool would need to offer mechanisms for convenient management of selective
views. This might begin by initially visualising only one or more of the objects
available on the object bench. From there, the tool could offer commands to extend
single references (i.e. to display the object pointed to by a reference in the already
visible object) or to extend all references of a selected object. This could be done with
selectable depth: a command might be offered to extend all references from a given
object to the level of, say, three. This would recursively extend references until all
objects which are reachable from the starting point through three or less indirections
are visible. If this extension touches the same object twice (because it is referenced by
two other objects) it must, of course, be shown as a single object with two references
to it.

One of the problems of such a display is layout. It is not obvious how an appropriate
object layout could be managed automatically. The viewer would probably have to
offer a combination of manual and automatic layout which tries to guess a sensible
position for objects on display, but lets the user rearrange the graph. (This is similar to
the technique used for the class display.) It could offer several options for default
layout schemes, such as layouts for trees or lists, which the user could easily enable
and switch between. This would help if the user expects a certain data structure and
wants to give hints to the system as to a potentially good layout scheme.

Another important factor would be the connection of different representations of data
in different display formats. If, for instance, the debugger window is open, displaying
the stack, the heap display is visible displaying some objects, and some object
inspection windows are on screen, the same object (or references to it) might well be
visible on screen several times in these different system views. McDonald and
Stuetzle [McDonald 1990] have proposed a technique to help understand the connec-
tions between these different representations, termed ÒpaintingÓ of multiple views.
This approach provides commands to highlight one or more objects in one view (with
the ability to provide different simultaneous highlights in different colour) and the
highlight would be visible in all different views presenting the same object. This
technique might prove helpful for advanced debugging or experimentation exercises.

Heap display should also be integrated with the debugger. Heap visualisation in
conjunction with single stepping can create the effect of a simple algorithm
animation. The user could, for example, step through the creation code for a linked
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list and, if the heap display is updated after each instruction (which would probably
not be feasible during normal execution, but is possible in single stepping mode)
could watch the list being created in the heap.

Preliminary studies, including the design and implementation of a prototype have
been undertaken, but currently heap display does not exist in Blue and no work is
presently being done towards its development.

GUI interface builder

An interesting extension, once the GUI library is completed and released, is the
addition of an interface builder using the library. Several such builders exist for other
languages, and they are typically useful in creating graphical user interfaces quickly
and easily. The interface builder should be interactive and combine graphical and
textual editing capabilities. When interfaces are graphically built, the Blue code
needed to construct that interface should be created (and optionally displayed) on the
fly, and the user should have the option of editing the code directly and see the
resulting changes to the interface.

10.1.3 Enhancements of implementation

Much of the implementation could be improved in hindsight. As is always the case,
some of the problems became apparent only after a large part of relevant implemen-
tation had already been completed, and it was not always feasible to rewrite all of the
affected code to arrive at the optimal implementation. Undoubtedly a substantial
improvement could be made through a complete rewrite of the system. The Smalltalk
system developed at Xerox PARC, for example, was completely reimplemented several
times, and Krasner [Krasner 1984] reports a clear improvement in system quality
through this approach. The problem is workload: we do not have the time and people
needed for such a task.

We can, however, identify many separate areas in the system that would especially
benefit from reimplementation. While it is not helpful to discuss all of them in detail,
one of them Ð our experience with memory management and the lack of garbage
collection Ð is worth noting.

Garbage collection

Since Blue is implemented in C++, and C++ does not provide automatic garbage
collection, considerable effort had to be spent dealing with memory management. The
code needed to keep track of use of some implementation objects and to deallocate
their memory is some of the most complex code in the system. Type information for
Blue class and variable types, for instance, is held for some time, and typically
regenerated at each recompilation. The information generated by previous compila-
tions can typically be discarded at some stage, but the time when deletion of this
information is safe is sometimes hard to determine. (This is, by the way, one of the
disadvantages of tight integration: since the same information might be used by
different tools, it is not always easy to determine when the last possible access to an
implementation object has taken place.) Several bugs were found in early versions of
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the system, and it took a significant amount of time of testing and maintenance to
arrive at a stable implementation.

Several garbage collectors are now available for C++ systems. While we have not
evaluated any of them in detail, reports indicate that they work reliably and with
acceptable efficiency. Using one of those garbage collectors for the Blue implemen-
tation has the potential to increase the reliability of the system while removing some
of the most complex code.

10.2 Evaluation

One of the most important and most interesting projects following on from the deve-
lopment of the Blue system is a formal evaluation of its effects and effectiveness. We
have claimed numerous times that one or the other aspect of the Blue system has a
positive effect on the learning process for students. We have also claimed that the
Blue system in total provides advantages compared to other available systems. So far
nothing more than guessing (but at least: educated guessing based on the experience
of several people) and, at best, anecdotal evidence exists to substantiate our claims.

An evaluation is needed on at least two levels. A system useability study could un-
cover useability problems and suggest improvements to the user interface. An
example of such a study for a software development environment, the Dylan environ-
ment, is described in [Dumas 1995].

The second level involves an evaluation of teaching and learning aspects with the
Blue system. We need to find out whether our goals, that students gain a better under-
standing of object-oriented programming principles, were really achieved. It would be
necessary to analyse student knowledge and perceptions and to compare the use of
Blue to the use of other languages and environments. It would also be interesting to
investigate how students cope with the next language after having learnt Blue, and to
compare these results with students who started with a different language.

The work needed to undertake such a study requires careful planning and preparation
and should include input from education experts.

10.3 Support materials

Support materials play an important role in the acceptance of programming languages.
They can make the difference between a useful system and an unusable system.

While a set of support documents exists for Blue, others are still missing. So far, a
language specification, an environment manual, an editor manual, a web site and a set
of example programs exist. The web site contains references to these documents,
software and example programs for downloading, technical help documents and some
other information.
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Among the resources still missing are a complete textbook that uses Blue and the Blue
teaching approach, a library manual and a better introductory tutorial to using Blue.
Each of these documents can improve the usefulness of the Blue system as a whole.

10.4 Porting to other platforms

As mentioned above, Blue currently runs only on Solaris and Linux systems. Among
the possible ports to other platforms, Microsoft Windows is the most urgent.
Windows is used in many teaching institutions and by the majority of students at
home. The port to Windows (which includes Windows 95, 98 and NT) has been
almost completed and the system is currently in the debugging phase.

A port to Macintosh systems is also desirable, although it targets a far smaller user
group. Porting to Mac OS has not yet been started, and it is not yet clear whether we
will have the resources to attempt such a port.

10.5 Follow-on projects

Two new projects have been started as a result of this work. Both draw heavily on
experience gained with the Blue project and try to make some of BlueÕs benefits
available to a wider user group.

BlueJ

We have started to develop a Blue-like system for Java. The Blue language was
replaced with Java as the supported language, while the environment remains to a
large extent unchanged. The result will be an easy-to-use teaching system for Java.

For this project, we are reimplementing the complete system in Java. Using Java as
the implementation language will hopefully, because of its platform independence,
remove the problems with porting the system to various platforms.

This project is supported by a local Australian company, Softway Pty Ltd, and Sun
Microsystems.

A professional distributed environment

Many characteristics of Blue related to its integration, visualisation and interactivity
can be useful for professional software developers as well as students. We are plan-
ning to develop a professional software development environment that incorporates
many of BlueÕs tools and techniques. This environment will also explicitly support the
development of distributed applications, and execute itself as a distributed system.
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10.6 Summary

While a large amount of work has been completed, a never-ending stream of future
work continues to evolve. With a software system of this type, one cannot expect the
work to be completely finished at any stage. Only two types of software exist:
software that is not used and software that is continuously maintained. Since the
world around us changes, all programs that continue to be used will have to adapt to
different situations and expectations.

The Blue language definition is stable and will not be changed in the near future. The
environment is operational and has been used with great success. It remains to be seen
whether the Blue system or aspects of it will survive in the real world, on their own or
as part of a future system.
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11 Conclusion

Teaching object-orientation has become an increasingly important topic over the last
few years. Object-orientation has been accepted as an important computing paradigm,
and almost universal agreement has been reached that it should be taught at univer-
sities in the undergraduate curriculum. Increasingly, the trend is towards teaching an
object-oriented language in the first year.

Experience, however, shows that teaching object-oriented programming to first year
students remains difficult. Although object-oriented principles are now reasonably
well understood, and several important programming language designers more or less
agree in their definition and interpretation of  object-oriented concepts, their applica-
tion and their importance, the teaching of those principles still causes teachers more
problems than did previous programming paradigms.

In this thesis, we have identified the most significant problems in this area and
proposed solutions. The major contributions of this work are listed below.

· We have identified and discussed requirements for an object-oriented teaching
language. These requirements are formulated in general terms and may be used
to evaluate any given language in terms of its usefulness for introductory
teaching. They can also be used as design guidelines in the development of a
new language for this purpose.

·  We have identified requirements for an object-oriented teaching environment.
The importance of environments was discussed and a basis established on
which to evaluate environments for their suitability in teaching situations.

·  The most important object-oriented languages were analysed and evaluated
against the requirements. We have clearly identified strong and weak aspects of
each particular language and assessed their suitability for our purpose. A similar
analysis was done for some environments.

· We have designed a language that meets the requirements identified earlier. The
language Blue has the potential to significantly ease the teaching of object-
orientation to beginners through a unique mix of constructs which emphasise
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clarity, simplicity and conceptual understandability. Many constructs which are
overly complex or redundant in existing languages were simplified while still
being similar enough to other imperative object-oriented languages to serve as
an ideal stepping stone to more professionally oriented systems in later years.
The language design was driven strongly by a focus on its use as a dedicated
teaching language, avoiding many problems encountered with languages
currently used in teaching situations. The language is fully defined. Most
interesting language aspects and design decisions are discussed here; a more
formal language reference manual is available (see Appendix B for download
locations).

·  An integrated environment for teaching was designed which meets the stated
requirements. This environment has many features which make it more suitable
for teaching than other environments currently available. Most notable is its
sophisticated support for program development coupled with a simple appear-
ance and ease-of-use. The environment includes most of the important software
development tools, including a project manager, an editor, a compiler, a debug-
ger and a class browser. The interface is highly visual and interactive.

·  For the integrated environment, we have designed an object interaction tech-
nique that allows direct manipulation of objects. The user can interactively
create object instances, interact with these instances (e.g. invoke operations on
those objects) and interactively test individual classes. This mechanism allows
incremental development of applications. Object interaction is not usually
available in environments for strongly typed languages, and this facility is
particularly useful in a teaching situation.

·  The complete system, including the integrated environment and the compiler,
has been implemented and extensively tested. It has been used in a large
computer science department for first year teaching. This practical application
has confirmed our claims about advantages of our design and proves the
feasibility of the techniques discussed.

The Blue system as a whole demonstrates how the integrated development of a
language and a carefully chosen set of support tools can lead to an environment that
offers much better teaching support than existing systems on the market. The tight
integration of available tools and the close relationship between the environment and
the language enable the provision of functionality not previously available to teachers
and students.

A large number of students (about 1500 students over two years) have learnt to
program using the Blue system for their first year. Although no formal evaluation has
been undertaken it has become evident through feedback from students and teachers
that many of our goals were achieved.

The design and implementation of Blue has lead to the identification and development
of numerous techniques and constructs generally useful for programming environ-
ments, independent from its application as a teaching system. Those ideas will flow
into new projects, some of which are already under development.
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Appendix A: Related documents

The following documents were produced as part of this PhD thesis:

Papers

Requirements for a first Year Object-Oriented Teaching Language, M. K�lling, B.
Koch and J. Rosenberg, in ACM SIGCSE Bulletin, ACM, Nashville, 173-177,
March 1995.

Blue - A Language for Teaching Object-Oriented Programming, M. K�lling and J.
Rosenberg, in Proceedings of 27th SIGCSE Technical Symposium on Computer
Science Education, ACM, Philadelphia, Pennsylvania, 190-194, March 1996.

An Object-Oriented Program Development Environment for the first Programming
Course, M. K�lling and J. Rosenberg, in Proceedings of 27th SIGCSE
Technical Symposium on Computer Science Education, ACM, Philadelphia,
Pennsylvania, 83-87, March 1996.

Testing Object-Oriented Programs: Making it Simple, J. Rosenberg and M. K�lling,
in Proceedings of 28th SIGCSE Technical Symposium on Computer Science
Education, ACM, San Jose, Calif., 77-81, February 1997a.

I/O Considered Harmful (At least for the first few weeks), J. Rosenberg and M.
K�lling, in Proceedings of the Second Australasian Conference on Computer
Science Education, ACM, Melbourne, 216-223, July 1997b.

On Creation, Equality and the Object Model, M. K�lling and J. Rosenberg, School of
Computer Science and Software Engineering, Monash University, Technical
Report 98/16, July 1998. Conference publication in preparation.

Support for Object-Oriented Testing, J. Rosenberg and M. K�lling, publication in
preparation.

Manuals

All manuals are available in PostScript format from the Blue web site (address
below).

Blue - Language Specification, Version 1.0, M. K�lling and J. Rosenberg, School of
Computer Science and Software Engineering, Monash University, Technical
Report TR97-13, 80 pages, November 1997.

The Blue Programming Environment Ð Reference Manual, M. K�lling, School of
Computer Science and Software Engineering, Monash University, to be
published as Technical Report, 27 pages, 1998.
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Blue Ð Abstract Machine Language Manual, S. Fetzer, M. K�lling and J. Rosenberg,
School of Computer Science and Software Engineering, Monash University, to
be published as Technical Report, 54 pages, 1998.

The Red User Manual, M. K�lling, Monash University 1997,
http://www.csse.monash.edu.au/~mik/red-manual.

Web Pages

The Blue Page - Teaching Object Oriented Programming, M. K�lling,
http://www.sd.monash.edu.au/blue/

Blue Resources, M. K�lling,
http://www.sd.monash.edu.au/blue/resources/

The Red User Manual, M. K�lling,
http://www.csse.monash.edu.au/~mik/red-manual

Software

Blue - An integrated software development environment for the Blue language,
written in C++ for X Windows/Motif, approx. 90,000 lines. Available for
Solaris 2.5 and Linux. Port to Windows 95 and Windows NT is well advanced
and expected before the end of 1998. Available free of charge. See Appendix B
for download locations.

Red - A stand-alone version of the text editor used in the Blue system. Available for
Solaris 2.5 and Linux free of charge. See Appendix B for download locations.

packbp - A Unix utility to archive and compress Blue projects. Used to transfer
projects from one system to another. Included in the full Blue distribution
package.
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Appendix B: Download Locations

The software and manuals developed as part of this work can be downloaded over the
internet. The following list gives WWW and ftp addresses. All text files are in
PostScript format.

package address and directory notes

The Blue system ftp.sd.monash.edu.au
   directory: /pub/mik/blue/

file names include
operating system and
version number; please list
directory to see current
version

Red (binaries) ftp.sd.monash.edu.au
   directory: /pub/mik/red/binaries/

file names include
operating system and
version number; please list
directory to see current
version

Red (source) ftp.sd.monash.edu.au
   directory: /pub/mik/red/

file names include
operating system and
version number; please list
directory to see current
version

Language
Specification

ftp.sd.monash.edu.au
   directory: /pub/mik/blue/doc/

file name is spec-XXX.ps,
where XXX is a version
number

Environment
Reference
Manual

ftp.sd.monash.edu.au
   directory: /pub/mik/blue/doc/

file name is
env-man-XX.ps, where XX
is a version number

The Red User
Manual

http://www.sd.monash.edu.au/~mik/red-manual/
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Appendix C: CD contents

The CD attached to this thesis contains copies of the Blue system, version 0.9.7. The
top level directory structure is as follows:

README.txt A text (ASCII) file explaining the CD contents

Linux A directory containing Blue executables for Linux

Solaris A directory containing Blue executables for Solaris 2.5/2.6

Windows A system to be installed on a Microsoft Windows system. Note that
this is not a native Windows version. Instead, installing this
archive will install a modified Linux system within the Windows
file system and the Blue version for Linux. The Linux system is
modified to use the Windows file system format, so the disk does
not need to be partitioned.

The Linux and Solaris versions also contain copies of the stand-alone version of the
Red text editor.

All directories contain README files with detailed installation instructions. To
install any of the versions on your system, read the README file in the sub-directory
for your operating system and follow the instructions.
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