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Abstract: This paper focuses on a class of control systems with delayed states and nonlinear 
disturbances using sliding mode techniques. Both matched and mismatched uncertainties are 
considered which are assumed to be bounded by known nonlinear functions. The bounds are used 
in the control design and analysis to reduce conservatism. A sliding function is designed and a set 
of sufficient conditions is derived to guarantee the asymptotic stability of the corresponding 
sliding motion by using the Lyapunov-Razumikhin approach which allows large time varying 
delay with fast changing rate. A delay dependent sliding mode control is synthesised to drive the 
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of the proposed method is demonstrated via a case study on a continuous stirred tank reactor 
system. 

Keywords: stabilisation; sliding mode control; time delay; Lyapunov-Razumikhin approach; 
uncertain systems. 

Reference to this paper should be made as follows: Onyeka, A.E., Yan, X-G., Mao, Z. and  
Mu, J. (xxxx) ‘Stabilisation of time delay systems with nonlinear disturbances using sliding 
mode control’, Int. J. Modelling, Identification and Control, Vol. X, No. Y, pp.xxx–xxx. 

Biographical notes: Adrian E. Onyeka received his HND and BTech in the Federal Polytechnic 
Nekede and Federal University of Technology, respectively in Owerri, Nigeria. He obtained his 
MSc in Electronics and Electrical Engineering in the Anglia Ruskin University, Cambridge UK 
in 2014. Prior to that, he has worked as an Academic at the Imo state University, Owerri Nigeria. 
Currently, he is a PhD candidate in the School of Engineering and Digital Arts, University of 
Kent, Canterbury, UK. His research interest includes variable structure control for time delay 
systems and decentralised power system control. 

Xing-Gang Yan received his BSc degree from Shaanxi Normal University, in 1985, his MSc 
degree from Qufu Normal University in 1991, and his PhD from Northeastern University, China 
in 1997. Currently, he is a Senior Lecturer at the University of Kent, UK. He was a Lecturer in 
Qingdao University, China from 1991 to 1994. He worked as a Research Fellow or Research 
Associate in China, Singapore and UK. His research interests include sliding mode control and 
decentralised control. He is a co-author of over 160 referred papers including three books. 

Zehui Mao received her PhD in Control Theory and Control Engineering from the Nanjing 
University of Aeronautics and Astronautics, Nanjing, China, in 2009. She is now an Associate 
Professor at the College of Automation Engineering in the Nanjing University of Aeronautics 
and Astronautics, China. And she was a Visiting Scholar in the University of Virginia. She  
 



2 A.E. Onyeka et al.  

worked in the areas of fault diagnosis, with particular interests in nonlinear control systems, 
sampled-data systems and networked control systems. Her current research interests include fault 
diagnosis and fault-tolerant control of systems with disturbance and incipient faults, and high 
speed train and spacecraft flight control applications. 

Jianqiu Mu received BEng in Electrical Engineering and Automation from the Chongqing 
University, Chongqing, China, in 2012, MSc (distinction) in Advanced Electronic System 
Engineering and PhD in Electronic Engineering from the University of Kent, Canterbury, UK, in 
2013 and 2018 respectively. His current research interests include sliding mode control, 
decentralised control, nonlinear control systems, mobile robots and autonous vehicles. 

This paper is a revised and expanded version of a paper entitled ‘Sliding mode control of  
time-delay systems with delayed nonlinear uncertainties’, presented at 20th World Congress of 
the International Federation of Automatic Control (IFAC), Toulouse, France, 9–14 July 2017. 

 

1 Introduction 
Over the past decades, time delay systems as often referred 
to as after-effect systems have been an active area of 
research in a wide range of natural and social sciences. They 
belong to a class of functional differential equations, 
existing widely in the practical world, and are mostly 
encountered in numerous engineering systems such as 
electrical networks, chemical reactors, and hydraulic, 
pneumatic and manufacturing processes to mention but a 
few (Gu et al., 2003; Richard, 2005; Zhao et al., 2015). 
Time delay is usually a source of instability and 
performance degradation in control systems which needs to 
be considered seriously in design, and as such, has received 
considerable attention over the past years, see, e.g., Richard 
(2003), Yan et al. (2014a) and references therein. 

Motivated by recent development in large-scale system 
design, multiple or large time delay arise in systems due to 
vast network complexity. As a result, various techniques 
have been developed in trying to circumvent the effect of 
uncertain dynamical time delay systems (Richard, 2003; 
Yan et al., 2014a; Chen et al., 2017). Linear matrix 
inequality (LMI) techniques are applied in Ramakrishnan 
and Ray (2015) and Wang et al. (2016), but require that the 
considered systems are linear and the nonlinear uncertainty 
satisfy linear growth condition. Lyapunov-Razumikhin 
technique is applied in this paper which focuses on 
developing a robust system with large time delay and fast 
change rate, which has improved the requirement of the 
bounds on the delays compared with recent results (Gao  
et al., 2014; Qi et al., 2017; Jia et al., 2017). In addition, the 
design parameters can be obtained via LMI techniques 
systematically. It should be noted that one method which 
has proved very effective in dealing with uncertainties in the 
system is the sliding mode control due to its strong 
robustness properties against parametric uncertainties and 
external disturbances in the input channel, as well as its 
attractive features such as fast and good transient response 
(Zhen et al., 2014; Edwards and Spurgeon, 1998; Mu et al., 
2017). 

Due to its high robustness, sliding mode control has 
been extended to time delay systems with disturbances, and 
most of the existing results are in combination with other 
techniques such as LMI (Wu et al., 2014), optimal control 

(Nikkhah et al., 2006), adaptive control (Baek et al., 2016), 
decentralised control (Yan et al., 2014b), where the 
common goal is to present less conservative conditions to 
guarantee high performance of systems considered. It 
should be noted that sliding mode control techniques can 
also be used to deal with mismatched uncertainties (Ghabi, 
2018; Yan et al., 2017). 

The problem of sliding mode control for uncertain time 
delay systems has been a continuous area of interest and 
development. Recent work carried out in this area involved 
different technique when compared with traditional sliding 
mode control, e.g., integral sliding surface where the 
reaching phase is eliminated (Cao and Xu, 2004; 
Vaidyanathan and Rhif, 2017), are different from the usual 
or conventional sliding surface which has a reaching phase 
in Edwards and Spurgeon (1998) or that it only considered 
matched uncertainty (Nikkhah et al., 2006), while in Hua  
et al. (2008) and Xu et al. (1997) it is required that the 
bounds on the uncertainties satisfy the linear growth 
condition. Moreover, two main techniques based on 
Lyapunov-Krasovskii functional and Lyapunov-Razumikhin 
function have been largely used to deal with time delay. 

It should be noted that sliding mode control for time 
delay with nonlinear disturbances has been studied in Yan  
et al. (2010) where static output feedback was considered, 
which has strong limitation on the system including the 
bounds on the uncertainties. Cao and Xu (2004) proposed 
the robust sliding mode control of nonlinear uncertain 
systems by analysing the lump estimated disturbances via a 
disturbance observer. Although static output feedback or 
observer-based output feedback controllers have certain 
advantages in real implementation, strong limitations is 
unavoidably required. In reality, sometimes, all the system 
states for example, the position and speed of a mechanical 
system, may be available and thus state feedback will be 
possible, which will largely reduce the limitation of the 
considered system. Moreover, the bounds on uncertainty 
can be much relaxed when compared with output feedback 
design scheme. Optimal guaranteed cost sliding mode 
control of interval type-2 fuzzy time-delay systems was 
proposed in Li et al. (2017) where Lyapunov-Krasovskii 
technique was used to analyse the delay bound. However, 
due to evolving complex systems, developing large time 
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delay bound may be necessary. It should be noted that the 
Lypunov-Krasovskii method usually requires that the time 
varying delay is differentiable and there is limitations on the 
rate of change of time delay. Hence, Lyapunov-Razumikhin 
method which is used for large constant and time varying 
delay is used to circumvent this effect. 

This work proposes a sliding mode control scheme for a 
class of time delay control systems with nonlinear delayed 
disturbances. The assumptions for nonlinear terms are 
imposed on the transformed systems to avoid unnecessary 
conservatism caused by coordinate transformation in 
theoretical analysis. Lyapunov-Razumikhin approach is 
used to derive a set of conditions to guarantee that the 
derived sliding motion is asymptotically stable in the 
presence of time delay. Then under assumption that all the 
system states are accessible, sliding mode control is 
synthesised such that the controlled system is driven to the 
sliding surface in finite time and maintains sliding motion 
thereafter. Case study on a continuous stirred tank reactor 
(CSTR) is provided to show the feasibility of the developed 
results and the effectiveness of the proposed method. The 
main contribution is summarised as follows: 

1 The known bounds on the uncertainties are fully 
applied in the controller design to reject the effects of 
the uncertainties on system performance. 

2 Compared with associated existing work, the proposed 
approach not only allows the bounds on the 
uncertainties have more general nonlinear form but all 
the design parameters relating to the sliding motion can 
be obtained using LMI techniques. 

3 Both matched and mismatched uncertainties are 
considered and the bounds on matched and mismatched 
uncertainties involve time varying delay. 

4 There is no limitation to the change rate of the  
time-varying delay which allows fast changing rate of 
the time varying delay. 

2 Preliminaries 
First, recall some basic linear system theory. Consider a 
linear system 

x Ax Bu= +  (1) 

where ,n mx u∈ ∈R R  are states and inputs respectively, 
with m < n. The matrix pair (A, B) is of appropriate 
dimensions whereas B is of full rank. Assume that the 
matrix pair (A, B) is controllable. Then from basic matrix 
theory, it can be shown that a coordinate transformation  
z = Tx exists such that the matrix pair (A, B) in the new 
coordinates z has the following structure (Edwards and 
Spurgeon, 1998; Yan et al., 2017): 

11 12

21 22 2

0
,

A A
A B

A A B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (2) 

where ( ) ( )
11 ,n m n mA − × −∈R  and 2

m mB ×∈R  is non-singular. 
It should be noted that such a transformation can be 
obtained systematically using matrix theory. Further, from 
Edwards and Spurgeon (1998), the fact that (A, B) is 
controllable implies that (A11, A12) is controllable, and thus 
there exists a matrix ( )m n mM × −∈R  such that the matrix  
A11 – A12M is Hurwitz stable. In order to deal with time 
delay systems, the following well-known Razumikhin 
theorem is required. 

Consider a time-delay system 

( ) ( , ( ( )))x t f t x t d t= −  (3) 

with an initial condition 

( ) ( ), , 0x t t t d⎡ ⎤= ∈ −⎣ ⎦φ  

where , 0: n
df C+

⎡ ⎤−⎣ ⎦
×R R  takes (×R bounded sets of 

, 0 )dC⎡ ⎤−⎣ ⎦
 into bounded sets in ;nR  d(t) is the time-varying 

delay and : sup { ( )} .td d t+∈= < ∞R  

Lemma 1: [Razumikhin Theorem, Gu et al. (2003)] 

If there exist class ∞K  functions γi(·) with i = 1, 2, a class 
K  function γ3(·) and a continuous function 

1( ) : , nV d +⎡ ⎤⋅ − ∞ ×⎣ ⎦ R R  satisfying  

( ) ( )1 1 2( , ) , , , nγ x V t x γ x t d x⎡ ⎤≤ ≤ ∈ − ∞ ∈⎣ ⎦ R  (4) 

such that the time derivative of V1 along the solution of 
system (3) satisfies 

( )1 3( , )V t x γ x≤ −  (5) 

whenever 

1 1( , ( )) ( , ( ))V t θ x t θ V t x t+ + ≤  (6) 

for any , 0 ,θ d⎡ ⎤∈ −⎣ ⎦  then the system (3) is uniformly 
stable. If, in addition, γ3(τ) > 0 for τ > 0, and there exists a 
continuous non-decreasing function γ4(·) which satisfies 
γ4(τ) > τ for τ > 0 such that inequality (6) is strengthened to 

( )1 3( , )V t x γ x≤ −  

whenever 

( )1 4 1( , ( )) ( , ( ))V t θ x t θ γ V t x t+ + ≤  (7) 

for any , 0 ,θ d⎡ ⎤∈ −⎣ ⎦  then system (3) is uniformly 
asymptotically stable. 

Lemma 2: (see Yan et al., 2012) 

Let the matrix 1
m nN ×∈R  and vectors mx ∈R  and 

.ny ∈R  Then, the inequality 

1
1 1 22 1

1
2 2

T T T Tx N y x N N N x y N y−≤ + ε
ε

 (8) 
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holds for any symmetric positive-definite matrix 2
n nN ×∈R  

and any positive constant .ε  
The results above will be used in the subsequent 

analysis. 

3 Problem formulation 
Consider a time varying delay system with delayed 
disturbance described by 

( )( ) ( ), , , ,d d d dx Ax A x B u G t x x F t x x= + + + +  (9) 

where Ω (Ωnx ∈ ⊂R  is an neighbourhood of the origin), 
mu ∈R  are the states and inputs respectively; A, n n

dA ×∈R  
and ( )n mB m n×∈ <R  are constant matrices with B being of 
full rank. The vectors ( )G ⋅  and ( )F ⋅  represent the matched 
and mismatched disturbances affecting the system 
respectively. The symbol xd := x(t – d) represents the 
delayed state where d := d(t) is the time varying delay which 
is assumed to be known, continuous, non-negative and 
bounded in : { | 0},t t+ = ≥R  that is 

: sup{ ( )}
t

d d t
+∈

= < ∞
R

 

The initial condition related to the time delay is given by 

( ) Φ( ), , 0x t t t d⎡ ⎤= ∈ −⎣ ⎦  (10) 

where Φ(·) is continuous in [ , 0].d−  It is assumed that all 
the nonlinear functions are smooth enough for the 
subsequent analysis, which guarantees that the unforced 
system has unique continuous solutions. 

In this paper, the objective is to design a sliding mode 
control for the system (9) under the assumption that all the 
system states and time delay are available for the design, 
such that the corresponding closed loop system is 
asymptotically stable in the presence of time delay and 
uncertainties, with focus on disturbance tolerability but of 
convenient parameter design methodology. 

4 System analysis and basic assumptions 
In this section, a sliding surface will be designed for  
system (9) and the stability of corresponding sliding motion 
will be analysed. First, it is necessary to impose the 
following fundamental assumptions on the system (9). 

Assumption 1: The matrix pair (A, B) is controllable. 

From Section 2, it follows that under Assumption 1, there 
exists new coordinates 

z Tx=  (11) 

such that in the new coordinates z, the system (9) can be 
described by 

( )
1 11 1 11 1 12 2 12 2

1

( ) ( )
, ,

d d

d

z A z A z t d A z A z t d
F t z z

= + − + + −
+

 (12) 

( ) ( )
2 21 1 21 1 22 2 22 2

2 2 2

( ) ( )
( ) , , , ,

d d

d d

z A z A z t d A z A z t d
B u t B G t z z F t z z

= + − + + −
+ + +

 (13) 

where z(t) = col(z1, z2) with 1
n mz −∈R  and 2 ,mz ∈R   

zd = col(z1(t – d); z2(t – d)) with 1( ) n mz t d −− ∈R  and 

2 ( ) ,mz t d− ∈R  and 

11 121

21 22

A A
TAT

A A
− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

11 121

21 22 2

0
,d d

d
d d

A A
TA T TB

A A B
− ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

where A11, ( ) ( )
11 ,n m n m

dA − × −∈R  A12, ( )
12 ,n m m

dA − ×∈R   
A21, ( )

21 ,m n m
dA × −∈R  A22, 22 2,m m m m

dA B× ×∈ ∈R R  is  
non-singular, and 

( ) ( ) 1, ( ), ( ) , , |d d x T zG t z t z t G t x x −==  (14) 

( )
( )

( ) 1
1

2

, ( ),
: , ( ), |

, ( ),
d

d x T z
d

F t z t z
TF t x t x

F t z t z
−=

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
 (15) 

where 1( ) n mF −⋅ ∈R  and 2 ( ) .mF ⋅ ∈R  Specifically, the 
matrix pair (A11, A12) is controllable and thus there exists 
matrix ( )m n mM × −∈R  such that 

11 12A A M−  

is asymptotically stable. Therefore, there exists P > 0 such 
that 

( ) ( )11 12 11 12 0TA A M P A A M P− + − <  (16) 

Assumption 2: The uncertain terms G(·), F1(·) and F2(·) in 
(13) satisfy: 

( ) ( ), ( ), , ( ),d dG t z t z t z t z≤ φ  (17) 

( ) ( )1 1, ( ), , ( ),d dF t z t z ρ t z t z≤  (18) 

( ) ( )2 2, ( ), , ( ),d dF t z t z ρ t z t z≤  (19) 

where φ(·), ρ1(·) and ρ2(·) are known nonnegative continuous 
functions. 

Remark 1. Assumption 2 holds if the uncertainties ( )G ⋅  and 
( )F ⋅  in (9) are bounded by known nonnegative continuous 

functions. In this paper, the bounds on G(·) and F2(·) are 
assumed to be known which will be used in control design 
in order to enhance the robustness against the corresponding 
uncertainties. 
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5 Sliding motion analysis and control design 
Based on the assumptions in Section 4, the main aim of this 
section is to achieve robust stability of system (12)–(13) in 
the presence of disturbances and delay in using sliding 
mode control which guarantees a sliding motion occurs in 
finite time. From Section 2, it follows that under 
Assumption 1, the sliding function is defined as 

1 2( ) ( ) ( )σ z Mz t z t= +  (20) 

where ( )m n mM × −∈R  is a designed matrix which satisfies 
(16). When the system is limited to the sliding surface 

( ) 0σ z =  (21) 

it follows that z2 = –Mz1. 
From the structure of system (12)-(13), the sliding 

motion of system (9) associated with the sliding surface (21) 
is dominated by system (12). When dynamic (12) is limited 
to the sliding surface (21), it can be described by 

( ) ( )
( )

1 11 12 1 11 12 1

1 1 1

( )
, ( ),

d d

δ d

z A A M z A A M z t d
F t z t z

= − + − −
+

 (22) 

where 

( ) ( ) 2 11 1 1 1, , , , |δ d d z MzF t z z F t z z =−=  (23) 

with z = col(z1, z2) and F1(·) defined in (12). 

Remark 2. System (22) is the sliding mode of  
system (12)–(13) corresponding to the sliding surface (21). 
It should be noted that the mismatched uncertainty F1δ(·) is 
the uncertainty F1(·) when it is limited to the sliding surface 
(21). 

From equation (22) it is clear to see that the mismatched 
uncertainty F1δ(·) can affect the sliding mode dynamics and 
as such it is necessary to impose some constraint on it in 
order to guarantee asymptotic stability of the sliding motion. 

Assumption 3: There exist known function μ(·) such that the 
uncertainty F1δ(·) in (22) satisfies 

( )1 , , ( , )δ d dF t z z μ t z z≤  (24) 

The following results are ready to be presented. 

5.1 Stability analysis of sliding motion 

Theorem 1: Under Assumptions 1 and 3, the sliding motion 
of system (12)–(13) associated with the sliding surface (21), 
governed by system (22) is uniformly asymptotically stable 
if there exist a scalar 0>ε  and a real positive definite 
matrix P such that the inequality 

( ) ( )1
min max 1 1

max2 ( ) ( ) 0

T T
o oA P PA k PA P A P

k μ P

−+ − −

− ⋅ >

λ λ

λ
 (25) 

holds, where max

min

(1 ) ( ) , 0
( )

Pk
P

+= >ε
ε

λ
λ

 and μ(·) is a known 

non-negative function. 

Proof: For sliding mode (22), consider the candidate 
Lyapunov function 

1 11 ( ) ( )TV z t Pz t=  (26) 

Then the time derivative of V1 along the trajectory of the 
system (22), is given by 

( )
( )

1 (22) 1 1 11 1

1 1 11

| ( ) ( ) 2 ( )
2 ( ) , ( ), ( )

T T T
o o

T
δ

V z t A P PA z t z PA z t d
z t PF t z t z t d

= + + −

+ −
 (27) 

where A1 = Ad11 – Ad12M and F1δ is defined in (23). 
From Lemma 2, it follows that 

1 1 11 1
1

1 11 1

2 ( ) ( ) ( ) ( )
( ) ( )

T T

T T

z t PA z t d z t d Pz t d
z t PA P A Pz t−

− ≤ − −
+

 (28) 

From (27) and (28) it is observed that the derivative V1 
along the trajectory of system (22) can be described by 

[ ]
( )

1 (22) 1 11 1
1

1 1 1 1 11 1 1

| ( ) ( ) ( ) ( )
( ) ( ) 2 , ( ), ( )

T T T
o o

T T T
δ

V z t A P PA z t z t d Pz t d
z t PA P A Pz t z PF t z t z t d−

= + + − −

+ + −
 (29) 

Applying the Razumikhin condition (see Lemma 1), for 
some positive constant (1 )q = + ε  with 0,>ε  the following 
inequality holds: 

1 11 1( ) ( ) (1 ) ( ) ( )T Tz t d Pz t d z t Pz t− − ≤ + ε  (30) 

From (30), it follows that 
2

min 1 11
2

max 1

( ) ( ) ( ) ( )

(1 ) ( )

TP z t d z t d Pz t d

P z

− ≤ − −

≤ + ε

λ

λ
 (31) 

Thus 
2 2

1 1( )z t d k z− ≤  (32) 

where k is defined in (25). From (24), (29) and (32), 

( )
( )(

)

2 2
1 (22) min 1 1

2 21
max 1 1 max 11

1
min max 1 1

2
max 1

| ( )

2 ( )

( )

2 ( ) ( )

T

T

V Q z k z

PA P A P z k μ P z

Q k PA P A P

k μ P z

−

−

≤ − +

+ +

= − − −

− ⋅

λ

λ λ

λ λ

λ

 (33) 

From (25), it follows that V  is negative definite. Hence the 
result follows. 

Remark 3. Theorem 1 gives a sufficient condition which 
guarantee the asymptotic stability of the designed sliding 
motion. However, the left hand side of the inequality (25) is 
a function due to μ(·), and thus it is difficult to obtain the 
design parameters to complete sliding mode design. In order 
to make the parameters more accessible, the LMI technique 
is used based on the following assumption. 

Assumption 4: There exist known constants �1 and �2 such 
that the uncertainty F1(·) in (12) satisfies 

( ) ( ) 2 2
11 1 2, ( ), , ( ), ( )T T T

d d ddF t z t z F t z t z z t z z≤ +ϖ ϖ  (34) 

Comment [a1]: Author: Please 
confirm if this is correct. 
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Remark 4. Assumptions 2 and 3 are limitations to the 
nonlinear uncertainties. The bounds on G(·) and F2(·) in (17) 
and (19) have general nonlinear form and involve time 
delay. In order to use LMI techniques to obtain the design 
parameters for sliding surface design, Assumption 3 is 
imposed on the mismatched uncertainty F1(·) to facilitate 
the sliding motion analysis. However, it is not required that 
the bounds on uncertainty F  in (9) satisfies linear growth 
condition. This is in comparison with many existing work 
(Gao et al., 2014; Qi et al., 2017; Hua et al., 2008; Xu, 
1997) where sliding mode techniques are employed and 
(Ramakrishnan and Ray, 2015; Wang et al., 2016) where 
LMI is used. 

From (34) and (23), it follows that 

( )

( )

( )

( )

( )( )
( )( )

12
1 11 11

1

12
12 1

1

2 2
1 1 11 1 1 2 1

1 1

2
max 11 1

2
max 12 1

( ) ( )

( )
( ) ( )

( )

( ) ( )

( ) ( )

1

1 ( ) (

TT T
δδ

TT

T T T T

T

T T

T T

z
F F z Mz

Mz

z t d
z t d Mz t d

Mz t d

z z z M M z z t d z t d

z t d M M z t d

M M z z

M M z t d z

⎡ ⎤⎡ ⎤⋅ ⋅ ≤ −⎣ ⎦ ⎢ ⎥−⎣ ⎦
⎛ − ⎞⎡ ⎤⎡ ⎤+ − − −⎜ ⎟⎢ ⎥⎣ ⎦ − −⎣ ⎦⎝ ⎠
⎡ ⎤= + + − −⎡⎣ ⎦ ⎣

⎤+ − − ⎦

≤ +

+ + −

ϖ

ϖ

ϖ ϖ

ϖ

ϖ

λ

λ

1 1 2 11 1

)
( ) ( )T T

t d
ψ z z ψ z t d z t d

−
≤ + − −

 (35) 

where 

( )[ ]2
1 max1 1 Tψ M M= +ϖ λ  (36) 

( )[ ]2
2 max2 1 Tψ M M= +ϖ λ  (37) 

where �1 and �2 are constants satisfying (34). 

Theorem 2: Under Assumptions 1 and 3, the sliding motion 
of system (12)–(13) associated with the sliding surface (21), 
governed by system (22) is uniformly asymptotically stable 
if there exist scalars α > 0, 0>ε  and a real positive definite 
matrix P such that the following LMI holds  

0oW P
P I

⎡ ⎤
<⎢ ⎥−⎣ ⎦α

 (38) 

where 
1

1 1

11 12

1 11 12

1 2

(1 )T T
o o o

o

d d

W A P PA P PA P A P I
A A A M
A A A M

ψ ψ k

−= + + + + +
= −
= −
= +

βα

β

ε

 

where k, ψ1 and ψ2 are defined in (25), (36) and (37) 
respectively, and M is defined in (20). 

Proof: Using Lyapunov function (26), the time derivative of 
V1 along the trajectory of the system (22), is given by (27). 

Then from (35) and (32), it follows that 

( )

11
2

1 1 2 11

1 1 2 11 1

1 2 11

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

T
δδ

T

T T

T

F F

ψ z t z t ψ z t d
ψ z t z t ψ kz t z t
ψ ψ k z t z t

⋅ ⋅

≤ + −

≤ +
= +

 (39) 

where ψ1 and ψ2 are defined in (37). 
Using (39), by similar analysis as in Theorem 1, the 

proof of the time derivative of V1(·) is given by 

[ ]

1 (22)

1
1 11 1

1 1 11

1 1

1 1

|

( ) (1 ) ( )

2 , ( ), ( )

( )
0

T T T
o o

T
δ

T

δ δ

V

z t A P PA P PA P A P z t

z PF t z t z t d

z t W P z
F P F

−

=

+ + + +⎡ ⎤⎣ ⎦
+ −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ε

 (40) 

where 
1

1 1(1 ) , 0T T
o oW A P PA P PA P A P−= + + + + >ε ε  (41) 

The inequality (39) can be rewritten as 

1 1

1 1

( ) 0
0

0

T

δ δ

z t I z
F I F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

β
 (42) 

where β = ψ1 + ψ2k. 
It can be seen from (40) and (42) that, 

1 1
1 (22)

1 1

1 1

1 1

1 1

1 1

( ) 0 ( )
|

0 0

( )

( )

T

δ δ

T

δ δ

T
o

δ δ

z t W P I z t
V

F P I F

z t W I P z
F P I F

z t W P z
F P I F

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≤ +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

β
α

βα
α

α

 (43) 

where α is a positive constant, Wo and W are defined by (38) 
and (41) respectively. By applying inequality (38) to (43), it 
follows that V  is negative definite. Hence the result 
follows. 

Remark 5. It should be noted that the inequality in (25) in 
Theorem 1 involves function μ(·) which makes it difficult to 
determine the design parameters, although Theorem 1 is less 
conservative. In connection with this, a set of conditions has 
been expressed in LMI to guarantee the stability of sliding 
motion and thus, the associated design parameters can be 
obtained systematically using LMI techniques. This is in 
comparison with the work (Yan et al., 2010). 

Remark 6. From the proof of Theorem 2, it follows that it is 
unnecessary to assume that the bound on the uncertainty 
F1(t, z(t), zd(t)) has the special form in (34). Actually, it is 
only required that the bound on F1δ(·) defined in (35) has the 
special form in (34). Therefore, in this paper, the 
requirement on the bound on mismatched uncertainty is 
relaxed which is allowed to have more general form. 
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5.2 Sliding mode control design 

The objective now is to design a state feedback sliding 
mode control law such that the system state is driven to the 
sliding surface (21) in finite time. The following control is 
proposed: 

( ){(
} )

1
2 1 12

2

( ) Γ , ( ), ( )

( ) sgn( ( ))

du t B B t z t z M ρ

ρ η σ z

−= − + + ⋅

+ ⋅ +

φ
 (44) 

where 

( ) ( )
( ) ( )

11 21 1 11 21 1

12 22 2 21 22 2

Γ ( ) ( )
( ) ( )

d d

d d

MA A z t MA A z t d
MA A z t MA A z t d

= + + + −
+ + + + −

 (45) 

φ(·), ρ1(·) and ρ2(·) in (17)–(19) are defined respectively and 
η > 0 is the reachability constant. The following result is 
ready to be presented. 

Theorem 3: Consider the system (12)–(13). The control (44) 
drives the system (12)–(13) to the sliding surface (21) in 
finite time and maintains a sliding motion on it thereafter. 

Proof: From (20) and (12)–(13), it can be verified that 

(
( ))

(
) ( )

( ))
( ) ( )

( )

11 1 11 1

12 2 12 2 1

21 1 21 1 22 2

22 2

2

1

2

( ) ( )

( ) , ( ),

( )
( ) ( ) , ( ),

, ( ),

Γ ( ) , ( ), , ( ),

, ( ),

d

d d

d

d d

d

d d

d

σ z M A z A z t d

A z A z t d F t z t z

A z A z t d A z
A z t d Bu t BG t z t z

F t z t z

Bu t BG t z t z MF t z t z

F t z t z

= + −

+ + − +

+ + − +

+ − + +

+

= + + +

+

 (46) 

where Γ is defined in (45). 
Applying the control u in (44) to (46), it follows from 

(17) and (19), 

( )
{ ( ) ( )

( ) } ( )
( )

( ) ( )
( ) ( )

( )

1

1

2

2

1 1

2

( )Γ ( ) , ( ),

( ) Γ , ( ), , ( ),

, ( ), sgn( ) , ( ),

, ( ),

( ) , ( ), ( ) , ( ),

( ) , ( ), , ( ),

( ) , ( ), , ( ),

τ τ τ
d

τ
d d

d d

d

τ
d d

τ
d d

τ
d

σ σ σ z σ z MF t z t z

σ z M ρ t z t z B t z t z

ρ t z t z η σ BG t z t z

F t z t z

σ z MF t z t z σ z M ρ t z t z

σ z BG t z t z σ B t z t z

σ z F t z t z σ ρ t z t z

= −

⎡− + +⎣
+ + +

+

= −

+ −

+ −

φ

φ
( )

( ) ( )
( ) ( )

( ) ( )

1 1

2

( )

( ) , ( ), ( ) , ( ),

( ) , ( ), , ( ),

( ) , ( ), , ( ),

( )

d

τ
d d

τ
d d

τ
d d

η σ z

σ z MF t z t z σ z M ρ t z t z

σ z BG t z t z σ B t z t z

σ z F t z t z σ ρ t z t z

η σ z

−

≤ −

+ −

+ −

≤ −

φ

 (47) 

where the fact that στ(z)sgn(σ(z)) ≥ ||σ(z)|| (see Yan et al., 
2010) is used to obtain the inequality above. 

This shows that the reachability condition holds and 
hence the conclusion follows. 

Theorems 1 and 2 together show that the corresponding 
closed-loop system is uniformly asymptotically stable. 

Remark 7. It should be noted that the designed controller 
(44) is expressed in z coordinates. The corresponding 
controller in x coordinates is easy to obtain using the 
transformation z = Tx in (11) which can be obtained using 
basic matrix theory (Edwards and Spurgeo, 1998). The 
reachability analysis above is carried out directly in  
z coordinates, which may reduce the conservatism. It should 
be noted that there is no limitation to the change rate of time 
varying delay d(t). This is in comparison with many existing 
work (Jia et al., 2017). 

6 Application and simulation results 
Consider the cascaded CSTR system in Hua et al. (2009) 
which is used to illustrate the effectiveness of the developed 
method in this paper. The compositions CA and CB of the 
produce streams from reactor A and reactor B, represents 
the system states which are to be controlled. The output of 
one reactor CSTR determines the flow rate into the second 
reactor and vice versa. 

A time delay is added between the output of one reactor 
and the input (flow rate) of the other reactor such that at a 
certain time, the state of one reactor is determined by the 
state of the other reactor at a previous time t – d(t). Refer to 
Hua et al. (2009) for more information on CSTR. By 
choosing the same parameters as in Hua et al. (2009), the 
mathematical model to describe the CSTR is given by 

( )1 1 1 2 10.5 ( ) , , dz z z t d z F t z z= − − − + +  (48) 

( )( ) ( )
2 1 1 2 2

2

( ) 2.8333 ( )

, ( ), , ,d d

z z z t d z z t d

u G t z t z F t z z

= + − − + −

+ + +
 (49) 

where * *
1 2: , :A A B Bz C C z C C= − = −  and * 14 / 9AC =  and 

* 7 / 3BC =  (see Hua et al., 2009). 
It should be noted that the uncertainties G(·) and F1(·) 

and F2(·) are added in system (48)–(49) specifically to 
illustrate the obtained theoretical results, which are assumed 
to satisfy 

( )
( )

1 2

, ( ),

, ( ), 5 sin( ) ( ) ( )
d

d

t z t z

G t z t z t z t z t d≤ −
φ

 

( )
( )

2 2

, ( ),

, ( ), 5 cos( ) ( )
d

d

ρ t z t z

F t z t z t z t d≤ −  

and F1(·) satisfies 

1 2

2 2
11 0.86 0.65T T T

d ddF F z z z z≤ +
ϖ ϖ

 

Choose the sliding function ( ) 2 1 .
M

σ z z= ⎡ ⎤
⎢ ⎥⎣ ⎦

 By direct 

calculation, Ao = –3, A1 = –0.5. With Q = I and P = 0.1667 
obtained by solving the LMI in (43), = 0:07, and α = 5.5781 
is the maximum boundary which ensures that 
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0.3995 0.1667
0

0.1667 0.0700
oW P

P I
−⎡ ⎤ ⎡ ⎤

= <⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦α
 (50) 

Thus the matrix (38) is symmetric negative definite. 
From the result above, it can be verified that all the 

conditions in Theorem 1 are satisfied. Thus from  
Theorem 1, the sliding motion associated with the sliding 
surface is asymptotically stable. 

Figure 1 Time response of state variables z1(t) and z2(t) of 
system (48)–(49) (see online version for colours) 

 

Figure 2 Time response of the control signal u(t) and sliding 
function σ(z) (see online version for colours) 

 

From Theorem 2 and by direct calculation, the sliding mode 
control law (44) given by 

(
)

2 2
( ) 2

1 2

Γ 1.3778 ( ) 0.845 1.5cos( )

5sin( ) ( ) 2 sgn( ( ))

d t d

d

u z t z t z

t z t z σ z

= − + +

+ +
 

stabilises the system (48)–(49), where 

1 2 2Γ 2 ( ) 0.833 ( ) 3 ( )z t z t z t d= − − + −  

For simulation purposes, the initial condition relating to the 
time delay is chosen as z(t) = col(sin(t), et) and the time 
delay is d(t) = 5 – 3sint. The time responses of the state 
variables and control signal are shown in Figures 1 and 2, 
respectively, which demonstrate that the proposed approach 
is effective. 

7 Conclusions 
In this paper, state feedback sliding mode control for a class 
of time delay systems has been considered, where time 
delay exists in both system states and disturbances. 
Conservatism is reduced by fully using the property that 
sliding mode dynamics are of reduced order, and using the 
Razumikhin approach, the developed results can 
accommodate the large time delays. Also, it has been shown 
that though the uncertainty bounds are nonlinear, they can 
be obtained using LMI technique. Sliding mode control has 
been designed to guarantee the systems reachability to the 
sliding surface, and the nonlinear bounds on uncertainties 
have been fully employed in control design. The results of 
the simulation verify the theoretical analysis and further 
illustrate the feasibility of the proposed methodology, 
through application to the control problem of the CSTR 
system. However, as systems become larger and more 
complicated, it is interesting to consider large time delays in 
interconnected systems in the future. 
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