University of

"1l Kent Academic Repository

Benoy, Florence and King, Andy (1999) An Isomorphism between Abstract
Polyhedral Cones and Definite Boolean Functions. University of Kent,
School of Computing, University of Kent, 21 pp.

Downloaded from
https://kar.kent.ac.uk/21867/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical Report 3-99

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21867/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

An Isomorphism between
Abstract Polyhedral Cones
and Definite Boolean Functions

Florence Benoy and Andy King
Computing Laboratory, University of Kent at Canterbury,
CT2 7TNF, UK. {pmb6, a.m.king}@ukc.ac.uk

Abstract

Polyhedral cones can be represented by sets of linear inequalities that express inter-variable
relationships. These inequalities express inter-variable relationships that are quantified by
the ratios between the variable coefficients. However, linear inequalities over a non-negative
variable domain with only unit variable coefficients and no constants other than zero can
represent relationships that can be valid in non-numeric domains. For instance, if variables
are either non-negative or zero itself, that is, a strictly two-point domain, then {0 < z,0 <
y,x < y}, expresses a dependency between z and y, since if y is known to be zero, then so
is z. By defining an abstraction operator that effectively puts aside the scaling coefficients
whilst retaining the inter-variable aspect of these relationships polyhedral cones can express
the same dependency information as Def, a class of Boolean function. Boolean functions
are considered over a fixed finite set of variables and Def is a subset of the positive Boolean
functions, which return the value true when every variable returns true. Def is a complete
lattice ordered by logical consequence and it will be shown that the abstract cones also form
a complete lattice, ordered by set inclusion, that is isomorphic to Def.

1 Introduction

Mathematical structures that allow the characterisation of inter-variable dependencies can be used
to capture the results of program analyses. For example, in the context of Logic Programming,
downward closed properties such as groundness, can be captured by Boolean functions; the answer
pattern for the query p(x, y),might be represented by the formula z — y indicating that if p
succeeds, then « is ground iff y is ground. Information with respect to groundness is valuable
both in 1ts own right and as a contributing factor in other analyses. It is well known that Boolean
functions are useful for characterising inter-variable dependency relationships. There are various
classes of Boolean function that can be used in this way, particularly the class of functions which
map to true when all the variables themselves map to true. These functions are known as positive
Boolean functions and the class is referred to as Pos. The functions in Pos, that are definite are
referred to as Def, and although generally Pos, is more expressive than Def, it has been shown
[A. King, P. Hill and J.Smaus 1998] that an efficient implementation of Def | as a Share based set-
of-sets representation can produce dependency analyses that have better scaling behaviour than
some Pos implementations and even compare favourably with Pos, for speed.

Linear equations and inequalities can be viewed as a characterisation of inter-variable relation-
ships over numeric domains. The scalar coefficients of variables in those equations or inequalities
quantify the ratios that qualify the relationships. For example z < 3y expresses a relationship
between the variables x and y such that the upper bound on z is three times the upper bound
on y. In fact, solving linear equations and inequalities amounts to deducing the smallest possible
range of values for each variable. If both z and y are constrained to non-negative values this can
be represented by the set of non-strict linear inequalities {0 < ,0 < y, 2 < y}. Interestingly, the

non-negative constraints here allow the characterisation of a dependency of z on y since if y is zero,
then so is z. If all variable coefficients are unitary then the relationships involve only one-to-one
ratios. Whilst in general a scaled dependency can only relate to variables with numeric domains,
dependency relationships involving only one-to-one ratios can clearly characterise inter-variable
dependency relationships in non-numeric domains, in the same way as Boolean functions.

It is clear that there is a connection between those linear inequalities that can characterise
inter-variable dependencies and some class of Boolean function. Consider a set of non-strict linear
inequalities with unitary coefficients throughout and no constants; this set can be also be viewed
as a representation of the spatial intersection of its elements. Given the constraints on the linear
inequalities themselves the spaces so represented will be closed convex cones that are a particular
subset of all cones and their degree of expressiveness matches exactly that of the definite Boolean
functions, a sub class of positive Boolean functions.

Cones can be thought of as the union of a set of half lines emanating from the origin and with
the exception of the origin, a special case, they are unbounded in at least one direction. This
definition means that cones are supported, either by closed half spaces, which can be represented
as non-strict inequalities, for instance x < y,; or by open half spaces which can be represented
by strict inequalities, for instance # < y. Concern is only with closed cones as it is the non-
strictness of the inequalities that allows the characterisation of dependency as illustrated in the
prior example. Further, since concern is only with linear relationships, the cones will also be
convex. A convex set is a set of points that delineate a space such that all linear combinations of
those points are within that space and closed convex cones are known as polyhedral cones. If the
inter-variable dependencies that are encoded in the delineation of these cones are to be useful, they
need operators that allow their manipulation. However, if the usual mathematical operators were
applied they would introduce non-unit coefficients and with them the notion of scaling and this has
no meaning in a non-numeric domain. Different polyhedral cones may embody the same unscaled
inter-variable dependencies. For example, {0 < 2,0 < y,32 < 4y}, {0 < 2,0 < y,1.2¢ < 0.01y}
and {0 < 2,0 < y,x < y}, express the same dependency with respect to the assignment of zero,
namely that if y is zero then so is . These scaled inter-variable dependencies express a level of
precision relevant only in a numerical domain, but they can be abstracted to an unscaled form,
that is, to a form with only one-to-one ratios between coefficients, by an abstraction operator that
is defined solely with respect to the assignment of zero to variables. In this example, all three
sets can be abstracted to the third set. These abstract cones can be manipulated with the usual
operators from the more expressive domain, as any cone that is generated by their operations
can be generalised by abstraction to a cone delineated by the simplest expression of variable
dependency. It will be shown that abstraction collapses the infinite domain of convex cones into
a finite subset of itself which, ordered by set inclusion, forms a complete lattice.

The aim of deduction in propositional logic is to deduce which variables are true and to capture
variable dependency where 1t exists. Since the only deduction rule for propositional logic 1s modus
ponens, a class of Boolean function that can be represented by a conjunction of definite clauses
allows a representation in the form of a set of deduction rules. The aim of deduction in the domain
of abstract cones is, similarly, to deduce which variables have the unique value, zero, and to capture
variable dependency where it exists. The abstraction operator prescribes a representation that is
unique, in the form of a complete set of deduction rules entailed by the delineation of the cone.
It is not surprising then, that these abstract cones are analogous to Boolean functions that can
be expressed as a conjunction of definite clauses. Functions in Pos, the set of positive Boolean
functions can be represented by a conjunction of definite clauses. Def, a subset of Pos, comprises
those positive functions that can be expressed without the use of digjunction and it is precisely
this subset that is analagous to the abstract cones.

Both domains are complete lattices and the visual representation in Figure 1, of the lattices in
the dyadic case, confirms [B.A. Davey and H.A. Priestley 1990] the analogy, as dependencies map
exactly from one lattice to the other.

The remainder of this paper is in four sections. Section 2 describes the domains in question
and the notation that is used to reference them. Section 3 describes the abstraction and Section
4 confirms the isomorphism. Section 5 discusses possible future work and conclusions.

true

/ \ /TX\

(z —y) (z —y) {r<ytuTx {z >yt uTx
\\\\\\\ /////// ‘ ‘ \\\\\\\ /////// ‘
(x = y) {x:O}UTX{fJ?;/}{y:O}UTX
x/\y {e=0,y=0}UTx
(i) Defx (ii) Abstraction of Conex where Yx = {0 < 2,0 < y}

Figure 1: Defyx and the abstraction of Coney in the dyadic case.

2 Domains and Definitions

Non-strict inequalities and propositional formulae are considered over a totally ordered, finite set
of variables, X, where n = |X|. Throughout # stands for an n-tuple denoting a point in R",
positive scalar multiplication of a set of points S by A > 0, is defined AS = {AZ | £ € S} and 0
denotes the empty set. Note that square brackets, [] are used to limit the scope of both universal
and existential quantifiers.

Definition 2.1 A lattice is a partly ordered set L such that for any two elements, [1,l> € L there
is a meet, {; My and a join, l; U ly, [G. Birkhoff 1948].

Theorem 2.1 Due to [G. Birkhoff 1948], the Lattice Identilies 1 - 4 completely characterise a
lattice L. For all Iy, 1,13 € L,

I 4Nl =1l and b Ul =1y,
2 LNly=1nNland b Ul =1Ul,

3. LM (IysMis) = (I, M) Mis, and i U (ly Uls) = (b Ul) Uly
4 L n(LbUl) =1 and b U(l Ni) =1

A lattice L is represented as (L, C, LI, M) where C denotes the ordering, and a complete lattice as
(L,C,U,MN, T, L), where T denotes the top or greatest element of L and L denotes the bottom or
least element of L.

2.1 Polyhedra and Cones

Definition 2.2 Let S C IR", then the conver hull of S, conv(S), consists of all the convex
combinations of the points in S, that is, conv(S) = {AZ1 + (1 L N)#2 | ¥1, 82 € S A 0 <AL 1}

Definition 2.3 Let S CIR", then S is a convez set iff S = conv(S5).

Definition 2.4 The distance between any two points, #; and # is denoted d(#,%2) = (¥ L
o, ¥ L 52)1/2 in terms of the inner product. For any point #; in IR” and é > 0 the open ball
B(Z1,6) with centre #; and radius é is B(Z1,6) = {#2 € R": d(#1,%2) < &}, [S. Lay 1982].

Definition 2.5 A point ¥ is an interior point of the set S if there exists a 6 > 0 such that
B(Z,8) C S. A set S is open if each of its points is an interior point of S [S. Lay 1982].

Definition 2.6 A set S is closed if its complement ~ S = R" /S is open. The closure of a set S
is the intersection of all closed sets containing S and is denoted ¢l(5), [S. Lay 1982].

Definition 2.7 A set of points in IR™ which can be expressed as the intersection of finitely many
closed half-spaces 1s called a polyhedron.

Polyx denotes the set of all polyhedra defined over the variable set X. Polyhedra are ordered by
set inclusion.

Proposition 2.1 {Polyx,C,U,N) is a lattice, where ¥ Py, P € Polyx

[P; U Py = cl(conv(P; U Pg))].

Proof

It is sufficient to show that the described lattice identities hold. Let Py, Ps, Ps € Polyx,

1. P, n Py = Py, by definition of intersection. and P, U P, = Py, by Definition 2.2.
2. PL N Py, = P, N Py, by definition of intersection and P U Py = P, U Py, by Definition 2.2.

3. (i) PL N (P2 N P3) = (P N P3) N Ps, by definition of intersection.
(ii) By [R. Rockafellar 1970, Theorem 19.6], the closure of the convex hull is associative,
hence, PlU(PzUPE;I(PlUPz)UPQ,

4. (i) PLN(PL U Py) = Py. Let P’ = Py U P. By Definition 2.2 P, C P’, therefore, by definition
of intersection P, N P’ = P,

(i) LT (P, N Py) = Py

Let P = Py N P. By definition of intersection P” C Py, therefore, by Definition 2.2
P OP' =P

Definition 2.8 A subset ' of R" is called a cone if it is closed under positive scalar multiplication,

that 1s C' = AC forall A > 0.

Definition 2.9 A subset C' of IR" is a polyhedral cone iff it can be expressed as a finite set of
closed half spaces whose boundary hyperplanes pass through the origin [R. Rockafellar 1970].

The preceding definition means that all polyhedral cones are closed, convex and include the origin
and the set of all polyhedral cones is denoted Conex.

Definition 2.10 If Py, P; represent convex spaces in IR”, then their sum is defined:
Pi+ Py = {51 + a3 | ©1 € P1,25 € Py}

Proposition 2.2 {Conex, C,U, N} is a lattice.

Proof

Since all polyhedral cones are in Polyx, the lattice identities hold and it is sufficient to show that
(i) the closure of the convex hull of an arbitrary number of polyhedral cones is a polyhedral cone,

(ii) the intersection of an arbitrary number of polyhedral cones is a polyhedral cone.
Let Cy, Cs € Coney.

e (i) conv(Cy UCy) = C14+C5 and €14+ is a convex cone, [R. Rockafellar 1970, Theorem 3.8].
Since addition is both associative and commutative, it follows that the convex hull of an
arbitrary collection of n polyhedral cones is a convex cone. Therefore the closure of the
convex hull, el(X7_,C;), is a closed convex cone, that can be expressed as a finite set of

closed half spaces whose boundary planes pass through the origin, that is a polyhedral cone,
by Definition 2.9.

e (ii) The intersection of an arbitrary collection of convex cones is a convex cone
[R. Rockafellar 1970, Theorem 2.5], and the intersection of an arbitrary collection of poly-
hedra is a polyhedra. Therefore since all closed convex cones are polyhedra, the intersection
of an arbitrary collection of closed convex cones, is itself a polyhedral cone.

The non-negative orthant of R™,is {{x1,...2,) | 0 < z1,...,0 < z,}, [R. Rockafellar 1970], and
this 1s a polyhedral cone.

2.2 Defx a Class of Boolean Function

Definition 2.11 Let Bool = {false true}, and the set of Boolean functions over a totally
ordered, finite set of variables X, where n = |X|, be Boolx. Therefore, if f € Boolx, then
f: Bool™ — Bool.

A propositional formula or the Boolean function it represents is denoted by f, without distinction.

Definition 2.12 modelx: Boolx — p(p(X)) and the set of models for a function f is:

true rie M
modelx (f) = {M C X | yz{ false x & M }’

Flxr, .. xn)) = true}
Note that modelx is bijective.

Example 2.1 Let X = {z,y}, the function {{true,true) — true, (true, false) — false,
(false,true) — false,(false, false) — false}, can be represented as the formula # A y, and

modelx(x ANy) = {{=,y}}.

Since Boolean functions can be distinguished by their sets of models, ordering is defined with
respect to models. Let fi, fa € Boolx . If modelx (f1) = modelx(f2), then f; is logically equivalent
to f2 and this is denoted f; = fo. If modelx (f1) C modelx(f2), then fy is strictly more precise
than fs and this is denoted fi < fa. If modelx (f1) C modelx (f2), then fs is a logical consequence
of f1, that is f; entails f; and this relation prescribes the ordering of Boolean functions and is

denoted = . If modelx (f1) = modelx (f2), and modelx(f2) £ modelx(f1), then f; and fo are
said to be incomparable and this is denoted f; | fo.

Definition 2.13 A function f € Boolx is positive iff X € modelx (f).
The set of positive Boolean functions over X is denoted Posx.
Definition 2.14 A function f € Posx is definite ift VM, M’ € modelx (f): (M N M') € modelx (f).

The set of definite, Boolean functions over X is denoted Defyx. Note that a Boolean function with
models that are closed under intersection may or may not be positive.

Example 2.2 Let X = {z,y} and f = & A —y. Therefore, modelx (f) = {{z}} and modelx (f) is
closed under intersection, but X ¢ modelx (f) and therefore f ¢ Posx.

Definition 2.15 Let | S={M'| M € S A M C M’ C X}. A function f € Boolx is said to be
monotonic iff | modelx (f) = modelx (f).

The set of monotonic Boolean functions over X is denoted Monx.

Example 2.3 Let X = {x,y}, then (¢ — y) € Defx, since X € modelx (z — y) = {0,{z}, {y},
{x,y}} and modelx (x — y) is closed under intersection. However, (z Vy) € Posx but (z Vy) ¢
Defx, as {x},{y} € modelx (z Vy) but ({z} N{y}) =0 and O &€ modelx (x V y).

Both (Defx, =, V,A) and (Posx , =, V, A,) are complete lattices, where the join in Defy is denoted
by V [T. Armstrong et al. 1992]. The meet in both cases is classical conjunction, however, whilst
the join in Posx is classical disjunction this is not the case in Defx, see Example 2.3.

2.2.1 Representation in Defx

Various representations of Boolean functions can be derived from the conjunctive normal form of
a definite sentence, A7 (Vj_;;;) where each x;; is either a propositional variable or the negation
of a propositional variable [A.G. Hamilton 1988]. Reduced Monotonic Body Form

[T. Armstrong et al. 1992, P. Dart 1991] is such a variant where each variable occurs exactly once
as a head and each body is not only monotonic, but the variable in the head does not occur
in the body. A function f € Defyx iff f can be represented in Reduced Monotonic Body Form
[T. Armstrong et al. 1992, P. Dart 1991].

Definition 2.16 A formula,
n
/\ g < Mi
i=1

is in Reduced Monotonic Body Form (RMBF), iff each M; € Monx\ (s}

Orthogonal RMBF (ORMBF) is such that transitive dependencies are explicit, for example, (z —
y) A (y — z) becomes (x — (y V z)) A (y — 2).

Definition 2.17 A formula,
/\ Ty < Mi
i=1

in Reduced Monotonic Body Form (RMBF), is in orthogonal form iff for every set ¥ C X

(FANY) E) it (AY = (M Vi)
[T. Armstrong et al. 1992].

ORMBF is such that every deduction rule embodied in the function is explicit in the representation,
but there are no pair of deduction rules such that one entails the other. DMBF is derived from
ORMBEF, by throwing away tautologies and reformulating disjunction in the form of distinct
conjunctions such that the body of every deduction rule is itself a positive function with a set of
models that is closed under intersection.

Proposition 2.3 If a formula f € Defy then f can be represented in Definite Monotonic Body
Form.
See A.2 for proof.

Definition 2.18 A function f € Defx is described by a formula, A F, in Definite Monotonic
Body Form (DMBF) where,

F={y =AY | EFy—=AY)AVWY CYI[fFy—AY]}
and where y € X and Y C X/{y}.

3 The Abstraction of ConeX

Interest here is confined to non-strict linear inequalities defining closed half planes that pass
through the origin and therefore have no constants.

By constraining variables to non-negative values and restricting variable assignment only to
zero, non-numeric dependencies can be characterised by considering only non-strict linear inequali-
ties with variables that have unitary coefficients, for example {0 < z,0 < y, 2 < y}, which captures
a dependency of z on y, as if y = 0 then = 0. The intersection of a set of such non-strict lin-
ear inequalities with unit variable coefficients throughout, spatially represents a polyhedral cone.
Hereinafter, dependencies characterised by these non-strict linear inequalities with only unit vari-
able coefficients will be referred to as unscaled. However, many non-strict inequalities can embody

the same unscaled dependencies between variables, for example, z < 3y, and z < 0.6y express the
same dependency as x < y. By defining an abstraction operator with respect to the propagation
of variable assignment to zero in a domain with variables constrained to non-negative values, this
infinite domain of polyhedral cones is collapsed into a finite subset of itself. Since the abstraction
maps from Conex to Conex it is clear that the elements can be ordered by set inclusion and will
retain their relative ordering as in Conexy.

3.1 The Abstraction Operator

The abstraction operator is defined with respect to the propagation of variable assignment of zero,
allowing extraneous precision to be discarded. Throughout, let non-negative constraints on all
variables in X be denoted Tx = {0 < z | Vo € X}, and E® denote a set of non-strict inequalities
as mapped by the abstraction. Hence, the union, ¥x U FE, represents a polyhedral cone in the
non-negative orthant of n-dimensional space.

Definition 3.1 Let Tx U E € Conex, y € X, Y C(X\{y}).
a(Tx U B)=Tx U E% where,

E*={y<SY| (IxUE AU,y =0) F y=0 A
VY CY[(Tx UE A Uy,ey,y/:()) K oy=0]}

Note that the structure of F“ mandates that, (y < XY € F%) — (VY ' CY : y< IV’ ¢ E%)

Example 3.1 Let X = {1,22,23} and C' = Tx U {321 < 22} then, a(C) = Vx U {x1 < 22}
Clearly (Yx U{z; < @2} U{x2 =0}) = (21 = 0), but also, (Tx U{z; <2} U{xs =0,25=0})
(1 = 0). and whilst 27 < #2 and x; < 23+ 23 are both in B/, only 21 < x4, is in E¢.

In E% there may be more than one non-strict inequality with the same variable on the left hand
side of the inequality sign. If this i1s the case then all non-strict inequalities in the abstraction set,
E“ that can infer zero assignment for that variable will be incomparable.

Example 3.2 Let ' = Tx U {3z < y,0.52 < 2z}, then «(C) = Tx U{z < y,2 < z}, and

{e <y} [V {x < 2}

The abstraction operator will have the effect of relaxing the scaled relationships firstly by making
all coefficients unitary and secondly by relaxing equations of the form XY < XY’ to {y <
XY |VyeY}.

Example 3.3 Let X = {a1, 22, 23,24}, and C € Conex, where C = V'x U{2z1+x2 < dws+1.5x4}.
a(C)=Tx U{xy <az+ 4,22 < 23+ 24}

The abstraction operator is such that « is a many-to-one, idempotent mapping with no inverse
and it follows that a(Conex) is a finite, strict subset of Conex.

3.2 The meet and join in a(Conex)

The cones in a(Conex) are also in Conex and there are prescribed join and meet operators
for Conex. Despite the fact that these operators take into account a level of precision that is
not relevant in «a(Conex) the intersection of cones in a(Conex) will not result in a cone that
is not itself in a(Conex). The reason for this can be seen by considering the Definition 2.8 of
a polyhedral cone. A polyhedral cone can be represented by the intersection of a set of closed
half spaces with boundary hyperplanes that all pass through the origin. The intersection of any
number of polyhedral cones is also a polyhedral cone and by definition of intersection it will be
bound by some subset of all the boundary hyperplanes of the original polyhedral cones. It follows
that such a cone will be in a(Conex). However, the closure of a convex hull of two or more cones
in a(Conex) may not be in a(Conex), but, an unscaled dependency will be encapsulated in the
ouput from this operation and can be abstracted using the abstraction operator.

Example 3.4 Let C¢, CS € a(Conex), where X = {x1, 2, 23,24}, CF =Tx U {21 < 23,22 <
za} and OF = Tx U {21 < x4,29 < 23}. Hence,

CfUCQITX U {l‘1—|—l‘2§l‘3—|—l‘4},

but Yx U {z1+as < zs+x4} & a(Conex). Now, a(CT U CF) = Tx U{wy < wztag, w2 <3424},
and although CY U C§ < a(CP U CY), if 23 = 0 and 24 = 0 then in both cases it can be deduced
that both ;1 = 0 and 3 = 0, and abstraction preserves the propagation of variable assignment to
zero.

It should be noted that output from these operators will not introduce constants other than zero
since zero is the only constant that can be present in the operands. Cones in a(Conex) are
denoted C* to distinguish them from those that are not in a(Conex).

It is precisely because C U C¥ is not always in a(Conex) that a(Conex) is not a sublattice of
Conex, [B.A. Davey and H.A. Priestley 1990]. However, the propagation facility with respect to
variable assignment to zero embodied in Cf* U C'§ can be safely abstracted by «. Since all cones in
Coney can be reduced to their abstraction, the application of « to the output of the U operator
on cones in o(Conex) ensures that this bound remains within a(Conex). This effectively allows
the definition of both the join and meet in this more general domain allowing it to be viewed as
a lattice in its own right.

Definition 3.2 Let C¢, C¢ € a(Conex), then the join in a(Conex), is defined:
CyU” Cf =a(CYUCY)

Lemma 3.1 Let ¢4 = Tx U Ey,Cy = Tx U By € Conex and X; = {y11,...Yn1}, X2 =
{412, .- .yn2} so that |X| = |X;| = |Xo|, then C; UCy = {X|X = X1 + X5 A Tx, U Ex, A
Txo U Ex,}, where T'x; U Ex,, denotes the projection of the constraints on C; over X; and
Tx 5 U Ex, the projection of the constraints on C'y over Xa.

Proof

Since polyhedral cones are closed under positive scalar multiplication, from [R. Rockafellar 1970,
Theorem 19.5, Theorem 19.6,] the convex hull of two polyhedral cones reduces to their sum and it
follows that C; T Cy = C1 +Co, that is O, UCy = {X | X = X1+ X5 A Tx,UEx, A Tx,UEx,}.
]

Definition 3.3 Forall C¢ =Tx U Ef, C% = Tx U ES € a(Conex) if Jy; < TV, yi < TYF €
EY A Jy < XV2 ye < EYZ»? € EY ANYL= YZ,Z A YZ»1 = Y;? then y; and y;/ are said to be
interchangeable.

In example 3.4, 1 and x5 are interchangeable, and when there are pairs of interchangeable variables
in the representations of the operands the convex hull of the two abstract cones will not be an
abstract cone itself.

The lemma that follows confirms the intuition that convexity will determine that if a variable
y; 1s constrained by the summation of a set of variables Y;; in one cone and y; is constrained by the
summation of a set of variables Y;s, in another cone then y; will be constrained by the summation
of the union Y;; U Y;s in the convex hull of the two cones; and further that if a variable y; is not
constrained in both of two cones, then 1t will not be constrained at all in the convex hull of the
two cones.

Lemma 3.2 Let C} U C¢ =Tx UEY, and Cf =Tx U EY.
(Y <XV € EY Ay <XVip € BEF) — (4 <X(Ya UYjs) € EY)

Proof
L (y; <XV € BEf Ay <XVio € BY) — (3 <2(Yi1 U Vi) € Ef).

The convex hull of two polyhedral cones reduces to their sum [R. Rockafellar 1970] as in defi-
nition 2.10, therefore if a variable is unconstrained in either or both of the operands it will be
unconstrained in the convex hull.
I (3 <XV € EY Ay <XVip € ES) — (y; <X(Yi1 UYi2) € Ef).
From Lemma 3.1 C* U C¢ = {X|X = X; + Xs A Tx1UEx, A Tx,UEx,}, where X; =
{vi1,---Un1}, Xo = {y12,.. . Yn2}. It will be shown that any variable constrained in both operands
will be constrained in the convex hull and it is sufficient to consider all the pairwise combinations of
constraints on any y; that is constrained in both operands. There are two cases to consider, where
two such variables are interchangeable and where the constrained variable is not interchangeable
with another variable.
i) A variable is not interchangeable with another and is constrained in both operands.

Let y; <XV € E¥ and y; < V2 € EY then by Corollary 3.1 Vy; € X[y = yi1 + viz], and
in general, y; < XYix, + XY;x,. There are four cases to consider:

1. Y1 = Yio, that is, Vyr1 € Yix,[Ture € Yix,] A Vyre € Yix,[Tyr1 € Yix,]. For example,
Yix, = {y21,us1, 451}, Yix, = {y22, Y32, ys2}. In this case y; < XYjx, + XY;x, reduces to
y; < XY; where Y; = Yy, but since Y;; = Yo, the above premise holds.

2. Yi1 C Yo, that is Vyr1 € Yix, [Tz € Yix,] A Juke € Yix,[Ayr € Yix,]. For example,
Yii = {y21,y31}, Yio = {y22, 932, y52}. In this case y; < EY¥ix, + XY;x, reduces to y; <
YY! + XV where Y/ = {yrlyr € Yi1 A yp € Yia} and therefore Y/ = Y;; N Va2, and

Y = {yr2|Furz € YVix, A Ayr1 € Yix, }, and since Vyga[yr > yiz] it follows that Y/ can be

relaxed to {yrlyr € Yio Ayr & Yir}. It is clear then that from y; < XY/ + XY/ it can be
deduced that y; < X(Yi UYia).

3. (Yin NYia # 0) A (Yir € Vi), that is, Jypr € Yix, [Fure € Yix,] A Jurr € Yix,[Burs €
Yix,] A Jyr2 € Yix,[By € Yix,] For example, Yix, = {y11, 21, ¥31}, Yix, = {22, ¥s2, Yz}
Following the same principle as in the previous case, y; < XV;x, + XY, x, reduces to y; <
XY + XY/ where Y/ = {yrlyr € Yi1 A yr € Yia} and therefore Y/ = Y;; N Y2, and here,
Y/ = {yr2lyez € Yixo A [Fyer € Yix,) U {ukilyer € Yix, A Az € Yix,} and since
Yyralyr > yre] and Yyri[yr > yr1] it follows that Y’ can be relaxed to {yx|yx € Yia Ay &
Yir} U dyrlyr € Yir Ayr € Yia}. Tt is clear then that from y; < XY/ + XY} it can be deuced
that y; < %(Y;1 U Yja).

4. Y N Yy = 0, that is, Yyr1 € Yix,[Fyrz € Yix,] A Vyre € Yix,[/Aur € Yix,]. Here,
following the same principle in part as in the previous case, since there are no variables in
common, y; < XY;x, + LY;x, reduces to y; < XY/ where Y} = {yga|yi» € Yix, A Ayr1 €
Yix,} U {yeilyer € Yix, A Byr2 € Yix,} and since Vyeo[yr > yro] and Yyri[yr > yri] it
follows that Y can be relaxed to {yilyr € Yie Ayr € Yir} U {yrlyr € Vi1 Ay € Via}. Tt is

clear then that from y; < XY it can be deduced that y; < X(Y;1 U Y;0).

By the definition of «, if y; < X(Y;1 UYia) € Fj then y; < E(Yi UYie) € BT

i) y; and y;r, are interchangeable variables, constrained such that y; < XY;, yir < XYy € EY
and y; < XY, yp < XYpe € EY, where Yy = Yy and Yy = Yjs. There are three cases to
consider, in the first when Y;; = Yjs1, the convex hull is not more precise than its abstraction, but
in the other two cases 1t is and abstraction generalises, allowing the premise that holds when there
are no interchangeable variables to hold in all cases.

1. Vi =Yy

In this case the closure of the convex hull of the two abstract cones is equal to its abstraction.
From the previous part, i), since Y;; = Y1, it follows that y; < XV;1, vy < XY € Fjp and
this is unchanged in the abstraction, so y; < XY, yor < XYy € Ef.

2. (Yo #Yin) A (Yo NYin £ 0)
Here the closure of the convex hull of the two abstract cones is more precise than its abstrac-
tion as it introduces a scaled constraint on the sum of the interchangeable variables. That is

yi +yir < ZA(Y;1 UYi) € Ej, where in an abuse of notation, A is a vector of coefficients in

{1, 2}, each associated with the variables in the union of the two sets. Variables that are not

common to both sets have the coefficient 1, and variables that are common to both sets, the

coefficient 2. Here a(Yx UEp) = T'x UE} is such that the constraint on the sum is relaxed to

the individual constraints on y; and y;r so that y; < X(Y;; U Yin), yoo < E(Yi1 UYin), € Ef.
3.VunYm =0

Once more the closure of the convex hull of the two abstract cones is more precise than its
abstraction as it introduces a constraint on the sum of the interchangeable variables. In this
case, similar in part to the previous one, y; + y;r < X(Yiy U Y1) € Ep. The abstraction
a(Tx UE,) =Yx UEY is such that this relationship is relaxed and y; < X(Y;1 UYin), yir <
E(Y;1 UYin) € E.

Hence, in all cases
(yi <XV € Ef Ay <XVip € EF) — (y: <X(Yi1 UYy) € ER)

By the definition of «, if y; < X(Y;1 UYj2) € Ej then y; < E(Y;1 UY;) € EY.
Therefore,

(yi <XV € Ef Ay <XVip € EF) — (y: <X(Yi1 UYy) € ER)

Proposition 3.1 U” is associative, that is, V C¢, C%, C§ € a(Conex),
Cyu” (Cy U C§) = (CY U™ Cg) U~ Cf
Proof
L Let C$ U CY =Tx U B, and C2 U C, =Tx U EY,.

Yy € X[(yi <EYis € ES Ny <XYi3 € EY) — (i < X(Yi2 UYis) € Ef)], by Lemma
3.2.

Yy € X[(ys <ZYn € EY Ay <XYim € Efy)) — (3 <X(Ya U (Y2 U Yia)) € E),
and therefore Yy; € X[(y;i <XVipo € E%) — (Yinz = (Vi1 U Yis U Yiz)]). by Lemma 3.2.

2. Let (Cf U™ C3) U C§ = Tx U EZ,.
Similarly, it can be shown that Vy; € X[(y; < XYins € E5) — (Yins = (Vi1 U Y2 U Yig)]).
Hence, C* U” (C$ U* CF) = (Cp U C§) T C3. |

Proposition 3.2 (a(Conex),C, L, T,U%,N) is a complete lattice.
Proof

(i) The lattice identities hold, and therefore a(Conex) is a lattice.
Let Cho, 05, C§ € a(Conex).

1. C% N C¢ = C?, by definition of intersection, and C U" C? = C¢, by Definitions 2.2 and
3.2.

2. C¢ N CY = C¢ N CP, by definition of intersection and C¢¥ U* C§ = C§ U* Cf, by
Definitions 2.2 and 3.2.

3.() CY N (Ce N CS) = (CF N CY) N CF, by definition of intersection.
(i) Cp U™ (C8UY CF) = (C# U CF) U” CF, since U” is associative by Proposition 3.1.

10

4. (1) Con(CeT C9) =0y,
Let C* = ¢ U C¢. By Definitions 2.2 and 3.2 C¢ C (C T C§) C C*', therefore, by
definition of intersection C; N oo = cy.

(i) C¢ U (C n Cg) = CF.
Let ¢« = CY N CF. By definition of intersection ce” C (7, therefore, by Definition 2.2,
CPUC* = (Cf, and since « is idempotent, C U C* = CF.

(ii) Since a(Conex) is finite, it is a complete lattice, [G. Szasz 1963], with top element: the origin,
and bottom element: the non-negative orthant in n-dimensional space.]

3.3 Representation in a(Coney)

Let C¢,C¢ € a(Conex) and, Cf =Tx U E¥ and CF = Tx U ES. Tt is clear that if Ef = EY,
then C7 and C5 each represent the same set of points. It can be shown that the abstraction
operator maps to a representation of cones in «a(Conex) that is unique. In the discussion and
lemmas that follow it is shown that if the representation of any two cones in a(Conex) is not
equal, up to reordering of the elements of the sets of inequalities in the representations then the
representations do not describe the same space.

In general, different syntactic representations may represent the same set of points, and linear
combination can disclose hidden entailed dependencies. The definition of o has a significant
impact on the possible outcome of linear combination in this context. Each non-strict inequality
in £ is of the form y < XY that describes a deduction rule for some variable with respect to
the assignment of zero and by definition of « every rule is explicit including those derived from
transitive dependencies. Direct dependencies and those derived from transitive dependencies are
considered to be non-redundant (the formal definition follows). Tt can be shown that any non-
redundant linear combination of a set of non-strict inequalities, Tx U E that represents a cone
in o(Conex), will already be explicit in the representation. This means that the representation of
any cone in a(Conex) as prescribed by «, is unique up to ordering of the elements in ’x U E<.

3.4 Linear Combination in a(Conex)

Linear combination allows the explicit expression of information that 1s entailed in the combination
of some or all of a set of linear inequalities that describe a space. All but one of the examples
in this discussion are binary combinations, since addition is associative and commutative, they
illustrate without loss of generality. Note that throughout the discussion that follows, the index
¢ assoclated with a variable, indicates its position in the ordered set of variables over which the
non-strict inequalities are considered, and the index j indicates the jth element of a set of m
non-strict inequalities. Consider the motives for linear combination in the context of o(Conex) :

e rather than assigning a variable to an arbitrary constant, variables are only ever assigned
the value zero,

e since variables are only assigned to zero, and all variables are greater than or equal to zero,
restricting a variable to a range of constants is not applicable in a(Conex),

e deduction of inter variable dependencies facilitates variable assignment to zero, since where
y < XY, if all the variables in Y are known to be zero, then y is zero. This deduction rule 1s
analogous to modus ponens in Defy.

Definition 3.4 The linear combination of a set of m non-strict inequalities with n variables
constrained to non-negative values can be described in the following way, with A;, and A;, non-
negative scalars, and at least two A; or A; are greater than zero.

ST A0+ 305 Ay < ST Ny 4+ X7ET A (2Y))

11

Let [; be a linear inequality and the symbol ++ describe any binary linear combination of inequal-
ities. Hence the linear combination of k linear inequalities, 1 < k is [y ++ ... ++l = 1.

Definition 3.5 A linear combination, X7 < X7’ of the n + m non-strict linear inequalities
Tx U E* € a(Conex), is considered redundant iff,

FZuUZ).(Tx U{SZ<XZ'}) ¥ H(ZuZ).(Tx U EY)]

Example 3.5 Consider X = {a1, 22,23} and C* = Tx U {2 < 22,22 < 3,21 < 23}, and the
linear combination, 0.0 < 0.z; + 0.0 < 0.zo +H 0.0 < 0.23 +H 21 < w2 H 229 < 223 +H 0.1 <
0.x3 = &1 + &2 < 2x3. Since, X' C X[AX'.Tx U {21 + 22 < 223} £ IX'.Tx U E?], it follows
that {1 + 2o <223} is redundant.

Example 3.6 Consider X = {1, 22,23} and C* = Tx U {2 < 22,22 < 3,21 < 23}, and the
linear combination, 0.0 < 0.z7 + 0.0 < 0.zs + 0.0 < 0.zz H o1 < 2o H v2 < w3 H 0.7 <
0.x3 = 14 29 < x99+ 23 = x; < x3. Since, X' C X[AX'Tx U {x; < x3} ¥ IX'Tx U E°],
it follows that {z; < 3} is non-redundant.

Definition 3.6 Let S; be a system of non-cyclic transitive dependencies of depth d > 2 and
p,q €{1,...,d} ordered such that,

Se=Ul {n <SVi| (i €Yi) A (Vi:2<i<d[3p:1<p<i:yeY])}

A non-redundant linear combination of such a system will be of the form y; < XY’ where Y’ C
Uf’l:leﬂ In the context of a(Conex), when the variables in Y’ are zero, y; is also zero, and
therefore this expresses a variable dependency, or deduction rule for y;, and y; is said to be the
root of the system.

Example 3.7 Let {z,y,2,p,¢,7,s} C X, and Tx hold,

r < y+4+z ++
y < ptq 4+
p < r ++
g < s

r < z4r+s

In Example 3.7 linear combination of the system is a variable dependency, & < z + r + s for the
root of the system, x.

To show that the representations of cones in a(Conex) are unique, the circumstances in which
a linear combination of the non-strict inequalities, that represent a cone in «a(Conex), is non-
redundant must be considered. Linear combination with variable elimination allows the explicit
representation of entailed constraints on variables. If no variables are eliminated in the combination
process then the linear combination is a relaxation of the explicit constraints on variables. Further,
since the inequalities in % are of the form y; < XY}, any linear combination of the form XY <
YY’, where y; € Y and Y; C Y’ will be redundant, since the constraints on y; will be relaxed.
Therefore a non-redundant linear combination will be of the form y < XY. Since positive scalar
multiplication aids variable elimination in linear combination (see Definition 3.4 where A;, A; > 0),
its effectiveness in the context of a(Conex), where scalar values are of no consequence, is also
considered.

3.5 Scalar multiplication in a(Coney)
Consider how scalar multiplication facilitates variable elimination.

1. A variable can be eliminated if it occurs on the same side of each inequality with coefficients
of the same cardinality, but different signs.

12

Example 3.8

r < 3dy4 2z ++
g < pl2z
z+q < 3y+p

2. A variable can be eliminated if it occurs on both sides of the resulting inequality with
coefficients of the same cardinality and sign. This can only occur if there is at least one
instance of transitive dependency. See Example 3.7.

Generally, positive scalar multipliers are applied in linear combination to equate the cardinality
of like variables. However, since all variables in any system of non-strict inequalities have posi-
tive unit coefficients, further positive scalar multiplication is ineffective, as the following lemma
demonstrates. It can be shown that variable elimination can only be effected, if at each step the
current coefficient of the root, y; 1s equated with that of the next linear inequality in S; to be
linearly combined. Therefore, the only possible non-redundant linear combination can, in fact, be
obtained by using A; = 1 throughout, where y; < XY; € Sy.

Lemma 3.3 Let Tx U E® € a(Conex) and Sq be a non-cyclic system of transitive dependen-
cies such that Sy C E®. The only non-redundant linear combination, 7 A;.0 4+ X713 Ay <

j=n+1
X2 Ay + E;Li'ﬁ_l/\j(EYj) where ; =0 A (A >0 «— y; <XY; € Sy) can be derived with all
non-zero A; = 1.
Proof

Since the linear combination of an ordered system of non-cyclic transitive dependencies is consid-
ered, the proof is by induction on the depth d of the system.

Let Sy = {y1 < XV1,...,ys < XY¥y}, be a system of non-cyclic transitive dependencies, and
therefore, Sy = {Ay1 < MXY, ..., dayg < MgV}

e Base step: Consider the linear combination of a system of non-cyclic transitive dependencies

of depth d = 2.
Ayt <0 YL+
Asyz < AaYs
Aty + A2y < MY+ ARYs

By Definition 3.6 y; 1s the root and y, € Y;. Therefore the result of linear combination can
be expressed as,

Ay 4 Azyr < MY /H{y) 4+ Ay + XY,

In order to facilitate the elimination of y, from both sides of the inequality A; must equal

Aa.

e Induction step: Consider the linear combination of a system of non-cyclic transitive de-
pendencies of depth d > 2. Let the result of linear combination of a system of non-cyclic
transitive dependencies of depth d L1 be R = Ayr < M(ZYY)+...+ X-1(XY)_,), where
Y/ is the residue of ¥; after variable elimination. By the induction hypothesis,

R=Xy < M(E(Y{U...Y).

Now consider a system of depth d and its linear combination, the result of linear combination
of d 1 1 elements combined with the dth element in the system.

My < MY UL UYL) +H

Agya < AgYa
/\13/1 + /\dyd < /\1(E(Y1/ Uu...u Yd/—l)) + XYy

By definition, y4 € (Y{ U...U(Y]_,), therefore the result can be expressed as,
Ay +Aaya < (B UL UYE)/ {yal) + Mya + AaYa

As before, in order to facilitate elimination, here of y4, A1 must equal Ag.

13

Therefore, by the principle of mathematical induction, in order to facilitate variable elimination
in a linear combination of a system of non-cyclic transitive dependencies, the scalar multipliers
employed at each combination step must be the same. Since variables throughout the system have
unit coefficients to begin with, the only linear combination of a system of non-cyclic transitive
dependencies that is non-redundant, can be derived with multipliers equal to one. [

It can be shown that linear combination of the representation of a cone in «a(Conex), cannot
yvield a non-redundant result that is not already explicit in its representation. The proof is by

contradiction.

Lemma 3.4 Let Tx U E* represent a polyhedral cone, in a(Conex), then
TYx UE*E(y<XY)) — Iy <TY) € B* where y < XY is non-redundant.

Proof

1. UE*E(y<XY)—3J(y<XY)e E* Elementary.

2. Tx UEY E (y <SY) — Iy < IY) € B

Let Tx U E® represent a cone in o(Conex), suppose that (Tx U E%) | (y < XY), where
y < XY is non-redundant and assume that A(y < YY) € E®. This assumption asserts that
there 1s some linear combination of elements in ¥'x U E® that is equal to y < XY. Consider
possible linear combinations of the of the elements in ¥x U F% :

(a) In all cases, linear combination that includes non-negative constraints will be redundant.

(i) (ii)

0 < 9y + 0 < 9y +
y1 < XY y2 < XY,
0 < ¥vy y2 < oy +XYs

(b) Without variable elimination
The non-strict inequalities are of the form y < XYY and hence, any linear combination
of non-strict inequalities, without variable elimination, will be of the form XY < XY
and this will relax the upper bound on each of the variables in Y. Hence, in these
circumstances, linear combination will be redundant.

(¢) With variable elimination

i.

1.

A variable can be eliminated if it occurs on the same side of each inequality with
coefficients of the same cardinality, but different signs. This method is inapplicable,
since in any linear combination,

VA 0+ XTI Ny < X Ny + BT 0 (BY))
there are no variables with negative coefficients on the right hand side of the in-
equality. Re-arrangement by subtraction of a variable on the left hand side of the
inequality sign will render the linear combination redundant.

Variable elimination can occur when facilitated by a system of non-cyclic transi-
tive dependencies, however, by Lemma 3.3, any linear combination of a system of
non-cyclic transitive dependencies that is non-redundant can be derived with unit
multipliers (A;s).

Hence, the only non-redundant linear combinations are derived through transitive depen-
dencies, and all transitive dependencies are explicit in £, by definition of «. Therefore, it
follows that where Tx U E¢ | (y < ¥Y), and y < XY is non-redundant, the assumption
Aly < TY) € E?, is false, since no linear combination of non-strict inequalities can derive
a non-redundant non-strict inequality that is not already explicit in E®. That is, where
y < XY is non-redundant, Tx UE® £ y <XV — Iy < TY) € B°.

14

Hence,
Yx UE“E@@<ZY)—=3(y<ZY)e E°

Corollary 3.1 By relaxing the non-redundant condition on y < XY, Lemma 3.4 generalises to,
YxUE Ey<XY) < (y<ZYHeFE*: (Y CVY) [

To recap, deduction in «a(Conex) is driven by these aims, to assign variables to zero or to
deduce dependency relationships, in the form y < XY, for as many variables as possible and
thereby facilitate their assignment to zero. Since no further non-redundant non-strict inequality
can be derived from linear combination of the prescribed representations, it follows that the
representations embody a set of deduction rules that are entailed by the delineation of the abstract
cones. Further, it 1s clear that in this context, the only deduction rule is of the form y < XY,
and the prescribed representation of a cone in «(Conex) as the union of non-negative variable
constraints with a set of deduction rules is unique.

4 A Lattice Isomorphism

There is clearly a connection between the variable dependencies that are encoded in the represen-
tation of abstract cones in a(Conex) and Boolean functions in Defx. Abstract cones are uniquely
defined as sets of points and functions in Defx as sets of models. In both cases set intersection
is the meet operator but generalisation of set union is required to achieve a join operator that is
closed. The significant characteristic of these abstract cones that indicates the necessity for gen-
eralisation is their convexity. This characteristic disallows a straightforward join that comprises
the union of those points that are in either or both operands, as the resulting set must conform to
the constraint that any linear combination of points in the join must itself be in the join. There
are instances when the union of two particular polyhedra cannot be represented in terms of a
single polyhedra, that is, the union can only be represented as two distinct, albeit possibly abut-
ting, polyhedra. Hence, the union cannot be uniformly represented in terms of a single polyhedra
without generalisation and this is precisely what the closure of the convex hull is, a generalisation
that is the smallest convex space that contains all the points in both operands. Similarly, there
are instances when the join of two functions in Defx that in terms of models is the union of the
sets of models for each function, is such that the union of models represents a function that is not
itself in Defx, since its models are not closed under intersection. The generalisation required is
analogous to that required in a(Conex).

Representations in a(Conex) are an explicit set of non-strict inequalities that prescribe the means
of deducing that a variable on the left hand side of each inequality i1s zero. There may be more
than one such rule, for each variable, or there may be none for a particular variable. This condition
is consistent with that of a DMBF representation in Defy. DMBF is such that where f € Defx
and f = A F, each implication in F' is a deduction rule for the variable that occurs in the head.
Every possible rule is explicit, but no rule is entailed by any other, and if nothing is known
about a particular variable it will not occur in the head of any implication. Deduction and
propagation follow one from the other and Dart [P. Dart 1991] considers that such implications
can be thought of, alternatively as propagation rules. It is clear that however these rules are
viewed, the inequalities in the representation of elements in the abstraction of Conex serve the
same purpose as the implications in DMBF representations of functions in Defy.

4.1 From Polyhedral Cones to Boolean Functions

The propagation of the assignment of zero to a variable in the non-negative orthants of n-
dimensional space in a(Conex) has an analogy to the the propagation of the assignment of true to
a variable in Defx. Since elements from both domains can be expressed as sets of deduction rules
the mapping is described in these terms. ¢’y maps a cone C* € o(Conex) to a set of implications,
definite clauses, the conjunction of which represents a formula in Defy .

15

Definition 4.1 The mapping ¢'x: a(Conex) — Boolx, is defined:

e (Tx U Uiidy <3%1) = Ao — AY;
Example 4.1 Let X = {&1, 29, 23},
O (Tx U{zy < g, 23 <0}) = (21— 22) A (z3 — true)

Note that for any variable y € X, when y < 0 € FE® this is equivalent to y < XY, where Y =) and
¢’y maps y < X0 to the implication y < ¢rue. Since all variables are constrained to non-negative
values, (y <0 A 0<y) = (y=0), giving a mapping from y = 0 to y — true as expected.

The implications in ¢’y (a(Conex)) are clearly representative of Boolean functions and it can
be shown that the constraints imposed on the representations of cones in a(Conex) by « are such
that when mapped to Boolx the definite clauses in the image conform to DMBF and a Boolean
function can be represented in DMBF iff it 1s in Defy .

Proposition 4.1 ¢ («(Conex)) = Defx.
Proof

o o (a(Conex)) C Defx
A cone in a(Conex) can be represented by Yx U E<. By definition of «, E¢ is in orthogonal
form, that is, transitive dependencies are explicit and y < XY € E* — (VWY C V:y <
YY’ ¢ E®). Therefore, by definition of ¢, F' is also in orthogonal form and y — AY €
F— (Y CY:y— AY' & F). Since these are precisely the conditions that describe
DMBF it follows that ¢'x (C*) C Defx.

o Defy C o (a(Conex))
Similarly, a formula f € Defy can be represented in DMBF and f = A F. By definition
of DMBF, F' is in orthogonal form and y — AY € FF — (WY CY: AF Fy — AY').
Since the elements of I are definite clauses it follows that y — AY € FF = (VY C YV :y —

AY’ & F). By definition of o and ¢% these conditions also apply to every element of
@' (C%). Therefore, Defx C px(a(Conex)).

Hence, ¢x is defined:
Definition 4.2 ¢x:a(Conex) — Defx.
px (Tx U E%) = ¢x (Tx U E%)

Proposition 4.2 ¢x is injective.

Proof

Let ox(C) = AF1, ox(CF) = A\ Fa, where Cf = Tx U By, O = Tx U ES € a(Conex). If
ex(CF) = ox(CF), then Fy = Iy, since, by definition of DMBF, (¢x(Cf) = ¢x(CF)) — (Fy =
Fy). Therefore, < = ES, by definition of ¢. It then follows that C¥ = C¥, since by definition of
a and Lemma3.4 (CY = CF) — (B = E9).

Hence, ¢x 1s injective since,

(P(CT) = 9(C3)) — (CF = C3).

]
Proposition 4.3 ¢x is bijective.
Proof
Since by Proposition 4.2 ¢x is injective and by Definition 4.2 ¢ x(a(Conex)) = Defx it follows
that ¢x 1s bijective.]

16

Proposition 4.4 Let Cf, C$ € a(Conex), then (Cf < C%) — (px(CF) < ¢x(C9)).
Proof
Let C¢ =Tx UEY, CF =Tx UES, px(C8) = A Fy and ¢x(C%) = A Fa. Note that by definition,
wx maps cones to representations of Boolean functions in Defx that are in DMBF.
o (CF < C5) = (px(CF) < ox(CE)
Let Cf < C§, consider F{ and E¥.
I EY =0, then Tx U B =Tx and V(y; <XVy) € EF[Tx U (11 <XV) ECY].
* Otherwise by Corollary 3.1 the following conditions both hold:
V(y2 < XY2) € ES[A(yr S EY1) € B (= y2) A(V1 CY2)] A
Iy S EV1) € EY[V(y2 <XY2) € BS: (31 # y2) V ((y1 = y2) A (Y1 C Y2))]

Consider px (C¥) and ¢x(C¢). Given the definition of ¢x, where ES # 0, the following
conditions both hold:

Lo V(y2 = AY2) € Fa[3(y1 — AY1) € Fri(y1 = y2) A (Y1 CY2)] A
2. Ay — ANV e FV(y2 — AY2) € Fo: (y1 £ y2) V(1 = y2) A (Y1 C Y2))]
Hence, by 2., 3(yn — AY1) € Fi: (AF2 [(11 — AY1)), therefore by definition of DMBF,
ex(C5) I ex(CF). Since, by 1, ¢x(C7) | ¢x(C§), it follows that, ¢x(CF) < £x(C5)
and therefore, (C¥ < C) — (px(CF) < ¢x(C3)).
o (CF <CF) — (px(CF) < ¢x(CF))
Let ox (CF) < ¢x(CF), now consider Fy and Fh.
¥If Fo = 0, then A Fa =4rue and V(y1 — AY1) € Fil(y1 — AY1) E ¢x(C$)].
* Otherwise from the definition of DMBF, the following conditions both hold:
V(g — AY2) € Fo[3(yn — AYI) € Fi: (i =y2) A (Y1 CY2)] A
Ay — AY) e FiV(yo — AY2) € Fo: (1 £ y2) V ((y1 = y2) A (Y1 C Y2))]

Consider C* and C¢. Given the definition of ¢x, where ES # (§, the following conditions
both hold,

L V(g <XY2) € ES[A(n <IV1) € BT : (1 = y2) A(Y1 CY2)] A

2. Ay <EV) EEXV(y2 <EY2) €EY: (n #Fy2) V(11 = y2) A (Y1 C Y2))]

Hence, by 2. and Lemma 3.4, I(yn < EXV1) € EY: (Tx U ES) = (Tx U (y1 < EY7)), and
C§ = Cf. Since, by 1. and Corollary 3.1, Cf = CF, it follows that, CY < C§, and therefore,
CF < 0F) — (px(CT) < px (CF)).

Hence,

(C7 =< 03) = (px(CF) < ¢x(C3))

Proposition 4.5 There is a lattice isomorphism between Defy and a(Conex).

Proof

By Proposition 4.3, ¢x is bijective, and by Proposition 4.4, for all C¥, C§ € a(Conex), (C <
C$) — (px(C9) < px(CF)). Therefore, it follows that there is a lattice isomorphism between
a(Conex) and Defx, the image set under px [B.A. Davey and H.A. Priestley 1990].]

17

5 Conclusion

Defx lacks the precision of Posx, since information is lost with the join operator and since Defx
is not condensing it is not suited to goal-independent analyses [T. Armstrong et al. 1992]. How-
ever, despite these apparent drawbacks, in practice, the performance of Defy for goal-dependent
analyses can compare favourably with that of Posx, particularly if the implementation is efficient
[A. King, P. Hill and J.Smaus 1998].

These factors extend to a(Conex), and its usefulness in an environment where the solvers are
already in place, for example in the context of constraint logic programming will depend on the
efficiency of the solvers, particularly with regard to the join calculation.

Close inspection has revealed a natural affinity between the two-point domain Defyx, where
variables are assumed false until proven to be true and its two-point counterpart, o(Conex),
where variables are assumed to be non-negative until proven to be zero. Definite Monotonic Body
Form offers a unique representation, as a set of definite clauses, for any function in Defx, that is
an explicit expression of all the deduction rules that are entailed by the function. Similarly, the
abstraction operator prescribes a unique representation as a set of non-strict linear inequalities,
for an abstract cone in a(Conex) that is an explicit expression of all the deduction rules that are
entailed by the delineation of the abstract cone.

References

[A. King, P. Hill and J.Smaus 1998] A. King, P. Hill and J.Smaus (1998) Practical Dependency
Analysis through a Share Quotient. Technical Report 587, Computing Laboratory, University
of Kent, UK.

[G. Birkhoff 1948] G. Birkhoff (1948) Lattice Theory. American Mathematical Society, 190 Hope
Street, Providence, Rhode Island, USA.

[G. Szasz 1963] G. Szasz (1963) Introduction to Lattice Theory. Academic Press, New York and
London and The Publishing House of the Hungarian Academy of Sciences, Budapest.

[P. Dart 1991] P. Dart (1991) On Derived Dependencies and Connected Databases. Journal of
Logic Programming.

[B.A. Davey and H.A. Priestley 1990] B.A. Davey and H.A. Priestley (1990) Introduction to Lat-
tices and Order. Cambridge University Press.

[A.G. Hamilton 1988] A.G. Hamilton (1988) Logic for Mathematicians. Cambridge University
Press.

[R. Rockafellar 1970] R. Rockafellar (1970) Convex Analysis. Princeton University Press, New
Jersey.

[S. Lay 1982] S. Lay (1982) Convex Sets and their Applications. Wiley and Sons.

. Armstrong et al. . Armstrong an . Marriot an . dchachte an . dondergaar
T. A g [1992] T. A g and K. Marri d P. Schach d H. Sondergaard
(1992) Two Classes of Boolean Functions for Dependency Analysis.

[P. Cousot and R. Cousot 1992] P. Cousot and R. Cousot (1992) Abstract Interpretation and Ap-
plication to Logic Programs. Laboratoire d’Informatique de 1°'Ecole Normale Superiéure 45 Rue

d’Ulm, 75230 Paris Cédex 05, France.

18

A PROOFS

Proposition A.1 Let f = A M B and
MB ={z; — Mi |[VY C X[(f ANAY) F i) = (AY | (M vV i)]},
where M; € Monx /{x;}. It can be shown that
VW CX[((FANY) i) = (AY E (M V)]

W C X/ (T AAY) E) = (AY' E M)
It follows then that M B can be also be defined:
MB = {zi = M |VY C X/{z} [(FANY) E 22) = (AY E M)
Proof

1. To show that
YW CX((FAAY) i) = (AY B (M; V)]

VWS X [(FANY) i) = (AY' | M;)]
Since (F AAY) = x) =« (AY E (M; V), then (FAAY) Ex) = (AY E M) Vv
(AY E #;)). Consider then Y’ C X/{x;}, since (AY | ;) < (z; € V) it follows that
(FANY) | z) = (AY' | My).
2. To show that
VW CX(SAAY)Ez) = (AY E (M V)]

VY C XAz ((FAAY!) | @) = (AY' | M)
Consider Y = Y’ U {#;}, then if (f AAY") E x;) < (AY' E M,;)), it follows that

(fANY) | 2;5) < true. Similarly, since (AY' = M;), it follows that (AY | (M; V;)) <
true. Therefore, (FAANY) Ex) = (AY E (M; V z;)).

Hence

(FAANY) E i) = (AY E (M V) = (FAANY) Ew) = (AY' E M)))
Therefore M B can also be defined:

MB ={z; = M; |[VY CX/{z} [(FANAY) | zi) = (AY E M)]}
| |

Proposition A.2 If a function, f € Defx, then f can be represented in Definite Monotonic Body
Form.

Proof

A function f € Defx iff f can be represented in ORMBF [T. Armstrong et al. 1992]. Let f =
A\ M B be in ORMBF where, by Proposition A.1,

MB ={w; = M |[VY C X{ei} [(F ANY) E i) = (AY | M)}

and M; € Monx, ().

By relaxing the reduced condition, that each variable occurs at least and only once as a head, a
set of implications F' can be derived from those in M B such that A F = A!_, M B. Therefore,
the aim is (i) to derive a set of implications, F, such that the body of each implication in F'
is a conjunction of propositional variables and (ii) to identify the constraints that qualify those
implications.

(i) The proof is by induction on the depth, &, of the formulae that compose M;.

19

e Base Step: Consider #; — M; where k& = 0, that is, there are no connectives.

— (&; < «;) where z; is a statement variable and ¢ # j, is in the required form.
— (x; — true) = (z; — A 0) [P. Dart 1991].

— (#; < false) is a tautology and can be discarded.

e Induction Step: Now consider z; «— M;, where k£ > 0, and by the induction hypothesis, let
every formula M; of depth k£ L 1 or less be expressible as a conjunction of variables in the
set X;, such that z; € X;. Since M; can only be constructed from Monx there are two cases
to consider, M; = fi A fo and M; = f1 V fa:

— Case 1: x; «— (fi A f2). By the induction hypothesis f; = A X} and f» = A X?.
Therefore,
T — NXF U XP)

and 1s in the required form.

— Case 2: x; «— (f1 V f2). By the induction hypothesis f; = A X} and f» = A X?.
Therefore, since

vi = (NXJVAXY) = (o0 = AX]) A (w0 = NXD),

it follows that #; — (f1 V f2) can be replaced by the conjunction of the two implications
on the right hand side of the equivalence, that are both in the required form.

(ii) Consider the four possible forms that M; can take. If #; — false is in M B it is discarded,
otherwise each implication with a single variable in the head is replaced by a set of implications
each with that same single variable in the head. Let this set be F; where the index ¢ associates
each set with a particular variable. The conditions that apply to each element of M B, where
M; # false, map across to the conjunction of a set of implications F}, that is logically equivalent
to its counterpart in MB. The mapping is simple in cases 2 and 3, where F; has only one element,
but case 4 is not so straightforward.

1. z; — false is a tautology and is discarded.

2. x; «— true is replaced with F; = {z; — A0}.

3. x; — N X;, where X; C X/{x;}, is replaced by F; = {#; — A X;}.

4. x; — \/Z:1 N\ Xin, where X, C X/{x;}, is replaced by F; = UZ:1{xi — AXip}

In case 4, the conditions that apply to a single implication map across to a conjoined set of
implications. Consider the conditions that qualify each element in M B :

MB={z; = M; |VY CX/{z;} [(FANY) Ez) = (AY E M)}
and the case where z; — M; € M B and M; = \/Z:1 N\ Xip. In this case then:
(FANY)Ez) = (AY B (V=1 A X))

However, (\Y £ (V1L AXi)) = (' € {1} AY AXiw]) and (AY | A Xip) —
(X;w CY). Therefore,

(AY (V1o AXo) = G4 € {1 n) [Xiw € V]
It follows then that where z; «— \/Z:1 AXiy € MB,

(FAANY) E) =@ efl..n} [Xiw CY])

20

Hence, since A F; = (x; — \/Z:1 N Xipn, Fi can be defined:

Fr= Ul e — X |YY C X/} [(FANY E i) = G € {10} [Xiw S YD)

It follows then that:
(i =AY)eFy — (W CY[fFy—AY])
Let Uie{l...n} F; = F and then A FF = A M B. Since no single implication in F' can entail another

with a different single variable in the head, overall (y — AY)e FF — (WY CY[flEy— AY']),
which allows this definition of DMBF as A F' where:

F={y—=AYI|(fEy=AY) AW CY[fFEy—=AY]D}

21

