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Abstract
Wepropose a general strategy for generating syntheticmagnetic fields in complex lattices with non-
trivial connectivity based on light–matter coupling in cold atomic gases. Our approach starts from an
underlying optical flux lattice inwhich a syntheticmagneticfield is generated by coupling several
internal states. Starting from a high-symmetry opticalflux lattice, we superpose a scalar potential with
a super- or sublattice period in order to eliminate links between the original lattice sites. As an
alternative to changing connectivity, the approach can also be used to create or remove lattice sites
from the underlying parent lattice. To demonstrate our concept, we consider the dice lattice geometry
as an explicit example, and construct a dice lattice with aflux density of half a flux quantumper
plaquette, providing a pathway toflat bandswith a large band gap.While the intuition for our proposal
stems from the analysis of deep optical lattices, we demonstrate that the approach is robust even for
shallow opticalflux lattices far from the tight-binding limit.We also provide an alternative
experimental proposal to realise a synthetic gauge field in a fully frustrated dice lattice based on laser-
induced hoppings along individual bonds of the lattice, again involving a superlattice potential. In this
approach, atomswith a long-lived excited state are trapped using an ‘anti-magic’wavelength of light,
allowing the desired complex hopping elements to be induced in a specific laser coupling scheme for
the dice lattice geometry.We conclude by comparing the complexity of these alternative approaches,
and advocate that complex optical flux lattices provide themore elegant and easily generalisable
strategy.

1. Introduction

The creation of synthetic gaugefields in cold atomic gases provides new opportunities for realising exotic
emergent quantumphases [1–5]. Prominent target phases include vortex lattices [6] and, at highflux density,
bosonic counterparts of the continuum fractional quantumHall states [7, 8].When both a (synthetic)field and a
lattice potential are present, the continuumquantumHall states are predicted to persist for appreciable flux
densities nf per plaquette [9]. In addition, new classes of quantumHall states, stabilized only due to the presence
of a periodic lattice potential, emerge at larger values of nf owing to the underlying structure theHofstadter
spectrum [10–14], and in particular owing to the presence of single-particle bandswith higher Chern numbers

>∣ ∣C 1 [14, 15].
Early experiments on synthetic gaugefields relied on using rotation to emulatemagnetic fields [1, 16].

However, in this approach it is exceedingly difficult experimentally to avoid heating due to asymmetric trapping
potentials, so the strongly interacting regime of lowdensity in the lowest Landau level remains out of reach.
Prompted in part by the exciting outlook for the creation of new phases ofmatter, there has beenmuch progress
with new theoretical proposals and the experimental realizations for schemes of simulating artificial gaugefields
[17–25]. Further impetus for synthetic fields stems from the prospect of realising topological flat bands in
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condensedmatter systems—where spin–orbit couplingmay provide suitable complex hopping elements in a
tight-binding representation—sharpening the focus on the underlying commonality offlat single-particle bands
with non-zero Chern number [26–32], andmore detailed characteristics of their band geometry [33–36].
Currently no clear target systems realising syntheticmagnetic flux have been identified in the solid state, while
cold atoms provide a range of successful realizations3. Early achievements include the square lattice with
staggeredmagnetic flux [38, 39] that was generated by suitably tailored laser-induced hoppings [17, 22].More
recently, experiments have achieved homogeneousmagnetic flux using related approaches [40–43]. TheChern
bands of theHaldanemodel [27]were also successfully engineered using a lattice shaking approach [44].
Features of the non-trivial band single band topology have been successfully identified [45, 46]. Another
groundbreaking line of research has exploited spatially dependent dressed states of atoms in order to create a
Berry phase emulating the Aharonov–Bohmeffect of charged particlesmoving in amagnetic field [21]. The
experimental realization of this approach [21] has prompted further theoretical developments in order to
maximize the achievable flux density in so-called opticalflux lattices [24, 47]. These systems rely onmodulating
the optical dressed states ofmulti-state atoms on the scale of the optical wavelength, thus accessing the smallest
possible length scales for light–matter coupled systems, and provide a viable route to observe fractional quantum
Hall physics [2, 48, 49]. Experimental progress has been reported on the intimately related case of emulating
spin–orbit coupling in two-dimensional systems [50–52].

So far, attempts to emulate optical lattices with synthetic gaugefields have focused on continuumgases or on
simple optical lattice geometries such as square and triangular lattices [53]. However, optical lattices without
gaugefields have already been demonstrated formore complex geometries such as the kagome lattice [54],
which is achieved by removing sites from an underlying triangular lattice. Lattice geometry plays a particularly
important role in the presence ofmagnetic flux, as it can affect the single-particle spectrumdramatically. Indeed,
the elegantHofstadter butterfly seen in the spectrumof the square lattice [55] is strongly altered in other
geometries such as the triangular [56] or hexagonal lattices [57]. This provides a strong incentive to achieve
synthetic gaugefields in a number of different lattice geometries.

It is well understood how complex lattice geometries can be realised in scalar optical lattices by exploiting the
superposition of several optical lattice potentials [54, 58, 59]. In this paper, we explore how this design principle
can be extended to create opticalflux lattices with non-trivial connectivity by superposing scalar sub-/
superlattice potentials to an opticalflux lattice that generates non-trivial Berry phases from adiabaticmotion
within the space of internal states of the trapped atoms.We demonstrate that a scalar potentialmay be used to
either remove bonds or sites from an underlying opticalflux lattice of simpler geometry, as well as to split
individual sites intomultiple wells, all thewhile keeping the synthetic field intact. The basic principle for
controlling bonds can be understood from a tight-binding picture: the dynamics of atoms in an optical lattice
arises fromhopping processes between localWannier states that are localized in theminima orwells of the
optical potential [60]. The amplitude of hopping processes is given by the overlap of these wave functions. As the
overlap is dominated by the exponential tails penetrating the potentialmaxima that separate adjacent wells,
hopping is extremely sensitive to themagnitude of this potential. Therefore, hopping can be almost completely
suppressed by increasing the height of the potentialmaximumbetween twowells when a scalar potential is
added at those locations. Generally, wewish to suppress bonds on a periodic sublattice of an underlying optical
flux lattice, so this can be implemented by superposing an additional scalar optical lattice potential which acts
equally on all internal states. In practice, opticalflux lattices operate in an intermediate coupling regimewhere
the lattice potential is sufficiently shallow for atoms to occupy any position in space.One of themain results of
the current work is to demonstrate that complex optical flux lattices can operate in a regime ofweak coupling
that remains far from the tight-binding limit: we provide a specific example showing that the dispersion of the
tight-binding picture is reproduced closely even in the regime of shallow lattice depthwith potential depth of
order of the atomic recoil energy.

In order to demonstrate our general principle, we propose and analyse in detail a new realization for
synthetic fields in the dice lattice (also known as 3-lattice)where the specificflux density ofΦ=Φ0/2 per
plaquette yields a particularly surprising band structurewith three pairs of perfectlyflat bands that conserve
time-reversal symmetry [61]. Theflat bands and compactly localized single-particle states found in this lattice
are caused by a phenomenon of destructive interference known as Aharonov–Bohmcaging [61]. This regime
would be particularly well suited to reach interesting correlation phenomena [62–64], but previous proposals for
synthetic fields in a dice lattice geometry have focused on a different regimewith dispersive Chern bands [65].
Unlikemost flat bandmodels achievable in cold atoms [66], theflat bands of theπ-flux dice latticemodel are
fully gapped. Owing to theflatness of the band dispersion, evenweak interactions give rise to exotic phases in the
dice latticemodel, including a superfluid phase in the half filled lowest band [63] as well as highly degenerate

3
We also note the successful observation of fractional Chern insulating phases in graphene-based heterostructures under strong physical

magneticfields [37].
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vortex lattice configurations at larger density [62, 63] that provide a playing field for order-by-disorder
phenomena [64]. Hence, akin to the physics offlat band ferromagnetism [67, 68], the dominant phases in the
dice lattice provide interesting alternatives tomore conventional features of Bose condensation in dispersive
bands [39].

To further contrast the new proposal withmore conventional techniques, we also present an alternative
design for a dice lattice with a syntheticπ-flux based on alkaline earth atoms trapped by light near their anti-
magicwavelength.We describe a set-up creating laser-induced hoppings according to the connectivity of the
dice lattice, that can be realised using far-detuned transitions following [22]. Our design explicitly constructs the
tight-bindingHamiltonianwithin themagnetic unit cell, containing a total of six sites, which is repeated due to
the inherent periodicity of the trapping lasers.Wefind that the two designs involve a similar number of laser
sources, andwe argue that requirements on phase stability favour the optical flux lattice approach.

The paper is organised as follows. In section 2, we review how the concept of adiabaticmotion in optical
dressed states enables the creation of opticalflux lattices, andwe establish our notations. In section 3, we
introduce the idea of changing lattice connectivity by removing bonds froman opticalflux lattice at the level of a
tight-binding approach, and perform an analysis of its translational symmetries. In section 4we detail how the
idea can be exploited to realize the dice lattice geometry with half aflux quantumper plaquette, focusing on a
tight-binding picture. Section 5 gives the general formalism for studying opticalflux lattices beyond the tight-
binding limit in reciprocal space, andwe use the example of the dice lattice geometry to demonstrate the role of
spin-translation symmetries of the flux latticeHamiltonian. In section 6, we provide detailed calculations of the
band structure for realistic parameters in our dice flux lattice geometry, focusing on the limit of a shallow lattice.
Section 7 provides the alternative design, based on laser-induced hoppings in a deep optical lattice, andwe
conclude in section 8.

2. Background: opticalflux lattices

The opticalflux lattice approach ismotivated by the principle of adiabaticmotion of atoms, such that they
remain in their local ground-state Y ñ∣ ( )r along their trajectory ( )tr [24], taken here to be confinedwithin the
two-dimensional x–y-plane. Upon completion of a closed path  , thewavefunction of the atoms acquires a
geometrical Berry phase


g = ∮ ·qA ld , given by the line integral over the (real space)Berry connection

 = áY Yñ∣qA i (with afictitious charge q) [21]. This geometric phasemimics the Aharonov–Bohm coupling
of a charged particle to the vector potential of a physicalmagnetic field, which has the same form. It also useful to
think of the corresponding flux density = ´f ( ) · ên q h A 3.

The presence of vortices in the Berry connection allows one to achieveflux densities of order onemagnetic
flux quantumper unit cell of the opticalflux lattice. Here, wewill consider as our starting point the explicit
example of the triangularflux lattice of [24] for a two-state systemwith theHamiltonian

  s= +ˆ ˆ ( ) · ˆ ( )
m

p
1 M r

2
, 1

2

where 1 is the 2×2 identitymatrix in spin-space, s s s s=ˆ ( ˆ ˆ ˆ ), ,1 2 3 is the vector of Paulimatrices, and  is the
depth of the optical lattice.We consider the triangular optical lattice potential described by

k k k=  +  + ( ) ( · ) ˆ ( · ) ˆ ( · ) ˆ ( )e e eM r r r rcos cos cos , 21 1 2 2 3 3

where êi are the cartesian unit vectors, and thewave vectors k k = ( )1, 01 , k k = ( )1 2, 3 22 , and
k k = -( )1 2, 3 23 are chosen to yield a lattice potential withminima separated by a lattice vector a, i.e., we
require k = p

a

2

3
. In our notations, we highlight constant vectors defined by externally imposed geometrical

features such as ki in bold-face with an additional arrow, while vectors representing variables like r are denoted
in simple bold font. Note that specific implementations of a triangular opticalflux lattice such as (1)may be
realised by various optical coupling schemes. Detailed implementations have been presented elsewhere (see, e.g.,
[47]), sowe shall workwith the simplestmodel in the current paper.

In the adiabatic limit  ¥m , it is easily checked that theHamiltonian (1) has eigenvalues = ( ) ∣ ∣E r M ,
and the local Bloch vector for the lower band, s= áY Y ñ- -ˆ ( )∣ ˆ ∣ ( )n r r , is simply given by the direction of−M, i.e.,

= - º -ˆ ˆ ∣ ∣n M M M . The states Y ñ∣ are also the eigenstates for the class ofHamiltonians ¢ = +ˆ ˆ V̂s, for

arbitrary scalar (i.e., spin-independent) potentials =ˆ ( ) ( ) ˆVV r r 1s s . The energy landscape for the unperturbed
triangularflux lattice (1) is shown infigure 1.Note that the unit cell of this lattice encloses twoflux quantawithin
an area containing four localminima of the energy, whichwe can think of as four lattice sites in the tight-binding
limit of a deep opticalflux lattice [24]. For our choice of units, the lattice vectors spanning the unit cell are given
by = -( )a a3 , 11 , and = ( )a a0, 22 , as highlighted in figure 1.

3
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The periodicity of the energy landscape suggests that theHamiltonian (1)has a higher translational
symmetry than that by the above-mentioned lattice vectorsai .While energetically equivalent, the eigenstates at
the four energyminima in the unit cell are distinct. However, the higher symmetry of theHamiltonian can be
revealed by generalized translation operators that incorporate a rotation in spin-space [24]. Available spin-
translation operators are

s s= =  ˆ ˆ ˆ ˆ ( )· ·T Te , e , 3a a
1 2

1
2 2 1

1
21 2

with  =[ ˆ ˆ ]T , 0i (i=1, 2), but ¹[ ˆ ˆ ]T T, 01 2 . Nonetheless, wefind that =[ ˆ ˆ ]T T, 01 2
2

, sowe can classify the

eigenvalues ofˆ with the quantumnumbers of both T̂1, and =  º ˆ ( · ) ˆ ( )a aT Kexp2
2

2 2 , as the latter reduces
to a regular translation ˆ ( )aK 2 bya2. For a detailed discussion of these symmetry operations in the triangular
lattice, see [24].

3. Changing lattice topology via scalar potentials

In the deep optical lattice limit, we can consider optical flux lattices as tight-bindingmodels wheremotion
between two ‘sites’ or localminima of the energy landscape is described by a tight-bindingmodel with complex
hopping elements.We now examine how a change in the lattice topology emulated by opticalflux lattices is
achieved either by ‘removing sites’ or by ‘removing bonds’ in this tight-bindingmodel, as was already achieved
for scalar optical lattices [58, 54]. Aswewill demonstrate below, this idea can indeed also be realised in optical
flux lattices by applying an additional scalar optical lattice potential to either suppress lattice sites or the
connectivity between them,while the distribution offlux generated by the underlying optical flux lattice is kept
intact.

Some examples of cutting bonds are visualized infigure 2. There are already similar experimental
realisations of tuneable optical lattices obtained by superposingmultiple standingwaves [58, 54]. An additional
consideration forflux lattices arises in the tight-binding limit, where flux through each plaquette is defined only
modulo 2π. As the elimination of linksmerges the two adjoining plaquettes into a single one, this construction
yields non-trivial flux lattices only if the totalflux in the resultingmerged plaquette is not an integermultiple of
theflux quantumΦ0. Similarly, the removal of sites alsomerges several adjoining plaquettes, so the same
consideration applies. For example, a hexagonal lattice can be obtained by removing a sublattice of sites of an
underlying triangular lattice. In this case, six neighbouring triangular plaquettes are joined into a hexagonal one,
so this yields non-trivial results if the flux per triangular plaquette is not amultiple ofΦ0/6.

Figure 1.Contour plot of the energy landscape for the triangular optical flux latticewith twoflux quanta per unit cell of [24], the
starting point for our construction. Orange arrows show the in-plane components of the local Bloch vector. The unit cell is spanned by
the vectorsa1,

a2, contains 4 triangular lattice sites, and encloses 2flux quanta. Thanks to a spin-translation symmetry, this can be
reduced to a reduced unit cell of size [ a 21 ,]a2 (dotted cyan lines). In this paper, we showhow thisflux lattice can bemodified to yield
an optical dice flux lattice by eliminating bonds: a dice lattice is obtained by impeding tunnelling across the linkswhich are crossed out
with bluewavy lines.

4
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4. Case study: the dice lattice

For the remainder of this paper, we focus on a case study of eliminating bonds in a triangularflux lattice.
Alongside the elementary unit cell of the flux lattice, figure 1 highlights the bonds that need to be severed in the
triangular lattice so as to reduce its connectivity to a dice lattice geometry. As shownmore clearly infigure 2(a),
wefind thatmid-points of these bonds form a kagome lattice with lattice constant ¢ =a a3 2 . Fromfigure 1,
it is also clear that the pattern of eliminated bonds has a different periodicity as the unit cell  [ ]a a,1 2 of the
triangular optical flux lattice. This will be further discussed, below.

In our cold atom realization of an optical diceflux lattice, themaxima of an additional scalar optical
potential are alignedwith the centre points of the bonds of an underlying triangular optical flux lattice. As
experiments by the Stamper-Kurn group demonstrate, an attractive kagome optical lattice can be achieved by
combining a blue-detuned (i.e., regions of high intensity are repulsive) short-wavelength triangular optical
lattice with a red-detuned (attractive) triangular lattice of twofold lattice constant [54]. Experimentally, it is
difficult to keep these two lattices in register, but this challenge has been successfully addressed [54]. Here, we
require a repulsive kagome lattice, which is rotated byπ/6with respect to an underlying triangular optical flux
lattice (1), again implying that the two light potentials have to be kept in phase as in the kagome lattice realisation
of [54]. The corresponding optical potential is formed by a red-detuned short-wavelength scalar optical lattice
VSW atwave number k k=^ 2 3 , as well as a blue-detuned long-wavelength scalar superlatticeVLWwithwave
numberκ⊥/2. The full Hamiltonian of our optical dice flux lattice is then obtained by superposing all three
components

 = + +ˆ ( ) ˆ [ (ˆ) (ˆ)] ( )r b rV bVr r 1, . 4dice SW LW

Here, the parameters b>0 and r<0 give the amplitude of the scalar beams relative to the spin-dependent
fields, and the explicit formof the required short- and long-wavelength potentials are given by

 k k k=  +  + ^ ^ ^( ) [ ( · ) ( · ) ( · )] ( )V r r r rsin sin sin 5SW
2

1
2

2
2

3

for the red-detuned beam that is attractive, and that should thus contributewith an amplitude r<0, and


k k k

=


+


+
^ ^ ^⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥( ) · · · ( )V r r r rsin

2
sin

2
sin

2
6LW

2 1 2 2 2 3

for the blue-detuned beam that should provide a repulsive potential with an amplitude b>0, and
k k =  ^

ê2 3i i3 throughout. Note that both these contributions are scalar, i.e., they are diagonal in spin-
space. In the adiabatic limit (i.e., disregarding kinetic energy), the local energy eigenvalues are readily obtained as

=  + + ( ) ∣ ∣ ( ) ( )E r b rV bVM r r,dice
SW LW , and the local eigenstates are unchangedwith respect to the

triangular optical flux lattice.

Figure 2.Examples of new lattice topologies that emerge by elimination of bonds from an underlying graph, where suppressed
hoppings are symbolized as open circles. The triangular lattice (a) can be reduced to a dice lattice. Here, the centres of eliminated
bonds form a kagome lattice. A square lattice (b) can be reduced to a brickwork latticewhich has the connectivity of a honeycomb
lattice. Here, the centres of eliminated bonds again form a square lattice. A regular honeycomb lattice can also be recovered from this
set-up by scaling the x-axis by one half.
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Let us nowdiscuss the symmetries of the optical dice flux latticeHamiltonian. Aswe noted previously, it does
not have the full translational symmetry of the triangular opticalflux lattice. The resulting situation is best
discussed in terms offigure 3, which shows the energy landscape (contours; darker blue indicatesminima), as
well as the x−y-components of the local Bloch vector (orange arrows). In the presence of the scalar potentials (5),
(6), the energy landscape contains lattice sites with three different profiles: themost prominentminima form the
‘hubs’ or sixfold connected sites of the dice lattice, such as the one at the origin = ( )r 0, 0 . They are surrounded
by six smallerminima, the ‘rims’ or threefold connected sites. These are slightly triangular and can be either
pointing upwards [such as at = ( ) ]ar 3 2, 1 2 or downwards [as at = ( )ar 0, 1 ]. In addition, lattice sites
differ in terms of the spin-content of the local wavefunction. Looking at the in-plane components of the local
Bloch vectors, it is apparent that a fundamental unit cell of our optical dice flux lattice is enclosed by the vectors
marked infigure 3 as = ( )v a2 3 , 01 , and = -( )v a3 , 32 , which connect hubswith identical Bloch vectors.
Due to the distinct periodicities, this unit cells contains 12 sites of the underlying triangular lattice so it is
enlarged threefoldwith respect to the unit cell of the original triangular optical flux lattice.

TheHamiltonian (4) contains an additional symmetry, which can be constructed in terms of the spin-
translation operators T̂1,2 in (3). Let us construct suitable spin-translations Ŝ1,2 along the half lattice vectors

v1

2 1,2.

These can be expressed in terms of T̂1,2 as:

s= = +ˆ ˆ ˆ ˆ ( )( )·S T T e , 7a a
1 1

2
2 1

1
2

2 1 2

s= = - -+ˆ ˆ ˆ ˆ ( )( )·S T T i e . 8a a
2 1

1
2 3

1
2 1 2

Wenote that both Ŝi commutewith theHamiltonian, i.e.  =[ ˆ ˆ ]S , 01,2 dice . Furthermore, their squares are
simple translations, which confirms that we have chosen the unit cell correctly. For instance,

s= = + ˆ ˆ ( )· ·S e ea a v
1
2

1
2 2 1 2 1 , which equals a pure translation ˆ ( )vK 1 under the lattice vectorv1. However, the

translations Ŝ1 and Ŝ2 do not commutewith each other, as ¹[ ˆ ˆ ]S S, 01 2 . Given that Ŝ2 is diagonal in spin-space,
we select this operator as our supplementary symmetry in formulating the single-particleHilbert-space, andwe

can then use the eigenvalues of the set of commuting operators ̂, Ŝ1
2
, and Ŝ2 to label eigenstates. This results in

a reduced unit cell in real space, spanned by  [ ]v v, 21 2 , as shown in green dashed lines infigure 3, such that
eigenstates in the remainder of the full unit cell can be recovered by applying Ŝ2 to their symmetry related points
in the reduced cell.

Figure 3.Contours show the adiabatic energy landscape of the dice flux lattice (4)with−r=b=1/8, obtained by knocking out
bonds from the underlying triangular opticalflux lattice shown infigure 1. The periodicities of the lattice result from a combination of
the periodicity in the energy landscape (shown as a density plot withminima in dark blue) and the local Bloch vectors (x−y-
components shown as orange arrows). The original unit cell  [ ]a a,1 2 is highlighted in dashed yellow lines/arrows. As the scalar
potential has different periodicity than the flux lattice, the elementary unit cell of the dice flux lattice is enlarged and contains 12 sites.
The figure shows the dice unit cell in red full lines, spanned by vectorsmarked as  [ ]v v,1 2 . Thanks to a combined symmetry of spin
rotation and translations (seemain text), the unit cell can be reduced to half that size, shown as the region  [ ]v v, 21 2 enclosed in
dashed green lines.
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5. Spin-translation symmetry in shallowflux lattices

The arguments of the preceding section can be placed on amore robust foundation by considering the full
Hamiltonian of the flux lattice beyond the tight-binding limit, i.e., including kinetic energy. In order to capture
the effect of the kinetic energy term, it is convenient to study the flux latticeHamiltonian as a tight-binding
model in reciprocal space [69]. Here, we review and extend this formalism to take into account the spin-
translation symmetries, as realised by the operators Ŝ1, Ŝ2 identified above.

5.1. General formalism
Having identified the periodicity of the problem in the real-space unit cell spanned by  [ ]v v,1 2 , we know that the
wave functions in reciprocal space are defined on a fundamental Brillouin zone (BZ) spanned by the reciprocal
lattice vectors


p =
 

   =
ˆ

( ) · ˆ
( )g

v e

v v e
i

2
, 1, 2, 9

j
i ij

3

1 2 3

where òij is the totally anti-symmetric tensor. The reciprocal lattice vectors thus satisfy d  =·g vi j i j, . Now, let us
turn to discuss themomentum transfers, which are obtained as thematrix elements of the interaction ( )V r in
the basis of plane-wave states with a aá ñ = Ä ñ∣ ∣·r k, e k ri for the spin componentα. One finds that thematrix
elements depend only on themomentum transferD = ¢ -k k k

a a= = á ¢ ¢ ña a a a
¢
¢

¢-
¢ ∣ ( )∣ ( )( )V V k V r k, , . 10k k k k,

According to Bloch’s theorem, eigenstates Y ñ∣ nq are uniquely labelled by a band index n andmomentum q in
thefirst BZ, while largermomenta can be decomposed as = +k q G into a part lying in the BZ and a reciprocal
lattice vector =  + g gs tGst 1 2 with s, t integer. In its Bloch form thewavefunction reads

å åa aY ñ = ñ º + ñ
a

a

a

a∣ ( )∣ ∣ ( )u cr q q G, , , 11n n
s t

n stq q q G
, ,

, st

with expansion coefficients acnq G, . Aswas noted previously [69], theflux latticeHamiltonian takes the formof a
tight-bindingmodel in reciprocal space inwhich the kinetic energy plays the role of a harmonic confinement:




å å=
+

+
a

a a
aa

a a
a a+ +

¢ ¢
¢-
¢

¢ + ¢ +ˆ ( ) ˆ ˆ ˆ ˆ ( )† †

m
a a V a a

q G

2
, 12q

G
q G q G

GG
G G q G q G

,

2 2

, ,
,

, ,

written here in terms of the annihilation (creation) operators aˆ
(†)a k, for the plane-wave basis.We should also

carefully note that all hoppings in thismomentum-space tight-binding representation are relative to thewave-
vector q, hence they represent a lattice of achievablemomentum transfers, while in the usual case of tight-binding
models in real space one is used to consider a lattice offixed positions.

The depth of the optical lattice potential is reflected by themagnitude  of the largest entries in a a
D
¢V k . The

typical kinetic energy is of order of the recoil energy, whichwe define in terms of the relevantmomentum
transfer D = Dp k of the relevant laser-beam as


=

D∣ ∣ ( )E
m

k

2
. 13R

2 2

The adiabatic limit is recoveredwhen ER , where the kinetic energy can be neglected and the problem is
solved by Fourier transformback into real space, where position r plays the role of a conservedmomentum. In
the general case, (12) defines amatrix equation for the coefficients acnq G, , which can be solved numerically as
coefficients decay rapidly with the absolute value ofmomentum +∣ ∣q G .

5.2. Role of spin-translation symmetries in complex opticalflux lattices
The role of the spin-translation symmetries ismore easily explainedwithin an example. Let us therefore focus on
the reciprocal space picture of the dice flux latticedice, that is illustrated infigure 4. For the components
associatedwith the triangularflux lattice (1), we obtain the spin-dependent processes s=kˆ ˆV 11

with

momentum transfer k = - + g g21 1 2, s=kˆ ˆV 22
with k =  + g g2 1 2, and s=kˆ ˆV 33

with k =  - g g23 1 2,

where the reciprocal lattice vectorsgi are defined by the lattice vectors
vi spanning the unit cell of the diceflux

lattice according to (4). For later reference, note that thesemomentum transfers are proportional to thewave
vectors of the three coupling lasers of the dice opticalflux lattice, and are linear combinations in integer
multiples of its reciprocal lattice vectors (9).

We display themomentum transfers of the underlying triangular optical flux lattice infigure 4(a), which also
highlights the BZ corresponding to full the real-space unit cell  [ ]a a,1 2 offigure 3. Following [69], the spin-
translation symmetry T̂1 of thismodel can be exposed by fixing the eigenvalue of the spin-translation operator,
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leading to a halving of the real space unit cell to  [ ]a a2,1 2 , thus doubling the BZ and leaving a definite spin state
at each reciprocal lattice site, as shown infigure 4(b).

To obtain the dice opticalflux lattice, we add to this picture the coupling to the scalar optical potentials
generating the kagome lattice, equations (5), (6), which contributewithmomentum transfers corresponding to
twice their wave numbers, arising from the absorption of a photon from a standingwave laser followed by

stimulated emission in the opposite direction. ForVSW, we obtainmomentum transfers kD


= ^
k 2i i

SW
, with

amplitude =ˆ ˆrV 1SW and similarly forVLW themomentum transfers are kD


= ^
k i i

LW
with amplitude

=ˆ ˆbV 1LW . Thesemomentum transfers are four- or twofoldmultiples of the reciprocal lattice vectors and their
π/3 rotations.

According to the enlarged unit cell in real space, the BZ of the dice lattice should cover one third of the area of
the BZ for the triangular opticalflux lattice. The corresponding lattice of possiblemomentum transfers is
illustrated infigure 4(c), revealing a three times denser coverage of attainable k-points. The action of the spin-
translation symmetry of the dice latticemodel is again readily illustrated in thismomentum-space picture.
Assume a single-particle wavefunction has a non-zero amplitude for spin state 1 and vanishing amplitude for
spin state 2 atmomentum q. Applyingmomentum- and spin-transfers to this initial state according to the tight-
bindingHamiltonian (12), one can see that all related reciprocal lattice points at positions q+G are reached
with a definite spin quantumnumber. Equivalently, theHamiltonian does not allow one to create any loops that
return to the initial point with a different value of the spin. Choosing a spin state of 1 at the central k-point, one

Figure 4.Representation of opticalflux lattices as tight-bindingmodels on a grid of k-points (circles)highlightingmomentum
transfers, or ‘hoppings’, induced by absorption/emission of photons (arrows).We show the lattice of accessiblemomentum transfers
for the triangular (a), (b) and dice lattice (c), (d) geometries. Note the panels are scaled differently, with the links shown in black
corresponding to the samemomentum transfer throughout. (a)The lasers of the triangular optical flux lattice (1) propagate along
directions k µ ( )1, 0 t

1 , k µ ( )1 2, 3 2 t
2 , and k µ ( )1 2, 3 2 t

3 . Thesemomentum transfers induce spin-transitions given
by ŝ1, ŝ2 and ŝ3, respectively, highlighted by squares, diamonds, and circles on the corresponding arrows. The fundamental Brillouin
zone is shaded in yellow. (b)Taking into account the spin-translation symmetry of (1), (2), one can assign a definite spin state to the
accessible k-points (denoted as 1 or 2 in thefigure), while the corresponding enlarged Brillouin zone (blue shade) is doubled along ê1.
(c)The reciprocal-space representation of the optical dice flux lattice includes the triangular lattice transitions, as well as additional
momentum transfers due to the scalar potentialVkag=rVSW+bVLW of equations (5), (6). These ‘hoppings’ along directions k^

i
connect to additional k-points located in the centres of the original triangular lattice, yielding a Brillouin zone for the dice lattice (red
shade) that is 1/3 the size of the Brillouin zone for the triangular lattice (yellow shade). The reciprocal lattice vectorsg1 ,

g2 are shown
as red arrows. (d)The spin-translation symmetry of the optical dice flux lattice again leads to a unique labelling of spin states 1, 2 for all
possiblemomentum transfers. This yields an enlarged Brillouin zone, which is stretched alongg2 and covers the region

 [ ]g g, 21 2
(green shade).
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obtains the spin labels shown infigure 4(d). An equivalent labelling is obtained by interchanging labels ‘1’ and ‘2’
(or equivalently, by a translation of the figure underg2).

The spin-translation symmetry can bemore formally derived from the eigenvalue equations of the spin-

translation operators Ŝ1,2.We take Ŝ2 and Ŝ1
2
as the chosen symmetry generators commutingwith the

Hamiltonian, or  = = =[ ˆ ˆ ] [ ˆ ˆ ] [ ˆ ˆ ]S S S S, , , 01
2

2 1
2

2 , as discussed in section 4. This implies that the

Hamiltonian is block-diagonal in the subspaces offixed eigenvalues of Ŝ1
2
, Ŝ2. Given the unitarity of these

operators, we denote their eigenvalues as l = Q( )exp ii i , with Q Q ñ = Q Q Q ñˆ ∣ ( )∣S , exp i ,1
2

1 2 1 1 2 and

Q Q ñ = Q Q Q ñˆ ∣ ( )∣S , exp i ,2 1 2 2 1 2 , with Q Q ñ∣ ,1 2 the corresponding eigenstates. Consider then the explicit action
of the generalised translations onmomentum eigenstates

a a

a s a

ñ = ñ

ñ= ñ





ˆ ∣ ˆ ∣
ˆ ∣ ˆ ∣ ( )

·

·

S

S

k 1 k
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1
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2
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2

We see that the phases are periodic under translations of  + gk k 1 in the phase of Ŝ1
2
, while the action of Ŝ2 is

periodic under a doubled reciprocal lattice vector  + gk k 2 2, when the spin state isfixed. Thus, we can label
eigenstates by amomentum q taken to lie in the enlarged BZ  [ ]g g, 21 2 that is stretched twofold along the

g2-direction, as highlighted infigure 4(d). In this representation, each point of reciprocalmomentum transfers
can be assigned a definite spin state, as themomentum q in the enlarged BZprovides sufficient information to
encode both the spin andmomentumdegrees of freedom. Alternatively, one could choose to represent the full
range of possible eigenvaluesΘ2ä[0, 2π) by reducing themomentum to the fundamental BZ  [ ]g g,1 2 , and
recover the full range ofΘ2 by taking into account both±1 eigenvalues of the spin operator ŝ3.

6.Quantitative analysis of theπ-flux optical diceflux lattice

In this section, we provide a numerical study of the optical dice flux lattice introduced in section 5.Our numerics
are performed in terms of the reduced unit cell  [ ]v v, 21 2 , or its reciprocal space counterpart. In otherwords,
our implementation relies on resolving eigenstates of the generalized translations Ŝ2, as discussed above.

In practice, we diagonalize thematrix representing theHamiltonian (12) in the basis of the plane-wave states
selected by the spin-translation symmetry, as shown infigure 4(d).We include basis states at wave vectors
q+Gs,t, with ∣ ∣ ∣ ∣s t t, max.Wefind that values of tmax ranging up to 16 are sufficient to achieve good
convergence for the cases shown below.Diagonalisation of the ensuingmatrix yields the desired spectra and
eigenstates Y ñ∣ nq .We obtain these on a discrete grid ofmomenta qwithin the extended BZ spanned by  [ ]g g, 21 2 .

We proceed to discuss the spectrum, which provides an excellent approximation to the tight-binding version
of theπ-flux dice latticemodel. For reference, let us first review the spectrum in the tight-binding limit, shown in
figure 5(a). Note that the tight-binding spectrum features only three distinct eigenvalues, each corresponding to
a pair of degenerate bands all of which are time-reversal symmetric and have Chern numberC=0. The overall
count of six bands corresponds to the six lattice sites in the fundamentalmagnetic unit cell of the fully frustrated
dice lattice.

Figure 5. (a) Spectrumof the fully frustrated dice latticemodel in the tight-binding limit, plotted over thefirst BZ. As themagnetic
unit cell has six distinct sublattices, themodel results in six bands that are pairwise degenerate with energies of = -E t6 ,E=0,
and =E t6 for the three pairs of bands. (b) Spectrumof the dice latticemodel with systemparameters  = E2 R , and−r=b=1/
8. The plot shows the lowestfive bands, of which the lowest two energy bands are near-degenerate.
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At intermediate-depth of the optical lattice   ER
4, wefind that the low-energy spectrumof our proposed

dice flux lattice (4) correctly reproduces the qualitative features of the tight-bindingmodel. For   ER, this
low-energy spectrum contains two near-degenerate bands that are well separated fromhigher bands. These two
lowest bands have a very small dispersion and have only a small residual splitting. A typical spectrum, for
 = E2 R, and−r=b=1/8 is shown infigure 5(b). To display the residual dispersion of the lowest bandsmore
clearly, wewill analyse a series of contour-plots infigure 7, below. For the parameters infigure 5(b), the
dispersion of the two lowest bands is of the order of 0.04ER. There is a small splitting to the second band (not
shown), which has the inverse dispersion relative to that of the lowest band, i.e. itsminima are found at the
maxima of the lowest band and vice versa.With these parameters, the joint dispersion of these nearly degenerate
bands is about 50 times smaller than the gap to higher excited bands.

It is instructive to analyse how the band dispersion evolves with the strength  of the optical coupling. A
series of different spectra with values ranging from  = ER to  = E8 R is shown in figure 6, including the lowest
five bands in each case. These data were obtainedwith a cut-off formomentum at  ∣ ∣gk 12 i . It is clearly seen
that the near-degeneracy of the lowest two bands is realised verywell for all   E2 R, while a small splitting is
visible on thefigure for  = ER. The higher (n=3, 4, 5) bands are not found to be degenerate. However, the gap
above the near-degenerate ground-statemanifold is seen to increase with the optical coupling strength. Given
thesefindings, we interpret the lowest bands as corresponding to the two degenerate lowest energy bands in the
tight-binding limit, while the higher bands can be interpreted as arising fromdifferent local orbitals that can be
formedwithin theminima of the optical potential. In the limit of   ¥, we expect that the splitting to such
orbitals would become large, and a low-energy part corresponding to the single orbital physicsmay then emerge
from the spectrum.

Wenowdiscuss the topological nature of the low-lying bands in the dice flux lattice. Themain qualitative
difference of the intermediate-depth lattice with respect to the tight-bindingmodel is the occurrence of weak

Figure 6.Evolution of the spectrumof the dice latticemodel with systemparameters as a function of the parameter  , withfixed
−r=b=1/6, shownwithin the enlarged Brillouin zone spanned by  [ ]g g, 21 2 . The plots show the lowest five energy bands, of which
the lowest two energy bands are near-degenerate. Values of  shown are (a)  = ER , (b)  = E2 R , (c)  = E4 R , and (d)  = E8 R .
Note how the gap above the pair of near-degenerate bands grows relative to the splitting of higher bands, as well as the overall increase
in themagnitude of energy eigenvalues.

4
Here, we define the recoil energy ER as in (13), using thewave numberκ for the underlying triangular lattice as the reference. Although this

is not the largestmomentum transfer in the set-up, it is the laser requiring the largest amplitude.
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tunnelling across the ‘forbidden’ links of the underlying triangular flux lattice, which break time-reversal
symmetry. To analyse this statement quantitatively, we calculate the Berry curvature

 = áY Y ñmn
¶
¶

¶
¶m n

( ) ∣ ∣q i q q0, 0,
q q

for ourmodel, where òμν is the totally anti-symmetric tensor and Einstein’s

summation convention is implied. To implement  computationally without the need to explicitly evaluate the
derivatives in this expression, we have instead evaluated the integral of the Berry curvature over smallWilson
loops on a discretized grid of k-points within the BZ following Fukui et al [70].We confirm that the Berry
curvature is non-zero, and has opposite signs in the two low-lying bands. The distributions of the (log-)Berry
curvature in the lowest band are shown as contour-plots in the lower row offigure 7 for a range of optical
coupling strengths, while the upper row shows the corresponding band dispersions. Note that there are
extended regionswhere the curvature  is small, whilemaxima are relatively localised. For example, at  = ER,
typical values are   a0.05 2 (to be compared to an average of  p= ¯ a Ca9 2.862 2 for a Chern number 
bandwith homogenous Berry curvature of the given BZ area). At the location of themaxima of the band
dispersion, which can be seen as avoided crossings with the next higher band,  is strongly peaked and as a
result, the Chern number  of the band is non-zero. Depending on the specific parameters we have found either
 =∣ ∣ 1, or  =∣ ∣ 3. In both cases, the cumulative Chern number of the two lowest bands is zero.

The different panels offigure 7 show the evolution of the band dispersionwith increasing optical coupling,
which reveals a change of the location ofminima in the dispersion, and correspondingly for the Berry curvature.
Note also how theflatness of the bands improves aswe go to stronger coupling. Extended regions of lowBerry
curvature are also found at the highest value we show.

It would be interesting to study how themany-body spectrum is affected by this finite but oppositely
oriented Berry curvature in the lowest two bands.We expect that as long as the interaction energy is larger than
the residual splitting between the two lowest bands, the system likely behaves in a qualitatively similar fashion as

Figure 7.Contour-plots of the properties of the lowest band in the dice latticemodel with systemparameters−r=b=1/6 in the
unfolded first Brillouin zone  [ ]g g, 21 2 for the energy (upper row) and logarithmof themagnitude of Berry curvature  -∣ ( ) ∣k alog 2

(bottom row). The x−(y-) axes showmomenta kx(y) in units of the inverse lattice constant a
−1. Values are shown formagnitudes of

optical coupling  = ER (panels a), (e),  = E1.5 R (b, f),  = E2 R (c), (g), and  = E3 R (d), (h).
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the time-reversal invariant system in the tight-binding limit [63]. A detailed analysis of this physics will be the
subject of a future study. In the sense that the perturbation of the bands away from the time-reversal symmetric
case is caused by small hopping elements on suppressed bonds, we can consider the time-reversal symmetry
breaking of our optical dice flux lattice to be ‘weak’.

7. Realizing the fully frustrated dice lattice in a tight-binding approach

An alternative realisation of the dice lattice pierced byπ-flux per plaquette can be realised in a pure tight-binding
philosophy. Let us discuss in detail the set-up for alkaline earth atoms (e.g., ytterbium (Yb)) atoms trapped in an
optical lattice at the anti-magic wavelength [63]. In our approach, we closely follow the proposal for a square
optical lattice using anti-magic trapping [22]. The possibility for this construction arises as the two internal
states ( S1

0 and P3
0) of Yb have polarisabilityα of opposite signs forwavelengths l 960 nm, so they are trapped

at the points ofmaximumorminimum laser intensity, respectively [22]. At the anti-magic wavelength
*l  1120 nm, the absolute values of the polarisability are of equalmagnitude. This is crucial for the square
lattice geometry. For our purposes, itmay actually bemore useful to choose awavelength at which the
polarisability is stronger inmagnitude for one of the two (pseudo-)spin states: the dice lattice geometry results
from a triangular optical lattice formed by three self-reflected laser beams propagating withwave vectors
arranged at relative angles of 2π/3with respect to each other. These beams should bemutually incoherent, so the
total intensity is the sumof individual intensities. Themirrors used to self-reflect these beams need to be
stabilised5 . One species of atoms ( S1

0) is then trapped at themaxima of the intensity (which are steep), while the
excited P3

0 state is trapped at theminima (which aremore shallow). Hence, it is favourable that the polarisability
is larger inmagnitude for the excited state, implying use of awavelength *l p lº >k20 0 , i.e.using
wavelengths in the far infrared (given that the polarisablity of the excited state growsmore rapidlywithλnear
the anti-magic wavelength, or * *a l a l>l l( ) ∣ ( ) ∣P Sd d d d3

0
1

0 ).
In our set-up, all neighbouring sites are occupied by atoms of different internal states. Consequently,

spontaneous tunnelling processes can be neglected, and all dynamics in this lattice is driven by via laser-assisted
hopping [17, 71]. Simultaneously, this coupling enables one to imprint phases onto the hoppingmatrix
elements [22]. Let us now explain how to achieve phases that yield the targetflux density of nf=1/2. For the
fully frustrated dice lattice, themagnetic unit cell contains six inequivalent atoms [61, 63], chosen here as a
rectangular cell spanned by vectors = ( )v a3 , 0 t

1 and = ( )v a0, 3 t
2 , as indicated by the different colouring of

inequivalent lattice sites infigure 8.However, the (scalar) triangular optical lattice described in the preceding
paragraph distinguishes only two types of sites.We propose to break this symmetry by shining one additional
self-reflected laser-beam, S4, onto the system: this beam serves to break down the internalmirror-symmetry of

Figure 8. Illustration of the rectangularmagnetic unit cell with six inequivalent sites numbered 1 to 6. The drawing includes three
magnetic unit cells, delineated by light blue solid lines. Links (shown in grey) indicate the connectivity of the lattice, corresponding to
hopping with amplitude t. Three links in themagnetic unit cell are special and need to be chosenwith negative hopping−t (shown
with two red hashes). One laser, S4 is required to establish themagnetic unit cell. Hopping between the six energetically inequivalent
sites of themagnetic Brillouin zone are driven by lasers as indicated. Hopping-inducing lasers propagating perpendicular to the plane
are labelledPi−j and drive transitions between sites i and j (shown as circles with crosses). The last two lasers Li−j propagate with a non-
zero in-planemomentum along the x-axis such as to induce two distinct transitionswithin eachmagnetic unit cell, andwith the
relatively opposite sign.

5
Alternatively, a suitable triangular lattice potential can be generated by three running beamswith relative phase coherence. However, these

would additionally have to be phase stabilised to prevent this triangular lattice fromdrifting relative to the 4th standingwave, laser S4,
discussed below.
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the triangular lattice unit cell to the desired periodicity. In our set-up, S4 has the same frequency/wavelength as

the triangular optical lattice. However, its in-planewavelength is enlarged to l l q= ( )sin4 0 by projecting this
laser onto the system at a tilt angle θwith respect to the z-axis of the plane.We tilt the laser towards the y-

direction and require the potential to repeat on the scale of themagnetic unit cell, i.e., l = ∣ ∣v 22 4 . By geometry,
wemust therefore choose the angle q p= =( )arcsin 1 2 6. Note the position of this laser potential (S4)needs
tomaintain a fixed spatial position relative to the lasers defining the optical lattice, as fluctuationswould shift the
superlattice potential relative to the triangular lattice potential, andwould alter the relativemagnitudes of site
energies. However, these energies need to be precisely defined, so that coupling lasers can satisfy the resonance
condition andmatch the binding energy differences for the links onwhich they induce hopping processes. Note
that a different wavelength laser could also be chosen.

To be explicit, let us write the required laser potentials. A bare triangular optical lattice of lattice constant a is
created by thewavelength l = a30 of the trapping beams:

å kp
= ⎜ ⎟⎛

⎝
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⎠( ) · ( )V I

a
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3
, 15
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itri 0

2

with the unit lattice directions k = ( )0, 1, 0 t
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Here, we need to choose a small offset of the phase δ such that themaximumof intensity of the additional laser
does not alignwith any high-symmetry point in themagnetic unit cell, and the intensity of the inversion
symmetry breaking laser S4 is reducedwith respect to the other lasers by a suitable small factor ò, e.g., we can
choose number of the order d p 2 10 and ò;0.05.

A three-dimensional view of the overall set-up is given infigure 9. In the resulting potential
= +( ) ( ) ( )V V Vr r rtot tri 4 , the six sublattices of the desiredmagnetic unit cell are all distinguished energetically,

i.e.their energies being detunedwith respect to the triangular lattice by distinct amounts δòi, i=1,K, 6.
The set-up is completed by a total of eight coupling lasers driving the respective transitions between these

sites. All of these lasers are propagatingwaves. Six of them are directed onto the system in the direction
perpendicular to the lattice-plane.We denote these lasers asPi−j, indicating the two lattice sites i, j between
which they induce a resonant transition. The six required lasers are P1−2,P2−3,P2−5, P3−6,P4−6, andP5−6, which
require frequencies    w w d w d= + - +- ( )i j i i j j

0 0 , and wi
0 denotes the unperturbed energy of the internal

state trapped at site i. Note each laser drives a transition between two neighbouring sites where atoms are in their
ground / excited state, respectively. See alsofigure 8 for an illustration. Four of these six lasers drive a transition

Figure 9. Set up of an optical dice lattice using an anti-magic optical lattice with laser-induced hopping: an underlying triangular
lattice is created by retro-reflected standingwave lasers in plane. The symmetry of themagnetic unit cell is created by an additional
standingwave laser S4 directed at an angle to the plane. Eight coupling lasers complete the set-up and drive transitions between sites of
different energy, as shown in figure 8 and discussed in themain text.
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on a single link in the unit cell. However, the two lasers P2−5, P3−6 connect the sixfold connected sites ‘2’ and ‘6’
to two neighbours with identical energy, located in the same and an adjacent unit cell, respectively. Due to the
perpendicular direction of the lasers, these transitions are driven in phase, so the hopping elements have the
same sign. All but one of the lasers Pi−jneed to be in phase with each other, whileP5−6 requires a phase-shift ofπ
relative to the others. A definite phase relationship between these lasers of different frequencies can be achieved
by deriving them from a single light source, and detuning their frequency using an acousto-opticmodulator.
The remaining coupling two lasers, whichwe call L1−6 and L2−4 are special in that they are required to drive two
transitions (likeP5−6), but nowwith a relative phase ofπ between these two couplings. This relative phase is
realised by virtue of an in-plane component of the respective wave vectors. Specifically, we choose the in-plane
component of their respective wave vectors k along the x-axis such that pº· ( )ak 3 2, 0, 0 t . Again, this
wave-vector can be realized by a suitable inclination of the laser beamswith respect to the plane.

This concludes our discussion of the detailed set-up for a tight-binding version of fully frustrated dice lattice.
Let us briefly compare this construction to the optical dice flux lattice discussed in section 6. Firstly, we note that
the tight-binding construction is explicitly time-reversal invariant, if all relative phases are set tomatch the
values 0 orπ. Although theremay be small perturbations to the ideal dice latticemodel from spontaneous
tunnelling processes between neighbouring threefold sites such as sites 1 and 4, such processes also have real
hopping elements.

The practical realisation of both schemes poses similar challenges, notably the requirement to generate
superlattice potentials whose relative positionmust be stabilised relative to an underlying lattice. This is difficult,
but has already been achieved [54]. However, fluctuations of the geometry will affect the two proposals rather
differently. In the opticalflux lattice set-up, the superlattice acts to suppress tunnelling by creating localmaxima
in the potential. This suppressionwill be relatively insensitive to the precise location of potentialmaxima, as long
as they are locatedwithin the relevant bonds of the lattice. By contrast, the tight-binding approach requires the
superlattice to define relative energies of lattice orbitals, and transitions between them are driven resonantly.
Hence, a rather fine control of the stability is required to ensure that all coupling lasers remain on resonance for
their respective bonds.

8. Conclusions

Wehave introduced a newmethod for constructing optical flux lattices with complex geometries by combining
a simple optical flux latticewith additional scalar potentials. To demonstrate the potential of our proposal, we
have explored the optical dice flux lattice as an example geometry inwhich bondswere eliminated from an
underlying triangular lattice. Ourmodel yields flat bands that are a particularly interesting playground for
studying interaction-driven phases ofmatter [63], and can realise aflatness parameter offifty even forweak
optical coupling. The opticalflux lattice approach results in interesting additional features with respect to a pure
tight-binding description of the dice latticemodel. At intermediate lattice depths, themodel weakly breaks time-
reversal symmetry in the following sense: instead of degenerate pairs of time-reversal symmetric bands, the
approach produces time-reversal pairs of bandswhose degeneracies are only weakly split.

The proposed realisation of an optical dice flux lattice is realistically achievable in the near future, as it
combines several elements which are already part of the current state of the art. The kagome lattice realised in the
group of Stamper-Kurn successfully demonstrates the phase-stabilised superposition of two lattices with
distinct wavelengths [54]. Our set-up requires the additional superposition of a triangular opticalflux lattice.
While work on thefirst realisation of such systems under way, wewould like to underline that related schemes
for synthetic gaugefields have already been successful [38, 39], and related schemes for emulating spin–orbit
coupling in 2D systems have also been implemented [50–52].

We have also introduced a proposal for a tight-binding schemewhich is closer to the existing technology of
the aforementioned experiments. Here, challenges rely onfine-tuning energies andmaintaining the relative
superlattice positionwith high accuracy. This kind of set-up requires one-by-one engineering of laser-induced
hopping between sites in the unit cell, so its complexity growswith the unit cell size.

By contrast, one of the inherent features of theflux lattice schemes is their tuneability. Explorations of scalar
optical lattices have already shown that amultitude of different band-structures can be realised in the same
experiment [54, 58]. Hence, one interesting direction for further study is the question of how the lattice
geometry is alteredwhenmoving the scalar lattices with respect to the underlying optical flux lattice.
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