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Abstract

It is possible to implement mathematical proofs in a machine-readable language. In-
deed, certain proofs, especially those deriving properties of safety-critical systems, are
often required to be checked by machine in order to avoid human errors. However,
machine checkable proofs are very hard to follow by a human reader. Because of their
unreadability, such proofs are hard to implement, and more difficult still to maintain
and modify. In this thesis we study the possibility of implementing machine checkable
proofs in a more readable format. We design a declarative proof language, SPL, which
is based on the Mizar language.

We also implement a proof checker for SPL which derives theorems in the HOL
system from SPL proof scripts. The language and its proof checker are extensible, in the
sense that the user can modify and extend the syntax of the language and the deductive
power of the proof checker during the mechanisation of a theory. A deductive database
of trivial knowledge is used by the proof checker to derive facts which are considered
trivial by the developer of mechanised theories so that the proofs of such facts can be
omitted. We also introduce the notion of structured straightforward justifications, in
which simple facts, or conclusions, are justified by a number of premises together with a
number of inferences which are used in deriving the conclusion from the given premises.
A tableau prover for first-order logic with equality is implemented as a HOL derived
rule and used during the proof checking of SPL scripts.

The work presented in this thesis also includes a case study involving the mechani-
sation of a number of results in group theory in SPL, in which the deductive power of
the SPL proof checker is extended throughout the development of the theory.

ix



Acknowledgements

I thank my supervisor, Simon Thompson, for his continuous support and encourage-
ment. I greatly appreciate the guidance he has given me throughout the three year
period of my study.

I also thank all the academic and non-academic staff of the Computing Laboratory
at the University of Kent for providing an excellent working environment. In particular,
I thank all the staff members and research students of the T'CS group for their comments
on parts of the work presented in this thesis. I also thank my examiners, Keith Hanna
and Tom Melham, for their helpful comments on this thesis.

I thank the organisers, sponsors, speakers and participants of the 1996 BRICS Au-
tumn School on Verification, the 1997 Marktoberdorf Summer School on Computational
Logic, the 1996 and 1997 TPHOLs Conferences and the 1997 PTP Workshop for making
such events very research-stimulating.

I warmly thank Geraldina, Helena and Jason for being wonderful office mates and for
all the great time we spent together. During my stay in Canterbury I met, made friends
with, and shared houses with many interesting individuals from all the continents of
the world. I thank them all for their friendship and for the time we spent together. I
especially thank Julie for her companionship. T thank Mike, Kevin, Roberta and Ingrid
for making me feel closer to Malta.

I also thank all my friends in Malta for always being very encouraging. I thank my
family for their care, support and all the things they have done to me.

Last, but not least, I thank the Computing Laboratory for providing the funding
for my studies. The work presented in this thesis would not have been possible without
this funding.



Chapter 1

Introduction

In this thesis we study the implementation of machine-checkable proofs in a format
that can be easily followed by a human reader. The implementation of mathematical
proofs in a machine-checkable format is usually required when the correctness of the
proofs is a major concern. For example, one requires that the proofs deriving properties
of safety-critical systems are error-free, and the use of a computer system to check
such proofs can greatly minimise the number of errors in comparison with an informal
proof. However, the proofs which can be checked by current computer systems are
unreadable and hard to follow, and it is therefore desirable that more effort is put in the
investigation of possible ways of improving the readability of machine-checkable proofs.
In this introductory chapter we first briefly discuss the problems concerned with the
implementation of readable mechanised proofs in section 1.1. Section 1.2 introduces the
notation and definitions which are used in this thesis. Section 1.3 gives a brief outline
of the remaining chapters of this thesis.

1.1 Machine Checkable Proofs and their Readability

In this section we illustrate the problems concerned with the implementation of machine-
checkable proofs in a readable format, and motivate the work presented in this thesis.
The material given here is discussed in more detail in chapter 2.

1.1.1 Formalised and Mechanised Mathematics

The implementation of mathematics in a language whose syntax and semantics is un-
ambiguously defined is referred to as the formalisation of mathematics. Mathematics
is formalised in order to achieve a higher degree of precision and correctness than that
found in the usual, or informal, mathematical texts. By the mechanisation of mathe-
matics one usually refers to the use of a machine, and especially the use of a computer
system, to perform mathematical tasks, which include numerical calculations, manip-
ulations of mathematical terms and the logical development of mathematical theories.
In this thesis we use the term ‘mechanisation of a mathematical theory’ to refer to the
formalisation of the mathematical theory in order for proofs in it to be checked by a
computer system. The advantages of using a computer system in formalising mathe-
matics include the minimisation of errors in the definitions and proofs, and the ability
to use specialised tools to find formal proofs.
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1.1.2 Proof Checking and Theorem Proving Environments

A proof checker is a computer system developed to check the validity of formal proofs.
Examples of early proof checkers include AUTOMATH (de Bruijn 1970) and Mizar (Try-
bulec 1978). Modern computer systems, such as HOL (Gordon and Melham 1993),
Isabelle (Paulson 1994), Coq (Barras et al. 1996), LEGO (Luo and Pollack 1992),
Nuprl (Constable et al. 1986), and PVS (Shankar, Owre, and Rushby 1993) are usually
called theorem proving environments since they provide several other facilities for the
mechanisation of mathematics apart from proof checking. In particular, they provide
an interactive proof-discovery environment based on tactics. In a tactic-based envi-
ronment, theorems are proved by specifying them as goals, and then applying tactics
interactively, which either solve the goal automatically or break it into simpler subgoals.
A theorem is proved when all the subgoals of the original goal are solved. The sequence
of tactics required to prove a theorem represents a tactic-based proof of the theorem.
The application of a single tactic can involve very powerful inferences. For example, a
commonly used class of tactics uses arbitrary term-rewriting systems to simplify a goal,
and an application of such tactics often corresponds to several hundreds of inferences.

1.1.3 The Readability of Machine-Checkable Proofs

The readability of a proof depends on the effort required by the reader to understand
it. Therefore, in order to be readable, a proof should contain the necessary information
to be followed without undue effort. It should also omit irrelevant information, or any
information which can be easily deduced by the intended reader of the proof. Further-
more, in order to facilitate its readability, the information contained in a proof should
be organised in a way which highlights its structure.

The mechanised proofs that can be checked by current proof checkers are not very
readable. One reason for this is the fact that the proof languages accepted by most proof
checkers are not designed for the implementation of readable proofs, but for some other
purposes. For instance, a proof language based on tactics is usually designed in order to
facilitate the interactive discovery of proofs. As a result, tactic proofs are not intended
to be easily understood by a human reader and can only be followed by examining the
effect of each proof step using the interactive theorem proving environment. Because
of their unreadability, it is hard to debug, maintain and modify tactic-based proofs
in order to use them to derive slightly different theorems without feedback from the
theorem proving environment.

The design of a proof language whose proofs are easy to follow is not a trivial task.
For instance, the information contained in readable proofs should be at an appropriate
level for the intended reader. Over-detailed proofs are tedious to read and hard to
understand, while a considerable amount of effort is required to follow proofs which
contain too little information. It is not straightforward to find this right level of detail,
to define the appropriate language constructs and inferences to express proof steps at
the required level of detail, and to design and implement the algorithms necessary to
proof check such inferences efficiently.

Davis (1981) and Rudnicki (1987) study the notion of obvious inferences. An infer-
ence is obvious if it can be easily deduced by a human reader, and if it can be efficiently
checked by machine. An important issue discussed in this thesis is the realisation that
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the notion of obviousness cannot be static. For instance, the inferences which are con-
sidered to be essential to the readability of the proofs of the results derived in the early
stages of a theory are very often omitted from the proofs of the results given later in the
same theory. What is considered to be obvious by the reader of a proof depends on his
knowledge of the subject. This knowledge increases as the reader reads and understands
the proofs of the results given in the theory. This suggests that one cannot use a fixed
proof checking algorithm to check all the mechanised proofs of a theory. The developer
of a mechanised theory is therefore required to extend, or improve, the deductive power
of the proof checker during mechanisation.

1.2 Preliminaries

In this section we give a number of preliminary definitions concerning first-order logic
and higher-order logic which are used throughout this thesis.

1.2.1 First-Order Logic

The following notation and definitions of a number of standard concepts of first-order
languages and first-order logic are used in this thesis. More elaborate treatments can
be found, for instance, in (Chang and Keisler 1990) and (Fitting 1996).

Let X be a countable set of variables, and let X be a signature, that is, a collection
of function symbols each of which has a fixed natural number associated with it called
the arity. Function symbols with zero arity are called constants. A term is either a
variable or some f(¢1,...,t,) where f is a function symbol, n is the arity of f, and
ti, ..., t, are terms. Constant terms c() are simply denoted by c¢. The language of
first-order terms T (X g, X), or simply 7, is the set of all terms constructed from the
function symbols in ¥z and the variables in X.

Let ¥ be a collection of relation symbols (also called predicates) with fixed arities.
We identify two predicates T and | with zero arity in Xr. An atomic formula, or
atom, is of the form P(ty,...,t,) where P is a predicate, n is the arity of P and ¢y, ...,
t, are terms. First-order formulae are constructed from atoms, the unary operator —,
the infix binary operators A, V, = and < which are also called connectives, and the
quantifiers ¥ and 3. A literal is either an atom in which case it is a positive literal, or
a negated atom of the form —A, where A is atomic, in which case it is negative. Two
literals are complementary if one is the negation of the other. The complement of a
positive literal A is = A, and the complement of a negative literal = A is A. We denote
the complement of a literal B by B. The language of first-order formulae L(Xg, 7, X),
or simply L, is the set of formulae constructed from the predicates in Xz and the terms
in 7. Following Fitting (1996), we also use a countable set of constants PAR disjoint
from EF, and define LPAR(ZRa EF,X), or simply LPAR, as L(ER, EF U PAR,X). The
elements in PAR are called parameters and stand for unknown elements.

An expression is either a term or a formula. An expression is said to be closed, or
ground, if all its variables are bound. A sentence is a closed formula. A substitution
is a mapping from variables to terms. We use {z1 — t1,...,2, — t,} to denote the
substitution which maps z; to t; for i € {1,...,n} and y to itself for y ¢ {z1,...,z,}.
The expression Af where 6 is a substitution represents the result of replacing every free
variable z in A with 6(x), with the convention that we always make a suitable renaming
of variables to prevent free variables in the range of 6 becoming bound in Af. We
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abbreviate (--- (A461)---)0, by Ab;---6,. We write A[s1,...,sy] to indicate that the
expression A contains the free subexpressions sy, ..., s,, and denote by A[ty,..., ]
the result of replacing these particular occurrences of s; in A by ¢; for ¢ € {1,...,n},
with suitable renaming of variables to prevent free variables in ¢; becoming bound after
replacement.

A position in an expression is a list of positive integers which denotes a path to
some node in the syntactic tree representation of the expression. In particular, A is at
position [] in A, and B is at position (n : 1) in C(Ay,...,Ay) if it is at position [ in A,
where C is a function symbol or predicate. We denote the subexpression at position p
in A by AJ,.

A structure for a language of first-order formulae L is a pair (D,I) where D is
some non-empty set called the domain, and I, which is called the interpretation, maps
constants to the elements in D, n-ary function symbols to n-ary functions over D for
n > 0, and m-ary predicates to m-ary relations over D. An assignment is a mapping
from the variables to the domain. The interpretation and assignment determine a
mapping from formulae to the set of truth values {T, F'}; the formulae T and L are
always mapped into T" and F respectively. The truth value of a sentence does not depend
on the assignment. Two formulae are said to be equivalent to each other if they have
the same truth value for all structures and assignments. A formula is true in a structure
if its truth value is T regardless of the assignment. We say that such a structure is a
model for the formula. A formula is said to be walid if it is true in all structures. A
set of formulae is satisfiable in a structure if there is an assignment which allows all the
members of the set to be given the truth value T'. A set of formulae is satisfiable if it
is satisfiable in some structure (i.e.,a model). A Herbrand model for a language L is a
model (D, ) where D is the set of all closed terms in L and I(t) = t for every closed
term ¢.

A formula is in negation normal form (NNF) if it is constructed from literals using
the connectives A, V and the quantifiers V, 3. A formula is in Skolemised form if it does
not contain the 4 quantifier. A formula is in prenex form if it is quantifier-free, or of
the form Vz.p or 3z.p where ¢ is a formula in prenex form. A clause is a disjunction of
a number of literals. The clause A1 V ---V A, can be represented by the list of literals
[A1,...,Ay]. A formula is in clausal form if it is a conjunction of a number of clauses.
There are transformations of formulae into equivalent formulae in negation normal form,
Skolemised form, prenex form, and clausal form (see for instance (Andrews 1981)).

1.2.2 Higher-Order Logic

The fundamental difference between higher-order logic and first-order logic is that
higher-order terms can be quantified over function symbols and predicates. In this
section we illustrate briefly the syntax of the simply-typed polymorphic higher-order
terms. A more elaborate treatment, which includes the semantics of such terms, is
given in (Gordon and Melham 1993).

Let X be a countable set of type variables, and Q a collection of type constants with
fixed arities. A type is either a type variable, an atomic type of the form ¢ where c is
a type constant with zero arity, a compound type of the form (oy,...,0,)op where op
is a type constant with arity n > 0 and oy, ..., o, are types, or a function type of
the form oy — 09 where o1 and o9 are types. The atomic types bool and ind are in €.
An instance of the type o is some type o{ay — 01,...,a, — 0, } which represents the
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result of substituting, in parallel, the types oy, ... , o, for type variables ay, ... , a;, in
o. The language of types Ty(£2, X), or simply Ty, is the set of types constructed from
the type constants in €2 and the type variables in X.

Let V be a countable set of variable names and X1y a collection of constant names
each of which has a fixed type in Ty associated with it. A term is either

e a variable of the form v, where v is a variable name and o is a type,

e a constant c, where c is a constant name and o is an instance of the type associated
with c,

e an application (t,' s t./); where ¢y, and t., are terms, or
e an abstraction (A, .ty)s s, Where x, is a variable and ¢, is a term.

A term t,, also written ¢ : o, is said to have the type 0. The simply-typed polymorphic
higher-order language H(YXty, V'), or simply Hry, is the set of terms constructed from
the constant names in Y1y and the variable names in V.

An expression is either a type or a term. An expression is said to be polymorphic
if it contains a type variable, otherwise it is said to be monomorphic. Logical for-
mulae are terms of type bool, and the constants Ty, and Fyyo represent the literals
T and L respectively. The negation operator — is given by the constant —p01—s pool,
and the connectives by the constants =, A and V, each having type bool — bool —
bool. The quantifiers are given by the polymorphic constants V and 4 which have the
type (@ — bool) — bool such that, for instance, a formula Vz,.t is represented by
the term Y(;_ yoo1)— boot (AZo-thoot)- The equality predicate is represented by the con-
stant =,_sq—sboor Whose instantiation =p,p;_s pooi— booi alS0 represents the connective <.
The choice operator €(q_poo1)—a 18 included in the language Hry. Terms of the form
E(g—bool)—o (ATg-Lpoot) Tepresent the expression ez,.t which (deterministically) denotes
some z for which ¢ holds if such an z exists. No conditions are imposed on the value of
exry.t if no such z exists.

1.3 Outline of the Thesis
The rest of this thesis is organised as follows:

Chapter 2 In the next chapter we discuss the problems concerned with the mech-
anisation of mathematics, paying particular attention to the implementation of
machine-checkable proofs in a readable format.

Chapter 3 One of the most common methods of developing machine-checkable proofs
involves the interactive discovery of the proofs by the application of proof proce-
dures called tactics. This chapter illustrates two case studies in the implementation
of tactic-based proofs in the HOL and Coq systems. We argue that such proofs
are not easily read and that other styles of mechanising mathematics should be
considered if the readability of the proofs is a requirement.

Chapter 4 We describe the declarative proof language SPL, and the implementation
of a proof checker which derives HOL theorems from SPL proof scripts. The SPL
language is based on the Mizar language, and because of their declarative nature,
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SPL proofs are much more readable than tactic-based proofs. The SPL proof
checker is extensible, in the sense that its deductive power can be extended during
the mechanisation of a theory.

Chapter 5 A tableau calculus for first-order logic with equality is implemented as a
HOL derived rule which is used as one of the components of the SPL proof checker.

Chapter 6 This chapter introduces the notion of structured straightforward justifica-
tions. Unlike the straightforward justifications of Mizar which consist of the list
of premises required to justify some goal, or conclusion, structured justifications
also contain a number of inferences which are used in deriving the conclusion from
the premises in the justification. Structured justifications are defined in such a
way that proofs involving them are not over-detailed and therefore not hard to
implement. It is argued that proofs involving structured justifications are easier
to follow than proofs involving unstructured justifications.

Chapter 7 We introduce a first-order logic whose formulae are annotated with colours.
These annotations are used to restrict the search space during first-order theorem
proving. The results given in this chapter are used in chapter 8 to show that the
search space considered during the proof checking of structured justifications can
be restricted.

Chapter 8 This chapter describes how only a restricted search space needs to be con-
sidered during the proof checking of proofs involving the structured justifications
given in chapter 6. As a result, structured justifications can be proof checked more
efficiently than unstructured ones.

Chapter 9 A number of results in group theory are mechanised in SPL. This mechani-
sation follows the textbook by Herstein (1975). In order to minimise the difference
between the levels of detail of the mechanised proofs and the proofs in (Herstein
1975), the deductive power of the SPL proof checker is extended a number of
times during the mechanisation so that facts whose proof is omitted from (Her-
stein 1975) are deduced automatically by the SPL proof checker and are therefore
omitted from the mechanised proofs as well.

Chapter 10 We summerise the main contributions of this thesis and point out a num-
ber of directions for future work.



Chapter 2

On the Mechanisation of
Mathematical Proofs

This chapter describes the mechanisms used in the implementation of formal mathe-
matical theories in a machine checkable language. The first section discusses the level of
rigour found in the mathematical literature, and the efforts in formalising mathematics
and the theoretical and practical problems involved are mentioned in section 2.2. The
implementation of formal theories with the help of computer systems is described in
section 2.3, in which both automated deduction and proof checking are illustrated. Sec-
tion 2.4 gives a brief overview of the HOL proof development system to give an example
of how mechanised proofs are developed and also because most of the work described in
this thesis is implemented in this system. We focus on the problems in the implemen-
tation of human-readable machine checkable mathematical proofs in section 2.5, which
also surveys the current efforts involved in solving these problems.

2.1 The Level of Rigour in Mathematics

The way mathematics is practiced is distinguishable from other sciences for its rigour
and precision. Some forms of deliberate imprecision and ambiguity are however com-
monplace in mathematical texts. Mathematical arguments include rather imprecise
terms such as “similarly” and “obviously”, which usually represent gaps in proofs and
in definitions which the reader is expected to fill. Inconsistencies and errors are also
common in mathematics, as illustrated for instance by Lecat (1935).

We should note that the imprecision and incorrectness in mathematical texts can be
regarded as part of the way mathematical thinking evolves. Lakatos (1976) and Putnam
(1979) describe mathematics as quasi-empirical, in the sense that similarly to the empir-
ical sciences, mathematical truth depends on its success in practice, and that it evolves
as fallible knowledge is replaced by other fallible knowledge. In Proofs and Refutations,
Lakatos (1976) illustrates how Euler’s theorem on polyhedra has evolved through a
repetitive process of reformulations, (erroneous) proofs and refutations. He uses this as
an analogy to the way the whole of mathematics is evolving. Kleiner and Movshovitz-
Hadar (1994) show how paradoxes, which include inconsistencies, counterexamples to
widely held notions, misconceptions, true statements that seem to be false, and false
statements that seem to be true, keep reappearing in mathematics. Such paradoxes
help in a better understanding of the basic concepts involved, and result in the gradual
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advancement of mathematics.

However, as argued by Koetsier (1991), a considerable number of mathematical the-
ories become established in practice, in the sense that the definitions given in such
theories correspond to the intended concepts and a substantial amount of important
results are identified and correctly proved. Such theories are not subject to much refu-
tation and their literature is quite rigorous and does not contain errors. As described
later in this chapter, the definitions and proofs in such established theories can be for-
mulated at a high level of rigour and precision in order to be checked by machine. This
minimises the presence of human errors in the proof arguments. This level of rigour is
generally needed during the verification of safety critical computer systems. The proofs
verifying properties of such systems are often quite tedious and lengthy, and therefore
much prone to human error, although they are often described as shallower in nature
than those found in mathematical texts. The implementation of such proofs, however,
may depend on basic results in standard mathematical theories such as number the-
ory and real analysis. Therefore one may need to develop a number of mathematical
theories during the verification of computer systems.

The implementation of mathematics in a machine readable format has been ad-
vocated for a number of different reasons (including educational and cultural ones)
in the QED manifesto (Anonymous 1994). Although one may object to the particu-
lar motivations discussed in this manifesto, the implementation of a large number of
mathematical theories in a machine checkable format is believed to be possible and
desirable (see (Harrison 1996a)). There are currently a number of computer systems
which support a formal proof language in which a considerable amount of mathematics
is implemented.

2.2 The Formalisation of Mathematics

By the formalisation of mathematics we mean the implementation of mathematics in a
formal language. A language is formal if its syntax and semantics are unambiguously
defined. Similarly we refer to the development of mathematics in an informal, though
rigorous, language as informal mathematics. A language for the formalisation of math-
ematics must be rich enough to express mathematical objects, statements about them
and valid reasoning involving these statements. Such valid reasoning can be expressed
as a number of logical rules manipulating the statements concerning the mathematical
objects.

The motivations for formalising mathematics include the ability to achieve a higher
degree of correctness and precision than that found in informal mathematics. The
ability to express valid mathematical reasoning by symbolic manipulations implies that
the validity of an argument can be checked in a mechanical fashion. This is believed to
be more reliable than accepting an informal, but convincing, argument.

A substantial amount of effort was put in using symbolic manipulations to express
mathematical reasoning during the nineteenth and twentieth centuries. Boole (1848)
developed a formal system for propositional logic in which reasoning can be performed
through mechanical calculations rather than through the interpretation of the symbolic
statements. Frege (1879) included quantifiers in the formal logical system he developed
which was aimed at expressing the whole of mathematics, and Peano ( 97) focused
on the implementation of mathematics of his period in a formal symbolic form whose
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notation is closer to informal mathematics than that of Frege. Russell included types in
his logic to avoid inconsistencies in Frege’s deductive system.! Whitehead and Russell
(1910) used this typed logic in their Principia Mathematica. Although the degree of
rigour and precision in the foundational work of Principia Mathematica is considered
to be much weaker than that of Frege, the work of Whitehead and Russell showed that
a substantial amount of mathematics can indeed be written formally.

At the turn of the century, Hilbert (see (Kreisel 1958)) proposed a programme in
which mathematical theories are formalised in finitary logical systems that are shown to
be consistent. Statements are valid if they have (finite) proofs in such systems. Hilbert
also asked whether formal statements can be shown to be valid by purely mechanical
means, that is, whether there is an algorithm by which one can decide the truth or
falsity of a statement. This programme, and the efforts of other mathematicians to find
a deductive system in which all valid mathematical statements can be formalised and
justified mechanically, were however shown to be impossible during the 1930’s. The
basic results discovered in this period include:

e Godel’s Incompleteness Theorem (Godel 1931) which states the non-existence of a
countable axiomatisation of all arithmetic which is both consistent and complete.

e The undecidability of pure first-order logic, proved by Turing (1936) and Church
(1936).

e The undefinability of truth, proved by Tarski (1936), which also implies that true
statements are not recursively definable.

The major difficulty in formalising mathematics, however, turned out to be its prac-
tical infeasibility, rather than the impossibility of formalising all mathematical truths.
It is believed by most, if not all, mathematicians that one can in theory formalise most
of present day mathematics using a sufficiently strong axiomatisation such as ZFC set
theory. The valid statements which cannot be derived in such a strong system are
probably uninteresting statements which would not occur in the mathematical litera-
ture. Despite the results of Gédel and Tarski, a group of French mathematicians (using
the pen name Bourbaki) formalised an impressive amount of mathematics. They used
first-order logic as their deductive system together with an axiomatic set theory simi-
lar to Zermelo’s. However, this formalisation was abandoned because it was found to
be impracticable and because of the complezity and unreadability of the formal texts.
The earlier efforts of Whitehead and Russell were faced with the same problems: that
although the reduction of reasoning into formal symbolic manipulations results in a
more rigorous and precise approach to mathematics, formalised definitions and proofs
are long and tedious, and that the resulting texts are unreadable and barely used in
practice. Furthermore, it is likely that one loses the intuition behind an argument when
it is formalised, which as Naur (1994) has pointed out, may result in making the text
more prone to errors. The practical difficulty of formalised mathematics can, however,
be relieved by using a computer system to check and even find formal proofs.

! An inconsistency in Frege’s system is the well known Russell’s paradox which is due is the ability
to define a set X = {z|z ¢ z}, and as a result both X € X = X ¢ X and X ¢ X = X € X can be
derived.
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2.3 The Mechanisation of Mathematics

The term “mechanisation of mathematics” refers to the use of machines to perform
mathematical tasks. This includes for instance the use of computers to calculate spe-
cific numeric expressions, as well as in manipulating symbolic terms (symbolic mathe-
matics, or computer algebra) to mimic, for example, the way humans differentiate and
integrate functions. This particular use of computers in mechanising mathematics is
usually referred to as the symbolic mechanisation of mathematics. The symbolic ma-
nipulations representing formalised reasoning can also be mechanised in order to use
computer systems in the formalisation of mathematics. This is referred to as the logical
mechanisation of mathematics, and the several advantages of using a computer system
in formalising mathematics include the following:

e the syntactic correctness of formal statements and the validity of formal proofs
can be checked by simple algorithms,

e one can use algorithms to search for proofs of formal statements,

e algorithms which perform a specific sequence of valid inferences can be imple-
mented to avoid tedious repetitions.

The history of the mechanisation of reasoning is surveyed by MacKenzie (1995). In
this thesis we use the term “mechanisation of mathematics” to refer to the development
of mathematical texts which can be checked by machine. Similarly, we refer to proofs
which can be checked by machine as mechanised proofs. Mechanised proofs can be
found by an algorithm, or implemented by a human being with or without the help of
computerised proof tools. In this section we first have a look at automated deduction
which involves the use of algorithms to find proofs, and then at proof checking.

2.3.1 Automated Deduction

Automated deduction is the branch of computer science and artificial intelligence which
deals with the use of computers to decide the validity of logical sentences. Although
this decision problem is undecidable in general, there are several non-trivial theories
in which the validity of sentences is decidable. For instance, propositional logic, the
theory of linear arithmetic and the V*3* fragment of first-order logic? are decidable.
Also, first-order logic is semi-decidable and therefore one can implement algorithms
which terminate on valid sentences, though they may not halt on invalid ones. This is
usually done by searching for a proof since checking whether a proof derives a particular
theorem is decidable.

The complexity of the decidable decision problems mentioned above is however very
high. The problem TAUT of deciding the validity of propositional sentences (in con-
junctive normal form) is in co— NP, and therefore considered to be untractable. Fur-
thermore, searching for evidence of the validity of a sentence in an undecidable theory
involves searching for a proof in an infinite search space. This normally involves the use
of fair strategies, where one considers a sequence of finite search spaces, one larger than
the other, in order to ensure that the validity of a sentence is eventually established.

®The V*3* fragment of first-order logic is the set of all first-order sentences whose prenex form is of
the form Vz1,... ,2,.3y1,... ,ym.P where n,m > 0 and P is a quantifier free formula.
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In order to be efficient, automated deduction systems are based on deductive systems
whose proofs can be ‘easily’ found by mechanical means. We can refer to such deductive
systems as search-oriented, and usually require the following two properties which are
illustrated by some examples later in this section.

e The lengths of proofs in these systems are short.
e Complete proof search strategies are not faced with too much non-determinism.

An ideal deductive system which satisfies the above properties does not seem to ex-
ist, however a number of systems have been developed in which proofs of non-trivial
theorems can be found in a relatively short time. Despite the inherent difficulty of
automated deduction, a number of difficult problems in mathematics have been solved
by such proof search systems. A recent example is the proof of the Robbins problem
which was open for more than fifty years and a successful proof for this problem was
found by the EQP theorem prover in almost 8 days using 30 Megabytes of memory on
a UNIX workstation with an RS/6000 processor (McCune 1997).

Examples of search-oriented deductive systems for first-order logic include resolu-
tion (Robinson 1965), the connection (Bibel 1981) (or matings (Andrews 1981)) method
and tableaux-based methods®. We discuss resolution and the connection method briefly
in this section, and Appendix B illustrates tableaux-based methods for first-order logic.

These systems are usually refutational; that is, a sentence is shown to be valid
by showing that its negation is refutable. In resolution, a sentence is refuted by first
transforming it into clausal form and then applying the resolution rule repetitively to
create new clauses until the empty clause is derived. The resolution rule is defined as
follows:

[A,... Ai, ..., Ay] [Bi,...,Bj,...,By]
[Al, ce 7Ai—1a Ai—|—17 ce ,An,Bl, cee 7Bj—1aBj+17 ce ,Bm]a

where the literals A;0 and Bjo are complementary. For example, given the sentence

((Ve.P(z) = Q(2)) A P(c)) = Q(c)

its negation is transformed into the clauses

[-P(z),Q(z)]  [P(c)]  [-Q(c)]
and the following resolution proof is found.

[=P(x), Q)] [P(c)]
[Q(z)[{z — ¢} [-Q(c)]
L

In the connection method, the clauses to be refuted are represented by columns in
a two dimensional matrix. Additional clauses (and hence columns) can be added by
renaming the variables in an existing clause. The matrix is refuted if all its paths have
a connection after some substitution is applied to all the literals in the matrix. A path
is a list of literals [Lq,... , L,] where L; is in the ith column of the matrix, and it has a

3Resolution, connection, and tableau based deductive systems for other logics exist as well.
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connection if it contains two complementary literals. The following is a refutable matrix
representing a proof of the validity of the sentence given earlier.

N

[aig " Ao

Unification (Robinson 1971) is used to find the required substitutions during reso-
lution and connection-based proof search, as well as during the proof search of many
other proof methods, such as tableaux calculi.

It can be seen from the above examples that resolution and matrix proofs are not
meant to be understood by a human reader. They are rather compact proofs whose
structure allows them to be searched for efficiently.

Although automated deduction systems can be very powerful and can even solve
open mathematical problems, they may fail to solve problems which are rather intuitive
to humans. One reason for this is that the formal proofs of certain intuitive results
can be very long, or hard to find, when formalised in even the most efficient deductive
systems. A famous result in computational logic, first proved by Haken (1985), states
that the lengths of resolution proofs for the propositional representation of the pigeon-
hole principles are exponential with respect to the lengths of the formulae. In general,
proof search algorithms need to be targeted to particular problem domains and their
performance on problems outside this domain is greatly diminished.

2.3.2 Proof Checking and Proof Development Systems

The purpose of a proof checking system is to check the correctness of a formal proof,
which can be found by a human, machine, or by a combined effort from both. Mod-
ern proof checkers are usually called proof development systems, or theorem proving
environments, because they can contribute more to the formalisation process than just
proof checking. Modern systems like Isabelle (Paulson 1994) and HOL (Gordon and
Melham 1993) include a number of decision and semi-decision procedures for particular
theories to prove certain theorems automatically, and a number of proof procedures to
automate a sequence of non-trivial inferences.

Foundational Systems of Proof Checkers

Since proof checking systems are in general not expected to find proofs themselves,
the deductive systems they implement are usually not search-oriented. On the other
hand, they are expected to formalise a variety of mathematical concepts and therefore
they are based on rather rich and expressive foundational systems. As a result, most
modern systems are based on some higher-order logic in order to be able to quantify
over functions and predicates without having to define them in terms of other objects
(such as sets). The use of higher-order logic for this purpose was used by Hanna and
Daeche (1985) and Gordon (1985) in the context of formalising and verifying hardware.
The HOL system, which implements Church’s simply typed higher-order logic (Church
1940) with polymorphism, was originally developed for hardware verification but it can
also be used to formalise a substantial number of mathematical theories including real
analysis.

A number of proof development systems are based on a constructive type theory such
as the Calculus of Constructions (Coquand and Huet 1986). In such systems, there is
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a correspondence (called the Curry-Howard Isomorphism) between the inference rules
of the logic and the ways valid terms in a typed lambda calculus can be constructed.
As a result, sentences can be represented as types, and proofs as terms. Therefore, a
sentence can be shown to be valid if the type representing it is not empty (i.e., it contains
a proof). An interesting feature of these systems is that both the logical statements and
their proofs can be represented in the same language.

The reliability of the proofs accepted by proof checkers is an important issue. In
order to maximise this, some proof checkers are designed so that the correctness of their
proofs depends only on a small fragment of their code. This fragment is usually small
and simple enough to be well understood so that the possibility of programming errors
is minimised. We can refer to this property as the de Bruijn criterion since it was
suggested by de Bruijn, who headed the AUTOMATH project (de Bruijn 1970) (see
also (de Bruijn 1980)) — undoubtedly one of the most influential projects in the mech-
anisation of mathematics. In systems like Coq (Barras et al. 1996) which are based on a
constructive type theory, the central proof checking mechanism is the relatively simple
type checking algorithm. The design of the HOL system ensures that internal objects
representing theorems and definitions are created only by a small number of functions,
the implementation of which is straightforward. These functions are an implementation
of the primitive inference rules of a sound deductive system for higher-order logic. The
restriction of having a simple proof checking algorithm constitutes a major limitation
on the efficiency of proof development systems. An interesting area of research is the
implementation of fast proof procedures in such systems. An alternative to a fixed
proof checking algorithm which is gaining the interest of researchers is to use some form
of reflection so that new inference rules can be safely included in the proof checking
mechanism after their correctness is verified within the system.

The Input Language of Proof Development Systems

Although the proof checking algorithm of a theorem proving environment can be based
on a very simple deductive system, the input language which is used for the formal-
isation, and in particular in the implementation of proofs, can (and usually will) be
more expressive. Simple statements in the input language can correspond to the appli-
cation of several primitive inferences in order to simplify the theorem proving task of
the user. For instance, the HOL system includes a number of high-level inference rules
which are derived from the primitive ones. Examples of such derived rules include a
term rewriting system, procedures for numeric calculations, and a number of decision
procedures. Similarly, constructs for the straightforward definition of recursive types,
primitive recursive functions, inductive relations, and other objects, are also provided.

Most proof development systems support an environment and a proof language
aimed at helping the users to find the formal proofs interactively. A famous example of
this is the goal-directed proof environment based on tactics. In such an environment,
users start the theorem proving task by specifying a goal to be proved. Tactics can
then be applied which either solve (prove) the goal automatically, or break the goal
into simpler subgoals. This is repeated until all the subgoals are solved. At this stage,
the theorem proving system has enough information to derive a theorem corresponding
to the original goal. The application of a tactic can correspond to the (backwards)
application of several primitive inference rules. In order to increase the power of each
user interaction, complex tactics can be constructed from simpler ones by the application
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of special constructs called tacticals. Furthermore, the theorem proving environment
keeps track of the unproved subgoals, and can support a number of useful features
such as undoing the application of tactics, and choosing which subgoal to prove first.
The main advantage of this approach is that the theorem proving system performs
substantial automation and bookkeeping tasks while the user is looking for a formal
proof. A disadvantage of this approach is the difficulty for a human reader to follow a
proof consisting of a list of tactics and tacticals. Two case studies in the mechanisation
of mathematical theories using tactic-based proof development are illustrated in the
next chapter.

The input language for a theorem proving system can be designed to make it easier
for a human reader to follow the mechanised proofs. A good example of such a lan-
guage is Mizar (Trybulec 1978). The Mizar system is aimed at the mechanisation of
mathematics in general and a substantial number of results have been formalised in this
system. The success of the Mizar project is mainly attributed to the effort put into
keeping its logical foundations and input language as similar as possible to those used
by mathematicians. Unlike most other systems, its logical foundation is set-theoretic
rather than type-theoretic. Mizar proof scripts are meant to be followed and understood
by the person implementing them, and therefore they state explicitly which steps are
being derived throughout the proof, rather than merely giving the instructions to derive
them. Also, the language constructs are English words, such as assume, consider and
then ... by ..., whose meaning is similar to the formal semantics of the corresponding
construct. As a result, Mizar scripts are more readable when compared to those of
other systems. A disadvantage of using the Mizar system is that no machine support
is given for the interactive discovery of proofs. The process of implementing a Mizar
proof script is similar to the process of implementing a (syntactically) correct program
using a text-editor and a compiler. Proof scripts are given to the Mizar verifier for proof
checking which returns a list of error messages in case of invalid definitions and proofs.

2.4 A Brief Overview of the HOL System

The HOL system was developed by M.J.C. Gordon (1988) for the specification and
verification of hardware, although it is also used in software verification and the for-
malisation of mathematics in general. The system is based on the higher-order logic
described briefly in section 1.2.2, and in detail in (Gordon and Melham 1993).

2.4.1 On the LCF Approach of Theorem Proving

The HOL theorem prover is a descendant of the LCF system (Gordon, Milner, and
Wadsworth 1979), with which it shares a number of significant features, in particular:

e The mechanisation of the logic is implemented in ML and includes ML types rep-
resenting the logic’s theorems, terms and types. The type representing theorems
is an abstract data type and the functions in its signature which return theorems
are an implementation of the primitive inference rules of the logic (and other rules
for introducing axioms and definitions). As a result theorems in the HOL system
can only be constructed through the application of one or more primitive inference
rules. This ensures that only valid sentences can be derived as HOL theorems.
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The implementation of this abstract data type is usually referred to as the core
inference engine.

e HOL users can extend the system through the implementation of ML functions.
For instance, one can implement both functions which represent new (derived)
inference rules and also decision procedures that make use of theorems derived
during the mechanisation of some particular mathematical theory.

e The HOL system supports a tactic-based goal-directed proof search environment.

In general, proof development systems in which theorems can only be derived by a core
inference engine, which can be extended by the users, and which support a tactic-based
proof environment are called LCF-style theorem provers.

2.4.2 The Implementation of HOL

The latest versions of the HOL system are the HOL90 system implemented in Standard
ML of New Jersey, and the recently released Hol98 implemented in Moscow ML. In
these systems the ML data types for HOL types, terms and theorems are hol_type,
term and thm respectively. The object language embedding system of Slind (1991) is
used for embedding a language with a user-friendly syntax for HOL terms and types.
One can specify HOL types and terms by enclosing expressions in backquotes which are
then parsed by the type and term parsers into their internal ML representation.

As mentioned earlier, objects of the abstract data type of theorems thm can only be
created using an implementation of a simple deductive system, and by a small number of
other ML functions which allow one to introduce axioms and definitions in a particular
HOL theory. For completeness, we give the inference rules of the HOL deductive system
in figure 1. Since the implementation of this abstract data type is rather small and
straightforward, the HOL system satisfies the de Bruijn criterion. All other inference
rules, decision procedures, and a number of functions which allow the user to define
constants are implemented using only the functions in the signature of the abstract
type thm to construct objects of that type.

The proof language of the HOL system is basically the ML language*. HOL users
usually formalise their theories using the facilities of the ML standard environment.
The functions representing the primitive and derived inference rules are used directly to
prove theorems. Definitions, theorems and axioms are referred to by their ML identifier.
The HOL system includes a number of functions which create and manipulate objects
of types hol_type and term. These are used by the users to implement new inference
rules, definition mechanisms, and also complete proof environments.

As stated above, the HOL system supports a tactic-based proof environment. HOL
tactics are implemented as special ML functions which take a goal and return a list of
subgoals together with a validation function. A goal is a sequent (which consists of a list
of assumptions and a conclusion) representing an unproved statement. The validation
function derives the goal as a HOL theorem when all the subgoals are themselves derived.
Tacticals are implemented as ML functions which take and return tactics. Unproved
goals are organised in a goalstack data structure, and a number of ML functions which

“The ML language was actually developed as the meta-language for the LCF system; ML stands for
meta-language.
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Ty bty=# o Tpbta=t TF ... t]
TyU---UT, UL F ¢, ] (SUBST)
Tkt =t

T F (\z.ty) = (\a.ty) (ABS)

FHt
'k t{ay = o1,...,an = on} (INST_TYPE)

I'F ts
T - {tl} = t1 = to (DISCH)

TiFty =ty Tobkty
T, UT, - & (MP)

e Expressions of the form I' + ¢ are HOL theorems with conclusion ¢ and assumption list
T.

e The rules can be applied only if the following conditions hold:

1. In the ABS rule, the variable z is not free in I'.

2. In the INST_TYPE rule, the term t{a; — o1,...,a, — 0,} is the result of sub-

stituting, in parallel, the types o1,... ,0, for type variables ay,... ,a, in ¢, with
the two restrictions

(a) none of the type variables a1, ... ,a, occur in T', and
(b) no distinct variables in ¢ become identified after the instantiation.

Figure 1: The Primitive Inference Rules of the HOL System.
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for instance, allow the user to apply tactics to the current goal, choose the current goal,
and undo the application of a number of tactics, are included in the system. Since
tactics and tacticals are simply special kinds of ML functions, HOL users can easily
implement new ones during the mechanisation of a theory.

As discussed in the next chapter, the fact that the proof language of HOL is a pow-
erful general-purpose programming language is one of the strongest features of the HOL
system. This particular approach to theorem proving, however, has the disadvantage
that it is very hard to develop effective user interfaces and other proof tools without
compromising the flexibility of the system.

2.4.3 A Number of Mechanised Proofs in HOL

In this section we illustrate some examples of mechanical proofs using the HOL system.
In each case we derive the following simple statement:

(A=B)=(B=0)= (A= 0).

The Proof in Sequent Calculus

The above statement can be derived in the deductive system given in figure 1 as follows.

(ASSUME) (ASSUME)
(ASSUME) A=BFrA=1B AI—A(MP)
B=CFB=C A,A=>BFB(MP)
A A= B,B=CFC (p1SCH)
A=B,B=CFA=C
(DISCH)

A=BF(B=0)=A=C0)
F(A=B)=(B=C)= (A= 0)

(DISCH)

A Forward Proof in HOL

The above proof can be mechanised in HOL using the implementation of the primitive
inference rules ASSUME, DISCH and MP:

ASSUME: term — thm which takes a term ¢:bool and returns the theorem ¢ F t;

DISCH: term — thm — thm which takes a term ¢:bool and a theorem of the form I' ¢
and returns the theorem I — {¢} F ¢ = ¢;

MP: thm — thm — thm which takes two theorems I'y - p = ¢ and T's F p and returns
the theorem I'y U T's F g;

and the derived rule
DISCH_ALL: thm — thm which discharges all the hypotheses of a given theorem.

HOL terms can be constructed by enclosing them between --¢ and ‘--, so that they
can be parsed into objects of type term. The following is the required proof in HOL.

DISCH_ALL (DISCH (--‘A:bool‘--)
(MP (ASSUME (--‘B = C‘--))
(MP (ASSUME (--‘A = B‘--)) (ASSUME (--‘A:bool‘--)))));
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Deriving an Inference Rule

The mechanism of the forward proof given above can be used to derive an inference rule

IMP_TRANS.
I'M-rA=B I'hFB=C

rnuligbFA=C

(IMP_TRANS)

This can be implemented as an ML function which takes two theorems of the form
'+ X=Y and T's - Y=2Z7 and returns the theorem 'y UTy - X=-Z. We use the following
functions on HOL terms and theorems:

concl: thm — term takes a theorem and returns its conclusion.

dest_imp: term — (term * term) takes a term of the form X = Y and returns the pair
(X,Y).

The derived rule can then be implemented in SML as follows:

fun IMP_TRANS (AB_thm: thm) (BC_thm: thm) : thm =
let val AB_term = concl AB_thm
val A_term = fst (dest_imp AB_term)
in DISCH A_term (MP BC_thm (MP AB_thm (ASSUME A_term)))
end;

Alternatively, one can implement this derived rule using the theorem proved earlier.
The rule can simply instantiate the variables in the theorem according to the given
arguments. This approach can often be used to implement efficient derived rules.

A Backward Proof in HOL
The same theorem can be derived interactively using the following two tactics:

DISCH_TAC: tactic which simplifies a goal with conclusion of the form ¢t=-q into the goal
with conclusion ¢ and with the extra assumption t.

RES_TAC: tactic which, amongst other things, adds an assumption ¢ to the current
goal if it contains two assumptions of the form ¢=¢ and ¢. The goal is solved
automatically if its conclusion is q.

The goal representing the required theorem can be derived by

1. Applying DISCH_TAC three times which results in the goal with conclusion ¢ and
the assumptions A = B, B = C and 4;

2. Applying RES_TAC to add the extra assumption B;
3. Applying RES_TAC again to add the assumption C and thus solving the goal.
This proof can be given as a single tactic by using the tacticals

REPEAT: tactic — tactic which applies a given tactic repeatedly until it is no longer
valid;

THEN: tactic * tactic — tactic which is an infix tactical and applies the tactic on
its left and then the tactic on its right.
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The required tactic proof is:

REPEAT DISCH_TAC THEN
REPEAT RES_TAC;

This proof is much shorter than the forward proof given earlier. In particular, this
proof does not contain any subterms from the goal, and involves proof steps which are
repeated until they fail. As a result it can be used to derive similar theorems, such as:

W=X)=X=Y)=Y=2)=W=2).

However, it is very hard to figure out what the above proof is actually deriving without
knowing beforehand the statement of the theorem. In general, the only practical way of
following a tactic-based proof is to use the theorem prover to see the result of applying
the individual tactics in the proof one by one. This is reasonable, since the tactic-based
environment is developed to facilitate interactive proof discovery, rather than to produce
human readable scripts.

A Proof using a Decision Procedure

Simple statements such as the one we are proving in this section can be easily derived in
HOL using appropriate decision procedures. In this case, we can use the HOL tautology
checker to derive the above theorem automatically. The required ML function is

TAUT_PROVE: term — thm which takes a term ¢:bool and returns the theorem F ¢ if ¢
is a tautology. This function is a slightly optimised implementation of the truth
tables method of tautology checking.

The theorem can therefore be derived by the ML expression
TAUT_PROVE (--‘(A=B) = (B=C) = (A=0C)‘--)

The use of decision procedures can greatly facilitate the implementation of mechanised
proofs. The readability of proofs can also be improved if one implements and uses the
required decision procedures to derive automatically statements which readers consider
trivial. However, because of the difference between the nature of the inferences used
in informal and formal texts, and because of the difficulties in automating reasoning
efficiently, such a task is not trivial.

2.5 On Readable Mechanical Proofs

The presentation of clear mathematical concepts, whether it is in an informal or formal
language, is in itself not a trivial task. Thurston (1994) explains that one of the main
aims of mathematicians is to advance human understanding of mathematics. This un-
derstanding is often a very personal and individual matter. Different people visualise
mathematical concepts in different ways, which often depend on the particular back-
ground of the individuals. Such ideas are therefore hard to communicate, especially
in writing, where the author is required to translate her concepts into symbols, logic,
and statements in a natural (or formal) language. The readers are then required to use
these texts to build their own intuition of the subject. The clarity of a mathematical
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exposition is therefore extremely important in order to facilitate the reader’s task of
understanding it. Halmos (1983) argues that a good exposition is based on its “content,
aim and organisation, plus the vitally important details of grammar, diction, and nota-
tion”, and gives a number of suggestions to achieve this. van Gasteren (1990) focuses on
the problems of presenting mathematical proofs clearly. Both Halmos and van Gasteren
stress the importance of reducing the effort needed by the reader to follow an argument
in a proof. This can be obtained by being explicit about what is needed in the proof
and through the omission of trivial and superfluous information. Their opinion differs,
however, on the use of formalism. Halmos suggests a minimal use of symbols, while van
Gasteren encourages the practice of symbolic manipulation without interpretation.

In general, mathematical proofs implemented in a formal language are harder to fol-
low than those written in an informal language. Although formal mathematical texts,
and formal proofs in particular, are unambiguous and quite straightforward to proof
check in a mechanical fashion, they are very distant from the original ideas in the
mathematician’s mind. Formalisation is often accused of removing all intuition from a
mathematical exposition. However, we stress that, in general, the main aim of formali-
sation is not to communicate such intuitive concepts stored in a mathematician’s mind,
but to produce precise and rigorous mathematics which usually has to be checked by
machine. This is required when the correctness of a particular proof is a major concern.
An example of such proofs is those which derive certain properties of safety-critical
computer systems.

The implementation of mechanised proofs in a format that is easily followed by a
human reader is, however, very desirable. Apart from being able to follow a proof
for its own sake, the ability to understand proofs easily is very important during their
implementation. It is much easier to correct errors in readable proofs, for instance. It
is also easier to modify a proof that can be followed easily in order to derive a slightly
different theorem. This is often the case during mechanisation. The formal definitions
and the statements of certain properties may change slightly during the implementation
due to oversights from the proof developer. Understanding someone else’s proof is also
important when a team of people are engaged in the mechanisation of a particular
theory.

It is our aim to investigate ways of producing proofs which can be machine checked
as well as easily followed by a human reader. We remark that this aim is only a small
requirement for the implementation of human-readable formalised mathematical texts,
which apart from the formulation and proof of theorems, also include the introduction
of formal definitions and the implementation of proof procedures. For instance, it is
important that formal statements and definitions are easily understood so that one can
be sure that they correspond to the intended mathematical concepts.

2.5.1 The Unreadability of Mechanised Proofs

There are two important kinds of limitations on the readability, as well as the writability
(ease of implementation), of mechanised proofs:

e limitations due to formalisation which dictates that every construct in the proof
language has a precise meaning,

e and the limitations due to the fact that the proofs are required to be checked
by machine, and therefore the proof language depends on what can be efficiently
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parsed and proof checked.

In this section, we have a look at these two limitations, and what is required for a
mechanised proof to be easily understood by a human reader. Towards the end of this
section, we mention the issue of the introduction of notation by mathematicians.

Unreadability due to Formalisation

As explained earlier this section, it is hard to communicate mathematical ideas in a
formal language because of the difference between the ways that a concept is visualised
by mathematicians and the ways that it can be represented formally. Given an un-
derstanding of a mathematical concept, a human reader can easily infer certain basic
statements without considering a formal deductive proof. For example, one can easily
accept that the union of two finite sets is finite given a reasonable visualisation of finite
sets and of the notion of union. On the other hand, a formal proof of this statement
would involve a rigorous argument involving the precise definition of sets, finiteness and
union. Furthermore, human beings are capable of understanding the precise meaning of
an informal argument despite it being potentially ambiguous. They make use of their
abilities to generalise a statement correctly given enough evidence, to spot similarities
between concepts, to infer what is intended (rather than what is actually said) and to
use their knowledge and experience effectively.

During the writing of a proof, authors of informal mathematics can therefore rely on
their reader’s ability to infer knowledge from her understanding of a mathematical con-
cept, and the above mentioned abilities to gain understanding through ‘non-deductive’
means. They can also focus on these abilities in order to make their exposition easier
to follow. On the other hand, authors of formal proofs can only rely on the precisely
defined constructs of the formal language. In this case, all concepts are represented as
symbolic expressions and all inferences are reduced to the symbolic manipulations given
by a sound deductive system. Because of this, arguments which can be expressed easily
in informal mathematics and which are easily followed by a human reader can be hard
to express formally. As a result, formal proofs are generally too detailed, in the sense
that they contain details which human readers can easily infer without difficulty but
whose derivation in the formal language is not trivially expressible.

One can argue that the characteristics of informal proofs which make them easy to
follow and to accept are those which can potentially introduce errors. Mathematics is
kept alive by the people who practice it and keep on refining definitions, filling in gaps
in arguments, and correcting errors. The formalisation of a mathematical theory can
be seen as a test of the level of rigour and of the correctness the theory has achieved,
and as a means of improving this level if needed. Furthermore, the ability to formalise a
theory requires the clarification of its fundamental concepts, and formalisation therefore
results in a better understanding of such concepts. This gives another reason why it is
desirable to implement formal proofs in an easily understood format.

The implementation of formal proofs in a human readable format therefore requires
the definition and use of inferences which more or less correspond to the arguments used
in writing clear informal proofs. This involves understanding what a human reader is
able to infer without difficulty and deriving theorems and rules which represent this
ability. A number of such inference rules may be used in several mathematical theo-
ries, while others may only be used in a small part of a particular theory. Identifying
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inferences which are commonly used in a mathematical theory and mimicking them
effectively in a formal framework offers an extremely effective tool in the formalisation
of mathematics. Furthermore, and more importantly, the identification of these rules
may offer a deeper understanding of the mathematical theory concerned which can-
not be achieved through informal arguments, or naive formalisation which results in
unreadable proofs.

Unreadability due to Machine Checking

Apart from being unambiguously defined, the inferences which can be used in mech-
anised proofs are also required to be efficiently checked by machine. In other words,
even though one can define a formal inference rule which corresponds to a commonly
used informal one, its use in the mechanisation of mathematics depends on whether the
problem of checking the validity of instances of this inference is tractable. Techniques
used in automated deduction for the implementation of efficient decision procedures may
therefore need to be used in producing human readable mechanised proofs. The problem
domains usually considered in automated deduction, however, are different from those
involved in this case. Instead of looking for proofs of possibly non-trivial theorems, the
required algorithms have to be designed to fill in the gaps between proofs of a rigorous,
yet easy to follow, arguments.

However, most of the current proof languages and inference systems used in the
mechanisation of mathematics are not oriented towards the development of human read-
able proofs. They are instead designed for other purposes, which include:

e Efficient proof search: The deductive systems of automated deduction procedures,
such as those based on the resolution principle and the connection method, are
search-oriented. The proofs found by such systems are very different in structure
to those found in mathematical texts.

e Interactive proof discovery: The proofs implemented in such a proof language are
made up of the user interactions required to derive the result. The user interactions
change the state of the proof development environment until a complete proof is
found. In general, it is not possible to follow such a list of user interactions without
seeing their effect on the state of the system.

e Checkable by a simple algorithm: An example of such proofs are the proof objects
in the theorem proving systems Coq and LEGO. Such proofs can be checked by
a type-checking algorithm whose implementation is simple and easily understood.
Proofs of this kind can be too detailed to be followed easily by a human reader.

We shall see in section 2.5.2 below that there is ongoing research in automating the
transformation of proofs in such inference systems into human readable proof scripts.
An advantage of such an approach is to use proof languages oriented towards the above
mentioned purposes, and still be able to obtain proofs which a human can follow. The
aim of our research, though, is to study the possibility of developing mechanised proofs
which can be easily followed by humans.

On the Introduction of Notation

We conclude this section by pointing out that one factor which improves the readability
of informal proofs is the ability of mathematicians to introduce new notation as the
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theory develops. Appropriate notation is chosen to represent expressions compactly,
sometimes through the omission of information which can be induced from the context
in which the expressions are used. An example of this, is the omission of the product
symbol from expressions representing the product of two group elements. Since, expres-
sions in a formal language must have an unambiguous meaning, such omissions may
not be possible because they can introduce ambiguity. The juxtaposition of two group
elements is ambiguous if there are two possible products which can be used.

Appropriate notation is also introduced in informal theories to facilitate reasoning
on certain objects. By omitting the parentheses in representing the product of a number
of group elements one can infer the equality of two such expressions syntactically, rather
than through the repetitive application of the associative law.

The ability to omit information without danger of ambiguity and to enhance the
grammar of a formal language through the introduction of theory-specific notation is a
desirable feature in the mechanisation of mathematics. Issues regarding whether one can
safely extend the term language of a proof development system in order to introduce new
notation are not considered in this thesis, although we point out that this is necessary
for the minimisation of the difference between formal and informal texts.

2.5.2 [Extracting Natural Language Proofs from Mechanised Ones

In the previous section we stated that the mechanisation of proofs is usually performed
using inference systems and proof languages designed for efficient proof search, inter-
active proof discovery, or to be capable of being checked by a simple algorithm. The
proofs developed in such frameworks are not easily followed by humans, however certain
systems offer the possibility of extracting a natural language proof from their internal
proof representation.

Coscoy, Hahn, and Théry (1997) have developed an algorithm, which was later im-
proved by Coscoy (1997), to translate Coq proofs internally represented in the Calculus
of Inductive Constructions into English text. In order to improve the quality of the
resulting texts, certain well-known inferences are omitted. These include the unfolding
of well-known constants and the introduction and elimination of well-known inductive
definitions. The user can declare which constants and inductive definitions are well-
known.

Another system developed for the verbalisation of proofs is PROVERB which is
embedded in the Qmega proof development environment (Benzmiiller et al. 1997). In
this system, resolution and natural deduction proofs are first abstracted into assertion-
level proofs where steps are justified by high-level inferences called assertions (Huang
1994). These usually consist of the application of some theorem or definition. Assertion-
level proofs are then transformed into natural language proofs (Huang and Fiedler 1996;
Huang and Fiedler 1997).

Research in this area suggests that readable proof accounts need to be presented at
quite a high level of abstraction when compared to their machine oriented representa-
tion. The development of readable machine checkable proofs can be seen as the inverse
process of proof verbalisation: proofs are implemented at a high level of abstraction
and then transformed into low-level inferences for proof checking. An important dif-
ference between these two processes is that the high-level machine checkable proofs are
necessarily formal, while high-level ‘extracted’ proofs may be informal.
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2.5.3 Improving the Readability of Mechanised Proofs

In this section we have a look at efforts at improving the readability of the input
language of mechanised proofs. Such efforts range from the inclusion of explanatory
information to help human readers understand how proofs work, to the development of
proof languages and environments in which proofs are easier to follow.

Presenting Proofs in a Hierarchical Structure

Lamport (1995) notes that expressing formulae and proofs in a format which reveals
their structure usually makes them easier to understand and less ambiguous. He pro-
poses a style for writing (informal) proofs in which their hierarchical structure is pre-
sented explicitly. A proof is presented as an enumerated sequence of steps which are
themselves justified by more detailed proofs. A similar format is proposed by Back,
Grundy, and von Wright (1996) where calculational proofs (see (Gries and Schneider
1995)) are presented in a nested hierarchical structure.

Hierarchical and calculational proof formats can also be used in the implementation
and representation of formal proofs. Prasetya (1993) implemented two packages based
on the tactic-based proof environment of HOL. One package allows the derivation of
calculational style proofs through iterative equalities and inequalities justified by HOL
tactics. The other package allows the derivation of proofs as a sequence of lemmas.

Grundy and Langbacka (1997) developed tools for recording HOL proofs in a brows-
able hierarchical format similar to the hierarchical calculational proofs of Back, Grundy,
and von Wright (1996). Theorems are derived interactively using the windows inference
style of reasoning (Robinson and Staples 1993; Grundy 1996). The resulting proofs can
then be presented in a browsable format which allows the user to choose the level of
detail at which particular proof step justifications are shown.

Explaining Proof Scripts

Kalvala (1994) illustrates the use of annotations on HOL terms and proofs to carry
information of an informal nature. Such information can consist of hints to guide
the user during interactive proof discovery and as an explanatory aid. For example,
HOL constants can be annotated with a text giving an informal description of their
behaviour. Tactic-based proof steps can be annotated with explanations of the effect
of the application of each tactic. This approach can be effective in the explanation of
how short proofs derive particular goals. It may not be applicable to long tactic proofs,
though, because of the difference between the type of inferences provided by HOL tactics
and those usually found in informal mathematics.

Literate Proof Programming

Literate programming (Knuth 1992) involves the use of a programming language for
the implementation of algorithms together with a typesetting language for explanation.
Tools based on Knuth’s WEB system can be used to extract a readable typeset document
from a literate source code. The techniques used in literate programming can be used in
the implementation of proof scripts. Wong (1994) has implemented simple WEB tools for
the literate development of HOL proofs, and Bailey (1998) used literate techniques in
the formalisation of algebra in LEGO. Simons (1996) developed WEB tools for the proof
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language Deva (Weber, Simons, and Lafontaine 1993) and for the Isabelle system, and
illustrates their use in a number of examples. The proofs implemented in his systems
are presented in a hierarchical format and calculational proofs are used in the bottom
level justifications. He also implemented a number of Isabelle tactics and tacticals to
allow calculational style reasoning during proof development.

Approximating the Informal Language of Mathematics

Apart from implementing tools to aid the explanation of mechanised arguments, one
can investigate how to define a formal proof language in order to approximate that of
informal mathematics. In section 2.3.2 we mentioned that substantial effort has been
put in the development of the Mizar language in order to make it similar to that used
by mathematicians. The research presented in this thesis deals with issues concerned
with minimising the difference between mechanised and informal proofs, and the simple
proof language SPL described in chapter 4 is based on Mizar. The theorem used in
section 2.4.3 to illustrate a number of HOL proofs can be derived in SPL by:

theorem example: "(A = B) == (B = C) = (A = CO)"
proof
assume A_B: "A = B"
and B_C: "B = C"

hence "A = C" by A_B, B_C;
qed;

Although all the constructs in the above formal proof have a precise meaning, it is
easier to follow this proof rather than those given in section 2.4.3. The syntax of
Mizar and similar languages is expressive enough to allow a hierarchical presentation
of proofs. The Mizar proofs of a number of properties equivalent to well-foundedness
by Rudnicki and Trybulec (1997) are examples of non-trivial machine checked proofs
presented hierarchically.

The Mizar language has also inspired other work. For instance, Harrison (1996b)
developed a Mizar mode in the HOL system which can be used to implement read-
able proofs interactively in a goal directed fashion. Syme (1997a) developed a Mizar
like language, DECLARE, for software verification, and used it in verifying the type
correctness of Java (Syme 1997b) (see also (Syme 1998)).

The Mizar system is often described as supporting a declarative proof style as op-
posed to the more procedural ones often supported by other systems. Although the
difference between a declarative and procedural style is somewhat vague, a declarative
approach puts more emphasis on what is required, rather than on how to obtain it. The
statements derived by Mizar proof steps are stated explicitly. Furthermore, proof steps
are justified simply by a list of premises, rather than by a sequence of inferences. This
lack of procedural information increases the readability of the proofs, but it implies that
more work is required by the proof checker to validate Mizar scripts. One must however
be careful to choose the right level of automation supported by the proof checker. Too
much automation results in proofs that are not detailed enough to be followed easily or
machine checked efficiently. Too little automation results in too detailed proofs which
are generally tedious to implement and hard to follow. This gives rise to the notion of
an obvious inference (Davis 1981; Rudnicki 1987) — one which is simple enough to be
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easily followed and also easily machine checked. The actual definition of obviousness
in Mizar is given through the proof checking algorithm implemented in its validator.
Experience in mechanising mathematics in Mizar suggests that proof checking speed is
given more importance than power (Rudnicki 1992).

The deductive power of the proof checker of Mizar does not increase during the
development of a particular mathematical theory, and therefore the definition of obvious
inferences is fixed. This is not consistent with the notion of what is considered to be
obvious during the development of informal texts. As a human reader progresses through
a mathematical text and gains understanding on the subject, his ability to infer facts
about the concepts concerned increases. Therefore, the notion of obviousness changes
throughout the development of a theory. It is thus desirable that the implementors
of mechanised proofs are given the possibility to extend the automation power of the
proof checker usually to make use of particular result automatically. The Mizar system
lacks such eztensibility, and the need for such a property is mentioned in the concluding
remarks of (Rudnicki and Trybulec 1997). The future work section of (Syme 1997a) also
mentions the possibility of making DECLARE extensible. The Mizar mode of Harrison
(1996b) allows the use of arbitrary HOL tactics for justifying proof steps, and is therefore
extensible. The SPL language described in chapter 4 is implemented on top of HOL
and is also extensible though it does not rely on HOL tactics.



Chapter 3

Case Studies on Tactic-Based
Theorem Provers

3.1 Introduction and Motivation

In this chapter we describe the mechanisation of two results from the theory of compu-
tation in two LCF-style theorem provers: the HOL system (see section 2.4) and the Coq
system (Barras et al. 1996). The theory of computation has been widely explored in
mathematical and computer science literature (see (Tourlakis 1984; Sommerhalder and
van Westrhenen 1988; Cutland 1980)). The mechanisation in HOL includes the defi-
nition of a computable function according to the Unlimited Register Machine (URM)
model of computation. It includes a proof that the set of URM computable func-
tions contains the set of partial recursive functions. The mechanisation in Coq defines
computable functions according to a model based on the definition of partial recursive
functions, and includes a proof of the S]* theorem.

One of the aims of these mechanisations is to give an illustration of how a particular
mathematical theory is mechanised using existing proof development systems. We are
mostly interested in the process of finding proofs using a tactic-based interactive proof
environment, and the two mechanisations presented here make substantial use of tactics.
The mechanisation in HOL is based on the textbook of Cutland (1980), and therefore it
offers us a possibility of comparing mechanised proofs with their informal counterpart.
On the other hand, the mechanisation in Coq does not follow an existing textbook. The
particular proofs implemented in Coq were found by the user during mechanisation’.
This exercise in Coq serves as a study in the process of finding mechanical proofs in the
absence of informal ones.

Another aim of the work presented in this chapter is to compare the different ways a
theory is mechanised in HOL and in Coq. Although both HOL and Coq are LCF-style
theorem proving systems, they are different in some important respects. HOL imple-
ments a classical simply-typed higher-order logic, while Coq implements a constructive
logic based on a much richer type system. The difference in the foundational logic af-
fects both the way objects are defined as well as the way proofs are developed. Another
difference between the two systems is that HOL users usually apply ML functions di-
rectly during the development of a theory, while Coq users develop a theory through the

'Or rather, re-discovered by the user since such proofs did exist beforehand.
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specification and proof language Gallina. A comparative study which illustrates the
effect of the differences of the two systems can be useful both to users of the systems
and to developers of theorem provers.

The mechanisation in HOL is given in the next section and section 3.3 illustrates the
mechanisation in Coq. These mechanisations are described in more detail in (Zammit
1996) and in (Zammit 1997). The theorem proving approaches of the HOL and Coq
systems are compared in section 3.4, and some remarks on the tactic-based style of
theorem proving are given in section 3.5.

3.2 A Formalisation of URM Computability in HOL

In this section we illustrate the mechanisation of a number of results in the theory of
computation. We use the Unlimited Register Machine model of computation, and base
the mechanisation on the textbook by Cutland (1980).

3.2.1 The URM Model of Computation in HOL
The Unlimited Register Machine

An Unlimited Register Machine, or URM, consists of a countably infinite set of registers
each containing a natural number. This set of registers is called the memory or store.
The registers are numbered Ry, ... , Ry, ..., and the value stored in the register R,, for
n > 0, is given by r,. The register R, is said to be cleared if r, = 0. A URM executes
a program, which is a finite list of the following kinds of instructions:

Zero: ZR n sets r, to 0;

Successor: SC n increments r, by 1;

Transfer: TF n m sets r, to r,;

Jump: JP n m p jumps to the pth instruction of the program if r,, = rp,.

The position of the next instruction to be executed is stored in a program counter, and
the configuration of a URM is given by a pair consisting of the current program counter
and the store. A configuration is said to be initial if the program counter is set to
the index of the first instruction (i.e.,to 0), and it is said to be final with respect to
some program if the program counter is greater than the index of the program’s last
instruction.

Since the instruction set of the URM can be regarded as a very simple machine
language, we follow some of the techniques used in specifying real world architec-
tures (Windley 1994). A URM store is represented as a function from natural numbers
to natural numbers and configurations as pairs consisting of a natural number (the
program counter) and a store.

store == :num — num
config == :num X store

The syntax of the URM instruction set is then specified through the definition of the type
:instruction using the type definition package of HOL (Melham 1988) and programs
are defined as lists of instructions.
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instruction ::= ZR num

| SC num

| TF num — num

| JP num — num — num
program == :instruction list

The semantics of the instruction set is then specified through the definition of a function
exec_instruction: instruction — config — config which takes an instruction and
a configuration and returns the configuration resulting from the execution of the given
instruction. The predicate Initial: config — bool to represent initial configurations
and the predicate Final: program — config — bool for final ones are also defined.

Computations

The instructions in a program are executed one by one starting from an initial config-
uration to give a computation. The execution of a URM instruction on a final configu-
ration has no effect. A computation is defined as an infinite sequence of configurations
(co,c1,...) where ¢g is initial, and given also a program P, its computation can be de-
noted by P(cp), or simply by P(r) where ¢g = (0,7). A store is usually represented by
the sequence (in parenthesis) of the values in its registers (rg,71,...). A finite sequence
(ro, ... ,my) is used to represent the store (rg,... ,ry,,0,0,...) where r,, = 0, for m > n.
We also use the notation P(cy) —, ¢ to express that ¢’ is the nth element in P(cg). A
computation is said to converge if it contains a final configuration, otherwise it is said
to diverge. The wvalue of a convergent computation is given by the contents of the first
register in any of its final configurations. The value is well-defined as program execution
does not affect a final configuration.

The function EXEC_STEPS: num — program — config — config is defined by prim-
itive recursion in HOL to represent computations; The term EXEC_STEPS n P ¢y = ¢
holds if and only if P(cy) —, ¢

Fagef (VP c. EXEC_STEPS 0 P ¢ = ¢) A
(Vn P ¢. EXEC_STEPS (SUC n) P ¢
= EXEC_STEPS n P (EXEC.STEP P c¢))

where EXEC_STEP: program => config = config represents the execution of one step.

Fdes VP c. EXEC_STEP P ¢
= ((Final P ¢) — ¢ |
(exec_instruction (EL (FST ¢) P) c¢))

A number of ML functions called conversions are implemented to simulate formally
the behaviour of the above defined functions. A conversion takes a HOL term ¢ and
if successful it returns a theorem ¢ = #'. A conversion can simulate the behaviour
of a function f by taking terms of the form f z and returns the theorem - f z = ¢
where ¢ is the value of the application f z. One of the conversions implemented in the
mechanisation takes a term of the form EXEC_STEPS n P ¢ and uses the definitions of
the above functions systematically to derive a theorem FEXEC_STEPS n P ¢ = (p, r),
where (p,r) is the result of executing the given program (i.e., P) n times starting from
c. Such conversions are useful in checking that the definitions represent their intended
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concepts, and can also be used to aid the theorem proving process by calculating certain
results automatically.

The predicate CONVERGES: program — (num list) — num — bool is defined such
that CONVERGES P r v holds if there is a final configuration ¢ in P(r) with store r’
such that rj = v, iL.e.,it converges with value v. (Note that r is a finite list.) Similarly,
DIVERGES: program — (num list) — bool is defined such that DIVERGES P r holds if
P(r) diverges.

A number of theorems representing intuitive properties concerning configurations
and computations are then derived so that they can be used later in the mechanisation.
These include the fact that every program converges to a unique value unless it diverges.

F VP r. (3. CONVERGES P r v) V (DIVERGES P r)

URM Computable Functions

A URM program can be used to define an n-ary partial function for any given natural
number n. The n arguments of the function are placed in the first n registers of a
cleared URM store and then the program is executed. The result of the application of
the function is the value of the computation if it is convergent, or undefined otherwise.

We say that a program P computes an n-ary function f if, for every ag,... ,an—1 and v,
the computation P(ay,... ,a,_1) converges to v if and only if f(ag,... ,a,—1) is equal
to v. This definition implies that the computation P(ay, ... ,a,_1) diverges if and only

if f(ap,... ,an—1) is undefined. A function is said to be URM-computable if there is a
program which computes it.

Since functions in HOL are total, we introduce a polymorphic type of possibly un-
defined values

« PP ::= Undef (* Undefined *)
| Value « (x Defined with this particular value *)

and define the type of n-ary partial functions as mappings from lists of numbers to
possibly undefined numbers.

pfunc == :num list — num PP

The arity of partial functions is not represented in their types and must therefore be
explicitly mentioned in HOL statements. For example, the computability of a function
is given by the predicate COMPUTES: num — program — pfunc — bool which is defined
as follows

Faef Y0 P f. COMPUTES n P f
= (Wl v. (LENGTH [ = n) =
(CONVERGES P [ v = (f | = Value v)))

A number of properties, including the uniqueness of the function computed by a pro-
gram, are then derived. Finally, the definition of a computable function is given by

Fdef Vn f. COMPUTABLE n f = (3P. COMPUTES n P f)
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3.2.2 Building URM Programs

Proving that a particular function is computable usually involves the construction of a
URM program which is shown to compute it. In order to simplify this task, Cutland
(1980) gives the definition of a concatenation operator on programs. Intuitively, given
two programs P and @, the computation of their concatenation PQ should correspond
(in some sense) to that of P followed by that of ). In order to achieve this we need the
following;:

e The jumps in P are not too far away, that is, the destination of all the jumps in
P should be less or equal to the length of P. A program which has this property
is said to be in standard form, and any program can be transformed into standard
form without affecting the store of its final configurations.

e Since URM jumps are absolute, the jumps in () need to be shifted by the length
of P.

This concatenation is defined by the function SAPP: program — program — program,
and since it is often required to concatenate more than two programs, a function
SAPPL: program list — program which concatenates a given list of programs is also
defined.

The following three program modules (functions which return programs) which are
used quite often in the construction of URM programs are also defined:

SET_FST_ZERD n clears the registers Ry,... , Ry.

TRANSFER_TO p n stores the values of the first n registers of the URM into those starting
from R,.

TRANSFER_FROM p n stores the values of the n registers starting from R, into the first n
registers of the URM.

Registers need to be cleared since programs computing functions assume that all the
registers not containing the arguments are set to 0. The last two modules are needed
to move the arguments to and from different memory locations. Similarly to Cutland
(1980) we define a program module which takes its arguments from a different memory
location rather than from the first registers. This is given by the function PSHIFT defined
below such that the program PSHIFT P s n d clears all the registers it uses, takes its n
arguments from the memory segment at offset s and stores the value of the computation
of P in the register Ry:

g VP s n d. PSHIFT P s n d =
SAPPL [SET_FST_ZERO (MAXREG P);
TRANSFER_FROM s n;
P;
[TF 0 d]]

where MAXREG P returns the maximum register used by P.

Because of their technical nature, deriving the necessarily properties to show that
the functions mentioned in this section convey their expected behaviour took substantial
effort. Table 1 on page 34 shows that the implementation of the definitions and proofs
in this part of the mechanisation consists of 2800 lines of ML code. Most of the derived
properties are considered to be obvious in (Cutland 1980), which dedicates only 3 pages
on building URM programs.
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3.2.3 Partial Recursive Functions are URM Computable

The mechanisation includes a proof that the partial recursive functions are URM com-
putable. The set of partial recursive functions (as defined in (Cutland 1980)) includes
the following three basic types of functions:

Zero The zero functions Z,, of arity n > 0, which return the value 0 for any input,
Successor The unary successor function § which increments its input by one,

Projection The projection functions U: (where i < n) of arity n which return the ith
component of their arguments,

and is closed under the following operations on functions:

Substitution The substitution of k£ functions with arity n, say ¢ = (go,-.- ,gr_1), into
a k-ary function f gives the n-ary function produced by applying f to the results
of the applications of g. That is, the substitution f6g is defined by

fog(zo, .- yxn_1) = f(g0(xos-- s Tn—1)s-- sGr_1(T0s-- ,Tn_1)).

Primitive Recursion Given an n-ary base case function f, and an (n + 2)-ary recur-
sion step function g, the (n + 1)-ary primitive recursive function R(f, g) is defined
as follows:

R(fag)(07x07 s 7xn—1) = f(xoa s 7xn—1)
R(fag)(x +1,20,... ,iEn_l) = g(xaR(fag)(xﬂxoa s 7xn—1)7x07 S 7xn—1)-
The first argument of R(f, g) is the depth of the recursion, or the number of times

the function g is applied after f is. Note that the depth of the recursion is also
given as an argument to the step function g.

Unbounded Minimalisation The unbounded minimalisation p; of an (n + 1)-ary
function f is the n-ary function which given the arguments (zg,... ,Zp—1), it
returns the least = such that

1. the value of f(z,zg,...,2n—1) =0, and

2. for all y < z, the application f(y,zg,... ,2,—1) is defined.
The value of p¢(zo,... ,Zp—1) is undefined if no such z exists.

The mechanisation includes definitions of the above basic functions and function
operations, and proofs that the three basic kinds of functions are computable, and that
functions defined by substitution, recursion, or minimalisation on computable functions
are themselves computable. In each case, the proof that these functions are computable
is as follows:

1. The criteria under which the function is defined are identified,
2. A URM program is defined and is shown to compute the function as follows:

(a) the criteria under which the computation of the program converges are iden-
tified,
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(b) showing that whenever the program diverges, the value of the function is
undefined,

(c) showing that whenever the program converges, the value of the function is
defined and identical to the value of the computation.

Showing that the basic functions are computable is rather straightforward. On the
other hand, the proofs that substitution, recursion and minimalisation preserve the
computability of functions contain several cases, each of which is not trivial. For in-
stance, the programs which compute primitive recursive functions and minimalisations
contain loops and therefore invariants had to be found. On the other hand, the proofs
in (Cutland 1980) are based on informal flow diagrams.

3.2.4 Defining Computable Functions

The language of partial recursive functions can be considered as a high-level language
for expressing computable functions. For instance, addition can be defined by primitive
recursion on the identity and the successor functions, or formally by R(U}, Ss[i43]). A
number of functions were defined in this manner, and the derivation that such functions
are computable was automated through the systematic application of the theorems men-
tioned in the previous section. Showing that the function defined in terms of the partial
recursive operators corresponds to the intended one needs some work. For example,
showing that the above definition of addition actually corresponds to the addition func-
tion requires mathematical induction. A conversion which simulates the behaviour of
partial recursive functions is implemented to help this process.

3.2.5 Concluding Remarks on the HOL Formalisation

We have illustrated the HOL mechanisation of URM computability which includes the
result that partial recursive functions are URM computable. Table 1 shows the lengths
of different parts of the source code of the mechanisation with comments removed. For
each part, the lengths listed in the table are divided as follows:

e ML declarations: ML definitions of proof procedures and tactics which are used
in the proof of more than one theorem.

e HOL definitions: the application of ML functions which introduce new HOL types
and constants.

e HOL proofs: the application of ML functions which derive particular HOL theo-
rems.

It can be seen that a substantial part of the mechanisation is dedicated to the
derivation of theorems, most of which were proved by applying tactics interactively
in a goal directed fashion. A small number of tactics and other proof procedures are
implemented to automate inferences specific to this mechanisation. Even though these
proof procedures were used in several occasions during theorem proving, most of the
proof steps involve the standard HOL tactics and tacticals. There is a substantial
difference between the level of detail (and therefore the length) of the HOL proofs and
the proofs found in the literature. The mechanisation includes the proof of dozens
of theorems which would be considered to be trivial in an informal exposition. Such
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Introductory Mechanisation
ML declarations: 170 lines

HOL definitions: 10 lines
HOL proofs: 440 lines
Total: 620 lines

Definition of URM Computability
ML declarations: 380 lines

HOL definitions: 130 lines
HOL proofs: 370 lines
Total: 880 lines

Building URM programs

ML declarations: 70 lines
HOL definitions: 90 lines
HOL proofs: 2660 lines

Total: 2820 lines

Partial Recursive Functions are URM Computable

ML declarations: 180 lines
HOL definitions: 60 lines
HOL proofs: 3290 lines

Total: 3530 lines

Table 1: On the Source Code of the Mechanisation in HOL.

‘shallow theorems’ are used throughout the mechanisation, even in the proof of theorems
which state much deeper results. On the other hand, the simple results proved in
informal texts are usually taken for granted once they have been stated, illustrated by
a number of examples, and derived.

3.3 A Proof of the S;" Theorem in Coq

3.3.1 On the Coq Theorem Proving Environment

The Coq system is an implementation in CAML of the Calculus of Inductive Construc-
tions (CIC) (Coquand and Huet 1986), a variant of type theory related to Martin-Lof’s
Intuitionistic Type Theory (Martin-Lo6f 1984; Nordstrom, Petersson, and Smith 1990)
and Girard’s polymorphic A-calculus F,, (Girard 1972). Terms in CIC are typed and
types are also terms. Such a type theory can be treated as a logic through the Curry-
Howard isomorphism (see (Thompson 1991; Nordstrom, Petersson, and Smith 1990)
for introductions of the Curry-Howard isomorphism) where propositions are expressed
as types. For instance, a conjunction A A B is represented by a product type A X B,
and an implication A = B is represented by a function type A — B. Also, a term can
be seen as a proof of the proposition represented by its type, and thus theorems in the
logic are nonempty types. For example, the function

curry = Af Az \y. f(z, 1)
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which has type ((A x B) - C) - A — B — C is a proof of the theorem ((A A B) =
C) = (A = B = (). Objects which have the same normal form according to afd:-
conversion (simply called convertible objects) are treated as the same term by the logic.
d-conversion involves the substitution of a constant by its defining term and ¢-conversion
is automation of inductive definitions.

Under the Curry-Howard isomorphism, theorem proving corresponds to the con-
struction of well-typed terms and the core inference engine of Coq is basically a type
checking algorithm for CIC terms. Terms whose type is a theorem are usually called
proof objects and are stored in Coq theories. The Coq system provides the specifica-
tion and proof language Gallina in which users perform the actual interactive theorem
proving. Gallina constructs include commands for specifying definitions and for tactic-
based theorem proving and Coq users can extend the Gallina language by implementing
new constructs in CAML. The files which Gallina accepts during theorem proving are
called proof scripts, or simply scripts.

3.3.2 The PRF Programming Language

In this section we give the syntax and semantics of the PRF language of programs
which we embed in Coq. The PRF language is very close to the definition of partial
recursive functions.

The Syntax of PRF

The syntax of the PRF language is defined in Coq in terms of a data type prf whose
constructors correspond to the three basic functions and the three operators which
define partial recursive functions.

prf ::= Zero: prf

| Succ: prf

| Proj: nat — prf

| Sub: prf — prf — nat — nat — prf
| Rec: prf — prf — prf

|

Min: prf — prf

It should be noted that any particular PRF program represents a different partial
recursive function for each arity. For example, although Succ is defined in order to
represent the successor function S, it also represents the n-ary function which returns the
successor of the first number of its input: A(xo, ... ,zn—1).S(x0) for each value of n. The
type of the constructor Sub in the above definition of prf is different from the expected
:prf — (list prf) — prf corresponding to the substitution of a function on a list
of functions. A type definition with such a constructor has a non-positive occurrence,
and is not accepted by the version of Coq used in the mechanisation. The substitution
construct Sub in PR.F takes two programs f and g, and two natural numbers n and m,
and corresponds to the application of f on the output of g and part of its input (the m
arguments of g starting from the nth). The behaviour of Sub is described in more detail
below where the semantics of PRF programs is defined. A program corresponding to
the substitution on a list of functions is then defined in terms of Sub.
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The Semantics of PRF

PRF programs take a list of natural numbers and return a natural number if they termi-
nate. A program assumes the input list to be of a particular length. When a program re-
quires an element at a position greater than the length of the list, the value of the element
is assumed to be 0. Lists are indexed using the function zel: nat — (list nat) — nat
which is defined such that zel i I returns the (i + 1)th element in [ if 7 is less than the
length of I, or 0 otherwise. In the following, we use the notation z ~p y to represent
the proposition R = y, where R: A — B — Prop is a binary relation on the sets A
and B.

The semantics of PRF programs is given through the inductive definition of the
predicate converges_to: prf — (list nat) — nat — Prop given below. We say that
p converges to v on input /, and write p(l) | v, if converges_to p [ v holds.

Zero For any list [, the program Zero converges to 0.
Zero(l) | 0

Successor Given a non-empty list, Succ converges to the successor of its head, other-
wise it converges to (S 0) (i.e., 1).

Succ([]) J (S 0) Succ(z : I) | (S z)

Projections Given a list [, the projection Proj i converges to the (i + 1)th element in
I, or to 0 if 4 is greater than the length of /.

Proj i(l) | (zel i I)

Substitution Given an input list [, the program Sub f g n m first applies g to [, and
then applies f to the m elements in [ starting from the nth one together with the
output of g (see figure 2). We define

pcombine n m | z = [zel n l,zel (n+1) [,...,zel (n+m—1) I, z]
and the semantics of Sub is given by

g{l) } ©  f(pcombine n m [ z) |y
(sub f g nm)l)ly

Recursion The primitive recursive program Rec f g has base case f and recursion step
g. The depth of the recursion is given by the first element of the input list.

f) Lz fi)lx (Rec f g)(h: 1)1y glh:y:1)lx
(Rec f o)) Lz (Rec f g)(0:1) = (Rec f g)((S h): 1) Lz

Minimalisation The program Min f denotes the unbounded minimalisation of the
function f. Given the input list [, it returns the smallest number h such that f
returns 0 on input A : [ and terminates for all input y : [ where y < h. In order to
define the behaviour of Min we first introduce the predicates all_successors and
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EN
Q

mf |

Figure 2: The Behaviour of Sub f g.

minl. The proposition all_successors R n holds if for all m < n, there exists
some k such that m ~g (S k).

0~gr (S k) (S m) ~r (S k) all_successors R m

all_successors R 0 all_successors R (S m)

The proposition minl R n holds if n is the smallest number such that n ~z 0 and
for all m < n, there is some k such that n ~p k.

0~p0 (S n) ~gp 0 all_successors R n
minl R 0 minl R (S n)

The behaviour of Min f is then given by the rule

minl (Ah.converges_to f h:l) x

(Min f)(I) | =

The mechanisation in Coq contains a proof that the relation converges_to as defined
above is (at most) single-valued, that is PRF programs are deterministic.

A URM program uses a specific number of elements from the list. The maximum
value of the positions of the elements used by a program is called the natural arity of
the program, and is defined as follows:

F4ef natarity Zero = 0
| Succ = (S 0)
Proj 7 = (S %)

Rec b s = max (S (natarity b) (pred (natarity s))

|
| Sub f g n m = max (natarity g) (n + m)
|
| Min f = pred (natarity f)

The maximum natural arity of a list of programs is then defined as the function
maxarity: (list prf) — nat. It is then shown that the behaviour of a program is
not affected by the elements in its input list at a position greater than its natural arity.
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g0 g1 g2 - --- 9k—1
—l —| —I—>k_1

m = maxarity [gg,...,gr—1] — 1

Figure 3: The Definition of Subl m n f [go,... , 9k 1]

Substitution of a List of Functions

prf — (list prf) — prf such that, given a pro-

We now define the function Subl:
, gk—1], the program Subl f g converges to y

gram f and a list of programs g = [go, . ..
on input [, if

e for all i < k, there is some z; such that g;(l) | z;, and

e the program f([zo,... ,zx_1]) | .

goll) Lwo -+ gea(l) L zr—1 fllzo,...,zpa]) Ly
(Subl f [gOv"' 7gk—1])<l> *L Yy

This is achieved by using the operator Sub to pass the input list together with the output
values zg, ... ,z;_1 to the program g; where ¢ < k. The k outputs xg,... ,zr_1 are then
given to the program f (see figure 3). For i < k, the output values x; are kept in
the input list of the program g; 1 at a position which is greater than its natural arity,
and therefore does not affect the output value z;,1. The function Subl is defined by
structural recursion over the list of programs [gg,... ,gr_1] as follows:

Sub f Zero 0 0

b def Subl_in f m[n =
m[go] = Sub f go m n
m (go:g1:9) n
= Sub (Sublin f m (g1:¢9) (S n)) go 0 (m+mn)

Fdef Subl f g = (Subl_in f (maxarity g) g 0)

The following theorem is then derived to show that programs constructed using the

function Subl have the expected behaviour.

FVYfgllx.
(converges_to (Subl f ¢gl) | z) &
(3xl. (mapR prf nat (A\g. converges_to g ) gl zl) A

(converges_to f zl x))
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The relation mapR: (A — B — Prop) — (list A) — (list B) — Prop is defined in
Coq such that I; ~(mapR R) I5 holds if [ and I, have the same length and all the elements
in [; relate (with respect to R) with the corresponding elements in [5.

a~pr b k N(mapR R) l
I ~(mapR R) [ (a:k) ~(mapR R) (b:1)

3.3.3 PRF Computability

The PRF language is used as a model of computation by defining computable functions
as those which can be computed by a PRF program. Similarly to the implementation
in HOL we first define the type of m-ary partial functions from natural numbers to
natural numbers, and then define the notion of PRF-computable functions.

Vectors and Partial Functions

The set of vectors over a set A is defined inductively by

vector A nat ::= Vnil: (vector A ()
| Vcons: (n: nat) — A — (vector A n)
— (vector A (S n))

The type vector A n of vectors with n elements of type A is dependent on the values of
A and n. Such a type cannot be defined in HOL because of its weaker type system. The
head, tail and the elements in a particular position in a vector are defined inductively
by the relations:

Vhd A (S n) (Vcons n h t) h Vtl A (Sn) n (Vcons n h t) t

Vel Aintzx
Vel A0 (Sn) (Vcons n ht) h Vel A (Si) (Sn) (Vcons n ht)zx

The head, tail, and the ith element in a vector for some i, are also defined by the
functions:

vhd: (A: Set) — (n: nat) — (vector A (S n)) — A
vtl: (A: Set) — (n: nat) — (vector A (S n)) — (vector A n)
vel: (A: Set) — (i: nat) — (n: nat) — (Hl: 7 < n)

— (vector A n) — A

Note that the type of the fourth argument of vel is the proposition (i < n) and therefore
terms involving vel need a proof that the second argument is smaller than the third in
order to be correctly typed.

In general, theorems involving the Vhd, Vt1 and Vel relations are easier to prove than
those involving the functional counterparts if rule induction can be used. On the other
hand, theorems and assumptions involving equalities on terms containing the above
functions can be used as rewriting rules. In order to obtain the best of both worlds,
the two kinds of definitions are introduced in the mechanisation and are shown to be
equivalent.

The following two functions which map vectors into lists and vice-versa are also
defined:
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listify: (A: Set) — (n: nat) — (vector A n) — (list A)
vectrify: (A: Set) — (I: list A) — (vector A (length A [))

where length A [ returns the length of list /| whose elements are in the set A.
The type of n-ary partial recursive functions over the natural numbers is defined to
be that of the single-valued relations between vector nat n and nat:

pfunc arity = mk_pfunc
{ reln : (Rel (vector nat arity) nat);
One_valued: (one_valued (vector nat arity) nat reln)}

where Rel A B is the type of the relations between the sets A and B, and the proposition
one_valued A B R holds if the relation R is single-valued.

Faef one_valued A B R =Vabec. (Rab) = (Rac = (b = ¢

The type pfunc is a record where the field reln is a relation between vectors and
natural numbers, and the field One_valued is a theorem stating that reln is single-valued.
It can be seen that this is a dependent record as the type of the second field depends
on the value of the first field. The type pfunc can be considered as a subtype of reln,
since objects of type pfunc are the objects of type reln which are proved to satisfy the
property given by One_valued.

Given a function g: (vector nat n) — nat one can construct a total single-valued re-
lation G such that v ~¢ cif and only if g(v) = ¢, and therefore an object of type pfunc n.
The function pfuncize: (n: nat) — ((vector nat n) — nat)) — (pfunc n) is de-
fined in order to produce this particular construction.

PRF Computable Functions

A PRF program p:prf is said to compute an n-ary partial function f:pfunc n if p
converges to the same values the relation in f (given by reln n f) holds.

Fgep Vp n f. computes p n f =
Yo . (relnn f v z) &
(converges_to p (listify nat n v) x)

A partial function is defined to be PRF-computable if there is some PRF program
which computes it.

Fgef Vn f. computable n f = dp. computes p n f

The mechanisation includes the definition of several partial functions (mostly through
the use of pfuncize) which are shown to be PRF-computable. A list of these functions
together with the PRF programs that compute them is given in (Zammit 1997).

3.3.4 The S Theorem
Enumerating PRF programs

A set A is said to be effectively denumerable if there is a bijection f : A — N such that
both f and f ! are effectively computable functions. A function is effectively computable
if it is computable in some informal sense (unless the notion of computability on that
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type of function is formalised, e.g., if its range and domain are the natural numbers),
and therefore this notion is not defined in Coq. However, because of the constructive
nature of the Calculus of Constructions, every function defined in Coq is effectively
computable, hence one can show that a set A is effectively denumerable by defining
two Coq functions f: A — nat and g: nat — A and by showing that f and g are
bijections and inverses of each other.

The mechanisation in Coq includes the definitions of a function Godel: prf — nat
which associates a number (the Gddel number) with a PRF program, and a function
Prog: mnat — prf which enumerates PRF programs. These two functions are proved
to be the inverses of each other and bijective, and so we prove that the set of PRF
programs is effectively denumerable. The function Prog is then used to define the
function pf_compute_Prog: (n:nat) — (e:nat) — pfunc n which takes two natural
numbers n and e and returns the partial function of arity n which is computed by
the program with Goédel number e. (Note that every computable function can thus be
effectively represented by its arity and the Godel number of a program which computes
it.)

Fgef Vn e. fcompute_Prog n e
= M. (converges_to (Prog e) listify nat n v)

Fdef Vn e. pf_compute_Prog n e
= mk_pfunc n (fcompute_Prog n e)
(fcompute_Prog_one_valued n e))

where fcompute_Prog_one_valued is the theorem which states that the relation con-
structed by fcompute_Prog is single-valued. The function pf_compute_Prog n e is de-
noted by ¢™.

The 5] Theorem

Given an (m + n)-ary function f, and m numbers x = (zq,... ,Zm;m—1), one can define
an n-ary function g by fixing the first m arguments of f to z.

g(y07"' 7yn—1) = f(x()’"' 7xm—17y07"' 7yn—1)

The S, theorem, also called the parametrisation theorem, states that for fixed m and
n if f is computed by some program with Godel number e, then the Godel number of a
program computing g can be computed from m, n, e and zg,... ,Z;m—_1. In other words,
for all m and n, there is a total computable (m + 1)-ary function s’ such that

Ve, 2,y ooy (1) = ST (@)

where z = (zg,... ,Zm—1) and y = (Yo, -+ ,Yn—1)-

The function gbg’,ﬁl)( can be computed by a program which takes the arguments

e,r)

(Y0, --- ,yn—1) and applies the program which computes qungr") (z,y) to the list

[3307' < s Tm—1,Y0y--- 7yn71]-

This program is defined in Coq as the function smnprf:
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Figep Ym n e x. smnprf m n e x
= Subl (Prog e) ((constants [zg,...,Zn,|) ++ (projections n))

where the functions constants and projections are defined such that

constants [cp,...,¢] = [Constant c¢j, ..., Constant ¢]
projections n = [Proj 0, ..., Proj (n—1)]

and where the program Constant ¢ always converges with value c.
The function s is then given by the object (pf_smnprf m n): pfunc m

Fagep Ym n v. vf_smnprf m n v
= (Godel (smmprf m n (vhd nat m v)
(listify nat m (vtl nat m v))))

Fgep pf_smnprf = Am n. (pfuncize (S m) (vf_smnprf m n))

Showing that the function pf_smnprf m n is computable for all m and n was rather
laborious and needed several lemmas, most of which were proved by (rule, or structural)
induction. In particular the proof needed the fact that all the functions used in the
definition of Prog are PRF computable. Unfortunately, the statements of some of the
lemmas needed for the proof of the S, theorem involved constant names which were
defined only to be used in the definition of other constants. For example, a number
of lemmas involved the function Subl_in which was defined only to be used in Subl.
Actually, most of the lemmas concerning properties of the function smnprf (which is
defined in terms of Subl) are proved by induction on more general properties involving
Subl_in. This is probably due to a bad theory structure. For instance, more general
results on Subl can probably be derived in the module deriving it, so that no lemmas
on Subl_in are required outside this module. We point out that there is a lack of proof
development tools aimed at the structuring and re-structuring of mechanised theories
interactively.

3.3.5 Concluding Remarks on the Coq Formalisation

This section describes the mechanisation of the S]" theorem in the Coq system. Com-
putability was formalised according to a model of computation based on the definition
of partial recursive functions, and all the results in this mechanisation are derived by
constructive proofs. Table 2 shows the lengths of different parts of the source code of
the mechanisation with comments removed. The part with title “PRF Computabil-
ity” is rather lengthy since it includes the proofs of the computability of a number of
functions. This involves the definition of PRF programs which are shown to compute
the particular functions. Similarly to the mechanisation of computability in HOL, the
proofs in Coq are very detailed and a large number of them derive results which would
be considered trivial in the informal mathematical literature.

3.4 A Comparative Study of HOL and Coq

It can be noted from the two case studies described in sections 3.2 and 3.3 that the
strongest point of the Coq system is the expressive power of the Calculus of Inductive
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Introductory Mechanisation

definitions: 40 lines
proofs: 890 lines
Total: 930 lines

The PRF Language
definitions: 50 lines
proofs: 1210 lines

Total: 1260 lines

PRF Computability
definitions: 490 lines
proofs: 6450 lines

Total: 6940 lines

Enumerating Programs and the S5 Theorem
definitions: 100 lines
proofs: 2170 lines
Total: 2270 lines

Table 2: On the Source Code of the Mechanisation in Coq.

Constructions. The HOL logic is much simpler but users can rely on a greater flex-
ibility offered by the metalanguage. As a result HOL theorem proving is much more
implementation-oriented, while in Coq the implementation of simple tactics (which may
not be used often during a mechanisation) is discouraged by having a specification and
proof language (on top of the metalanguage) in which all user interactions are made. In
this section we compare the way objects are defined (section 3.4.1) and how theorems
are proved (section 3.4.2) in these two systems. Other considerations are discussed in
section 3.4.3, and some concluding remarks are given in section 3.4.4.

3.4.1 Definitions

A definition can be considered as a name given to an object by which it can be referred
to in a theory. A concept can be formalised by defining it in terms of previously defined
concepts, or by deriving its existence and associating a name with it. Concepts can
also be formalised through the declaration of axioms and both systems allow users to
introduce axioms in theories. However, an axiomatic theory can be inconsistent while
the definition mechanisms of Coq and HOL guarantee that purely definitional theories
are always consistent.

The definition mechanism in Coq introduces new constant names in an environment
and allows these terms to be convertible with their defining terms. This applies to
both simple abbreviations (d-conversion) and inductive definitions (:-conversion). Since
proofs and theorems are first class objects in CIC, the name of a theorem is actually
a constant definition given to its proof term. In fact, although the specification lan-
guage Gallina gives different constructs for defining terms and for theorem proving,
one can, for instance, use tactics to define terms and the definition mechanism to prove
theorems. The system differentiates between definitions and theorems by labelling the
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former objects as transparent and the latter as opaque. Transparent objects are con-
vertible with their defining terms while opaque objects are not. The Gallina language
provides commands for labelling objects as opaque or transparent manually.

The HOL logic treats type and constant definitions differently, and the core system
provides one primitive inference rule for type definitions and two for constant definitions.
Other inference rules are given for deriving theorems. The function of the HOL primitive
rules for definitions is illustrated below, where the differences between the definition
mechanism for constants in HOL and in Coq are discussed.

Type Definitions

The HOL system has one primitive rule for type definitions, which introduces a new
type expression as a nonempty subset of an existing type o, given a term P : 0 — bool
which denotes its characteristic predicate. However, in practice, the user introduces
new types through the type definition package (Melham 1988) which specifies ML style
polymorphic recursive types as well as automatically deriving a number of theorems
specifying certain properties about the type (such as the fact that the type constructors
are injective).

Such types are specified in Coq by inductively defined sets and types, and the cor-
responding theorems derived by HOL’s type definition package are either returned as
theorems by the definition mechanism of Gallina or follow from the elimination and
introduction rules of the set or type.

The obvious advantage of having types as terms in CIC over HOL’s simple type the-
ory is a much more expressive type system which allows quantification over types and
dependent types. For instance, the dependent record type of n-ary partial functions,
pfunc n, was introduced in the mechanisation in Coq so that the arity of a function
can be declared in its type. Such information cannot be stored in the simple types
of HOL and therefore was declared in all the statements involving n-ary partial func-
tions. (Compare the definition of COMPUTES in section 3.2.1 and that of computes in
section 3.3.3.)

A mechanism which translates objects in a dependent type theory into HOL objects
is described by Jacobs and Melham (1993) and an extension of the HOL logic to cover
quantification over types is proposed by Melham (1992).

Constant Definitions

Here we list the different mechanism by which constant definitions can be specified in
Coq and in HOL.

Simple Definitions In HOL given a closed term e: 7, a new constant c¢: 7 can be
introduced in the current theory by the primitive rule of constant definition which
also yields the theorem F ¢ = e. Thus, while in the Calculus of Constructions
constants are convertible (d-convertible) with their defining terms, in HOL the
interchangeability of ¢ and e is justified by the above theorem, which needs to be
used whenever ¢ and e have to be substituted for each other in other theorems.

Specifications The second primitive rule which introduces constants in HOL theories
is called the rule of constant specification. It introduces a constant c: 7 obeying
some property P(c) if its existence can be shown by a theorem F 3z.P(z). The
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theorem F P(c) is returned by the rule. Note that only the existence of some z is
required, rather than the existence of a unique z, and nothing else can be inferred
about ¢ apart from P(c) (and anything which can be inferred from P(c)). Because
of its intuitionistic nature, there is no such rule in the Calculus of Constructions
although any constructive proof of Jz: 7.P(z) is actually a pair (w : 7,p : P(w))
containing a term of type 7 and a proof stating that this term satisfies P. The
HOL manual (Gordon and Melham 1993) introduces a primitive inference rule for
type specification as well, but there is no implementation of this rule yet.

Recursive Definitions The definition of primitive recursive functions over a recursive
type is justified in HOL by a theorem stating the principle of primitive recursion
which can be automatically derived by the type definition package. A library for
defining well-founded recursive functions, which in general requires user interven-
tion for proving that a relation is well-formed, is also included in the HOL system
(Slind 1996). In Coq, recursive functions are defined by a fixpoint operator. The
syntax of actually defining such functions implicitly in the Coq is very crude.
However, a mechanism which allows function definitions in an ML like syntax
with pattern matching is provided in the Gallina language. This mechanism can
also be used on the definition of functions over dependent types.

Inductive Definitions The CIC includes rules for inductive definitions and are thus
inbuilt in Coq. The Gallina specification language provides constructs for intro-
ducing (possibly mutually) inductive definitions as well as tactics for reasoning
about them. Inductive definitions can be used for introducing inductive types and
sets as recursive data types and also for inductively defined relations. Support
for coinductive and corecursive definitions and reasoning by coinduction is also
provided by the Coq implementation of CIC.

The HOL system provides a number of packages for defining inductive relations,
which include the package by Melham (1991) (see also (Camilleri and Melham
1992)), support for mutually inductive definitions (Roxas 1993) and the more
recent implementation due to Harrison (1995b). Besides providing a mechanism
for specifying definitions, these packages include ML functions for reasoning about
them and for automating them. It is argued (for instance in (Harrison 1995a)) that
inductive definitions can be introduced earlier in the HOL system and a number
of frequently used relations in existing theories (such as the inequalities on natural
numbers) can be redefined inductively so that users can apply the principle of rule
induction on them, much in the same fashion that it is done by Coq users.

3.4.2 Theorem Proving
This section illustrates the different proof strategies by which users of the Coq and HOL
systems perform the actual theorem proving.

Forward Proving

Forward theorem proving is performed in HOL by applying ML functions which re-
turn theorems. This is done in Coq by constructing terms whose type corresponds to
theorems. However since HOL users have direct access to the metalanguage, one can
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implement more elaborate mechanisms for forward theorem proving than simple con-
structions of terms in Coq. In general, theorem proving in Coq is done in a backwards
manner by applying tactics.

Backward Proving

Both theorem provers support interactive tactic-based goal-directed reasoning. The
required theorem is stated as a goal and the user applies tactics which break the goal into
simpler subgoals until they can be proved directly. Tactics also provide a justification
for the simplification of a goal into subgoals, which derives the goal as a theorem from
derivations of the subgoals. A goal usually consists of the statement which is required
to be proved together with a number of assumptions which a proof of the goal can use.

As mentioned in section 2.4.2, backward proving is supported in HOL through an
implementation of a goalstack data structure which provides a number of operations
(including specifying goals, applying tactics, moving around subgoals, etc.) as ML
functions. Tactics and tacticals are also ML functions and users can implement new
tactics during theory development. On the other hand, Coq tactics, tacticals and the
operations on the internal goalstack are provided as constructs of the Gallina language.
As a result, implementing a new tactic in Coq involves the non-trivial task of extending
the Gallina language and in general Coq users tend to implement less tactics during
theory development than HOL users do. Moreover, HOL users can also implement
tactics ‘on the fly’ by combining different tactics, tacticals, and general ML functions
during a single interaction.

We also remark that HOL tactics are much more elaborate and numerous than Coq
ones. One reason for this arises from the different nature of the Calculus of Inductive
Constructions and the HOL logic. Since theorems in Coq are essentially types, tac-
tics correspond to the different ways terms can be constructed and broken down (the
introduction and elimination rules of the constructs). On the other hand, tactics in
HOL have to be implemented using the much less powerful (and less general) primitive
inference rules. Moreover, the powerful notion of convertible terms of CIC makes in-
ference rules such as rewriting with the definitions and beta conversion unnecessary in
Coq. However, tactics for unfolding definitions and changing a goal or assumption to a
convertible one are also provided, both because it facilitates theorem proving and also
because higher-order unification is undecidable and user intervention may sometimes be
essential.

The considerable difference between the number (and nature) of tactics in HOL
and in Coq and the availability of a specification and proof language makes Coq an
easier system to learn. New HOL users are faced with hundreds of inference rules and
tactics to learn, and possibly a new programming language to master in order to be
used effectively as a metalanguage. New Coq users need to learn how to use about
fifty language constructs and most theory development can be done without the need
of extending Gallina.

Finally we note that assumptions in Coq are labelled with names while they are
unnamed in HOL. This affects the way users of the systems use assumptions during
the construction of a proof. Basically, Coq users select the assumptions they need
by their name while HOL users apply tactics which try to use all the assumptions.
Nevertheless, HOL users can implement tactics (on the fly, or otherwise) which select
a subset of, or a particular element from, the list of assumptions through filtering
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functions and other techniques discussed in (Black and Windley 1995). However we
stress that selecting an assumption simply by its name is definitely more straightforward
than any such techniques. During the implementation described in section 3.2 the
need of writing several filtering functions was sometimes tedious and overwhelming.
Tactics which make use of all the assumptions can however be quite powerful and
may save several repetitive proof steps. One can for instance consider the power of
ASM_REWRITE_TAC in HOL which repetitively rewrites with all the assumptions, together
with a number of theorems supplied by the user and a list of basic pre-proved theorems
(such as FVA. (T v 4) = T.)

Automation

The HOL system is equipped with more decision procedures and automation tools than
Coq. HOL (HOL90 version 9.1 and Hol98) includes automation for rewriting, a tau-
tology checker, semidecision procedures for first-order reasoning, a decision procedure
for Presburger arithmetic, as well as an implementation of Nelson and Oppen’s tech-
nique for combining decision procedures. Since most proofs in the mechanisation of
computability in HOL are of a highly technical nature, the use of such decision proce-
dures saved a lot of time and thinking about trivial proofs. The Coq system (version
6.2) provides tactics for tautology checking, decision procedures for intuitionistic Di-
rect Predicate Calculus (which is the first-order Sequent Calculus of Gentzen without
contraction rules), for Presburger arithmetic, and for a number of problems concern-
ing Abelian rings. The Gallina language maintains a user definable hint list, where
tactics can be included into the list and goals can then be automatically solved by the
application of one or more of these tactics.

Reasoning with Equality and Equivalence

HOL’s notion of equality is extremely powerful and since equivalence of propositions
is defined as equality on boolean values, the same properties enjoyed by equality hold
also for equivalence. Equality is introduced in HOL by a primitive rule, REFL, which
returns the theorem  t = ¢t for any term ¢; and the primitive rule of substitution allows
any subterms of a theorem to be substituted by their equals. The rule of extensionality
(which can be derived in HOL) yields the equality of any two functions which give the
same results when applied to the same values. (More formally, the rule of extensionality
isVo.f(z) = g(z) b f = g.) As a result, equivalent predicates can be substituted for
each other and assumptions can be substituted with the truth value T. Hence, theorem
proving in HOL can rely a lot on rewriting, for example, statements like a Ab = a V ¢
can be easily proved by the tactic:

DISCH_TAC THEN
ASM_REWRITE_TAC []

The importance of equality in HOL theorem proving is emphasised by a class of
inference rules called conversions (see section 3.2.1, page 29) which are specialised for
deriving equalities.

Equality in CIC is introduced by the inductive definition

—— refl_equal
eq A aa -ed
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and results like symmetry, transitivity and congruence can then be derived. However
functions are intensional and equivalence of propositions is different from their equal-
ity. Basically, two propositions, a and b, can be proved to be equivalent in Coq by
constructing a term with type ((a — b) x (b — a)) and little support is given for tak-
ing advantage of the symmetric nature of bi-implication. The need for more powerful
support of equality is reduced by having the notion of convertible terms. However,
here we remark on the inability to construct a term ¢: 77 directly, where ¢ has type
T5 which is not convertible with 77 and it can be proved that 77 and T are equal.
For example, given some term v: (vector nat (n+m)) where m and n are variables,
then one cannot specify v as having type vector nat (m +n) even though (n 4+ m) and
(m + n) are equal. This problem is encountered in the mechanisation in section 3.3,
and for this particular example it is solved by defining a function Change_arity, such
that, given a vector v: (vector A n) and a proof ¢ of (n = m), then the type of
Change_arity n m t A v is (vector A m):

4oy Change_arity
= An,m:nat, t:(n=m), A: Set, v: (vector A n).
eq_rec nat n (vector A) v m t).

and it is proved that

Vn:nat, t:(n=n), A:Set, v:(vector A n).
Change_arity n nt A v = v

This theorem is proved using the eq_rec_eq axiom.
Now, if plus_sym represents the theorem Vn, m.n +m = m + n, and the term v has
type vector nat (n + m) then

Change_arity (n + m) (m + n) (plus_sym n m) nat v

has the required type vector nat (m + n).

3.4.3 Miscellaneous

This section lists some other considerations of the differences between the approaches
of Coq and HOL to the mechanisation of theories.

Classical and Constructive Reasoning

HOL’s logic is classical, and the axiom of the excluded middle is introduced in the HOL
theory which defines boolean values. One can ask however whether any support can
be given to users who may want to use HOL and still reason constructively. The CIC
is constructive and so the law of the excluded middle cannot be derived and all Coq
functions have to be computable. However, one can still reason classically to some extent
in Coq by loading a classical theory which specifies the law of the excluded middle as
an axiom, although it should be stressed that this does not give Coq the full powers of
classical reasoning.

Since all functions in Coq are computable, n-ary partial functions are defined in Coq
as single-valued relations rather than as Coq functions, so that partial functions which
are not computable can still be specified in the mechanisation. On the other hand,
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functions in HOL need not be computable (a classical proof of their existence is enough
to define them), and n-ary partial functions are defined in HOL as functions mapping
lists of natural numbers to the representation of ‘possibly undefined natural numbers’
given in section 3.2.1, page 30. The advantage of the formalisation of partial functions
in HOL is that a function application can be directly substituted by its value.

The proof of the S theorem in Coq is constructive; however, the literature of
computability contains a number of theorems whose proof requires classical reasoning.
In particular, we mention the theorem which states the existence of an uncomputable
function, for example, in (Cutland 1980). The proof of this theorem in Coq was not
attempted by the author, and it is unclear whether this theorem can be proved in Coq
without using the law of the excluded middle. We also point out that the mechanisa-
tion of the theory of computation in Coq required the notion of effectively computable
functions. Such notion is informal by nature, and therefore was not formalised. It is
pointed out in section 3.3.4, however, that because of the constructive nature of the Coq
logic, the formal definition of effectively computable functions is not required as all Coq
functions are effective by nature. The proofs in HOL of theorems which use the notion
of effectively computable functions were not attempted during the mechanisation. The
author is again not sure whether such results can be derived in HOL.

The Use of Proof Objects

The Coq system stores proof terms in its theory files and uses for these terms include:

1. Program extraction: Given some program specification S, a constructive proof
that there is some program satisfying it contains an instance of a program for which
S holds, hence one can obtain a certified program from a proof of its specification.
This facility is supported by the Coq system which provides a package which
extracts an ML program from a proof term, as well as providing support for
proving the specification of functions written in an ML syntax (Paulin-Mohring
1989; Parent 1993; Paulin-Mohring and Werner 1993).

2. Extracting proof texts written in a natural language: A proof term of type 7 can
be seen as an account of the proof steps involved in deriving the theorem 7, and
Coq provides tools for extracting a proof written in a natural language from proof
objects (see section 2.5.2).

3. Independent proof checking: Proof terms can be checked by an independent proof
checker to gain more confidence in their correctness. Moreover, such proof terms
can be easier to translate into proof accounts of another theorem prover than an
actual proof script or an ML program (as HOL proof scripts actually are). The
HOL system is truth-based rather than proof-based and it does not store proofs
in its theories.

The Sectioning Mechanism

The Gallina specification language allows Coq proof scripts to be structured into sec-
tions, and one can make definitions and prove theorems which are local to a particular
section. The need of local definitions and results is often encountered during theory
development, where for instance, the definition of some particular concept can facilitate
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the proof of a number of results but does not contribute much to the overall formalisation
of the theory.

3.4.4 Concluding Remarks

The two case studies, and especially more extensive mechanisations of different math-
ematical theories, show that both HOL and Coq are robust systems and practical in
mechanising mathematical results. The strongest point of HOL is the flexibility given to
the users by means of the metalanguage; while Coq theorem proving relies on the power
of the Calculus of Inductive Constructions. Here, we give some concluding remarks on
these features.

The Flexibility of the Metalanguage

By allowing a theorem proving session to be given within a general purpose metalan-
guage, HOL offers a higher degree of flexibility than Coq. As a result, HOL users imple-
ment a larger number of new inference rules during theory development than Coq users.
For example, the mechanisation of the theory of computation in HOL includes several
conversions for animating the definitions, simple and more elaborate tactics which avoid
repetitive inferences and most backward proofs include tactics implemented ‘on the fly’
using tacticals and other ML functions. The syntax of Gallina can be extended, say
with predicates on terms so that one can filter a sublist of assumptions to be used
by some tactic, but then one asks whether a specification language as powerful as the
metalanguage is required to implement the required filtering functions during theorem
proving. Having a specification language surely has its advantages: the system is easier
to learn by new users, and proof scripts are in general easier to follow; also, theorem
proving support tools like a debugger or a graphical user interface are probably easier to
develop for a specification language with a limited syntax rather than for a general pur-
pose programming language. However, the power of a Turing-complete metalanguage
is not to be underestimated, for it can be used for instance to derive theorems through
the manipulation of proof terms.

The Expressiveness of the Calculus of Inductive Constructions

The restrictions due to the specification language are relieved by the power of CIC. The
fact that theorems are proved by simply constructing and breaking down terms makes
the implementation of tactics specialised for particular logic constructs unnecessary and
the powerful notion of convertibility replaces the implementation of conversions for every
definition. No new tactics or inference rules are implemented in the mechanisation of the
theory of computation in Coq, both because the inference power of the simple constructs
of Gallina is enough for most reasoning, and also because the non-trivial task of actually
implementing a new elaborate tactic in Coq discourages the development of simple
tactics which are used only to substitute a small number of inferences. The power of CIC
is also emphasised by its highly expressive type system which allows quantification over
types and dependent types and thus gives a more natural formalisation of mathematical
concepts than a simple type theory. We have seen however, how the stronger notion of
equality and equivalence in HOL simplifies most formalisations.

The primitive inference rules of HOL are too simple and are rarely used in practice;
most reasoning is performed by higher level inferences. The simplicity of the primitive
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rules gives a straightforward implementation of the core inference engine, on whose
correctness the soundness of the HOL system relies. Although CIC is more complex
than the HOL logic, it is sound and due to the Curry-Howard isomorphism theorems in
CIC can be checked by a type checking algorithm, on whose correctness the soundness
of the Coq system relies. Thus, one can have a very powerful logic whose theorems can
still be checked by a simple algorithm.

The feasibility of actually doing so may however be questioned. Proof terms may
become very large, and Bdi-convertibility may become infeasible for large objects, al-
though these factors do not yield any significant problems for the mechanisation of the
results in section 3.3.

3.5 On Tactic Proofs

Tactic-based interactive proof discovery is one of the most commonly used methods for
implementing mechanised proofs. Most of the proofs implemented in the mechanisation
of computability in HOL, and all the proofs implemented in the mechanisation in Coq
were discovered interactively by applying tactics. This mechanism is indeed quite effec-
tive for the interactive discovery of proofs because users can use and implement powerful
tactics to automate several proof steps, and usually users do not need to remember all
the previous steps of interaction during theorem proving. However, since tactic proofs
are essentially lists of interaction steps they are unreadable and hard to follow.

Figure 4 gives an example of a short HOL tactic proof taken from the mechanisation
of computability theory. Twelve tactics were applied before the goal was proved. The
choice of which tactic to apply during each interaction step was determined rapidly,
and the proof was found in a few minutes. This is mostly due to the fact that the
goal is rather simple, and because of the fact that the overall strategy for finding this
particular proof was known by the author. It should be noted, however, that this
particular theorem is a very simple one, and several such theorems are proved during
the mechanisation before non-trivial results can be derived. The figures in tables 1
and 2 show that successful tactic proofs of important results require several hundreds
of tactics. Finding a proof may require many more interaction steps than those in the
successful proof because the user may have to backtrack through the application of a
number of tactics which resulted in unprovable subgoals.

Unfortunately, because of their unreadability, tactic proofs like the one in figure 4
do not offer much more than a list of interaction steps which prove a particular theorem
when applied to a particular release of a proof development system. The tactic proof
is entirely targeted at the proof development system, and no additional information is
given to the user to help her understand it.

The ability to follow a proof can be very important if one needs to implement
a different proof to derive a similar theorem, or to derive the same theorem after a
definition has been modified slightly. Because of the interactive nature of tactic proofs,
their modification often relies on feedback from the proof development system. For
example, proofs involving a modified definition are re-run until one fails. The failed
proof is then modified by discovering new proof steps interactively. Users would be able
to make more modifications without the need of feedback from the system if the proofs
can be followed without running them.

The proofs implemented in the case studies often make use of definitions introduced
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val EXEC_STEP_MAXREG = prove (
-=‘VP m pl rl p2 r2.
(EXEC_STEP P (p1, rl) = (p2, r2)) =
(MAXREG P < m) =
(rim=1r2m)‘--,
REPEAT GEN_TAC THEN
ASM_CASES_TAC (--‘Final P (pl, rl1)‘--) THENL
[REPEAT STRIP_TAC THEN
IMP_RES_THEN
(fn t => RULE_ASSUM_TAC (REWRITE_RULE [t]))
Final _EXEC_STEP THEN
IMP_RES_TAC PAIR_EQ_EQ THEN
ASM_REWRITE_TAC [1,
ASM_REWRITE_TAC [EXEC_STEP] THEN
IMP_RES_TAC NOT_Final THEN
IMP_RES_TAC MAXREG_instruction_MAXREG THEN
REPEAT STRIP_TAC THEN
IMP_RES_TAC LESS_EQ_LESS_TRANS THEN
IMP_RES_TAC MAXREG_exec_instruction]);

Figure 4: An Example of a Tactic Proof.

much earlier in the mechanisation or very simple results about the defined objects, rather
than theorems stating some high-level properties of the defined concepts. This can be
attributed to bad theory design, in the sense that not enough properties concerning the
defined concepts are derived. It is therefore probable that several similar properties are
derived as subgoals of different theorems. Ideally, such properties should be identified
to find out whether some lemma which generalises them can be derived. However, it is
hard to identify these properties and the proof fragments which derive them by reading
the tactic proof steps. Such properties can be identified during interactive theorem
proving if the user notices that similar subgoals keep reappearing.

Since theorems stating simple results are also used in the later stages of some mech-
anisation, the proof steps in a tactic proof can use theorems representing results of a
wide range of complexity: high-level results and very trivial results are used in the proof
steps of the same proof. This inhomogeneity in the proof steps can also be seen in the
complexity of the tactics used. Specialised tactics which automate many proof steps
are used together with tactics which automate a few. Apart from making tactic proofs
harder to follow, this inhomogeneity also affects the effort required in implementing
tactic proofs since the number of theorems and tactics which a user has to consider
increases as the theory is mechanised. The inhomogeneity in the complexity of the
proof steps can also be noticed in the tactic proofs of other HOL theories (for example,
those supplied with the HOL system), as well as in proofs of other tactic-based theo-
rem provers. It can also be noticed in Mizar proofs since theorems derived in the early
stages of a mechanisation, or in very basic theories, are also used in proofs implemented
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towards the end of the mechanisation.

We therefore argue that although the tactic-based proof style is quite effective in
the interactive discovery of a proof, the implementation of tactic proofs relies too much
on feedback from the system. It is not practical to implement, follow, modify or correct
tactic proofs without feedback. However, several activities, which include the structur-
ing of a mechanised theory, and the actual implementation of the proof, may depend
on the ability of the user to follow and understand the mechanised proofs. As a result,
systems which use tactic-based proof implementation may require tools and effective
user-interfaces which aid the user to perform these activities without having to fol-
low the proofs. Alternatively, proof styles which do not rely on too much fine-grained
interaction with the system to follow the proofs can be more suitable for the overall
mechanisation of a theory than one which relies solely on tactic-based implementation.
The ability to implement mechanised proofs which are easy to follow can therefore offer
several advantages to the mechanisation of mathematical theories.



Chapter 4

The Implementation of a

Declarative Proof Language in
HOL

4.1 Introduction

In section 2.4 we discussed the fact that the HOL theorem prover (Gordon and Melham
1993) is implemented according to the LCF philosophy, in the sense that:

e HOL theorems are represented by an ML abstract data type whose signature
functions correspond to the primitive rules of a sound deductive system of the
HOL logic. This ensures that theorems derived in the system are valid sentences.

e The user is given the flexibility to implement proof procedures in the meta-
language ML in order to facilitate the theorem proving process.

e The HOL system includes a number of ML functions which allow users to find
proofs interactively by applying tactics.

The majority of proofs implemented in HOL, and most other proof development systems,
are found interactively using the tactic-based goal-oriented environment. However, as
shown in the case studies in Chapter 3, tactic-based proofs are not informative to a
human reader and it is hard to modify and maintain them without feedback from the
interactive theorem prover. On the other hand, proofs implemented in the Mizar proof
language (Trybulec 1978) are easier to follow since they offer more valuable informa-
tion to a human reader than do tactic proofs. Mizar proofs are usually described as
declarative, since proof steps explicitly state the conclusion and what is used to derive
it, as opposed to tactic-based procedural proofs which consist of the list of interactions
required to derive the proof.

In this chapter we illustrate the implementation of a declarative proof language in
HOL. The language is called SPL, standing for Simple Proof Language, and is based on
the theorem proving fragment of Mizar. The motivation of this implementation is to
experiment with possible ways of increasing the theorem proving power of the language
during the mechanisation of a theory. The SPL language is extensible, in the sense that
the user can implement new theorem proving constructs and include them in the syntax
of the language. Such extensibility is important because theory-specific proof procedures

54
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which use facts derived during the development of a theory can be implemented. The
Mizar language is not extensible, and this feature is often claimed to be desirable (see
the conclusions of (Rudnicki and Trybulec 1997)).

Our work is in some respect similar to that done by Harrison (1996b) who im-
plemented a Mizar mode in HOL. This mode is, however, very much based on the
tactic-based environment in HOL since Mizar proof constructs are translated into HOL
tactics. The SPL language is richer than the Mizar mode in HOL since, for instance,
SPL scripts can be structured into sections to allow a more modular presentation. The
processing of SPL scripts is not based on HOL tactics. Recently, Syme (1997a) has
developed a declarative proof language, DECLARE, for software verification and used
it to verify the type correctness of Java (Syme 1997b; Syme 1998). This language is,
however, not extensible, although this is suggested in the future work section of (Syme
1997a).

In the following section we illustrate the SPL language with a small example and
describe the use of the SPL proof constructs. The processing of SPL scripts into HOL
inferences is then described in section 4.3. The different types of proof procedures
which can be implemented to extend the language are listed in section 4.4, which also
describes the use of a database of trivial knowledge which can be used to derive trivial
facts automatically. A number of concluding remarks are then given in section 4.5.

4.2 The Structure of SPL Scripts

The SPL proof language is based on the theorem proving fragment of the Mizar language
although there are a number of differences between the two languages. In this section
we give an overview of the structure of SPL scripts by first illustrating it with the help of
a simple example, and then discussing the significance of the different SPL constructs.
The syntax of SPL is given in Appendix A'.

4.2.1 An Example

Figure 5 gives an example of a small SPL script which contains one section and in which
the following theorems are derived:

R_refl =
F VR. Symmetric R = Transitive R =
(Vz. Jy. R = y) = Reflexive R

R_equiv =
F VR. Symmetric R = Transitive R =
(Vz. Jy. R = y) = Equivalence R

The predicates Reflexive, Symmetric, Transitive and Equivalence are defined as follows:

Figep VR. Reflexive R = (Vz. R x )

Fgep VR. Symmetric R = (Vx y. Rz y =R y x)

'For comparison, the syntax of the Mizar language is available on the World Wide Web as
http://www.mizar.org/language/syntax.html.
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section on_symm_and_trans

given type ":’a";
let "R:’a — ’a — bool";

assume R_symm: "Symmetric R"
R_trans: "Transitive R"
R_ex: "Vx. dy. R x y";

theorem R_refl: "Reflexive R"
proof

simplify with Reflexive, Symmetric and Transitive;
given "x:’a";
there is some "y:’a" such that
Rxy: "R x y" by R_ex;
so Ryx: "R y x" by R_symm, Rxy;
hence "R x x" by R_trans, Rxy, Ryx;
qed;

theorem R_equiv: "Equivalence R"
<Equivalence> by R_refl, R_symm and R_trans;

end;

Figure 5: An Example SPL Proof Script.

Fgef VR. Transitive R = (Vx y. Rz y = Vz. Ry z = R x 2)

Fdef VR. Equivalence R = (Reflexive R A Symmetric R A Transitive R)

These definitions are defined in HOL and are imported into the environment of SPL

using a number of appropriate functions (as will be described later in section 4.3).

The first line of the script opens a section with name on_symm_and_trans which is
closed by the end; on the last line. Sections are opened in order to declare reasoning
items, which include the introduction of assumptions, the declaration and proof of

theorems, etc.

The first two reasoning items in this section are called generalisations, and introduce
the type variable :’a and the variable R so that they can be used in later reasoning
items. Type variables and HOL variables introduced by generalisations implicitly bind
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all their free occurrences in the formulae within their scope.? In our case, the scope
of the variables :’a and R starts from their declaration and ends when the section is
closed.

The two generalisations are followed by the introduction of three assumptions la-
belled with R_symm, R_trans and R_ex. Labels are used to denote facts which include
axioms, definitions, assumptions, theorems and the results in proof steps.

The first theorem, R_refl, is then declared and proved. The proof consists of the
list of reasoning items between the proof and the ged constructs. The first line of
the proof declares a number of simplifiers which are used during the theorem proving
process. This particular declaration states that the definitions of Reflexive, Symmetric
and Transitive will be used automatically to simplify the assumptions and theorems
used in the proof. (In the particular implementation of the SPL on top of the HOL
theorem prover described in this chapter, the simplifiers are applied during the first
step of proof-checking.) As a result, the user does not have to use such definitions
explicitly in later justifications. In other words, the use of the above definitions is
assumed to be trivial in the context of this proof. A new generalising variable z is then
introduced, the scope of which extends to the end of this proof. The next reasoning
item is an existential result. It introduces a new variable y and the result R z y labelled
with Rxy. The variable y existentially quantifies all the statements in its scope (that
is, the proof). The result 3z.R =z y is justified by the fact denoted by the label R_ex,
i.e., the assumption Vz.3y.R z y. Justifications of the form

... by premise;, premises, ... ;

are called straightforward justifications (see appendix A for the general form of such
justifications). The conclusion of the justification is derived automatically from the
premises using an inbuilt prover. The proof then follows to derive two more results,
R y x and R z z, both of which are justified using straightforward justifications. Cer-
tain constructs such as so, hence, then, and therefore are ignored by the proof checker,
and they are only used to make the proof more readable. In Mizar, such constructs are
used to show that the previous result is used automatically in the justification of the
current statement. The last derived result corresponds to the statement of the theorem
and therefore it completes the proof.

The second theorem is derived by a straightforward justification. The expression
<Equivalence> is a simplifier declaration which is local only to the justification.

All declarations (assumptions, generalising variables, simplifiers, etc.) with the
exception of theorems, exist only within the section or proof they are introduced. The
scope of theorems starts from after they are justified and extends to the end of the script.
The theorems derived in the script given in figure 5 can still be used outside section
on_symm_and_trans, however their statements are expanded, or generalised, according
to the variables and assumptions local to this section, that is to the statements given
in page 55.

2Note that the representation of HOL terms does not include quantification over types — all type
variables are implicitly universally quantified. We use a simple mechanism for universally quantifying
type variables explicitly which is described in section 4.3.2.
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4.2.2 Sectioning Proof Scripts

SPL scripts are structured into sections so that results whose proofs make use of the
same declarations can be organised together. The approach presented here is in some
respect similar to the sectioning mechanism of the Coq system (Barras et al. 1996).
A proof script consists of a list of sections, and sections can be nested to improve the
overall structure of scripts. The advantages of declaring information locally can also be
seen in the simple example given earlier in figure 5. In particular, the statements of the
theorems declared in the proof script are shorter than their fully expanded form given
in page 55, and therefore:

e Repetitive information in the statements of theorems is avoided, for instance the
antecedents of the two theorems in our example are declared once as the assump-
tions local to both theorems.

e The unexpanded form of the statement of theorems in the section in which they
are derived is due to the fact that they are specialised by the information declared
locally, which includes the generalising variables and assumptions. As a result,
justifications using such theorems do not have to include the assumptions which are
used in deriving them. For example, when the theorem R_ref1l is used in justifying
the theorem R_equiv, there was no need to include the three assumptions used in
deriving R_equiv. As a result, justifications which use unexpanded results are
shorter, and also easier to proof check, than those which use the results in their
fully generalised form.

e Since proof statements and proofs are shorter, scripts are easier to read.

In order to maximise the advantages of readability and proof-checking efficiency, scripts
can be organised by implementing proofs which share the same information in one
section. This results in a better overall structuring of the proof script, especially if
nested sections are used to present the hierarchical structure of the mechanised theory.

A section corresponds to a local context within the SPL environment. All decla-
rations, with the exception of theorems, exist and are visible from the line they are
declared until the end of their context. As mentioned earlier, theorems exist from their
justification to the end of the script, and are expanded when their context is closed. The
expansion mechanism involves the generalisation of the theorem according to the vari-
ables and assumptions local to the context the theorem is specified. Only the variables
free in the theorem and the assumptions used in its proof are considered for expansion.
This mechanism is described in more detail in section 4.3.5.

Local contexts can also be created by other SPL constructs. For instance, proofs
create local contexts; all proof steps derived within a particular proof are local only
to its context and therefore they cannot be used outside it. Declarations also can be
specified locally to a segment of a script using the following construct.

local

local declarations
in

script segment
end;
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In this construct, the scope of the local declarations extends to the end of the script
segment. The scope of the declarations in this segment extends to the end of the context
the local ... in ... end is specified.

4.2.3 Reasoning Items

Reasoning items correspond to the individual proof steps and declarations specified in
SPL scripts. The different kinds of reasoning items are described below.

Generalisations and Assumptions

Generalisations introduce variables and type variables which universally quantify their
free occurrences in the proof script formulae implicitly. Assumptions represent hypothe-
ses which are introduced in order to be used in justifications. The free variables and
type variables of an assumption are automatically introduced as generalisations unless
they have already been introduced earlier in the current context. Assumptions and
variables can also be introduced together by declaring quantified assumptions, such as

given some "x:num" and "y:num" such that
le_x_y: "x < y";

Theorems and Results

Results or facts are introduced by declaring them as labelled statements and then justi-
fying them. Results which are required outside their section are specified as theorems.
Most results, however, are used only within the proof or section they are derived and can
be called proof step results, or simply proof steps. Proof steps can also be existentially
quantified, for example:

there is some "x:num" and "y:num" such that
le_x_y: "x < y"
justification of dxy.xz < y ;

The above statement is called an existential result and introduces the variables x and
y in the current context and the result labelled with le_x_y. The variables z and y
existentially quantify all the formulae in their context. The different kind of justifications
which can be used in deriving results are discussed in section 4.2.4.

Abbreviations

Arbitrary terms can be represented by an abbreviation which can be declared locally.
For example, the abbreviation declaration

define y_def: "y = (x * 2 + 1)";

introduces the variable y as an abbreviation for x * 2 + 1. It also introduces the as-
sumption y = z * 2 + 1 labelled with y_def so that it can be used to substitute the
abbreviating variable with the term it represents. An abbreviating variable implicitly
binds all its free occurrences in the formulae in its context. The role of abbreviations
is to reduce the size of sentences, which results in better readability of SPL scripts and
also in faster proof-checking.
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Declaring Simplifiers

Simplifiers are proof procedures which modify sentences, usually into an equivalent
simpler form (hence the term simplifiers). Simplifiers are denoted in SPL by an identifier.
For example, the identifier 1ambda denotes a proof procedure which normalises terms
in the lambda calculus into #7n-long normal form. The labels of facts which consist of
equalities denote a simplifier which uses the fact as a rewriting rule. The user can also
implement simplifiers as HOL proof procedures during the mechanisation of a theory
and associate SPL identifiers with them.

Simplifiers can be declared so that sentences are automatically simplified when they
are specified. For example, the conclusion and premises of a straightforward justification
are simplified according to the declared simplifiers during proof search. The declared
simplifiers are applied one by one (no particular order should be assumed) until none is
applicable. A term rewriting system can therefore be used to simplify terms by declaring
the equalities representing the rewrite rules of the system as simplifiers.

A number of mathematical theories are canonisable, that is, their terms can be
uniquely represented by a canonical, or normal form. Theories whose terms can be nor-
malised effectively have a decidable word problem since two terms are equal if and only
if their respective normal forms are syntactically identical. The main role of simplifiers
is to allow the user to implement theory-specific normalisers so that the equality of
terms does not have to be proved explicitly.

The discovery of normal forms is a very important task in mathematics and the
mathematical literature often includes methods of transforming terms into their normal
form. The implementation of normalisers is actually a formal way of representing such
methods. We therefore argue that the implementation of normalisers is an essential
part of a formal mathematical text. The use of simplifiers for the normalisation of
terms has been used in our case study in chapter 9 to reduce the length of formal proofs
considerably. We also believe that this has improved the readability of the proofs since
normalisations are often considered to be trivial in informal proofs once they have been
discovered and documented. This underlines our argument that the implementation of
normalisers, and proof procedures in general, should be considered as an important part
of the mechanisation of mathematics.

Declaring Trivial Facts

Facts which are considered trivial can be stored in a knowledge database which can be
used by SPL proof procedures during proof-checking. The database organises facts into
categories, and the SPL language includes the knowledge declaration construct of the
form

consider Category Facty, Facty, ... ;

to store the facts Facty, Facto,... in the category Category. These facts can then
be used automatically by the proof procedures which are able to query the knowledge
database. The use of the knowledge database is described in more detail in section 4.4.1.

4.2.4 Proofs and Justifications

The statements of theorems and proof step results are followed by their justification. The
length and complexity of justifications ranges from one line in the case of straightforward
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justifications, to several possible nested arguments. We refer to the statement which a
particular justification is deriving as the conclusion of the justification.

Straightforward Justifications

Straightforward justifications are the simplest kind of justifications and consist of the
by construct, an optional prover name, and the arguments of the prover. A prover is
a (HOL) decision procedure which derives the conclusion of the justification from the
given arguments. For example, a decision procedure for proposition logic can be used
to justify the conclusion (A = B) from the arguments A = (C'V B) and C = B.
If no prover name is given, a default one is assumed. In the examples given in this
chapter, the default prover is assumed to be a tableau-based prover for first-order logic
with equality. The calculus this prover implements is complete for first-order logic
with equality. However, because of the simplicity of the justifications of SPL scripts,
very restrictive resource bounds are used during the proof search process so that only
a small finite search space is considered. The identifier of this prover is fol, and its
implementation as a HOL proof procedure is described in the next chapter. The fol
prover takes a possibly empty list of sentences as an argument. A number of flags can
also be specified before or after the prover name. For example, the following statement
uses the flag pure which instructs the first-order prover not to give special treatment to
equalities.

"Vxy. (x=y) V -(x = y)" by pure fol;

A list of simplifiers can be specified before the by token as illustrated in the justification
of the last theorem in figure 5.

The default prover used in the case study in chapter 9 takes an expression con-
structed by a number of sentences and the operators on, then and and, in order to
increase the readability of the scripts and for proof-checking efficiency. Such structured
justifications are introduced in chapter 6.

Proof Justifications

The proofs of theorems usually consist of several arguments rather than a straightfor-
ward justification. Such arguments are given in a proof justification which consists of a
sequence of reasoning items enclosed between a proof and a qged or end.

A proof justification creates a new context in the SPL environment in which the
necessarily proof results are derived. A number of results can be declared as being
relevant for the justification of the prover using the case directive, as illustrated by the
example in figure 6.

The conjunction of the relevant results is expanded according to the variables and
the assumptions introduced in the proof. If no results are specified as relevant, the last
result derived in the proof is instead expanded and used for justifying the conclusion
of the proof. The expanded result (or conjunction of the relevant results) is called
the justifying fact, and the aim of a proof justification is to construct an appropriate
justifying fact. An optional straightforward justification can be specified after the qed
statement in order to be used with the justifying fact to derive the proof conclusion.
Such a straightforward justification can also be specified at the start of the proof using
the proceed construct, as shown below.
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theorem Rel_equiv: "Equivalence Rel"
proof

case "Reflexive Rel"
proof
let "x:’a";

"Rel x x" by ... ;
simplify with Reflexive;
end;

case "Symmetric Rel"
proof
given "x:’a" and "y:’a" such that
xRy: "Rel x y";

"Rel y x" by ... ;
simplify with Symmetric;
end;

case "Transitive Rel"
proof
given "x:’a", "y:’a" and "z:’a" such that
xRy: "Rel x y" and
yRz: "Rel y z";

"Rel x z" by ... ;
simplify with Transitive;
end;

simplify with Equivalence;

qed;

Figure 6: Declaring Relevant Proof Step Results in SPL Proofs.
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theorem "Vn. n < Factorial n"
proof
proceed by induction on "n";

case base: "0 < Factorial 0"
proof

end;

case ind: "(n < Factorial) = (SUC n < Factorial (SUC n))"
proof

end;

qed;

where induction is assumed to be the identifier of a prover which uses the principle of
mathematical induction on the conjunction of the base case and the induction step case
to justify its conclusion.

If no straightforward justification is specified, a default prover (fol in the case of
the examples given in this chapter) is used.

The above treatment of proof justifications is different from that used by other sys-
tems which include the Mizar mode in HOL of Harrison (1996b). In Harrison’s system
reasoning items are used in a proof to break down the conclusion which can be referred
to by a thesis directive. For example, the introduction of an assumption within a proof
corresponds to the application of the HOL tactic DISCH_TAC which simplifies a conclu-
sion (thesis) of the form A = C into C and includes the assumption A. As a result,
the structure of the proofs in this system are very much based on the structure of their
conclusions. The structural dependency of a proof on its conclusion is also observed in
Mizar proofs. On the other hand, SPL proofs construct a justifying fact irrespective
of the structure of their conclusion. The derivation of the conclusion from the justi-
fying fact is then done automatically, or as instructed by the optional straightforward
justification. This particular approach offers greater flexibility in the way proofs are
implemented. For instance, the user can formulate a theorem in a statement which is
adequate for its later use, and proceed to prove an equivalent statement whose structure
may make it easier to prove. To illustrate this, van Gasteren (1990) gives the example
that results stating the symmetry of some relation ~ are more useable if they are for-
mulated by an equality x ~ y = y ~ z, although it may be easier to prove the statement
T ~y =y ~ z; an equality is used in the definition of symmetry in page 56, but the
justifying statement of the relevant subproof in figure 6 is an implication ("Rel x y" is
assumed and "Rel y x" is derived).

We believe that this approach is more true to the declarative style of reasoning than
one in which the structure of proofs is greatly influenced by their conclusion. With
hindsight, however, most proofs in the case study illustrated in chapter 9 proceed by
generalising on the universal variables of the conclusion, and introducing its antecedents
as assumptions (though not necessarily in the same order as they are specified in the
conclusion). As a result, the provers which automate the derivation of the conclusion
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from a justifying statement may assume that these probably have a very similar structure
in order to increase the proof-checking efficiency.

Iterative Equalities

Similarly to Mizar, results can be justified by iterative equalities such as:

abc: "a + (b + ¢)
n

a + (c + b)" by commutativity
(a + ¢) + b" by associativity
(c + a) + b" by commutativity;

This justification derives the result "a + (b + c) = (c + a) + b" labelled with abc.
The structure of such calculational justifications greatly improves the readability and
writability of proof scripts. In SPL, one can also label the individual lines, as in

abc: "a+ (b+c) = a+ (c+ b)" (1) by commutativity
"= (a+ c) + b" (2) by associativity
M= (c +a) +b" by commutativity;

such that fragments of the above sequence can also be referred to later. Given two
lines labelled with 1; and 1,, one can use the label abc{1;-1,} to refer to the result
"Ry = Ry" where R; refers to the term on the right hand side of the equality in the line
with label 1;. Similarly, the label abc{-1;} refers the result "L = Ry" and abc{1;-} refers
to "R; = R" where L is the left hand side term of first line, and R is the one on the right
hand side in the last line. In our example, the following labelled results are derived:

abc{-1}: "a + (b +c) = a+ (c+ b)" abc{-2}: "a+ (b+c) = (a+c)+Db"
abc{1-2}: "a + (c + b) = (a + ¢c) + b" abc{l-}: "a + (c+b) = (c+a)+b"
abc{2-}: "(a + ¢c) +b = (c +a) +b" abc: "a + (b+c) =(c+a)+b"

The syntax for iterative equalities can be extended to consider other transitive re-
lations apart from equality, and the SPL knowledge database can be used to store
the required transitivity results required by the proof checker. This feature was not
implemented in the proof checker in HOL since its use was not required during the
development of the case study.

Case Splitting

A case splitting justification corresponds to the natural deduction rule for eliminating
disjunctions, and has the following structure:

IICII
consider cases [ straightforward justification of A4V ---V A, ;]

suppose "Aq": justification of C

suppose "A,": justification of C

end cases;
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Sentence = [ < Simplifiers > | Unsimplified_Sentence

Unsimplified_Sentence =
[ [ Abstractions 1 ]| ( Label_Identifier | Formula ) [ [ Applications 1 ]
| Compound_Sentence

Compound_Sentence =

( Compound_Sentence )
| Rule_Identifier Rule_Params guie_identifier

Figure 7: The Syntax of SPL Sentences.

4.2.5 SPL Sentences

SPL sentences are the expressions in the syntax of the language which denote facts.
In their simplest form, sentences consist of the label denoting some fact in the current
environment, such as a derived result or an assumption. A sentence can also consist
of a HOL formula, in which case the formula is introduced as an assumption (unless
it already occurs as a fact in the environment) so that the sentence can denote it.
However, as shown by their syntax given in figure 7, sentences can be constructed by
applying a number of inferences which include simplifications, abstractions (generalisa-
tions), applications (specialisations) and other inference rules implemented during the
mechanisation of a theory.

Simplifications

Simplifiers can be applied to individual sentences so that the facts they represent are
automatically simplified with the applied simplifiers as well as with those declared in
the environment. Since a fact consisting of an equality can be denoted as a simplifier
to represent a rewriting rule, one can use expressions of the form

. <Rule>Sentence ...

to use the fact Rule to rewrite the fact denoted by Sentence during proof-checking. The
use of such explicit rewrites for equality reasoning can reduce the proof-checking time,
although if overused it results in a procedural style of proof implementation which can
be hard to follow.

Abstractions

The facts introduced in a context are specialised according to the locally declared vari-
ables and assumptions. As a result unnecessary inferences such as variable instantiations
are avoided during proof-checking. However, during the implementation of a proof, one
may need a more general form of a result than the one which is available in the current
context. The role of abstractions is to generalise a fact according to the variables and
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assumptions introduced in its context which implicitly specialise it. This inference cor-
responds to the way functions can be constructed by lambda abstraction in functional
programs and the lambda calculus. SPL facts can be generalised using the following
three kinds of abstractions:

e Generalising type variables so that they can be instantiated,
e Generalising variables occurring freely in a fact so that it can specialised,

e Discharging assumptions deriving a fact, so that free variables in the assumptions
can be generalised by the above kind of abstraction, and the resulting fact can be
applied to different facts.

Type variable and free variable abstractions are denoted by the abstracted HOL type
or term. Assumption abstractions are denoted by the label of the assumption. We find
the inferences given by abstractions to be very useful when the sectioning mechanism is
used to structure proof scripts. Figure 8 illustrates the use of abstractions to generalise
the local statement of the fact Q_P from Pz into Vz.Qz = Pux.

Applications

Applications are the inverse of abstractions, in the sense that they involve the explicit
specialisation of facts. The possible kinds of applications include:

e Instantiating type variables.
e Specialising universally quantified facts.
e Eliminating implications through the rule of Modus Ponens.

Although in a declarative language abstractions can be unambiguously determined by
the name of the free variable or by the label of the assumption, in general applica-
tions cannot. For example, it is not clear whether the application of the statement
Vz,y.P(z,y) to some constant term ¢ should result in Vy.P(c,y), Vz.P(z,c) or P(c,c)
unless applications are defined procedurally according to a well specified algorithm. The
role of applications is to reduce the search space through explicit instantiations and elim-
ination of implications. It should be noted that an instantiation of a variable may result
in specialising a higher-order theorem into a first-order one, and can therefore greatly
reduce the proof-checking time. Since such inferences can be of a great advantage, the
following applications are supported by SPL:

e type variables can be instantiated simultaneously with each other by an explicit
substitution,

e (term) variables can be instantiated individually, either by an explicit substitution,
or by giving a term in which case the first variable (reading the term from left
to right) in the sentence matching the type of the term is instantiated. In either
case the variable to be instantiated is moved to the beginning of the theorem by
the usual rules which transform (classical) formulae into prenex form before the
theorem is specialised.
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let "x:’a" and "y:’a";
section on_P

assume Px: "P x"
and Py: "P y";

theorem P_unique: "x = y" by Px, Py, ... ;

end on_P;

section on_Q
assume Qx: "Q x";
theorem Q_P: "P x" by Qx, ... ;
assume Qy: "Q y";

theorem Q_unique: "x = y"
proof
Py: "P y" by ["x",Qx]Q_P, Qy;
"x = y" by P_unique, Q_P, Py;
end;

end on_Q;

Figure 8: The Use of Abstractions.
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The applications which correspond to the elimination of implication are not considered.
We remark that the effect of this kind of applications (i.e., Modus Ponens) can be
achieved by using structured justifications as described in section 6.2.2, page 102.

Alternatives to the approach described above include the representation of variable
applications simply by terms (rather than explicit substitutions) and proof search heuris-
tics can be developed for focusing the instantiation of variables according to the given
applications®. Tt is not clear, however, whether such an approach would result in sub-
stantial efficiency gains. One can also modify the representation of HOL terms so that
subterms can be labelled. This would allow the user to state explicitly which hypothesis
is being eliminated so that implication-elimination application can be implemented.

Inference Rules

A sentence can also be constructed by applying some inference rule explicitly. An
inference rule is denoted by an identifier, and the user can implement theory-specific
HOL inference rules and include them in the syntax of SPL during mechanisation.
However, the use of inference rules in the construction of sentences is not encouraged
because of its procedural nature. The only SPL inference rule which is implemented has
the identifier select and is used to construct facts involving the Hilbert choice operator.
It takes a variable v and a sentence denoting some fact P[v] and derives Plev.P[v]].

4.3 Proof Checking SPL Scripts in HOL

The proof checker of the SPL language implemented in HOL processes proof scripts in
two steps:

e Parsing the input text into an internal (ML) representation of the language con-
struct;

e Processing the constructs to modify the environment of the proof checker.

The SPL state is represented by an ML object of type reason_state and consists of the
input string and the environment of type reason_environment. The implementation of
the proof checker consists of a number of ML functions which parse and process SPL
constructs. Such functions take and return objects of type reason_state. A number of
other functions which act on objects of type reason_state are also implemented. These
include functions which extract proved theorems from the SPL environment so that they
can be used in HOL, add HOL axioms, definitions and theorems to the environment,
and add new input text in order to be parsed and processed.

The processing of SPL scripts can therefore be invoked during a HOL theorem
proving session by calling the appropriate ML functions. As a result, the user can
implement an SPL script, process it within a HOL session and use the derived results
in HOL inference rules and tactics or in the implementation of proof procedures in
ML. Moreover, the SPL language is extensible: the user can implement HOL proof
procedures and include them in the language syntax. Therefore, one can develop a
theory by repeating the following steps:

3For example, one can give priority to instantiations suggested by the applications over those sug-
gested by unification during proof search.
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(i) deriving a number of theorems using SPL proofs,
(ii) using the derived theorems in the implementation of HOL proof procedures,
(iii) extending the SPL language to make use of the new proof procedures.

This approach combines the readability of SPL proofs with the extensibility of the HOL
system. The mechanisation of group theory described in chapter 9 is developed using
this approach. In this case, new proof procedures were implemented as the theory was
mechanised in order to automate the proof steps which would be considered trivial by
the reader.

ML references are used to store the functions which parse and process the SPL
language constructs (including the processors of reasoning items) so that they can be
updated by the user during the development of a theory. This implementation design
was originally used to allow the author to alter the syntax and semantics of the lan-
guage easily during the development of a theory when the implementation of the SPL
language was still in its experimental stages. However, we now believe that the flexi-
bility offered by this design can indeed be a desirable feature of proof languages. This
allows the proof implementor, for instance, to include new reasoning items (rather than
just proof procedures) which make use of derived theorems during the implementation
of a theory. One can also change substantial parts of the syntax of the language to one
which is believed to be more appropriate to the particular theory being mechanised.
Ideally, any alterations made to the syntax of the language should be local to particular
sections. In order to achieve this, one needs a number of design changes to the current
implementation of the language since the use of ML references allows the user to update
the syntax globally rather than locally.

In the following sections we first look at how the SPL environment and facts are
represented and then describe the parsing and processing mechanisms.

4.3.1 The Environment of SPL

The SPL environment consists of the information which has been declared or derived
by the SPL constructs. Because of the hierarchical structure of SPL scripts, the envi-
ronment is structured as a stack of layers containing the information declared locally.
An empty layer is created and pushed on top of the stack at the beginning of a section
or proof. Processing reasoning items affects only the information in the top layer. At
the end of a section or proof, the top layer is popped from the stack and all the infor-
mation stored in this layer, with the exception of theorems, is destroyed. Theorems are
expanded and inserted into the new top layer. We say that a layer has been opened
when it is pushed on top of the environment stack. We also say that a layer has been
closed when it is popped from the stack.

Each layer contains a list of locally derived or assumed facts labelled by their identi-
fier, a list of variables and type variables introduced by reasoning items, a list of declared
simplifiers, a list of facts stored in the trivial knowledge database and some other in-
formation (e.g., the name of the section, the current conclusion in case of a proof layer,
etc. ).

There are three kinds of variables which can be introduced:

Universal variables which are introduced by generalisations and quantified assump-
tions,
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Existential variables which are introduced by existential results,
Abbreviating variables which are introduced by abbreviations.

These kinds of variables implicitly bind all their free occurrences in the formulae specified
in their context, and can be called binding variables.

4.3.2 The Representation of SPL Facts in HOL

SPL facts are represented by pairs (vl, T+ t) where vl is a list of type variables, and
'kt is a HOL theorem. The conclusion ¢ represents the statement of the fact, and the
hypothesis list T is the list of SPL assumptions used in deriving it. Any type variables
in vl universally quantify the statement ¢. The type variables occurring in ¢ but not
in vl do not universally quantify the fact ¢ and therefore cannot be instantiated during
proof search.

The list of type variables quantifying SPL facts is required in their representation
because the HOL term syntax does not include explicit quantification over types. Type
variables are included in the simple types of HOL in order to construct polymorphic
theorems. The scope of type variables includes both the theorem hypotheses and the
conclusion, and therefore polymorphic HOL theorems can be assumed to be ‘templates’
which can generate new theorems through type instantiation. A theorem T'F ¢ can be
seen as being universally quantified by all the type variables which occur in it, that is:

VTyVarsp,,;. (I' F t)

where TyVars, represents the type variables in ¢. However, the HOL rule for type
instantiation, INST_TYPE restricts the instantiation to the type variables which are not
free in the hypotheses ', although the more general rule of instantiating all the type
variables occurring in a theorem can be easily derived by discharging the hypotheses,
instantiating, and undischarging the hypotheses back. This suggests that type variables
are seen as quantifying only the conclusion of a theorem, that is, a polymorphic theorem
[k ¢ is visualised as
I' F Y(TyVars, — TyVarsp).t

This particular visualisation somehow corresponds to the HOL approach of considering
the list of hypotheses more of a working space during theorem proving rather than as
part of the theorem statement.

We cannot assume that SPL formulae are implicitly quantified by all the type vari-
ables occurring in them since one cannot instantiate the type variables which occur
in the assumptions of a proof. Such an instantiation would require the instantiation
of the type variables in the assumptions as well in order to be sound. Therefore, the
type variables occurring in the assumptions are introduced as generalisations so that
they bind the type variables of the formulae specified in the proof, and therefore cannot
be instantiated during theorem proving. On the other hand, one cannot eliminate all
type instantiations as otherwise polymorphic theorems could not be used. As a result,
in order to use type variables soundly and effectively, one is required to specify which
type variables occurring in SPL facts can be instantiated. This explains why the type
variables quantifying facts are included in their representation.
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4.3.3 Parsing Proof Scripts

The object embedding system of Slind (1991) is used to embed the SPL language in
SML. Basically, using this system the text of SPL scripts and script fragments is enclosed
in backquotes (‘) so that they can be easily written and read. The texts are however
internally represented as ML objects from which ML strings representing the lines of
the proof texts can be extracted. Once extracted the strings are then parsed using the
SPL language parser.

The SPL language uses the HOL syntax for terms and types. SPL expressions
representing terms and types are given to the internal HOL parser after a simple pre-
processing stage which, for instance, gives the type :bool to expressions representing
formulae, and inserts types for any free variables in terms according to the types of the
current list of binding variables.

The implementation of the parser is quite straightforward, and is based on the syntax
given in appendix A.

4.3.4 Processing SPL Constructs

This section lists the effect of processing the individual SPL constructs.

Sections

As described in section 4.3.1, a section opens a new layer which is closed at the end of
the section.

Local Declarations

Local declarations of the form

local

local declarations
in

script segment
end;

are processed by first opening a new layer to store the local declarations. When these
are processed, another layer is opened to store the declarations in the script segment. At
the end of the script segment, the two layers are closed and the information stored in the
segment layer is transferred to the original layer which is now on top of the environment
stack (see figure 9). Any results derived in the script segment are expanded according
to the variables and assumptions introduced in the local declarations. For example,
after the script fragment given below is processed, the label Qx will denote the fact
Vz:num.P x = @Q =.

local

let "x: num";

assume Px: "P x";
in

Qx: "Q x" by Px;
end;
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Segment Segment
Layer Layer
Information

Loca Local i $ i
Declarations Declarations

Figure 9: Processing Local Declarations.

Generalisations

Generalisations introduce variables and type variables as universal variables.

Assumptions

An assumption of a labelled formula L: A introduces the fact ([],A+ A) with label L.

Results

A theorem or proof step result opens a new layer to store the declarations of its justifi-
cation. The justification proceeds by constructing a justifying fact which is used in the
derivation of the conclusion of the result (see section 4.2.4). The justification layer is
closed when the conclusion is derived which is then included as a fact.

Existential Results

Existential results of the form

there is some x such that
L: "Pxg"
justification of dz.Px ;

are justified in the same way as non-existential results are. When the existential fact
([],T F 3z.Pz) is derived using some assumptions I', the variable z is introduced as an
existential variable, and the fact ([],Pz F P=z) is introduced with label L. As a result,
the label L denotes the expected statement, but all results derived in the current context
using it will have the assumption Pz rather than T'. The justified fact ([],I' F Jz.Pz) is
then used to replace the assumption P2z with I' when such results are expanded. This
is explained in detail in section 4.3.5 below.

Abbreviations

An abbreviation L: "a = t" introduces the variable a as an abbreviating variable. The
statement of the abbreviation is introduced as an assumption.
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Declarations of Simplifiers and Trivial Facts

The declarations of simplifiers and trivial facts are simply included in the top layer of
the environment stack.

4.3.5 Expanding SPL Facts

When an environment layer is closed, theorems are expanded, or generalised, according
to the assumptions and binding variables used in deriving them. The expansion process
is performed as follows:

1. The result is first expanded according to the introduced binding variables. The
variables are considered in the reverse order they are introduced, and the effect of
the expansion is as follows:

e Expanding according to a universal variable, u say, involves the discharging
of all the assumptions in which u occurs freely and then generalising the
result if u is free in its conclusion.

e An existential variable, x, is introduced only when some existential result
(J,T F 3z.Pz) is derived. The theorems using this result will have the as-
sumption Pz rather than I and the role of the expansion process is to replace
the assumption Pz with T.

Expanding with = proceeds by discharging all hypotheses, with the exception
of Pz, which contain a free occurrence of z, and introducing the existential
quantifier if z is free in the conclusion of the theorem. The assumption Pz is
then removed by eliminating the existential quantifier from the derived fact
([],T + Jz.Px). For example, if after discharging the relevant assumptions
and introducing the existential quantifier the statement of the theorem has
been expanded to
APz F J2.Q

the hypothesis Pz is then replaced with I" by

k- 3z.Px APzt Jz.Q
A F J2.Q

CHOOSE (z,I' + dz.Px)

where CHOOSE: term X thm — thm — thm is the following HOL inference

rule:
Iy F3zs Tays{z > v}k t

'y, To 1t

CHOOSE (v, I'y F dz.s)

e If a local abbreviation a = t is introduced, the variable a needs to be replaced
with the term it abbreviates if it occurs in the statement of some theorems
when the current layer is closed. Basically, this substitution (in both hypothe-
ses and conclusion of the theorems) is done using the assumption a = ¢. This
assumption is then discharged from the hypotheses of the theorem, the vari-
able a is generalised and then specialised to the term ¢, which results in the
tautological antecedent ¢ = ¢ which can be easily eliminated.

2. Any local assumptions which are not discharged during the previous step are now
discharged.
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3. The result is then universally quantified with any type variables introduced locally.

4.4 Proof Support

The following kinds of proof procedures are supported by the SPL language. The user
can implement any of these kinds of proof procedures in ML during the development
of a theory, associate SPL identifiers with them, and include them in the syntax of the
language.

Inference Rules which allow the user to derive facts in a procedural manner using
any forward inference rule. The use of these rules is not encouraged because it
may reduce the readability of proof scripts.

Simplifiers which can be used to normalise terms, and to perform calculations which
would be considered trivial in an informal proof. Any HOL conversions can be
included by the user as SPL simplifiers.

Proof Search Procedures which are used to derive the conclusions of straightforward
justifications. The following provers are used to support the proof-checking of SPL
scripts:

fol the tableau calculus for first-order logic with equality described in the next
chapter.

cfol the fol prover modified for coloured first-order logic. (see chapters 7 and 8,
and in particular section 8.5.)

taut a tautology checker.

The SPL implementation includes a knowledge database which can be used to store
facts which are considered to be trivial. This database can be queried by any of the
above kinds of proof procedures in order to obtain trivial facts automatically. The use
of this database is described in the next section.

4.4.1 A Database of Trivial Knowledge

One major difference between formal and informal proofs is the level of detail between
the two. Informal proofs contain gaps in their reasoning which the reader is required
to fill in order to understand the proof. The author of an informal proof usually has
a specific type of reader in mind, one who has a certain amount of knowledge in a
number of mathematical fields, and one who has read and understood the preceding
sections of the literature containing the proof. The author can therefore rely on his,
usually justified, assumptions about what the intended reader is able to understand
when deciding what to include in an informal proof and what can be easily inferred by
the reader, and can (or must) therefore be unjustified. For example, if one assumes that
some set A is a subset of B, and that some element a is a member of A, then the inference
which derives the membership of ¢ in B can usually be omitted if the reader is assumed
to be familiar with the notions of set membership and containment. On the other hand,
the case studies described in chapter 3 show that even when a substantial fragment of a
theory has been developed, formal tactic proofs may still contain inferences which use
trivial results which have been derived much earlier in the mechanisation.
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Since the need to include explicitly such trivial inferences in most formal proof
systems results in the observed difference between the size and readability of formal
and informal proofs, we have experimented with the implementation of a simple user-
extensible knowledge database which proof procedures can query to derive trivial facts
automatically.

The knowledge in the database is organised into categories each containing a list of
facts. New categories can be added during the development of a theory. For example, in
order to derive the trivial inference illustrated in the example given earlier this section,
one can include a membership category with identifier in_set in order to include facts
of the form z is a member of X, and a containment category subset which includes
facts of the form X is a subset of Y. SPL facts can then be stored in the database
during proof implementation using the construct:

consider in_set a is a member of A
subset A is a subset of B ;

In order that these facts can be used by proof procedures, the user is also required to
implement ML functions which query the database. Such functions take the knowledge
database as an argument together with a number of other arguments depending on the
category they query. For example, a function to query the in_set category may take
a pair of terms representing an element and a set. Query functions return a theorem
when they succeed. ML references can be used to store the searching routine of the
query function so that it can be updated during the development of a theory, as shown
in the SML fragment in figure 10.

The user can then implement proof procedures (such as simplifiers) which call this
query function.

Query functions can also be implemented to handle existential queries. For example
an existential query function for the subset category can take a set X as an argument
and looks for a fact of the form X subset of Y for some set Y. A different existential
query function on the same category would look for some fact Y subset of X. Since
many such facts may be derived by the knowledge database, existential query functions
are implemented to return a lazy sequence of facts satisfying the query.

Query functions can be updated when new results are derived which can be used in
the automatic deduction of trivial facts. For example, given the derived fact

Vo, X,Y.(x is in X) = (X subset of Y) = (z is inY)
one can then update the in_set query function so that given some query a is in B it

1. calls the appropriate existential subset query function to check whether there is
some set A such that A subset of B can be derived from the database, and

2. queries in_set (recursively) to check whether a is in A for some A satisfying the
previous query.

Given the required facts, the new in_set query function can then derive and return
the fact a is in B using the above result. As the search function is stored in an ML
reference, updating a query function affects the behaviour of all the proof procedures
which use it.
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fun in_set_search kdbs (e, s) =
look for the fact “‘e is in s” in kdbs
and return it if found,
otherwise raise an exception

local
(* store the search function in a reference *)
val in_set_ref = ref in_set_search

in

(* the query calls the stored search function. *)
fun in_set kdbs query = (!in_set_ref) kdbs query

(x updating the query function *)
fun update_in_set new_qf =
let val old_in_set = !in_set_ref
fun new_in_set kdbs query =
0old_in_set kdbs query (x try the old query. *)

handle _ => Gk if it fails *)
new_qf kdbs query (x {ry the new one. *)
in in_set_ref := new_in_set (x update the store function. *)

end

end;

Figure 10: The Implementation of a Query Function.
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Since some search is needed in the handling of most queries, and since the same
query may be made several times during theorem proving, the output of successful non-
existential queries is cached to avoid repeated search. In the current implementation
caches are stored globally and are reset when a layer containing knowledge which can
affect the query concerned is closed. A better approach would be to store caches locally
in each layer.

Case studies involving the implementation of formal proofs in SPL showed that
the length of the proofs can be substantially reduced through the use of a knowledge
database. This reduction of proof length is due to the implementation of theory-specific
query functions which make use of derived theorems, as well as the implementation of
proof procedures which are able to query the database. We notice that the implemen-
tation of such functions with the intention of minimising the difference between formal
and informal proofs involves the understanding of what authors of informal proofs con-
sider to be trivial by the intended reader. Therefore, the implementation of functions
capable of deriving facts which are considered to be trivial by a knowledgeable reader is
a formal means of illustrating what can be considered obvious in some particular proof
and how such obvious facts can be derived. We argue that this is a formal means of
representing a particular kind of knowledge and understanding in a mathematical field
other than giving a list of detailed formal proofs. We believe that the presentation of
such information should be included in a formal development of a mathematical field.

In our case study, the only proof procedures which use the knowledge database are
the simplifying procedures. The main reason for this is the fact that the proof search
procedures were implemented before the experimental database was designed. However,
in principle the proof procedures can be redesigned and implemented to be able to query
the database. We will consider this area for future work and believe that the length of
formal proofs can be greatly reduced with such a feature.

4.5 Conclusions

In this chapter we have illustrated the implementation of an extensible proof language in
the HOL system. The language supports a declarative style of proof implementation and
is very similar to the Mizar language although the two languages differ in many aspects.
In particular the proof-checking power of the SPL proof language can be extended during
the development of a theory by implementing proof procedures which make use of results
derived in earlier sections of the theory. We have argued in section 2.5.3 (page 25) that
such extensibility of a proof language is necessary for the implementation of machine
checkable proofs which can also be followed by a human reader. During the development
of a particular theory, the user can extend:

e the proof procedures used to justify the proof statements,
e the simplifiers which normalise terms into canonical forms;

e the inference rules used to derive facts in a forward manner (although it is sug-
gested that the frequent use of such rules should be avoided because of their
procedural nature); and,

e the knowledge database by adding new knowledge categories, and by implementing
and updating appropriate query functions.
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The user can also extend the syntax and semantics of the language by updating
or modifying the language parser and processor. However, the author has not yet
experimented with extensive case studies on using such a feature, although its use in
the mechanisation of mathematics seems to be advantageous.

ML references are used in order to store the functions which may be updated by
the theory developer. It is desirable that the above-mentioned extensions be local to
particular theories, or to theory sections, and this requires a number of design changes
to the current implementation.

A sectioning mechanism is used to structure theories in a modular fashion. As-
sumptions and other information can be declared local to certain sections and, with the
exception of proved theorems, local information is not visible in different contexts.

We strongly believe in the necessity of the extensibility of the language since, sim-
ilarly to informal mathematics, formal mathematical texts should not include only the
implementation of proofs. Informal mathematics also includes, amongst other things
such as examples and counterexamples, techniques for finding the normal forms of terms,
algorithms for specific calculations, rules of thumbs for finding the proofs of theorems,
etc. A formal way of presenting these is by implementing the appropriate proof proce-
dures, which also results in reducing the length of formal proofs. If such procedures
are used to minimise the difference between formal and informal proofs, then they also
contribute to the comprehensibility of formal mathematical texts.



Chapter 5

A Tableau Prover as a HOL
Derived Rule

5.1 Introduction

In the previous chapter we illustrated the simple proof language SPL and the implemen-
tation of a proof checker for this language in the HOL proof development system. This
proof checker derives HOL theorems from SPL facts and it is supported by a number of
user-defined and inbuilt proof procedures. In particular, a tableau prover for first-order
logic with equality is used to check most of the straightforward justifications of SPL
results. This prover is implemented as a derived rule in HOL, and in this chapter we
illustrate the proof calculus used and its implementation.

The design of proof calculi for the automated deduction of theorems in first-order
logic with equality, and the implementation of proof procedures based on such calculi
is in general not a trivial task because of the many ways equations can be used to infer
results. In particular, the handling of equality in tableau-based calculi needs special
attention since the problem of deciding whether a tableau can be closed by considering
only its literals is undecidable (Voda and Komara 1995). The calculus implemented as
a HOL derived rule is based on the TBSE calculus of Degtyarev and Voronkov (1998)
which gives a complete semi-decision procedure for first-order logic with equality despite
this problem.

In order to guarantee the correctness of the theorems derived in the HOL system, all
HOL inferences are performed by a simple core inference engine. The implementation
of the tableau calculus as a HOL derived rule therefore requires the use of this inference
engine in deriving the required theorem. For efficiency reasons the proof search stage
of the algorithm does not use the HOL representation for terms and theorems, and
only when a closed tableau is found is the core inference engine used to derive a HOL
theorem.

The definition of the calculus is given in the next section, and its implementation of
the HOL derived rule is described in section 5.3. Since the derived rule can only be used
to reason with first-order formulae, a mechanism for translating higher-order formulae
into equivalent first-order ones is described in section 5.4. A number of concluding
remarks and directions for future work are given in section 5.5.

In this chapter we use the notation s ~ t to ambiguously represent the equations
x =1y and y = z. Similarly, we use z % y for both =(z = y) and —(y = z).

79



CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 80

5.2 A Clausal Tableau with Rigid Basic Superposition

The calculus described here refutes a list of clauses (skolemised first-order sentences
in conjunctive normal form) by looking for a closed tableau (i.e.,a tableau which is
shown to represent an unsatisfiable formula). The reader unfamiliar with the notions of
semantic tableaux and tableau-based calculi is referred to appendix B which illustrates
the use of tableaux in refuting sentences in first-order logic with or without equality.

In this section we first give a brief discussion on clausal tableaux and on the use
of tableaux in reasoning in first-order logic with equality. In section 5.2.2 we give
the definition of the calculus which is implemented as a HOL derived rule, and in
section 5.2.3 we illustrate it with the help of some examples.

5.2.1 On Clausal Tableaux and Rigid Basic Superposition

We use the multiset notation for representing tableaux: A tableau is a multiset of open
branches, and a branch is a multiset of formulae. The tableau

{{Llla"' 7L1n1}7"' 7{Lm17"' 7Lmnm}}

is denoted by
Llla--- 7L1n1 | |Lm17--- 7Lmnm-

A branch B = {Ly,..., Ly} is refutable if the sentence VZ.(L1 A --- A L;) is unsat-
isfiable, where Z represents the list of variables free in B. A tableau

T:Llla--- 7L1n1|"' |Lm17--- aLmnm

is refutable if
VLt A+ AL, ) V-V (Lt A+ A Linn.. )

is unsatisfiable, where ¢ is the list of variables free in T'.

An advantage of refuting a set of clauses over general formulae is that one can
restrict the application of the tableau expansion rules to those which result in the
immediate closure of a branch without affecting the completeness of the calculus for pure
first-order logic. Because of this restriction, such connection tableau calculi (see (Letz
1993)), which include model elimination based methods (Loveland 1968), are much
more efficient than non-clausal tableau calculi. Unfortunately, tableau calculi for first-
order logic with equality cannot be restricted to tableaux with this connection property
without losing their completeness.

Reasoning in first-order logic with equality is not straightforward because of the
many ways an equation can be used (e.g., an equation a = b can be used to infer P[b]
from P[a] and Qa] from Q[b], and it is tautological if « and b are the same). If one
does not take special care, the proof search can easily become intractable even for
trivial problems. In the case of tableau calculi, the problem of whether the literals in a
branch can be refuted is N'P-complete (Gallier, Narendran, Plaisted, and Snyder 1990),
and the problem of whether a tableau can be refuted by considering only its literals is
undecidable (Voda and Komara 1995).

Recently, Degtyarev and Voronkov (1998) proposed a tableau calculus, T BSE, which
is complete for first-order logic with equality and is based on rigid basic superposition
(BSE). Although the inference rules of 7BSE do not (and cannot) close all tableaux
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whose literals represent invalid sentences, all refutable tableaux can be expanded to
ones which can be closed by this calculus'. The basic restriction, which was originally
used in narrowing (Fay 1979; Hullot 1980) and involves the application of equalities
on non-variable subterms, is used to reduce the search space. The inference rules of
the calculus are also restricted by ordering equality constraints which are quantifier free
first-order formulae on literals of the form:

e s ~ t representing the equality of s and ¢,
e s>t where > is a reduction ordering (see (Klop 1992)) total on ground terms.

A solution of a constraint C is a substitution o such that Co is valid. A constraint is
said to be satisfiable if it has a solution. A commonly used reduction ordering is the
lexicographical path ordering (Kamin and Lévy 1980) which is defined as an extension
>1po of any total ordering > on function symbols as follows:

Given s = f(s1,...,8m) and t = g(t1 ... ,t,), then s>, ¢ if and only if:

® 5;>pot for some i € {1,... ,m}, or

o f>g,and s>t forall j € {1,... ,n}, or

e f =g, (81,...,8m) >he)’f) (t1,... ,tn), and s>1pet; for all j € {1,...,n}, where
(z1,...,2) > (y1,... ,y;) for a given ordering > if there is some j < [ such that

x; = y; for all 1 < j and z; > y;.

Algorithms for solving such constraints are given in (Comon 1990; Nieuwenhuis 1993;
Nieuwenhuis and Rubio 1995).

The calculus CBSE described in this chapter refutes a list of clauses using rigid basic
superposition. It is basically the TBSE calculus modified slightly to look for a closed
connected tableau if possible, and relies on BSE if this fails. Tableau branches are also
closed when they can be refuted without instantiating their free variables. Reasoning
with ground equations is much simpler than reasoning with non-ground ones. The
ground literals in a tableau branch can be shown to be refutable in polynomial time by
using, for instance, algorithms based on congruence closure (Shostak 1978; Nelson and
Oppen 1980).

5.2.2 The CBSE Calculus

The inference rules of the CBSE calculus are applied to constraint tableauz of the form
T - C where T is a tableau and C is an ordering equality constraint.

Given a set of clauses I, a tableau is expanded by choosing a branch B and a clause
in I' whose free variables are instantiated to new ones which do not occur in the tableau.
The leaf node in B is then branched by all the literals in the instantiated clause, and
some inequalities are added in the resulting branches in order to be used in equality
reasoning. More precisely, given a literal L and a branch B, we define the insertion of

'"We stress that a tableau is refutable if it represents an invalid formula, and it is closed if it is shown
to be refutable.
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L in B, denoted by B o L, by:

Bo P(s1,...,8p) =

B,P(Sl,... ,Sn)U{<Sl,... ,Sn>7é<t1,... ,tn> | —|P(t1,... ,tn) EB}
Bo=P(s1,...,8,) =

B,=P(s1,...,80) U{(s1,...,8n) # (t1,... ,tn) | P(t1,... ,tn) € B}
Bo(s=1t)=B,(s=t)
Bo(s#t)=B,(s#t)

where P is a predicate symbol other than equality and an expression of the form
(t1,... ,tn) denotes the term (), (t1,...,t,) where ()o, ()1, etc., are function symbols
which do not occur in T'.

The above method of inserting literals into a branch allows one to consider only
the equations and inequations in the branches in closing the tableau without losing
refutational completeness (see (Gallier, Narendran, Plaisted, Raatz, and Snyder 1993)
and (Beckert 1997)).

Tableau branches can be simplified or even refuted by using techniques to reason
with ground equations in order to avoid redundant instantiations. Let E be a set of
equations, and let the relation <>z be defined such that s <+g t if and only if there is
some term p and some a = b in F such that s = p[a] and ¢t = p[b]. Therefore, if the
equations in F'U {s =t} are ground, then E I s = ¢ if and only if s 3%, £. A branch B
which is in a constraint tableau T' - C and contains an inequality s # ¢ can be refuted
if so ng( B 10 where Eq(B) is the set of equalities in B and o is the most general
substitution satisfying the constraint C. Similarly, an equality in B of the form

(cor 381,80y 8i1y -2 ) F (oot tistint, )

can be simplified to

( 73i7173i+17"'> 7é ( 7tiflat’i+17"'>

if s;0 ng( B)o t;o. Congruence closure algorithms can be used to decide whether s <37, ¢
for terms s and ¢ and a set of equations E.

The inference rules of the BSE calculus (i.e.,rigid basic superposition with equa-
tional reflexivity) are used on tableau branches that may need the instantiation of free
variables to be closed. Because of the fact that the tableau expansion rules together with
the rules of the BSE calculus for closing branches give a complete semi-decision proce-
dure for first-order logic with equality, the CBSE calculus, which is given in figure 11,
is refutationally complete for first-order logic with equality. In the implementation de-
scribed in section 5.3, the expansion rule tries to select a clause which results in an
immediate closure of a branch in order to gain some of the efficiency of connection
tableau calculi.
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1m0 (Start)
E
BloL1| |BloLm| |Bn . C ( Xpand)
Bi,{...,8i-1,84,8i41,---) F (.. tici,titigr,...)| - [ B - C .
Simplif
Bi, (o ssicty Sitty ) # (s timn tipn, ) [ [ B - C (Simplify)
YT P
Blalzras[p]zt|"'|Bn'C (lI‘bS)
By,l=rs[rl=t]| - |B, - CU{l>rs[p]>t1l~p}
By,l~rs[plét]|---|B,-C (1rbs)
Bi,l=rs[rl#&t] - |By - CU{l>rs[p]>tl~p}
B1,8¢t|B2||BnC
Bol- B, -CU{s~1] &

e The terms Irbs, rrbs and er stand for Left Rigid Basic Superposition, Right Rigid Basic
Superposition and Equational Reflexivity respectively.

e The rules are only applicable if the following conditions hold:

1.
2.

The constraint at the conclusion of each rule is satisfiable.

In the start and expand rules, Ly V ---V L,, is an instance Co of a clause C in
the given set of clauses where o maps all the free variables in C' to some variables
which do not occur in the constraint tableau in the premise.

In the simplify rule, s;7 ng( Bir) t;7, where 7 is the most general solution of the
constraint C.

. In the trivial close rule, st ng( By T where 7 is the most general solution of

the constraint C.

5. In the basic superposition rules, the term p is not a variable.

. the right-hand side of the rigid equation at the premise of each rule is not of the

form ¢ = gq.

In the left basic superposition rule, s[r] # t.

Figure 11: The Inference Rules of the CBSE Tableau Calculus.
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5.2.3 Some Examples

In this section we give a number of simple examples to illustrate the above calculus.
The first example finds a proof for the sentence

by refuting the set of clauses:

where e and f are constants. Formulae of the form G(zr) = f[z] = g[z] occurred quite
often in the mechanisation of group theory described in chapter 9, where propositions
of the form G(x) are used to denote the fact that = is a member of some set G (usually
assumed to be a group). The above sentence states that if a left identity and a right
identity exist in a set, then they are equal.

The proof search is initialised by starting with the first clause. This is then followed
by an expansion step with the fourth clause since equality reflexivity can immediately
be used to close one of the branches:

—~G(v1) | ple,vy) =v1 - {} (start)

—G(v1), G(f), (v1) # (f) [ple,v1) = v1 - {}
ple,v1) = vy - {v1 ~ f}

Note that the inequality (vy) # (f) is included in the branch when the literal G(f) is
inserted in the branch {G(v1)}. The constraint {v; ~ f} is a simplified equivalent form
of {(1n) = (f)}.

At this point there is no clause which can be used for an expansion step which
can be immediately followed by the closure of a branch. Unlike the connection tableau
calculus for pure first-order logic this does not imply the failure of the current path in
the proof search. The second clause is used for expansion, and this can be followed by
an expansion with the third clause and an equational reflexivity step.

ple,v1) =v1 - {v1 = f}

p(e,v1) = v1, =G (v2) [ p(e,v1) = v1,p(v, f) =v2 - {v1 = f}
ple,v1) = v1,-G(v2),G(e), (v2) # (e) | ple,v1) = vi,p(v2, f) = v - {v1 =~ f}
ple,v1) =

v1,p(va, f) = v - {v1 ~ f,v2 ~ e}

(expand)

(er)

(expand)

(expand)

(er)

Finally, the last clause is used for expansion. This results in a tableau with a single
branch. Since the substitution in the constraint maps all the free variables in the branch
to constants, the trivial closure rule which uses reasoning on ground equations can be
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|
(vi) #({f)  Gle) e# f
X | X
(v2) # (e)
X

Figure 12: A Closed CBSE Tableau.

used to close the tableau.
ple,v1) = vi,p(va, f) = v2 - {v1 ~ f,vo >~ e}
ple,v1) = v1,p(va, f) =vo,e # f - {v1 = f,vo ~ e}
{} - {v1 = fop~e}

The closed tableau found by this proof is illustrated in figure 12.
In the second example, we illustrate the use of the simplify rule by refuting the set

(expand)

(trivial close)

of clauses below:
-I(z)Ve=e I(f)

P(e,y) —P(f,¢)
where e, f and ¢ are constants.
The following is a CBSE refutation of these clauses:

Tal=e § 0
~L(v1), I(f), (v1) # (fYlvi=e - {} (er)
—e-{n=f) (expand)
v = e, Ple,v2) - {v1 ~ f} (expand)

v1 = e, P(e,v2), 2 P(f,c),(e,va) # (f,c) - {v1 = f}
v1:67P(67U2)a_'P(f7 ) < > <>'{U1 f}
{} - {1 = fiv2=c}

The inequality (e,v2) # (f,c) is simplified into (v2) # (c) so that equality reflexivity
can be used to close the tableau.

In the following example we show how a branch is closed using the rules of rigid
basic superposition. The branch we consider is the following:

fla) = a, g(f(x)) = flg(=)), hg(y),y) = f(y), h(g(2),2) #g(a) - {}

where z, y and z are free variables and a is a constant. We use the lexicographical

(simplify)

(er)
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path ordering with f > g = h > a as the required reduction ordering in the tableau
constraints. If the equations in this branch are treated naively, then the search space
which needs to be considered is very large since there are numerous possible inferences
which can be considered. However, the search space which is considered by the rigid
basic superposition rules is much restricted. For example, there are only two possible
inferences which can be applied on the above branch. These are a left rigid superposition
of the first literal on the third, and a left rigid superposition of the second literal on the
third. We denote the application of a superposition rule by orienting the equality of
the superpositioning literal using [ — r or [ <— r, and underlining the superpositioned
subterm.

The first possible inference is a superposition of f(a) — a on h(g(y),y) = f(y),
which gives the branch -

fla) =a, g(f(x)) = f(g(z)), h(g(y),y) = a, h(g(2),2) # g(a) - {y ~ a}

We do not include the ordered constraints f(y) > h(g(y),y) and f(a) > a because they
are trivially satisfiable. The only possible inferences at this stage is a superposition of
h(g(y),y) — a on h(g(z),z) # g(a), resulting in the following branch which cannot be
closed, and no other rigid basic superposition rule is applicable to it:

fla) = a, g(f(z)) = f(g(z)), h(g9(y),y) =a, a #gla) - {y ~a,z~=a}

We now consider the second possible inference which can be applied on the original
branch. This is a superposition of g(f(x)) < f(g(z)) on h(g9(y),y) = f(y), which gives:

fla) =a, g(f(x)) = f(g9(z)), h(g(y),y) = g(f(x)), h(g(2),2) # g(a) - {y = g(z)}

This can only be followed by a superposition of f(a) = a on h(g(y),y) = g(f(z)):

fla) =a, g(f(x)) = fg(2)), h(g(y),y) = g(a), h(g(2),2) #gla) - {z ~a,y ~g(z)}

and then only by a superposition of h(g(y),y) — g(a) on h(g(z),z) # g(a), which results
in the following trivially refutable branch:

fla) = a, g(f(x)) = f(9(x)), h(g(y),y) = g(a), g(a) # g(a) - {zr ~a,y ~g(x),z ~y}.

5.3 The Tableau Calculus in HOL

In this section we describe the implementation of the CBSE calculus as a HOL derived

rule. This rule takes a list of theorems I'y - #1,...,I', F ¢, and refutes the formulae
t1,... ,t, to return a theorem with the conclusion 1, that is:
ity -« ThEt,

nu.--ur, =L CBSE
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This rule can be used, for instance to prove a goal p by refuting the conclusion of —p - —p
to return —p F L, which can be used to infer p:

ASSUME o mk_neg p

— l_ —/

PP opse

-pH L

£ — CCONTR p
p

The formulae t¢1, ... ,t, are assumed to be first-order. As one often requires to reason
with higher-order formulae, a mechanism for translating higher-order formulae into first-
order ones is described in section 5.4.

For efficiency reasons, the implementation of the proof search algorithm does not
use the HOL term representation, but a simple representation better suited for first-
order formulae. The CBSE rule transforms the given HOL theorems into first-order
clauses in this representation and then uses them to find a closed tableau. The list of
inferences required to find the closed tableau are then used to derive a HOL theorem.
The refutation process of the derived rule can therefore be seen as consisting of three
distinct stages:

1. the preprocessing stage, in which HOL theorems are transformed into a set of
clauses;

2. the actual proof search, in which the CBSE rules are applied to the set of clauses
to find a closed tableau;

3. the proof transformation stage, where a successful sequence of CBSE inferences is
used to derive the required HOL theorem.

We remark that the main motivation of this implementation is to use the derived rule
as a proof checking support for the SPL language. Since the straightforward justifica-
tions in SPL scripts in general correspond to rather simple problems, our implementation
is not meant to be used as an efficient tool for finding non-trivial proofs. In particular,
we have not experimented with a wide range of search strategies and heuristics to cope
with large search spaces, and we have not put substantial effort in removing any redun-
dant inferences from the proof found by the search stage of the implementation before
a HOL theorem is derived.

The three stages of the refutation process are described in more detail in sec-
tions 5.3.2 (preprocessing theorems), 5.3.3 (proof search), and 5.3.4 (proof transfor-
mation). Since terms in the HOL logic can be polymorphic, we first illustrate the way
polymorphic theorems are handled in section 5.3.1.

5.3.1 Reasoning with Polymorphic Formulae

As described in section 1.2.2, HOL terms are typed by simple (i.e.,first-order) expres-
sions which may contain type variables. Type variables can be instantiated to other
types, and this provides a means of defining polymorphic constants and deriving poly-
morphic theorems. In order to use such polymorphic formulae effectively, the imple-
mentation of first-order proof calculi as derived rules in a theorem prover must be able
to instantiate type variables during the refutation process. However, most commonly
used implementations do not instantiate type variables during the proof search process,
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but treat polymorphism in a rather indirect way. For instance, type instantiation is per-
formed in the preprocessing stage of the MESON prover supplied with the HOL system.
Given a list of theorems to be used for refutation, a polymorphic theorem is instantiated
to a number of less general theorems according to the ground types in the input list.
This method is incomplete and often generates several redundant clauses. The classical
prover of Isabelle considers terms to be untyped during the proof search, and any type
instantiations are performed during the proof transformation stage. If an invalid type
instantiation is encountered during the transformation process, the proof search stage
is used again to find another (possibly invalid) proof. However type instantiation (of
simple types) can be easily incorporated in the proof search process of a first-order logic
calculus. In this section, we illustrate how this can be done after remarking on a couple
of points on the validity of type instantiations.

The Validity of Type Instantiations

It should be noted that not all type instantiations are valid. Given a theorem I' - ¢, the
instantiation of the types in ¢ (without the instantiation of the types in I') is valid if

1. no type variables occurring in I' are instantiated,

2. no distinct variables become identified after the instantiation. This occurs when
two variables with the same name but with different types (such as z:’a and z:’b),
which are considered as distinct in HOL, are instantiated to the same variable (for
example with {’a — ’b}).

The first restriction implies that given the input list of theorems I'y - #4,... , ', F £, for
refutation, the type variables in ¢; which are also in T';, for 1 < ¢ < n, should be marked
as uninstantiatable and the rest as instantiatable, such that only the instantiatable type
variables can be considered for instantiation during proof search. We remark, that
the instantiation of an uninstantiatable type variable may result in the derivation of
an unexpected theorem, or otherwise in a failed proof transformation. For example,
suppose the CBSE calculus is used to derive the (invalid) formula

P (c:num list) = Jz:’a list. P z

where P is some polymorphic predicate of type :’a list — bool and c:num list is
some constant. This is done by refuting the conclusion of

P (c:num list) = dz:’a list. P z
F P (c:num list) = dz:’a list. P z

which is transformed into the clauses

-P (x:’a list)
P (c:num list)

where the type variable (:’a) is marked as uninstantiatable, and as a result the refutation
fails. Please note that the above sentence is in general not valid. This can be seen by
substituting P x with LENGTH (SETIFY z) > 1, and c¢ with [1,2]. The resulting sentence
is not valid because it could be used to infer

LENGTH (SETIFY [1,2]) > 1 = Jz:’a list. LENGTH (SETIFY z) > 1
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which yields
Jdz:’a list. LENGTH (SETIFY z) > 1

The type instantiation {:’a — :one} will then result in an invalid result as the type
:one contains only one distinct element.

On the other hand the derivation of =P(c:num list) from F V (x:’a list).=P zis
equivalent to the refutation of the same two clauses with the difference that the type
variable (:’a) is marked as instantiatable, and therefore the refutation succeeds with
the type substitution {’a — num} and the substitution {z — c}.

The second restriction given earlier suggests that distinct variables with the same
variable name (but different type) should be renamed before proof search. This restric-
tion avoids, for instance, the invalid instantiation of 3 (z:’a), (z:’b).P (z:’a, z:’b)
into 3(z:’a),(xz:’a).P (z:’a, v:’a) which is equivalent to 3 (z:’a).P (z:’a, z:’a).

From Polymorphic First-Order Formulae to Untyped Ones

Given two first-order term languages L = L(3p, X1) and T = T(37, X1), where %y,
and X7 are disjoint collections of function symbols with fixed arities, and Xy and Xp
are disjoint sets of variables, one can define the typed language Liypr) of the terms in
L typed with the terms in T, as the set consisting of:?

1. typed variables x : o, where z is in X, and o (called the type of z: o) isin T,

2. typed constants ¢ : o, where ¢ is a constant in 3, and o (called the type of ¢ : o)
isin T,

3. typed compound terms of the form:

(f:,B1—>"'—>,6n—>O')(t1,...,tn)

where f is a non-constant function in ¥, and 3; is the type of ¢; fori € {1,... ,n},
and we call o the type of the above compound term.

As a consequence of the above discussion on the validity of type instantiations, we
partition the set of type variables X into two countable sets: a set X% of instantiatable
variables, and a set X7 of uninstantiatable variables.

We define the (untyped) first-order language {T'}L as the set of terms over the
signature Y77, and the set of variables X 77, where

e Xt =X U X%, i.e., the variables in I and the instantiatable variables in T,

® Yy = B UN7U X} U {pair}, where pair is a new binary function symbol, and
we write (s,t) to denote pair(s,t). The set of function symbols in {T'}L consists
of the set of functions in L, the functions in T', the uninstantiatable variables in
T, and the new symbol pair.

2For the purposes of this section we do not impose the restriction that constants and functions must
be of a specific type, e.g., 0 must be of type num.
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We now define the transformation U : Lyypr) — {T'} L as follows:

U(x : o) — (o,z), where z is a variable
U(c: o) — (o,c), where ¢ is a constant

U(f 81— = Ba = 0)(tr,. .. s tn)) = (o, fU(t), ..., U(ER)))

In other words, we transform a typed term ¢ : o into a pair (o,t') (where ' represents
the term ¢ whose subterms are all transformed recursively into pairs as described here)
and treat them as untyped first-order terms. Uninstantiatable type variables are treated
as constants, and the use of the pair function symbol ensures that the unification of two
paired terms results in the instantiation of type variables to types, and the instantiation
of (term) variables to untyped terms. It should be noted, though, that in order to avoid
invalid instantiations, no distinct typed variables should have the same name (see the
discussion earlier this section).

We illustrate this transformation process with the following two simple examples.
The literal

P(xz:’a list, LENGTH x)
is transformed into

P((1ist(wy), v1), (num, LENGTH(list(wi, v1))))
and the literal

Q(z:’a, (xz:num) + 1)
into

Q(wi, v), (num, +((nun, v3), (num, 1))))

where wy, v; and vy are new distinct variables.

5.3.2 Preprocessing Formulae

The role of the preprocessing stage is to transform the given list of theorems I'y +
t1,...,I'y F i, into a list of first-order clauses represented in the format accepted by
the proof search stage. First-order clauses are represented as lists of literals, and a
literal is either an equation, an inequation, a positive non-equation, or a negated non-
equation. Equations and inequations contain a pair of terms, and non-equations contain
a predicate symbol and a list of terms. A term is represented as a pair consisting of a
type and an untyped term (as illustrated in the previous section).

The given theorem is first converted into skolemised conjunctive normal form using
a number of derived rules supplied with the HOL system. The universal quantifiers and
the conjunctions in the conclusions of each theorem are then eliminated to give a list of
disjunctive theorems. Finally, the conclusions of the resulting disjunctive theorems are
translated into the proof search representation marking the appropriate type variables
as uninstantiatable, and being sure that distinct variables are given distinct names. It
should be noted that care must be taken to mark the type variables in the hypothe-
ses of the original theorems as uninstantiatable, rather than the type variables in the
hypotheses of the final disjunctive theorems which may contain additional hypotheses
included during preprocessing. For instance, the skolemisation of a theorem adds a
hypothesis representing the definition of the Skolem function, e.g., skolemising
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' EVz.dy.Pzy
results in
T, (s=Az.ey. Px (yx)) - Px(sx)

and any type variables which occur in Pz y but not in I', occur also in the hypotheses
of the above skolemised theorem. Instantiations on these type variables are valid since
they do not instantiate the types in I'.

5.3.3 Proof Search

The proof search stage takes a list of clauses and looks for a closed tableau which
can be constructed using an implementation of the inference rules in figure 11. The
search strategy used is suitable for proof checking the straightforward justifications of
SPL proofs, but is rather inefficient in solving complex problems. Shostak’s algorithm
for congruence closure (Shostak 1978) is used to reason with ground equations, and
constraints are solved using a simple, but incomplete, algorithm. We first have a look
at the congruence closure algorithm, the way constraints are handled, and then at the
search strategy used.

Congruence Closure

Congruence closure algorithms construct the congruence classes of a set of first-order
terms according to a finite set of ground equations. More formally, let 7' = T'(X, X) be
the set of terms over a signature ¥ and a set of variables X, then the congruence closure
of a binary relation R over the terms in 7' is the least binary relation R satisfying:

aRb aRb  aRb bRc aiRby -+ anRb,
aRRb aRa bRa aRe flar,...,an)Rf(b1,..., bn)
for every terms a,aq,... ,a,,b,b1,... ,b, in T and function f in 3.

Given a finite set of ground equations F, a congruence closure algorithm computes
Rpg for the relation Rg defined as follows:

aRpb ifandonlyif a=be F.

It can be shown by Birkhoff’s theorem (Birkhoff 1935) that for arbitrary ground terms
a and b the statement aRpb is equivalent to a <7, b and equivalent to deciding whether
the equality z = y can be deduced from the equations in F using the rules of reflexivity,
symmetry, transitivity and substitution of equals for equals.

Congruence closure algorithms (Shostak 1978; Nelson and Oppen 1980) can therefore
be used to decide a ground equality given a finite list of ground equational axioms.
Equivalently, they can be used to decide the equality of two (possibly non-ground)
terms from an equational theory when the instantiation of variables is not required.
Such algorithms are usually quite efficient, deciding the required equality in quadratic
time with respect to the number of equations in F.

We have used Shostak’s algorithm for congruence closure (Shostak 1978) rather than
other algorithms since the congruence classes are computed incrementally without the
need of any precomputation. This is relevant in our case because congruence classes
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are built as the tableau branches are expanded and are required to close and simplify
branches at every stage during the proof search.

Similarly to Nelson and Oppen’s algorithm, Shostak’s algorithm uses the following
data structures:

1. use: storing how terms are contained within each other; use(a) returns the list of
terms of the form f(...,a,...) in the set of terms being considered;

2. find: storing the actual congruence classes; find(a) returns a representative mem-
ber of the congruence class of a.

Shostak’s algorithm also uses the following data structure for efficiency:
3. sig: having the invariant sig(f(u1,...,uy)) = f(find(uq),...,find(uy,)).
The following procedures are used by the algorithm:

1. merge: where merge(a,b) merges the congruence classes of @ and b by updating the
use, find and sig data structures.

2. canon: where canon(a) updates the use and sig data structures, and returns
find(a).

The main loop of the algorithm applies merge(canon(a), canon(b)) on each equality a = b
in the given equational theory. An equality z = y is then decided by checking whether
the representative members of the congruence classes of z and y are equal, that is
whether canon(z) = canon(y). Cyrluk, Lincoln, and Shankar (1996) give a very clear
presentation of Shostak’s algorithm for congruence closure (as well as Shostak’s al-
gorithm for combining decision procedures). Kapur’s treatment of this algorithm as
completion is also very illuminating (Kapur 1997).

Solving Constraints

Ordering equality constraints are used to restrict the proof search space, and a solution
to the constraint in a closed tableau gives a global substitution which instantiates the
tableau into a trivially refutable one (that is, one which is refutable when its terms are
considered to be ground). As explained in section 5.2.1, ordering equality constraints are
quantifier free first-order formulae on literals with the predicate symbols ~ (equality)
and > which is a reduction ordering total on ground terms. A lexicographical path
ordering is used as the required reduction ordering. In the current implementation,
we have not solved the constraints using the complete algorithms illustrated in the
literature (Comon 1990; Nieuwenhuis 1993; Nieuwenhuis and Rubio 1995) because of
their exponential nature, and mostly because of the simplicity of the problems the
derived rule is used to solve. Although we use complete methods for solving equality
constraints (i.e., a syntactic unification algorithm), ordering constraints are shown to be
unsatisfiable only if their transitive closure can be easily rejected when substituted with
the solution of the equality constraint. An ordering constraint s = ¢ is easily rejected if
s and t are ground and t > s, or if s is a subterm of ¢.

The tableau constraints are represented as a pair (C~,C.) where C~ is a list of
equality constraints in solved form (i.e.,a substitution), and C. is a list of ordering
constraints. Including an equality constraint s ~ ¢ in C~ also involves the instantiation
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of the constraints in C,. with the solution of C~ U {s ~ t}. When an ordering constraint
s > t is inserted in Cy, the constraint s > wu is also inserted for every ¢ > w in C..
Because of the incompleteness of this method, the search space considered during the
refutation process is larger than the ideal one. More efficient incomplete methods for
solving constraints are given by Plaisted (1993b)

The Search Strategy

A tableau branch is represented as a pair consisting of a list of literals together with
the data structures representing the congruence closure of the equational theory of the
branch. A constraint tableau is represented as a pair consisting of a lazy list of open
branches and the constraints. The head of the lazy list corresponds to the leftmost
branch of the tableau, and the last element of the list corresponds to the rightmost
one. The strategy given below is used for looking for a closed tableau. We remark
that although this strategy suits our purposes, it is not recommended for solving hard
problems.

e The inference rules are applied to the leftmost open branch of the tableau, and
therefore only the head of the lazy list is considered at any stage of the proof
search. The first element of the tail of the list is computed only when it is needed,
that is when the branch represented by the head element is closed and discarded.

e A bound is given on the number of times that a clause can be used by the expansion
rule. The least-used clauses are given higher priority, and expansions which can
be immediately followed by the closure of a branch (through a trivial closure or
an equality reflexivity rule) are applied first. This gives a certain degree of the
goal-directedness of the connection tableau. Clauses which contain an equation
are then given a higher priority to those which do not.

e The simplify and trivial closure rules are applied eagerly on any inequalities in-
serted in the branch. The congruence closure of the equational theory of the
branch is computed incrementally as the tableau expands. When an equation
a = b is inserted in the branch, the congruence classes of a and b are merged and
the inequations of the branch are simplified and possibly refuted.

The congruence closure is also updated whenever new free variables are con-
strained (substituted). If a previously unconstrained variable v is constrained,
to t say, the congruence classes of v and ¢ are merged. As a result the congruence
closure of the branch can be seen as being instantiated by a global substitution
(i.e., the most general solution of the constraint) applied to the tableau.

e The equational reflexivity rule is tried on inequalities after they are inserted in
the branch and simplified.

e Since Shostak’s algorithm for congruence closure refutes an inequation a # b by
computing the canonical form of a, canon(a), and the canonical form of b, canon(b),
and checks whether canon(a) = canon(b), the computed canonical forms may also
be used to refute the tableau if they are unifiable. This procedure can be described
as a new rule

Bi,s#t|By|--- |By - C
Bsy| -+ | By - CU{canon(s) ~ canon(t)}

€er-canon
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which depends on the actual implementation of the congruence closure algorithm
used. This rule is applied after equational reflexivity fails to close the branch.

e When all the clauses have been used the same number of times by the expansion
rule, the rigid basic superposition rules with equality reflexivity are applied to
close the branch. If the branch cannot be closed, the clauses are used again for
expansion. This is repeated until the clauses are used a given number of times
(the bound mentioned earlier).

e If a closed tableau is not found, the current bound is incremented by one and the
proof search is applied again. This is repeated until a maximum bound is reached.
Since the problems the proof procedure is expected to solve are rather simple, a
very low maximum bound is chosen (only 3). The number of times the rigid basic
superposition rules are applied to close a branch is also bounded (by 5).

When a closed constraint tableau is found, the proof search stage returns a simplified
list of the inferences used together with a substitution solving the constraint. These are
used by the proof transformation stage to derive a HOL theorem. The simplified list of
inferences consists of:

e Expansions, which also contain the instance of the clause used.

e Closures: in this case, no distinction is made between the different inference rules
(trivial close, equational reflexivity, or equational reflexivity on canonical terms)
which are used.

5.3.4 Deriving a HOL Theorem

The role of this final stage of the derived rule is to construct a HOL theorem from the
closed tableau found by the previous stage. The substitution and the list of expansion
and closure rules given by the proof search stage are translated into HOL natural deduc-
tion inferences. The closure of a branch B is translated into the derivation of a theorem
B F 1 and an expansion rule is translated into an elimination of the disjunctive clause
used for expansion instantiated with the given substitution. The translating process
proves a HOL theorem stating the inconsistency of instantiations of the list of clauses
derived during the preprocessing stage. This theorem can then be used to derive the
required inconsistency of the list of theorems given as arguments to the derived rule.

Congruence closure is used to derive the inconsistency of a given branch B. This
is done by computing the congruence classes according to the equational theory of
the branch and by looking for an inequality s # ¢ such that s and ¢ are in the same
congruence class, or for two literals P(s1,...,$,) and =P(t1,... ,t,) such that s; and
t; are in the same class for ¢ € {1,... ,n}. However, since we need to derive a HOL
theorem, the congruence closure algorithm described in section 5.3.3 is modified to
be used as a HOL derived rule. The data structures and the functions in Shostak’s
algorithm are modified to store and return HOL theorems. For example, the canon
function which computes the canonical form of a given term ¢ is modified to return a
theorem

PEt=+
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where ¢’ is the canonical form of ¢ and T' is the list of equations used in computing #'.
For efficiency purposes, lazy theorems (Boulton 1993) are used in the implementation.
These are ML functions which derive a theorem only when it is needed, and can there-
fore be used to avoid the computation of unnecessarily HOL inferences. We use lazy
theorems of type converters — thm where converters is the type of the SML functions
which translate the terms from the internal term representation used by the congruence
closure algorithm into HOL terms and vice-versa. By using such lazy theorems, the
implementation of the congruence closure algorithm is independent of the way its term
representation is translated into HOL terms.

5.4 From Higher-Order to First-Order Logic

The CBSE derived rule and other semi-decision procedures for first-order logic can be
used to reason with higher-order formulae by transforming them into equivalent first-
order ones. Such a transformation can be done in three steps:

1. Normalising the terms into n-long 8 normal form;
2. Eliminating quantification over functions and predicates;
3. Eliminating lambda abstractions.

The first step is quite straightforward and can be performed in HOL using the
appropriate inference rules supplied with the system. Quantification over functions and
predicates is usually eliminated by introducing a new constant « : (y — 0) = v — §
(a for “apply”) and then transforming terms of the form (f z) into (a f z) (see for
example (Kerber 1990)). As a result, higher-order formulae, such as VP.P z = P y,
are transformed into first-order ones, VP.aa P x = «a P y. The third step given
above involves the transformation of lambda abstractions into equivalent lambda-free
terms, usually through the introduction of new constants. It should be noted that a
straightforward renaming of abstractions into new constants is often not appropriate
since even trivial sentences are not transformed into valid first-order formulae. For
instance, the sentence

(a=b)=P Mr.fza)=P (Az.fzb)

is not transformed into a valid one if the two terms (Az.f z a) and (Az.f =z b)
are renamed into different constants. However, one can convert these two terms to
(A\y,z,z.y ¢ z) f a) and ((Ay,z,z.y = z) f b) and introduce a constant

9=y, z,z.y T z)
such that the above sentence is transformed into the valid first-order formula:
(a=b)=P(gfa)=P(g[D)
In general, given a term of the form

Mot Uty ety
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we first abstract all the occurrences of the variables vq, ... ,v,, from the terms ¢; --- ¢,
and eliminating the abstractions recursively from them. By abstracting any occurrences
of the term s from another term ¢ we mean the transformation of ¢ into the n-convertible
((Az.t") s) where t' is the term ¢ with all its occurrences of s substituted with z.
The resulting terms with the exception of the variables vq,... ,v,, are then abstracted
from the main term. The resulting abstraction is finally renamed into a new constant.
Abstractions which are a-convertible are given the same constant. We illustrate this
procedure with an example. Given the term

)\’01,1}2. f ()\123.1)1) ()\123.1)2 ’03)

we first abstract the bound variables vy and v from the terms (Avs.v1) and (Avs. vg v3)
to give
)\’Ul, V2. f (()\331, v3. 331) Ul) (()\5171, V3.7 ’03) ’02)

and then eliminate the abstractions recursively from the body terms, which in this case
involves the introduction of the new constants

c1 = Avi,v9.v1, and

c2 = v, v2.v1 Vg,

to give the term:
)\Ul,vg.f (01 ’Ul) (CQ ’UQ).

We now abstract the terms in the body with the exception of v; and vs from the main
term:

(Az1, 2, 23,01, v2.21 (T2 v1) (23 v2)) f €1 2

and finally we rename the abstraction:

c3 feie

where c3 = vy, w9, v3,v4,v5. 01 (V2 v4) (V3 V5).

We remark that although this translation from higher-order logic to first-order logic was
effective in transforming higher-order formulae into equivalent first-order ones during
our case study, the two logics are very different in nature and no such transformation
can be complete.

5.5 Conclusions and Future Work

In this chapter we have illustrated the implementation of a tableau calculus for first-
order logic as a derived rule in the HOL theorem prover. This derived rule is used
as the main prover for checking the straightforward justifications of the SPL scripts
implemented in the mechanisation of group theory described in Chapter 9. Since in
general such justifications do not represent hard problems, there was no need to put
a considerable amount of effort in handling very large search spaces, and in finding
long proofs. Although the proof calculus is complete for first-order logic with equality,
we impose very strict resource bounds during proof search. Furthermore, the method
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used for solving equality constraints is very simple and incomplete 3. Although this
implementation is suitable for its purpose, more efficient search strategies are required
if one needs to use it in deriving less trivial statements.

An interesting direction for future research is the investigation of ways of incorpo-
rating theory specific decision procedures with such a calculus. The proof checking of
SPL scripts involves the application of theory specific simplifiers before the refutation
process. Although this method proved to be quite effective, simplifiers and also decision
procedures can be used by a first-order proof calculus during the refutational process
in order to enhance its deductive power. Such techniques have been studied recently
in (Bjgrner, Stickel, and Uribe 1997) where, for example, decision procedures are used
by a first-order prover to suggest a substitution which potentially refutes a given set of
clauses.

A database of trivial knowledge is used in the automatic derivation of simple facts
during the proof checking of SPL scripts. Such database can be queried by other theory
specific (or more general) proof procedures. It is shown in our case study that the use
of simplifiers which are able to query this database can greatly increase the power of
the SPL proof checker during the mechanisation of a theory. This results in the ability
to write formal proofs which are quite similar to those found in informal texts where
trivial facts are often omitted. We have not yet tried to modify the implementation of
the CBSE calculus presented here to be able to query such a database. We believe that
such a modification will result in the ability to implement shorter and possibly more
readable formal proofs.

3Note that the use of an incomplete constraint solving method does not conflict with the completeness
of the calculus for first-order logic with equality. The consequence of using an incomplete constraint
solving algorithm is that inferences which in principle would fail due to the inconsistency of the constraint
in their conclusion can still be considered during proof search. As a result the search space considered
during proof search is larger than the ideal one.



Chapter 6

Structured Straightforward
Justifications

6.1 Motivation

The Mizar proof language, and similar languages such as SPL (chapter 4) and DE-
CLARE (Syme 1997a; Syme 1998), are often described as supporting a declarative
proof style as opposed to the more procedural style of tactic-based proof development
(see, for instance, (Harrison 1997) for a comparison of different proof styles). Although
the distinction between a declarative and a procedural style is somewhat vague, declar-
ative proofs do not explicitly state all the details on how a theorem is proved, but rather
state what is needed. For instance, simple results in a proof script can be derived by
straightforward justifications which are usually of the form

C by Pl, caey Pn

where Pj,..., P, are the premises of the justification and C' is its conclusion. Such
statements

e state explicitly which conclusion is being justified,
e list the premises which are required to derive the conclusion,
e do not explain how the premises are used in deriving the conclusion.

Straightforward justifications are checked by using a simple automatic theorem
prover which looks for a proof of the conclusion from the given premises. The complexity
of the proofs that can be found automatically by the proof checker is a very important
factor in determining the readability of the scripts which can be implemented in the
system. If the proof checker can automate complex proofs which are very hard to find,
then quite uninformative proofs can be implemented in the system, and furthermore,
such proofs would require substantial resources in order to be machine checked. On the
other hand, if only very simple inferences can be implemented, the resulting proofs will
be too detailed to follow and hard to implement.

The inferences which are allowed to be machine checked are often restricted to
those which are obvious according to some specific definition of obviousness. Obvious
inferences are those which are considered to be easily followed by a human reader as well
as efficiently checked by machine. Specific definitions of obvious inferences are usually

98
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based on the effort required to check the inference. For instance, Davis (1981) defined
obvious inferences as those that have a proof involving at most one substitution instance
of each premise. Rudnicki (1987) observed that such inferences may still be hard to proof
check and in general, one can justify any conclusion with a Davis obvious inference by
repeating the premises of the justification. Rudnicki proposed an alternative definition
of obvious inferences, according to which an inference is obvious if there is not much
non-determinism involved in finding its proof when using a specific algorithm given
in (Rudnicki 1987).

In practice it is quite hard to formalise obviousness by a rigid definition based on
a general deductive mechanism. The actual definition of the notion of obviousness
in a particular system is simply determined by the implementation of the algorithm
used in the proof checking process, and such an algorithm is improved and optimised
as new versions of the system are released. As we argued in section 2.5.1, a human
reader often relies on his understanding to infer facts rather than on mechanical means,
and therefore the notions of human obviousness and machine obviousness can be quite
different. Given the difficulty of defining a practical notion of obviousness, we call
the inferences which can be proof checked by a particular system as straightforward
inferences, taking the adjective ‘straightforward’ from ‘straightforward justifications’.
We can also denote the inference of a conclusion from a number of premises given in
straightforward justifications by an inference rule
I C L (Straightforward)
which we call the straightforward inference rule. This rule depends on the (particular
version of the) particular system considered. In SPL (as well as in other systems such as
the Mizar mode in HOL of Harrison (1996b)), the user can use different straightforward
rules by explicitly stating which prover is used during the proof checking process.

Although straightforward justifications do not mention explicitly the particular in-
ferences which are used in deriving the conclusion from the premises, it is often observed
(by van Gasteren (1990) for example) that mentioning certain inferences used in the
justification can improve the readability of the proof. The reason for this is that the
readability of a proof depends on the effort required by the reader to fill in the gaps in
the proof, and therefore mentioning a number of the inferences used can reduce such an
effort. The use of ‘inference-less’ (general or specific) straightforward rules in justifying
proof results may not be ideal for the development of readable proofs. On the other
hand, a proof which explicitly states all the inferences used is too detailed and low-level
to be followed easily.

In this chapter we introduce the notion of straightforward justifications which ex-
plicitly state some of the inferences used in the derivation of their conclusion. The
motivations for the use of such justifications include:

e improving the readability of the proofs by giving more relevant information to the
reader;

e giving more relevant information to the proof checker so that proofs can be found
more efficiently;

e exploring whether some inferences can be stated in straightforward justifications
without making the resulting proofs too detailed or procedural;
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e exploring whether simple results can be derived by a less implementation-based
mechanism than that of using straightforward rules intended to automate obvious
inferences.

The mechanism we use involves the distinction between trivial inferences and relevant,
or substantial, inferences, and using these notions in defining generalised inferences
which involve the application of a relevant inference and several trivial ones. Only
such generalised inferences can be used in straightforward justifications. The resulting
justifications are called structured straightforward justifications since the generalised
inferences used are represented by binary operators on premises which give them more
structure than inference-less justifications.

In the next section, we discuss how inference rules can be generalised according
to a number of trivial inferences, or manipulations on formulae which can be applied
implicitly to the premises and conclusion of the rules. We introduce the syntax and
semantics of structured straightforward justifications in sections 6.3 and 6.4. A number
of results on such justifications are given in section 6.5, and a concluding discussion is
given in section 6.6. A mechanism for restricting the proof search required for verifying
structured justifications is then illustrated in chapter 8, after the relevant notation and
results required for defining this mechanism and proving its soundness and completeness
are developed in chapter 7.

6.2 On Explicitly Stated Inferences and Implicitly Applied
Manipulations

It is mentioned in section 3.5 that tactic-based proofs often contain very basic results
and inferences, even when the proofs are implemented at a mature stage of the mech-
anisation where several high-level results have been derived. Such trivial inferences
rarely contribute to the comprehensibility of the proofs, and it is often the case that
over-detailed proofs are hard to follow as well as tedious to implement. It is there-
fore desirable that such inferences are omitted from proofs by providing the necessarily
automation to derive them ‘implicitly’. Of course, not all the steps of a mechanised
proof are trivial. A considerable number of steps use high-level theorems and apply
theory-specific proof procedures. Such proof steps can give a good idea of how the con-
clusion of the proof is derived. A mechanised proof can therefore be seen as containing a
number of substantial inferences which contribute to the comprehensibility of the proof,
together with a number of trivial ones which potentially hinder it. In this section we dis-
cuss the possibility of implementing proofs which consist only of substantial inferences
and any trivial inferences can be applied implicitly. In section 6.2.1 below we describe
the notion of generalising an inference which involves the definition of an inference rule
whose premises and conclusion can be implicitly manipulated according to a given set of
inferences. Structured straightforward justifications, in which a number of generalised
inferences are stated explicitly, are introduced in section 6.2.2.

6.2.1 Generalising Inferences

Ideally, the inference rules which are used in the mechanisation of proofs should be
defined in such a manner that no trivial inferences are needed in proof implementa-
tion. If a number of inferences are identified as trivial, one can usually generalise an



CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 101

arbitrary substantial inference rule by applying the trivial inferences before and after
the substantial inference is applied. More formally, let us consider a set of inferences
T = {I1,I,...}. Each rule takes one premise from which it infers a conclusion, and
this inference is assumed to be trivial, in the sense that it can (and should) be omitted
from the implementation of proofs. Note that in this thesis we consider only trivial
inferences which take a single premise A and return a conclusion B, or in other words,
which implicitly manipulate the formula A into B. Trivial inferences which can take
more than one premise may be considered in future. We can define a binary relation
—71 over formulae such that

A .
A—7 B ifandonly if 7 (fi) for some I; in 7.

We can also denote the expression A —7 B by an instance of an inference rule (Z):

% (I) ifandonlyif A ;B

although such a rule is non-deterministic as several inferences in Z can be applicable to
the premise A, and therefore several possible conclusions can be inferred by (Z). Now,
given an inference rule, denoted by R say, which infers a conclusion from a number of

premises
P - P,

——2 (R)

it can be generalised into a rule Rz in which a number of inferences in Z can be applied
implicitly to its premises and conclusion. If we define the rule Z* such that
A

i (z*) ifand only if A —% B

where —7 is the reflexive transitive closure of —7, then the rule Rz is defined as follows:

P
— (Z¢

P,
— (TF

P - P, )

C

(Rz) if and only if ol
o )

for some formulae P{,... ,P) and C'.

We say that the conclusion C' is derived from the premises Pi,... , P, by the rule
(R) and the implicit application of the inferences in Z. We also say that (Rz) is a
generalisation of (R) according to the implicit inferences in Z.

For example, let us consider the inferences given by the following rules to be trivial:

Plz +0] Plz + y] P[(z +y) + 2]
P[z] SR & [y + 2] (f-comm) Plz + (y + 2)] (+assoc)
Pln + m)| Pl
T[Z] (4-caley) m (4-calesy)

where in the (+calcy) and (+calcy) rules, the number [ is the sum of the numbers n and
m
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We define the set A = {40, +comm, +-assoc, +calcy, +calca }, and given the inference

rule
rT>Yy Yy>=z

TS 2 (+trans)

we can define the generalised rule (+trans4), which for instance can be used to derive

1+ (2a +3) > 4b B+1b>b+(0+a)
2a +4>a+b

(+trans4)

A mechanism for checking instances of (+trans4) can be implemented by first simpli-
fying the terms in the premises and the conclusion into some normal form according to
the inferences in A and then checking whether the resulting formulae are as required by
the inference rule (+trans).

Theory-specific simplifiers can be declared in SPL scripts so that they can be used
automatically to normalise the terms in the premises and conclusions of straightforward
justifications during proof checking. The calculations performed by the simplifiers can
therefore be seen as the implicit inferences generalising the straightforward rule used to
check SPL justifications (i.e., the CBSE derived rule illustrated in the previous chapter).
Note that the straightforward rule generalised with the implicit inferences given by the
simplifiers does not correspond to the straightforward rule augmented with the simpli-
fiers (which involves the use of the simplifiers during the proof checking mechanism of
the straightforward rule, rather than just before or after). For example, the straight-
forward rule generalised with the simplifier given by the rule z + 0 — x does not solve
the goal Ja.b + a = b, though an augmented rule would.

6.2.2 Straightforward Justifications with Explicitly Stated Inferences

We now consider the definition of straightforward justifications which explicitly state
a number of the first-order inferences which are used in deriving the conclusion of
the justification from the given premises. However, these rules are generalised by a
number of trivial inferences which manipulate first-order formulae into equivalent or
weaker ones. As a result, although such justifications contain a certain amount of
information on what inferences are used in the derivation, this information is not over-
detailed since a number of inferences are applied implicitly in the derivation process
and therefore not mentioned in the justification. This is an alternative method to the
use of a straightforward justification contains a list of premises, and no information
about which first-order inferences are used in justifying the conclusion is given (apart
from the fact that the overall inference is obvious according to an implementation-based
definition of obviousness).

The first-order inferences used implicitly in deriving the conclusion of a justifica-
tion are described in section 6.4.1 and correspond to simple manipulations such as the
instantiation of universally quantified variables and the application of the commuta-
tivity of the conjunction and disjunction operators. Inferences are stated explicitly by
constructing expressions using the following binary operators:

on which corresponds to the rule of Modus Ponens: ((A4 = B) on A) derives B.

and which corresponds to the introduction of conjunction: (A and B) derives AAB.
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then which is used to abbreviate certain expressions involving the on operator, and cor-
responds to the transitivity of implication: (4 = B) then (B = (') derives A = C.
An expression of the form (X then Y) on Z is equivalent to Y on (X on Z).

Straightforward justifications constructed using the above operators are called struc-
tured straightforward justifications, or simply structured justifications, as opposed to
the unstructured ones which simply list the required premises. It is not hard to im-
plement proofs involving structured justifications since only three operators need to be
remembered and understood. Furthermore, since these operators correspond to gen-
eralised inferences, structured justifications omit several tedious details such as the
instantiation of variables and structural manipulations on formulae. The following is an
example of a valid structured justification.

"Jc.Vx.x > c = x > d" by
"Wxyz.(x>y) A(y>z) = x>2" on "Jc.c > 4d";

It should be noted that a structured justification can be used to justify several conclu-
sions. For instance, the justification of the above statement can also be used to derive
the following conclusion:

"Je.Vz.d >z = ¢ > z"

Because of their non-deterministic nature, the generalised inferences corresponding to
the on, and and then operators cannot be implemented as functions which take two
premises and infer a conclusion, but rather as proof checking functions which check
whether a given conclusion follows from the given premises. The formal definition of
the syntax and semantics of structured justifications is given in the next two sections.

6.3 The Syntax of Structured Justifications

For the purposes of this chapter, the syntax of structured straightforward justifications
is defined as follows:

Structured _Justification = by Structured_FExpression

Structured _Ezpression = Sentence
| Then_Ezxpression on Structured_Ezpression
| Structured_Ezpression and Structured_Ezpression

Then_Ezxpression = Structured_Ezpression
| Then_Ezpression then Then_Exzpression

Such justifications are preceded by their conclusion in proof scripts, and a Sentence in
the above syntax represents a premise in the justification. Expressions which contain
the then operator at the top level (denoted by Then_Expressions in the above syntax)
can only occur on the left-hand side of an on operator. The on, and and then operators
associate to the left, and and has a higher precedence than then, which has a higher
precedence than on. Examples of conclusions justified by structured justifications are
given in figure 13.

We recall that the premises of an SPL justification can be given as arguments to
specific proof checkers (simply called provers). For the case of structured justifications,
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"Ix.C(x)" by "Vx.A(x) = C(x + 1)" and "Vx.B(x) = C(x + 2)"
on "Vx.A(x) V B(x)";

"R(c,e)" by "Vx,y,z.R(x,y) = R(y,z) = R(x,z)" on
"R(c,d)" and ("Vx,y.R(x,y) = R(y,x)" on "R(e,d)");

"Jc.D(c)" by "Vx,y. (A(x,y) A B(x)) & C(y,x)"

then "Vx,y.C(x,y) = D(x)"
on "Vx.dc.A(x,c)" and "B(d)";

Figure 13: Examples of Structured Justifications.

one can use provers which accept structured expressions as arguments. The first-order
tableau prover described in chapter 5 used to check unstructured SPL justifications
is modified (see chapter 8) so that it can be used to check structured justifications
efficiently. This modified prover is used as the default prover during the mechanisation
of group theory described in chapter 9.

6.4 The Semantics of Structured Justifications

The semantics of structured justifications is given in terms of the inferences which are
assumed implicitly during the implementation of proofs, and the semantics of the on,
and, and then operators which correspond to the inferences that are stated explicitly.
We first define the set of implicit inferences and then give the semantics of structured
expressions.

6.4.1 TImplicit First-Order Inferences

The inferences which are assumed implicitly in structured justifications are defined in
terms of a binary relation — over first-order formulae. In other words, the manipulation
of a formula A into B using a number of these inferences, that is A —* B where —* is
the reflexive transitive closure of »—, is omitted from structured justifications. We give
the following definitions.

Definition 6.1 (Single Step Implicit Derivation) The relation — over first-order
formulae is the smallest binary relation which satisfies the following rules, categorised
into 9 groups:

1. For all formulae A and B which have the same negation normal form (see sec-
tion 1.2.1), it is the case that A — B.

2. For every formula A, we have

A—T 11— A
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3. For every formula A,
A—ANA AVA— A

4. For all formulae A and B,

ANB— A A— AV B
AANB — B B— AV B

5. For all formulae A, B and C,
ANBVC)— (AANB)V(AACQ)
(AVB)A(AVC)— AV (BAC)

6. For every variable z, and formula A, if z is not free in A, then

(Vz.A) — A A — (Jz.A)
(Fz.A) — A A — (Vz.A)

7. For every variable z, and all formulae B and C, if z is not free in C, then

(Vx.B) ANC — Vz.(B A C) dz.(BVvC)— (z.B) v C
(3x.B) AC »— Fz.(B A C) Vz.(BV C)»— (Vz.B) VvV C

8. For every variable x, formula A and term ¢, if no free variable in ¢ becomes bound
in A{z — t}, then

Vr.A — Vo A{z — t} Jz. A{z — t} — Jz.A
9. For all formulae A and B, if A — B then for every formula C,

ANC»— BAC AvC— BvVvVC
Vz.A — Vz.B dz.A — Jz.B

We say that A implicitly derives B in a single step if A >~ B holds. O

Definition 6.2 (Implicit Derivations) For all first-order formulae A and B, we say
that A derives B implicitly if A ~—* B where ~—* is the reflexive transitive closure of
—. We also define the following inference rule denoted by —*:

% (—*) if and only if A —* B,

0

The following two results follow immediately from the above definition.

Proposition 6.1 (Correctness of Implicit Inferences) For all formulae A and B,
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1. if A— B then Vi.(A = B);
2. if A—* B then VZ.(A = B);
where T denotes the list of variables free in A = B.

Proof: The first statement can be easily checked for each rule in the above definition of
— using the standard results on the validity of classical implication (given in (Fitting
1996) for instance). The second statement follows from the first one, and the reflexivity
and transitivity of implication. |

Proposition 6.2 (Contrapositiveness of — and —*) For all formulae A and B,
1. if A— B then =B —* =A;

2. if A —* B then =B —* —A.

Proof: For each rule X — Y in definition 6.1, it follows that =Y —* =X from the
rule adjacent to X »— Y in the definition (or from the other rule in the same group for
the case of the rules in group 5), and from the fact that two formulae can be derived
from each other implicitly if they have the same negation normal form (i.e., the rule in
group 1). For example, it can be shown that —=A —* =(A A B) given that AN B — A
as follows:

—A — —AV =B by the top right rule in defn. 6.1(3)

— —(A A B) by the rule in defn. 6.1(1).

The second statement of this proposition follows from the first one and the fact that

—* is the reflexive transitive closure of . [ |

It should be noted that the inference given by —* is weaker than the classical first-
order implication. For instance, for any formula A whose negation normal form is not
T or 1, and for any formula B whose negation normal form is not L,

AN-Aps* L Ts*AV-A (A= B)AA/*B.

Such inferences are therefore required to be stated explicitly in structured justifications.
The implicit inferences are however strong enough to derive a large number of ma-
nipulations on formulae, for example it can be shown by the rules in groups 3, 4 and 9
that
AANB — (AANB)A(AAB) by defn. 6.1(3)
— BA(AAB) by defn. 6.1(4) and 6.1(9)
— BAA by defn. 6.1(4) and 6.1(9),

AV B — (BVA)V B by defn. 6.1(4) and 6.1(9)
— (BVA)V (BVA) by defn. 6.1(4) and 6.1(9)
— (B V A) by defn. 6.1(3),
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and similarly

ANBAC)—* (ANBYAC  (AAB)AC —* AA(BAC)
AV(BVC)—* (AVB)VC  (AVB)VC —* AV (BVC)
A—*AV(ANB) AV(AAB)—* A
A—*ANAVB)  AA(AVB)—* A

The fifth group of rules allows formulae to be manipulated into each other by distributing
the conjunctions over the disjunctions, and vice-versa. The manipulations

(AANB)V(AANC) —* AN(BV(O) AV(BANC)—* (AVB)A(AVCO)
can be derived as follows:

(AANB)V (ANC)

— ((AANB)V(AANC))AN((AANB)V(AANC)) by defn. 6.1(3)

— (AV(ANC)AN((AANB)V (AANC)) by defn. 6.1(4) and 6.1(9)
— (AVA)AN((AANB)V (ANAC)) by defn. 6.1(4) and 6.1(9)

— AN ((AANB)V (AAC)) by defn. 6.1(3) and 6.1(9)

— AN (BV (AAC)) by defn. 6.1(4) and 6.1(9)

— AN (BVC) by defn. 6.1(4) and 6.1(9).

AV (BACQC)

ANA)V (BAC) by defn. 6.1(3) and 6.1(9)

(AVB)ANA)V(BAC) by defn. 6.1(4) and 6.1(9)
(AVB)A(AVC))V(BAC) by defn. 6.1(4) and 6.1(9)
(AVB)A(AVC))V((AVB)AC) by defn. 6.1(4) and 6.1(9)
(AVB)A(AVC))V((AVB)AN(AVC(C)) by defn. 6.1(4) and 6.1(9)
AV B)A(AVC) by defn. 6.1(3).

>

>
>
>
>
>

~ Y~~~ ~~ —~

The sixth group of rules in the definition removes and adds any redundant quantifiers,
and the seventh group allows two formulae which have the same prenex form to be
implicitly derivable from each other. Note that the rule

Vr.(BAC)—* (Yz.B)AC
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where the variable z is not free in C, can be derived as follows:

Vz.(BAC)— (Vz.(BAC)) A (Vz.(BAC)) by defn. 6.1(3)

— (Vz.B) A (Vz.(B A C)) by defn. 6.1(4) and 6.1(9)
— (Vz.B) A (V£.C) by defn. 6.1(4) and 6.1(9)
—

Vx.B) AC by defn. 6.1(6) and 6.1(9)
and the rules
dz.(BAC) —* (3z.B)ANC
(Jz.B) v C —* Jz.(BV C)
(Vx.B) vV C —*Vz.(BV C)
where z is not free in C, can be derived similarly. The two rules in the eight group

allow the specialisation of universally quantified variables, and the generalisation of
existentially quantified ones, and can be used for instance to derive

Vx.P(z) — Vz.P(f(z)) dz.P(f(z)) — Jx.P(x).

Vz.P(z) — Vz.P(c) P(c) — Fz.P(c) (by gp. 7)
— P(c) (by gp. 7) — Jz.P(x).

Vx.P(z) — Vy.Nz.P(z) (by gp. 6) dz.P(z) — Jx.3y.P(z) (by gp. 6,9)
— Yy.Vz.P(y) — Jz.3y.P(y)
— Vy.P(y) (by gp. 6,9) — Jy.P(y) (by gp. 6).

where y is not free in P(z). The last group of rules in the definition states that the
relation »— and hence —* are monotonic with respect to A, V, V and 3. It is also the
case that the following manipulations hold:

Vz.(P(z) A Q(z)) — (Va.(P(z) A Q(z))) A (V.(P(z) A Q(x)))
—* (Vo.P(z)) A (Vz.Q(z))

(Vz.P(z)) A (V2.Q(z)) — Vy.((Vo.P(z)) A (V2.Q(x)))
=" VY. (Ve P(y)) A (V2.Q(y)))
—"Vy.(P(y) A Qy))
—" V. (P(x) A Q(z))-
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where the variable y is not free in P(z) and Q(z). The following can be derived in a
similar fashion:

(Fz.P(z)) V (Fz.Q(z)) —* Fz.(P(z) V Q(x))
dz.(P(z) V Q(z)) —* (3z.P(x)) V (F2.Q(x)).

6.4.2 Explicitly Stated Inferences

Inferences are stated explicitly in structured justifications by using structured expres-
sions which involve the operators on, and and then. We give the following definitions for
the semantics of structured expressions and structured justifications.

Definition 6.3 (Explicit Derivation) We say that a structured expression X explic-
itly derives a formula C if X ~» C, where the binary relation ~» between structured
expressions and formulae is defined as the smallest relation satisfying the following four
rules:

A—*C

A~ C

X~ (A=DB) Y~ A
(XonY)~ B

X~A Y~B (AANB)—*C
(X andVY)~C

X~ (A=DB) Y~ (B=0)
(X thenY) ~ (A= C)

where A, B and C are formulae and X and Y are structured expressions. O

Definition 6.4 (Justification by Structured Expressions) For every formula C
and structured expression X, we say that X justifies C' if and only if X ~ C. O

Example 6.1 As an example, we show that the following conclusion is justified cor-
rectly:

"Jc.C(a,c)" by "Vx,y,z.A(x,y) = B(y,z) = C(x,z)"
on "Vx.dc.B(x,c)" and "A(a,b)";

First of all, it is the case that
(Vz.3e. B(z,c)) and (A(a,b)) ~ (3e. A(a,b) A B(b,c)) (1)
by using the third rule in definition 6.3, and the following:
e (Vz.3c. B(z,c)) —* Je. B(b,¢), and so (Vz.3ec. B(z,c)) ~» Je. B(b, c);
e A(a,b) —* A(a,b), and so A(a,b) ~ A(a,b);

e (dc. B(b,c)) A (A(a,b)) —* Fe. (A(a,b) A B(b,c)).



CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 110

It is also the case that

Vr,y,z. A(z,y) = Bly,2) = C(z,2)
~> (Je. A(a,b) A B(b,e)) = (3e. C(a,c)) (2)

as
Va,y,z. A(z,y) = B(y,z
—* Va,y. (3z. A(x,y
(

—* Va,y. (3z. A(x,y
—* (3c. A(a,b) A B

y,2)) = (V2. C(z,2))
y,2)) = (3z. C(x,2))
b,c)) = (3e. Cla,c)).

Therefore, by the second rule of definition 6.3 and equations (1) and (2) above, it is the
case that

((Vx,y,z. A(z,y) = B(y,z) = C(z,2)) on (Vx.3c. B(x,c)) and (A(a,b)))
~ de. O(a,c). O

6.5 Results on Structured Justifications

In this section we give a number of results on the structured justifications given in the
previous section. We start by showing that the on and and operators generalise the
inference rules of Modus Ponens and the introduction of conjunction respectively, and
that an expression of the form (X then Y) on Z is equivalent to Y on (X on 7).

Proposition 6.3 (on Generalises Modus Ponens) For all formulae A, B and C,
the expression A on B ~» C' holds if and only if there are some P, Q) and R such that

1. A—*(P=Q),
2. B—* P, and
3. Q—*C,

so that C' can be derived from A and B by:

Proof: Given that A on B ~» C, then from definition 6.3 it must be the case that there
is some D such that A ~ (D = C) and B ~ D, and therefore from definition 6.3 it
follows that A —* (D = C) and B —* D. The above three results in the statement of
the proposition can be satisfied by choosing P to be D and @ to be C. For the converse,
given the above three hypotheses, it follows that

A —* (P = Q) by the first hypothesis
*(P = C) by the third,
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and therefore A ~ (P = (). From the second hypothesis, we get B ~» P, and hence
A on B ~~ (' as required. |

Proposition 6.4 (and Generalises A-Introduction) For all formulae A, B and C,
the expression A and B ~» C holds if and only if there are some P and Q) such that

1. A—*P,
2. B»—*Q, and
3. PANQ —*C,

so that C can be derived from A and B by:

A * B *
4= B =)
———— (A-Intro)
29 ()
C
Proof: Similarly to proposition 6.3, this result follows from definition 6.3. |

Before showing that structured expressions involving the then operator are equiv-
alent to certain expressions involving the on operator, we first give the definitions of
equivalence on structured expressions.

Definition 6.5 (Equivalent Structured Expressions) Two structured expressions
X and Y are equivalent if X ~» (' holds if and only if Y ~» C holds for every formula
C. O

Proposition 6.5 (Elimination of then) For all structured expressions X, Y and Z,
the expression
(X then Y) on Z

18 equivalent to
Y on (X on Z).

Proof: For all formulae C, given that (X then Y) on Z ~» C then there is some formula
A such that (X then Y) ~» (A = C) and Z ~» A, and so there must be some B such
that X ~ (A = B) and Y ~ (B = (). Hence, we can derive C explicitly from
Y on (X on Z) as follows:

X~ (A=B) Z~A
Y ~ (B=C) (X on Z)~ B
Y on (X on Z)~ C

For the converse, if Y on (X on Z) ~» C, then there is some B such that Y ~» B = ('
and X on Z ~» B, and therefore there is some formula A such that X ~» (A = B) and
7 ~ A. Hence,
X~ (A= B) Y~ (B=C0)
(X then V) ~ (A= C) Z~ A
(X then Y) on Z ~» C
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Therefore, the structured expressions (X then Y) on Z and Y on (X on Z) are equiv-
alent. |

Since the syntax of structured justifications restricts the use of the then operator to
the left hand side of an on operator, one can in general rewrite a structured expression
involving the then operator into equivalent ones which do not.

A number of other results on the properties of structured expressions are given in
the next proposition.

Proposition 6.6 For all structured expressions X, Y and Z, and formulae A and B,
the following results hold:

1. If X is not a then expression and X ~~ A and X ~> B then X ~» (A A B).
The expression (X on Y) on Z is equivalent to (X on Z) on Y.

The expression X and Y is equivalent to Y and X.

The expression X on (Y and Z) is equivalent to (X on Y) on Z.

The expression (X and Y) and Z is equivalent to X and (Y and 7).

(X then Y) then Z ~» (A = B) if and only if X then (Y then Z)~ (A = B).

NS S e

If (X on Z) and (Y on Z) ~> A then (X and Y) on Z ~~ A.

Proof: The first statement follows by induction on the structure of X. In the light of
proposition 6.5 we can assume without loss of generality that the expression X does not
contain the then operator. We need to consider the following three cases:

e The expression X is a formula: Therefore we are required to show that if X —* A
and X —* B then X —* (A A B) which follows by

X — (X AX) —* (AAX) —* (AAB).

e The expression X is some on expression Y on Z where if Y ~» P and Y ~ Py
then Y ~» (P1 A PQ), and if Z ~» P1 and Z ~ P2 then Z ~ (P1 A P2) for all
formulae P; and P». Now, since (Y on Z) ~» A then there is some formula C' such
that

Y~ (C=A) and Z~C

and since (Y on Z) ~» B then there is some formula D such that
Y~ (D= B) and Z~ D,

As a result,

Y~ (C= A) AN (D= B)
—* (CAD)= (AAB)

and
Z ~ (C AND)
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and therefore
Y on Z ~ (A A B).

e The expression X is some and expression Y and Z where if Y ~» P, and Y ~~ Py
then Y ~» (Py A P5), and if Z ~» P; and Z ~ P, then Z ~ (P; A P,) for all
formulae P; and P,. Now, since (Y and Z) ~» A then there are some formulae
Ay and Ay such that

Y ~ Ay, 7~ Ay, and (Ay ANAy) —" A
and since (Y and Z) ~» B there are some formulae By and By such that
Y ~ By, Z~ Bz, and (By A By)—*B.
As a result,
Y ~» (Ay ABy) and Z ~» (Az A Bgz)
and it is the case that

(AY /\By) A (AZ /\Bz) — (AY /\Az) A (BY /\Bz)
—* AANB

and therefore
Y and Z ~~> (AA B).

The next five statements in the current proposition are quite straightforward, and
their proofs are similar to that of proposition 6.5. The proof of the last statement is
given below.

If (X on Z) and (Y on Z) ~» A then it follows from the definition of ~» that there
must be some formulae H and I such that (X on Z) ~» H, (Y on Z) ~ I, and that
H AT —* A. Now, from (X on Z) ~ H we get that there is some formula J such that
X ~ (J = H) and Z ~ J, and from (Y on Z) ~~ I it follows that there is some K
such that Y ~ (K = I) and Z ~ K.

In order that (X and Y) on Z ~~ A, it is sufficient that there exist some formulae
U, V and W such that

e X U,

oY -V,

o 7~ W, and

o (UAV)—* (W = A),

so that:
XU Y~V (UAV)—=*(W=A)
(X and V) ~ (W = A) Z ~W
(X and Y) on Z ~ A

We choose the formulae U, V and W to be

U=(J=H) V=(K=I W=JAK
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and check that they satisfy the above four requirements:
e It is the case that X ~ (J = H), and that
oY ~s (K =1 )

e Since Z ~» J and Z ~ K, then Z ~» (J A K) by the first statement of this
proposition.

e It also follows that ((J = H) A (K = I)) —* ((J A K) = A), as shown below:

(J=H)AN (K =1)
— (~JVH)A(-KVI) (same NNF)
o (=J A=KV (=T AT)V (HA=K)V (HAT) (distributivity)
—* = JV=JV-KV(HAI) (weakening the first three disjuncts)
—* (=JV-K)V (HAI) (re-bracketing)
— (JAK)= (HAI) (same NNF).

Therefore, if (X on Z) and (Y on Z)~» A then (X and V) on Z ~» A. |

It should be noted that the converse of proposition 6.6(7) does not hold in general,
as seen by the following counterexample.

Example 6.2 (Counterexample to the Converse of Prop. 6.6(7)) It is the case
that (A and (B = C)) on (A = B)) ~ (A A C) holds, as

AN(B=C)— AN (-BVC)
— (AAN-B)V (ANC)
— (A= B)=(AACQC).

However, (4 on (A = B)) and ((B = C) on (A = B)) ~ (AAC) does not hold. Al-
though this statement seems implausible, we do not have the necessarily results to
show in a more formal manner that it does not hold. The required results are given in
chapters 7 and 8, and the above statement is shown to be false in example 8.5. O

6.6 Discussion

This chapter gives the definition of the syntax and semantics of structured straightfor-
ward justifications which state some of the first-order logic inferences used in deriving a
conclusion from a number of premises. These justifications, however, omit several sim-
ple inferences such as the instantiation of universally quantified variables and certain
manipulations on the structure of formulae. In chapter 8 we illustrate a mechanism
for checking structured justifications by looking for a proof of the conclusion from the
premises in a very restricted search space. The restriction on the search space depends
on the inferences which are explicitly stated in the justification. In the following chapter
we introduce a number of definitions and results which are used in showing that a proof
search based on the restrictions on the search space given in chapter 8 is sound and
complete according to the semantics of structured justifications given in this chapter.
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section on_symm_and_trans

given type ":’a";
let "R:’a — ’a — bool";

assume R_symm: "Symmetric R"
R_trans: "Transitive R"
R_ex: "Vx. dy. R x y";

theorem R_refl: "Reflexive R"
proof

simplify with Reflexive, Symmetric and Transitive;
given "x:’a";
there is some "y:’a" such that
Rxy: "R x y" by R_ex;
so Ryx: "R y x" by R_symm on Rxy;
hence "R x x" by R_trans on Rxy and Ryx;

qed;

theorem R_equiv: "Equivalence R"
<Equivalence> by R_refl and R_symm and R_trans;

end;

Figure 14: An SPL Proof Script using Structured Justifications.

Chapter 9 illustrates the mechanisation of a number of results in group theory in which
most of the results are justified by means of structured justifications.

Figure 14 gives an example of a simple SPL script which uses structured justifica-
tions. The same results given in this example are derived using unstructured justifi-
cations in the proof script in figure 5, page 56. Since structured justifications contain
more information which is relevant to the understanding of the proof, they are easier to
follow than unstructured ones. Since this information can also be used to restrict the
search space during proof checking, they can also be machine checked more efficiently.
Furthermore, the implementation of structured justifications during proof development
does not need much more effort than the implementation of unstructured ones since the
detailed inferences which would make the justification tedious to implement are omitted.

One problem with the use of structured justifications is that there is no straightfor-
ward way of using the last derived result implicitly in the current justification. In Mizar
one can use the then construct to show that the previous result is used automatically
in the current justification. For example, one can implement the proof:
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"R x y" by R_ex;
then "R y x" by R_symm;
then "R x x" by R_trans, Rxy;

in which the result "R x y" is used implicitly as a premise in the justification of "R y x",
and similarly, "R y x" is used automatically in the justification of "R x x". In general,
such a mechanism cannot be used with structured justifications because one is required
to give some information on how the premises are being used. In the SPL language used
in the case study described in chapter 9, an exclamation mark (!) is used to denote the
last derived result, and statements like then, hence, therefore and so are ignored during
proof checking. The above proof fragment can be implemented as follows:

"R x y" by R_ex;
then "R y x" by R_symm on !;
hence "R x x" by R_trans on Rxy and !;

Although structured justifications can be more readable than unstructured ones, the
inability to use the last derived result automatically may reduce their readability. In
figures 15 and 16 we give two SPL proofs of the nonobv theorem. The proof in figure 15
uses unstructured justifications in which the then and hence statements denote the
fact that the previously derived result is used implicitly in the current one. The proof
in figure 16 uses structured justifications in which an exclamation mark denotes the
previously derived result. For completeness, figure 17 shows a proof of the same theorem
using structured justifications without !. It can be noted that most of the use of the
exclamation mark in the proof in figure 16 is of the form:

. by ... on !

This is also observed in the proofs implemented in the mechanisation of group theory,
and therefore one can define the then construct such that:

then C by exp
is an abbreviation of
C by (ezp) on !

We will see in section 8.2.4 that the problem of checking the validity of the structured
justifications defined in this chapter is undecidable. In particular, checking whether two
formulae are implicitly derivable from each other (i.e., whether A —* B for arbitrary
formulae A and B) is undecidable. This suggests that the implicit derivability defined
in section 6.4.1 is too strong and therefore cannot in general be considered to represent
trivial derivations. Most of the structured justifications that were implemented in the
case study (chapter 9) are rather easy to machine check, and probably only a small
(possibly decidable) subset of the implicit derivations are actually used in practice.
Section 8.5 illustrates how the search space considered during proof checking of the
scripts implemented in the case study is restricted to a finite one. As a result, only a
decidable subset of the explicit derivations discussed in this chapter could be checked
effectively. Alternative definitions of implicit and explicit inferences in the pure first-
order logic may be considered in future.

One of the motivations for the definition and use of structured justifications in
a declarative language is to explore whether simple results can be derived by a less
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assume sr:
sq:
tp:
tq:

"Wx y. P(x,y) V Q(x,y)"
"Vx y. Q(x,y) = Q(y,x)"
"Vx y z. P(x,y) A P(y,2) = P(x,z)"
"WVx y z. Q(x,y) A Q(y,2) = Qx,2)";

theorem nonobv: "(Vx y. P(x,y)) V (Vx y. Q(x,y))"

proof

given "a:’a" and "b:’a";
assume 1: "-P(a,b)";
then 2: "Q(b,a)" by sr, sq;

given "x:’a" and "y:’a";

auxstep:

proof

"Wz. Q(a,z)"

given "z:’a";
"=P(z,b) = Q(a,z)"

proof

assume "-P(z,b)";
then "Q(z,a)" by sr, tq, 2;
hence "Q(a,z)" by sq;

end;

hence "Q(a,z)" by sr, tp, 1;

end;

"Q(x,a)" by auxstep, sq;
hence "Q(x,y)" by auxstep, tq

qed;

Figure 15: An SPL Proof of nonobv using Unstructured Justifications.
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assume sr: "Vx y. P(x,y) V Q(x,y)"
sq: "Vx y. Q&x,y) = Q@,x)"

tp: "Vx y z. P(x,y) A P(y,z) = P(x,2)"
tq: "Vx y z. Q(x,y) A Q(y,z) = Qx,2)";
theorem nonobv: "(Vx y. P(x,y)) V (¥Vx y. Q(x,y))"
proof

given "a:’a" and "b:’a";

assume 1: "-P(a,b)";

then 2: "Q(b,a)" by sr then sq on !;

given "x:’a" and "y:’a";
auxstep: "Vz. Q(a,z)"
proof
given "z:’a";
"-P(z,b) = Q(a,z)"
proof
assume "-P(z,b)";
then "Q(z,a)" by sr then (tq on 2) on !;
hence "Q(a,z)" by sq on !;
end;
hence "Q(a,z)" by (sr and !) on (tp on 1);
end;

"Q(x,a)" by sq on auxstep;
hence "Q(x,y)" by tq on auxstep and !;

qed;

Figure 16: An SPL Proof of nonobv using Structured Justifications.
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assume sr: "Vx y. P(x,y) V Q(x,y)"
sq: "Vx y. Q&x,y) = Q@,x)"

tp: "Vx y z. P(x,y) A P(y,z) = P(x,2)"
tq: "Vx y z. Q(x,y) A Q(y,z) = Qx,2)";
theorem nonobv: "(Vx y. P(x,y)) V (¥Vx y. Q(x,y))"
proof

given "a:’a" and "b:’a";

assume 1: "-P(a,b)";

then 2: "Q(b,a)" by sr then sq on 1;

given "x:’a" and "y:’a";
auxstep: "Vz. Q(a,z)"
proof
given "z:’a";
auxstep_1: "-P(z,b) = Q(a,z)"
proof
assume auxstep_1_1: "=P(z,b)";
then auxstep_1_2: "Q(z,a)" by sr then (tq on 2) on auxstep_1_1;
hence "Q(a,z)" by sq on auxstep_1_2;
end;
hence "Q(a,z)" by (sr and auxstep_1) on (tp on 1);
end;

3: "Q(x,a)" by sq on auxstep;
hence "Q(x,y)" by tq on auxstep and 3;

qed;

Figure 17: An SPL Proof of nonobv using Structured Justifications without !.
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implementation-based mechanism than that given by the use of a theorem proving al-
gorithm which defines a notion of obvious inferences (see section 6.1, page 100). The
current definition of the semantics of structured justifications does not depend on an
algorithm for checking the justifications. Instead, the semantics is given in terms of triv-
ial manipulations on first-order formulae, and in terms of three quite simple inference
rules. Furthermore, the mechanism for restricting the search space during the proof
checking of structured justifications does not depend on the proof calculus or search
strategy used. These remarks therefore suggest that the definition of structured justifi-
cations is independent of the algorithm used in checking them. However, the problem
of checking the validity of structured justifications is undecidable and thus one needs
to impose implementation-based bounds on the search space considered during proof
checking. Because of this, the semantics of structured justifications that can be machine
checked in practice is not entirely implementation independent.



Chapter 7

A Coloured First-Order Logic

7.1 Introduction

This chapter gives the definition of a pure first-order logic in which formulae are an-
notated with colours. The annotations are used to restrict the search space during
automated theorem proving. The definitions and results given here are used in the next
chapter to show how the inferences stated explicitly in structured straightforward justi-
fications (chapter 6) can be used to reduce the effort required during the proof checking
process of such justifications.

The process of automating the discovery of a proof of a first-order sentence, which
can be called the conclusion or goal, from a number of assumptions, or hypotheses,
usually involves the refutation of the set of sentences consisting of the assumptions and
the negation of the goal. The refutation is done by showing the inconsistency of the set
of sentences, that is, showing that one can derive falsity (L) or an inconsistent pair of
sentences X and —X. In general, one can restrict the refutational process to consider
only the literals of a given set of sentences. This can be seen for instance from the
definition of a consistency property given in (Fitting 1996) and shown here:

Definition 7.1 (First-Order Consistency Property) Let C be a collection of sets
of first-order sentences. It is called a consistency property with respect to a first-order
language L, if for every set S € C:

1. For every literal A in L, not both A and —A are in S.

2. The literal L ¢ S.

3. Iff o Ap € S then SU{p,9} € C.

4. Iff o Vep € S then SU{p} eCor SU {9} €C.

5. If Vz.p € S then S U {p{z — t}} € C for every closed term ¢ of L.

6. If 3z.p € S then SU{p{z — p}} € C for some parameter p of Lpypr (the definition
of Lpsg and parameters is given in section 1.2.1). O

Note that in the first condition in the above definition, the formulae A and —A are
literals. It is also shown that a set of sentences is satisfied in some model if it is
consistent. This result is given by the model existence theorem:

121



CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 122

Theorem 7.1 (Model Existence Theorem) If C is a consistency property with re-
spect to a first-order language L, and S € C then S is satisfiable (in some Herbrand
model for Lpag).

Proof: see for instance (Fitting 1996). [ |

Intuitively, a set of sentences can be shown to be satisfiable by checking that all the
sets of literals which can be derived from it are consistent. Conversely, a refutational
process checks that an inconsistent set of literals can be derived from the given sentences.

In this chapter we give a mechanism for restricting the refutational process by check-
ing the inconsistency of certain literals only. This is done by annotating the literals in
a given set of sentences with colours and allowing only pairs of literals of particular
colours to be considered inconsistent. The restriction is given through the definition
of a connectability relation between colours: two literals are allowed to be considered
inconsistent if and only if they are complementary and their colours relate with each
other according to the connectability relation.

This mechanism can be used to restrict the way the given sentences can be used
during theorem proving. This results in a more efficient proof checking process since a
smaller search space is considered. For instance, let us consider the proof of the sentence
X from the assumptions Y = X and Y using the connection method (Andrews 1981;
Bibel 1981) (see also section 2.3.1). This involves the refutation of the three clauses

Y -YVX =X

Yy -)X

—y
The literals in the clause corresponding to the implication Y = X are connected with
the literals in the other clauses, =X and Y, such that every path in the above matrix has
a connection. In general, the matrix proof of some goal from two hypotheses using the
elimination of implication has the above form: the literals in the clauses corresponding
to the implication connect with the literals of the other clauses. Therefore if we are
given the information that a conclusion C' can be derived from two sentences I and .J
by the elimination of implication in I by J, then one can restrict the proof search to
only look for connections between the literals in the clauses of I with the literals in
the clauses of =C and J. Note that in general, there may be literals in the clauses of
—C which can be connected with the literals in the clauses if J. By using the above
mentioned restriction, such connections are ignored during proof search and therefore a
smaller search space is considered.

The particular restriction on the proof search mentioned in the previous paragraph
can be done by annotating the literals in I, C' and J with the colours red, green and
blue respectively, say, and allowing the connection of red literals with green and blue
ones only. In general, the inferences stated explicitly in structured straightforward
justifications can be used to restrict the search space considered during proof checking
using the colouring mechanism described in this chapter. This restriction is illustrated
in chapter 8.

In the next section we introduce the basic definitions of the first-order logic with
coloured formulae. In section 7.3 we show how a set of coloured sentences can be

by the following matrix:
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mapped into an equivalent set of uncoloured sentences, and in section 7.4 we show
how certain recolourings of the formulae preserve the consistency or inconsistency of
coloured sentences. An interpolation theorem for the coloured first-order logic is given
in section 7.5, and an undecidability result is given in section 7.6. A brief summary of
this chapter is given in section 7.7.

7.2 A First-Order Logic with Coloured Formulae

7.2.1 Basic Definitions

In this section we introduce a set of colours P, and a first-order language whose formulae
are coloured with P. Atomic formulae can be associated with only one colour, so it is
enough to annotate only the predicate symbols with colours since there is exactly one
predicate symbol in every atom.

An atomic formula in this language is a pair consisting of an uncoloured atom and
a colour.

Definition 7.2 (Palette) A palette is a countable set of colours. O

Note that in general, the role of the colours is to restrict the search space during a
refutational proof, and therefore only a finite set of colours is considered during proof
search (since proofs are finite). However, we need a palette to be countably infinite in
certain cases where, for instance, we need the existence of some new colour j which is
not in some given palette P (for example, in definition 8.4 in the next chapter). In
this chapter and in chapter 8, all sets of colours are infinite unless otherwise stated. A
coloured first-order language is now defined as follows.

Definition 7.3 (Coloured Language) Let P be a palette, a coloured first-order lan-
guage is a first-order language L(ZZ, Y, X) where X is a collection of relation symbols
with fixed arities, % is a collection of function symbols with fixed arities, X is a set
of variables, and X% is the collection of relation symbols of the form (P,4) with arity
n, where P is in Y g, the colour 7 is in P, and n is the arity of P. For simplicity we
will refer to the language L(X%, Xr, X) by L”. We represent a coloured predicate (P, 1)
with P’ O

For simplicity, we assume that all formulae are in negation normal form (NNF) and
that expressions such as A = B and —(A = B) are syntactic sugarings for =A V B
and AV —B. The set of relation symbols, R, contains the nullary predicate T and the
literals T() and =T () are denoted by T and L respectively. It should be noted that the
language L7 does not contain the literals T and L, but rather literals of the form T*
and L' for i € P.

We also give the definition of a connectability relation between colours. This relation
determines which complementary literals are allowed to be regarded as inconsistent
during a refutational proof search: a complementary pair of literals will be considered
to be inconsistent if their colours relate with each other according to the connectability
relation considered. Since the complementary relation over literals is symmetric, the
connectability relation is required to be symmetric as well. We can also assume that a
connectability relation is finite since only a finite number of sentences (and thus colours)
are used in any particular proof.
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Definition 7.4 (Connectability Relation) A connectability relation is a finite sym-
metric relation over a set of colours. If K is a connectability relation and 4, j are two
colours, then we use the notation ¢ ~x j to denote the fact that ¢ and j relate with each
other in K (i.e., (4,7) € K). O

A connectability relation is usually specified using the following definition and no-
tation.

Definition 7.5 (Full Connection) Given two finite sets of colours P; and Py we
define the full connection between P; and Ps, denoted by P; <> Pa, as the connectability
relation in which all the colours in P; relate with all the colours in P and vice-versa:

Pi > Py = (P1 x Pa) U (P2 x P1).

For simplicity we denote {i} <> P, {i} < {j},and P <> {i} by i > P, i <> j,and P <> i
respectively, where P is some palette and ¢ and j are colours. We also use the notation
P <> Py > P3 <> - <> Py < Py, to represent the relation

Pir>PoUPy > PygU---UPp_1 < Pp. O

The atoms of an uncoloured first-order formula can be annotated with some colour
using the following mapping.

Definition 7.6 (Colouring Formulae) Given a colour ¢ € P and a formula ¥ in an
uncoloured first-order language L, we define the formula U’ in L as follows:

(P(tla 7tn) b= Pz(tla 7tn)

where P is a predicate, ¢ and ¢ are formulae and z is a variable. We will refer to the
set {®' | & € S} by 5. O

We also give the following definitions on coloured formulae, sets of coloured formulae,
and connectability relations.

Definition 7.7 (Having some Colour, Homogeneously Coloured) We say that
a formula ¥ € L” has colour i if there is some ® € L such that ¥ = &. A formula is
homogeneously coloured if all its literals have the same colour. O

Note that a formula U is homogeneously coloured if and only if & = & for some
uncoloured formula ® and colour 1.

Definition 7.8 (Colours in a Formula, new to a Formula) A colour i is said to
be in the coloured formula ® if there is some atom A’ in @; it is in the set S if there is
some @ in S such that 7 is in ®, and it is in the connectability relation K over P if there
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is some j € P such that ¢ ~x j. A colour is new to @ if it is not in ®, and we denote
the set of colours in ® by €(®). We give similar definitions for ‘new to S’, ‘new to K,
¢(S) and €(K). O

Definition 7.9 (Connectability Relation on Sets) Given two sets S; and S of
coloured sentences and a connectability relation K, we say that S; relates with S
in the extension of K to sets, and write S; ~x So, if there are some colours i € €(S})
and j € €(S2) such that i ~ j. O

Definition 7.10 (Uncoloured Projection) Let B = A’ be a coloured literal. The
uncoloured projection of B (denoted by BY) is the literal A. We also define ¢¥ and SY
as the uncoloured counterparts of a coloured formula 1 and a set of coloured formulae
S respectively. O

Definition 7.11 (Range) Given a colour i and a connectability relation C, we define
the range of 7 in K (and denote it by /C(7)) as the set of colours in K which relate to

K@) ={jli~xi} O

Definition 7.12 (Restriction of I to S) Given the connectability relation K and
set S of coloured formulae, the restriction of K to S, also called the subrelation of IC
relevant to S, is the connectability relation K[S] defined as follows:

K[S] = {(i,4) | i ~x j and both 7 and j are in S}. O
The following example illustrates the definitions given in this section.

Example 7.1 Let the palette P = {i,4,k,l} where i, j, k and [ are distinct colours,
and let us denote the connectability relation {7, 5} <> {k,l} by K;. Then

i~y k i~y l J~i, k g~ L.
Also, let K9 =1 <> j < k, then
LKy J T K ke
Then Ky (i) = {k,l} and Ka(j) = {7, k}. Now let

S, ={A",(BAC)}, and
Sy = {A', BI A C*},

then [ is new to S7, to So and to Ko but it is in ;. We also have that

S1 %k, St S1 =i, S2 Sy =i, So

Sl %}Cz Sl Sl %;C2 SQ SQ %;C2 SQ
and that
Ki181] =1} KalSi] =i < j Ki[S2] = {i,j} < k K2[S2] = Ka.

Finally, the uncoloured projection S¥ = S4 = {A, B A C}. O
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7.2.2 The Consistency of Sets of Coloured Formulae

It should be noted that since the coloured language L7 is defined as the first-order
language L(X%,¥r, X), the same notions of validity (for formulae) and satisfiability
(for sets of formulae) that apply in the standard (i.e., uncoloured) first-order logic still
apply for L”. For example, the set S = {A’ —AJ} is satisfiable if i # j as the two
propositions A’ and A7 are different. However, we require a notion of consistency with
respect to some connectability relation . In particular we want the set S above to be
inconsistent with respect to K if and only if ¢ ~x j. Basically, we define a K-consistency
property which is equivalent to the uncoloured definition of consistency (Definition 7.1)
with the exception that a complementary pair of literals make a set inconsistent only
if their colours relate in K. Similarly, we deem a set of coloured sentences containing a
literal L* to be inconsistent if i is in the connectability relation considered.

Definition 7.13 (Coloured Consistency Property) Let C be a collection of sets of
coloured sentences, and I a connectability relation. Then C is said to be a K-consistency
property with respect to a coloured language L7 if for every set S € C the following
conditions hold:

1. For every pair of colours 4, §, such that ¢ ~x j, and every literal A € L, not both
A" and —A7 are in S.

2. For every colour i in K, the literal 1% ¢ S.

If p Ap € S then SU{p,9} €C.

L

If o Vip € Sthen SU{p}eCor SU{y} eC.
5. If Vz.p € S then S U {p{z — t}} € C for every closed term ¢ of L.

6. If 3z.p € S then S U {p{z — p}} € C for some parameter p of Lpsg. O

Note that conditions 3—-6 of the definition of a [C-consistency property given above are
identical to those of definition 7.1 of a consistency property. We now define C-consistent
and K-inconsistent sets of sentences, and give a number of examples.

Definition 7.14 (Consistent Sets of Coloured Formulae) A set of coloured sen-
tences S is said to be consistent with respect to a connectability relation K, or simply
KC-consistent, if it is a member of some K-consistency property, otherwise it is said to
be inconsistent with respect to K (or K-inconsistent). O

Example 7.2 (Consistent and Inconsistent Sets of Coloured Formulae)

e The set {X* -X7, X*¥ =X} is consistent with respect to i <> kU j < [ but it is
inconsistent with respect to ¢ <> [.

e The set {X* A —X7} is i <+ j-inconsistent.

e The set {X*, (X = Y)?,-Y*} is {i,5} <> k-consistent but it is not i < j <> k-
consistent. g

The following proposition follows immediately from the definition of the consistency
of a coloured set of sentences.
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Proposition 7.1 Let S be a set of coloured sentences and K a connectability relation.
If all the colours in S relate with each other, that is i ~x 7 for all i, j in S, then S is
KC-consistent if and only if SY is consistent.

Proof: Trivial; by definitions 7.1 and 7.13. |

It is often convenient to represent a set of coloured formulae and a connectability
relation as a single entity. This is given by the following definition of a coloured first-
order problem.

Definition 7.15 (Coloured First-Order Problem) A pair (S, ) consisting of a set
of coloured sentences S and a connectability relation K is called a coloured first-order
problem, or simply a coloured problem. We say that (S,K) is consistent if S is K-
consistent, otherwise (S, K) is said to be inconsistent. O

7.3 From Coloured Formulae to Uncoloured Ones

In this section we define a mapping from sets of coloured sentences into ‘equivalent’
sets of uncoloured ones. More precisely, given a connectability relation I over a set of
colours P, we define a mapping

Dx : L(X%,%p, X) = L(Zy, BF, X)

where X', is some collection of predicate symbols with fixed arities, such that a set S of
coloured sentences is KC-consistent if and only if Dx(S) = {Dx(®) | & € S} is consistent,
or equivalently satisfiable. We call the mapping Dx a decolourisation mapping. The
main application of this mapping is to be able to extend a number of results in first-order
logic to the coloured logic by means of their representation in first-order logic.

7.3.1 The Definition of a Decolourisation

The required mapping is given in definition 7.17 and maps a literal in L(Zg, Yr, X) to
a literal in L(XJ};><7D U{T,L},Er,X). The atoms in the formulae of the range of this
mapping are annotated with a pair of colours. For simplicity, we will refer to a formula
(1) by . Please note that if i # 7, then o # .

Before we give the definition of the mapping Dx we first consider the conditions
it needs to satisfy for the simple case when K = (i < j), and i # j. One important
condition is that for every literal A

Dy (A") = =D (-A7),

such that when it is applied to the elements of the K-inconsistent set S = { A, =47} we
get . ‘ . ‘
Di(S) = {Dx(A4"), Dx(=47)} = {~Dx(=A47), D (-47)}

which is unsatisfiable. Similarly, we also need that Dy (—A?) = =Dy (A7) so that the
set {—A" A7} is mapped into an unsatisfiable set. Other properties of this particular
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mapping should include:

Dx(A") # -Dx(=A"), and
Di(A)) # —Dx(=A),

so that the sets {A*, A’} and {A7, A’} are mapped into satisfiable sets (since i 7t i
and j £ j).

Now, given a coloured literal B?, we define the literal (B*)" in L”*7 as the literal
B coloured with a pair containing 7 and j (that is, either (i,7) or (j,7)) so that it is
complementary to the literal (—B7)",

Definition 7.16 (Decolourisation according to a Single Colour) Given a literal
B' in the coloured language L(X%, %, X), and a colour j € P, the literal (B*)*7 in the
language L(X5*P U{T, L}, Y, X) is defined as follows:

(BYY =T,if B=T

=1,ifB=_1
= AV if B= A, for atomic A # T
= AV if B=-A, for atomic A # T O
In other words, we have
(-l—i)nj - T (J_z')nj —_—

(AZ)m] _ Aij (_|Ai)nj — —|Aji,

where A is atomic and A # T.
It is easy to check that for the case of K = {i <> j} if the mapping Dx is defined as

De(Al) = (4)7
De(4) = (4)7

for any literal A then it satisfies the conditions discussed earlier this section.

Example 7.3 The following are some examples of the use of the mapping X ¢ where
X is a literal and c a colour.

{(A (mA)™MY = {AY A7} and is thus satisfiable.

{(AHYM | (~A7)") = {AY ~AY}  and hence unsatisfiable.

{(Aj)nia ("Ai)mj} = {Aji, —|Aji} and hence unsatisfiable.

{(Aj)mi, (—'Aj)ni} = {Aij, —|Aij} and hence satisfiable. O

We usually write B* instead of (B)". We will now see that B and (—B7)"
are indeed complementary literals, and that the mapping (*) is injective on the set of
coloured literals A where c is a colour and A is a literal other than T and L.

Proposition 7.2 For every literal B, it is the case that —(B*™) = (=B7)"™.
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Proof: We consider the following four cases:

e Let B=TT, then

-(T) = =T = 1
and (- T = 1Y = |,
e Let B= 1, then o
(L) = =1L =T
and (-1 = T = T.

e Let B = A for some atom A # T. Then

~(A) = —(4Y),
and (—lAj)ni = —|(A”)

e Let B = —A for some atom A # T. Then

(A7) = S(=(AT) = AT
and (=(~A))0 = (A)N = AT

Therefore, ~(B*) = (~BJ)" for every literal B’. [ |

Proposition 7.3 For all literals By, B, and colours i, j, m and n, if neither By nor
By are T or L, and if B{”? = BJ*™™ then By = By, i =m and j = n.

Proof: From the definition of Bimj and By*™™ we can assume that if Bimj = By
either both By and B, are positive literals or else they are both negative:

e If both By and B, are positive then By = Ay and By = A for some atoms Ay
and As. So B{™Y = A"V = AY and B = AT = AT, Therefore A = Ay,
1 =m and j = n.

e Now, if both B; and B3 are negative, then By = -A; and By = -4, for some
atoms A; and Ay, and so B{"/ = (=A4})"V = =AJ" and BP" = (-AD)™ =
—A3™. And again A; = Ay, j =n and i =m.

In either case By = By, i = m and j = n. |

We now consider the conditions which Dx needs to satisfy if K contains more than
one pair of colours. Basically if ¢ ~x j1, ¢ ~x Ja2, .-+, & ~i Jjn, We need the sets
{Di(A?), Dxc(~AJ=)} to be unsatisfiable for all z € {1,... ,n}. Furthermore, if i £ k
then the set {Dx(A?), Dic(-A*)} has to be satisfiable (even if i = k). We define Dy (A?)
to be the conjunction of all the literals in {A*™* | i ~x k}, so that if i ~x 4, then one of
the conjuncts in Dy (A?) (which is A7) is the complement of one of the conjuncts in
Dic(m A7) ((AI)" = =(A*)), and thus the set {Dx(A*), Di(—~A7)} is unsatisfiable.
Given a connectability relation K and a formula @, the result of the required mapping
Dy is defined below as ® X< where < is some total ordering on the palette P. Note
that since P is a countable set of colours, then there is at least one such ordering. Any
total ordering < on P can be used in the following definition. As usual, we write 7 < j
ifi <jandi#j,andi>jandi>jif j <iand j < i respectively.
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Definition 7.17 (Decolourisation) Given a coloured formula ® in the coloured lan-
guage L(X%,SF, X), a connectability relation K, and a total ordering < on P, the
formula ®%<, or simply ®X, in L(EZXP U{T,L},Ep, X) is defined as follows:
(AN = T,ifi ¢ €(K)
= /\ A otherwise

J<[K(@)]<
I N R )
(bv ) Ks = (¢N€<> (p7%<)
(Vzp)™%s = Vi (p7F5)
Bre)™%s = 3n.(pF5)

where
A PG)=P(z1) A= A P(zy)

J[z1yee 0]

and [KC(@)])< is the finite list containing the colours in the range IC(¢) sorted in ascending
order according to the ordering <. If S is a set of coloured formulae, we will refer to
the set {®"X< | d € S} by §7F<. O

In the following, we write XX instead of XX < whenever the total ordering < can
be understood from the context. We will also write X*°X instead of (X*)"* whenever
there is no danger of ambiguity.

Example 7.4 Let the palette P = {4, j,k,[} where i < j < k <[, and let X be atomic
and not equal to T

1. If S = {X* A=X'} and K; =i ¢ j then

SO = (XU A =X,
2. If So = { X', (=X VY)I,=Y*} and Ky =i <+ j <+ k then

Sz = (XU (~XU A =XKT) v (VI A YIR), Sy IR,
3. If S3 = { X, = XJ, Xk =X'} and K3 =i <> kU7 ¢ [ then
ng\’Cg — {Xik,ﬁle’in,—lle}_
4. If Sy = {X* A X7, =Xk vY'} and K4 = {i,7} < k then
Sk = {x* A XIF (- X A=XTF) v T

5. If S5 = { X', =X} and K5 = i ¢ i then

S;ﬂIC5 — {Xn /\—|Xii}.
6. If Sg = {X?, - X"} and K¢ =i > j then

SOke = (XU A =X, O
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We now give the following definition of satisfiability by decolourisation.

Definition 7.18 (Satisfiable by Decolourisation) A set S of coloured first-order
formulae is said to be satisfiable with respect to the decolourisation according to IC, or
simply K-satisfiable, if S is satisfiable. Similarly, S is K-unsatisfiable if S is not
satisfiable. O

Example 7.5 (Satisfiable and Unsatisfiable sets by Decolourisation) The sets
in Example 7.4 above are as follows: the set S7 is KCq-unsatisfiable, Sy is Ko-unsatisfiable,
S3 is K3-satisfiable, Sy is KC4-satisfiable, S5 is KCs-unsatisfiable, and the set Sg is Kg-
satisfiable. O

7.3.2 Correctness of the Decolourisation Mapping

In this section we will show that the decolourisation mapping given in definition 7.17
above is correct. In other words, we will show that a set is satisfiable by decolourisation
if and only if it is consistent according to the connectability relation considered.

First of all, it is straightforward to show that the following results hold.

Proposition 7.4 Let S be a set of coloured sentences and KC a connectability relation
then:

1. If (o ANp)' € S and S is K-satisfiable then S U {¢', '} is K-satisfiable.
2. If (pV1h)' € S and S is K-satisfiable then SU {¢'} or SU {4’} is K-satisfiable.

3. If (Vz.p)! € S and S is K-satisfiable then S U {p{x — t}'} is K-satisfiable for
every closed term t.

4. If 3z.0)" € S and S is K-satisfiable then S U {o{z — t}'} is K-satisfiable for

some closed term t.

5. If (Fz.p)! € S and S is K-satisfiable then S U {p{x — t}'} is K-satisfiable for

every closed term t whose root is new to S.

6. The set SU{Vx.0'} is K-satisfiable if and only if SU{p{x — t}*} is K-satisfiable
for all closed term t.

7. The set SU{3x.0'} is K-satisfiable if and only if SU{@p{x — t}'} is K-satisfiable
for every closed term t whose root is new to S U {3z.0'}.

8. Let i, j be colours such that i ~x j. If there is some sentence @ such that @' € S
and ~pJ € S, then S is K-unsatisfiable.

9. Let i€ €(K), if L' € S then S is K-unsatisfiable.

Proof: For each case, the proof follows from the definition of K-satisfiability and the
counterpart of the proposition for an uncoloured language. We illustrate below the
proof for the first case.
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Let (¢ A4)' € S, and let 7K be satisfiable (i.e., S is K-satisfiable).

Now, (g AY) € S = (pAp) K e g7k
= ((pinlC ijmK) € SmIC
= SN Y {pPF g KD s satisfiable as 7K is.

= SU{¢", '} is K-satisfiable.

The proofs of the other cases proceed similarly. |

Given this proposition, it follows that every K-satisfiable set of coloured sentences
is IC-consistent.

Theorem 7.2 (K-Satisfiability Implies K-Consistency) For every connectability
relation IC, the collection of all K-satisfiable sets is a K-consistency property.

Proof: Given K then for any K-satisfiable set of coloured sentences, all the conditions
in Definition 7.13 hold by Proposition 7.4. |

To deduce the converse of this theorem we need to show that given a K-consistency
property C, all the sets in C™* = {SF | § € C} are satisfiable. This task would be
quite straightforward if we could show that C is a consistency property, but in general
this is not the case. The reason for this is that some of the literals in C are mapped into
conjunctions in C* and as a result the third condition in definition 7.1 may not hold.
That is, if SU{@ A9} € C™F then it may not be the case that SU{p A, p, 1} € COF.
An example of this is given here.

Example 7.6 (C™F is not a Consistency Property) Let the set
S = {A", BI v -4AF B,
and the connectability relation K =i <> j <> k with i < 7 < k, so that
Sk = [AY (BI A BIF) v ~ A% BIE A BIkY,

Note that although the singleton set {S} is a K-consistency property, {S*} is not a
first-order consistency property, as it does not contain the set S°% U {B7? Bi*}. O

However, we can extend the set {S%} in example 7.6 above by the set of formulae:
SN U{BY, BI*} = {AY, (B A B7%) v = ATF B7' A BIF, BT, BI%}

such that {S™F, §°% U {BJ BI¥}} is a consistency property. In general, given a K-
consistency property C, we can always construct a first-order consistency property con-
taining C*. Unfortunately, a precise definition of the required construction is quite
elaborate and one needs a lengthy proof to check its correctness. The following theo-
rem has its proof sketched below, and the sceptical reader is directed to the detailed
presentation in Appendix C.1.
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Theorem 7.3 (K-Consistency Implies K-Satisfiability) If a collection of coloured
sentences C is consistent with respect to some connectability relation K, then every set

in C is KC-satisfiable.

Proof (Sketch): Let C™* be {SX | § € C}. Now let C’' be some set which extends
CF such that for all SU {o Ay} € C', the set S U {p A1), 0,4} € C'. Then C' is a
consistency property as it satisfies all the conditions in definition 7.1. Now, for every
set S € C, it follows that S € ¢°F C ¢'. So S7F is satisfiable and thus S is K-
satisfiable. A more detailed proof is given in appendix C.1 where it is shown how the
required set C’ can be constructed from C. |

Due to theorems 7.2 and 7.3, the notions of K-satisfiability and X-consistency are
equivalent. Thus all the results which hold for K-satisfiability (and in particular those
given in proposition 7.4) also hold for KC-consistency. The equivalence of IC-consistency
and C-satisfiability is stated in the following theorem, and some applications of this
result are given in the next section.

Theorem 7.4 (K-Satisfiability is Equivalent to K-Consistency) For every set of
coloured sentences S and a connectability relation K, then S is K-satisfiable if and only
if it is a member of some K-consistency property.

Proof: follows from theorems 7.2 and 7.3. [ |

7.3.3 Applications

The first result derived below in this section allows us to show that a set of coloured
sentences is consistent according to some connectability relation given the assumption
that it is known to be consistent according to some other connectability relation. Note
that given two connectability relations &y, Ko and a ICi-consistent set S, then in order to
show that S is also Ks-consistent one needs only to show that the first two conditions in
definition 7.13 hold since conditions 3-6 do not depend on the particular connectability
relation being considered. This is given by the following proposition and is used in the
proof of propositions 7.6 and 7.7.

Proposition 7.5 Let K1 and Ko be two connectability relations. In order to show that
every Ki-consistent set is also Ko-consistent it is sufficient to show that:

1. For every Ki-consistent set S, colours i, j and literal A, if i ~ic, 7 then not both
At and —=A7 are in S.

2. For every Ky-consistent set S and colour i € €(K3), L' ¢ S.

Proof: Let C be the set of all KC-satisfiable sets of coloured sentences. Then C is the
set of all Ki-consistent sets by theorem 7.4 and is also a Ki-consistency property by
proposition 7.4. If we assume further that the above two conditions hold then C is a
Ko-consistency property as well. This follows from the fact that the first two conditions
of definition 7.13 correspond to the above assumptions, and conditions 3-6 follow from
the fact that C is a Kq-consistency property. |
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We can now use the proposition above characterising Ko-consistency in terms of
K1-consistency to show that a set consistent according to some connectability relation
K1 is also consistent according to any subrelation of ICi. Intuitively, the connectability
relation is a restriction on which literals can be used in showing that a set is inconsistent.
If a set cannot be shown to be inconsistent according to a particular restriction, then it
cannot be shown to be inconsistent according to a stronger restriction.

Proposition 7.6 Given a set S of coloured sentences and connectability relations Ky
and ICo such that ICo C Ky, if S is KCq-consistent then it is also Ko-consistent.

Proof: Let S be K;-consistent, and let Ko C 5.

1. We show that for every colours i and j such that i ~x, j, if the literal A* € S
then —AJ ¢ S. Now, since Ko C K it follows that ¢ ~x, j and so not both Al
and - A7 are in S.

2. For the second case we need to show that if i € €(K3) then 1* ¢ S. Now, if
i € €(Ks3) then i € €(K1) and therefore 1° ¢ S as S is Kj-consistent.

Hence, it follows that S is Ko-consistent by proposition 7.5. |

The role of the next proposition is to allow us to simplify a given problem (S, K)
into one which considers only the subset of & which is relevant to S, that is (S, [5]).

Proposition 7.7 A set S of coloured sentences is K-consistent if and only if it is K[ S]] -
consistent.

Proof: If S is K-consistent, then it is also K[S]-consistent by proposition 7.6 as K[S] C
K. Now, let S be K[S]-consistent.

1. We need to show that for any literal A and colours i, j such that i ~x 7, if A € S
then A7 ¢ S. If we assume that there is some literal A such that both A’ and
—AJ are in S then the colours ¢ and j are in S and so0 @ ~k[g) j, which contradicts
the assumptions that both A® € § and —A7 € S and that S is K[S]-consistent.

2. We show that if i € €(K) then 1? ¢ S by contradiction. If 1? € S and i € €(K)
then i is also in €(S) and hence in €(/C[S]) as well. But once again this contradicts
the assumption that S is K[S]-consistent.

Hence, it follows that S is K[S]-consistent by proposition 7.5. |

7.4 Changing the Colour of Formulae

The colours in a coloured problem (.S, ) are simply a mechanism for identifying which
complementary literals in S are allowed to contribute to the refutation of S. The actual
names of the colours in the problem (S,K) is irrelevant and one can rename some
colour 4 in (S,K) to some new colour which is not in the problem without affecting
the consistency of (S, /C). In this section we give a number of definitions which allows
us to recolour literals, and show how the consistency of a problem may be affected by
recolouring certain literals in it.
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7.4.1 The Definition of Recolouring Mappings

A recolouring mapping is defined below as a mapping which changes all, or some of, the
colours in a formula, set or problem to some single colour.

Definition 7.19 (Recolouring Mapping) Given some coloured literal A and colour
4, we define the j-recolouring of A as (A¥)7 and denote it by A=/, Similarly, given a
formula ¢ and a set of coloured formulae S, we define 97 and S/ as (¢¥)7 and (SY)J
respectively. Given a set of colours P, we define the P to j recolouring of the literal A
(denoted by A(P—9)) as follows:

AP=1) = BI if A= B for some literal B and i € P

= A, otherwise.

The formula p(P=7) is defined similarly as the formula ¢ with all its P coloured literals
recoloured with j, and S(P=7) denotes the set {¢)(P=7) | ¢y € S}. We abbreviate

We now define the renaming of a colour which involves the recolouring of the literals
of some particular colour in a formula (set of formulae, connectability relation, etc.) to
a colour which is new to the formula (set, relation, etc. ).

Definition 7.20 (Renaming Colours) Given two coloured formulae ¥ and @, we
say that U is obtained from ® by renaming one colour, and write ® —. U, if for some
colour i € €(®P) and j ¢ €(P), then

U =99,

We denote the reflexive transitive closure of the relation —,. by the relation =,.. We say
that two formulae, ® and ¥ are isomorphic by renaming colours if and only if & =, U.
The definition and notation of colour renaming can be extended to sets of formulae, sets
of colours, connectability relations, coloured problems, etc. ]

The following proposition shows that the relation =, is symmetric and therefore an
equivalence relation.

Proposition 7.8 (Symmetry of —,., Equivalence of =,.) The relations —. and
X are symmetric, and the relation =.. is an equivalence relation.

Proof: We first show that — . is symmetric. Given the two coloured formulae (or sets
of formulae, coloured problems, etc.) ® and U, if ® — .. U then

U = $li—=9)
for some i € €(®) and j ¢ &(P). Therefore j € €(¥) and 7 ¢ €(¥), and also
d = pl—9)

and hence ¥ —,. ®. Consequently the relation =, is symmetric as well as it is the
reflexive transitive closure of —.. As =, is reflexive and transitive by definition, it
follows that it is an equivalence relation. |
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An alternative way of characterising the colour renaming relation =,. between
coloured objects (such as formulae, sets of formulae, etc.) is by a bijective function
mapping the colours in one object to another. This is given by the following proposi-
tion.

Proposition 7.9 (Recolouring Bijection) Given two coloured formulae (or alterna-
tively sets of coloured formulae, sets of colours, etc.) A and B, where the set €(A) is

finite, then A =.. B if and only if there is a recolouring bijection R mapping the colours
in A to the colours in B such that R(A) = B.

Proof: We first show the ‘only if” direction. Given that there is a bijection R mapping
the colours in A to B then the sets €(A) and €(B) have the same number of elements,
n say. Now, let €(A) = {i1,... ,in} and €(B) = {j1,... ,Jn}, and let {k1,... ,k,} be a
set of n colours such that for all x € {1,... ,n} the colour k; ¢ €(A) and k, ¢ &(B).
Then

A A(ll —k1)

—
—re (( ll_)kl ) )(i”_*kn)

—X (((A (i1 —k1) ) )(in_)kn))(kl_)jl)

- (((((A (i1 =k1) ) )(i”ﬁkn))(klﬂjl))---)(kn%jn)

= B.
Hence A =,. B.
For the ‘if’ direction, we first show that if A —,. B then there is a bijection R
mapping the colours in A to the colours in B such that 98(A) = B. Given that A —,. B

then there is a colour i € €(A) and j € €(B) such that B = A(~) and so €(B) =
(€(A) — {i}) U{j}. Therefore, we define R as follows:

R(z) = =z, ifx#i

= j otherwise.

Now to show that such a mapping R exists given that A =,. B, we notice that if A =,. B
then there is a finite sequence of formulae (X, Xo,... , X},,) such that

A:Xl _>rcX2_>rc"'_>ran:B-

Therefore there are bijective mappings R, Ro, ... ,R,_1 where R, maps the colours in
X, to the colours in X, for z € {1,... ,n —1}. Hence we define R to be ((§’1 0 Ry) o
+- 0 mn_l). |

7.4.2 Consistency Results on Recoloured Sets

It is straightforward to show that if two coloured problems are isomorphic by renaming
colours then they are equivalent, in the sense that they are either both consistent or
both inconsistent.

Proposition 7.10 (Renaming Colours Preserves K-Consistency) Given sets of
sentences S, S and connectability relations Ky, Ko such that (S1,K1) Ry (So, Ko),
then Sy is KCq-consistent if and only if So is Ko-consistent.
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Proof: Straightforward; by showing that Sf“’C ! is satisfiable if and only if S§K2 is. W

One can also recolour literals of more than one colour into a single one in certain
coloured problems without affecting their consistency. For example, let us consider the
connectability relation K = ¢ < j < k. A pair of coloured literals is X-inconsistent
if and only their uncoloured projections are complementary and one of the literals is
coloured with j and the other one with ¢ or k. One can thus recolour all the k-coloured
literals (if any) in the pair with ¢ without affecting its consistency. In general, for
K=1i¢j k, aset Sis K-consistent if and only S~% is. The following proposition
gives a more general statement on the recolouring of a number of literals in a problem
without affecting its consistency. Basically if two disjoint sets of colours P; and P, are
identified in the colours of a problem (S, KC) such that P; is the range under K for each of
the colours in P, then all the literals coloured with Py can be recoloured to any colour
in Py without affecting the consistency of the problem. For the case of K =i ¢ j & k,
we can see that the set Py = {j} and Py = {7, k}. This result is derived here.

Theorem 7.5 Given a connectability relation KC, and two disjoint sets of colours Py
and Py such that K(i) = Py for every i € Pa, then for every colour m € Py, a set S of
coloured first-order sentences is K-consistent if and only if the recoloured set S(P2—m)
s KC-consistent.

Proof: First of all we notice that if P; and P, are given as required, then for all colours
i and j in P, the colours i %k j since the set K(i) = P; and P; NP2 = {}.

Now given a connectability relation C, the sets of colours P;, P, and a colour
m € Py, we prove the ‘only-if’ direction by defining the collection of sets C; as follows:

¢, = {S$727™ | S is K-consistent and Py C €(5)}

and we deduce that C; is a K-consistency property. Showing that C; satisfies condi-
tions 2—6 of Definition 7.13 is routine and we illustrate here only the proof of the first
condition.

o Let some set S(P22™) ¢ C; and suppose that some literals A* and —A7 are in

S(P2=m) “and that ¢ ~x j. If i = m and j = m then i i j as m L m. Also, if
i #m and j # m then A’ and A7 are both in S, which is a contradiction as S is
K-consistent. Therefore, one of the colours, say j, is equal to m, and the other, ¢,
is not. So, A* € S and —A* € S for some k € Py, and thus i ~x k. But this is a
contradiction, as S is K-consistent.

Thus C; is a K-consistency property and so whenever S is K-consistent, so is S(P2=m),

The proof of the ‘if’ case proceeds similarly. First we define Cy as follows:
Co = {8]8P=m) is C-consistent and Py C €(S)}

and show that Cy is a K-consistency property. Once again, we only give the proof of the
first condition.

e Let some set S € Cy contain the literals A* and —A7 and let i ~x j. Now the
colours i and j cannot be both outside Py as S(P2=™) is K-consistent. Also, i and
j cannot be both in Py as i ~x j, and therefore one, say i, is outside Po, while
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the other, j, is in Py. As i ~x j, then i € K(i) = P;. Hence, A" € S(P>>™) and
—A™ ¢ §(P2=m) hut this is a contradiction as i ~x m and the set S(P2=m) jg
K-consistent.

Hence, Cs is a K-consistency property and consequently, the set S is K-consistent when-
ever S(P2=m) ig, [ |

7.5 Coloured Interpolants

In this section we derive an interpolation theorem for the coloured first-order logic. Our
notion of an interpolant is a generalisation of the standard definition of an interpolant
for first-order sentences. An (uncoloured) interpolant is defined as follows:

Definition 7.21 (Interpolant for Sentences) The first-order sentence I is called an
interpolant for the sentence X = Y if every function symbol and relation symbol (with
the exception of T and L) in I occurs in both X and Y and the sentences X = I and
I =Y are valid. 0

Or equivalently, interpolants can be defined on finite sets of sentences. We first define
the notion of a set of sentences partitioned by a pair of sentences and then define
interpolants for partitions.

Definition 7.22 (Partitions) Let S, S7 and S> be sets of sentences. The pair (S, .52)
is a partition of the set S if

L SlUSQ :S, and
e S1NSy = {} O
It is clear that if (S7,S2) is a partition of some set S then so is (S3, S1).

Definition 7.23 (Interpolant for Sets) Given that S is a finite set of sentences and
that (S1,S2) is a partition of S then the sentence I is said to be an interpolant for
(S1,S2) if every function symbol and relation symbol (with the exception of T and 1)
in I occurs in both S and Sy and the sets S1U{I} and SoU{—I} are both unsatisfiable.
O

Note that [ is an interpolant for X = Y if and only if —I is an interpolant for
(X} V).

An interesting and quite important result in first-order logic states that every valid
implication has an interpolant. This result is due to Craig (1957) and is called Craig’s
interpolation theorem.

Theorem 7.6 (Craig) If a first-order sentence X =Y is valid then it has an inter-
polant. Or equivalently, every pair of sets which partition a finite unsatisfiable set of
sentences has an interpolant.

Proof: see for instance (Fitting 1996) [ |

We are interested in generalising this result to the coloured first-order logic. In
particular we would like to show that given a finite K-inconsistent set S partitioned
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by (S1,S2), then there is some uncoloured ‘interpolant’ I such that the sets SY¥ U {I}
and SY U {—=I} are unsatisfiable. Furthermore, we want these sets to be inconsistent
according to the restrictions given by the connectability relation . Therefore we need
the set S; U {X;} to be K-inconsistent for some coloured sentence X; where X% = I.
Similarly, Sy U {X2} has to be K-inconsistent for some coloured sentence X where
X§ = —I. In general X; and X, may be of different colours, although we restrict that
all the coloured predicates in Xy occur in Ss, and similarly that all coloured predicates
in X9 occur in S7. We define coloured interpolants as follows.

Definition 7.24 (Coloured Interpolant) The pair of coloured sentences (X1, X5) is
said to be a K-interpolant for the partition (S1, S2) of some finite set, if:

1. All the function symbols in Xy and X5 occur in both S; and Ss.
2. The sets S1 U{X;} and Sy U {Xs} are K-inconsistent.

3. Let X| be the negation normal form of X; and X/, be the negation normal form
of = X5, then

(a) Xi¥ = X3¥;

(b) for every position p, if X}|, = P'(f) and X}|, = PJ(#) for some predicate
symbol P and list of terms #, then i ~x j and if P # T and P # L then the
coloured predicate symbol P* occurs in Sy and P7 occurs in Sj. O

Example 7.7 Let some set S be partitioned by the pair
(S1,89) = ({C*,Vz.A (z) v ~B*}, {=A%(c) A D?, BI})
and let the connectability relation K be i <> j <> k. Then
(3z.-A%(z) A BY Vz.A'(x) V ~B¥)
is a K-interpolant for (S,.52). O

Note that this notion of a coloured interpolant generalises the standard definition
of uncoloured interpolants, in the sense that if (X7, X5) is a K-interpolant of (S, S2),
then XY is an interpolant of (S¥,S¥). In particular (I, ~I%) is an (i < 7)-interpolant
for (R}, RS) if and only if I is an interpolant for (Ry, Rs).

We now show that every partition of a finite -inconsistent set of coloured sentences
has a K-interpolant. We first introduce some notion of consistency which we call K-
interpolation consistency and show that IC-interpolation consistent sets are KC-consistent.

Definition 7.25 (Coloured Interpolation Consistency) A set of sentences is said
to be K-interpolation consistent if it has some partition without a IC-interpolant. ]

Lemma 7.1 The collection of all KC-interpolation consistent sets of sentences is a K-
consistency property.

Proof: The proof of this lemma generalises the proof of Craig’s Interpolation Theorem
given in (Fitting 1996). Given a connectability relation K, we show that if some set S
is KC-interpolation consistent then it satisfies all the conditions in Definition 7.13;
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1. Suppose that for some literal A and colours 4, j, both A* € § and =47 € S, we
show that if i ~x j then S is not K-interpolation consistent. Let the pair of sets
(S1,S2) partition S, then either both A” and —A7 are in the same set (S; or S3)
or else they are in different sets. If both literals are in the same set Sy, say, then
let X; = T and let Xy = 17. Tt is easy to see that (X, Xy) satisfies the first and
last conditions of Definition 7.24; and since 7 ~x j, both S U{X;} and Sy U{ X5}
are K-inconsistent. Thus, (X1, X3) is a K-interpolant for (57, Ss). Now, if A* and
—AJ are in different sets, say A’ € S; and A7 € Sy, then let X; = ~A’ and
X, = A’. Once more, (X1, X3) is a K-interpolant for (S;, Ss), and therefore S is
not C-interpolation consistent.

2. Let 1° € S and i ~x j for some colour j. We show that every partition (S, S)
of S has a K-interpolant. Basically, if 1¢ € S; then let X; = T* and let Xy = 17.
The pair (X7, X5) satisfies all the conditions in Definition 7.24 and is thus a K-
interpolant for (Si, S2). The argument is similar if 1° € So.

3. Suppose that ¢ A € S, we need to show that S U {¢,1} is K-interpolation
consistent. Let us assume that SU{¢p, 1} is not -interpolation consistent, that is,
every partition of SU{¢p, 1} has a K-interpolant, and we show that every partition
of S has a K-interpolant as well. Let (S7,S3) partition S, and let us assume
without loss of generality that ¢ A ¢ € S;. Then (S; U {p,1},S2) partitions S U
{¢, 1} and therefore has some K-interpolant (X, X3). Therefore S1 U {p, 1, X1}
and SoU{ X} are K-inconsistent. Now, (X1, X2) is also a K-interpolant for (S1, S2)
as all the function symbols, and coloured predicates in S7 U {p, 9} occur also in
Si, and Sy U {X;} is K-inconsistent since S7 U {p, 1, X1} is.

4. Let p V1 € S, we need to show that either SU {p} or SU{¢} is K-interpolation
consistent. We prove the contrapositive, that is, we assume that both SU{¢} and
SU {4} are not K-interpolation consistent and show that S is not K-interpolation
consistent. Let (S1,S2) partition S, and let ¢ V ¢ € S;. The proof for the case
where ¢ V 1¢p € Sy proceeds similarly. Then (S; U {¢},S2) and (S; U {¢}, S2)
partition the sets S U {p} and S U {4} respectively, and thus they have some
interpolants (X1, X2) and (Y7,Y2). Therefore, S; U {y, X1} and S; U {¢,Y1} are
K-inconsistent and hence S7 U {X; A Y3} is also K-inconsistent, otherwise

S1U{X; AY1} is K-consistent
= S1U{X,Y1} is K-consistent
= S1U{p, X1,Y1} is K-consistent, or
S1U{y, X1,Y1} is K-consistent as o Vi € Sy
= S;1U{p, X1} is K-consistent, or
S1U{y, Y1} is K-consistent.

Also, Sy U {Xs} and Sy U {Y2} are K-inconsistent and so So U {X2 V Yo} is K-
inconsistent. Hence (X7 A Y7, X5 VY3) is a K-interpolant for (S7,S2), as —(X; A
V)4 = =XU v -YH = (X3 VY2)Y and the sets Sy U {p} and S; U {1} contain the
same predicates and function symbols as the set 5.

5. Let Vz.po € S. Suppose that S U {p{z — t}} is not K-interpolation consistent
for some closed term ¢, we show that every partition of S has a K-interpolant.
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Suppose that (S1, S2) partitions S and let Vz.p be in one of (S1, S2), say Si. Now
(S1U{p{z — t}},S2) is a partition of SU{p{z — t}} and therefore it has some K-
interpolant (X1, X2). Therefore S1 U {p{x — ¢}, X1} is K-inconsistent and hence
so is S1 U {X;} by Proposition 7.4(3). Also, S U {X32} is K-inconsistent. But,
we cannot assume that (X7, X5) is a K-interpolant of (S7,S2) as some function
symbols in X; (and X3) may be found in ¢, and so in S1 U {¢{z — t}}, but not
in S7. However, if this is the case then there must be some term ¢ in X; whose
root is not found in S;. Now, let X| = X {t' — y} and X} = Xo{t' — y} where y
is some variable which does not occur in X, then Sy U {3y.X} is K-inconsistent
by Proposition 7.4(5), and so is S2 U {Vy.X}} by Proposition 7.4(3). Hence, if all
the function symbols in X| are found in Sy then (Jy.X|, Vy.X}) is a K-interpolant
for (S1,52). If not, we can repeat the same process on (Jy.X|,Vy.X)) until a
K-interpolant is constructed.

6. Let dx.p € S, and that for every parameter p the set S U {p{x — p}} is not
K-interpolation consistent, we show that every partition (Si,S3) of S has a K-
interpolant. Let us assume that dz.p € S, and let p be some parameter new to
S1 and S2. Now (S U{¢{zx — p}}, S2) partitions the set SU {¢p{z — p}} and so
it has some interpolant (X, X5). So

S1 U{e{x — p}, X1} is K-inconsistent
= SiU{e{z — p},Fy.X1{p — y}} is K-inconsistent
= S1U{Jy.X1{p — y}} is K-inconsistent.

Also since Sy U{ X5} is K-inconsistent, then so is S U {Vy.X2{p — y}} and hence
(Fy.X1{p — y},Vy.Xo{p — y}) is a K-interpolant for (S1,S3). The proof for the
case where dz.p € Sy proceeds similarly.

Thus the collection of all K-interpolation consistent sets of coloured sentences is a
KC-consistency property. |

Theorem 7.7 Given a connectability relation K and a finite K-inconsistent set S, then
every partition of S has some K-interpolant.

Proof: Suppose that S is partitioned by (S, S2) and let us assume that (S7, S2) does
not have a C-interpolant. Then S is IC-interpolation consistent and by the above lemma,
S is K-consistent. Consequently, given that S is K-inconsistent then (S, S3) must have
some C-interpolant. |

Unfortunately, the converse of this theorem does not hold. In other words, if some
partition of a finite set S of coloured sentences has a K-interpolant, then it does not
follow that S is K-inconsistent. This is illustrated in the following counterexample.

Example 7.8 Let K be the connectability relation (i <+ j <> k <> [), and let

(S1,82) = ({—A'v=AF} {47V A"}
(X1,X,) = (A7,-4F)
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then S1U{X;} and SoU{ X5} are both K-inconsistent as it can be seen from the following

matrix representations ~
-

C] B

and furthermore (X1, X2) satisfies the other conditions (i.e.,1 and 3) of definition 7.24,
and is thus a K-interpolant for (Si,S3). However, the set S; U Sy is K-consistent as
illustrated by the following matrix.

TN
AT AT
]
Note that the path {—~A? A"} is not K-inconsistent as i #x [. O

In order that the set S; U Sy is K-inconsistent whenever the sets S; U {X;} and
So U {X2} are, one requires that there is some subset P; of the colours in S; and some
subset Py of the colours in S5 such that:

e The colours in S are disjoint from the colours in Sy, i.e., &(S1) N &€(S2) = {}.
e All the colours in P; relate with all the colours in Ps, i.e., (P; <> P2) C K.

e The only colours in Sy that relate with some colour in Sy are the colours in P;.
Similarly, the only colours in So that relate with some colour in Sy are the colours
in Po, that is

Pr={i€€(S)|i~kj,j€S2)}
Py ={i € €(Sy) [ i~k j,j € C(S1)}-

e All the colours in P; relate with all the colours in X7, and all the colours in Py
relate with all the colours in X5, that is

((P1 < €(X1)) U (P2 < €(X3))) C K.

e The colours in X; relate with no other colour in S; apart from those in P;, and
the colours in X5 relate with no other colour in S5 apart from the colours in Ps,
that is

{i € €(Xy) | i~k 4,5 € €(S1)} C P,
{i € &(Xy) i~k j,5€€S1)} CPr

It can be checked that in example 7.8, the partition (S7,S2) and the connectability
relation K do not satisfy the above conditions. In particular there is no sets P; and
P> which satisfy the second and third conditions. However, the above conditions are
satisfied for (S1, S2) and the connectability relation K Ui <+ | with

Py = {ka} Py = {.771}

It can also be checked that the set S} U Sy is (K U7 < I)-inconsistent.
We call a partition well-coloured if it satisfies the first three conditions of the above.
This notion is defined below in definition 7.27 which requires the following definition.
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Definition 7.26 (Outside Connecting Colours) Given the connectability relation
K and sets S7 and Sy of coloured formulae, we denote the set of colours in S7 that relate
with some colours in Sy by

S 58, = {i € €(S1) | i~ j for some j € €(Ss)}.
Similarly, we define the following:
Si & Sy = {j €€(Ss) | i~ j for some i€ E(S))}.

We also define the outward connecting colours in some set of coloured sentences S
according to IC, and denote it by K 1 S, as the colours in S that relate with some
colours not in S:

K1S={ie&S)|i~kj for some j&&(S)}. O
The following result follows from the above definition.

Proposition 7.11 Given the sets S1 and So of coloured formulae, and a connectability
relation KC, then (Sy L Ss) = (S £ S1).

Proof: follows from the definitions of S; = S, and Sy & S m

Well-coloured partitions are now defined as follows.

Definition 7.27 (Well-Coloured Partition) A pair of sets of coloured sentences
(S1,S2) is said to be a well-coloured partition of some set S with respect to some
connectability relation K if

1. $1US, =8,
2. €(S1) NeE(Sy) ={},
3. for every colour i € (S LY Ss) and j € (51 & S) it is the case that i ~¢ j. O

Note that the third condition in the above definition corresponds to the second and
third conditions given on page 142 for the set S7 U S2 to be K-inconsistent whenever
S; U{X;} and Sy U {X3} are K-inconsistent where XY = =X¥. The sets P; and P
given in the conditions on page 142 can be defined by

Pr=($ 5 %)  P=(S1 &S,

It is clear that if (S71,.52) is a well-coloured partition of some set S with respect to K
then so is (S, 51); it also the case that (S7,S2) is a partition (as S; NSy = {} from the
second condition in definition 7.27).

The third condition in the above definition can be substituted with the equation

KIS1=K[S1]1UK[S1U (81 55 S2) (51 £ 5)

as shown in the following proposition.



CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 144

Proposition 7.12 Given a partition (S1,S2) of a set S of coloured sentences such that
C(S1) N E(S2) = {} then (S1,S2) is a well-coloured paritition of S with respect to some

connectability relation K if and only if K[S] = K[S1|UK[S2|U(S: L Ss) (S L Ss).

Proof: Let us assume that (S7,53) is a well-coloured paritition of S with respect to K
and that €(S7) N €(S2) = {}. The third condition in definition 7.27 is equivalent to

Now, since

i€ (515 8) =iee(s)ces)
and j € (S1 & S) = j € €(S,) C €(8)

then all the colours in (S} LSy Sa) (S L Sy) are in S and therefore

S5y el s)ck = (558 o (51 L S) ckls

and so since IC[S] C K our goal is equivalent to

(515 8) e (81 & Sy) CK[S] if and only if
K[ST=K[Si1UK[S2]U(S1 5 S5) & (S1 & Sy).

The ‘if’ direction of the above is straightforward and we show that the ‘only if’ direction
holds by assuming its left-hand side and considering the following two cases:

o K[S] C K[Si1UK[S2]U (S1 55 So) ¢ (S1 & So): if (i, 5) € K[S] then either
both ¢ and j are in the same set in the partition (i.e.,in S; or S3) in which
case (i,7) is in KC[S1] or K[S2]|, or else they are in different sets in which case

(i,§) € (S1 5 8) & (51 £ ).

e K[S1|UK[S2]U(Sy K Sy) > (S1 L Sy) C K[S]: it is the case that £[S1] C L[S
and that IC[Sy] C K[S], and it is already assumed that (S} X Ss) + (S1 L S)
is a subset of IC[S]. [ |

Theorem 7.8 below gives a number of sufficient conditions for which the set S U S
is IC-unsatisfiable whenever the sets S; U {X;} and S2 U {X2} are for some sentences
X; and X, such that - XY = X%’. The conditions given in this theorem correspond to
those given on page 142. The first three conditions on page 142 are given by the fact
that the partition (S7, S2) is required to be well-coloured with respect to I, so that the
sets P; and P, mentioned on page 142 are given by:

Pr=($1 58  Pr=(S5 5.

The last two conditions on page 142 are satisfied by restricting the sentences X; and
X5 to be homogeneously coloured, by m and n respectively, say, and by the conditions:

1. K(m) = (81 5 $5) and K(n) = (S2 5 1),
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2. m ¢ &(Sy) and n ¢ &€(S7).

The results on recolouring literals given in section 7.4 can be used with theorem 7.8 to
show that the conditions given on page 142 are also sufficient for the set S; U Sy to be
K-unsatisfiable whenever the sets S; U {X;} and Sy U {X3} are.

Theorem 7.8 Given a connectability relation IC, two sets of coloured sentences Sy, Ss,
such that (S1,S2) is a well-coloured partition (of Sy U Sa) with respect to K, and two
colours m and n such that

1. K(m) = (S1 5 S) and K(n) = (S 5 S1),
2. m ¢ €(S1) and n ¢ €(Ss),

then, the set S1 U Sy is K-consistent if and only if there is some uncoloured sentence X
such that the sets S1 U{X™} and Se U {—=X"} are K-consistent.

Proof: We first show the ‘only if’ direction. Given the connectability relation I and
two colours m and n, we define the palettes P; and Py as follows:

Py =K(m) and Py=K(n).

We further assume that for all 4 € P; and j € Ps it is the case that ¢ ~x 7, and define
the collection of sets of coloured sentences C as follows:

C = {S1UR™| for any sets S; and R for which
there is some set Sy such that
(S1,S2) is a well-coloured partition with respect to I,
Pr=(5 5 Sy) and P, = (S, £ ),
m ¢ €(51) and n & €(S2),
S1 U Sy is K-consistent, and
So U {=X"} is K-inconsistent for all X € R}.

We now show that C is a K-consistency property by deriving all the conditions in
Definition 7.13. Let S € C, then S = S7 U R™ for some sets S; and R for which there
is some set Sy satisfying the requirements in the above definition of C. Note that S}
and R™ are disjoint as otherwise i = j = m but m ¢ €(S), and also m #x m since
K(m) =P; and P; C &(S). Similarly n i n.

1. Suppose that there are two literals A’ and =A7 in S and let us assume that i ~g j.
Then not both A* and = A7 are in S; as S; U Ss is KC-consistent. Also, they cannot
be both in R™ as m i m. Hence, one of them (say A’) is in S; and the other
(A7) is in R™. So j = m and therefore i € P; as K(m) = P;. Also, So U {A"}
is K-inconsistent by the last condition in the definition of C above as =A € R.
However, this implies that (So U {A"}){m3=7) is K-inconsistent by theorem 7.5
as K(i) = K(n) =P and {i,n} UPy = {}. Now

(SQ U {An})({n,z}—)z) — (SQ U {An})(n—n) = S,U {Al},

asn ¢ €(S,). Therefore, S; US> is K-inconsistent as A* € ;. But this contradicts
the condition in the definition of C that S; U Sy is K-consistent, and so 7 #x j.
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2. Let L% € S and that i ~¢ j for some j. Now, K ¢ S1 as S1 U Sy is K-consistent.
Also, if 1* € R™ then So U{T"} is K-inconsistent and hence Sy is K-inconsistent.
As a result S7 U S5 is K-inconsistent which is a contradiction.

3. Let (AAB) € S, we need to show that SU{A, B} € C. First of all, if AAB € S
then let S7 = S; U {A, B}, and since S; U Sy is K-consistent then so is S7 U Ss.
As a result S| U R™ which is S U {A, B} is in C. Now, if AA B € R™ then let
R' = RU{AY BY}. Since S2 U {=A7" V ~B~"} is K-inconsistent by the last
condition in the definition of C, then both Sy U {-A7"} and Sy U {-~B~"} are
K-inconsistent. As a result for every X € R/, the set SoU{=X"} is K-inconsistent,
and consequently S U {A, B}, being S; U R™, is in C.

4. Suppose that (AV B) € S, we need to show that S U {A} or SU{B} is in C.
If AV B € S; and given that S; U Sy is K-consistent, then S; U {A} U Sy or
S1U{B}U S, is K-consistent. If S U{A} U S, is K-consistent we define S} to be
S1U{A}; otherwise, if S;U{B}U S5 is K-consistent we let S| be Sy U{B}. In any
case, S{UR™ € C and therefore one of SU{A} and SU{B} is in C. Alternatively,
if AV B € R™ then Sy U {—-A7" A—~B7"} is K-inconsistent. As a result, either
SoU{=A7"} or S U{—=B~"} is K-inconsistent. Similarly to the previous case, if
Sy U {=A7"} is K-inconsistent we define R’ to be RU{AY}, and if Sy U {-~B~"}
is K-inconsistent then R’ is defined as RU{BY}. Tn any case, the set Sp U {-X"}
is K-inconsistent for every X € R', and therefore S; UR™ € C. So SU{A} € C
or SU{B} eC.

5. Suppose that (Vz.A) € S, we show that for every closed term ¢, the set SU{A{z —
t}} is in C. Briefly, if Vz.A € S; then S; U Sy U {A{z — t}} is K-consistent
and hence we define S| to be Sy U {A{z — t}} in order that S| U R™ € C.
Otherwise, Vz.A € R™ and so since Sy U {3z.—A} is K-inconsistent, we have that
So U{—-A{z — t}} is K-inconsistent for every closed term ¢. Therefore we choose
R' to be RU{AY{z — t}} so that S; UR"™ € C.

6. Let (3z.A4) € S, we show that SU {A{z — p}} € C for some parameter p. Now,
if 3z.A € S then S; U Se U {A{z — p}} is K-consistent for every parameter p
not found in Sy U Sy, so we choose S| to be Sy U {A{z — p}} for some such p
so that S U {A{z — p}} = S| UR™. Also, if 3z.4 € R, then So U {~(3z.AY)}
is IC-inconsistent, and therefore Sy U {~AY{x — p}} is K-inconsistent for every
parameter p new to Sp. Hence, we define R’ to be RU {=AY{x — p}} for some
such p. Thus S; U R™, which is SU{A{z — p}}, isin C.

We thus conclude that C is a K-consistency property. Now, let S; and S5 be as
required by the statement of this theorem, and that for some sentence X, the sets
S1U{X™} and SoU{—-X"} are K-inconsistent. Then S;US5 is K-inconsistent, otherwise
the set S1 U {X™} would be in C and therefore K-consistent.

The ‘if’ direction follows from Theorems 7.5 and 7.7. Given that the set S7 U Sy is
K-inconsistent, then the partition (Si,S2) has a K-interpolant (Y7,Y5). We can define
X to be Ylu, and so X = YQM. Now, since S7 U {Y1} is K-inconsistent, we can apply
Theorem 7.5 to recolour all the colours in Y] to m, and thus S; U{X™} is K-inconsistent.
Similarly, the set Sy U {=X"} is K-inconsistent as well. |
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7.6 An Undecidability Result

The consistency of a coloured first-order problem is in general undecidable since one can
reduce the validity problem of a first-order sentence X to the consistency of the coloured
problem ({X*},i <+ 7). Apart from such a trivial reduction, the following theorem shows
that the validity of a first-order sentence X can be reduced to the consistency of some
coloured sentence Y’ = ZJ according to the connectability relation i <> j where i # j.

Theorem 7.9 Gliven a first-order sentence X, then there are first-order sentences Y
and Z such that X is valid if and only if Y' = Z7 is i <> j-consistent.

Proof: Let X be a first-order sentence. We can transform the negation =X into a list
of clauses C',... ,C, such that X is valid if and only if

VYOI N - ANYCy,

is unsatisfiable, where VC, represents the disjunction C, universally quantified by all
its free variables. The above list of clauses can be transformed into an equivalent list
in which each clause contains either positive literals only, or negative literals only. This
can be done by substituting every clause of the form

-AV---V-A,VB{V---V B,
where A, and B, are atoms, with the pair of clauses

CALV -V Ay V ~D(F)
lglv---Vl%n\/LKf)

where D is a new predicate constant symbol which does not occur in the list of clauses,
and Z is the list of variables free in the original clause

—A V-V =A, VB V-V By,

This can be repeated until the original list of clauses C1,... , (), is transformed into the
equivalent list Ny,... ,N,, Pi,..., Ps where all the literals in IV, are negative, and all
the literals in P, are positive. Now, it can be seen that the only pairs of complementary
literals obtained from this list of clauses contain one (instantiation of a) literal from
some negative clause N, and one (instantiation of a) literal from a positive clause P,.
We can explicitly impose the restriction that the only complementary pairs of literals
in which one literal is from Ny,... , N,, and the other is from Pj,... , P; are allowed to
be used in showing the inconsistency of the set of clauses. Or in other words, we colour
the negative clauses with some colour 4, and the positive clauses with j, and check for
1 <> j-inconsistency. That is, the sentence X is valid if and only if

N YN, A~ N\ VP

0<p<r 0<p<s
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is 1 <> j-inconsistent; or whether

A vNi| = (= A\ VP
0<p<r 0<p<s

is 1 <> j-consistent. |

As a corollary we get the undecidability of ¢ «> j-consistency.

Corollary 7.1 (i < j-Consistency is Undecidable) The i < j-consistency prob-
lem of coloured first-order sentences is undecidable.

Proof: follows from the undecidability of the validity problem of pure first-order logic
and theorem 7.9. |

7.7 Summary

This chapter gives the definition of a first-order logic whose literals are annotated with
colours. The role of the annotations is to restrict the way literals can be used to show
the inconsistency of a set of sentences during a refutational theorem proving process.
The results and definitions given in this chapter are used in chapter 8 to illustrate how
the inferences given in structured straightforward justifications can be used to restrict
the search space considered during proof checking. The results given in this chapter
include:

Section 7.2 contains the basic definitions of the coloured first-order logic, in partic-
ular a coloured problem is defined in terms of a set of coloured sentences and a
connectability relation between colours. A notion of coloured consistency is given
in which complementary literals are considered inconsistent if and only if their
colours relate with each other according to the connectability relation.

Section 7.3 shows how a coloured problem can be translated into an equivalent set of
uncoloured first-order sentences.

Section 7.4 shows how one can change the colours of a coloured problem without
affecting its consistency or inconsistency.

Section 7.5 gives an interpolation theorem for the coloured first-order logic which
generalises the interpolation theorem due to Craig. The result given here states
that given a valid implication X = Y, then it has an interpolant I such that
X = I and I = X can be derived using the same restrictions imposed on the
derivation of X = Y.

Section 7.6 shows that the problem of deciding a coloured problem with only two
colours is in general undecidable. This result is relevant because it is used in the
next chapter to show that the validity of the structured straightforward justifica-
tions given in chapter 6 is undecidable.



Chapter 8

Proof Checking Structured
Straightforward Justifications

8.1 Introduction

In chapter 6 we defined the notion of structured justifications which include (not over-
detailed) information on which inferences are used in the justification process. These
justifications are intended to improve the readability and proof checking efficiency of
declarative language proof scripts. This information is built up by using the opera-
tors on, then and and which construct structured expressions from the premises in the
justification. For example, one can implement the following justified conclusion:

"b > c¢) = (a > c)"
by "Vz,y,z.(x > y) A (y > 2) = z > 2" on "a > b";

The above statement is valid since the sentence
Va,y,z.(z > y) A (y > 2z) = (> 2)
can be used to derive the formula
(a>b) =Vz.(b>2) = (¢ > 2)

using a number of implicit inferences (or trivial manipulations), so that one can apply
the inference rule of Modus Ponens on this formula and the sentence a > b to derive

Vz.(b>z) = (a > 2).
This sentence can then be used to implicitly derive the conclusion
(b>c¢) = (a>c).
This derivation can be represented by

Ve, y,z.(z > y) A (y > z) = (x> 2)

(a>b) =Vz.(b>2z) = (a>2)

Vz.(b>z) = (a> 2)
(b>c)=(a>c)

(—")

(—")

149



CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 150

where the rule (—*) represents the implicit derivations defined in section 6.4.1. In gen-
eral, the derivation of a conclusion from a structured justification can be represented
by a number of implicit derivations and a number of explicit derivations which corre-
spond to the operators in the justification. This is described in section 6.4.2 where the
semantics of structured justifications is given.

The semantics of structured justifications is non-deterministic, and in general, a
structured justification can be used to derive several conclusions. For example, the
structured justification given above can also be used to derive the conclusion

"(c > a) = (¢ > b)"

since Va,y,z.(z > y) A (y > 2z) = (> 2) )
Ve.(zr > a) = (a > b) = (x > b) . (a >b) i
(a>b) = Va.(z>a) = (z>b) (—*) ) (—*)

Vr.(x > a) = (z >b)
(c>a)= (c>0b).

(—")

As a result, one cannot implement functions corresponding to the operators on, and, and
then which take two premises and infer a conclusion. On the other hand, it is necessary
to implement checking functions (decision procedures) which check whether a particular
conclusion follows from a given justification.

In this chapter we show how one can proof check structured justifications by restrict-
ing the search for a proof of the conclusion from the premises in a given justification
according to the operators in the justification. We use the definitions and results given
in chapter 7 to define the required restriction, and therefore assume familiarity with
the material in chapter 7, as well as with the material in chapter 6 which introduces
the definitions of structured justifications and implicit and explicit derivations. In the
approach given in this chapter, a coloured problem (S, ) is constructed from a given
justified assertion C' by P such that P justifies C if and only if (S, K) is inconsistent. Tt
should be noted that the colouring and the connectability relation in a coloured prob-
lem (S, K) denote a restriction on the way the sentences in S can be used to show its
inconsistency. Therefore it is only necessary to consider a smaller search space when
showing the inconsistency of (S,/X) than when showing the inconsistency of the un-
coloured projection of the sentences in S. This restriction on the search space results
in the proof checking of structured justifications being more efficient than the checking
of unstructured justifications.

We stress that the main result given in this chapter is not an algorithm for check-
ing structured justifications. The main result is that a structured justification can be
checked by restricting the search space considered by first-order theorem provers. This
restriction is given in terms of the coloured first-order logic given in chapter 7 and is
independent of the particular first-order logic semi-decision procedure used in checking
them. The fact that

e the restriction on the proof search required to check structured justifications does
not depend on the algorithm used to check them,

e and the fact that the semantics of structured justifications is non-deterministic

suggest that proofs involving structured justifications are not procedural. Although
structured justifications contain some information on what inferences are required to
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justify the conclusion, they do not correspond to a specific procedure for deriving the
conclusion from the justification.

We recall that the definition of the validity of structured justifications (definition 6.4)
is given in terms of the explicit derivations relation ~», which is defined in terms of the
implicit derivations relation »—*. Since, the main goal of this chapter is to show how one
can check the validity of structured justifications by constructing a coloured problem
(S,K) and then checking the K-inconsistency of S, we first show in section 8.2 how
one can construct an inconsistent coloured problem from an implicit derivation. This
construction is also shown to be sound and complete in the sense that an implicit
derivation is valid if and only if the corresponding coloured problem is inconsistent.
Section 8.3 then shows how one can construct a coloured problem from a conclusion
justified by a structured justification. In section 8.4, it is shown that the coloured
problem constructed by the method given in section 8.3 is inconsistent if and only if
the given justified conclusion is valid. Section 8.5 illustrates how the CBSE derived
rule given in chapter 5 is modified so that it can be used to proof check structured
justifications. A summary of this chapter is given in section 8.6.

8.2 Proof Checking Implicit First-Order Inferences

In this section we show how one can check whether a first-order sentence B can be
implicitly derived from another sentence A (that is, whether A —* B; see definition 6.2
on page 105) by restricting the search for a proof of A = B. This restriction is given
in section 8.2.1 and it is shown to give sound and complete methods for checking im-
plicit first-order derivations in sections 8.2.2 and 8.2.3. These results are then used
in section 8.2.4 to show that the problem of checking implicit first-order derivations is
undecidable.

8.2.1 A Restricted Proof Search for Checking Implicit Inferences

Given the first-order sentences A and B, the implicit derivation A —* B can be checked
by looking for a refutational proof of A = B in which complementary pairs of literals
are allowed to be used in refuting {—(A = B)} if one literal in the pair is taken from
A and the other one from B. More formally, and using the notation introduced in
chapter 7, it is the case that A —* B if and only if {A?, =B/} is i ¢+ j-inconsistent for
distinct colours ¢ and j. This claim is proved in the following two sections and given as
theorem 8.3 on page 157.

This result is used to derive the main goal of this chapter, which is to show how
one can check the validity of a structured justification by first constructing a coloured
problem (S, K), and then showing that (S,K) is inconsistent. In particular, we can
already see that one can show that a conclusion C' can be justified by P where P is a
single sentence, by showing that (S, K) is inconsistent where

S = {P!,-~C"}, and
K=i+j

for distinct colours ¢ and j. This follows from the main result of this section (theo-
rem 8.3) and the fact that
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C by P

is valid if and only if P ~» C' (by definition 6.4) and that P ~ C if and only if P —* C'
(by definition 6.3).

8.2.2 Soundness of the Restriction

In this section we show that for sentences A and B the restriction given in section 8.2.1
for searching for a proof of A = B in order to check whether A —* B is sound, in
the sense that whenever a proof of A = B is found according to the given restrictions,
it is the case that A —* B. In order to show this result we need the following rather
straightforward proposition.

Proposition 8.1 Let A and B be some first-order formulae such that A —* B. For all
terms t and t' where t is either a constant, parameter or variable, and no free variable
in t' becomes bound in A{t — t'} and B{t — t'}, it is the case that

A{t = '} —* B{t = '}

where for any formula C, the expression C{t — t'} represents the formula C with all
its occurrences of t replaced with t'.

Proof: The fact that A{t — ¢'} — B{t — ¢’} whenever A ~— B can be easily checked
for each rule in definition 6.1. The statement of this proposition follows from this result
and the fact that —* is the reflexive transitive closure of ~—. |

We now show that the sentence B can be implicitly derived from some sentence A
if {A*, —B7} is i <> j-inconsistent for distinct colours 7 and j.

Theorem 8.1 Given two sentences X and Y , and distinct colours i and j, if {X*, =Y}
s 1 &> j-inconsistent then X —* Y.

Proof: For any formula Z, let us define the set Dz containing the sentences that can
be implicitly derived from Z:

Dz ={¢ | Z =" ¢}
Now, let the collection of sets C be defined as follows:

C = {Pi U Qj | PC Dx and Q C Dy, for sentences X and Y
such that it is not the case that X —* Y}

Note that all the formulae in the sets in C are homogeneously coloured by 7 or j.

We show that C is an 7 <> j-consistency property. Let some set S € C, then
S = P"U @’ where P C Dx and Q C D-y for some sentences X and Y such that it is
not the case that X ~—* Y. Note that for every formula ¢* € S the formula ¢ is in P,
and for every 7 € S we have ¢ € Q.

1. Suppose that there is some literal A, such that both A* and =4’ are in S. Then
A€ P C Dx and (-A) € Q@ C D_y. Therefore, X —* A and =Y —* =A. Also,
by proposition 6.2, A —* Y. Hence X —* Y which is a contradiction. As a
result, not both A* and —A7 are in S for every literal A and set S in C.
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2. Since X — T then PU{T} C Dx and therefore SU{T*} € C. Hence by the above
case, 17 ¢ S. Similarly, as =Y »— T, it follows that Q U {T} C D_y and that
SU{T/} €C. And again 1’ ¢ S. Therefore for any colour k ini < j, 1¥ ¢ S.

3. Let some conjunctive sentence W € S. We consider the two cases where ¥ =
(p A1), or U = (p A1) for some sentences ¢ and .

If (0 A)' € S then X —* (¢ Atp) — ¢, and similarly X ~—* ¢). Therefore
P U {p,¢} C Dx and hence S U {¢',¢'} € C.

For the second case, if (¢ A )7 € S then =Y —* p A¢p — ¢ and also =Y —* ).
So QU {p,9} C Dy and so SU {¢/, ¢’} € C.

4. We now assume that a disjunctive sentence ¥ € S and consider the cases where
U= (pVy) and U= (p V).

Let (pV4)' € S. We are required to prove that either SU{¢'} € C or SU{y'} € C.
In other words, we need to show that there are some sentences X; and Y7 such
that P U {¢} C Dx,, @ C D_y, and it is not the case that X; —* Yj; or that
there are some sentences X, and Y2 where PU{y} C Dx,, Q@ C D_y, and it is not
the case that Xo —* Y5. Suppose that this is not true; that is, for all sentences
X1, Y either X; —* Yy, or PU{p} € Dx,, orelse Q € D_y;; and for all Xy, Y5,
either Xy —* Y5 or PU {4y} € Dx, or Q € D-y,. In particular, let X; = X A ¢,
Yi=Y,Xo=XA%pand Yo =Y. Then X; — X —* £ for every £ € P and
X1 — ¢, hence PU{¢} C Dx,. Also Q C D_y,, and therefore it must be the case
that X; —* Y1, i.e., X A ¢ —* Y. Similarly, X5 —* Y5, or simply X Ay —* Y.
But this results in a contradiction as since X —* ¢ V ¢ (because p V ¢ € P) we
have:

X—XAX
—* X A(p V)
(X AV (X A
—*Y VY
— Y.

The second case, where (oVi))? € S, proceeds similarly. We assume that SU{¢’} ¢
C and S U {¢7} ¢ C and show that this gives a contradiction. Therefore, we have
that for all sentences X; and Y; either X1 —* Y7, or P € Dx, or QU{¢p} € D_y;;
and for all Xy and Y5 either Xo —* Y5, or P € D_y, or else QU {4} € D_y,.
Now, let X1 = X, Y1 =Y V—p, Xo = X and ¥ = Y V 4. Then P C Dy,.
Also, for all £ € Q, it is the case that =Y; —* £ and that -Y; — =Y —* ¢ and
so QU {¢} C D_y,. So we conclude that X; —* Y] and with a similar argument
X9 —*Y5. Hence

X—-XANX
(YY) A (VY )
— YV (~p A —ip)
—*Y VY
— Y
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which is a contradiction.

5. Let Vz.¢' € S then V2. € P and so X ~* V. »—* p{z — t} for all closed term
t. Therefore, P U {o{z — t}} C Dx and S U {p{z — t}'} € C for every closed
term ¢. Similarly, if Vz.¢/ € S then S U {o{z — t}7} € C for every closed term ¢.

6. Suppose that some existential formula ¥ € S. We consider the two cases where
VU = Jx.p" or ¥ = Jz.¢7 separately.

For the first case, we are given that 3z.¢" € S and we are required to show that
SU{p{z — p}'} € C for some parameter p. Similarly to the fourth case above, we
prove this by contradiction. Suppose that SU {p{z — p}'} ¢ C for all parameters
p, then for all sentences X; and Y3, either P U {p{z — p}} € Dx,, or Q € Dy,
or else X1 »—* Y7. Let p be some parameter which does not occur in X or Y, and
let X1 =X Ap{z — p}and Y7 =Y. Now, for all { € P, we have X —* £, and so
X AN p{z = p} — X —* £ Moreover, X A p{z — p} — ¢{x — p} and therefore
PU{p{zr — p}} C Dx,. Also, @ C D_y, and hence it must be the case that
X1 —* Y1, or in other words X A p{z — p} —* Y. But since p does not occur in
X and Y we get X A ¢ —*Y by Proposition 8.1 as

(XANp{z = ph){p—=2}=XAp and Y{p—uz}=Y.

But this is contradictory since, using the fact that X and Y are sentences, we
derive the following:

X—XAX
—* X Adz.p
— 3z (X A p)
—* Jz.Y
— Y.

The second case is very similar to the first one. If 3z.¢/ € S and we assume that
SU{p{r — p}/} ¢ C then we get that for every parameter p and sentences X and
Yy, either P U {p{z — p}} € Dx,, or Q@ € Dy, or else X; —* Y;. In particular,
we let p be some parameter which does not occur in X or Y, and X; = X and
Y1 =Y V-p{z — p}. Then P C Dx,, and also Q U {¢{x — p}} C Dy,. Thus,
we are left with X; —* Y7, i.e., X —* YV —p{z — p}. Hence by Proposition 8.1,
X —*Y V =p. This can be used to deduce that

X — V. X
—* V. (Y V =)
— Y V= (3z.9)
—*Y VY
— Y

which contradicts our assumption that X »~* Y.

Therefore C is an 4 <+ j-consistency property. Now, if it is not the case that X ~—* Y
then the set {X*,—~Y’} € C and is thus i <> j-consistent. With this statement we
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conclude that if {X? Y7} is i <+ j-inconsistent then X »—* Y. |

8.2.3 Completeness of the Restriction

We now show the converse of theorem 8.1, or in other words whenever A »—* B, then
a proof of A = B can be found according to the restriction given in section 8.2.1. The
main part of the proof of this statement is given by the following lemma.

Lemma 8.1 For all formulae X and Y such that X — Y, and for every set S of
coloured sentences and substitution 0 which maps every free variable in X and Y to a
closed term, if SU{X'0} is i <+ j-consistent then so is S U{Y'0}.

Proof: We proceed by rule induction on the relation . The proofs of most of the
cases are routine and we present here a few of the less trivial ones. Let us define

K=1i&.

We use 0z to denote the substitution which maps the variable z to itself and any other
variable y to y#. Also, we represent the substitution 6 restricted to all the free variables
in some term ¢ by ;. Note that most of the implications in the proofs of the following
cases can be substituted with a bi-implication (<). We do not do this since our goal is
simply to show the implication

SU{X'0} is K-consistent = S U {Y"0} is K-consistent.
e The sentence X = AA(BVC)andY = (AAB)V (AAC).

SU{(ANA(BVC))} is K-consistent

= SU{A9 A (B'9V C')} is K-consistent

= SU{A',B9V C'0} is K-consistent

= SU{A%, B0} is K-consistent, or
S U{A'0,C"0} is K-consistent

= SU{A' A B'9} is K-consistent, or
SU{A9 A C'0} is K-consistent

= SU{((AAB)V(AACQC))H} is K-consistent.

e The sentence X = Vz.A and Y = Vz.A{z — t} where no free variable in ¢ becomes
bound in A{z — t}.

S U{(Vz.A")0} is K-consistent
= SU{Vz.(A'0z)} is K-consistent
= SU{Az{z — c}} is K-consistent for every closed term c.
= SU{AYz — c}6;} is K-consistent for every closed term c.
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In particular, SU{A*{z — ¢}6;} is K-inconsistent for all closed terms ¢ which are
of the form t{z — ¢'}6}, where ¢ is any closed term. That is,

SU{AYz — (t{zx — '}6),)}0z} is K-consistent for every closed term ¢
= Su{d'({z = t}{z — '}6),)0z} is K-consistent for every closed term ¢’
= SU{AYz — t}{z — '}6,0z} is K-consistent for every closed
term ¢’ as no free variable in ¢ is bound in A{z — t},
and thus no free variable in ¢ is bound in A{z — t}{z — '}
SU{A{z — t}{z — 10} is K-consistent for every closed term ¢
SU{A Yz — t}0;{x — '}} is K-consistent for every closed term ¢’
S U {Vz.(A{x — t}0;)} is K-consistent
SU{(Vz.A{x — t})} is K-consistent.

¢l

e The sentence X = AANC and Y = B A C, where A — B with the induction
hypothesis that for all S and 6 if SU{A%0} is i <+ j-consistent then so is SU{B'6}.

SU{(AAC)'0} is K-consistent
= SU{A',C"0} is K-consistent
= SU{B',C} is K-consistent by the induction hypothesis
= SU{(BAC)'8} is K-consistent.

e The sentence X = Vz.A and Y = Vz.B, where A — B with the induction hy-
pothesis that for all S and 6 if SU{A%9} is i <+ j-consistent then so is S U {Y6}.

S U {(Vz.A")A} is K-consistent
= SU{Vz.A;} is K-consistent
= SU{A0z{z — c}} is K-consistent for every closed term ¢
= SU{BO:{x — c}} is K-consistent for every closed term ¢
by the induction hypothesis
= SU{(Vz.B%)#} is K-consistent.

We thus conclude that if SU {X'0} is i <+ j-consistent then so is SU{V0}. W

We are now ready to prove the required result.

Theorem 8.2 For every sentence X and Y, if X —* Y then {X*, <Y/} is i ¢ j-
inconsistent.

Proof: Suppose that X »—* Y, that is, there is a finite sequence of sentences Z, where
xz € {1,... ,n} such that

and let us assume that {X*, =Y/} is i <+ j-consistent. Note that for all substitutions

X' =27 =Zig
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as X is a sentence. Now if {Z¢0, Y7} is i +> j-consistent then

{Z50,-Y7} is i ¢ j-consistent by Lemma 8.1
= {Zi0,-Y7} isi < j-consistent by Lemma 8.1

= {Zi0,-Y7} isi < j-consistent.

where 0 is any substitution which maps all the free variables in Z, to some closed terms.
Again we note that
Y'=2Z =270

for all @ since Y is a sentence. But the statement that {Y*, =Y/} is i «> j-consistent is
a contradiction, and therefore { X’ =Y7} must be i +> j-inconsistent. u

For completeness we give the correspondence between implicit derivation and incon-
sistency according to the connectability relation % <+ j in the following theorem.

Theorem 8.3 (Checking —* by a Coloured Problem) Given two sentences A
and B, and two distinct colours i and j, then A —* B if and only if {A*,-~BJ} is
1 4> j-inconsistent.

Proof: By theorems 8.1 and 8.2. |

8.2.4 The Undecidability of First-Order Implicit and Explicit Deriva-
tions

In theorem 7.9 in section 7.6 we have seen that the validity of every first-order sentence
X is equivalent to the i ¢« j-consistency of Y = ZJ for some sentences Y and Z
and distinct colours ¢ and 5. By theorem 8.3, this is in turn equivalent to whether the
sentence Z can be implicitly derived from Y. As a consequence of these results we get
the undecidability of implicit derivations.

Theorem 8.4 (Undecidability of —*) The problem of checking whether X —* Y
for all first-order sentences X and Y is undecidable.

Proof: Follows from the undecidability of the validity problem of pure first-order logic
and theorems 7.9 and 8.3. |

Since the definition of the explicit first-order derivations given in section 6.4.2 is
based on the definition of implicit derivations, it follows from the undecidability of
implicit derivations that the validity of explicit derivation is also undecidable.

Theorem 8.5 (Undecidability of ~») The problem of checking whether X ~ C for
an arbitrary structured expression X and first-order sentence C' is undecidable.

Proof: Follows from theorem 8.4 and definition 6.3 (page 109). |

As a particular case of theorem 8.5, the validity of structured straightforward justifi-
cations (definition 6.4, page 109) is undecidable. As a result, it is necessarily to impose
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(implementation-based) bounds on any proof search required to check structured justi-
fications. This issue is discussed in section 8.5, which describes the mechanism used in
checking the structured justifications implemented in the mechanisation of group theory
illustrated in chapter 9.

8.3 From Structured Justifications to Coloured Problems

8.3.1 A Restricted Proof Search for Checking Structured Justifica-
tions

The previous section illustrated how implicit inferences are equivalent to the inconsis-
tency of coloured first-order problems. In this section, we show how a coloured problem
can be constructed from a structured straightforward justification such that the result-
ing problem is inconsistent if and only if the justification is valid. This construction gives
a mechanism for restricting the proof search required for checking such justifications.

The construction of a coloured problem given in this section requires the notion of
structured expressions whose formulae are coloured. Coloured structured expressions
are introduced in the following definition.

Definition 8.1 (Coloured Structured Expressions) A coloured structured expres-
sion is a structured expression constructed from coloured first-order sentences. We ex-
tend the definition and notation of the colouring mapping in definition 7.6 to structured
expressions as follows:

X on V) = Xi on V?
( )
X and V) = X and V!
( )
(X then Y)i = X' then Y?!

for every colour 7 and structured expressions X and Y. The notions of recolouring and
isomorphism by renaming colours given in chapter 7 can also be extended to coloured
structured expressions. O

We also define a coloured structured problem as follows.

Definition 8.2 (Coloured Structured Problem) A coloured structured problem is
a pair (S, ) where S is a set of coloured structured expressions and K is a connectability
relation. n

Note that since the set of coloured structured expressions includes the set of coloured
sentences (since a sentence is a structured expression), first-order coloured problems are
a special case of coloured structured problems.

We now have a look at how a coloured problem can be constructed from a given
structured justification. In the light of proposition 6.5 which states that structured
justifications involving the then operator can be transformed into equivalent ones which
do not contain it, we define the required construction of coloured problems according
to justifications which contain only the on and and operators. The construction is done
in two steps:

e A coloured structured problem is constructed from the given justification, as given
by definition 8.3 below which introduces the relation =;
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e The coloured structured problem is transformed into a first-order coloured prob-
lem. This transformation is given in definition 8.4 which introduces the relations
—c and —¢.

The first step is now given in the following definition.

Definition 8.3 (Structured Justifications to Coloured Structured Problems)
Let C be a sentence and P be a structured expression. The justified conclusion C' by P
can be transformed to the coloured structured problem ({P*,—~C7},i <> j), and write

(C by P) = ({P',~C%)},i + j). O

The second step is given by breaking up the coloured structured expressions in the
coloured structured problem according to the following rules.

Definition 8.4 (Convergence of Structured Coloured Problems) The relation
—¢ on coloured structured problems is defined as the smallest relation satisfying the
following rules:

e For all structured expressions X and Y, colours i, sets S of coloured expressions
and connectability relations K:

(SU{(X on V)1, K) = (SU{X" YV}, K Ui j)
where j is new to (S U {(X on Y)'},K).

e For all structured expressions X and Y, colours i, sets S of coloured expressions
and connectability relations K:

(SU{(X and V)'},K) = (SU{X", v/} ICUKE))
where j is new to (S U {(X and Y)'},K).

We denote the reflexive transitive closure of —. by —%. We say that a coloured struc-
tured problem (S,K) converges to the coloured problem (S’,K’), and denote it by
(S,K) Ue (S",K"), if (S,K) —=* (9',K') and there is no coloured structured problem
(8", K") for which (S',K') —¢ (8", K"). O

Definition 8.5 (Breaking Expressions Up) Let X be some on-expression ¥ on Z,
or some and-expression Y and Z such that

(SU{X},K) = (SU{Y?, 27}, K

for some set of coloured structured expressions S, connectability relations K and X’ and
colours 7 and j, then we say that the coloured structured expression X' is broken up
into Y? and Z7 by the application of the relation —.. We say that Y? (and similarly
Z7) has been broken up from X* by the application of —.. We also say that a coloured
structured expression U has been broken up from V by some applications of —

e if U=V, or

e if U has been broken up from V by the application of —, or
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S0 (on VY1) 870 {(X hnd ¥)1)

C
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Fig. 18. The Application of the Relation —.

e U has been broken up from some coloured structured expression W by the ap-
plication of —. and W has been broken up from V by some applications of the
relation —. O

Note that in the rule breaking up and expressions, the colours that relate with the
new colour j in K U K7 are exactly the colours that relate with ¢ in X, which are
also the colours that relate with 7 in X U K079, that is

UKD = U {(, k) |7~ U {0, g) | b~ i}

The application of the relation —. is illustrated in figure 18. We also illustrate the
above definitions with the following examples.

Example 8.1 (Justifications to Coloured Problems)
1. A coloured problem is constructed from a justified conclusion of the form
C by A on B;
where A, B and C' are formulae as follows:

C by Aon B =, ({(4 on B)i,—lcj},i “7)
—rc ({Alkaa_'CJ}ak(_)ZH])

where the colours 4, 7 and k are distinct from each other. It can be seen that if
A = (B = (), then the final coloured problem is of the form

({(B=C),,B*, =7}k i < §)
which is inconsistent.
2. A coloured problem is constructed from a justified conclusion of the form
C by A and B;
where A, B and C' are formulae as follows:

C by A and B =, ({(A and B)i,—lcj},i “7)
—c ({AiaBka_'Oj}a{iak}Hj)
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where the colours 4, j and k are distinct from each other. It can be seen that if
C = (A A B), then the final coloured problem is of the form

({Aia Bka (_'A \% _'B)j}a {Za k} A j)
which is inconsistent.

3. The following justified conclusion
C by (A then B) on D;
is first transformed into the equivalent
C by B on (A on D);

and then the following coloured problem is constructed:

C by Bon (A onD) =. ({Bon (Aon D)i,—IC’j},i “7)
—. ({B',(A on D)F, -7}, k i < j)
—¢ ({BL,AF D' -0}l & ki)
where the colours 7, 7, k and [ are distinct from each other.

4. The following justified conclusion
C by A on (B and D);

converges to:

C by A on (B and D) =, ({(A on (B and D))i,—lcj},i “7)
—. ({4, (B and D)¥,~C7},k < i < j)
—e ({4, B", D', =7}, {k,1} ¢ i & j)

The following proposition is straightforward.

Proposition 8.2 Given the coloured structured problems (S,K) and (S',K') such that
(S,K) =& (S",K') then

1. KCK', and
2. €(S) Ce(s).

Proof: The first part of the current proposition follows from the fact that whenever
(S,K) —¢ (S',K') then K C K'. The second part follows from the fact that whenever
(S,K) —¢ (S, K') then €(S") = &(S) U {j} where the colour j is new to (S, K). [ ]

We also give the following definitions.



CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 162

Definition 8.6 (Construction of a Coloured Problem) Given a set S of coloured
formulae, and a connectability relation IC, we say that the coloured problem (S, K) is
constructed from the justified conclusion C by P, and write

(C by P) Je (SJC)

if (C by P) = (S',K') and (S',K') | (S,K) for some coloured structured problem
(S, K"). We also write
(C by P) —¢ (5",K"),

where (S”,K") is a coloured structured problem, and say that C' by P can be trans-
formed into (S”,K") if (C by P) = (S',K') and (S',K') =7 (S”,K") for some coloured
structured problem (S’, K'). O

Definition 8.7 (Consistency of Structured Problems) Given a set S of coloured
structured expressions and a connectability relation IC, the coloured structured problem
(S, K) is said to be consistent if whenever (S, K) . (S’,K’) then the coloured problem
(S’,K') is consistent. Similarly, (S, K) is said to be inconsistent if whenever (S, ) |,
(S’,K') then (S',K') is inconsistent. O

We will show in proposition 8.7 below that given some coloured structured problem
(S,K), if there is some coloured problem (S’,K’) such that (S,K) . (S',K'), then
(S',K') is consistent if and only if (S”,K") is consistent for all coloured problems
(S",K") for which (S,K) . (S”,K"). As a result, a coloured structured problem
(S, K) is consistent if and only if (S, K) |} (S’,K’) holds for some consistent coloured
problem (S’,K'). Similarly, (S,K) is inconsistent if and only if (S,K) {. (S’,K') for
some inconsistent coloured problem (S’, K'). It thus follows that a coloured structured
problem is inconsistent if and only if it is not consistent.

It can be easily checked that all conclusions justified by a structured expression can
be used to construct some coloured problem, or in other words that all applications
of the relation —. terminate to a coloured problem. This is given by the following
proposition.

Proposition 8.3 (Termination of —.) For every coloured structured problem (S, K)
where S is finite, there is some coloured problem (S',K') such that (S,K) . (S, K').

Proof: For the purpose of this proof, let us define the order of a coloured structured
problem (S, ) as the number of times the on and and operators occur in S. It can
be seen from definition 8.4 that the relation — is applicable to a coloured structured
problem if and only if its order is greater than 0, and that the order of a coloured
problem decreases at every application of —.. As a result, all repetitive applications of
—¢ terminate in a coloured structured problem whose order is 0, that is, in a coloured
problem. |

The following proposition shows that a number of properties of structured coloured
problems are preserved when the latter are transformed into coloured problems.

Proposition 8.4 For all coloured structured problems (S,K) and (S',K') such that
(S, K) =¥ (S',K'), then
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1. if K =K[S] then K' = K'[S"];
2. if €(S) = &(K) then €(S") = &(K');
3. if no colour in K relates with itself, then no colour in K' relates with itself.

Proof: The first two parts of this proposition follow from the fact that at each applica-
tion of the relation —. the new colour (j in definition 8.4) introduced by the application
is introduced to both the set and the connectability relation of the coloured structured
problem. The last part follows from the fact that the new colour (j) does not relate
with itself in K" whenever (S, K) —. (S',K'). [ ]

Proposition 8.5 For every formula C and structured expression P, if it is the case
that C by P —7 (S,K) for some coloured structured problem (S, IC), then

1. K=K[S],

2. €(S) =¢(K), and

3. for all colour © € K, we have i i 1.
Proof: From definition 8.3, if (C' by P) = (S,K'), then §' = {P*,~C’} and K' =
i <> j for some colours i and j where 7 # j. Therefore, it is the case that X' = K'[S"],
¢(S") = €(K'), and that no colour in i <> j relates with itself. The three parts of this
proposition then follow by proposition 8.4 above. |
8.3.2 A Confluence Property

Note that an application of the relation —. (as given by the rules in definition 8.4)
introduces a new colour nondeterministically to a coloured structured problem and
as a result the relation —. is not confluent. In particular, it is not the case that
if (S,K) e (S1,K1) and (S,K) Je (S2,K2) for coloured structured problems (S, K),
(S1,K1) and (S2,K2) then (S1,K1) = (S2,K2). It can be shown, however, that the
relation —. satisfies a confluence property modulo isomorphism by renaming colours.
In other words, whenever

(Sl,ICl) —>: (SQ,ICQ) and (Sg,K:g) —)Z (S4,K:4),

if (S1, K1) e (Ss3,KL3) then there are coloured structured problems (S5, K5) and (Sg, K¢)
such that

(SQ,}CQ) —): (S5,/C5), (S4,IC4) —): (Sg,K:(;) and (S5,IC5) e (Sg,/(:g).

This is derived by showing that — is also strongly confluent modulo isomorphism by
renaming colours.

Proposition 8.6 (Strong Confluence of —, modulo =,.) Given four coloured
structured problems (S;, IC;) for i € {1,... ,4}, such that (S1,K1) e (S3,K3) and

(S1,K1) —¢ (S2,K2) and (S3,K3) —¢ (S4,K4)
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(Slalcl) Rrc (Sg,/Cg) (SlaK:l) Rre (Sg,ng)
or
C C C C
(S2, K2) =pe (Sa, K4) (S2,K9) (S4,K4)
C C

(S5, K5) =re (S6, Ke)

Fig. 19. The Relation —, is Strongly Confluent Modulo =..

then either (S2,K2) = (S4,K4) or else there are two coloured structured problems
(S5,K5) and (S, K¢) such that

(SQ,ICQ) —c (S5,IC5) and (S4,’C4) —c (SS,IC(;),
and (S5, Ks) e (S6, K¢). (see figure 19)

Proof: Given that (S1, K1) =, (S3,K3) then there is a recolouring mapping R such that
R(S1, K1) = (S3,K3). Also, since (S1,/K1) —¢ (S2,K2) then there is some set E; C Sy
consisting of one coloured structured expression and some set Fo C Sy consisting of two
coloured structured expressions such that

Sl — E1 = SQ — E2 and (El,’Cl) —c (EQ,’CQ).

Similarly, as (S3,K3) —¢ (S4,/K4) then there is some set E3 C S3 consisting of one
coloured structured expression and some set F; C Sy consisting of two coloured struc-
tured expressions such that

S3 — E3 = S4 — E4 and (Eg,’Cg,) —c (E4,’C4).
We consider the two cases where R(E)) = E3 or R(E)) # Es.

e If R(E;) = E3 then we claim that (Sa, K2) =y (S4,K4). We prove this claim by
considering whether E; contains an on expression or whether it contains an and
expression separately.

If E1 = (A on B)" for some expressions A and B and colour 4, then
Es =R(E;) = {(A on B)!}
where [ = 9R(7). Therefore,

Sy =5, — E; U{A!, B/} Ko=KiUi+j
Sy =583 —E3U{A" B™} Ky=K3Ulem
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where j is new to (S1,K1) and m is new to (S3,K3). Now, if we define the
recolouring mapping R’ such that

R(X) = R(X)U>™)

for all X, where YU=™) for some arbitrary coloured object Y represents the object
Y with all the occurrences of the colour j replaced with m (see definition 7.19).
Therefore R’ (S, Ka) = (S4, K4) and so (Sa, Ka) e (S4, Ky).

We now consider the case where F; = {(A and B)’} for some A, B and colour i.
Therefore F3 = {(A and B)'} where the colour I = %(i), and

Sy =8 — B U{A,BI} K=k uki™
Sy=8;— EsU{A, B™  Ky=IKsuKi™
where j and m are new to (S1,/K1) and (Ss, K3) respectively. By defining
R(X) = R(X)U>™)

again, we get that R'(S2, Ko) = (Sy, K4) and hence it is the case that (So, 2) =y
(S4,K4).

e If on the other hand R(E;) # E5 then we claim that there is some (S5, K5) and
(S6, K¢) such that

(SQ,ICQ) —c (S5,IC5), (S4,’C4) —c (S6JC6) and (S5,’C5) e (56,IC6).

The proof of this claim can be done by case analysis on whether S; and S3 are on
or and expressions (4 cases in all). Since the proofs of these cases are quite similar
we present only the case where F; contains an on expression while E3 contains an
and expression. So, we have that

Ei={(Aon B)'}  E3={(C and D)}
and therefore

ngsl—ElLJ{Ai,Bj} Ko=KiUi+j
Sy =83 —EsU{C", D"}  K4=KzuKkl=m

where j and m are new to (S1, K1) and (S3, K3) respectively. Let us also denote the
colour R (i) by p, and R~ () by r. Please note that E3 C 2(S3) and R(FE;) C Sy
as R(S1, K1) = (S3,K3). If we now define the following

S5 = (Sy — R~ (E)) U{C", D’} Ks=IKUKy
Se = (S1 — R(Ey)) U{AP, B} Ke=KsUp ¢
where s and g are new to both (Sz,K2) and (S4,C4) then

(SQ,ICQ) —c (S5,IC6), and (S4,IC4) —c (SS,ICS).
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Moreover, if we define the recolouring mapping R’ such that
R(X) = (R(X) T 0m
for all X, then it is routine to show that
R’ (S5, K5) = (56, Ks)

and therefore (S5, Ks5) = (Ss, K¢).- [ |

The required confluence result follows from the above proposition by Newman’s
Theorem (Newman 1942) which states that every strongly confluent relation is confluent.

Theorem 8.6 (Confluence of —. modulo =,.) Given four coloured structured prob-
lems (S;, KC;) for i € {1,...,4}, such that

(51, K1) =¢ (52,K2),  (S3,K3) =¢ (S4,K4) and (51,K1) Ze (S5, K3)
then there are coloured structured problems (S5, Ks) and (Sg, K¢) such that
(SQ,}CQ) —): (S5,/C5), (S4,/C4) —): (SG,ICG) and (S5,IC5) Rre (SG,ICG).

Proof: Follows from proposition 8.6 by a result of Newman (1942) (see also (Plaisted
1993a)) that every strongly confluent relation is confluent. [ |

The following corollary follows easily from theorem 8.6.

Corollary 8.1 Given the coloured structured problems (S1,K1) and (Ss,K3), and the
coloured problems (Sa2,K2) and (S, K4) such that

(S1,K1) e (S2,K2),  (83,K3) Ue (S1,K4) and (S1,K1) Zye (S3,K3)
then (SQ,ICQ) e (S4,’C4).

Proof: If (S1, K1) Ue (S2,K2), (S3,/K3) {be (S4,K4) and (S1, K1) =ye (S3,/3) then there
are coloured structured problems (S5, K5) and (Sg, K¢) such that

(S2,K2) =¢ (85,K5),  (S4,K4) —=¢ (S6,K6) and (S5, Ks5) e (S5, Ko)
by theorem 8.6. However, since (S, K2) and (S4, K4) are coloured problems then
(95,K5) = (S2,K2)  and (S5, Ke) = (54, K4). u

We conclude this section by showing that if a coloured structured problem converges
to some consistent coloured problem, then all the coloured problems it converges to are
consistent.

Proposition 8.7 For every coloured structured problem (S,K) and for all coloured
problems (S',K'") and (S",K") such that

(S,K) Je (S',K") and (S,K) e (S",K")

then S’ is K'-consistent if and only if S” is K" -consistent.
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Proof: If (S,K) | (S, K') and (S,K) { (S”,K") then (S, K') = (S”,K") by corol-
lary 8.1, and therefore S’ is K'-consistent if and only if S” is K”-consistent by proposi-
tion 7.10. ]

8.4 Soundness and Completeness of the Restricted Proof
Checking of Structured Justifications

8.4.1 Soundness and Completeness for Particular Cases

In this section we show the soundness and completeness of the mechanism for con-
structing a coloured problem from a justified conclusion for two particular cases. More
precisely, we show that if the justified conclusion

C by P

converges to the coloured problem (S, K), then (S,K) is inconsistent if and only if P
justifies C' for the cases that P = A on B and P = A and B where A and B are
sentences'. The ‘only if’ direction states that if a proof is found using the restrictions
given by the constructed coloured problem then it is the case that the conclusion C can
be justified by P. This corresponds to the soundness of the mechanism of constructing
coloured problems in order to proof check structured justifications. Similarly, the ‘if’
direction corresponds to the completeness of the proof checking mechanism. The role
of the proofs given in this section is to give an idea of what is required to derive the
soundness and completeness results for the general case.

Proposition 8.8 For all first-order sentences A, B, C, if
(C by A on B) | (S,K)

for some coloured problem (S, KC), then S is K-inconsistent if and only if (A on B) ~ C.

Proof: As illustrated in example 8.1(1),
(C by A on B) || ({A%, B¥,~C7},k < i < j).
By corollary 8.1 if (C by A on B) {. (S,K) then
(S, K) 2o ({A', BF,~CI},k <> i ¢ j)

and therefore (S, K) is inconsistent if and only if {A?, B¥, ~C7} is k < i ¢ j-inconsistent.
The set {A?, B¥, ~C7} can be partitioned into

({4',-¢%}, {B™})

which is also well-coloured with respect to k <> ¢ <> j. We can therefore use theorem 7.8
to deduce that {A?, B¥, (7} is k <+ i < j-inconsistent if and only if

{A", =7, ¥} and {BF -I'}

Tt can be also noted that the fact that (S, K) is inconsistent if and only if P justifies C' can be easily
shown to hold for the particular case where P is a first-order sentence by theorem 8.3 and definitions 6.3
and 6.4.



CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 168

are for some first-order sentence I. As an aside, we note that I can be chosen such
that the pair (I*, =I%) is a k ¢ i < j-interpolant for ({A?, =C7}, {B*}) by theorem 7.7,
although this property is not required for the current proof.

Now, {A%, ~C7,I¥} is k ¢+ i <+ j-inconsistent if and only if

{A*, ~C7, I’} isi > j-inconsistent by thm. 7.5 and prop. 7.7
& {AY,-(I=C)} isi ¢ j-inconsistent
& A" (I=C) by theorem 8.3.

Also, {B*,~I'} is k i < j-inconsistent if and only if

{B¥,=I'} s k < i-inconsistent by prop. 7.7
& B »—*1 by theorem 8.3.

Thus, (S, K) is inconsistent if and only if there is some I such that

A" (I=0C)
B—*T

and by the definition of the relation ~~ (definition 6.3), this is indeed equivalent to
whether (A on B) ~» C as required. |

Proposition 8.9 For all first-order formulae A, B, C, if
(C by A and B) | (S,K)
for some coloured problem (S, K), then S is K-inconsistent if and only if (A and B) ~> C.
Proof: As illustrated in example 8.1(2),
(C by A and B) | ({A%, B¥,=C7}, {i, k} + 7).
By corollary 8.1 if (C' by A and B) {. (S,K) then
(S, K) e ({47, BY, 27}, {i, k} > j)

and therefore (S, K) is inconsistent if and only if { A%, B¥, =€/} is {i, k} <+ j-inconsistent.
The set {A?, B¥, ~C7} can be partitioned into

({B*,~C7},{4™})

which is well-coloured with respect to {i,k} <> 7. We can therefore use theorem 7.8 to
deduce that {4?, B¥, =7} is {i,k} <+ j-inconsistent if and only if

{B¥,=C7, 1"} and {4}, -1}
are for some first-order formula I. The set {B¥,~C7, I'} can be partitioned into

({=07,1'},{B"})
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which is well-coloured with respect to {i,k} <+ j as well. Hence, by theorem 7.8, it is
the case that {B* —~C7,I'} is {i,k} < j-inconsistent if and only if

{-c’, ', J¥} and {BF -J7}
are for some formula .J.

Now, {~C7, I, J*} is {i, k} ¢ j-inconsistent if and only if

{=C7,I', J*} is i ¢ j-inconsistent by thm. 7.5 and prop. 7.7
& {=C7 (IAJ)'Y is i< j-inconsistent
< (INJ)—"C by theorem 8.3.

Also, {B*,~J7} is {i, k} < j-inconsistent if and only if
{B¥ =7} is k < j-inconsistent by prop. 7.7
& B —"J by theorem 8.3.
And also, {A%, -1/} is {i,k} <> j-inconsistent if and only if
{A* =’} isi < j-inconsistent by prop. 7.7
< A —*1 by theorem 8.3.
Thus, (S, ) is inconsistent if and only if there are formulae I and J such that
A—*T
B —*J
(INJ)—=*C
and by the definition of the relation ~ (definition 6.3), this is indeed equivalent to
whether (A and B) ~~ C. |
An Overview of the Proof of the Soundness and Completeness Result for
the General Case

In the previous two propositions we have shown that the method of checking the validity
of a justified conclusion

C by P

by first constructing a coloured problem (.S, K) and then showing that S is K-inconsistent
is sound and complete for the two particular cases of P = A on B and P = A and B for
sentences A and B. Our goal is to show that P justifies C' if and only if the constructed
coloured problem is inconsistent for any structured justification P. This is given in
theorem 8.7 below, and its proof proceeds by induction on the structure of P, which
requires the three cases:

e the base case where P is a formula,
e the first inductive case where P is some on expression X on Y,

e the second inductive case where P is some and expression X and Y,



CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 170

where X and Y are structured expressions. The proof of the base case is quite straight-
forward, and the proofs of the two inductive cases are a generalisation of the proofs of
propositions 8.8 and 8.9 respectively, where the structured expressions X and Y gener-
alise the sentences A and B. In this section we identify the results which are required
in order to generalise the proof of propositions 8.8 and 8.9 into the proofs of the two
inductive cases. Since the proofs of the two propositions are quite similar we only con-
sider the proof of the case where P is an on-expression here. However, the proof of
theorem 8.7 considers both inductive cases in detail.

The key step in the proof of both of the above propositions is the partitioning of
the set S into some appropriate (S1,S2) and using theorem 7.8 to shown that S is K-
inconsistent if and only if S} U{I™} and Sy U{—I"} are K-inconsistent for some colours
n and m, and sentence I. This step is used once in the proof of proposition 8.8 and
twice in the proof of proposition 8.9. In the particular case of proposition 8.8, we have

(C by A on B) I ({4%, B*,=C7}k < i ¢ j)

and {A?, B¥, ~(CJ} is partitioned into
(a5, TE)
and is k <> 7 <> j-inconsistent if and only if the sets
Cor

e S
{477 =ci, I*y B, I’}

are for some sentence I. The curves connecting the coloured sentences correspond to
the way the colours in the above sets relate with each other according to the relation
ki<,
For the general case where P = X on Y for some structured expressions X and Y,
we have
(C by X on V) =) ({XL,YF =0}, k < i <))

and although we can partition {X?, Y* (7} into
({Xza _'Cj}a {Yk})

we cannot use theorem 7.8 to show that it is k <> 4 <> j-inconsistent if and only if the
sets . _ .
{x', -c?, 1fy YR, ary

are for some I, since the structured expressions X and Y may not be (unstructured)
sentences.
We can apply the relation —. on the coloured structured problem

({Xivyka _'C]}ak R ])
as follows

(XL YF, -0k i §) =8 (Sx U{YF, =07}, Kxy)
—¢ (Sx USy U{~C"}, Klyy)
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where Sx and Sy are sets of coloured sentences such that
(X5, YR, =07k 4 i 4 ) Je (Sx U Sy U{=C7}, Klyy)

by first breaking up all the structured expressions in X and then those in Y*. In order
to generalise the proof of proposition 8.8, we need to be able to use the sets Sx and Sy
in the same way that we used the sentences A and B above. In other words, we need
to be able to partition Sx U Sy U {-~C7} into

(SX U {_'Cj}a SY)
and show that it is K -inconsistent if and only if the sets
Sx U{-C’ ¥} and Sy U{-TI'}

are for some sentence I.

An important result which is required to perform this step is given in proposition 8.11
(and illustrated in example 8.4) and allows us to show that the subsets Sx, Sy and
{=C7} are connected (by the relation R, see definition 7.9 on page 125) with each
other according to K’y in the same way that the sentences A’ B¥ and =C7 connect
with each other according to k <+ ¢ <> 7. More precisely,

Sx miy, Sy Sx miy, {207} Sy {207},
or as shown in the following diagram.
Sxmcj }
Furthermore,

e the sets Sy and Sy have no colour in common, and no one which is equal to j
(which is the only colour in {—~C"});

e the colours in Sy that relate with the colours in Sy relate also with the colour j,
K K’ .
that is (Sy = Sy) = (Sx = {=C7});

!

K K’
e all the colours in Sy = Sy relate with all the colours in Sy = Sx.

These properties allow us to use the sets Sx, Sy and {=C7} in a similar fashion that we
use the sentences A’, B¥ and —=C7 in the proof of proposition 8.8, and are generalised
into the definition of well-coloured partitions given in section 8.4.2 below. This notion of
well-coloured partitions is also a generalisation of the notion of well-coloured partitions
(for partitions of two elements) given in definition 7.27. For completeness, we now can

partition Sx U Sy U {=C"} into
K\
{Sx" u {=C’}, Sy}

which is well-coloured with respect to K'yy- and therefore, by theorem 7.8, it is K'yy-
inconsistent if and only if the sets

150 DO (s 0
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are for some sentence I. This sequence of steps is repeated in more detail in the proof
of theorem 8.7. In the following section we define the notion of well-coloured partitions
of more than two elements, which, as suggested in this section, plays an important role
in the proof of theorem 8.7.

8.4.2 On Well-Coloured Partitions

In this section we generalise the notion of well-coloured partitions given in section 7.5
(page 143) to consider partitions of more than two elements. The motivation for the
definition of this notion is mentioned towards the end of the previous section, and
(informally) involves the ability to use the sets of coloured sentences in a well-coloured

partition {Si,...,Sp} in the same freedom that individual coloured sentences can be
used.
A partition P = {Sy,...,S,} of a set S of coloured structured expressions is well-

coloured if no two sets in P have a colour in common, and there are some sets of colours
Py C &(Sy) for every S, € P such that if S, =~ S, for distinct S, and Sy in P then all
the colours in P, relate with all the colours in P,, and no other colour in €(S;) apart
from the colours in P, relates with the colours in S that are not in S;. This is given
more formally below:

Definition 8.8 (Well-Coloured Partition) A finite set of sets P = {S1,52,...,Sn}
is said to be a well-coloured partition of a set S of coloured structured expressions with
respect to a connectability relation K, if

L. Up=S-,
2. for all z,y € {1,... ,n}, if z # y then €(S,) N E(S,) = {}.

3. for all distinct z,y,2 € {1,... ,n}, if (S; 55 S,) # {} and (S, 5 S,) # {} then
(Se 58,)=(S: 5 8.).

4. for all z,y € {1,... ,n}, if Sy =~k Sy then for every colour i € (S, K Sy) and
J € (Sy £ Sy) it is the case that ¢ ~x j. O

We illustrate the above definition with the following example.

Example 8.2 (Well-Coloured Partition) Let the sets S7, So and S3 be

Sy = {A", BI}
S, = {C* D', E™}
S3 = {F",G"},

for some formulae A, B, C, D, E, F and G and distinct colours 4,5,k,l,m.,n and o. Let
the connectability relation IC be

K=<+ j)u(l <+ m)u(j« {kln,o}),
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and let the set S = S7 U So U S3. The way the colours in S relate with each other
according to K can be illustrated by the following diagram:

{ Ai,’“Bjmao )

We can also illustrate which subsets of sets in {S7, S2,S3} have colours which relate
with each other by the following diagram:

51KS_2\53

Now, if we let P = {51, S2, S35}, then
1. yrP==5,
2. (’:(Sl) N @(SQ) = (’:(Sl) N @(53) = (’:(SQ) N @(53) = {},
3. We have the following;:

and therefore the partition P of S satisfies the third condition in definition 8.8.

4. Tt is the case that
S1 =i S, Si =~k Ss, So #ic S3

and thus the fourth condition in definition 8.8 is also satisfied.

As a result, the partition P is well-coloured with respect to K.
We also note that if we define

K'=KUi+k
then the partition P is not well-coloured with respect to X' since

K’ .
(Sl — 52) = {7’7.7}
K! .
(S1 = 83) ={j}
and so (S K S2) # (S1 K S3) and as a result the third condition in definition 8.8 is
not satisfied. 0
In the following proposition, it is shown that the fourth condition in definition 8.8

can be replaced with the equation

K[s1= |J KIS:1 U | ((S: = Sy) ¢ (Sa < Sy)).

1<z<n 1<z<n
z<y<n
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In other words, the subrelation of K relevant to S consists of the subrelations of I
relevant to the elements of the partition, together with the full-connections of P, and
Py for each S; ~x S, where P, is the set of colours in S, that relate with any of the
colours in S — S, and the P, is the set of colours in S, that relate with any of the
colours in § — S,. Note that this result is a generalisation of proposition 7.12. This
characterisation of IC[S] is an important tool for manipulating expressions denoting
connectability relations during the proofs in this section, as well as in visualising the
way particular subsets of sets in coloured problems connect with each other.

Proposition 8.10 For every set of sets P = {S1,S5a,...,Sn} such that
1. P =S for some set S,
2. for all z,y € {1,... ,n}, if ¢ # y then &(Sy) NE(Sy) = {}.
then
o forall z,y € {1,... ,n}, if Sy =i Sy then i ~x j for every colour i € (S, L Sy)
and j € (S, £ 8,),
if and only if
e K[ST= | KIS:T U | ((S: 5 8))  (S: £5,)).

1<z<n 1<z<n
z<y<n
Proof: First of all we note that we do not need the third condition in definition 8.8 for
the conclusion of this proposition to hold. The following proof is similar to the proof of
proposition 7.12 given on page 144. Our goal is to show that

U (858« S E8)ck (1)
Sz%)CSy
if and only if
K K
K[s1= |J KIS:1 U | ((S: = 8y) ¢ (Sa < Sy)). (2)
1<z<n 1<z<n
xzygn

We notice that (1) is equivalent to

U (S 5 8y) ¢ (S: £ 5,)) CK[S]

sz;CSy

since if (i,7) € ((Sz K Sy) < (Sz e Sy)) for some S, and S, then both ¢ and j are in
the colours of the set S. This is also equivalent to

U ((5: % 8,) & (8. & 8,)) CKTST (3)
53

as the relation ((S; K Sy) < (Sy £ Sy)) for S, #x Sy is empty. Now, the statement
(3) follows from (2) by the standard results in set theory. To show the converse, we
assume that (3) holds and derive the following two statements:
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e The statement

krs1c U krss1u U (8. 5 8,) ¢ (8. & 5,))
1<z<n 1<z<n
r<y<n

follows from the fact that if i ~x 7 and 4,j € €(S) then either 7 and j are in some
set S in which case (i,j) € (JK[S;] or else they are in different sets, S, and S,

say, in which case (i,7) € U((Sz = S,) © (Se & 8,)).
e The statement

U ksl u | (855 8)) (8. £ 8,)) KT8]

1<z<n 1<z<n
z<y<n

follows from the fact that K[S;] C K[S] for every S; C S and from the assump-
tion (3). [ |

Example 8.3 Let {5, S2, 53} be a well-coloured partition of some set S with respect
to a connectability relation K such that

Si= Sy Sime Sy S2#k Ss
We can denote the three subsets with the following figure:
<N
S1 Sy Ss

which shows which subsets have colours that relate with each other. It is the case by
proposition 8.10 that

IC[S—| = ’C[Sl] U ’C[Sﬂ U ’C[53—| U (Pl <~ PQ) U (Pl R Pg)
where

Pi=(S15 %) =55 s
Py = (S 5 81)
P3 = (S3 X S1).

Note that the connection between the subsets S7 and Sy in the diagram above represents
the full-connection P; <> Po. Similarly, the connection between S; and S3 represents
Py <> Ps3. The subrelations K[ S ], K£[Sy] and K£[S3] are not represented in the diagram.
Now, if
S1# S Si=xS3  Samp S3

as shown by the following diagram
LA
S1 S22 S3

then
KI8T =K[S1|UK[S2] UK[S5] U (P <> P3) U (P2 <> Ps3)
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where

i
Pl = (51 — S3)
K
P2 = (S2 = S3)
i i
Ps = (S3 = S1) = (53 = S2). O
The following proposition states that the application of the relation —. on a coloured
structured problem (S,K) where S can be partitioned into a well-coloured partition,
results in a coloured structured problem (S’,K') where S’ can also be partitioned into
a well-coloured partition. Furthermore, the subsets in the partition of S’ are connected

with respect to K’ in the same way that the subsets in the partition of S connect with
each other with respect to K.

Proposition 8.11 Let (S,K) be a coloured structured problem, and let {S1,...,Sy} be
a well-coloured partition of S with respect to K. If (S,K) =% (S',K') then there are
some sets Sy, ... ,S), such that:

1. The elements in S, for 1 < x < n have been broken up from the elements in S,
by some applications of the relation —..

2. Sz =i Sy if and only if Sy ~x1 Sy,
3. {S1,...,S.} is a well-coloured partition with respect to K'.

Proof: The statement of this proposition follows from the fact that — is the reflexive
transitive closure of —. and from the fact that the above three results hold if (S, K) —
(S’,K'). Without loss of generality we can assume that the application of the relation
—. breaks up a coloured structured expression in S; as illustrated by the following
diagram.

(S1USa U+ U Sy, K)

C

(S{USyU---US,, K
Therefore our goal is to show that there is some set S such that:
1. There is some element X in S; and elements X, X5 in S] such that
S1 —{X} =51 —{X1, Xz}

and that the structured expression X is broken up into X; and X, by the appli-
cation of —..

2. S1 =k S if and only if S| =i S, for 1 < z < n; and S, ~¢ Sy if and only if
Sy =i Sy for z,y € {2,... ,n}.

3. {51, 52,...,Sp} is a well-coloured partition of S with respect to K'.

To prove the required statement we consider the two cases where the coloured structured
expression X is (Y on Z)" or (Y and Z)’ for some colour 7 and structured expressions Y’
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and Z. In each case the set S7 is (S1 —{X })U{V?, Z/} where the colour j is new to (S, K).
If X =(Y on Z)' then K' =K Ui ¢ j, and if X = (Y and Z)* then K' = K U K09,
The first required result ((1) above) follows easily by choosing X; = V* and X, = Z7.
The second and third results are also straightforward, and follow from the facts that:

e for the case when X is a coloured on expression, the colour j is new to (S, ) and
relates only with the colour 7 in ', and 7 occurs only in the subsets S; and S;

e for the case when X is a coloured and expression, the colour j is also new to (.S, )
and relates in K" with all the colours in (S, K) that relate with ¢ in K. |

Example 8.4 Let X, Y be structured expressions, C' be a sentence, and let
(X" Y5,=C7) k4 i ) =¢ (S,K)

for some coloured structured problem (S,K). By proposition 8.4, £ = K[S]|. The
partition . ‘

{{X1 YY" {=C7} }
of the set {X*,Y*,=C7} is well-coloured with respect to k ¢ i <+ 4, and therefore by
proposition 8.11, there are sets Sy, Sy and S_¢ such that:

1. The elements in Sy, Sy and S_¢ have been broken up by some applications of
— from the elements in X, Y, and {—C7} respectively. Since —C' is neither an
on-expression, nor an and-expression, then S_¢ = {—-C7}.

2. It is the case that
Sx ~c Sy and Sy ~¢ {-C’}
but Sy %k {—Cj}.

3. The partition {Sx, Sy, {~C7}} of S is well-coloured with respect to K. Thus no
two distinct sets in the partition have a colour in common and

S =Sy USyU{-C’}.

From the fact that no colour in K relates with itself (by proposition 8.4(3)) we
deduce that

KH{-C}1 = {},

and by proposition 8.10 we get
K=K[Sx|UK[Sy|U(Px < j)U(Px < Py),
where

Px = (Sx 5 Sy) = (Sx 55 {~C7})
Py = (Sy 5 Sx)

and it is the case that

(i} = ({-07} & sy).
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The following diagram

(X7 YFE 50T, keiss )

L

(Sx Sy -CJ, K)

illustrates the application of the relation —* on ({X*,Y*,~C7},k <+ i ¢ 5). The curve
connecting the set Sx with {—~C”7} represents the relation (Px <« j) and the curve
connecting Sy with Sy represents (Px < Py). O

8.4.3 Soundness and Completeness for the General Case

In this section we prove that if C by P |. (S,K) for every structured expression P,
conclusion C and coloured problem (S, K), then P justifies C if and only if (S5, K) is
inconsistent. This result is given by theorem 8.7 below, whose proof uses the following
proposition.

Proposition 8.12 Given the sets of coloured structured expressions S, S1 and So where
SNS; ={}, SNSy = {}, and the set S contains an on or an and expression, and given
the connectability relations IC1 and Ko, then

1. there is some set 8" of coloured structured expressions and connectability relations

K'Y and Ky such that

(SU Sl,K:l) —e (Sl U Sl,K:Il) (SU SQ,’CQ) —e (Sl U SQ,K:IZ);

2. if K1 [S] = K[ S] then K\[S"] = K4[S'];
3. if €(S)NE(Sy) = {} and €(S) N E(Ss) = {} then if (S 81) = (S 3 $5) then
(55 5y = (9% s,).

Proof: Let X be some on or and expression in S, and let 5 be any colour new to S, Si,
So, K1 and Ky. The proof of this proposition follows by considering the following two
cases:

o If X = (Y on Z)' for some colour 4 and structured expressions ¥ and Z then

(SUSIKD) = (S —{X}) U{Y", 20}) U S, 27}, K1 Ui  j)
(SUSs, K1) = (S = {X}) U{Y*", 29}) U Sy, Z7},K5 Ui 4 j).

1. The first part of this proposition follows by choosing
S'=(S—{XHu{yvi,Z7}, Ki=KiUi<j and K)=KyUi ¢ j.
2. Since both the colours i and j are in S’ then
Ki[S"T=Ki[STUi = j

and similarly
K58 = Ka[STUi ¢ j,
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and therefore K} [S"] = KC,[S"] if K£1[S] = K2[S].

3. Since j ¢ €(S1) and 7 is in €(5), and therefore not in €(S;) because €(S) N
Q:(5'1) = {}7 then

and similarly

Thus ("5 81) = (5" % 8,) if (55 81) = (55 5,).
e If X = (V and Z)’ then
(SUSLK) = (S — (XD U 27D USy, 20}, K UKl
(5U 82, KC2) = (((S — {X}) U Y, 27}) U Sp, 27}, Ky UKCST).
1. We choose
S'=(S-{X}HU {Yi,zj}, Kl =K U ,ng'—m')’ Ky = Ko U K:éi_)j),

and it can be checked that the first part of this proposition follows easily.

2. Using the fact that for every set S, connectability relation /C, colour 7 in S
and colour j new to (S, K) it is the case that

KUK = ICU{(, k) | i ~ic kYU {(k,j) | b~ i}
we get

KT8 = (K U {(g, k) | i~y B} U {(k,5) | i ~k, E})[S"]
=K1[S'T U {(4,F) | i ~x, k, k€ €(S")} U
{(k,j) |i~k, kyk €€(S)}
=Ki[ST U {(G, k) | i ~icirsn kY U {(k,9) i~k rsn k)

Now €(S’) = ¢(S)U{j} and j & €(K;) and therefore K1[S"] = K1[S]. Thus
K18 = Ki[STUL(G, k) |~y ps1 B U{(R,5) |4~ 197 B}
Similarly,
K[ 8" = Ka[STUL{(4, k) | i ~kors) kY U{(R,5) i ~kurs K

and therefore K [S'] = KL[S"] if K1[S] = Ko S].

3. For the final case we use the fact that the colours that relate with j in K’ are
exactly the colours that relate with ¢ in IC, and therefore

gf o _ [ (SBs)ul) ifie(sHs)
1= K .
S8 otherwise
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and similarly
KCs . o KCs
, K, (S =3 S)U{j} ifie (S=35,)
S 38, = K
S =38, otherwise.
Thus (5" < §1) = (8 22 85) if (54 5)) = (55 5). n
The following corollary of proposition 8.12 is used in theorem 8.7.

Corollary 8.2 Given the sets of coloured structured expressions S, S1 and Se where
SNSy =1}, SNSy, ={}, and the set S contains an on or an and expression, and given
the connectability relations IC1 and Ko then

1. there is some set S" of coloured formulae and connectability relations K| and K
such that

(SU Sl,K:l) —)Z (SI U Sl,K:Il) (SU SQ,’CQ) —)Z (SI U SQ,K:IZ);

2. if K1[S] = K[ 8] then K| [S] = K,[S];
3. if €(S)NE(S1) = {} and €(S) N E(Ss) = {} then if (S 81) = (S 2 $y) then
(55 sy = (5% s,).

(Note that the set S" in this corollary contains only coloured formulae, while the set S’
in the statement of proposition 8.12 contains coloured structured erpressions.)

Proof: Follows from the fact that —7 is the reflexive transitive closure of —. and from
proposition 8.12. [ |

Theorem 8.7 For every structured expression P, sentence C, and coloured problem

(S,KC) such that
(C by P) e (S,K)

then S is K-inconsistent if and only if P ~~ C.
Proof: The proof proceeds by induction on the structure of P:
e The Base Case (P is some sentence A): For all sentences A and C such that
(C by A4) Je (S,K)
then S is C-inconsistent if and only if A ~ C.
Proof: Since A is a sentence
(C by 4) U ({A',~C7},i 6 ),

and A ~» C if and only if A —* C. Therefore the goal of this case follows from
theorem 8.3. X

e The on-Induction Case (P is some expression (X on Y)): Given the hypotheses:
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(XIVE D¢, ik ) (X7 —AT, i)

C\* c |l *

(Sx™ Yk DI, Kxy) (Sx A7, Kx) ¥ DB ok
KCI*\ Vi

(Sx™=Sy €7, Ky Sy, -B, Ky)

Fig.20. The on Case.

1. for every sentence A, if (4 by X) |, (S’,K’) then S is K'-inconsistent if and
only if X ~~ A;

2. for every sentence B, if (B by Y) |, (S”,K") then S” is K"-inconsistent if
and only if YV ~» B;

we are required to show that for every sentence C' if
(C by X on Y) | (S,K)

then S is K-inconsistent if and only if (X on V) ~ C.
Proof: By the definition of —} we get

(C by X on Y) —¢ ({Xi,Yk,—'Cj},k “ i g),
(A by X) —=¢ ({X',-A7},i < j),
(B by Y) =f ({Y*, =B} k < i).

Figure 20 illustrates how the relation —. is applied on the coloured structured
problems

({XZ,Yk,—.C]},kH'L(—)]), ({Xza_'A]}aij)a ({Yka_'Bl}akHZ)
during the proof of this case.

By corollary 8.2 we deduce that there is a set Sy of coloured formulae such that

(X, YF =0 ki e §) =2 (Sxy U{Y* =07}, Kxy)
({X", A7} i+ §) =% (Sx U{~47},Kx)

where

Kxv[Sx] =Kx[Sx] = Ksy, say, and
(Sx "X vk, ~07)) = (Sx X {~A7}) = Py, say.

Note that the colour i relates with k£ and j in Kxy since (i <> k < j) C Kxy by
proposition 8.2. Thus ¢ € Px.
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Now, since {{X*}, {Y*}, {=C7}} is well-coloured with respect to k < i ¢ 7 it is
the case by proposition 8.11 that {Sx, {Y*}, {=C71} is well-coloured with respect
to Kxy, and that

SX Rixy {Yk}v Sx Rk xy {7C7}

while {Y*} %, {=C7}, and therefore
Kxy = ICSX U (PX > k) U (PX > j)

Similarly, since {{X*}, {=A7}} is well-coloured with respect to i <> j, it is the case
that {Sx,{-A47}} is well-coloured with respect to Kx. It is also the case that

Sx RKx {_'Aj}

and that
Kx = ’CSX U (PX ~ ])

We now use corollary 8.2 again to deduce that there is some set Sy such that
(Sx U{Y* =07}, Kxy) = (Sx U Sy U {-~C"}, Klxy)
({Yka _'Bi}a k 7’) _>>ck (SY U {_'Bi}a ’CY)

where

Ky [Sx] =Ky [Sx] =Kxy[Sx] = Ksyx,
Ky [Sy] =Ky [Sy] = Ks,, say, and

(Sy "5 (Sy U {=C9})) = (Sy X (=B'}) = Py, say.

Note that the colour £ is in Py since it relates with 7 in K’y because of the fact
that (i <> k <> j) C Ky by proposition 8.2.

By proposition 8.11 we deduce that {Sx, Sy, {~C7}} is well-coloured with respect
to X'y, and that

Sx =, Sy, Sx =y, {707}, Sy #, (=07}

and so
K'vy = Ksyy UKg, U (Px <> Py) U (Px < j).

Similarly, {Sy, {=B"}} is well-coloured with respect to Ky and

Sy Ry {—|Bi}, Ky = ’CSY U ('PY > Z)

To summarise (see also figure 20),
(X", Y5, 2C i 6 k ) Je (Sx U Sy U{=C"},Kixy)
({ X', =A%}, ¢ 5) Je (Sx U{=4A7},Kx) for all A
({Y*,=B},i ¢ k) J (Sy U{~B'},Ky) for all B.
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where K:IXY =Ks, UKs, U (Px <> Py)U (Px < j)
Kx =K:SX U(PX <_>j)
Ky = Ksy, U (Py < 1).

The rest of this proof is now similar to the one of proposition 8.8. The set Sy U
Sy U {=C7} can be partitioned into

(Sx U{=C"}, Sy)
which is well-coloured with respect to Kxy as
v [Sx U{=C"}] = Ks, U(Px > j)
Py = (Sx U {=C71) " sy
Py =Sy ' (SxU{~C}),

and so ‘
Ky = Ky [Sx U{=C"}TU Ky [Sy1U (Px < Py)

Therefore by theorem 7.8, Sx U Sy U {=C7} is K’;y-inconsistent if and only if
Sx U{-C9,1¥} and Sy U{-I'}

are for some first-order sentence I. Now Sx U {=C7, I*} is K’y -inconsistent if
and only if

Sx U{-C7,I*} is Kg, U (Px ¢ {j,k})-inconsistent by prop. 7.7
Sx U{~C? '} is Ks, U (Px ¢ j)-inconsistent by theorem 7.5
Sx U{=C7, 1"} is K x-inconsistent

Sx U{=(I = C)} is Ky-inconsistent

X ~ (I = C) by the first induction hypothesis.

t ot

Also, Sy U {=I'} is K'y-y-inconsistent if and only if

Sx U{-TI'} is Kg, U (Py ¢ i)-inconsistent by prop. 7.7
& Sy U{=I'} is Ky-inconsistent
< Y ~» I by the second induction hypothesis.

Thus, (Sx U Sy U{=C7},K’) is inconsistent if and only if there is some I such
that

X~ (I=0C)
Y 1

and by the inductive definition of ~~ this is equivalent to whether X on YV ~ C.
Finally, by corollary 8.1, whenever (X on Y) | (S, K) holds then

(S,K) Zre (Sx U Sy U{=C7}, Klyy)
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and therefore (S, K) is inconsistent if and only if (Sx USy U{=C7}, K’ is. This
concludes the proof of this case. X

e The and-Induction Case (P is some expression (X and Y)): Given the hypotheses:

1.

for every sentence A, if (A by X) |, (S, K’) then S’ is K'-inconsistent if and
only if X ~» A;

. for every sentence B, if (B by Y) {. (S”,K"”) then S” is K"-inconsistent if

and only if Y ~ B;

we are required to show that for any sentence C' if

(C by X on Y) ¢ (S,K)

then S is K-inconsistent if and only if (X and V) ~~ C.

Proof: By the definition of —} we get

(C by X and V) =7 ({X', Y5, =C7}, {i K} 5 j),
(A by X) —¢ ({X', =A%}, i ¢ ),
(B by V) = ({Y5, =B}k ).

Figure 21 illustrates how the relation —. is applied on the coloured structured
problems

({Xivykv_'oj}v {ka} A .7)7 ({Xiv_'Aj}ai A ])7 ({ka_'Bj}ak A .7)

during the proof of this case, and by a similar argument to the previous case we
deduce that

({Xza Yka _'Cj}a {7’7 k} A ]) U’C (SX U SY U {_'Cj}a ’CIXY)
({X%,=A7},i ¢ 5) Je (Sx U{=A7},Kx) forall A
({Y*,=B7,i < k) Y (Sy U{~B'},Ky) for all B.

where
ICIXY = ICSX UICSY u (PX A j) U (PY <_>.7)
Kx = ’CSX U (PX <—>])
Ky = ’CSY U ('PY (—)j)
Ksy = Kxy[Sx] = Kx[Sx]
Ksy = Ky [Sy] = Ky [Sy]
Px = (Sx 2 ~09) = (Sx ¥ ~a)
Py = (Sy ' ~C) = (Sy ¥ -BY)
and

1 € Px ke Py.
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X7 YETSC, (ko) (X7 AT i)

C‘* cl*x

(Sx” YF 307, Kxy) (SY —Ai, Kx)  (YF SBI, k)
/CL> BAM N

(Sx~ Sy~ (Y, IC'XY) (Sy —|Bj, Ky)

Fig.21. The and Case.

We now proceed in a similar fashion to the previous case and to the proof of
proposition 8.9. The set Sx U Sy U {—=C7} can be partitioned into

(Sy U{~C"},Sx)

which is well-coloured with respect to X'y, and by theorem 7.8 we deduce that
Sx USy U{=C7} is K'y-inconsistent if and only if

Sy U{-=C’ T"} and SxU{-I}

are for some first-order formula I. Now, the set Sy U{=C”, I'} can be partitioned
into

({_'Cj7 Ii}7 SY)

which is well-coloured with respect to K’y as well. Hence by theorem 7.8, it is
the case that Sy U {-~C7,I'} is K'sy-inconsistent if and only if

{=C9,1I*,J*} and Sx U{-J’}
are for some sentence J.
The set {~C7, I, J¥} is K'yy-inconsistent if and only if

{=C7, 1", J} is i ¢ j-inconsistent by thm. 7.5 and prop. 7.7
& {=C7 (IAJ)'Y s i< j-inconsistent
& (INJ)—"C by theorem 8.3.

Also, Sy U{~=J7} is K';y-inconsistent if and only if

Sy U{~J7} is Ks, U (Py ¢ j)-inconsistent by prop. 7.7
& Sy U{~J’} is Ky-inconsistent
< Y ~» J by the second induction hypothesis.
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And also, Sy U {=I7} is Kxy-inconsistent if and only if

Sx U{-I"} is Kg, U (Px > j)-inconsistent by prop. 7.7
& Sx U{-I’} is Kx-inconsistent
&< X ~» [ by the first induction hypothesis.

Thus, (Sx U Sy U{=C7}, K% ) is inconsistent if and only if there are sentences I
and J such that

X ~1T
Y ~J
(INJT)—"C

and by the definition of ~» this is equivalent to whether X and Y ~~ C holds.
Finally, by corollary 8.1, whenever (X and Y) | (S, ) then

(S.K) e (Sx U Sy U{-C7}, Kyy)

and therefore (S, K) is inconsistent if and only if (Sx U Sy U{=C7}, K-) is. This
concludes the proof of this case. X

The above case concludes the proof of the current theorem. |

Example 8.5 In this example, we show that it is not the case that
(Aon (A= B))and (B = C) on (A = B)) ~ (AAC)

for distinct literals A, B and C' (see also example 6.2 on page 114). It is the case that
the justified conclusion

(ANC) by (Aon (A = B)) and (B = C) on (A = B))
converges to the coloured problem (S, K) where
S = {Ala (A= B)ja (B = C)ka (A= B)l7_'(A A C)m}
K=(m+iejUme k).

Now, the coloured problem (S, K) is inconsistent if and only if the following coloured

matrix is refutable:

—

B ¢t B ﬁcm]

where the curves above the matrix illustrate which columns have literals which can
connect with each other according to the connectability relation I. Note that this
matrix cannot be refuted since the path

{Bja _'Bka _'Ala _'Am}
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does not have a connection since j % k. As a result it is not the case that
(Aon (A= B))and (B = C) on (A = B)) ~ (AAC)

by theorem 8.7. O

8.5 Modifying the CBSE Derived Rule to Check Struc-
tured Justifications

In this chapter and in chapters 6 and 7 we illustrated how one can use structured justi-
fications in a declarative language in order to give more information on what inferences
are needed to derive the conclusion of the justification. This information improves both
the readability of proofs by reducing the effort required in following the justification, and
the proof checking efficiency by restricting the proof search. This restriction involves
the colouring of sentences given in the justification according to definitions 8.3 and 8.4.
In this section we show how the CBSE derived rule described in chapter 5 is modified in
order to check structured justifications. The modified rule illustrated in this section is
used in checking the proof scripts developed during the mechanisation of group theory
described in chapter 9.

The structured justifications defined in chapter 6 can be used to derive their conclu-
sion according to pure first-order logic, and section 8.3 gives the restrictions required
on pure first-order logic calculi in order to proof check structured justifications. How-
ever, for efficiency reasons the equality predicate requires special treatment during proof
search and the CBSE derived rule given in chapter 5 implements a proof calculus for
first-order logic with equality. The definition of a syntax and semantics for structured
justifications for first-order logic with equality is not considered in this thesis. We believe
that this (and the definition of structured justifications for other logics and theories) is
an interesting direction for future work since it is not straightforward to define struc-
tured justifications which are easy to understand and efficient to proof check. Instead
of giving new operators on structured expressions to handle equality, the CBSE derived
rule is modified according to the restictions given in this chapter, and we discuss the
effect of such restrictions on proof checking justifications involving formulae containing
the equality predicate.

We recall that during the expansion rule of the CBSE calculus, the insertion of a
literal in a branch may result in the insertion of a number of inequalities which are then
used by other rules of the calculus to close the branch. More precisely, the additional
inequation

(317"' 7Sn>7é<t17"' 7tn>

is inserted in the branch B whenever a literal L = P(sy,... , s,) is inserted in the branch
and —P(t1,...,t,) is in B, and whenever a literal L = = P(s1,... ,s;,) is inserted in B
and P(tq,...,t,) is in B. This mechanism is described in section 5.2.2, page 81, by
defining the operator o on branches and literals. The CBSE rule is modified so that it
takes coloured formulae and restricts the insertion of additional inequalities according
to the connectability relation considered. Given a connectability relation K, a coloured
literal L, and a tableau branch B containing coloured literals and a number of uncoloured
equations and inequations, we define the coloured insertion of L in B, and denote it by
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B oy L, as follows:

BOICPi(Sla"' 7STL) =
B,P'(s1,...,s0) U{(s1,...,8n) # (t1,... ,tp) | 7P (t1,... ,t,) € B,i ~x j}
Box —P'(s1,... ,5,) =

B, =P (s1,... ,sp) U{(s1,... ,80) # (t1,... stp) | PP (t1,... ,tn) € Byi~x j}
Bo,c(s—t) B,(s=t)
Bog (s 1) = B, (s #1)

This definition of the ox operation differs from the definition of the o operator given in
section 5.2.2 in the fact that additional inequations are inserted in a branch if the colours
of the literals ‘giving’ the inequation (i.e., the literals P*(s1,... ,s,) and =P/ (t,... ,t,)
in the first part of the definition, and —=P*(sy,... ,s,) and P(t,... ,t,) in the second)
relate with each other according to K. Note that the equations and inequations inserted
in a branch using the ox operator are not coloured. The Expansion rule in figure 11 is
then modified so that literals are inserted using oy rather than o:

Expand

BIOICL1|"'|BloICLm|"'|Bn C( ’C)

where By | --- | B, is a tableau, C is a constraint, and L; V --- V L, is an instance
YoV .-V L o of some clause in the the set of clauses being refuted, and o is a

substitution which maps all the free variables in L!,... L] to distinct free variable

new to By | --- | B, - C. The CBSE calculus is modified by replacing the Expand rule

with the Expandy rule. This is the only modification applied to the CBSE rule used
to check the coloured inconsistency of a coloured problem which is constructed from a
structured justification as described in definitions 8.3 and 8.4.

Given the restriction on the CBSE derived rule described above, one can use the and
operator to construct structured expressions in which one expression explicitly derives an
equation and the other requires the derived equation to derive the goal. More formally,
if a structured expression F; explicitly derives a conjunctions of equation F, that is

Ey ~E where E= ((a1 =b1) A+ A (an =by)),

and another structured expression, Fo say, explicitly derives some formula A, then a
conclusion C can be justified as follows:

C by E1 and EQ;

if AFp C. By Atpg C we mean that C' can be derived from A by substituting equals
for equals according to the equations in E. We do not prove this claim in this thesis,
although we state that we have found no counterexample to this statement during our
case studies. The informal intuition justifying this statement is that the restrictions on
the proof search allow the derivation (in pure first-order logic) of E from E; and of A
from Fs, and thus F A A from E; and E,. Since the rules of rigid basic superposition,
equational reflexivity, simplification and trivial closure are not restricted by the colours
of the literals in the tableau, the equalities in E can then be used to derive C' from A.

The following is an example of a conclusion justified with a structured expression
which involves a premise containing an equation.
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~P(f(b))
)
P(f(a))
|
P(a)
PN
-P(x) z="0

Fig.22. A Coloured First-Order Tableau.

(P (f b)) by (Va.P 2 = (v = b)) on (P a)) and (P (f a));
Note that

(Vz.Px = (z=b0)) on (Pa))~ (a=b)

and
P(fa) Fo=p PI(fD).

Figure 22 illustrates the coloured tableau constructed from the structured justifica-
tion given above. The connections between tableau nodes illustrate which literals have
colours which relate with each other according to the connectability relation in the
coloured problem constructed from the structured justification considered. As shown
in the figure, the additional inequalities inserted in the left and right tableau branches
respectively are:

The left branch can be closed by equational reflexivity on the second additional inequa-
tion giving the constraint {z ~ a}. The right branch can then be closed by congruence
closure after instantiating the variable x with a. Note that because of the colouring of
the tableau, the following inequalities are not included in the tableau branches:

(a) #(f(0))  (a) # (f(b))

and as a result, a smaller search space is considered during the refutational process.
Finally, we note that the undecidability of the validity of structured justifications
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(theorem 8.5) implies that there is no complete terminating algorithm that checks struc-
tured justifications. As a result, the (implementation-based) bounds on the proof search
described in section 5.3.3 are used to restrict the search space considered during the
proof checking process to a finite one. We recall that, given a list of clauses I, the
implementation of the CBSE rule restricts

e the number of times the expansion rule can be used on each clause, and
e the number of times the basic rigid superposition rules can be applied.

The first restriction may correspond to a restriction on the number of times the implicit
inference rule »— is applied to replicate sub-formulae involving the universal quantifier.
For instance, the relation — replicates a sub-formula in the following cases:

A—ANA ANBVC)— (ANB)V(ANC).

The second restriction may correspond to a restriction on the number of substitutions
of the equations in the conjunction of equations E are applied to derive a conclusion C'
from a formula A in Atg C.

The bounds given in section 5.3.3 were not found to be over-restrictive during the
implementation of the case study described in chapter 9, in the sense that the structured
justifications that were used during the implementation of the case study could be
proof checked according to these bounds. This suggests that the explicit and implicit
derivations defined in chapter 6 are too strong and cannot be considered to represent
trivial inferences. The definition of weaker and decidable implicit derivations should be
considered in future.

8.6 Summary

In this chapter we have used the definitions and results on the coloured first-order logic
given in chapter 7 to define a restriction on the proof search required to check the
structured justifications given in chapter 6. In particular, it is shown that a formula X
implicitly derives a formula Y (i.e., X »»* Y)) if and only if X’ = Y7 is consistent with
respect to the connectability relation 7 <+ 7 where the colours 7 and j are distinct. This
result is used to show that the problem of checking implicit and explicit derivations is
undecidable.

A method for constructing a coloured problem from a conclusion and a structured
justification is then illustrated. This method is shown to correspond to a sound and
complete restriction on the proof search required to check structured justifications. In
other words, a structured justification is valid if and only if its constructued coloured
problem is inconsistent. The proof of the soundness and completeness result used the
results on coloured interpolants derived in section 7.5.

The CBSE rule defined in chapter 5 is then modified so that it can be used to check
structured justifications. The modified CBSE rule is used to check the justifications in
the proofs implemented during the case study described in chapter 9. We argued that
although the implicit and explicit derivations defined in chapter 6 have an undecidable
validity problem, it is likely that only a small, possibly decidable, subset of these are used
in practice, and that therefore it is desirable that definitions of weaker and decidable
implicit and explicit derivations should be considered as future work. It is also desirable
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that the notion of structured justifications, which are currently limited to the pure first-
order logic, should be extended to the first-order logic with equality as well as to other

logics and theories.



Chapter 9

A Mechanisation of Group
Theory

9.1 Introduction

This chapter illustrates the mechanisation of a number of results of group theory using
the SPL language. The mechanisation is based on the textbook by (Herstein 1975)
and includes results on normal groups, quotient groups and the isomorphism theorems.
The mechanisation also includes the implementation of a number of proof procedures
in SML which are used in automating a number of inferences omitted from the formal
proofs.

The motivations for this mechanisation include:

e investigating the idea that the incorporation of proof procedures implemented
during the mechanisation of the theory in order to automate trivial inferences can
substantially reduce the difference between formal and informal proofs;

e the use of structured straightforward justifications in order to check whether they
can be used to develop readable proof scripts, and whether any substantial effort
is needed in the implementation of proofs using such justifications.

The proof scripts developed during the mechanisation are much more readable than
tactic-based proofs such as the ones described in chapter 3. Furthermore, the imple-
mentation of simplifiers and query functions on the facts stored in the SPL database
of trivial knowledge are used extensively to automate the inferences which are often
omited from the literature.

The results on group theory given in this chapter, as well as many other related re-
sults, have been mechanised in proof development systems before. For instance, Gunter
(1990) mechanised a number of results on group theory in HOL. Kammiiller (1997)
proved Sylow’s theorem in Isabelle, and von Wright (1992) and Laibinis (1996) for-
malised lattice theory in HOL. Jackson (1995) formalised a substantial amount of results
in abstract algebra, including results on groups, using the Nuprl proof development sys-
tem. Bailey (1998) mechanised Galois theory in LEGO using several techniques includ-
ing coercions and literate programming to improve the presentation of the implemented
proof scripts. Several results on groups, rings, lattices and other algebraic structures
are also mechanised in the Mizar system. The contribution of the work presented in

192



CHAPTER 9. A MECHANISATION OF GROUP THEORY 193

this chapter lies in the use of an extensible declarative proof language in which proof
procedures are implemented during the mechanisation in order to be used in minimising
the difference between formal and informal proofs.

This chapter is organised as follows. In section 9.2 we give the definition of groups
in HOL and describe the preliminary results that are derived and how they are used
in implementing proof procedures that are then incorporated in the SPL language.
Section 9.3 gives a number of results on congruences, cosets and the product of subsets
of groups. Further results, such as the existence of quotient groups and the isomorphism
theorems are given in section 9.4. A concluding discussion is then given in section 9.5.

9.2 Group Theory in SPL

Groups are one of the most common algebraic structures in mathematics and have
been studied intensively in the nineteenth and twentieth centuries. Groups are also
extended to other algebraic structures including rings, fields and vector spaces. In our
mechanisation we follow (Herstein 1975) in defining and reasoning about groups, and
derive all the results up to and including the second isomorphism theorem with the
exception of those involving finite groups.

9.2.1 The Definition of Groups

A group is a pair (G, o) where G is a nonempty set and o is a binary operator over the
elements in G such that

1. G is closed under o: Vz,y € G. x oy € G.
2. o is associative: Vr,y,z € G. x o (yoz) = (roy)oz.

3. G contains an identity element: Je € G. Vx € G. xoe =eox = x.

4. Every element in G has an inverse: Ve € G. Iz ' € G. xoz ' =z loz =ce.
Terms of the form pogq are usually abbreviated to pg when the binary operator concerned
can be understood form the context.

It is straightforward to give a polymorphic definition of groups in HOL by represent-
ing sets by their characteristic predicate and the product as a curried binary operator:

Faef Group (G:a — bool, p:a — a — ) =
(GClosed (G,p)) A
(GAssoc (G,p)) A
de:a. (G e) A (GId (G,p) €) A
(Vx. G z = GhasInv (G,p) e x)

where

Faef GClosed (G,p) =Vz y. Gz = Gy =G (p zy)
Faef GAssoc (Gyp) =Vz y 2. Gz => Gy =Gz =

(pzy=2) = @@y 2)

and the identity predicate GId is defined such that given a group (G, p) and an element
e, it holds if e is both a left and right identity for all the elements in G:
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Faef GLeftId (G,p) e =Ve. Gz = (pez = x)
Faef GRightId (G,p) e =Vz. Gz = (pzr e = x)
Faef GId Gp e = GLeftId Gp e A GRightId Gp e

and the predicate GhasInv is defined in terms of the predicate GInv which takes a group
(G,p) and the elements e, 2 and z1, and holds if z; is both a left and right inverse of x
on the assumption that e is an identity element in G.

Faef GLeftInv (G,p) e z 1 = (p z1 ¢ = e)

Fdef GRightInv (G,p) e z 21 = (p ¢ 1 = e)

Fgef GInv Gp e x 71 = GLeftInv Gp e = z1 A GRightInv Gp e z 71
Fdef GhasInv (G,p) e x = Jz1. G z1 A GInv (G,p) e = x

The definition of groups given above is equivalent to a simpler one in which the identity
element e is only assumed to be a right identity and the inverse element z—! of z is
only assumed to be a right inverse. Deriving the equivalence of these two definitions
allows one to show that a structure is a group without showing that the chosen identity
element is a left identity and that the chosen inverse is a left inverse.

Given a group (G,p), an identity element can be selected by the function 1dG, and
given an element in G, its inverse can be selected by the function InvG; these functions
are defined as follows:

Faer IdG (G,p) = ce. G e A GId (G,p) e

Faef InvG (G,p) ¢ = ex1. G 1 A GInv (G,p) (IdG (G,p)) = =1

Deriving theorems showing that IdG (G,p) is an identity element in G and that
InvG (G,p) z is an inverse of = is done by using the select inference rule described in
section 4.2.5, page 68.

9.2.2 Preliminary Results

Given the definitions in the previous section, one is required to derive a number of results
which although very simple in nature, will be extremely useful in the development of
the theory. In (Herstein 1975) the following results are derived after the definition of
groups is given:

1. The identity element is unique and every element has a unique inverse;

2. The following theorems on inverses

VaeG. (a ) t=a VYa,b € G. (aob) t=bloa ™}

3. The cancellation laws: for every a, © and w in G

(aou=aow)=u=w (uoa=woa)=u=uw.

The uniqueness of the identity and inverse elements allows one to uniquely identify
the identity and the inverse of an element a by the terms e and a~'. We derive the same
HOL theorems in SPL which allow us to identify the identity and inverses by 1dG (G, p)
and InvG (G,p) a respectively throughout the rest of the theory. The proofs of the
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uniqueness theorems are similar to the ones found in the literature and are shown in
the code fragment in figure 23. The proofs are rather detailed since the mechanisation
of the theory is still at an early stage. The length of the proofs is slightly decreased by
specifying the definitions of GId, GInv and GAssoc as simplifiers so that they are unfolded
automatically before proof search. This is specified by the simplify with statement in
the code.

The results given in the second point above allow the author and the reader to ma-
nipulate and simplify terms involving inverses. Such manipulations are then performed
without any justification once these results are derived. It is desirable that at an early
stage in the mechanisation, such results are derived and used in some mechanism which
allows the implementer to treat such manipulations as trivial and which therefore can
be omitted from later formal proofs. In particular, proofs in later sections of the theory
do not have to contain the level of detail of those given in figure 23. The mechanism
we use is a term rewriting system which normalises terms representing group elements.
The application of Knuth-Bendix completion (Knuth and Bendix 1970) on the group
axioms

eoxr = I
roe =
-1 _
r oxr = e
zox ! = e
ro(yoz) = (roy)oz

gives the following strongly normalising term rewriting system (see for instance (Plaisted
1993a)):

eoxr —r
roe —
z loz — e
zozx ' — e
(zoy)oz — wo(yoz)
(@)™ =
el 5 e
g lo(zoy) = y
zo(z7 oy y
(woy_1 — y_loaz_1

Note that the orientation of the associative law in the rewriting rule is different from
that in the definition of GAssoc given in the previous section.

These rules are derived manually in SPL as the theorems given in figure 24, and are
used in the group theory normaliser (or simplifier) described in section 9.2.3.

The cancellation theorems are derived after the normaliser is implemented and in-
corporated in the theory. We give their proofs below to illustrate the effect of this
normaliser on the length of the proofs. The term inv is an abbreviation for InvG (G,p),
fol is the identifier of the prover for first-order logic with equality and groups is the
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let "G:’a — bool" and "p:’a — ’a — ’a";
assume GroupG: "Group (G,p)";

Closed: "GClosed (G,p)"
and Assoc: "GAssoc (G,p)" by <Group>GroupG;

simplify with GLeftId GRightId GId (* Simplifying terms with the
GLeftInv GRightInv GInv (* definitions of identity,

GAssoc GClosed; (* inverse, assoc. and closure

(* will be done automatically

let “X: 7a|l "Xl: 7al| “X2: 7a|l IUe: 7al| llf: 7all;

assume Gx: "G x", Ge: "G e" and Gf: "G f"
Gx1: "G x1" and Gx2: "G x2";

GIde: "GId (G,p) e" (* e is an identity element *)
GIdf: "GId (G,p) f" (* £ is an identity element *)

GInvxl: "GInv (G,p) e x x1" (* x1 is an inverse of x *)
GInvx2: "GInv (G,p) e x x2"; (* x2 is an inverse of x *)

theorem GIds_equal: "e = f"
proof
"e = p e f" by GIdf on Ge
"= f" by GIde on Gf;
end;

theorem GInvs_equal: "x1 = x2"

proof
"x1 = p e x1" by GIde on Gx1
"= p (p x2 x) x1" by GInvx2
"= px2 (p x x1)" by Assoc on (Gx and Gxl and Gx2)
"= p x2 e" by GInvxl
"= x2" by GIde on Gx2;
end;

Figure 23: Proofs of the Uniqueness Results.

*)
%)
%)
%)
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F VG p. Group (G,p) = (Vz. G =z = (p (1dG (G,p)) z = =x))
F VG p. Group (G,p) = (Vz. G =z = (p = (IdG (G,p)) = =x))
F VG p. Group (G,p) = (Vz. G = = (p (InvG (G,p) ) z = IdG (G,p)))
F VG p. Group (G,p) = (Vz. G = = (p = (InvG (G,p) z) = IdG (G,p)))
F VG p. Group (G,p) = Vz y 2. Gz = Gy =G 2z =

Pzy 2z = px(py 2)
F VG p. Group (G,p) = (Vz. G z = (InvG (G,p) (InvG (G,p) ) = z))
F VG p. Group (G,p) = (InvG (G,p) (IdG (G,p)) = IdG (G,p))
F VG p. Group (G,p) =

(Vz. Gz = (Vy. Gy = (pz(p (InvG (G,p) 2) y) = ¥)))
F VG p. Group (G,p) =

(Vz. Gz = (Vy. Gy = (p (InvG (G,p) ) (pz y) = ¥)))
F VG p. Group (G,p) =

V. Gz = (Vy. G

)

(InvG (G,p) (p = y (InvG (G,p) y) (InvG (G,p) 7))))

Figure 24: The Rules for Normalising Group Terms.

identifier for the group theory simplifier.

theorem Cancel_left :
proof
assume zx_eq_zy: "pz x =p z y";

"pzx=pzy) = (x=y)

"x = p (inv z) (p z x)" <groups> by fol
"= p (dnv z) (p z y)" by zx_eq_zy
"= y" <groups> by fol;
qed;

theorem Cancel_right: "(px z=py 2z2) = (x ="
proof
assume xz_eq._yz: "p x z =p y z";

"x = p (p x z) (inv z)" <groups> by fol
"=p (py 2z (inv z)" by xz_eq_yz
" = y" <groups> by fol;

qed;

9.2.3 Preliminary Simplifiers and Database Query Functions

A simplifier for group terms, groups, is implemented (in SML as a HOL derived rule)
which normalises terms by rewriting with the rules given in figure 24. The main difficulty
with the implementation of the required term rewriting system lies in the fact that the
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rewriting rules are conditional. Each rule can be applied to some term only if the
appropriate subterms are members of a group. It would be cumbersome if the required
conditions have to be derived manually and supplied as parameters to the normaliser
whenever they are needed. Furthermore, such conditions are simply considered to be
trivial in the mathematical literature, and it is therefore desirable that they are derived
automatically. The term rewriting system is therefore implemented so that it queries
the SPL knowledge database (see section 4.4.1) in order to satisfy a rule’s conditions
before it is applied. A rule is not applied if one of its conditions cannot be automatically
derived by the query functions.

A number of knowledge categories are included in the database to store the knowl-
edge required by the group theory normaliser. The appropriate query functions are then
implemented. The categories that are included in the database are as follows:

e is_group: Storing facts of the form Group Gp. Queries to this category are satisfied
if the given pair is a group.

e is_closed: Storing facts of the form GClosed Gp. Queries to this category also
consult the is_group category to derive the required fact.

e in_set: Storing applications (G z). Queries of this form are satisfied if one of the
following holds:

1. the fact (G z) is stored in the in_set category.

2. the term z is of the form IdG (G,p) and (G, p) is a group. The fact that (G, p)
is a group (that is Group (G,p)) is derived by querying the is_group database
category.

3. the term z is of the form InvG (G,p) y, the pair (G,p) is a group, and y is in
G.

4. the term z is of the form p y z, the set G is closed under p and both y and
z are in G.

Note that in general, query functions depend on each other. This interdependence
evolves and becomes more complex as new results are used to implement new query
functions and update the existing ones.

As mentioned above, the groups normaliser repeatedly applies the rules in figure 24
whose conditions can be automatically deduced by querying the knowledge database.
For example, in order to apply the rule

F VG p. Group (G,p) = (Vz. G =z = (p (IdG (G,p)) z = x))

on, say, the term p (IdG (G,p)) a, the is_group category is first queried by the groups
normaliser to deduce the fact

'y + Group (G,p)
for some assumptions I'1. The in_set category is then queried to deduce
FQ FGa

where T, is the list of assumptions required to deduce this theorem. Given the above
two theorems, one can then apply the rewrite rule to simplify p (I1dG (G,p)) a into a by
deriving and rewriting with the HOL theorem:
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' UTy F p (IdG (G,p)) a = a

The other rules in figure 24 are treated similarly. A rule is applied only if all its
conditions can be deduced automatically by the relevant queries to the trivial knowledge
database.

When using the groups normaliser to simplify the implementation of formal proofs
one needs to supply enough knowledge in the database so that the conditions of the
rewriting rules can be derived automatically. This is done through the consider state-
ment as illustrated below. The terms id and inv abbreviate the identity element and the
inverse function respectively, and it is assumed that they are declared as default sim-
plifiers in the section containing the following proof segment so that they are unfolded
automatically during proof checking.

assume GroupG: "Group (G,p)"
Gx: "G x";

(* the facts "G x" and "Group (G,p)" are stored
as trivial facts in the appropriate categories *)
consider in_set Gx
is_group GroupG;

theorem Idem_id: "(p x x = x) = (x = id)"
proof
assume pxx_eq_x: "p x x = x";

"x =p (inv x) (p x x)" <groups> by fol
."= p (inv x) x" by pxx_eq_x
."=1d" <groups> by fol;
end;

It is not hard to see that the same query can be applied several times during the
normalisation process. For instance, the condition Group (G,p) is found in all the rules
in figure 24 and is therefore queried at each application of the rules. This led to the
decision to cache the output of query functions, as mentioned in section 4.4.1.

9.2.4 Subgroups

A subgroup is a subset of a group which is also a group under the same product. We
define subgroups by

Fdef SubGroup p H G = (Subset H G) A (Group (H,p))
where the predicate Subset H G is defined as follows
Fdef Subset X YV = (V. X z = Y x)

Note, however that in the above definition of SubGroup we do not impose the restriction
that the set G has to be a group under the product p, and therefore terms of the form
SubGroup p H G should be used together with some assumption Group (G,p).
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The introduction of this definition allows one to extend the query functions described
in the previous section. First of all we include the following categories in the database

e is_subset: Storing facts of the form Subset X Y. A query of this form is satisfied
if the required fact is stored in the is_subset category, or if there is some set 7
such that Subset X Z and Subset Z Y hold, or there is some product p for which
SubGroup p X Y.

e is_subgroup: Storing SubGroup p H G. Such query is satisfied if the required fact
is stored in this category, or there is some set Z such that SubGroup p H Z and
SubGroup p Z G hold.

The following query functions can now be updated:
e is_group: Group (G, p) is satisfied if there is some set X such that SubGroup p G X.
e in_set: G z is satisfied if there is some subset H of G containing x.

The initial implementation of these query functions supports the above derivations since
these only require the definition of Subset and SubGroup and a number of straightforward
results (transitivity of Subset and SubGroup, etc.) which are proved in SPL.

A result which is taken for granted in (Herstein 1975) is the fact that the identity
element ep of a subgroup H of G is the same as the identity element e; of G. This
follows from the fact that ey o ey = ey and from the theorem Idem_id whose proof is
given in section 9.2.3 which states that Vz € G. (r oz = ) = = = e;. The uniqueness
of the inverse element is used to derive the fact that the inverse in H is the same as the
inverse in G. Since these results are taken for granted in the literature, a simplifier is
implemented which rewrites terms using the following rules

F VG p. Group (G,p) =
(VH. SubGroup p H G = (IdG (H,p) = Id4G (G,p)))

F VG p. Group (G,p) =
(VH. SubGroup p H G =
(Vz. H z = (InvG (H,p) x = InvG (G,p) x)))

substituting the identity and inverses in H to those in G. The in_set query functions
are updated so that a query of the form H =z is satisfied if the term z is of the form

e 1dG (G,p) where G is a group and H is a subgroup of G, or
e of the form InvG (G,p) = where x is in H, G is a group and H is a subgroup of G.

The implementation of the simplifier and the above derivations updating in_set
queries proved to be useful in our case study. At this stage, it is becoming evident
that the development of this theory involves both the derivation of theorems in SPL
and the implementation of HOL proof procedures in SML. Queries to the database
category in_set are made very often during the implementation suggesting that the
ability to automate set containment is very useful in the mechanisation of group theory.
A simplifier inset is also implemented which substitutes an application X z with the
truth value T if  can be shown to be a member of X by querying in_set.
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9.3 Congruences, Cosets and Subgroup Products

Given a subgroup H of a group G we say that a = b mod H for a,b € G, ifab™" € H.
The ‘congruent mod’ relation is an equivalence relation and therefore partitions a group
into distinct equivalence classes. Each equivalence class is equal to some set {ha | h € H}
where a is some representative member of the class (as ea = a is in the class). This set
is denoted by Ha and is called a right coset of H in GG. Similarly, a left coset aH of
H in G is defined by aH = {ah | h € H}. Tt can be shown that there is a one-to-one
correspondence between any two right cosets in G, and therefore if G is finite it can
be partitioned into a finite number of right cosets of the same size. Hence, the number
of elements in some right coset must divide the number of elements in G, which we
denote by o(G). Since He = H is a right coset in G, o(H) must be a divisor of o(QG).
This result is due to Lagrange and is usually referred to as Lagrange’s Theorem. The
reasoning deriving it is implemented as SPL proofs. All the results leading to Lagrange’s
theorem are proved in SPL in much the same way as they are proved in (Herstein 1975).
However, the SPL proofs of Lagrange’s theorem itself attempted by the author turned
out to be much more detailed and tedious than the one given in the literature. We
attribute this to a lack of proof procedures and results concerning finite sets.
The HOL definition of the congruence mod relation is given by

Fdef CongruentMod (G,p) H a b = H (p a (InvG (G,p) b))

and it is shown in SPL that this relation is reflexive, symmetric and transitive, and
hence an equivalence relation:

F VG H p. Group (G,p) =
SubGroup p H G =
GEquivalence G (CongruentMod (G,p) H)

A sentence of the form GEquivalence X R holds if R is an equivalence relation on the
elements of the set characterised by X.

"def GEquivalence X R =
GReflexive X R A GSymmetric X R A GTransitive X R

Fdef GReflexive X R = (Va. X a = R a a)

Fiep GSymmetric X R =
WVab. X a= Xb=Rab= Rba)

F4ef GTransitive X R =
Mab. Xa=Xb=Rab=
(Ve. X ¢ = Rbc= R ac)

In the literature right and left cosets of some subgroup H of G are denoted by terms
of the form Ha and aH respectively, for some element a € G. Juxtaposition is also used
in the notation for the product of two subgroups H and X defined as follows:

HX ={a€G|a=hz,h € Hz e X}

Although cosets and products are defined on subgroups, the notation of juxtaposi-
tioning subgroups and group elements is also used for arbitrary subsets of a group. For
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example, although it is not mentioned explicitly in (Herstein 1975), the term a.S is used
to denote the set {as | s € S} where S is an arbitrary subset of some group G, rather
than a subgroup. This is evident when terms like a(Hb) are used where Hb is a right
coset which, although it is a subset of G, it is not a subgroup.

The HOL definitions for right cosets, left cosets and products of subgroups are given
by

Fdef RightCoset (H,p) a = (Ab. 3h. H h A (b = p h a))
Fdef LeftCoset a (H,p) = (Ab. 3h. H h A (b = p a h))

Fdef SProd p X Y = Az. 3h. X h A Jk. Y kAN (x = p h k)
We also include the following definition to represent sets of the form a(Hb)
Fdef LRCoset a (H,p) b = (Az. 3h. H h A (x = pa (p h b))

These definitions do not impose any restrictions on the sets H, X and Y, and
therefore results involving them need to specify whether H, X and Y are subgroups,
subsets of some group or arbitrary sets. In general, these four functions are used to
construct subsets of a group in the same way that the notation of juxtaposing subsets and
group elements is used to denote subsets. We call these functions subset constructing
functions. The in_set category query function of the knowledge database is updated
such that a query H (p a b)) is satisfied if H is of the form:

® RightCoset (X,p) b where a € X, or
e LeftCoset a (Y,p) where b €Y, or
e SProd p X Y wherea€e X and beY.
Similarly, a query H (p a (p b c) is satisfied if H is of the form
e LRCoset a (Y,p) c where b€ Y.

The subset category is also updated so that a query Subset H G is satisfied if H is of
the form:

® RightCoset (X,p) b where X C G and b € G, or
e LeftCoset a (V,p) where Y C G and a € G, or
e SProd p X Y where X CG and Y C G, or

e LRCoset a (X,p) b where X C G, and a,b € G.

The notation of juxtapositioning subsets and group elements does not result in
ambiguities if parentheses are omitted since it can be shown that

(ab)c = a(bc) (ab)H = a(bH) (Ha)b = H(ab) (aH)b = a(HDb)
(HX)a = H(Xa) (aH)X =a(HX) (Ha)X = H(aX) (HX)Y = H(XY)

where a, b and c are elements of some group G and H, X and Y are subsets of G. These
results are derived in SPL so that they are used, manually or otherwise, to manipulate
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expressions involving the subset constructing functions RightCoset, LeftCoset, SProd
and LRCoset. Other simple results which have been derived in SPL for this purpose
include

He=H eH=H

where H is a subset of some group G, and e is the identity element in G.

Since one of our motivations of this mechanisation is to try to minimise the difference
between the length of formal and informal proofs by automating the calculations which
authors of informal proofs consider to be trivial, we have included in the system a sim-
plifier which normalises terms involving the subset constructing functions. The normal
form for such terms according to the implemented normaliser consists of a product of
subsets associated to the right:

Sl(SQ("'Sn)"') or (bSl)(SQ("'Sn)"')

where each set S;, for 0 < 7 < n is of the form X or Xa, where X is a set not constructed
by any of the subset constructing functions, and ¢ and b are non-identity group elements
normalised using the rules in figure 24. For example, the normal form of the set

(((ae)H)(X (ba™)))(((aY)a)((bZ)c))
(aH)((Xb)((Y ab)(Zc))).

We orient the rules which manipulate the sets constructed using the subset constructing
functions as follows:

a(bH) — (ab)H (Ha)b — H(ab) (aH)b — a(HD)
(HX)a — H(Xa) a(HX)— (aH)X H(aX)— (Ha)X
(HX)Y — H(XY) He —» H eH = H

and add the extra rule
H((aX)Y) — (Ha)(XY).

It can be checked (using, for instance, Knuth-Bendix completion) that the above ten
rules with the ten rules in section 9.2.2 define a confluent and terminating term rewriting
system. Note that the rules normalising group elements are needed for confluence as
illustrated by the examples in figure 25.

The above ten rules are represented by conditional equalities since each rule is valid
if there is some group G such that all group elements in the rule are elements of G and
all the sets in the rule are subsets of G. For example, the rule (Ha)b — H(ab) is valid
if there is some group G such that H C G, and a,b € G. This rule is represented by the
HOL theorem

F Vp G. Group (G,p) = (VH. Subset H G =
Va. G a = (Vb. G b =
(RightCoset (RightCoset (H,p) a,p) b =
RightCoset (H,p) (p a b)))))

The simplifier which normalises terms constructed using the subset constructing func-
tions is named cos. Each rule is applied only if all its conditions are automatically
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(Ha)e (Ha)(bc) (H (Tb))c
H (ae) H((ab)c)
.70 a ////(ab)c—>a(bc)
Hd H{(a(be))

Figure 25: The Need for the Group Element Normaliser in Normalising Subsets.

derived by appropriate queries to the knowledge database. The following additional
theorem is used by the simplifier to rewrite terms involving the function LRCoset:

F Vp H a b. LRCoset a (H,p) b =
LeftCoset a (RightCoset (H,p) b,p))

The examples given in the next section show how a number of SPL proofs using this
simplifier are quite similar to those found in the literature.

9.4 Further Results

This section illustrates a number of interesting results in group theory which are mech-
anised as SPL proofs. In particular, normal subgroups are defined and shown to be
exactly those subgroups whose left cosets are equal to their right cosets. Quotient
groups, which are groups whose elements are cosets and whose product element is the
product of subsets, are also defined. Section 9.4.2 gives the definition of homomor-
phisms and isomorphisms, as well as a number of results including the two isomorphism
theorems.

9.4.1 Normal Subgroups and Quotient Groups

Although, in general, the left cosets and right cosets of a subgroup are different, Galois
identified the particular criterion which a subgroup must satisfy so that its left cosets
are equal to its right cosets. This property is called normality, and a normal subgroup
is defined as follows:

Fdef NormalSG (G:’a — bool, p) N =
(SubGroup p N G A
Vg. G g = Vn. Nn= N (p g (p n (InvG (G,p) 9))))

that is, a subgroup N of G is normal if for every ¢ € G and n € N, gng ' € N.
Equivalently, N is normal if gNg~' = N for every ¢ € G, as given by the following
theorem:
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F VG N p. Group (G,p) =
(NormalSG (G,p) N =
SubGroup p N G A
(Vg. G g = (LRCoset g (N,p) (InvG (G,p) g) = N)))

Given this result, it can be shown that if N is a normal subgroup of G, then Ng = gN
for every g € G, as shown by the following proof fragment:

"RightCoset (N,p) g
= RightCoset (LRCoset g (N,p) (invG g),p) g" by gNg’=N
."= LeftCoset g (N,p)" <cos> by fol;

where gNg’=N is the label of the theorem stating that gNg ! = N if N is a normal

subgroup of a group G and ¢ € G. It can be seen that the above SPL proof is quite
similar (in terms of the number of proof steps) to the informal

by gNg—' = N we get Ng = (gNgfl)g =gN.

The simplification of (gNg ')g into gN which is unjustified in the informal proof is
automatically derived by the cos simplifier. The use of appropriate notation in the
informal proof, however, makes it much shorter (in terms of the number of symbols)
than the one implemented in SPL. The problem of reducing the number of symbols
through the ability to introduce notation safely during the mechanisation of a theory
are not discussed in this thesis. It is however evident that efforts on improving the
notation of terms used in mechanised proofs is quite desirable.

The fact that the left cosets of a subgroup N are equal to its right cosets is also a
sufficient condition for N to be normal. If for every g € G it is the case that gN = Na
for some a € G, then since g is in g/N it must also be in Na. The group element g is also
in Ng and thus Na and Ng have an element in common. Now, since the right cosets of
a subgroup partition the whole group, then Ng and Na must be equal, and therefore
gN = Ng. This is enough to show that:

"LRCoset g (N,p) (invG g)
= RightCoset (LeftCoset g (N,p),p) (invG g)" <cos> by fol
."= RightCoset (RightCoset (N,p) g,p) (invG g)" by gN=Ng
"= N" <cos> by fol;

and that therefore N is normal in G. The local fact labelled by gN=Ng is the result that
gN = Ng. The equation gN = Ng can also be used to show that the product of two
right cosets is itself a right coset:

(Na)(Nb) = N(aN)b= N(Na)b= NNab = Nab
which is derived in SPL by:

"SProd p (RightCoset (N,p) a) (RightCoset (N,p) b)
= SProd p N (RightCoset (LeftCoset a (N,p),p) b)'"<cos> by fol
."= SProd p N (RightCoset (RightCoset (N,p) a,p) b)"
by Normal_gN_Ng on Ga
."= RightCoset (SProd p N N,p) (p a b)"<cos> by fol
."= RightCoset (N,p) (p a b)" by SProd_Idem on GroupG & NsgG;
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where Normal_gN_Ng is the theorem stating that gN = Ng for ¢ € G, Ga is the fact
a € G, GroupG is the fact that (G, p) is a group, and NsgG the fact that N is a subgroup
of G. The theorem SProd_Idem states that the product HH of a subgroup H is equal
to H.

The result that NaNb = Nab is quite important since it is used to show that the
set of right cosets of a normal subgroup IV of a group G is itself a group. This group is
called the quotient group of G by N, and is denoted by G/N. The identity element of
G/N is N and the inverse element of a coset Na in G/N is Na~!.

The quotient group of a subgroup N of G is denoted in HOL by the function
QuotientGp defined by

Fdef QuotientSet (G:’a — bool, p) H =
AX. J(a:’a). G a A (X = RightCoset (H,p) a)
Faef QuotientGp (G:’a — bool, p) N = (QuotientSet (G,p) N, SProd p)

and it can be shown that all the conditions making QuotientGp (G,p) N a group are
satisfied if N is normal.

F VG N p. Group (G,p) = NormalSG (G,p) N =
Group (QuotientGp (G,p) N)

F VG N p. Group (G,p) = NormalSG (G,p) N =
(IdG (QuotientGp (G,p) N) = N)

F VG N p. Group (G,p) = NormalSG (G,p) N = (Va. G a =
(InvG (QuotientGp (G,p) N) (RightCoset (N,p) a) =
RightCoset (N,p) (InvG (G,p) a)))

The efforts required in implementing the proofs of the results given in this section
are not much greater than understanding the proofs in the literature, and rewriting
them in SPL and filling a few gaps in the informal arguments.

9.4.2 Homomorphisms and Isomorphisms

A homomorphism is a structure-preserving mapping from one group into another. The
notion of a structure-preserving function between groups is given by the HOL definition

Fdef Str_Pres (G:’a — bool, p) (H:’b — bool, q) (f:’a — ’b) =
Vzy. Gaz=Gy=(fzy) = q(f=2)(fy)

or in other words, ¢ : G — H is structure-preserving if ¢p(xogy) = ¢(z)om ¢(y) for every
z,y € G, where og and op are the products of G and H respectively. Homomorphisms
are defined in HOL by

Fdef Homomorphism (G':’a — bool, p) (H:’b — bool, q) f =
(fInto G H f) A Str_Pres (G,p) (H,q) f

where fInto G H f holds if f maps every element in GG into H:

Faef fInto X YV (f:’a — 'b) = (Vz. X 2 = Y (f z))
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Since it is quite tedious to show that (f z) is in some set Y whenever fInto X YV f and
z € X, a database category fun_into is used to store facts of the form fInto X YV f,
and the function querying in_set is updated such that a query Y (f z) is satisfied if

e fInto X Y f and (X z) hold for some set X.

Examples of homomorphisms include the identity function and the function mapping
every element into the identity.

F VG p. Homomorphism (G,p) (G,p) I

F VG p G’ q. Group (G',q) =
Homomorphism (G,p) (G',q) (K (IdG (G',q)))

where K and I are the usual combinators:

FVry. Kzy==
FVr. Iz ==z

It can be shown that for every homomorphism ¢ of G into H it is the case that
d(eq) = ex and ¢p(z¢') = ¢(x) 7' where ex represents the identity element of some
arbitrary group X and £~ X! is the inverse of z in X. These results are derived in SPL
and are used with the fact that homomorphisms are structure-preserving to simplify
terms involving some homomorphism. Basically, a simplifier named hom is implemented
which rewrites terms by the rules:

F VG p G’ q f. Homomorphism (G,p) (G'.q) f =
Vzy. Gz=Gy=(fpzy = q(f2)(fy)
F VG p. Group (G,p) = (VG' q. Group (G',q) =

(Vf. Homomorphism (G,p) (G',q) f =
(f (146 (G,p)) = IdG (G'q))))

F VG p. Group (G,p) = (VG' q. Group (G',q) =
(Vf. Homomorphism (G,p) (G',q) f = (Vz. G z =

(f (InvG (G,p) #) = InvG (G',q) (f 2)))))

Similarly to the other simplifiers (such as groups and cos) mentioned in this chapter, the
conditions in each rule are derived automatically by querying the knowledge database
before it is applied. A database category is_homomorphism is used to store facts of the
form Homomorphism (G,p) (G',q) f. The function querying the fun_into is updated such
that fInto G G' f is satisfied if f is a homomorphism of G into G'.

Given a homomorphism f of G into H, we define its kernel by the set

Ki={z€G | f(z)=en}.
Faef Kernel G (H,q) (f:’a — ’b) = Az. G ¢ A (f = = IdG (H,q))

The kernel is a subgroup of G and if £ € Ky then
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"f (p g (p k (invG g)))

=q (f g) (q (f k) (£ (invG g)))"<hom> by fol
=q (f g) (f (invG g))'"<groups, fk_i> by fol
q (f g) (invH (f g))'"<hom> by fol
= iH"<groups> by fol;

where iG and iH abbreviate the terms representing the identity elements in G and H,
invG and invH abbreviate the inverse functions of G and H, and fk_i is the result that
f k = iH. Therefore gkg™' € Ky, and hence Ky is a normal subgroup of G.

A homomorphism is called an isomorphism if it is one-to-one, and two groups are
said to be isomorphic if there is an isomorphism from one group onto the other. The
notation G =~ H is used to denote the fact that G is isomorphic to H. We give the
following HOL definitions:

Fdef Isomorphism (G,p) (H,q) (f:’a — ’b) =
Injective G f A Homomorphism (G,p) (H,q) f

Faef Isomorphic (G,p) (H,q) =
I(f:’a — ’b). Bijective G H f A Homomorphism (G,p) (H,q) f

Faef Injective X (f:’a — ’b) =
V1. X 21 = Vg, X 29 = (f 1 = f {172) = ((1:1 = 5172)

Faef Surjective X Y (f:’a = 'b) =
Vy. Y y=3Jz. Xz A (fz = vy

Faef Bijective X Y (f:’a — ’b) =
fInto X Y f A Injective X f A Surjective X Y f

The isomorphism relation is an equivalence, however this cannot be represented in
HOL by the term

GEquivalence (Group:’a — bool) Isomorphic

as this would infer the type of Isomorphic to be :’a — ’a — bool, instead of the more
general :’a — ’b — bool. (Recall that GEquivalence X R denotes the fact that the
relation R:’a — ’a — bool on the elements in X:’a — bool is an equivalence.) This
is an example of the difficulties resulting by representing sets in Church’s Higher Order
Logic by their polymorphic characteristic predicates. Such problems can be avoided if
one formalises an axiomatic set theory in HOL as suggested for instance by Gordon
(1996).

The following two interesting results on homomorphisms and isomorphisms are
proved in SPL:

e If ¢ is a homomorphism of G onto G’ with kernel K, then G/K ~ G'.

e If ¢ is a homomorphism of G onto G’ with kernel K and N’ is a normal subgroup
of G', then if N = {z € G | ¢(x) € N'} it is the case that G/N = G'/N'.

Similarly to the other results described in this chapter, not much effort was required
in implementing the required SPL proofs once the informal proofs were understood.
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However, attempts at the implementation of proofs of results on finite groups resulted
in rather longer and more detailed proofs than those found in the literature. This is
because of the fact that not enough effort was put in implementing proof procedures
which automate the inferences considered trivial while reasoning about finite sets. We
believe that the implementation of such proof procedures is not a trivial task since most
(trivial, or otherwise) results on finite sets require mathematical induction, and the
automation of proofs involving induction requires substantial effort.

9.5 Discussion

This chapter illustrated the mechanisation of a number of results of group theory in the
proof language SPL. The mechanisation followed the exposition of Herstein (1975) in
the definitions and results derived.

The proof scripts implemented during the mechanisation are quite readable and
much easier to follow than tactic-based proofs. The readability of the SPL proofs is
attributed to the following factors.

e The proofs contain information which is relevant for a human reader who is try-
ing to follow the proofs. The SPL language is based on (a small fragment of)
Mizar which has a rather easy to follow syntax and supports a declarative style
of proof development. Furthermore, structured straightforward justifications are
used to prove simple results. Such justifications contain some of the inferences
used in the derivation process and omit all tedious inferences such as particular
instantiations of variables. The effort required for the implementation of proofs
using structured justifications was not much greater than the effort required in
implementing unstructured ones. It was actually noticed that by explicitly stating
the inferences in structured justifications, one can have a better idea of whether
the justifications used contain all the necessarily premises and whether they can
be machine checked by the prover of the system.

e The scripts are organised into sections such that theorems which have the same
hypotheses are grouped together. This has the effect of shortening the statements
of the theorems as well as the formal proofs, which also results in scripts which
are relatively easy to follow.

e Local abbreviations are used to abbreviate commonly used subterms.

e Appropriate simplifiers which are able to query the SPL database of trivial knowl-
edge are implemented and incorporated in the SPL language as the mechanisation
of the theory progresses. The use of simplifiers greatly reduced the length of the
formal proofs. The database of trivial knowledge is used to store and derive facts
which are considered to be trivial by the author of the proofs. As a result, much te-
dious inferences are omitted from the formal proofs and are derived automatically
during proof checking.

e Meaningful identifier names are given to assumptions and proof step results. The
parser of the SPL language allows certain characters, which are usually used to
denote operators such as = and +, to be used in the name of identifiers. As a
result, the identifier names used can be quite expressive and close to the facts
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they are representing. For instance, an identifier name gN=Ng was used for the fact
gN = Ng in the proof fragment given in page 205.

Figure 26 illustrates an SPL proof of one of the results derived in the mechanisation.
The result states that the function Az. Nz is a homomorphism if N is a normal subgroup.
It is practically a rewording of the fact that (Na)(Nb) = Nab, for all elements a and
b of some group G and where N is normal in G, which is derived as the theorem
Normal_NaNb_Nab. It can be seen that the proof of the theorem derived in figure 26
uses only the theorem Normal_NaNb_Nab together with locally declared assumptions and
the necessarily definitions, most of which are specified as simplifiers so that they are
unfolded implicitly during proof search. The same theorem can be derived by the HOL
tactic proof:

val Homo_RightCoset = prove
(--‘VY(G:’a — bool) p. Group (G,p) =
(VN. NormalSG (G,p) N =
Homomorphism (G,p) (QuotientGp (G,p) N) (RightCoset (N,p)))‘--,
REWRITE_TAC [Homomorphism,QuotientGp,fInto,
Str_Pres,QuotientSet] THEN
REPEAT STRIP_TAC THENL
[BETA_TAC THEN
EXISTS_TAC (--‘x:’a‘--) THEN
ASM_REWRITE_TAC [],
CONV_TAC SYM_CONV THEN
IMP_RES_TAC Normal_NaNb_Nab]);

The above proof is shorter than the (relevant fragment of the) SPL proof given in
figure 26, however it is harder to follow because it is not targeted to a human reader
but to the HOL proof checker. The complexity of the proof steps in the tactic proof is
non-homogeneous as the proof includes rather rather trivial inferences, such as BETA_TAC
and CONV_TAC SYM_CONV, as well as the relevant inference IMP_RES_TAC Normal_NaNb_Nab.

Table 3 lists the lengths of different fragments of the source code developed during
the mechanisation of group theory. For each part of the mechanisation, the total length
of the source code is divided as follows:

ML declarations which include the definitions of ML functions corresponding to sim-
plifiers and the query functions of the database of trivial knowledge.

HOL definitions which involve the definition of HOL constants using the functions
supplied with the system.

SPL proofs which are basically the proofs of results in SPL.

The lengths in table 3 can be compared with the lengths of the different fragments
of the source code of the mechanisation of the theory of computation in HOL given in
table 1, page 34. It can be seen that a substantial amount of the mechanisation of group
theory is dedicated to the implementation of proof procedures. On the other hand,
almost all of the implementation of the mechanisation of the theory of computation
consists of tactic proofs. Thus, although it is noticed that not much effort was required
during the implementation of the SPL proofs of the results given in this chapter, quite
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let "G: ’a — bool"
llp: 7a _> 7a _> 7all;

assume GroupG: "Group (G,p)";
consider is_group GroupG;

let "N:’a — bool";
assume NorN: "NormalSG (G,p) N";

NsgG: "SubGroup p N G" by <NormalSG>NorN;
consider is_subgroup NsgG;

define GN_def: "GN QuotientSet (G,p) N"
P_def: "P SProd p"
GNP_def: "GNP = QuotientGp (G,p) N";
then GNP: "GNP = (GN,P)"<GN_def,P_def,GNP_def,QuotientGp> by fol;
simplify with GNP;

theorem Homo_RightCoset: "Homomorphism (G,p) GNP (RightCoset (N,p))"
proof
into: "fInto G GN (RightCoset (N,p))"
proof
let "a:’a";
assume Ga: "G a";
consider in_set Ga;
then "GN (RightCoset (N,p) a)'"<GN_def,inset> by fol;
simplify with fInto;
end;

strpr: "Str_Pres (G,p) GNP (RightCoset (N,p))"
proof
1et lla: 7all llb: 7all;
assume Ga: "G a"
and Gb: "G b";
consider in_set Ga and Gb;

"RightCoset (N,p) (p a b) =
P (RightCoset (N,p) a) (RightCoset (N,p) b)"<P_def>
by Normal_NaNb_Nab on GroupG & NorN & Ga & Gb;

simplify with Str_Pres;
end;

"Homomorphism (G,p) GNP (RightCoset (N,p))"<Homomorphism>
by into and strpr;

qed;

Figure 26: A SPL Proof of a Theorem on Homomorphisms.
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Sets, Relations and Functions

ML declarations: 160 lines
HOL definitions: 230 lines
SPL proofs: 420 lines

Total: 810 lines

Introducing Groups
ML declarations: 400 lines

HOL definitions: 80 lines
SPL proofs: 230 lines

Total: 710 lines

Subgroups

ML declarations: 230 lines
HOL definitions: < 10 lines
SPL proofs: 260 lines

Total: 490 lines

Congruences, Cosets and Products of Subgroups
ML declarations: 420 lines

HOL definitions: 20 lines
SPL proofs: 1530 lines
Total: 1970 lines

Normal Subgroups and Quotient Groups
ML declarations: -
HOL definitions: 10 lines

SPL proofs: 630 lines
Total: 640 lines

Homomorphisms and Isomorphisms

ML declarations: 130 lines
HOL definitions: 30 lines
SPL proofs: 1120 lines

Total: 1280 lines

Table 3: On the Source Code of the Mechanisation of Group Theory.
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a lot of effort was needed in the implementation of the proof procedures that automate
the trivial inferences omited from the formal SPL proofs. The possibility of reducing
the effort required in the implementation of proof procedures (especially simplifiers and
database query functions), by developing specialised high-level languages for instance,
is an interesting direction for future research.

Although the SPL proofs of the results given in this section are quite similar to the
proofs given in the literature, the SPL proofs of the results on finite groups attempted by
the author were not as clear as the informal ones. The reason for this is that substantial
automation may be required to derive the inferences on finite sets which are considered
to be trivial by a human reader. In particular, several of the results that are considered
to be rather trivial in the informal literature may require some form of induction to be
derived formally. The automation of proofs involving induction is not straightforward,
since for instance, one often requires the discovery of lemmata which are general enough
for their induction hypothesis to be used in the inductive proof. The implementation of
the necessarily proof procedures that would make reasoning about finite sets relatively
straightforward is also an interesting direction for future work.



Chapter 10

Conclusions

The work presented in this thesis investigates the implementation of machine-checkable
proofs in a format that is more easily followed by a human reader. In this chapter
we first summarise the main contributions of this thesis, and then discuss a number of
directions for future work in this area of research.

10.1 Summary of the Main Contributions

In this section we summarise the main contributions of this thesis which aims at the
implementation of machine-checkable proofs in a readable format. The motivations
for this research are discussed in section 2.5 and include the fact that it is easier to
implement, correct, and modify proofs if they can be followed easily. The contributions
summerised in this section are categorised as follows:

e (Case studies involving tactic-based proof environments: Mechanised proofs are
usually found using a tactic-based environment, and in chapter 3 we study the
style of tactic-based proof discovery and argue that proofs found in this manner
are very hard to follow.

e The implementation of the SPL proof checker: The SPL proof language, which
is based on the Mizar language is discussed in chapter 4. SPL proofs are more
readable than tactic proofs because of their declarative nature. Furthermore,
the SPL language is extensible, in the sense that the deductive power of its proof
checker can be extended in a disciplined way during the mechanisation of a theory.

e Structured straightforward justifications: The notion of structured straightforward
justifications is studied in chapter 6. These justifications differ from the unstruc-
tured justification of Mizar and similar languages by including more information
on which inferences are used to derive the conclusion of the justification. It is ar-
gued that structured justifications are easier to follow and more efficient to proof
check than unstructured ones. Chapter 8 discusses how the search space con-
sidered for checking structured justification can be restricted. The results given
in chapter 8 use a version of first-order logic whose formulae are annotated with
colours in order to restrict the proof search. This coloured first-order logic is
studied in chapter 7.

214
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e The implementation of the CBSE derived rule: The CBSE tableau calculus, which
is complete for first-order logic with equality, is described in chapter 5. This
calculus is implemented as a HOL derived rule and is used in checking SPL scripts.

e The Mechanisation of Group Theory in SPL: The proofs of a number of results in
group theory are implemented in SPL, and discussed in chapter 9. This mecha-
nisation is a case study in the use of an extensible declarative proof language for
the implementation of readable, machine-checkable proofs.

These contributions are discussed in more detail below.

Case Studies Involving Tactic-Based Proof Environments

Chapter 3 discusses two case studies involving tactic-based proof development systems.
The first case study involves the mechanisation of a number of results in the theory
of computation using the HOL system. This mechanisation is based on the Unlimited
Register Machine (URM) model of computation as discussed in the textbook by Cut-
land (1980), and includes the proof of the result that partial recursive functions can
be computed by URM programs. The second case study involves the proof of the S}"
theorem in the Coq system. The proof of this theorem is based on a model of compu-
tation similar to the partial recursive functions model. The proofs implemented during
these case studies were found interactively using the tactic-based environment of the
two systems. Unfortunately, as discussed in section 3.5, it is extremely hard to follow
tactic proofs without the appropriate feedback from the theorem proving system. In a
tactic-based proof environment, tactics are applied interactively to solve certain goals
automatically, or to break goals into simpler subgoals. A tactic proof of a theorem
contains the sequence of tactics required to prove the theorem, and it is hard to follow
since it does not state the effect of the application of each tactic on the goal. Similar
arguments on the unreadability of tactic proofs can be found, for instance, in (Harrison
1997) and (Syme 1998). As a result, other proof styles are required for the implementa-
tion of machine-checkable proofs if the readability of the proofs is a requirement. The
two case studies are also used in section 3.4 to compare the different ways that theories
are mechanised in the HOL and Coq systems.

The Implementation of the SPL Proof Checker

One of the main contributions of this thesis is the implementation of a proof checker
for a declarative proof language. We call this language SPL which is short for ‘Simple
Proof Language’. Proofs implemented in a declarative language do not explicitly state
all the details about how a theorem is proved, but rather state what is required. The
SPL language is based on the theorem proving fragment of the Mizar language. The
proof checker of the SPL language derives HOL theorems from SPL proof scripts, and
therefore the proof checker is fully-expansive. In other words, all theorems are derived
by the primitive inferences of the HOL core inference engine in order to minimise human
errors in the proofs.

A sectioning mechanism, similar to that of the Coq system, is used to structure SPL
scripts in a modular fashion. SPL scripts are divided into possibly nested sections. As-
sumptions, abbreviations, and other information can be declared locally to each section
in much the same fashion that variables and functions can be declared locally to different
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program modules in a structured programming language. As discussed in section 4.2.2,
by sectioning proof scripts one can improve the readability and proof-checking efficiency
of SPL scripts.

In this thesis (and especially in chapter 2) we argue that proof steps which are
considered to be obvious, or trivial, by human readers should be omitted during mech-
anisation in order to improve the readability, as well as the ease of implementation, of
machine-checkable proofs. This involves the implementation of proof checkers that are
able to derive theorems whose proofs are implemented at a level of detail similar to that
found in mathematical literature. An important issue discussed in this thesis is that
what a reader considers to be obvious depends on her familiarity and knowledge of the
subject, and therefore varies during the development of a theory — proof steps that are
considered essential to the understanding of a proof given in the early stages of a theory
are often omitted in the proofs found in later stages of the same theory. In order to
achieve the same effect in mechanised proofs, the deductive power of the proof checker
should vary during the mechanisation of a theory.

One method of modifying the deductive power of the SPL proof checker during the
mechanisation of a theory is by the use of a database of trivial knowledge. This database,
which is described in section 4.4.1, can be used to store facts which are considered to be
trivial by the developer of the mechanised theory. The knowledge stored in the database
is organised into categories, and the developer of the theory is required to implement
functions (in ML) which query each database category. These query functions should
be able to derive HOL theorems from the knowledge stored in the database using the
results derived in the current state of the theory. The database is queried automatically
by certain components of the proof checker, so that trivial facts need not be justified
explicitly in the mechanisation. The database and its query functions are implemented
in such a manner that the user can improve the deductive power of the query functions
during the mechanisation of the theory. This is done by including new categories in
the database, implementing new query functions, and updating the implementation of
existing query functions. The sectioning mechanism of SPL allows the knowledge stored
in the database to be local to particular sections only.

The SPL proof checker is extensible in many other ways. During the mechanisation
of a particular theory, the user can extend:

e proof procedures used to justify the proof statements;
e simplifiers, which are used to normalise terms into canonical forms;

e inference rules, which are used to derive facts in a forward (and somewhat proce-
dural) manner;

e the syntax and semantics of the SPL language constructs by updating the language
parser and other components of the proof checker.

It should be noted that not all the above possible ways of extending the proof checker
were used during the case study described in chapter 9. The mechanisation performed
during the case study made use of several database query functions and simplifiers
which were implemented and extended during the development of the theory. However,
no changes were made to proof procedures, the forward inference rules, and the syntax
and semantics of the language constructs. In particular, it is suggested that the frequent
use of forward inference rules should be avoided because of their procedural nature.
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We remark that it was possible to implement the SPL proof checker on top of the
HOL system because of the way the HOL system is designed. In particular,

1. a Turing-complete metalanguage is available to allow the user to extend the system
with new proof procedures and proof environments, and

2. the fact that all HOL theorems are constructed using the core inference engine
ensures that such extensions are safe.

It is possible to implement proof checkers of declarative languages such as SPL on top
of other theorem proof environments given that they provide these two features.

Structured Straightforward Justifications

In this thesis we also study the notion of structured straightforward justifications which
are introduced in chapter 6. Simple Mizar statements are justified by straightforward
justifications which consist of the by keyword and a list of premises; for example:

"g < 0" by "Vz,y,z. (r <y) = (y < 2z) = (x < 2)", "a <", "c<b;
The Mizar proof checker then derives the conclusion "a < b" from the premises

"Wa,y,z. (@ <y) = (y <2) > (z< )",
"a < ¢", and

llc < bll‘

In structured straightforward justifications, one gives more information on what infer-
ences are required to derive the conclusion from the premises in the justification. This
is done through the operators on, and and then which correspond to high-level, or gen-
eralised, versions of the rules of implication elimination, introduction of conjunctions,
and transitivity of implication respectively. For example, the conclusion above can be
justified by:

"g < b" by "Vaz,y,z.(z <y) = (y <2) = (x < 2)" on
||a < C“ and “C < bll;

Structured straightforward justifications are however not over-detailed and omit several
simple inferences such as the instantiation of universally quantified variables and cer-
tain manipulations on the structure of formulae as described in section 6.4.1. Most of
the justifications implemented during the mechanisation of group theory described in
chapter 9 are structured justifications. The implementation of structured justifications
during this case study did not need much more effort than the implementation of un-
structured ones since the detailed inferences which would make the justification tedious
to implement are omitted.

The role of the operators in structured justifications is to give the reader more in-
formation which is relevant to the understanding of the proof. This makes structured
straightforward justifications easier to follow than unstructured ones. The semantics of
structured justifications given in section 6.4 is non-deterministic, and therefore several
conclusions can be justified by the same structured justification. As a result, one can-
not implement forward inference rules which derive a conclusion from its justification,
but rather proof checking functions which check that the conclusion follows from the
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structured justification. However, chapter 8 illustrates how one can restrict the search
space considered during the proof checking of structured justifications. As a result, less
effort is required in checking structured justifications than unstructured justifications.
The material on proof checking structured justifications given in chapter 8 makes use
of a theory of coloured first-order logic in which formulae are annotated with colours.
The colours are used to restrict the notion of the inconsistency of a first-order sentences
and are used to restrict the search space required in the automated theorem proving of
coloured formulae. The theory of coloured first-order logic is described in chapter 7.

It is shown in section 8.2.4 that the validity of first-order structured justifications
defined in chapter 6 is undecidable. As a result, the proof checker used in checking
the structured justifications implemented in the mechanisation of group theory restricts
the search space considered to a finite one. The fact that these restrictions were not
considered to be too strong during the mechanisation suggests that only a small, prob-
ably decidable, fragment of the set of valid first-order structured justifications given in
chapter 6 is required in practiced.

The Implementation of the CBSE Derived Rule

The implementation of a tableau prover for first-order logic with equality as a derived
rule in the HOL system is described in chapter 5. The prover is based on the CBSE
tableau calculus, which refutes a given list of clauses and uses the rules of rigid basic
superposition (Degtyarev and Voronkov 1998) with equational reflexivity to close the
tableau branches. Congruence closure is also used to close redundant branches (that
is, branches which do not need the instantiation of their free variables to be closed).
During the proof search stage of the HOL derived rule, the expansion of clauses which
can be immediately followed by the closure of a tableau branch are given priority over
other expansions in order to gain some of the efficiency of connection tableau calculi
(see (Letz 1993)). The CBSE derived rule derives a HOL theorem when a closed tableau
is found.

The CBSE derived rule is modified to proof check structured justifications as de-
scribed in section 8.5. It is used as the main prover during the proof checking of the
SPL scripts implemented during the case study described in chapter 9. Although the
CBSE calculus is complete for first-order logic with equality, the search for a closed
tableau is restricted to a small finite search space because of the simplicity of the jus-
tifications. Furthermore, the search strategy used for looking for closed tableaux (and
its implementation) is unsuitable for finding long and complex proofs.

The Mechanisation of Group Theory in SPL

Chapter 9 describes the mechanisation of a number of results in group theory in the SPL
declarative language. The mechanisation is based on the textbook by Herstein (1975)
and includes all the results leading to, and including, the second isomorphism theorem,
with the exception of those involving finite groups.

As discussed in more detail in section 9.5, the proofs implemented during this mech-
anisation are quite readable and much easier to follow than tactic-based proofs. The
reasons for this improvement in the readability of the proofs include the following:

e The proofs are declarative in nature, and contain information which is relevant for
a human reader to understand them. The use of explicit variable instantiations
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and the use of forward inference rules is avoided (with the exception of the use of
the select rule described in page 68).

e Structured justifications, which contain more information on what type of infer-
ences are used in the derivation of the conclusion of the justification, are used
instead of unstructured ones.

e Scripts are organised in a modular fashion into sections.

e Simplifiers which are able to query the SPL database of trivial knowledge are
implemented and included in the SPL language throughout the mechanisation of
the theory.

e The deductive power of the knowledge database is updated and extended through-
out the mechanisation of the theory.

In particular, the inhomogeneity in the complexity of the proof steps which is often
noticed in mechanised proofs is greatly reduced by regularly updating and querying the
database of trivial knowledge. By the inhomogeneity in the complexity of the proof
steps we refer to the fact that the complexity of the proof steps in the same proof differs
greatly, and simple results derived during the early stages of a mechanisation can be still
used quite often in the proofs implemented during later stages of the mechanisation.

10.2 Future Work

In this section we discuss a number of directions for future work aimed primarily at
investigating possible ways of improving the readability of mechanised proofs. Both im-
provements on the work presented in the previous chapters, as well as research directions
not considered in this thesis, are discussed below.

The declarative style of proof implementation results in much more readable proofs
than the tactic-based, and other procedural, styles. The work presented in this thesis
suggests that the extensibility of a proof language results in an improvement in the
readability of its proof scripts. An important direction of research is therefore the de-
sign of extensible proof languages. The SPL proof checker is extensible since the theory
developer can implement new HOL proof procedures in ML and incorporate them in
the SPL language during mechanisation. However, the current implementation of the
proof checker allows only global modifications to the proof language, and it is desirable
that certain modifications be local to certain theories, sections and proofs. This highly
desirable feature may require substantial changes to the overall design and implementa-
tion of the proof checker. It should also be noticed that the proof procedures developed
during the mechanisations are implemented in a highly procedural fashion in SML.
The possibility of developing possibly declarative languages for the implementation of
simplifiers, database query functions, and other proof procedures is also an interesting
direction for future research.

The case study described in chapter 9 investigated the effect of extending the sim-
plifiers and the SPL knowledge database during the development of a theory. However,
the implementation of the SPL proof checker also allows the extensibility of the provers
used in justifying proof statements, as well as the syntax and semantics of the language
as a whole. For instance, one is able to extend the SPL language with theory-specific
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constructs during theory development. Case studies on mechanisations involving the
use of such extensibility are required in order to evaluate their effect in practice.

Another important area of research is the investigation of the type of automation
required by proof checkers of declarative languages. The main component of the SPL
proof checker is the CBSE derived rule described in chapter 5. This proof procedure is
effective for finding simple proofs in the classical first-order logic with equality. However,
one often requires the proof procedures for other logics, including higher-order logic
which is treated in SPL through an incomplete transformation from higher-order terms
into first-order ones, as well as in other theories such as natural and real arithmetic.
Automated reasoning in particular theories in SPL is done through simplifiers which are
applied before the CBSE rule (or other provers) are used to check the proof statements.
More effective results can be achieved if the simplifiers and other decision procedures
are incorporated in the first-order prover as studied, for instance, by Bjgrner, Stickel,
and Uribe (1997). The incorporation of the knowledge database with the first-order
(or higher-order) logic prover, so that trivial facts can be automatically derived by the
prover, can also improve the deductive power of the proof checker. This will offer the
possibility of greatly reducing the difference between formal and informal proofs since
the authors of informal proofs omit the justifications of facts considered to be trivial.
The possibility of specifying search strategy heuristics specific to particular theories, or
sections, can also result in a substantial improvement to the current system. Another
direction for future research is the use of automated inductive theorem proving by the
proof checker of a declarative language, since it is observed in chapter 9 that certain
results on finite sets that are considered trivial by the authors of informal proofs may
require inductive reasoning.

An important area of research which has not been considered in this thesis concerns
the feedback given by the proof checker in case of failure. The SPL proof checker does
not provide any positive feedback when a conclusion cannot be justified by the given
justification. It is desirable that in such cases the proof checker gives a useful error
message which helps in understanding why the proof checking process failed.

The development of user-interfaces which provide the interactive discovery of declar-
ative proofs is also an interesting task which requires substantial work and research. This
possibility has been studied recently by Syme (1998) during the development of the in-
teractive IDECLARE system. One can also consider future work in the automated
discovery of declarative proofs, and in the transformation of non-declarative proofs,
such as proofs in a search-oriented format and tactic proofs, into machine-checkable
declarative ones.

Chapter 6 introduces the notion of structured straightforward justifications based
on explicitly stated inferences and implicitly assumed trivial inferences. Chapter 6 also
gives the definition of structured justifications based on implicit and explicit inferences
for the pure first-order logic. It is argued (in chapters 6 and 8) that less effort is re-
quired in following and proof checking structured justifications than unstructured ones.
However, the validity of the structured justifications given in section 6.4 is shown to
be undecidable, and it is observed in chapter 9 that probably only a small, possibly
decidable, subsets of such justifications are used in practice. More work is therefore re-
quired in restricting the definition of the structured justifications given in this thesis. In
particular, the implicit first-order inferences defined in section 6.4.1 should be restricted
in some way.

It is also desirable that one extends the notion of structured justifications to other
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logics and theories. This is an interesting direction for future work since it is not straight-
forward to define structured justifications which have an intuitive semantics and yet can
also be proof checked efficiently. One also requires that the effort required to implement
proofs involving structured justifications is not much greater than implementing proofs
involving unstructured ones. In chapters 7 and 8 it is shown how the inferences (or op-
erators) given in structured justifications can be used to restrict the search space which
needs to be considered by existing first-order deductive systems. This (implementation-
independent) restriction is given in terms of annotations, or colours, on formulae. It
may be possible to use the same technique during the development of mechanisms for
proof checking the structured justifications for other logics and theories. In other words,
structured justifications of a particular theory can be checked by restricting the search
space of existing decision procedures for that theory. Incidentally, the use of anno-
tations, also called colours, on expressions are used by Hutter and Kohlhase (1997)
to restrict the unification of higher-order terms, and also by Hutter (1997) to control
equational reasoning especially during inductive automated theorem proving.

Finally we note that the readability of mechanised proofs relies on the readability
of the terms and sentences used in the proofs. This issue is not studied in this thesis,
and we noticed in chapter 9 that although a number of proofs mechanised during the
case study are observed to be similar to their informal counterparts when the number of
steps in the proofs are compared, the length of the symbols in the formal proofs is still
much higher than that of the informal proofs. The authors of informal mathematics
very often change the syntax of their language by introducing appropriate notations.
It is therefore desirable that one is able to safely modify the term parser of the proof
checker during the mechanisation of a theory.



Appendix A

The Syntax of SPL

In this Appendix we give the syntax of the SPL language described in chapter 4 in
Extended BNF.

A.1 Reasoning Items
SPL_Script = Section { Section }

Section =
section Section_Name
Reasoning _Item
end [ Section_Name | ;

(The Section_Name following end is the same as the one following section.)

Local_Declarations =
local
Reasoning_Items
in
Reasoning_Items
end ;

Reasoning_Items = { Reasoning_Item }

Reasoning_Item = [ Reasoning-Separator |
( Type_Generalisation

| Generalisation

| Assumption

| Ezistential _Assumption

| Step_Result

| Ezistential _Result

| Theorem

| Abbreviation_Declaration

| Simplification_Declaration

| Knowledge_Declaration

| Section

| Local_Declaration )

222
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Reasoning_Separator =
and | but | hence | now | so |
then | therefore | thus | ==

Type_Generalisation = Type_Generalisation_Constructor Type_Vars ;
Type_Generalisation_Constructor = | given | [ new | ( type | types )
Generalisation = Generalisation_Constructor Var_Terms ;

Generalisation_Constructor =
let
| [ given ] [ new ]
( var | vars | variable | variables )

Assumption = Assumption_Constructor Labelled_Statements ;
Assumption_Constructor = ( suppose | assume | given ) | that ]

Ezistential_Assumption =
Exzistential _Assumption_Constructor
Var_Terms Such_That_Constructor
Labelled _Statements ;

Ezistential_Assumption_Constructor = given
Step_Result = [ Step_Result_Constructor | Labelled_Statement Justification ;
Step_Result_Constructor = fact | result

Existential _Result =
Ezistential_Result_Constructor
Var_Terms Such_That_Constructor
Labelled _Statements

Justification ;
Ezistential_Result_Constructor = there is [ some ]
Theorem =
Theorem_Constructor Labelled_Statements
Justification ;

Theorem_Constructor = theorem | lemma | proposition | corollary
Abbreviation = Abbreviation_Constructor Labelled_Statements ;
Abbreviation_Constructor = define | set

Simplification_Declarations =
Simplification_Constructor Simplification_Lines ;
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Simplification_Constructor = simplify

Simplification_Lines =
Simplification_Line { [ Separator | Simplification_Line } ;

Simplification_Line = ( with | without ) Simplifier_Identifiers

Knowledge_Declaration =
Knowledge_Constructor Knowledge_Lines ;

Knowledge_Constructor = consider

Knowledge_Lines = Knowledge_Line { [ Separator | Knowledge_Line }
Knowledge_Line = Category_Identifier Sentence_List

Labelled_Statements = Labelled_Statement { [ Separator | Labelled_Statement }

Labelled_Statement =
[ case | [ Label_Identifier : | Statement

Such_That_Constructor = such that | st | where

A.2 Justifications

Justification =
Proof _Justification
| Case_Splitting_Justification
| Iterative_Inequalities_Justification
| Simple_Justification

Proof _Justification =
Proof _Start
Reasoning_Items
Proof _Ending

Proof _Start =
proof [ [ proceed | Simple_Justification ; |

Proof _Ending =
Backward_Proof _Ending
| ( qed | end ) [ Simple_Justification |

Backward_Proof _Ending =
Backward_Proof _Constructor Labelled_Statements Simple_Justification ;

Backward _Proof _Constructor = ( sufficient to show | sts )
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Case_Splitting _Justification =
Case _Splitting_Constructor [ Simple_Justification ; |
Case_Items
End_Cases_Constructor [ Simple_Justification |

Case_Splitting_Constructor = ( per | consider ) cases
End_Cases_Constructor = ( end | cases | | qed )

Case_Items = Case_Item { Case_Item }

Case_Item = [ Supposition_Constructor | Labelled_Statement Justification
Supposition_Constructor = ( suppose | case )

Tterative _Inequalities _Justification =
Simple_Justification
{ . Part_Formula Simple_Justification }

Simple_Justification =
[ < Simplifiers > | by | Flags ]

[ Prover_Identifier | [ Flags | Prover_Params prover_identifier

(Prover _Params prover_identifier depends on the Prover_Identifier following the optional
Flags.)

Flags = Flag_Identifier { Flag_Identifier }
Flag_Identifier = pure

Prover_Identifier = ( cfol | fol | taut | tab )

Prover _Paramscto1 = Structured_Ezxpression

Prover_Params¢oy = | Sentence_List |

Prover _Paramstaut = | Sentence_List |

Prover_Paramsyap = | Sentence_List |

Structured_Expression = { Then_Ezpression on } And_Ezpression
And_Ezpression = Sentence { and Sentence }

| (Structured _Sentence)

Then_Ezpression = Sentence { then Sentence }
| (Structured_Sentence)
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A.3 Sentences
Sentence_List = Sentence_Item { | Separator | Sentence_Item }

Sentence_Item =
[ < Simplifiers > | ( ( Sentence_List ) | Unsimplified_Sentence )

Simplifiers  Simplifier { [ Separator | Simplifier }
Simplifier =
Simplifier _Identifier

| Label_Identifier
| Sentence

Sentence = [ < Simplifiers > | Unsimplified _Sentence

Unsimplified_Sentence =
[ [ Abstractions 1 | ( Label_Identifier | Formula ) [ [ Applications 1 ]
| Compound_Sentence

Compound_Sentence =
( Compound_Sentence )
| Rule_Identifier Rule_Params ryie_1dentifier

(Rule_Params Rule_1dentifier depends on the Rule_Identifier.)
Rule_Identifier = select

Rule_Paramsgelect = Term Sentence

Abstractions = Abstraction { [ Separator | Abstraction }

Abstraction =
Type_Abstraction
| Var_Abstraction
| Term_Abstraction

Type_Abstraction = Type_Var
Var_Abstraction = Var_Term
Term_Abstraction = Label_Identifier
Applications = Application { | Separator | Application }
Application =
Type_Application

| Var_Application

Type_Application = HOL_Type_Var = Type
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Var_Application =
Explicit_Var_Application
| Implicit_Var_Application

Explicit_Var_Application = HOL_Var_Term[ . Integer | = Term
Implicit_Var_Application = Term

Terms Term { | Separator | Term }

Type = "HOL_Term"

Types = Type { | Separator | Type }

Type = "HOL_Type"

Type_Vars = Type_Var { | Separator | Type_Var }
Type_Var = "HOL_Type_Var"

Var_Terms = Var_Term { [ Separator | Var_Term }
Var_Term = "HOL_Var_Term"

Formulas = Formula { [ Separator | Formula }
Formula = "HOL_Formula"

Part_Formula = " HOL_infir HOL_Term "

Separator = , | and | &



Appendix B

Semantic Tableaux for
First-Order Logic With and

Without Equality

Semantic tableau calculi have become very popular recently in the automated deduc-
tion community since they can be used for a variety of different logics including classical
first-order logic (Fitting 1996), higher-order logics (Kohlhase 1995; Konrad 1998), in-
tuitionistic logic (Bittel 1992) and modal logics (Fitting 1972). This interest is also
attributed to the success of model elimination (Loveland 1968) based procedures for
classical first-order logic which represent a competitive alternative to the resolution
paradigm. The main motivation of this appendix is to introduce the notions of se-
mantic tableaux and tableau-based calculi and the problems involved in reasoning with
equality in such frameworks.

B.1 The Structure of Tableaux

In general, a tableau can be visualised as a tree whose nodes can be labelled with
formulae. That is,

e The empty tree is a tableau

e One or more tableaux branching from a node possibly labelled with a formula
constructs another tableau.

Usually, all the non-root nodes of the tableau are labelled with some formula. Concep-
tually a tableau represents a formula according to the following rules:

e A tableau which does not contain any nodes which are labelled with formulae
represents T,

e A tableau consisting of one node labelled with a formula A represents A.

e The tableau constructed from some node and the tableaux T1,... ,T; represents
the formula P V- - -V P, if the node is not labelled with a formula, and it represents
AN(PyV---VP,) if the node is labelled with A, where P; is the formula represented
by the tableau T;.

228
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C
/" N\

A -B
/ N\ |
R

o B

Figure 27: An Example of a Tableau.

For example the tableau given in figure 27 represents the formula
CA((AN(mAV-C))V (-BAB)).

Each branch of a tableau is said to represent the conjunction of the formulae labelling
its nodes. By distributing the conjunctions over the disjunctions, we can show that the
formula represented by a tableau is equivalent to the disjunction of all the formulae
represented by the tableau branches. We denote the formula representing a tableau T
by (T).

A node labelled with a special symbol (x) called mark or close can be used in
the construction of tableaux during proof search. A tableau branch containing a node
marked with such a symbol is said to be closed, otherwise it is said to be open. A
tableau is closed if all its branches are closed.

Some of the literature contains a different definition of tableaux involving multisets.
Basically, a branch is defined as a multiset of formulae (corresponding to the multiset
of formulae labelling the nodes in the branch), and a tableau is defined as the multiset
of the open branches. For instance, the tableau in figure 27 can be represented by

{{C, A,~A}, {C, A,~CY},{C, B, B}}.

We use the notation B, ¢ to represent BU {¢}, where B is a branch and ¢ is a formula;
and By | Bz | ... | By to represent the tableau { By, Ba, ... , B, } where B; is a branch for
i €{1,...,n}. We also use @ to denote the formula 1) if ¢ is a negated formula -, or
= otherwise.

We will use the tree representation for visualising tableaux, and the multiset repre-
sentation for the formal definition of the inference rules of tableau calculi.

B.2 Tableaux-Based Proof Procedures

Tableaux are constructed by a number of refutational proof procedures, referred to as
tableau calculi. Given a finite set of sentences I' to be refuted, tableau calculi consist
of the following types of inference rules:

Start Select an initial tableau T whose representative formula is weaker than I', that
is I' = (Tp). The semantics of the double turnstile symbol, |=, depends on the
logic concerned.
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Expansion Given a tableau T;, it is expanded to a tableau T;y; by adding more struc-
ture to it, with the restriction that I" = (T;41) given the assumption that ' = (T;).

Substitution Apply some substitution to all the nodes in a tableau.

Close A branch of a tableau is marked as closed (by labelling the leaf node with the
close symbol) if the set of formulae labelling its nodes is shown to be inconsistent.
Given a tableau T}, since (Ty) is equivalent to the disjunction of the formulae
representing the branches, a closed tableau represents an inconsistent formulae,
ie., (Ty) = L, if Ty is closed.

A closed tableau derived using these inferences is therefore a formal proof object of the
invalidity of the formula it represents, and if it is constructed by this method it gives a
proof of the inconsistency of I'.

Note that the substitution rule is non-local, in the sense that it affects all the formu-
lae labelling the nodes in the tableau. Because of this, tableaux and related methods
are usually referred to as rigid variable methods. One can reduce this rigidity of tableau
variables by introducing universal variables which need not be instantiated by the sub-
stitution rule (see (Beckert and Hahnle 1992)).

In a tableau implementation, it is more practical to keep the global substitution
applied to the tableau in a separate data structure instead of applying it to all tableau
nodes. In such case the global substitution can be seen as a constraint on the tableau.
More precisely, a substitution {z1 — ¢1,...,2, — t,} can be seen as the constraint
1 ~1t; A Az, >~ t, where constraints of the form s ~ ¢, called equality constraints,
signify the fact that the term s must be equal to the term ¢. Furthermore, the validity
of the constraint 3#.s1 ~ t; A--- A s, ~ t,,, where Z represents the list of variables free
in s; >~ t; for 7 < n, is equivalent to whether there is a substitution which syntactically
unifies (Robinson 1971) (see also (Jouannaud and Kirchner 1991)) the terms s; and ¢;.
This constraint is represented by the set {s; ~#1,...,s, ~ t,}, and a solution to this
constraint is a substitution o such that s;o ~ t;0 for 1 < n. A constraint is said to be
satisfiable if it has a solution. Unification is often the mechanism used in finding the
appropriate substitutions to use in the tableau substitution rule. Therefore, the global
substitution applied to the tableau is a solution (or rather the most general solution) of
some constraint set. The multiset notation of tableaux is extended to include constraints
by defining a constraint tableau as a pair T - C, where T' is a tableau and C is a constraint
set. One can then rephrase the substitution rule into a constrain rule:

Constrain Given a constraint tableau T - C, the constraint C can be replaced with
some stronger satisfiable constraint C’.

We can also extend equality constraints to formulae by considering predicates, the unary
operator —, and the binary operators A and V as function symbols. For example, the
constraint

(=P (f(z)) A Q(y)) ~ (=P(y) A Q(2))
is satisfied by {y — f(z),z — f(z)}, and
(=P(f(z)) A Q(y)) = (P(y) A Q(z))

is not satisfiable.
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Table 4: A Uniform Notation for First-Order Formulae.

Apart from equality constraints, which represent the global substitution applied to
the tableau, one can define other types of constraints whose purpose is to restrict the
search space during theorem proving. These include ordering constraints which are
often used in equality reasoning.

B.2.1 Free Variable Tableaux

A rather simple tableau calculus for first-order logic is the free variable semantic tableau
calculus whose branches contain nodes labelled by formulae which may contain free
variables. Tableau branches are closed by unifying complementary formulae labelling
the branch nodes. As with other tableau calculi, we define this calculus by giving the
start, expansion, constrain and closure rules for refuting a finite set of sentences I'.

Start Initialise by constructing the constraint tableau having one branch whose nodes
are labelled by the formulae in I', and an empty constraint set.

Expansion Select a branch in the tableau, and a formula ¢ labelling one of its nodes.
Expand the selected branch according to the structure of ¢ using one of the rules
below. Table 4 shows the types of formulae classified by their structure using the
uniform notation introduced by Smullyan (1995) with the addition of a x class to
contain certain negated formulae. The expansion rules are:

a Add a; and as to the selected branch,
[ Branch the last node of the selected branch with 81 and (o,
v Add 7 (y) to the selected branch where y is a free variable,

d Add 6;(f(Z)) to the selected branch where f is a new Skolem function symbol,
and 7 is the list of variables free in the § formula!.

x Add x; to the selected branch.

!This version of the § expansion rule is called the liberalised ¢ rule (Hihnle and Schmitt 1994). It
differs from the § rule given in (Fitting 1996) which includes all the free variables in the branch as
arguments to the skolem function f. Tableau calculi using the liberalised rule are more efficient. Even
more liberalised § rules are given in (Beckert, Hihnle, and Schmitt 1993; Baaz and Fermiiller 1995).
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T 0 (Start)

Bial-[Bn - C (a-expansion) Bi,Bl - [ Bn - C (B-expansion)
Bi,ar,az| -+ | By - C Bi,B1|B1,B2| -+ | By - C
Broy| - [Bn - C (v-expansion) Bi,o| - |Bn - C (6-expansion)
Bi,v,m)| - [Bn - C B, 61 (f(@)| -+ |Bn - C
Bl,P(Sl,...,Sm),—lp(tl,...,tm)|BQ|"'|Bn'C . .
Substitut Cl
Bl 1By - CUls1 =t s =g (ubstitution 4 Close)

1. The substitution + close rule is applicable only if the constraint in the conclusion is
satisfiable.

2. In the start rule, I' is the set of sentences to be refuted.
3. In the v expansion rule, y is a new free variable,

4. In the § expansion rule f is a new Skolem function symbol, and # is the list of variables
free in 4.

Figure 28: The Free Variable Tableau Calculus.

Constrain Given a tableau T' - C having a branch with formulae ¢ and ¢ include the
constraint ¢ ~ @ in C. This rules fails if C U {¢p ~ @} is unsatisfiable. This is
equivalent to applying the most general unifier of ¢/ and ¢ to all the formulae
labelling the nodes of the tableau substituted with the most general solution of C.

Close Given a tableau T' - C, a branch is closed if it contains |, or a pair of formulae
which become complementary when substituted with the most general solution of

C.

The above calculus is refutationally complete but is highly nondeterministic. This
nondeterminism can be reduced by adding several restrictions to the above rules without
impairing the calculus’ completeness. For instance, the a, 3, § and x expansion rules
can be applied only once on each node, and the constrain rule can be resticted to literals,
and can be immediately followed by a closure rule. The sentences in I' can be simplified
by pushing the negation to the literals and removing the T and L literals. As a result,
the x expansion rule will never be applicable. One can also use fair strategies which
make sure that each node in the tableau will eventually be used for expansion. Finally,
one can apply a bound on the tableaux considered during the proof search to limit the
search space to a finite one (e.g., tableau size, branch length, the number of times the v
rule can be used, etc. ). This bound is increased until a closed tableau is found.

The free variable tableau calculus is given in figure 28. The implementation of
lean TP given in (Beckert and Posegga 1995) is an example of this calculus.
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B.2.2 Connection Tableaux Calculus

The free variable tableau calculus can be modified to refute a set of formulae in clausal
form. Since clauses are skolemised disjunctions universally quantified implicitly, only
v and [ expansion rules are applicable. One can also define an expansion step corre-
sponding to a number of a and 3 expansion steps so that the leaf node of a selected
branch can be branched with all the literals in a clause in a single rule. That is, given
the clause Ly V --- V L, an inference rule can be defined to represent the sequence of
expansions:

Bl,szl,...,xn.Ll\/---\/Lm|---|Bn-C ()
By Vaa, ... 2y (LiV -V Ly){z1 > yi} |- | By - C (1)
By, LyocV---NV Lyo|---|B, -C ) )
Bl,L10'|Bl,L20'\/"-\/LmO'| |Bn -C
(B)
Bl,L10'| |Bl,LmO'| |Bn . C (ﬂ)
where o is the substitution {x1 — y1,... , 2, — y,} and the (distinct) variables y; for
1 <i<mndonotoccurin By |---|B, - C.

One can construct a tableau consisting only of literals using this expansion rule on
the given set of clauses. In this case, the refutational completeness of the calculus is
preserved if the proof search is restricted to tableaux satisfying a number of structural
properties which include connectedness (see the thesis of Letz (1993) in which a number
of such properties are defined and compared). A tableau is said to be connected if
each inner node labelled with a literal L has an immediate successive leaf node labelled
with its complement L. For instance, the tableau in figure 27 is not connected because
the node labelled with C' does not have an immediate successor labelled with —C.
The proof search space in the connected tableaux calculus can therefore be reduced
by restricting expansion rules to those which yield a successive constrain and closure
rule. This restriction makes tableau proof search on connection tableau much more
efficient than that of the free variable tableau illustrated earlier, and offers a high degree
of goal-directedness. The expansion-constrain-closure sequence of inferences defines
the extension rule of the connection tableau calculus. The other inference rules of
the calculus are the start rule which constructs the connection tableau Lj | --- | Ly,
given a clause Ly V ---V L,,, and the reduction rule which corresponds to a constrain
rule followed by a closure rule. Note that all inferences of the connection tableau
calculus with the exception of the start rule result in the closure of some branch. The
model elimination calculus of Loveland (1968) is a connection tableau calculus where
the branch to be expanded is selected in a depth-first left (or right) most strategy. The
MESON theorem prover implemented in the HOL system is a model elimination calculus
with an optimised proof search strategy (Harrison 1996¢).

Figure 29 gives the rules for the connection tableau calculus. We illustrate this
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Start
LT T gy o)
B,,L|---|B, -
LIl ¢ — (Extension)
By,Ly|---|B1,Li—1|B1,Lit1| -+ | Bi,Li| -+ | Bn - CU{L ~ L;}
Bl,P(Sl,...,Sl),ﬁp(tl,...,tl)|BQ|"'|Bn'c .
Reduction
BQ|"'|Bn'CU{Slﬁtl,...,Slﬁtl} ( )

1. The rules are applicable only if the constraint in their conclusion is satisfiable.

2. In the start and extension rules, L1 V---V L,, is an instance of a clause C in the set T’
of clauses being refuted, where each free variable in C' is instantiated to a new variable
which does not occur in the tableau.

Figure 29: The Connection Tableau Calculus.

calculus by refuting the following set of clauses:

P(z) vV Q(z) V-R(z) —P(c)
P(y) vV -Q(y) R(c)

as follows

Start (P(x) V Q(z) V - R(z)){z — v}
Extension —P(c)

Extension (P(y) V -Q(y)){y — v2}
Extension —P(c)

Extension R(c)

P(v1) |Q(v1) [ -R(v1) - {}
Q1) | ~R(v1) - vy ~c

Q(v1), P(va) |- R(v1) - {v1 ~¢,v2 ~ ¢}

—R(v1) - {v1 ~¢,v2 ~ ¢}

{} - {vy = c,v9 ~c}

to find the closed connected tableau in figure 30.

B.2.3 Tableaux Calculi for First-Order Logic with Equality

The methods for handling the equality predicate in tableau calculi for first-order logic
include:

1. Eliminating equality by transforming the set of sentences into an equivalent set
which does not involve equality, and applying a tableau calculus for pure first-order
logic.

2. Adding new expansion and closure rules to the tableau calculus.

3. Closing branches by E-unification.

The first method involves adding the equality axioms of reflexivity, symmetry, transitiv-
ity and congruence on the function symbols involved in the set of sentences. Examples
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P

( )/Q(,)\

| VAN |
—P(c)  P(vz)  —Qv2)  R(c)

—R(v1)

X | X X
{vi—c} —|P(c) {vi—wva2} {vi—c}
X
{va—c}

Figure 30: An Example of a Closed Connection Tableau.

Bl,t%s,4p[t’]| |Bn . C o
Fitt - d
Bl,tz5,<p[5]| |Bn'CU{t:t’} ( 1ring expan )
By, t#t'|By| - |By - C . o
Equality Refl t
B2|"‘|Bn'CU{tgt'}(qualy eflexivity)

e The rules are applicable only if the constraint in their conclusion is satisfiable.

Figure 31: Fitting’s Additional Expansion and Closure Rules.

of the second method include Fitting’s approach in (Fitting 1996) which is an extension
of the technique of Jeffrey (1967) for adding equality to ground tableau calculi. In Fit-
ting’s approach the rules given in figure 31 are added to the free variable tableau rules.
We use the notation & ~ y to ambiguously represent the equality literals x = y and
y = z. Similarly, we use = % y for both —(z = y) and =(y = ). The main problem with
such methods is that the use of equality is undirected, and the addition of such rules
results in a very large search space and the untractability of solving even very simple
problems.

The success of completion-based methods (Knuth and Bendix 1970) for solving equa-
tions, often called F-unification problems, inspired the development of the third method
mentioned above, where a tableau branch is treated as an F-unification problem and
solved usually using calculi based on unfailing completion (Bachmair, Dershowitz, and
Plaisted 1989). More formally, a (general) E-unification problem is of the form

Ei,...,E, ' E

where the formulae E; for i € {1,... ,n} are equations whose free variables are im-
plicitly universally quantified, and F is an equation whose free variables are implicitly
existentially quantified. A solution to a problem of this form is a substitution ¢ such
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that
E,,... ,E,+ Eo.

Note that the substitution o is applied only to the conclusion . However, we recall that
free variables in tableaux are treated rigidly and that substitutions are applied to the
whole tableau, and therefore the closure of a tableau branch cannot correspond to the
solution of a F-unification problem. This lead to the definition of the rigid E-unification
problem by Gallier, Raatz, and Snyder (1987). A rigid E-unification problem is of the
form

E\,...,E, F' E

where E and the formulae E; for i € {1,... ,n} are equations whose free variables are
treated rigidly. A solution to this problem is a substitution ¢ such that

Fio,... ,E,o F Eo.

This differs from the definition of the solution for the general E-unification problem since
the substitution o is applied to both the assumptions (E,... , E,) and the conclusion
(E) of the above problem.

The problem of closing a tableau branch reduces to that of solving a number of rigid
E-unification problems. For instance, closing the branch

{1 x1 =21, o+ 23 =23+ 22, P(3+ (2% 1)), "P(4+3)}
is equivalent to the rigid F-unification problem
z1x1 =21, To+23 =23+ 2o I—E 3+ (rox1)=4+3

and can be solved with the substitution {z1 — 4,29 — 4,23 — 3}. The general E-
unification problem is undecidable, even for very simple equational theories (see (Siek-
mann 1989)), but the rigid E-unification problem has been shown to be N'P-complete
by Gallier, Narendran, Plaisted, and Snyder (1990). Efficient completion based al-
gorithms for solving the rigid E-unification problem have been developed in (Gallier,
Narendran, Plaisted, and Snyder 1990; Goubault 1993; Becher and Petermann 1994;
Kogel 1995) and proposed to be used in closing tableau branches during proof search.
Although, in general a rigid E-unification problem can have an infinite number of so-
lutions these algorithms yield a finite complete set of solutions by enumerating the
substitutions which are not equivalent to each other according to the rigid equational
theory considered. For example, the problem f(a) = a I—E x = a has the solutions
{z — f™a)} for n = 0,1,2,..., but the set {{x — a}} is a complete set of solu-
tions because all the possible solutions are equivalent to {z — a} given the assumption
f(a) = a.

However, as can be seen in the tableau in figure 32, a complete set of solutions closing
one branch may not be enough to close a refutable tableau. The tableau can be closed
by the substitution {z — f3(a)}, but a complete set of solutions closing the branch
{P(a),~P(z), f(a) = a} given by {{z — a}} and cannot be used to close the other
branch {-Q(z),Q(f3(a))}. The reasons for this is that different branches of the same
tableau yield different rigid equational theories, and therefore the notion of a complete
set of solutions is only local to one branch rather than global to the whole tableau.
In general, one cannot close a tableau by treating its branches as rigid E-unification
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Figure 32: Tableau Branches with Different Rigid Equations.

problems and solving them one by one using complete list of solutions.
This led to the discovery of the simultaneous rigid F-unification problem, where a
number of rigid E-unification problems (representing the different branches of a tableau)

Ew,...,Ey, FLE
Esy...  Eop, F' Ey

Ents--- s Emn,, F Ep,

need to be solved simultaneously, that is, finding a substitution o which solves all the
above rigid F-unification problems. This problem turns out to be quite different from
the single rigid E-unification problem and was shown to be undecidable (Degtyarev and
Voronkov 1996), even for surprisingly small fragments of the problem (Plaisted 1995;
Veanes 1997). As a result, the problem of deciding whether an expanded tableau can
be closed with respect to the theory of first-order logic with equality is undecidable.

Degtyarev and Voronkov (1998) proposed the rigid basic superposition (BSE) cal-
culus which enumerates a finite set of answer constraints embedding solutions to a
given rigid F-unification problem. When used to solve a number of simultaneous rigid
E-unification problems, it gives a terminating, and therefore incomplete, sequence of
solutions to the problem. However, it gives a complete calculus for first-order logic with
equality when used for closing tableau branches. That is, although the BSE calculus may
not close all the branches in a refutable (in principle) tableau, every refutable tableau
can be expanded (by the application of the expand rules) to one whose branches can
be closed by the BSE calculus. Figure 33 illustrates the three additional tableau rules
which solve the rigid E-unification problem inherent in the tableau branches. These
rules are applied to constraint tableaux of the form T - C where T is a free variable
tableau and C is an ordering equality constraint. Ordering equality constraints are first-
order formulae over the two binary symbols ~ (for equality constraints) and > (for
ordering constraints), where > is a reduction ordering, that is

e it is a well-founded partial ordering on terms,
e it is monotonic, i.e.,if @ > b then s[a] > s[b], and

e it is closed under substitutions, i.e.,if s > ¢ then so > to for all substitutions o,
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By, l=rspl=~t| - |By-C
Bilmrsl =] |Ba - CU{l>rslp] = h1~p}

(left rigid basic superposition)

By,l~rs[p|#t]|---|Bn-C
Bolmrsi] 0] |Bn- COll>rslpl = h1~p)
Bi,s#t|Ba| - |Bp - C
By|---|B, - CU{s~t}

(right rigid basic superposition)

(equality reflexivity)

e The rules can be applied only if the following conditions hold

1. the constraint at the conclusion of each rule is satisfiable.

2. in the basic superposition rules, the term p is not a variable. This is called the
basic restriction which results in a much restrictive search space without losing
the completeness of the calculus.

3. the right-hand side of the rigid equation at the premise of each rule is not of the
form ¢ =~ ¢ (to avoid the substitution of a term by itself).

4. in the left basic superposition rule, s[r] # ¢ (otherwise the literal ¢ =~ ¢ will be
included in the tableau branch).

Figure 33: Additional Tableau Rules for Rigid Basic Superposition.

which is also total on ground terms. Such orderings are described in (Klop 1992) for
instance. Nieuwenhuis and Rubio (1995) give efficient algorithms for solving ordering
equality constraints.

The three rules in figure 33 together with the start and expansion rules of the free
variable tableau give a refutationally complete calculus for first-order logic with equality.
Note that these rules are defined on equations and inequations only; a positive literal
P is treated as P = T and a negative literal =P as P % T.



Appendix C

A Long Proof

C.1 K-Consistency Implies K-Satisfiability

Let I be a connectability relation over a countable set of colours P which has some
total order <. Let C be a K-consistency property and let C™* = {S™F< | § € C}. As
illustrated in example 7.6, CX is in general not a consistency property. However, we
can always construct a consistency property (C*X defined below) containing C*. The
aim of this appendix is to give a detailed proof of this statement. A consequence of this
result is that every KC-consistent set is KC-satisfiable. (Theorem C.1 below).

Definition C.1 Given a finite list [ and an expression [j] representing some formula

A
for every j in [, let U ¥[j] be defined as follows:

gl
Ul = &
3+l
U« = {{ A ¢ ui{gl, A ¢iux|xelyll
j(a:l) j(a:l) j<(a:l) gl

j[®1yeee 0]

Definition C.2 Given a set S of coloured sentences and a connectability relation IC,

we define
A

Sk = U U A | AT € S, A is a literal
3 K]
where [KC(7)] is the finite list containing the colours in the range K(7) sorted in ascending
order according to the ordering <. O

239
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Definition C.3 Given a connectability relation K and a set S of coloured sentences,
we define

S*’C:{S“’CUUX|XQSX’C}. 0

Definition C.4 Given a connectability relation K and a collection of sets of coloured
sentences C, then we define

= J{s*|secy 0
Example C.1 Let the set S = {A’, B/ v —A* B7}, and the connectability relation
K =i+ 7+ kwithi<j<k (as in example 7.6). Then,
/\ . .
U A4 = (4
m[K(2)]
/\ . . . .. . . .
U B = {{B¥AB*}, (B A B B, Bi*}}
m[K(j)]
And so - B _ B ' o
S8 = {{AV},{B” A B*}, {B7' A B'*, BT, BI*YY.

Now

S*IC — {Snlc U {}’SJ\IC U {Aij},SnIC U {Bji A Bjk},
SRy {BI A Bk BIt Bk}, 9K {AY, BIT A BIFY,
SR U {AY, BIt A BIF B BIFYY
= {{AY (B7" A Bi*) v A% Bi' A BIFY,
{AY (B7" A BI%) v — A7k BIt A BIk Bit BiF1Y,

If C = {S}, then C** = J{S** | S € C} = $*X which is a consistency property. O

Proposition C.1 For every literal B € S™F, if B # T then there is some coloured
literal A* € S such that B = A" and i ~x j.

Proof: If B € S then there is some coloured literal A* € S such that
B = (A" =T, ifi ¢ ¢(K)
= /\ A otherwise.

J[K(@)]

If K£(i) = {} then B = T. Otherwise, if k(i) # {} then B = A, A" and since B
is a literal, and therefore not a conjunction, then /C(7) must be some singleton set {j}
with 4 ~i j. Therefore B = A" A’ € § and i ~x j as required. |

Proposition C.2 Given a list | and an expression ¢[j] representing a formula for every
jinl, then

A
1. If 1 is non-empty then {/\ Pljl} € U P[]

gl gl
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A
2. For every S € U Y[j], it is the case that /\ P[j] € S.

jl gl

A
3. For every S € U Y[jl, if ¢ € S then
jl
e o =1)[j], for some j inl, or
° p = /\ plj], for some list ', such that I' is a tail sublist of | and §l' > 1,
gt
where 1y is a tail sublist of ly if there is some list I3 such that lo = I3 + +lq,
and I’ is the length of the list I'.

Proof: The first two statements follow directly from Definition C.1, and the third
A

one proceeds by induction on [. The base case is trivial since no set S € U plj]-
Al

A
Now for the induction case, if S € U [j], then S = { /\ Y[j]}, or else S =

j(a:l) j(a:l)
A
{¢]a], /\ P[]} U X, for some X € U ¥[j]. We consider these cases separately:
j<(ail) jl
o If S={ /\ Y[j]} then ¢ = /\ ¥[j], and if [ is not empty then f(a : 1) > 1.
J(a:l) j+(a:l)
However, if [ is empty then /\ Y[j] = ¢la] and a is in (a : 1).
j(a:l)

A
o If S={ /\ ¢ljl,¥lal} UX, for some X € | J[j], then either ¢ = t[a] (in
j(a:l) jl
which case we are done since a is in (a : 1)), or ¢ = /\ ¥[j] (and the proof
j<(a:l)
proceeds as in the previous case), or else ¢ € X. Now if p € X it follows from
the induction hypothesis that ¢ = [j] for some j in [ (and hence in (a : [)), or

o= /\ 1[j] for some I’ tail sublist of [ (and hence of (a : 1)) with I’ > 1. [ |

gl
Proposition C.3 Given a list | and an expression [j] representing a non-conjunctive

A
formula for every j in I, then for every S € U Yljl, if e A9 € S then S U {p, 9} €

gl
U vl

gl

Proof: As in the proof of proposition C.2(3) we proceed by induction on [. The base
case is once again trivial and for the induction case we consider the cases of whether

S={ /\ P[j]} or S ={ /\ Y[j],la]} U X for some X € U ¥[j] separately:

je(ail) j<(ail) Gl
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e For the first case we have p A = /\ ¥[j] and we can assume that [ is not
j(a:l)
empty otherwise /\ ¥[j] would not be a conjunction. Thus, ¢ = [a] and
j(a:l)

A
9= /\ 1[j]. Now, by proposition C.2(1) {/\ Yljl}t € U 1[j] and thus by Defini-

gl gl gl

tion C.1, { A #lil,%lal, ]\ ¢[j]} (which is equal to SU{p,d}) isin | ] ¢[j].

j<(ail) gl j<(ail)

e IfS={ A\ ¢l v} UX (and X € | J[j]), then either p A9 =/  9[j]

j(a:l) j<l j(a:l)
and [ is non-empty, or ¢ A9 € X. (Note that ¢ A9 # [a] as 1[a] is not
conjunctive.)

If A9 = /\ ¥[j], then ¢ = 1)[a] and I = /\ ¥[j]. Now, by Proposition C.2(2),

j(a:l) jl
/\ ¥[j] is in X and thus in S. And since 9[a] is also in S, it follows that S U
jl
A
{¢,9} = S whichisin | ] ¢[j].
j(a:l)

Now, if p A9 € X,
A
X U{p, 9} € U ¥[4] by the induction hypothesis
gl

= {ylal, N\ WU XU{pd}) e (J ] by Definition C.1

j<—(a:l) j<—(a:l)

= Su{pdte |J »lil |

j(a:l)

Proposition C.4 Given a list | and an expression [j] representing a formula for every
A

j in l, then for every i in l, there is some set S € U Y[j] with [i] € S.

gl

Proof: We proceed by induction on [. The base case is trivial, and for the induction case

A
we need to show that for all 7 in (a : [) there is some set S € U Y[j] with [i] € S.
j<(a:l)
A
If i = a, then { A o[l 9lal, A\ vl € (J ] for non-empty I, and {¢[a]} €
j<(a:l) jl j<(a:l)
A A
U [j] if [ is empty. In any case, there is some set S € U Y[j] with ¢[a] € S.
j(a:l) j—(a:l)

On the other hand, if 7 # a then ¢ must be in [, and by the induction hypothesis, there
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A
is some set S’ € U [j] such that ¢[i] € S’. Now let S = {1[a], /\ Y[y U S". Thus
gl j(a:l)

A
[i] € S and it follows from Definition C.1 that S€ | ] v[j]. |
j(a:l)

Proposition C.5 If S; C Sy then S;* C S5%.

A

Proof: Let X € SIX’C, then by Definition C.2, the formula X € U A" for some
. _ J[K@)]

A € 81, and since S; C Sy then A* € Sy and thus X € SQX’C. [ |

Proposition C.6 Given a connectability relation IKC and a set of coloured sentences S,
then

1. For every literal A* € S where i € €(K) there is some set X € S*KX with A ¢
X.

2. For every literal A* € S and colour j such that i ~x j, there is some set X € S*F
with A* € X.

3. For every set X € S*X, if the literal A" € X then A* € S and i ~x j.

Proof:

A
1. For all sets X € U A" we have /\ A" ¢ X by Proposition C.2(2).
J[K@)] J[K@)]

A

Now A"k = /\ A" and by Definition C.2 it is the case that U A C
IR )] J[K(0)]

S*K gince A’ € S, and thus X € §*K.

A

2. There is some set X € U A" with A* € X by proposition C.4, and as in
Je K@)
A
the previous case, since U A C §7K it follows that X € §*K,
Je K@)
A
3. Let A" € X for some X € S*X, then X € U B™™™ for some literal B™ €
m<—[K(n)]

S. And since A" is not a conjunction, it follows from Proposition C.2(3) that
A = B for some m in K(n). Hence, since m is in K(n) then B # T,
and therefore A = B, i =n and j = m, and thus A* € S and i ~x j.

Proposition C.7 For all sets X € S**, if o A9 € X then X U{p, 9} € K.
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A
Proof: Since X € S*F, then X € U A for some A' € S. Now
J1K()]

A
pANIeX = XU{p 9} € U A" (by Proposition C.3)
J K@)
= X U{p,9} € S* (by Definition C.2). |

Proposition C.8 Given a connectability relation IC and a set S of coloured sentences,
then

1. For every literal A* € S and colour j such that i ~x j there is a set X € S** with
At € X,
2. For every literal B € X where X € S**, if B # T then there is some literal
A' € S such that B = A" and i ~x j.
Proof:

1. If A € S and i ~x j then by Proposition C.6(2) there is some Y € $*X such that
A" €Y. Thus, A% € S U|J{Y'} and since {Y} € §*K then SFUY{Y} €
Sk,

2. If X € §*f, then X = §°* U |JZ for some Z C S*X. Hence, since B € X,
either B € S°% or B € |JZ. For the first case, B € S* and by Proposition C.1
B = A" for some A' € S and where i ~x j. Alternatively, if B € |J Z for some
7 C 8%k it follows that B € Y for some Y € Z, and therefore Y € §**. Thus

A
ve | 47
(K ()]
for some literal A* € S. As a result, B = A" for some j where i ~x j by

Proposition C.2(3). [ |

We are now ready to show that C** is a consistency property.
Lemma C.1 IfC is a KC-consistency property then C** is a consistency property.

Proof: We prove that C** is a consistency property by showing that all the conditions
in Definition 7.1 are satisfied.

1. Let X € C**, then X € S*K for some S € C. Now, if a literal B € X then either
B=T,orelse B= A" A€ S and i ~x j, by Proposition C.8(2). For the first
case

AlcSandi~gj = -Al¢SasSecC
= (~A47)" ¢ X, by Prop. C.8(1)
= ~(A"Y)¢ X
= -B¢X.

For the second case, if B =T, then =T = L and L ¢ X by case 2 below.
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2. Let X € C**, then X € S*X for some S € C. We are required to show that
L ¢ X. Suppose that L € X, then L = A* for some A* € S and i ~i j
by Proposition C.8(2). Therefore A = L by definition 7.16 on page 128 and so
1% € S. It is also the case that i is in K as i ~x j. But this is a contradiction
since S € C and C is a coloured consistency property.

3. Let X € C** and p Ay € X, then

Xel®* = Xe8§% forsome SeC
= X:S“’CUUonrsomngSX’c.

We now consider the cases of whether p A € |JY or whether ¢ At € SO,
o If p A1) € JY where Y C S*KX, then
@A € Z for some Z €Y, ie., Z € S*K

= ZU{g, 1} € 8** by Proposition C.7
= YU{ZU{p,y}} C 5

= SMulJyu{zu{p v} e st

Now, S“ Ul J(v u{Z U{p,v}})
s ulJyu(Zzu{ev})
— K UY U {p, 9} (since Z €Y)
= XU{p 9}

And therefore, X U {¢, ¢} € C**.

o If p Ayp € 87K then there is some formula y € S such that ¢ A = x K.
Now, x is either a literal and §(K(i)) > 1, or else x is a conjunction. If x is
some literal A* € S then

3 [K()]
/\ . .
and therefore {p A} € U A" by Proposition C.2(1). Hence
3 [K()]

A
{ond,ppre | 47V

J[K ()]

and thus {© A, @, 9} € §*K,
Since Y C S*F we get

Y U{{p A, p,9}} C 5K
= SMUJ ulfe A, et} € ST
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Now, S™N U J(Y U{{o A, 0,9}})
= SN UlJYu{end, e
= SMulJY ufp,y} (since p Ay € S7F)
= X U{p, ¢}

And therefore, X U {¢, ¢} € C**.

We now consider the case where x is not a literal, and therefore we assume
that it is some conjunctive formula u A p € S, and that ™% = ¢ and
p™ =14, But since S € C, then SU {u, p} € C as well. Now,

(SU{p.p) ™ U JV ec™ forall V C (S U {p,p})**

= (Su{pmphFulJy ect
(as Y C S*K C (SU{u, p})** and by Proposition C.5)
= SNCU{,u’“’c,,o’“’C}ULJYEC’*’C
= XU{p"™ p™"rec™ (as X = S UY)
= X U{p,¢}cc.

The remaining cases follow easily from the fact that C is a [C-consistency property, and
we consider only the fourth case for illustration.

4. Let X € C** and Ve € X. Now X = SN UJY for some Y C S*X. Now since
@ V1) € X is neither a literal nor a conjunction, ¢ V¢ € SF and thus there is
some 1V p € S and p % = ¢ and p™* =), Hence, SU{u} € Cor SU {p} € C.
If SU{u} € C then,

(Su{uh ™ ulJV ec™ forall vV C (SU {u})*¥
= (Suf{ph™MulJyec®asy c K C(Su{u})r
= S u{pMrulJyec®
= Xu{pFrec®
= X U{y}eck.

Similarly, if SU {p} € C then X U {s} € C**, and hence X U {p} € C** or
X U {y} ec®. [

Theorem C.1 IfC is a K-consistency property, then every set S € C is K-satisfiable.

Proof: If S € C then S** C C**. By definition, S** = {S™YUUX | X C §*F},
and thus S7% € §*X as {} € §*K and so S°F € C**. Now, by Lemma C.1 C** is a
consistency property and by the Model Existence theorem it follows that the set S™%
is satisfiable. Thus S is K-satisfiable. |
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