
Zammit, Vincent (1999) On the Readability of Machine Checkable Formal
Proofs. Doctor of Philosophy (PhD) thesis, UNSPECIFIED.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21861/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.cs.kent.ac.uk/pubs/1999/909

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21861/
http://www.cs.kent.ac.uk/pubs/1999/909
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

ON THE READABILITY OF MACHINE CHECKABLEFORMAL PROOFS
a thesis submitted toThe University of Kent at Canterburyin the subject of computer sciencefor the degreeof doctor of philosophy.

ByVincent ZammitMarch 1999

To my family

ii

Contents
iiList of Tables viiList of Figures viiiAbstract ixAcknowledgements x1 Introduction 11.1 Machine Checkable Proofs and their Readability : : : : : : : : : : : : : 11.1.1 Formalised and Mechanised Mathematics : : : : : : : : : : : : : 11.1.2 Proof Checking and Theorem Proving Environments : : : : : : : 21.1.3 The Readability of Machine-Checkable Proofs : : : : : : : : : : : 21.2 Preliminaries : 31.2.1 First-Order Logic : 31.2.2 Higher-Order Logic : 41.3 Outline of the Thesis : 52 On the Mechanisation of Mathematical Proofs 72.1 The Level of Rigour in Mathematics : 72.2 The Formalisation of Mathematics : 82.3 The Mechanisation of Mathematics : 102.3.1 Automated Deduction : 102.3.2 Proof Checking and Proof Development Systems : : : : : : : : : 122.4 A Brief Overview of the HOL System : : : : : : : : : : : : : : : : : : : 142.4.1 On the LCF Approach of Theorem Proving : : : : : : : : : : : : 142.4.2 The Implementation of HOL : 152.4.3 A Number of Mechanised Proofs in HOL : : : : : : : : : : : : : 172.5 On Readable Mechanical Proofs : 192.5.1 The Unreadability of Mechanised Proofs : : : : : : : : : : : : : : 202.5.2 Extracting Natural Language Proofs from Mechanised Ones : : : 232.5.3 Improving the Readability of Mechanised Proofs : : : : : : : : : 243 Case Studies on Tactic-Based Theorem Provers 273.1 Introduction and Motivation : 273.2 A Formalisation of URM Computability in HOL : : : : : : : : : : : : : 28iii

3.2.1 The URM Model of Computation in HOL : : : : : : : : : : : : : 283.2.2 Building URM Programs : 313.2.3 Partial Recursive Functions are URM Computable : : : : : : : : 323.2.4 De�ning Computable Functions : : : : : : : : : : : : : : : : : : : 333.2.5 Concluding Remarks on the HOL Formalisation : : : : : : : : : 333.3 A Proof of the Smn Theorem in Coq : 343.3.1 On the Coq Theorem Proving Environment : : : : : : : : : : : : 343.3.2 The PRF Programming Language : : : : : : : : : : : : : : : : : 353.3.3 PRF Computability : 393.3.4 The Smn Theorem : 403.3.5 Concluding Remarks on the Coq Formalisation : : : : : : : : : : 423.4 A Comparative Study of HOL and Coq : : : : : : : : : : : : : : : : : : 423.4.1 De�nitions : 433.4.2 Theorem Proving : 453.4.3 Miscellaneous : 483.4.4 Concluding Remarks : 503.5 On Tactic Proofs : 514 The Implementation of a Declarative Proof Language in HOL 544.1 Introduction : 544.2 The Structure of SPL Scripts : 554.2.1 An Example : 554.2.2 Sectioning Proof Scripts : 584.2.3 Reasoning Items : 594.2.4 Proofs and Justi�cations : 604.2.5 SPL Sentences : 654.3 Proof Checking SPL Scripts in HOL : 684.3.1 The Environment of SPL : 694.3.2 The Representation of SPL Facts in HOL : : : : : : : : : : : : : 704.3.3 Parsing Proof Scripts : 714.3.4 Processing SPL Constructs : 714.3.5 Expanding SPL Facts : 734.4 Proof Support : 744.4.1 A Database of Trivial Knowledge : : : : : : : : : : : : : : : : : : 744.5 Conclusions : 775 A Tableau Prover as a HOL Derived Rule 795.1 Introduction : 795.2 A Clausal Tableau with Rigid Basic Superposition : : : : : : : : : : : : 805.2.1 On Clausal Tableaux and Rigid Basic Superposition : : : : : : : 805.2.2 The CBSE Calculus : 815.2.3 Some Examples : 845.3 The Tableau Calculus in HOL : 865.3.1 Reasoning with Polymorphic Formulae : : : : : : : : : : : : : : : 875.3.2 Preprocessing Formulae : 905.3.3 Proof Search : 915.3.4 Deriving a HOL Theorem : 945.4 From Higher-Order to First-Order Logic : : : : : : : : : : : : : : : : : : 95iv

5.5 Conclusions and Future Work : 966 Structured Straightforward Justi�cations 986.1 Motivation : 986.2 On Explicitly Stated Inferences and Implicitly Applied Manipulations : 1006.2.1 Generalising Inferences : 1006.2.2 Straightforward Justi�cations with Explicitly Stated Inferences : 1026.3 The Syntax of Structured Justi�cations : : : : : : : : : : : : : : : : : : 1036.4 The Semantics of Structured Justi�cations : : : : : : : : : : : : : : : : : 1046.4.1 Implicit First-Order Inferences : : : : : : : : : : : : : : : : : : : 1046.4.2 Explicitly Stated Inferences : 1096.5 Results on Structured Justi�cations : 1106.6 Discussion : 1147 A Coloured First-Order Logic 1217.1 Introduction : 1217.2 A First-Order Logic with Coloured Formulae : : : : : : : : : : : : : : : 1237.2.1 Basic De�nitions : 1237.2.2 The Consistency of Sets of Coloured Formulae : : : : : : : : : : 1267.3 From Coloured Formulae to Uncoloured Ones : : : : : : : : : : : : : : : 1277.3.1 The De�nition of a Decolourisation : : : : : : : : : : : : : : : : : 1277.3.2 Correctness of the Decolourisation Mapping : : : : : : : : : : : : 1317.3.3 Applications : 1337.4 Changing the Colour of Formulae : 1347.4.1 The De�nition of Recolouring Mappings : : : : : : : : : : : : : : 1357.4.2 Consistency Results on Recoloured Sets : : : : : : : : : : : : : : 1367.5 Coloured Interpolants : 1387.6 An Undecidability Result : 1477.7 Summary : 1488 Proof Checking Structured Straightforward Justi�cations 1498.1 Introduction : 1498.2 Proof Checking Implicit First-Order Inferences : : : : : : : : : : : : : : 1518.2.1 A Restricted Proof Search for Checking Implicit Inferences : : : 1518.2.2 Soundness of the Restriction : 1528.2.3 Completeness of the Restriction : : : : : : : : : : : : : : : : : : : 1558.2.4 The Undecidability of First-Order Implicit and Explicit Derivations1578.3 From Structured Justi�cations to Coloured Problems : : : : : : : : : : : 1588.3.1 A Restricted Proof Search for Checking Structured Justi�cations 1588.3.2 A Con
uence Property : 1638.4 Soundness and Completeness of the Restricted Proof Checking of Struc-tured Justi�cations : 1678.4.1 Soundness and Completeness for Particular Cases : : : : : : : : 1678.4.2 On Well-Coloured Partitions : 1728.4.3 Soundness and Completeness for the General Case : : : : : : : : 1788.5 Modifying the CBSE Derived Rule to Check Structured Justi�cations : 1878.6 Summary : 190v

9 A Mechanisation of Group Theory 1929.1 Introduction : 1929.2 Group Theory in SPL : 1939.2.1 The De�nition of Groups : 1939.2.2 Preliminary Results : 1949.2.3 Preliminary Simpli�ers and Database Query Functions : : : : : : 1979.2.4 Subgroups : 1999.3 Congruences, Cosets and Subgroup Products : : : : : : : : : : : : : : : 2019.4 Further Results : 2049.4.1 Normal Subgroups and Quotient Groups : : : : : : : : : : : : : : 2049.4.2 Homomorphisms and Isomorphisms : : : : : : : : : : : : : : : : 2069.5 Discussion : 20910 Conclusions 21410.1 Summary of the Main Contributions : 21410.2 Future Work : 219A The Syntax of SPL 222A.1 Reasoning Items : 222A.2 Justi�cations : 224A.3 Sentences : 226B Semantic Tableaux for First-Order Logic With and Without Equality228B.1 The Structure of Tableaux : 228B.2 Tableaux-Based Proof Procedures : 229B.2.1 Free Variable Tableaux : 231B.2.2 Connection Tableaux Calculus : : : : : : : : : : : : : : : : : : : 233B.2.3 Tableaux Calculi for First-Order Logic with Equality : : : : : : : 234C A Long Proof 239C.1 K-Consistency Implies K-Satis�ability : : : : : : : : : : : : : : : : : : : 239Bibliography 246

vi

List of Tables1 On the Source Code of the Mechanisation in HOL. : : : : : : : : : : : : 342 On the Source Code of the Mechanisation in Coq. : : : : : : : : : : : : 433 On the Source Code of the Mechanisation of Group Theory. : : : : : : 2124 A Uniform Notation for First-Order Formulae. : : : : : : : : : : : : : : 231

vii

List of Figures1 The Primitive Inference Rules of the HOL System. : : : : : : : : : : : : 162 The Behaviour of Sub f g. : 373 The De�nition of Subl m n f [g0; : : : ; gk�1]. : : : : : : : : : : : : : : : 384 An Example of a Tactic Proof. : 525 An Example SPL Proof Script. : 566 Declaring Relevant Proof Step Results in SPL Proofs. : : : : : : : : : : 627 The Syntax of SPL Sentences. : 658 The Use of Abstractions. : 679 Processing Local Declarations. : 7210 The Implementation of a Query Function. : : : : : : : : : : : : : : : : 7611 The Inference Rules of the CBSE Tableau Calculus. : : : : : : : : : : : 8312 A Closed CBSE Tableau. : 8513 Examples of Structured Justi�cations. : : : : : : : : : : : : : : : : : : : 10414 An SPL Proof Script using Structured Justi�cations. : : : : : : : : : : 11515 An SPL Proof of nonobv using Unstructured Justi�cations. : : : : : : : 11716 An SPL Proof of nonobv using Structured Justi�cations. : : : : : : : : 11817 An SPL Proof of nonobv using Structured Justi�cations without !. : : 11923 Proofs of the Uniqueness Results. : 19624 The Rules for Normalising Group Terms. : : : : : : : : : : : : : : : : : 19725 The Need for the Group Element Normaliser in Normalising Subsets. : 20426 A SPL Proof of a Theorem on Homomorphisms. : : : : : : : : : : : : : 21127 An Example of a Tableau. : 22928 The Free Variable Tableau Calculus. : : : : : : : : : : : : : : : : : : : 23229 The Connection Tableau Calculus. : 23430 An Example of a Closed Connection Tableau. : : : : : : : : : : : : : : 23531 Fitting's Additional Expansion and Closure Rules. : : : : : : : : : : : : 23532 Tableau Branches with Di�erent Rigid Equations. : : : : : : : : : : : : 23733 Additional Tableau Rules for Rigid Basic Superposition. : : : : : : : : : 238

viii

AbstractIt is possible to implement mathematical proofs in a machine-readable language. In-deed, certain proofs, especially those deriving properties of safety-critical systems, areoften required to be checked by machine in order to avoid human errors. However,machine checkable proofs are very hard to follow by a human reader. Because of theirunreadability, such proofs are hard to implement, and more di�cult still to maintainand modify. In this thesis we study the possibility of implementing machine checkableproofs in a more readable format. We design a declarative proof language, SPL, whichis based on the Mizar language.We also implement a proof checker for SPL which derives theorems in the HOLsystem from SPL proof scripts. The language and its proof checker are extensible, in thesense that the user can modify and extend the syntax of the language and the deductivepower of the proof checker during the mechanisation of a theory. A deductive databaseof trivial knowledge is used by the proof checker to derive facts which are consideredtrivial by the developer of mechanised theories so that the proofs of such facts can beomitted. We also introduce the notion of structured straightforward justi�cations, inwhich simple facts, or conclusions, are justi�ed by a number of premises together with anumber of inferences which are used in deriving the conclusion from the given premises.A tableau prover for �rst-order logic with equality is implemented as a HOL derivedrule and used during the proof checking of SPL scripts.The work presented in this thesis also includes a case study involving the mechani-sation of a number of results in group theory in SPL, in which the deductive power ofthe SPL proof checker is extended throughout the development of the theory.

ix

AcknowledgementsI thank my supervisor, Simon Thompson, for his continuous support and encourage-ment. I greatly appreciate the guidance he has given me throughout the three yearperiod of my study.I also thank all the academic and non-academic sta� of the Computing Laboratoryat the University of Kent for providing an excellent working environment. In particular,I thank all the sta� members and research students of the TCS group for their commentson parts of the work presented in this thesis. I also thank my examiners, Keith Hannaand Tom Melham, for their helpful comments on this thesis.I thank the organisers, sponsors, speakers and participants of the 1996 BRICS Au-tumn School on Veri�cation, the 1997 Marktoberdorf Summer School on ComputationalLogic, the 1996 and 1997 TPHOLs Conferences and the 1997 PTPWorkshop for makingsuch events very research-stimulating.I warmly thank Geraldina, Helena and Jason for being wonderful o�ce mates and forall the great time we spent together. During my stay in Canterbury I met, made friendswith, and shared houses with many interesting individuals from all the continents ofthe world. I thank them all for their friendship and for the time we spent together. Iespecially thank Julie for her companionship. I thank Mike, Kevin, Roberta and Ingridfor making me feel closer to Malta.I also thank all my friends in Malta for always being very encouraging. I thank myfamily for their care, support and all the things they have done to me.Last, but not least, I thank the Computing Laboratory for providing the fundingfor my studies. The work presented in this thesis would not have been possible withoutthis funding.

x

Chapter 1IntroductionIn this thesis we study the implementation of machine-checkable proofs in a formatthat can be easily followed by a human reader. The implementation of mathematicalproofs in a machine-checkable format is usually required when the correctness of theproofs is a major concern. For example, one requires that the proofs deriving propertiesof safety-critical systems are error-free, and the use of a computer system to checksuch proofs can greatly minimise the number of errors in comparison with an informalproof. However, the proofs which can be checked by current computer systems areunreadable and hard to follow, and it is therefore desirable that more e�ort is put in theinvestigation of possible ways of improving the readability of machine-checkable proofs.In this introductory chapter we �rst brie
y discuss the problems concerned with theimplementation of readable mechanised proofs in section 1.1. Section 1.2 introduces thenotation and de�nitions which are used in this thesis. Section 1.3 gives a brief outlineof the remaining chapters of this thesis.1.1 Machine Checkable Proofs and their ReadabilityIn this section we illustrate the problems concerned with the implementation of machine-checkable proofs in a readable format, and motivate the work presented in this thesis.The material given here is discussed in more detail in chapter 2.1.1.1 Formalised and Mechanised MathematicsThe implementation of mathematics in a language whose syntax and semantics is un-ambiguously de�ned is referred to as the formalisation of mathematics. Mathematicsis formalised in order to achieve a higher degree of precision and correctness than thatfound in the usual, or informal, mathematical texts. By the mechanisation of mathe-matics one usually refers to the use of a machine, and especially the use of a computersystem, to perform mathematical tasks, which include numerical calculations, manip-ulations of mathematical terms and the logical development of mathematical theories.In this thesis we use the term `mechanisation of a mathematical theory' to refer to theformalisation of the mathematical theory in order for proofs in it to be checked by acomputer system. The advantages of using a computer system in formalising mathe-matics include the minimisation of errors in the de�nitions and proofs, and the abilityto use specialised tools to �nd formal proofs.1

CHAPTER 1. INTRODUCTION 21.1.2 Proof Checking and Theorem Proving EnvironmentsA proof checker is a computer system developed to check the validity of formal proofs.Examples of early proof checkers include AUTOMATH (de Bruijn 1970) and Mizar (Try-bulec 1978). Modern computer systems, such as HOL (Gordon and Melham 1993),Isabelle (Paulson 1994), Coq (Barras et al. 1996), LEGO (Luo and Pollack 1992),Nuprl (Constable et al. 1986), and PVS (Shankar, Owre, and Rushby 1993) are usuallycalled theorem proving environments since they provide several other facilities for themechanisation of mathematics apart from proof checking. In particular, they providean interactive proof-discovery environment based on tactics. In a tactic-based envi-ronment, theorems are proved by specifying them as goals, and then applying tacticsinteractively, which either solve the goal automatically or break it into simpler subgoals.A theorem is proved when all the subgoals of the original goal are solved. The sequenceof tactics required to prove a theorem represents a tactic-based proof of the theorem.The application of a single tactic can involve very powerful inferences. For example, acommonly used class of tactics uses arbitrary term-rewriting systems to simplify a goal,and an application of such tactics often corresponds to several hundreds of inferences.1.1.3 The Readability of Machine-Checkable ProofsThe readability of a proof depends on the e�ort required by the reader to understandit. Therefore, in order to be readable, a proof should contain the necessary informationto be followed without undue e�ort. It should also omit irrelevant information, or anyinformation which can be easily deduced by the intended reader of the proof. Further-more, in order to facilitate its readability, the information contained in a proof shouldbe organised in a way which highlights its structure.The mechanised proofs that can be checked by current proof checkers are not veryreadable. One reason for this is the fact that the proof languages accepted by most proofcheckers are not designed for the implementation of readable proofs, but for some otherpurposes. For instance, a proof language based on tactics is usually designed in order tofacilitate the interactive discovery of proofs. As a result, tactic proofs are not intendedto be easily understood by a human reader and can only be followed by examining thee�ect of each proof step using the interactive theorem proving environment. Becauseof their unreadability, it is hard to debug, maintain and modify tactic-based proofsin order to use them to derive slightly di�erent theorems without feedback from thetheorem proving environment.The design of a proof language whose proofs are easy to follow is not a trivial task.For instance, the information contained in readable proofs should be at an appropriatelevel for the intended reader. Over-detailed proofs are tedious to read and hard tounderstand, while a considerable amount of e�ort is required to follow proofs whichcontain too little information. It is not straightforward to �nd this right level of detail,to de�ne the appropriate language constructs and inferences to express proof steps atthe required level of detail, and to design and implement the algorithms necessary toproof check such inferences e�ciently.Davis (1981) and Rudnicki (1987) study the notion of obvious inferences. An infer-ence is obvious if it can be easily deduced by a human reader, and if it can be e�cientlychecked by machine. An important issue discussed in this thesis is the realisation that

CHAPTER 1. INTRODUCTION 3the notion of obviousness cannot be static. For instance, the inferences which are con-sidered to be essential to the readability of the proofs of the results derived in the earlystages of a theory are very often omitted from the proofs of the results given later in thesame theory. What is considered to be obvious by the reader of a proof depends on hisknowledge of the subject. This knowledge increases as the reader reads and understandsthe proofs of the results given in the theory. This suggests that one cannot use a �xedproof checking algorithm to check all the mechanised proofs of a theory. The developerof a mechanised theory is therefore required to extend, or improve, the deductive powerof the proof checker during mechanisation.1.2 PreliminariesIn this section we give a number of preliminary de�nitions concerning �rst-order logicand higher-order logic which are used throughout this thesis.1.2.1 First-Order LogicThe following notation and de�nitions of a number of standard concepts of �rst-orderlanguages and �rst-order logic are used in this thesis. More elaborate treatments canbe found, for instance, in (Chang and Keisler 1990) and (Fitting 1996).Let X be a countable set of variables, and let �F be a signature, that is, a collectionof function symbols each of which has a �xed natural number associated with it calledthe arity. Function symbols with zero arity are called constants. A term is either avariable or some f(t1; : : : ; tn) where f is a function symbol, n is the arity of f , andt1, : : : , tn are terms. Constant terms c() are simply denoted by c. The language of�rst-order terms T (�F ;X), or simply T , is the set of all terms constructed from thefunction symbols in �F and the variables in X.Let �R be a collection of relation symbols (also called predicates) with �xed arities.We identify two predicates > and ? with zero arity in �R. An atomic formula, oratom, is of the form P (t1; : : : ; tn) where P is a predicate, n is the arity of P and t1, : : : ,tn are terms. First-order formulae are constructed from atoms, the unary operator :,the in�x binary operators ^, _,) and , which are also called connectives, and thequanti�ers 8 and 9. A literal is either an atom in which case it is a positive literal, ora negated atom of the form :A, where A is atomic, in which case it is negative. Twoliterals are complementary if one is the negation of the other. The complement of apositive literal A is :A, and the complement of a negative literal :A is A. We denotethe complement of a literal B by �B. The language of �rst-order formulae L(�R;�F ;X),or simply L, is the set of formulae constructed from the predicates in �R and the termsin T . Following Fitting (1996), we also use a countable set of constants PAR disjointfrom �F , and de�ne LPAR(�R;�F ;X), or simply LPAR, as L(�R;�F [PAR;X). Theelements in PAR are called parameters and stand for unknown elements.An expression is either a term or a formula. An expression is said to be closed, orground, if all its variables are bound. A sentence is a closed formula. A substitutionis a mapping from variables to terms. We use fx1 ! t1; : : : ; xn ! tng to denote thesubstitution which maps xi to ti for i 2 f1; : : : ; ng and y to itself for y =2 fx1; : : : ; xng.The expression A� where � is a substitution represents the result of replacing every freevariable x in A with �(x), with the convention that we always make a suitable renamingof variables to prevent free variables in the range of � becoming bound in A�. We

CHAPTER 1. INTRODUCTION 4abbreviate (� � � (A�1) � � �)�n by A�1 � � � �n. We write A[s1; : : : ; sn] to indicate that theexpression A contains the free subexpressions s1, : : : , sn, and denote by A[t1; : : : ; tn]the result of replacing these particular occurrences of si in A by ti for i 2 f1; : : : ; ng,with suitable renaming of variables to prevent free variables in ti becoming bound afterreplacement.A position in an expression is a list of positive integers which denotes a path tosome node in the syntactic tree representation of the expression. In particular, A is atposition [] in A, and B is at position (n : l) in C(A1; : : : ; An) if it is at position l in An,where C is a function symbol or predicate. We denote the subexpression at position pin A by Ajp.A structure for a language of �rst-order formulae L is a pair (D; I) where D issome non-empty set called the domain, and I, which is called the interpretation, mapsconstants to the elements in D, n-ary function symbols to n-ary functions over D forn > 0, and m-ary predicates to m-ary relations over D. An assignment is a mappingfrom the variables to the domain. The interpretation and assignment determine amapping from formulae to the set of truth values fT; Fg; the formulae > and ? arealways mapped into T and F respectively. The truth value of a sentence does not dependon the assignment. Two formulae are said to be equivalent to each other if they havethe same truth value for all structures and assignments. A formula is true in a structureif its truth value is T regardless of the assignment. We say that such a structure is amodel for the formula. A formula is said to be valid if it is true in all structures. Aset of formulae is satis�able in a structure if there is an assignment which allows all themembers of the set to be given the truth value T . A set of formulae is satis�able if itis satis�able in some structure (i.e., a model). A Herbrand model for a language L is amodel (D; I) where D is the set of all closed terms in L and I(t) = t for every closedterm t.A formula is in negation normal form (NNF) if it is constructed from literals usingthe connectives ^, _ and the quanti�ers 8, 9. A formula is in Skolemised form if it doesnot contain the 9 quanti�er. A formula is in prenex form if it is quanti�er-free, or ofthe form 8x:' or 9x:' where ' is a formula in prenex form. A clause is a disjunction ofa number of literals. The clause A1 _ � � � _An can be represented by the list of literals[A1; : : : ; An]. A formula is in clausal form if it is a conjunction of a number of clauses.There are transformations of formulae into equivalent formulae in negation normal form,Skolemised form, prenex form, and clausal form (see for instance (Andrews 1981)).1.2.2 Higher-Order LogicThe fundamental di�erence between higher-order logic and �rst-order logic is thathigher-order terms can be quanti�ed over function symbols and predicates. In thissection we illustrate brie
y the syntax of the simply-typed polymorphic higher-orderterms. A more elaborate treatment, which includes the semantics of such terms, isgiven in (Gordon and Melham 1993).Let X be a countable set of type variables, and
 a collection of type constants with�xed arities. A type is either a type variable, an atomic type of the form c where c isa type constant with zero arity, a compound type of the form (�1; : : : ; �n)op where opis a type constant with arity n > 0 and �1, : : : , �n are types, or a function type ofthe form �1 ! �2 where �1 and �2 are types. The atomic types bool and ind are in
.An instance of the type � is some type �f�1 ! �1; : : : ; �n ! �ng which represents the

CHAPTER 1. INTRODUCTION 5result of substituting, in parallel, the types �1, : : : , �n for type variables �1, : : : , �n in�. The language of types Ty(
;X), or simply Ty, is the set of types constructed fromthe type constants in
 and the type variables in X.Let V be a countable set of variable names and �Ty a collection of constant nameseach of which has a �xed type in Ty associated with it. A term is either� a variable of the form v� where v is a variable name and � is a type,� a constant c� where c is a constant name and � is an instance of the type associatedwith c,� an application (t�0!� t0�0)� where t�0!� and t0�0 are terms, or� an abstraction (�x�0 :t�)�0!� where x�0 is a variable and t� is a term.A term t�, also written t : �, is said to have the type �. The simply-typed polymorphichigher-order language H(�Ty; V), or simply HTy, is the set of terms constructed fromthe constant names in �Ty and the variable names in V .An expression is either a type or a term. An expression is said to be polymorphicif it contains a type variable, otherwise it is said to be monomorphic. Logical for-mulae are terms of type bool , and the constants Tbool and Fbool represent the literals> and ? respectively. The negation operator : is given by the constant :bool!bool ,and the connectives by the constants), ^ and _, each having type bool ! bool !bool . The quanti�ers are given by the polymorphic constants 8 and 9 which have thetype (� ! bool) ! bool such that, for instance, a formula 8x�:t is represented bythe term 8(�!bool)!bool (�x�:tbool). The equality predicate is represented by the con-stant =�!�!bool whose instantiation =bool!bool!bool also represents the connective ,.The choice operator "(�!bool)!� is included in the language HTy. Terms of the form"(�!bool)!� (�x�:tbool) represent the expression "x�:t which (deterministically) denotessome x for which t holds if such an x exists. No conditions are imposed on the value of"x�:t if no such x exists.1.3 Outline of the ThesisThe rest of this thesis is organised as follows:Chapter 2 In the next chapter we discuss the problems concerned with the mech-anisation of mathematics, paying particular attention to the implementation ofmachine-checkable proofs in a readable format.Chapter 3 One of the most common methods of developing machine-checkable proofsinvolves the interactive discovery of the proofs by the application of proof proce-dures called tactics. This chapter illustrates two case studies in the implementationof tactic-based proofs in the HOL and Coq systems. We argue that such proofsare not easily read and that other styles of mechanising mathematics should beconsidered if the readability of the proofs is a requirement.Chapter 4 We describe the declarative proof language SPL, and the implementationof a proof checker which derives HOL theorems from SPL proof scripts. The SPLlanguage is based on the Mizar language, and because of their declarative nature,

CHAPTER 1. INTRODUCTION 6SPL proofs are much more readable than tactic-based proofs. The SPL proofchecker is extensible, in the sense that its deductive power can be extended duringthe mechanisation of a theory.Chapter 5 A tableau calculus for �rst-order logic with equality is implemented as aHOL derived rule which is used as one of the components of the SPL proof checker.Chapter 6 This chapter introduces the notion of structured straightforward justi�ca-tions. Unlike the straightforward justi�cations of Mizar which consist of the listof premises required to justify some goal, or conclusion, structured justi�cationsalso contain a number of inferences which are used in deriving the conclusion fromthe premises in the justi�cation. Structured justi�cations are de�ned in such away that proofs involving them are not over-detailed and therefore not hard toimplement. It is argued that proofs involving structured justi�cations are easierto follow than proofs involving unstructured justi�cations.Chapter 7 We introduce a �rst-order logic whose formulae are annotated with colours.These annotations are used to restrict the search space during �rst-order theoremproving. The results given in this chapter are used in chapter 8 to show that thesearch space considered during the proof checking of structured justi�cations canbe restricted.Chapter 8 This chapter describes how only a restricted search space needs to be con-sidered during the proof checking of proofs involving the structured justi�cationsgiven in chapter 6. As a result, structured justi�cations can be proof checked moree�ciently than unstructured ones.Chapter 9 A number of results in group theory are mechanised in SPL. This mechani-sation follows the textbook by Herstein (1975). In order to minimise the di�erencebetween the levels of detail of the mechanised proofs and the proofs in (Herstein1975), the deductive power of the SPL proof checker is extended a number oftimes during the mechanisation so that facts whose proof is omitted from (Her-stein 1975) are deduced automatically by the SPL proof checker and are thereforeomitted from the mechanised proofs as well.Chapter 10 We summerise the main contributions of this thesis and point out a num-ber of directions for future work.

Chapter 2On the Mechanisation ofMathematical ProofsThis chapter describes the mechanisms used in the implementation of formal mathe-matical theories in a machine checkable language. The �rst section discusses the level ofrigour found in the mathematical literature, and the e�orts in formalising mathematicsand the theoretical and practical problems involved are mentioned in section 2.2. Theimplementation of formal theories with the help of computer systems is described insection 2.3, in which both automated deduction and proof checking are illustrated. Sec-tion 2.4 gives a brief overview of the HOL proof development system to give an exampleof how mechanised proofs are developed and also because most of the work described inthis thesis is implemented in this system. We focus on the problems in the implemen-tation of human-readable machine checkable mathematical proofs in section 2.5, whichalso surveys the current e�orts involved in solving these problems.2.1 The Level of Rigour in MathematicsThe way mathematics is practiced is distinguishable from other sciences for its rigourand precision. Some forms of deliberate imprecision and ambiguity are however com-monplace in mathematical texts. Mathematical arguments include rather impreciseterms such as \similarly" and \obviously", which usually represent gaps in proofs andin de�nitions which the reader is expected to �ll. Inconsistencies and errors are alsocommon in mathematics, as illustrated for instance by Lecat (1935).We should note that the imprecision and incorrectness in mathematical texts can beregarded as part of the way mathematical thinking evolves. Lakatos (1976) and Putnam(1979) describe mathematics as quasi-empirical, in the sense that similarly to the empir-ical sciences, mathematical truth depends on its success in practice, and that it evolvesas fallible knowledge is replaced by other fallible knowledge. In Proofs and Refutations,Lakatos (1976) illustrates how Euler's theorem on polyhedra has evolved through arepetitive process of reformulations, (erroneous) proofs and refutations. He uses this asan analogy to the way the whole of mathematics is evolving. Kleiner and Movshovitz-Hadar (1994) show how paradoxes, which include inconsistencies, counterexamples towidely held notions, misconceptions, true statements that seem to be false, and falsestatements that seem to be true, keep reappearing in mathematics. Such paradoxeshelp in a better understanding of the basic concepts involved, and result in the gradual7

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 8advancement of mathematics.However, as argued by Koetsier (1991), a considerable number of mathematical the-ories become established in practice, in the sense that the de�nitions given in suchtheories correspond to the intended concepts and a substantial amount of importantresults are identi�ed and correctly proved. Such theories are not subject to much refu-tation and their literature is quite rigorous and does not contain errors. As describedlater in this chapter, the de�nitions and proofs in such established theories can be for-mulated at a high level of rigour and precision in order to be checked by machine. Thisminimises the presence of human errors in the proof arguments. This level of rigour isgenerally needed during the veri�cation of safety critical computer systems. The proofsverifying properties of such systems are often quite tedious and lengthy, and thereforemuch prone to human error, although they are often described as shallower in naturethan those found in mathematical texts. The implementation of such proofs, however,may depend on basic results in standard mathematical theories such as number the-ory and real analysis. Therefore one may need to develop a number of mathematicaltheories during the veri�cation of computer systems.The implementation of mathematics in a machine readable format has been ad-vocated for a number of di�erent reasons (including educational and cultural ones)in the QED manifesto (Anonymous 1994). Although one may object to the particu-lar motivations discussed in this manifesto, the implementation of a large number ofmathematical theories in a machine checkable format is believed to be possible anddesirable (see (Harrison 1996a)). There are currently a number of computer systemswhich support a formal proof language in which a considerable amount of mathematicsis implemented.2.2 The Formalisation of MathematicsBy the formalisation of mathematics we mean the implementation of mathematics in aformal language. A language is formal if its syntax and semantics are unambiguouslyde�ned. Similarly we refer to the development of mathematics in an informal, thoughrigorous, language as informal mathematics. A language for the formalisation of math-ematics must be rich enough to express mathematical objects, statements about themand valid reasoning involving these statements. Such valid reasoning can be expressedas a number of logical rules manipulating the statements concerning the mathematicalobjects.The motivations for formalising mathematics include the ability to achieve a higherdegree of correctness and precision than that found in informal mathematics. Theability to express valid mathematical reasoning by symbolic manipulations implies thatthe validity of an argument can be checked in a mechanical fashion. This is believed tobe more reliable than accepting an informal, but convincing, argument.A substantial amount of e�ort was put in using symbolic manipulations to expressmathematical reasoning during the nineteenth and twentieth centuries. Boole (1848)developed a formal system for propositional logic in which reasoning can be performedthrough mechanical calculations rather than through the interpretation of the symbolicstatements. Frege (1879) included quanti�ers in the formal logical system he developedwhich was aimed at expressing the whole of mathematics, and Peano (97) focusedon the implementation of mathematics of his period in a formal symbolic form whose

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 9notation is closer to informal mathematics than that of Frege. Russell included types inhis logic to avoid inconsistencies in Frege's deductive system.1 Whitehead and Russell(1910) used this typed logic in their Principia Mathematica. Although the degree ofrigour and precision in the foundational work of Principia Mathematica is consideredto be much weaker than that of Frege, the work of Whitehead and Russell showed thata substantial amount of mathematics can indeed be written formally.At the turn of the century, Hilbert (see (Kreisel 1958)) proposed a programme inwhich mathematical theories are formalised in �nitary logical systems that are shown tobe consistent. Statements are valid if they have (�nite) proofs in such systems. Hilbertalso asked whether formal statements can be shown to be valid by purely mechanicalmeans, that is, whether there is an algorithm by which one can decide the truth orfalsity of a statement. This programme, and the e�orts of other mathematicians to �nda deductive system in which all valid mathematical statements can be formalised andjusti�ed mechanically, were however shown to be impossible during the 1930's. Thebasic results discovered in this period include:� G�odel's Incompleteness Theorem (G�odel 1931) which states the non-existence of acountable axiomatisation of all arithmetic which is both consistent and complete.� The undecidability of pure �rst-order logic, proved by Turing (1936) and Church(1936).� The unde�nability of truth, proved by Tarski (1936), which also implies that truestatements are not recursively de�nable.The major di�culty in formalising mathematics, however, turned out to be its prac-tical infeasibility, rather than the impossibility of formalising all mathematical truths.It is believed by most, if not all, mathematicians that one can in theory formalise mostof present day mathematics using a su�ciently strong axiomatisation such as ZFC settheory. The valid statements which cannot be derived in such a strong system areprobably uninteresting statements which would not occur in the mathematical litera-ture. Despite the results of G�odel and Tarski, a group of French mathematicians (usingthe pen name Bourbaki) formalised an impressive amount of mathematics. They used�rst-order logic as their deductive system together with an axiomatic set theory simi-lar to Zermelo's. However, this formalisation was abandoned because it was found tobe impracticable and because of the complexity and unreadability of the formal texts.The earlier e�orts of Whitehead and Russell were faced with the same problems: thatalthough the reduction of reasoning into formal symbolic manipulations results in amore rigorous and precise approach to mathematics, formalised de�nitions and proofsare long and tedious, and that the resulting texts are unreadable and barely used inpractice. Furthermore, it is likely that one loses the intuition behind an argument whenit is formalised, which as Naur (1994) has pointed out, may result in making the textmore prone to errors. The practical di�culty of formalised mathematics can, however,be relieved by using a computer system to check and even �nd formal proofs.1An inconsistency in Frege's system is the well known Russell's paradox which is due is the abilityto de�ne a set X = fxjx =2 xg, and as a result both X 2 X) X =2 X and X =2 X) X 2 X can bederived.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 102.3 The Mechanisation of MathematicsThe term \mechanisation of mathematics" refers to the use of machines to performmathematical tasks. This includes for instance the use of computers to calculate spe-ci�c numeric expressions, as well as in manipulating symbolic terms (symbolic mathe-matics, or computer algebra) to mimic, for example, the way humans di�erentiate andintegrate functions. This particular use of computers in mechanising mathematics isusually referred to as the symbolic mechanisation of mathematics. The symbolic ma-nipulations representing formalised reasoning can also be mechanised in order to usecomputer systems in the formalisation of mathematics. This is referred to as the logicalmechanisation of mathematics, and the several advantages of using a computer systemin formalising mathematics include the following:� the syntactic correctness of formal statements and the validity of formal proofscan be checked by simple algorithms,� one can use algorithms to search for proofs of formal statements,� algorithms which perform a speci�c sequence of valid inferences can be imple-mented to avoid tedious repetitions.The history of the mechanisation of reasoning is surveyed by MacKenzie (1995). Inthis thesis we use the term \mechanisation of mathematics" to refer to the developmentof mathematical texts which can be checked by machine. Similarly, we refer to proofswhich can be checked by machine as mechanised proofs. Mechanised proofs can befound by an algorithm, or implemented by a human being with or without the help ofcomputerised proof tools. In this section we �rst have a look at automated deductionwhich involves the use of algorithms to �nd proofs, and then at proof checking.2.3.1 Automated DeductionAutomated deduction is the branch of computer science and arti�cial intelligence whichdeals with the use of computers to decide the validity of logical sentences. Althoughthis decision problem is undecidable in general, there are several non-trivial theoriesin which the validity of sentences is decidable. For instance, propositional logic, thetheory of linear arithmetic and the 8�9� fragment of �rst-order logic2 are decidable.Also, �rst-order logic is semi-decidable and therefore one can implement algorithmswhich terminate on valid sentences, though they may not halt on invalid ones. This isusually done by searching for a proof since checking whether a proof derives a particulartheorem is decidable.The complexity of the decidable decision problems mentioned above is however veryhigh. The problem TAUT of deciding the validity of propositional sentences (in con-junctive normal form) is in co�NP , and therefore considered to be untractable. Fur-thermore, searching for evidence of the validity of a sentence in an undecidable theoryinvolves searching for a proof in an in�nite search space. This normally involves the useof fair strategies, where one considers a sequence of �nite search spaces, one larger thanthe other, in order to ensure that the validity of a sentence is eventually established.2The 8�9� fragment of �rst-order logic is the set of all �rst-order sentences whose prenex form is ofthe form 8x1; : : : ; xn:9y1; : : : ; ym:P where n;m � 0 and P is a quanti�er free formula.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 11In order to be e�cient, automated deduction systems are based on deductive systemswhose proofs can be `easily' found by mechanical means. We can refer to such deductivesystems as search-oriented, and usually require the following two properties which areillustrated by some examples later in this section.� The lengths of proofs in these systems are short.� Complete proof search strategies are not faced with too much non-determinism.An ideal deductive system which satis�es the above properties does not seem to ex-ist, however a number of systems have been developed in which proofs of non-trivialtheorems can be found in a relatively short time. Despite the inherent di�culty ofautomated deduction, a number of di�cult problems in mathematics have been solvedby such proof search systems. A recent example is the proof of the Robbins problemwhich was open for more than �fty years and a successful proof for this problem wasfound by the EQP theorem prover in almost 8 days using 30 Megabytes of memory ona UNIX workstation with an RS/6000 processor (McCune 1997).Examples of search-oriented deductive systems for �rst-order logic include resolu-tion (Robinson 1965), the connection (Bibel 1981) (or matings (Andrews 1981)) methodand tableaux-based methods3. We discuss resolution and the connection method brie
yin this section, and Appendix B illustrates tableaux-based methods for �rst-order logic.These systems are usually refutational; that is, a sentence is shown to be validby showing that its negation is refutable. In resolution, a sentence is refuted by �rsttransforming it into clausal form and then applying the resolution rule repetitively tocreate new clauses until the empty clause is derived. The resolution rule is de�ned asfollows: [A1; : : : ; Ai; : : : ; An] [B1; : : : ; Bj ; : : : ; Bm][A1; : : : ; Ai�1; Ai+1; : : : ; An; B1; : : : ; Bj�1; Bj+1; : : : ; Bm]�where the literals Ai� and Bj� are complementary. For example, given the sentence((8x:P (x)) Q(x)) ^ P (c))) Q(c)its negation is transformed into the clauses[:P (x); Q(x)] [P (c)] [:Q(c)]and the following resolution proof is found.[:P (x); Q(x)] [P (c)][Q(x)]fx! cg [:Q(c)]?In the connection method, the clauses to be refuted are represented by columns ina two dimensional matrix. Additional clauses (and hence columns) can be added byrenaming the variables in an existing clause. The matrix is refuted if all its paths havea connection after some substitution is applied to all the literals in the matrix. A pathis a list of literals [L1; : : : ; Ln] where Li is in the ith column of the matrix, and it has a3Resolution, connection, and tableau based deductive systems for other logics exist as well.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 12connection if it contains two complementary literals. The following is a refutable matrixrepresenting a proof of the validity of the sentence given earlier.�:P (x) P (c) :Q(c)Q(x) � fx! cgUni�cation (Robinson 1971) is used to �nd the required substitutions during reso-lution and connection-based proof search, as well as during the proof search of manyother proof methods, such as tableaux calculi.It can be seen from the above examples that resolution and matrix proofs are notmeant to be understood by a human reader. They are rather compact proofs whosestructure allows them to be searched for e�ciently.Although automated deduction systems can be very powerful and can even solveopen mathematical problems, they may fail to solve problems which are rather intuitiveto humans. One reason for this is that the formal proofs of certain intuitive resultscan be very long, or hard to �nd, when formalised in even the most e�cient deductivesystems. A famous result in computational logic, �rst proved by Haken (1985), statesthat the lengths of resolution proofs for the propositional representation of the pigeon-hole principles are exponential with respect to the lengths of the formulae. In general,proof search algorithms need to be targeted to particular problem domains and theirperformance on problems outside this domain is greatly diminished.2.3.2 Proof Checking and Proof Development SystemsThe purpose of a proof checking system is to check the correctness of a formal proof,which can be found by a human, machine, or by a combined e�ort from both. Mod-ern proof checkers are usually called proof development systems, or theorem provingenvironments, because they can contribute more to the formalisation process than justproof checking. Modern systems like Isabelle (Paulson 1994) and HOL (Gordon andMelham 1993) include a number of decision and semi-decision procedures for particulartheories to prove certain theorems automatically, and a number of proof procedures toautomate a sequence of non-trivial inferences.Foundational Systems of Proof CheckersSince proof checking systems are in general not expected to �nd proofs themselves,the deductive systems they implement are usually not search-oriented. On the otherhand, they are expected to formalise a variety of mathematical concepts and thereforethey are based on rather rich and expressive foundational systems. As a result, mostmodern systems are based on some higher-order logic in order to be able to quantifyover functions and predicates without having to de�ne them in terms of other objects(such as sets). The use of higher-order logic for this purpose was used by Hanna andDaeche (1985) and Gordon (1985) in the context of formalising and verifying hardware.The HOL system, which implements Church's simply typed higher-order logic (Church1940) with polymorphism, was originally developed for hardware veri�cation but it canalso be used to formalise a substantial number of mathematical theories including realanalysis.A number of proof development systems are based on a constructive type theory suchas the Calculus of Constructions (Coquand and Huet 1986). In such systems, there is

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 13a correspondence (called the Curry-Howard Isomorphism) between the inference rulesof the logic and the ways valid terms in a typed lambda calculus can be constructed.As a result, sentences can be represented as types, and proofs as terms. Therefore, asentence can be shown to be valid if the type representing it is not empty (i.e., it containsa proof). An interesting feature of these systems is that both the logical statements andtheir proofs can be represented in the same language.The reliability of the proofs accepted by proof checkers is an important issue. Inorder to maximise this, some proof checkers are designed so that the correctness of theirproofs depends only on a small fragment of their code. This fragment is usually smalland simple enough to be well understood so that the possibility of programming errorsis minimised. We can refer to this property as the de Bruijn criterion since it wassuggested by de Bruijn, who headed the AUTOMATH project (de Bruijn 1970) (seealso (de Bruijn 1980)) | undoubtedly one of the most in
uential projects in the mech-anisation of mathematics. In systems like Coq (Barras et al. 1996) which are based on aconstructive type theory, the central proof checking mechanism is the relatively simpletype checking algorithm. The design of the HOL system ensures that internal objectsrepresenting theorems and de�nitions are created only by a small number of functions,the implementation of which is straightforward. These functions are an implementationof the primitive inference rules of a sound deductive system for higher-order logic. Therestriction of having a simple proof checking algorithm constitutes a major limitationon the e�ciency of proof development systems. An interesting area of research is theimplementation of fast proof procedures in such systems. An alternative to a �xedproof checking algorithm which is gaining the interest of researchers is to use some formof re
ection so that new inference rules can be safely included in the proof checkingmechanism after their correctness is veri�ed within the system.The Input Language of Proof Development SystemsAlthough the proof checking algorithm of a theorem proving environment can be basedon a very simple deductive system, the input language which is used for the formal-isation, and in particular in the implementation of proofs, can (and usually will) bemore expressive. Simple statements in the input language can correspond to the appli-cation of several primitive inferences in order to simplify the theorem proving task ofthe user. For instance, the HOL system includes a number of high-level inference ruleswhich are derived from the primitive ones. Examples of such derived rules include aterm rewriting system, procedures for numeric calculations, and a number of decisionprocedures. Similarly, constructs for the straightforward de�nition of recursive types,primitive recursive functions, inductive relations, and other objects, are also provided.Most proof development systems support an environment and a proof languageaimed at helping the users to �nd the formal proofs interactively. A famous example ofthis is the goal-directed proof environment based on tactics. In such an environment,users start the theorem proving task by specifying a goal to be proved. Tactics canthen be applied which either solve (prove) the goal automatically, or break the goalinto simpler subgoals. This is repeated until all the subgoals are solved. At this stage,the theorem proving system has enough information to derive a theorem correspondingto the original goal. The application of a tactic can correspond to the (backwards)application of several primitive inference rules. In order to increase the power of eachuser interaction, complex tactics can be constructed from simpler ones by the application

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 14of special constructs called tacticals. Furthermore, the theorem proving environmentkeeps track of the unproved subgoals, and can support a number of useful featuressuch as undoing the application of tactics, and choosing which subgoal to prove �rst.The main advantage of this approach is that the theorem proving system performssubstantial automation and bookkeeping tasks while the user is looking for a formalproof. A disadvantage of this approach is the di�culty for a human reader to follow aproof consisting of a list of tactics and tacticals. Two case studies in the mechanisationof mathematical theories using tactic-based proof development are illustrated in thenext chapter.The input language for a theorem proving system can be designed to make it easierfor a human reader to follow the mechanised proofs. A good example of such a lan-guage is Mizar (Trybulec 1978). The Mizar system is aimed at the mechanisation ofmathematics in general and a substantial number of results have been formalised in thissystem. The success of the Mizar project is mainly attributed to the e�ort put intokeeping its logical foundations and input language as similar as possible to those usedby mathematicians. Unlike most other systems, its logical foundation is set-theoreticrather than type-theoretic. Mizar proof scripts are meant to be followed and understoodby the person implementing them, and therefore they state explicitly which steps arebeing derived throughout the proof, rather than merely giving the instructions to derivethem. Also, the language constructs are English words, such as assume, consider andthen : : : by : : :, whose meaning is similar to the formal semantics of the correspondingconstruct. As a result, Mizar scripts are more readable when compared to those ofother systems. A disadvantage of using the Mizar system is that no machine supportis given for the interactive discovery of proofs. The process of implementing a Mizarproof script is similar to the process of implementing a (syntactically) correct programusing a text-editor and a compiler. Proof scripts are given to the Mizar veri�er for proofchecking which returns a list of error messages in case of invalid de�nitions and proofs.2.4 A Brief Overview of the HOL SystemThe HOL system was developed by M.J.C. Gordon (1988) for the speci�cation andveri�cation of hardware, although it is also used in software veri�cation and the for-malisation of mathematics in general. The system is based on the higher-order logicdescribed brie
y in section 1.2.2, and in detail in (Gordon and Melham 1993).2.4.1 On the LCF Approach of Theorem ProvingThe HOL theorem prover is a descendant of the LCF system (Gordon, Milner, andWadsworth 1979), with which it shares a number of signi�cant features, in particular:� The mechanisation of the logic is implemented in ML and includes ML types rep-resenting the logic's theorems, terms and types. The type representing theoremsis an abstract data type and the functions in its signature which return theoremsare an implementation of the primitive inference rules of the logic (and other rulesfor introducing axioms and de�nitions). As a result theorems in the HOL systemcan only be constructed through the application of one or more primitive inferencerules. This ensures that only valid sentences can be derived as HOL theorems.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 15The implementation of this abstract data type is usually referred to as the coreinference engine.� HOL users can extend the system through the implementation of ML functions.For instance, one can implement both functions which represent new (derived)inference rules and also decision procedures that make use of theorems derivedduring the mechanisation of some particular mathematical theory.� The HOL system supports a tactic-based goal-directed proof search environment.In general, proof development systems in which theorems can only be derived by a coreinference engine, which can be extended by the users, and which support a tactic-basedproof environment are called LCF-style theorem provers.2.4.2 The Implementation of HOLThe latest versions of the HOL system are the HOL90 system implemented in StandardML of New Jersey, and the recently released Hol98 implemented in Moscow ML. Inthese systems the ML data types for HOL types, terms and theorems are hol_type,term and thm respectively. The object language embedding system of Slind (1991) isused for embedding a language with a user-friendly syntax for HOL terms and types.One can specify HOL types and terms by enclosing expressions in backquotes which arethen parsed by the type and term parsers into their internal ML representation.As mentioned earlier, objects of the abstract data type of theorems thm can only becreated using an implementation of a simple deductive system, and by a small number ofother ML functions which allow one to introduce axioms and de�nitions in a particularHOL theory. For completeness, we give the inference rules of the HOL deductive systemin �gure 1. Since the implementation of this abstract data type is rather small andstraightforward, the HOL system satis�es the de Bruijn criterion. All other inferencerules, decision procedures, and a number of functions which allow the user to de�neconstants are implemented using only the functions in the signature of the abstracttype thm to construct objects of that type.The proof language of the HOL system is basically the ML language4. HOL usersusually formalise their theories using the facilities of the ML standard environment.The functions representing the primitive and derived inference rules are used directly toprove theorems. De�nitions, theorems and axioms are referred to by their ML identi�er.The HOL system includes a number of functions which create and manipulate objectsof types hol_type and term. These are used by the users to implement new inferencerules, de�nition mechanisms, and also complete proof environments.As stated above, the HOL system supports a tactic-based proof environment. HOLtactics are implemented as special ML functions which take a goal and return a list ofsubgoals together with a validation function. A goal is a sequent (which consists of a listof assumptions and a conclusion) representing an unproved statement. The validationfunction derives the goal as a HOL theorem when all the subgoals are themselves derived.Tacticals are implemented as ML functions which take and return tactics. Unprovedgoals are organised in a goalstack data structure, and a number of ML functions which4The ML language was actually developed as the meta-language for the LCF system; ML stands formeta-language.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 16
t ` t (ASSUME)` t = t (REFL)` (�x: t1)t2 = t1fx ! t2g (BETA_CONV)�1 ` t1 = t01 � � � �n ` tn = t0n � ` t[t1; : : : ; tn]�1 [� � � [�n [� ` t[t01; : : : ; t0n] (SUBST)� ` t1 = t2� ` (�x: t1) = (�x: t2) (ABS)� ` t� ` tf�1 ! �1; : : : ; �n ! �ng (INST_TYPE)� ` t2�� ft1g ` t1) t2 (DISCH)�1 ` t1) t2 �2 ` t1�1 [�2 ` t2 (MP)� Expressions of the form � ` t are HOL theorems with conclusion t and assumption list�.� The rules can be applied only if the following conditions hold:1. In the ABS rule, the variable x is not free in �.2. In the INST_TYPE rule, the term tf�1 ! �1; : : : ; �n ! �ng is the result of sub-stituting, in parallel, the types �1; : : : ; �n for type variables �1; : : : ; �n in t, withthe two restrictions(a) none of the type variables �1; : : : ; �n occur in �, and(b) no distinct variables in t become identi�ed after the instantiation.Figure 1: The Primitive Inference Rules of the HOL System.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 17for instance, allow the user to apply tactics to the current goal, choose the current goal,and undo the application of a number of tactics, are included in the system. Sincetactics and tacticals are simply special kinds of ML functions, HOL users can easilyimplement new ones during the mechanisation of a theory.As discussed in the next chapter, the fact that the proof language of HOL is a pow-erful general-purpose programming language is one of the strongest features of the HOLsystem. This particular approach to theorem proving, however, has the disadvantagethat it is very hard to develop e�ective user interfaces and other proof tools withoutcompromising the
exibility of the system.2.4.3 A Number of Mechanised Proofs in HOLIn this section we illustrate some examples of mechanical proofs using the HOL system.In each case we derive the following simple statement:(A) B)) (B) C)) (A) C):The Proof in Sequent CalculusThe above statement can be derived in the deductive system given in �gure 1 as follows.B) C ` B) C (ASSUME) A) B ` A) B (ASSUME) A ` A (ASSUME)A;A) B ` B (MP)A;A) B;B) C ` C (MP)A) B;B) C ` A) C (DISCH)A) B ` (B) C)) (A) C) (DISCH)` (A) B)) (B) C)) (A) C) (DISCH)A Forward Proof in HOLThe above proof can be mechanised in HOL using the implementation of the primitiveinference rules ASSUME, DISCH and MP:ASSUME: term ! thm which takes a term t:bool and returns the theorem t ` t;DISCH: term ! thm ! thm which takes a term t:bool and a theorem of the form � ` qand returns the theorem �� ftg ` t) q;MP: thm ! thm ! thm which takes two theorems �1 ` p) q and �2 ` p and returnsthe theorem �1 [�2 ` q;and the derived ruleDISCH_ALL: thm ! thm which discharges all the hypotheses of a given theorem.HOL terms can be constructed by enclosing them between --` and `--, so that theycan be parsed into objects of type term. The following is the required proof in HOL.DISCH_ALL (DISCH (--`A:bool`--)(MP (ASSUME (--`B) C`--))(MP (ASSUME (--`A) B`--)) (ASSUME (--`A:bool`--)))));

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 18Deriving an Inference RuleThe mechanism of the forward proof given above can be used to derive an inference ruleIMP_TRANS. �1 ` A) B �2 ` B) C�1 [�2 ` A) C (IMP_TRANS)This can be implemented as an ML function which takes two theorems of the form�1 `X)Y and �2 `Y)Z and returns the theorem �1 [�2 `X)Z. We use the followingfunctions on HOL terms and theorems:concl: thm ! term takes a theorem and returns its conclusion.dest_imp: term ! (term * term) takes a term of the form X) Y and returns the pair(X,Y).The derived rule can then be implemented in SML as follows:fun IMP_TRANS (AB_thm: thm) (BC_thm: thm) : thm =let val AB_term = concl AB_thmval A_term = fst (dest_imp AB_term)in DISCH A_term (MP BC_thm (MP AB_thm (ASSUME A_term)))end;Alternatively, one can implement this derived rule using the theorem proved earlier.The rule can simply instantiate the variables in the theorem according to the givenarguments. This approach can often be used to implement e�cient derived rules.A Backward Proof in HOLThe same theorem can be derived interactively using the following two tactics:DISCH_TAC: tactic which simpli�es a goal with conclusion of the form t)q into the goalwith conclusion q and with the extra assumption t.RES_TAC: tactic which, amongst other things, adds an assumption q to the currentgoal if it contains two assumptions of the form t) q and t. The goal is solvedautomatically if its conclusion is q.The goal representing the required theorem can be derived by1. Applying DISCH_TAC three times which results in the goal with conclusion C andthe assumptions A) B, B) C and A;2. Applying RES_TAC to add the extra assumption B;3. Applying RES_TAC again to add the assumption C and thus solving the goal.This proof can be given as a single tactic by using the tacticalsREPEAT: tactic ! tactic which applies a given tactic repeatedly until it is no longervalid;THEN: tactic * tactic ! tactic which is an in�x tactical and applies the tactic onits left and then the tactic on its right.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 19The required tactic proof is:REPEAT DISCH_TAC THENREPEAT RES_TAC;This proof is much shorter than the forward proof given earlier. In particular, thisproof does not contain any subterms from the goal, and involves proof steps which arerepeated until they fail. As a result it can be used to derive similar theorems, such as:(W) X)) (X) Y)) (Y) Z)) (W) Z):However, it is very hard to �gure out what the above proof is actually deriving withoutknowing beforehand the statement of the theorem. In general, the only practical way offollowing a tactic-based proof is to use the theorem prover to see the result of applyingthe individual tactics in the proof one by one. This is reasonable, since the tactic-basedenvironment is developed to facilitate interactive proof discovery, rather than to producehuman readable scripts.A Proof using a Decision ProcedureSimple statements such as the one we are proving in this section can be easily derived inHOL using appropriate decision procedures. In this case, we can use the HOL tautologychecker to derive the above theorem automatically. The required ML function isTAUT_PROVE: term ! thm which takes a term t:bool and returns the theorem ` t if tis a tautology. This function is a slightly optimised implementation of the truthtables method of tautology checking.The theorem can therefore be derived by the ML expressionTAUT_PROVE (--`(A) B)) (B) C)) (A) C)`--)The use of decision procedures can greatly facilitate the implementation of mechanisedproofs. The readability of proofs can also be improved if one implements and uses therequired decision procedures to derive automatically statements which readers considertrivial. However, because of the di�erence between the nature of the inferences usedin informal and formal texts, and because of the di�culties in automating reasoninge�ciently, such a task is not trivial.2.5 On Readable Mechanical ProofsThe presentation of clear mathematical concepts, whether it is in an informal or formallanguage, is in itself not a trivial task. Thurston (1994) explains that one of the mainaims of mathematicians is to advance human understanding of mathematics. This un-derstanding is often a very personal and individual matter. Di�erent people visualisemathematical concepts in di�erent ways, which often depend on the particular back-ground of the individuals. Such ideas are therefore hard to communicate, especiallyin writing, where the author is required to translate her concepts into symbols, logic,and statements in a natural (or formal) language. The readers are then required to usethese texts to build their own intuition of the subject. The clarity of a mathematical

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 20exposition is therefore extremely important in order to facilitate the reader's task ofunderstanding it. Halmos (1983) argues that a good exposition is based on its \content,aim and organisation, plus the vitally important details of grammar, diction, and nota-tion", and gives a number of suggestions to achieve this. van Gasteren (1990) focuses onthe problems of presenting mathematical proofs clearly. Both Halmos and van Gasterenstress the importance of reducing the e�ort needed by the reader to follow an argumentin a proof. This can be obtained by being explicit about what is needed in the proofand through the omission of trivial and super
uous information. Their opinion di�ers,however, on the use of formalism. Halmos suggests a minimal use of symbols, while vanGasteren encourages the practice of symbolic manipulation without interpretation.In general, mathematical proofs implemented in a formal language are harder to fol-low than those written in an informal language. Although formal mathematical texts,and formal proofs in particular, are unambiguous and quite straightforward to proofcheck in a mechanical fashion, they are very distant from the original ideas in themathematician's mind. Formalisation is often accused of removing all intuition from amathematical exposition. However, we stress that, in general, the main aim of formali-sation is not to communicate such intuitive concepts stored in a mathematician's mind,but to produce precise and rigorous mathematics which usually has to be checked bymachine. This is required when the correctness of a particular proof is a major concern.An example of such proofs is those which derive certain properties of safety-criticalcomputer systems.The implementation of mechanised proofs in a format that is easily followed by ahuman reader is, however, very desirable. Apart from being able to follow a prooffor its own sake, the ability to understand proofs easily is very important during theirimplementation. It is much easier to correct errors in readable proofs, for instance. Itis also easier to modify a proof that can be followed easily in order to derive a slightlydi�erent theorem. This is often the case during mechanisation. The formal de�nitionsand the statements of certain properties may change slightly during the implementationdue to oversights from the proof developer. Understanding someone else's proof is alsoimportant when a team of people are engaged in the mechanisation of a particulartheory.It is our aim to investigate ways of producing proofs which can be machine checkedas well as easily followed by a human reader. We remark that this aim is only a smallrequirement for the implementation of human-readable formalised mathematical texts,which apart from the formulation and proof of theorems, also include the introductionof formal de�nitions and the implementation of proof procedures. For instance, it isimportant that formal statements and de�nitions are easily understood so that one canbe sure that they correspond to the intended mathematical concepts.2.5.1 The Unreadability of Mechanised ProofsThere are two important kinds of limitations on the readability, as well as the writability(ease of implementation), of mechanised proofs:� limitations due to formalisation which dictates that every construct in the prooflanguage has a precise meaning,� and the limitations due to the fact that the proofs are required to be checkedby machine, and therefore the proof language depends on what can be e�ciently

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 21parsed and proof checked.In this section, we have a look at these two limitations, and what is required for amechanised proof to be easily understood by a human reader. Towards the end of thissection, we mention the issue of the introduction of notation by mathematicians.Unreadability due to FormalisationAs explained earlier this section, it is hard to communicate mathematical ideas in aformal language because of the di�erence between the ways that a concept is visualisedby mathematicians and the ways that it can be represented formally. Given an un-derstanding of a mathematical concept, a human reader can easily infer certain basicstatements without considering a formal deductive proof. For example, one can easilyaccept that the union of two �nite sets is �nite given a reasonable visualisation of �nitesets and of the notion of union. On the other hand, a formal proof of this statementwould involve a rigorous argument involving the precise de�nition of sets, �niteness andunion. Furthermore, human beings are capable of understanding the precise meaning ofan informal argument despite it being potentially ambiguous. They make use of theirabilities to generalise a statement correctly given enough evidence, to spot similaritiesbetween concepts, to infer what is intended (rather than what is actually said) and touse their knowledge and experience e�ectively.During the writing of a proof, authors of informal mathematics can therefore rely ontheir reader's ability to infer knowledge from her understanding of a mathematical con-cept, and the above mentioned abilities to gain understanding through `non-deductive'means. They can also focus on these abilities in order to make their exposition easierto follow. On the other hand, authors of formal proofs can only rely on the preciselyde�ned constructs of the formal language. In this case, all concepts are represented assymbolic expressions and all inferences are reduced to the symbolic manipulations givenby a sound deductive system. Because of this, arguments which can be expressed easilyin informal mathematics and which are easily followed by a human reader can be hardto express formally. As a result, formal proofs are generally too detailed, in the sensethat they contain details which human readers can easily infer without di�culty butwhose derivation in the formal language is not trivially expressible.One can argue that the characteristics of informal proofs which make them easy tofollow and to accept are those which can potentially introduce errors. Mathematics iskept alive by the people who practice it and keep on re�ning de�nitions, �lling in gapsin arguments, and correcting errors. The formalisation of a mathematical theory canbe seen as a test of the level of rigour and of the correctness the theory has achieved,and as a means of improving this level if needed. Furthermore, the ability to formalise atheory requires the clari�cation of its fundamental concepts, and formalisation thereforeresults in a better understanding of such concepts. This gives another reason why it isdesirable to implement formal proofs in an easily understood format.The implementation of formal proofs in a human readable format therefore requiresthe de�nition and use of inferences which more or less correspond to the arguments usedin writing clear informal proofs. This involves understanding what a human reader isable to infer without di�culty and deriving theorems and rules which represent thisability. A number of such inference rules may be used in several mathematical theo-ries, while others may only be used in a small part of a particular theory. Identifying

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 22inferences which are commonly used in a mathematical theory and mimicking theme�ectively in a formal framework o�ers an extremely e�ective tool in the formalisationof mathematics. Furthermore, and more importantly, the identi�cation of these rulesmay o�er a deeper understanding of the mathematical theory concerned which can-not be achieved through informal arguments, or naive formalisation which results inunreadable proofs.Unreadability due to Machine CheckingApart from being unambiguously de�ned, the inferences which can be used in mech-anised proofs are also required to be e�ciently checked by machine. In other words,even though one can de�ne a formal inference rule which corresponds to a commonlyused informal one, its use in the mechanisation of mathematics depends on whether theproblem of checking the validity of instances of this inference is tractable. Techniquesused in automated deduction for the implementation of e�cient decision procedures maytherefore need to be used in producing human readable mechanised proofs. The problemdomains usually considered in automated deduction, however, are di�erent from thoseinvolved in this case. Instead of looking for proofs of possibly non-trivial theorems, therequired algorithms have to be designed to �ll in the gaps between proofs of a rigorous,yet easy to follow, arguments.However, most of the current proof languages and inference systems used in themechanisation of mathematics are not oriented towards the development of human read-able proofs. They are instead designed for other purposes, which include:� E�cient proof search: The deductive systems of automated deduction procedures,such as those based on the resolution principle and the connection method, aresearch-oriented. The proofs found by such systems are very di�erent in structureto those found in mathematical texts.� Interactive proof discovery: The proofs implemented in such a proof language aremade up of the user interactions required to derive the result. The user interactionschange the state of the proof development environment until a complete proof isfound. In general, it is not possible to follow such a list of user interactions withoutseeing their e�ect on the state of the system.� Checkable by a simple algorithm: An example of such proofs are the proof objectsin the theorem proving systems Coq and LEGO. Such proofs can be checked bya type-checking algorithm whose implementation is simple and easily understood.Proofs of this kind can be too detailed to be followed easily by a human reader.We shall see in section 2.5.2 below that there is ongoing research in automating thetransformation of proofs in such inference systems into human readable proof scripts.An advantage of such an approach is to use proof languages oriented towards the abovementioned purposes, and still be able to obtain proofs which a human can follow. Theaim of our research, though, is to study the possibility of developing mechanised proofswhich can be easily followed by humans.On the Introduction of NotationWe conclude this section by pointing out that one factor which improves the readabilityof informal proofs is the ability of mathematicians to introduce new notation as the

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 23theory develops. Appropriate notation is chosen to represent expressions compactly,sometimes through the omission of information which can be induced from the contextin which the expressions are used. An example of this, is the omission of the productsymbol from expressions representing the product of two group elements. Since, expres-sions in a formal language must have an unambiguous meaning, such omissions maynot be possible because they can introduce ambiguity. The juxtaposition of two groupelements is ambiguous if there are two possible products which can be used.Appropriate notation is also introduced in informal theories to facilitate reasoningon certain objects. By omitting the parentheses in representing the product of a numberof group elements one can infer the equality of two such expressions syntactically, ratherthan through the repetitive application of the associative law.The ability to omit information without danger of ambiguity and to enhance thegrammar of a formal language through the introduction of theory-speci�c notation is adesirable feature in the mechanisation of mathematics. Issues regarding whether one cansafely extend the term language of a proof development system in order to introduce newnotation are not considered in this thesis, although we point out that this is necessaryfor the minimisation of the di�erence between formal and informal texts.2.5.2 Extracting Natural Language Proofs from Mechanised OnesIn the previous section we stated that the mechanisation of proofs is usually performedusing inference systems and proof languages designed for e�cient proof search, inter-active proof discovery, or to be capable of being checked by a simple algorithm. Theproofs developed in such frameworks are not easily followed by humans, however certainsystems o�er the possibility of extracting a natural language proof from their internalproof representation.Coscoy, Hahn, and Th�ery (1997) have developed an algorithm, which was later im-proved by Coscoy (1997), to translate Coq proofs internally represented in the Calculusof Inductive Constructions into English text. In order to improve the quality of theresulting texts, certain well-known inferences are omitted. These include the unfoldingof well-known constants and the introduction and elimination of well-known inductivede�nitions. The user can declare which constants and inductive de�nitions are well-known.Another system developed for the verbalisation of proofs is PROVERB which isembedded in the
mega proof development environment (Benzm�uller et al. 1997). Inthis system, resolution and natural deduction proofs are �rst abstracted into assertion-level proofs where steps are justi�ed by high-level inferences called assertions (Huang1994). These usually consist of the application of some theorem or de�nition. Assertion-level proofs are then transformed into natural language proofs (Huang and Fiedler 1996;Huang and Fiedler 1997).Research in this area suggests that readable proof accounts need to be presented atquite a high level of abstraction when compared to their machine oriented representa-tion. The development of readable machine checkable proofs can be seen as the inverseprocess of proof verbalisation: proofs are implemented at a high level of abstractionand then transformed into low-level inferences for proof checking. An important dif-ference between these two processes is that the high-level machine checkable proofs arenecessarily formal, while high-level `extracted' proofs may be informal.

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 242.5.3 Improving the Readability of Mechanised ProofsIn this section we have a look at e�orts at improving the readability of the inputlanguage of mechanised proofs. Such e�orts range from the inclusion of explanatoryinformation to help human readers understand how proofs work, to the development ofproof languages and environments in which proofs are easier to follow.Presenting Proofs in a Hierarchical StructureLamport (1995) notes that expressing formulae and proofs in a format which revealstheir structure usually makes them easier to understand and less ambiguous. He pro-poses a style for writing (informal) proofs in which their hierarchical structure is pre-sented explicitly. A proof is presented as an enumerated sequence of steps which arethemselves justi�ed by more detailed proofs. A similar format is proposed by Back,Grundy, and von Wright (1996) where calculational proofs (see (Gries and Schneider1995)) are presented in a nested hierarchical structure.Hierarchical and calculational proof formats can also be used in the implementationand representation of formal proofs. Prasetya (1993) implemented two packages basedon the tactic-based proof environment of HOL. One package allows the derivation ofcalculational style proofs through iterative equalities and inequalities justi�ed by HOLtactics. The other package allows the derivation of proofs as a sequence of lemmas.Grundy and L�angbacka (1997) developed tools for recording HOL proofs in a brows-able hierarchical format similar to the hierarchical calculational proofs of Back, Grundy,and von Wright (1996). Theorems are derived interactively using the windows inferencestyle of reasoning (Robinson and Staples 1993; Grundy 1996). The resulting proofs canthen be presented in a browsable format which allows the user to choose the level ofdetail at which particular proof step justi�cations are shown.Explaining Proof ScriptsKalvala (1994) illustrates the use of annotations on HOL terms and proofs to carryinformation of an informal nature. Such information can consist of hints to guidethe user during interactive proof discovery and as an explanatory aid. For example,HOL constants can be annotated with a text giving an informal description of theirbehaviour. Tactic-based proof steps can be annotated with explanations of the e�ectof the application of each tactic. This approach can be e�ective in the explanation ofhow short proofs derive particular goals. It may not be applicable to long tactic proofs,though, because of the di�erence between the type of inferences provided by HOL tacticsand those usually found in informal mathematics.Literate Proof ProgrammingLiterate programming (Knuth 1992) involves the use of a programming language forthe implementation of algorithms together with a typesetting language for explanation.Tools based on Knuth's WEB system can be used to extract a readable typeset documentfrom a literate source code. The techniques used in literate programming can be used inthe implementation of proof scripts. Wong (1994) has implemented simple WEB tools forthe literate development of HOL proofs, and Bailey (1998) used literate techniques inthe formalisation of algebra in LEGO. Simons (1996) developed WEB tools for the proof

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 25language Deva (Weber, Simons, and Lafontaine 1993) and for the Isabelle system, andillustrates their use in a number of examples. The proofs implemented in his systemsare presented in a hierarchical format and calculational proofs are used in the bottomlevel justi�cations. He also implemented a number of Isabelle tactics and tacticals toallow calculational style reasoning during proof development.Approximating the Informal Language of MathematicsApart from implementing tools to aid the explanation of mechanised arguments, onecan investigate how to de�ne a formal proof language in order to approximate that ofinformal mathematics. In section 2.3.2 we mentioned that substantial e�ort has beenput in the development of the Mizar language in order to make it similar to that usedby mathematicians. The research presented in this thesis deals with issues concernedwith minimising the di�erence between mechanised and informal proofs, and the simpleproof language SPL described in chapter 4 is based on Mizar. The theorem used insection 2.4.3 to illustrate a number of HOL proofs can be derived in SPL by:theorem example: "(A) B)) (B) C)) (A) C)"proofassume A_B: "A) B"and B_C: "B) C"hence "A) C" by A_B, B_C;qed;Although all the constructs in the above formal proof have a precise meaning, it iseasier to follow this proof rather than those given in section 2.4.3. The syntax ofMizar and similar languages is expressive enough to allow a hierarchical presentationof proofs. The Mizar proofs of a number of properties equivalent to well-foundednessby Rudnicki and Trybulec (1997) are examples of non-trivial machine checked proofspresented hierarchically.The Mizar language has also inspired other work. For instance, Harrison (1996b)developed a Mizar mode in the HOL system which can be used to implement read-able proofs interactively in a goal directed fashion. Syme (1997a) developed a Mizarlike language, DECLARE, for software veri�cation, and used it in verifying the typecorrectness of Java (Syme 1997b) (see also (Syme 1998)).The Mizar system is often described as supporting a declarative proof style as op-posed to the more procedural ones often supported by other systems. Although thedi�erence between a declarative and procedural style is somewhat vague, a declarativeapproach puts more emphasis on what is required, rather than on how to obtain it. Thestatements derived by Mizar proof steps are stated explicitly. Furthermore, proof stepsare justi�ed simply by a list of premises, rather than by a sequence of inferences. Thislack of procedural information increases the readability of the proofs, but it implies thatmore work is required by the proof checker to validate Mizar scripts. One must howeverbe careful to choose the right level of automation supported by the proof checker. Toomuch automation results in proofs that are not detailed enough to be followed easily ormachine checked e�ciently. Too little automation results in too detailed proofs whichare generally tedious to implement and hard to follow. This gives rise to the notion ofan obvious inference (Davis 1981; Rudnicki 1987) | one which is simple enough to be

CHAPTER 2. ON THE MECHANISATION OF MATHEMATICAL PROOFS 26easily followed and also easily machine checked. The actual de�nition of obviousnessin Mizar is given through the proof checking algorithm implemented in its validator.Experience in mechanising mathematics in Mizar suggests that proof checking speed isgiven more importance than power (Rudnicki 1992).The deductive power of the proof checker of Mizar does not increase during thedevelopment of a particular mathematical theory, and therefore the de�nition of obviousinferences is �xed. This is not consistent with the notion of what is considered to beobvious during the development of informal texts. As a human reader progresses througha mathematical text and gains understanding on the subject, his ability to infer factsabout the concepts concerned increases. Therefore, the notion of obviousness changesthroughout the development of a theory. It is thus desirable that the implementorsof mechanised proofs are given the possibility to extend the automation power of theproof checker usually to make use of particular result automatically. The Mizar systemlacks such extensibility, and the need for such a property is mentioned in the concludingremarks of (Rudnicki and Trybulec 1997). The future work section of (Syme 1997a) alsomentions the possibility of making DECLARE extensible. The Mizar mode of Harrison(1996b) allows the use of arbitrary HOL tactics for justifying proof steps, and is thereforeextensible. The SPL language described in chapter 4 is implemented on top of HOLand is also extensible though it does not rely on HOL tactics.

Chapter 3Case Studies on Tactic-BasedTheorem Provers3.1 Introduction and MotivationIn this chapter we describe the mechanisation of two results from the theory of compu-tation in two LCF-style theorem provers: the HOL system (see section 2.4) and the Coqsystem (Barras et al. 1996). The theory of computation has been widely explored inmathematical and computer science literature (see (Tourlakis 1984; Sommerhalder andvan Westrhenen 1988; Cutland 1980)). The mechanisation in HOL includes the de�-nition of a computable function according to the Unlimited Register Machine (URM)model of computation. It includes a proof that the set of URM computable func-tions contains the set of partial recursive functions. The mechanisation in Coq de�nescomputable functions according to a model based on the de�nition of partial recursivefunctions, and includes a proof of the Smn theorem.One of the aims of these mechanisations is to give an illustration of how a particularmathematical theory is mechanised using existing proof development systems. We aremostly interested in the process of �nding proofs using a tactic-based interactive proofenvironment, and the two mechanisations presented here make substantial use of tactics.The mechanisation in HOL is based on the textbook of Cutland (1980), and therefore ito�ers us a possibility of comparing mechanised proofs with their informal counterpart.On the other hand, the mechanisation in Coq does not follow an existing textbook. Theparticular proofs implemented in Coq were found by the user during mechanisation1.This exercise in Coq serves as a study in the process of �nding mechanical proofs in theabsence of informal ones.Another aim of the work presented in this chapter is to compare the di�erent ways atheory is mechanised in HOL and in Coq. Although both HOL and Coq are LCF-styletheorem proving systems, they are di�erent in some important respects. HOL imple-ments a classical simply-typed higher-order logic, while Coq implements a constructivelogic based on a much richer type system. The di�erence in the foundational logic af-fects both the way objects are de�ned as well as the way proofs are developed. Anotherdi�erence between the two systems is that HOL users usually apply ML functions di-rectly during the development of a theory, while Coq users develop a theory through the1Or rather, re-discovered by the user since such proofs did exist beforehand.27

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 28speci�cation and proof language Gallina. A comparative study which illustrates thee�ect of the di�erences of the two systems can be useful both to users of the systemsand to developers of theorem provers.The mechanisation in HOL is given in the next section and section 3.3 illustrates themechanisation in Coq. These mechanisations are described in more detail in (Zammit1996) and in (Zammit 1997). The theorem proving approaches of the HOL and Coqsystems are compared in section 3.4, and some remarks on the tactic-based style oftheorem proving are given in section 3.5.3.2 A Formalisation of URM Computability in HOLIn this section we illustrate the mechanisation of a number of results in the theory ofcomputation. We use the Unlimited Register Machine model of computation, and basethe mechanisation on the textbook by Cutland (1980).3.2.1 The URM Model of Computation in HOLThe Unlimited Register MachineAn Unlimited Register Machine, or URM, consists of a countably in�nite set of registerseach containing a natural number. This set of registers is called the memory or store.The registers are numbered R0; : : : ; Rn; : : : , and the value stored in the register Rn, forn � 0, is given by rn. The register Rn is said to be cleared if rn = 0. A URM executesa program, which is a �nite list of the following kinds of instructions:Zero: ZR n sets rn to 0;Successor: SC n increments rn by 1;Transfer: TF n m sets rm to rn;Jump: JP n m p jumps to the pth instruction of the program if rn = rm.The position of the next instruction to be executed is stored in a program counter, andthe con�guration of a URM is given by a pair consisting of the current program counterand the store. A con�guration is said to be initial if the program counter is set tothe index of the �rst instruction (i.e., to 0), and it is said to be �nal with respect tosome program if the program counter is greater than the index of the program's lastinstruction.Since the instruction set of the URM can be regarded as a very simple machinelanguage, we follow some of the techniques used in specifying real world architec-tures (Windley 1994). A URM store is represented as a function from natural numbersto natural numbers and con�gurations as pairs consisting of a natural number (theprogram counter) and a store.store == :num ! numconfig == :num � storeThe syntax of the URM instruction set is then speci�ed through the de�nition of the type:instruction using the type de�nition package of HOL (Melham 1988) and programsare de�ned as lists of instructions.

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 29instruction ::= ZR num| SC num| TF num ! num| JP num ! num ! numprogram == :instruction listThe semantics of the instruction set is then speci�ed through the de�nition of a functionexec_instruction: instruction ! config ! config which takes an instruction anda con�guration and returns the con�guration resulting from the execution of the giveninstruction. The predicate Initial: config ! bool to represent initial con�gurationsand the predicate Final: program ! config ! bool for �nal ones are also de�ned.ComputationsThe instructions in a program are executed one by one starting from an initial con�g-uration to give a computation. The execution of a URM instruction on a �nal con�gu-ration has no e�ect. A computation is de�ned as an in�nite sequence of con�gurationshc0; c1; : : : i where c0 is initial, and given also a program P , its computation can be de-noted by P hc0i, or simply by P (r) where c0 = (0; r). A store is usually represented bythe sequence (in parenthesis) of the values in its registers (r0; r1; : : :). A �nite sequence(r0; : : : ; rn) is used to represent the store (r0; : : : ; rn; 0; 0; : : :) where rm = 0, for m > n.We also use the notation P hc0i !n c0 to express that c0 is the nth element in P (c0). Acomputation is said to converge if it contains a �nal con�guration, otherwise it is saidto diverge. The value of a convergent computation is given by the contents of the �rstregister in any of its �nal con�gurations. The value is well-de�ned as program executiondoes not a�ect a �nal con�guration.The function EXEC_STEPS: num ! program ! config ! config is de�ned by prim-itive recursion in HOL to represent computations; The term EXEC_STEPS n P c0 = c0holds if and only if P hc0i !n c0`def (8P c. EXEC_STEPS 0 P c � c) ^(8n P c. EXEC_STEPS (SUC n) P c� EXEC_STEPS n P (EXEC STEP P c))where EXEC_STEP: program) config) config represents the execution of one step.`def 8P c. EXEC_STEP P c� ((Final P c) ! c |(exec_instruction (EL (FST c) P) c))A number of ML functions called conversions are implemented to simulate formallythe behaviour of the above de�ned functions. A conversion takes a HOL term t andif successful it returns a theorem ` t = t0. A conversion can simulate the behaviourof a function f by taking terms of the form f x and returns the theorem ` f x = cwhere c is the value of the application f x. One of the conversions implemented in themechanisation takes a term of the form EXEC_STEPS n P c and uses the de�nitions ofthe above functions systematically to derive a theorem ` EXEC_STEPS n P c = (p, r),where (p,r) is the result of executing the given program (i.e., P) n times starting fromc. Such conversions are useful in checking that the de�nitions represent their intended

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 30concepts, and can also be used to aid the theorem proving process by calculating certainresults automatically.The predicate CONVERGES: program ! (num list) ! num ! bool is de�ned suchthat CONVERGES P r v holds if there is a �nal con�guration cf in P (r) with store r0such that r00 = v, i.e., it converges with value v. (Note that r is a �nite list.) Similarly,DIVERGES: program ! (num list) ! bool is de�ned such that DIVERGES P r holds ifP (r) diverges.A number of theorems representing intuitive properties concerning con�gurationsand computations are then derived so that they can be used later in the mechanisation.These include the fact that every program converges to a unique value unless it diverges.` 8P r. (9!v. CONVERGES P r v) _ (DIVERGES P r)URM Computable FunctionsA URM program can be used to de�ne an n-ary partial function for any given naturalnumber n. The n arguments of the function are placed in the �rst n registers of acleared URM store and then the program is executed. The result of the application ofthe function is the value of the computation if it is convergent, or unde�ned otherwise.We say that a program P computes an n-ary function f if, for every a0; : : : ; an�1 and v,the computation P (a0; : : : ; an�1) converges to v if and only if f(a0; : : : ; an�1) is equalto v. This de�nition implies that the computation P (a0; : : : ; an�1) diverges if and onlyif f(a0; : : : ; an�1) is unde�ned. A function is said to be URM-computable if there is aprogram which computes it.Since functions in HOL are total, we introduce a polymorphic type of possibly un-de�ned values� PP ::= Undef (* Undefined *)| Value � (* Defined with this particular value *)and de�ne the type of n-ary partial functions as mappings from lists of numbers topossibly unde�ned numbers.pfunc == :num list ! num PPThe arity of partial functions is not represented in their types and must therefore beexplicitly mentioned in HOL statements. For example, the computability of a functionis given by the predicate COMPUTES: num ! program ! pfunc ! bool which is de�nedas follows`def 8n P f. COMPUTES n P f� (8l v. (LENGTH l = n))(CONVERGES P l v = (f l = Value v)))A number of properties, including the uniqueness of the function computed by a pro-gram, are then derived. Finally, the de�nition of a computable function is given by`def 8n f. COMPUTABLE n f � (9P. COMPUTES n P f)

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 313.2.2 Building URM ProgramsProving that a particular function is computable usually involves the construction of aURM program which is shown to compute it. In order to simplify this task, Cutland(1980) gives the de�nition of a concatenation operator on programs. Intuitively, giventwo programs P and Q, the computation of their concatenation PQ should correspond(in some sense) to that of P followed by that of Q. In order to achieve this we need thefollowing:� The jumps in P are not too far away, that is, the destination of all the jumps inP should be less or equal to the length of P . A program which has this propertyis said to be in standard form, and any program can be transformed into standardform without a�ecting the store of its �nal con�gurations.� Since URM jumps are absolute, the jumps in Q need to be shifted by the lengthof P .This concatenation is de�ned by the function SAPP: program ! program ! program,and since it is often required to concatenate more than two programs, a functionSAPPL: program list ! program which concatenates a given list of programs is alsode�ned.The following three program modules (functions which return programs) which areused quite often in the construction of URM programs are also de�ned:SET_FST_ZERO n clears the registers R0; : : : ; Rn.TRANSFER_TO p n stores the values of the �rst n registers of the URM into those startingfrom Rp.TRANSFER_FROM p n stores the values of the n registers starting from Rp into the �rst nregisters of the URM.Registers need to be cleared since programs computing functions assume that all theregisters not containing the arguments are set to 0. The last two modules are neededto move the arguments to and from di�erent memory locations. Similarly to Cutland(1980) we de�ne a program module which takes its arguments from a di�erent memorylocation rather than from the �rst registers. This is given by the function PSHIFT de�nedbelow such that the program PSHIFT P s n d clears all the registers it uses, takes its narguments from the memory segment at o�set s and stores the value of the computationof P in the register Rd:`def 8P s n d. PSHIFT P s n d �SAPPL [SET_FST_ZERO (MAXREG P);TRANSFER_FROM s n;P;[TF 0 d]]where MAXREG P returns the maximum register used by P .Because of their technical nature, deriving the necessarily properties to show thatthe functions mentioned in this section convey their expected behaviour took substantiale�ort. Table 1 on page 34 shows that the implementation of the de�nitions and proofsin this part of the mechanisation consists of 2800 lines of ML code. Most of the derivedproperties are considered to be obvious in (Cutland 1980), which dedicates only 3 pageson building URM programs.

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 323.2.3 Partial Recursive Functions are URM ComputableThe mechanisation includes a proof that the partial recursive functions are URM com-putable. The set of partial recursive functions (as de�ned in (Cutland 1980)) includesthe following three basic types of functions:Zero The zero functions Zn of arity n � 0, which return the value 0 for any input,Successor The unary successor function S which increments its input by one,Projection The projection functions U in (where i < n) of arity n which return the ithcomponent of their arguments,and is closed under the following operations on functions:Substitution The substitution of k functions with arity n, say g = (g0; : : : ; gk�1), intoa k-ary function f gives the n-ary function produced by applying f to the resultsof the applications of g. That is, the substitution f �̂g is de�ned byf �̂g(x0; : : : ; xn�1) = f(g0(x0; : : : ; xn�1); : : : ; gk�1(x0; : : : ; xn�1)):Primitive Recursion Given an n-ary base case function f , and an (n+ 2)-ary recur-sion step function g, the (n+1)-ary primitive recursive function R(f; g) is de�nedas follows:R(f; g)(0; x0; : : : ; xn�1) = f(x0; : : : ; xn�1)R(f; g)(x + 1; x0; : : : ; xn�1) = g(x;R(f; g)(x; x0; : : : ; xn�1); x0; : : : ; xn�1):The �rst argument of R(f; g) is the depth of the recursion, or the number of timesthe function g is applied after f is. Note that the depth of the recursion is alsogiven as an argument to the step function g.Unbounded Minimalisation The unbounded minimalisation �f of an (n + 1)-aryfunction f is the n-ary function which given the arguments (x0; : : : ; xn�1), itreturns the least x such that1. the value of f(x; x0; : : : ; xn�1) = 0, and2. for all y < x, the application f(y; x0; : : : ; xn�1) is de�ned.The value of �f (x0; : : : ; xn�1) is unde�ned if no such x exists.The mechanisation includes de�nitions of the above basic functions and functionoperations, and proofs that the three basic kinds of functions are computable, and thatfunctions de�ned by substitution, recursion, or minimalisation on computable functionsare themselves computable. In each case, the proof that these functions are computableis as follows:1. The criteria under which the function is de�ned are identi�ed,2. A URM program is de�ned and is shown to compute the function as follows:(a) the criteria under which the computation of the program converges are iden-ti�ed,

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 33(b) showing that whenever the program diverges, the value of the function isunde�ned,(c) showing that whenever the program converges, the value of the function isde�ned and identical to the value of the computation.Showing that the basic functions are computable is rather straightforward. On theother hand, the proofs that substitution, recursion and minimalisation preserve thecomputability of functions contain several cases, each of which is not trivial. For in-stance, the programs which compute primitive recursive functions and minimalisationscontain loops and therefore invariants had to be found. On the other hand, the proofsin (Cutland 1980) are based on informal
ow diagrams.3.2.4 De�ning Computable FunctionsThe language of partial recursive functions can be considered as a high-level languagefor expressing computable functions. For instance, addition can be de�ned by primitiverecursion on the identity and the successor functions, or formally by R(U01 ;S�̂[U13]). Anumber of functions were de�ned in this manner, and the derivation that such functionsare computable was automated through the systematic application of the theorems men-tioned in the previous section. Showing that the function de�ned in terms of the partialrecursive operators corresponds to the intended one needs some work. For example,showing that the above de�nition of addition actually corresponds to the addition func-tion requires mathematical induction. A conversion which simulates the behaviour ofpartial recursive functions is implemented to help this process.3.2.5 Concluding Remarks on the HOL FormalisationWe have illustrated the HOL mechanisation of URM computability which includes theresult that partial recursive functions are URM computable. Table 1 shows the lengthsof di�erent parts of the source code of the mechanisation with comments removed. Foreach part, the lengths listed in the table are divided as follows:� ML declarations: ML de�nitions of proof procedures and tactics which are usedin the proof of more than one theorem.� HOL de�nitions: the application of ML functions which introduce new HOL typesand constants.� HOL proofs: the application of ML functions which derive particular HOL theo-rems.It can be seen that a substantial part of the mechanisation is dedicated to thederivation of theorems, most of which were proved by applying tactics interactivelyin a goal directed fashion. A small number of tactics and other proof procedures areimplemented to automate inferences speci�c to this mechanisation. Even though theseproof procedures were used in several occasions during theorem proving, most of theproof steps involve the standard HOL tactics and tacticals. There is a substantialdi�erence between the level of detail (and therefore the length) of the HOL proofs andthe proofs found in the literature. The mechanisation includes the proof of dozensof theorems which would be considered to be trivial in an informal exposition. Such

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 34Introductory MechanisationML declarations: 170 linesHOL de�nitions: 10 linesHOL proofs: 440 linesTotal: 620 linesDe�nition of URM ComputabilityML declarations: 380 linesHOL de�nitions: 130 linesHOL proofs: 370 linesTotal: 880 linesBuilding URM programsML declarations: 70 linesHOL de�nitions: 90 linesHOL proofs: 2660 linesTotal: 2820 linesPartial Recursive Functions are URM ComputableML declarations: 180 linesHOL de�nitions: 60 linesHOL proofs: 3290 linesTotal: 3530 linesTable 1: On the Source Code of the Mechanisation in HOL.`shallow theorems' are used throughout the mechanisation, even in the proof of theoremswhich state much deeper results. On the other hand, the simple results proved ininformal texts are usually taken for granted once they have been stated, illustrated bya number of examples, and derived.3.3 A Proof of the Smn Theorem in Coq3.3.1 On the Coq Theorem Proving EnvironmentThe Coq system is an implementation in CAML of the Calculus of Inductive Construc-tions (CIC) (Coquand and Huet 1986), a variant of type theory related to Martin-L�of'sIntuitionistic Type Theory (Martin-L�of 1984; Nordstr�om, Petersson, and Smith 1990)and Girard's polymorphic �-calculus F! (Girard 1972). Terms in CIC are typed andtypes are also terms. Such a type theory can be treated as a logic through the Curry-Howard isomorphism (see (Thompson 1991; Nordstr�om, Petersson, and Smith 1990)for introductions of the Curry-Howard isomorphism) where propositions are expressedas types. For instance, a conjunction A ^ B is represented by a product type A � B,and an implication A) B is represented by a function type A! B. Also, a term canbe seen as a proof of the proposition represented by its type, and thus theorems in thelogic are nonempty types. For example, the functioncurry = �f:�x:�y:f(x; y)

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 35which has type ((A � B) ! C) ! A ! B ! C is a proof of the theorem ((A ^ B))C)) (A) B) C). Objects which have the same normal form according to ����-conversion (simply called convertible objects) are treated as the same term by the logic.�-conversion involves the substitution of a constant by its de�ning term and �-conversionis automation of inductive de�nitions.Under the Curry-Howard isomorphism, theorem proving corresponds to the con-struction of well-typed terms and the core inference engine of Coq is basically a typechecking algorithm for CIC terms. Terms whose type is a theorem are usually calledproof objects and are stored in Coq theories. The Coq system provides the speci�ca-tion and proof language Gallina in which users perform the actual interactive theoremproving. Gallina constructs include commands for specifying de�nitions and for tactic-based theorem proving and Coq users can extend the Gallina language by implementingnew constructs in CAML. The �les which Gallina accepts during theorem proving arecalled proof scripts, or simply scripts.3.3.2 The PRF Programming LanguageIn this section we give the syntax and semantics of the PRF language of programswhich we embed in Coq. The PRF language is very close to the de�nition of partialrecursive functions.The Syntax of PRFThe syntax of the PRF language is de�ned in Coq in terms of a data type prf whoseconstructors correspond to the three basic functions and the three operators whichde�ne partial recursive functions.prf ::= Zero: prf| Succ: prf| Proj: nat ! prf| Sub: prf ! prf ! nat ! nat ! prf| Rec: prf ! prf ! prf| Min: prf ! prfIt should be noted that any particular PRF program represents a di�erent partialrecursive function for each arity. For example, although Succ is de�ned in order torepresent the successor function S, it also represents the n-ary function which returns thesuccessor of the �rst number of its input: �(x0; : : : ; xn�1):S(x0) for each value of n. Thetype of the constructor Sub in the above de�nition of prf is di�erent from the expected: prf ! (list prf) ! prf corresponding to the substitution of a function on a listof functions. A type de�nition with such a constructor has a non-positive occurrence,and is not accepted by the version of Coq used in the mechanisation. The substitutionconstruct Sub in PRF takes two programs f and g, and two natural numbers n and m,and corresponds to the application of f on the output of g and part of its input (the marguments of g starting from the nth). The behaviour of Sub is described in more detailbelow where the semantics of PRF programs is de�ned. A program corresponding tothe substitution on a list of functions is then de�ned in terms of Sub.

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 36The Semantics of PRFPRF programs take a list of natural numbers and return a natural number if they termi-nate. A program assumes the input list to be of a particular length. When a program re-quires an element at a position greater than the length of the list, the value of the elementis assumed to be 0. Lists are indexed using the function zel: nat ! (list nat) ! natwhich is de�ned such that zel i l returns the (i+ 1)th element in l if i is less than thelength of l, or 0 otherwise. In the following, we use the notation x �R y to representthe proposition R x y, where R: A ! B ! Prop is a binary relation on the sets Aand B.The semantics of PRF programs is given through the inductive de�nition of thepredicate converges_to: prf ! (list nat) ! nat ! Prop given below. We say thatp converges to v on input l, and write phli # v, if converges_to p l v holds.Zero For any list l, the program Zero converges to 0.Zerohli # 0Successor Given a non-empty list, Succ converges to the successor of its head, other-wise it converges to (S 0) (i.e., 1).Succh[]i # (S 0) Succhx : li # (S x)Projections Given a list l, the projection Proj i converges to the (i+ 1)th element inl, or to 0 if i is greater than the length of l.Proj ihli # (zel i l)Substitution Given an input list l, the program Sub f g n m �rst applies g to l, andthen applies f to the m elements in l starting from the nth one together with theoutput of g (see �gure 2). We de�nepcombine n m l x = [zel n l; zel (n+ 1) l; : : : ; zel (n+m� 1) l; x]and the semantics of Sub is given byghli # x fhpcombine n m l xi # y(Sub f g n m)hli # yRecursion The primitive recursive program Rec f g has base case f and recursion stepg. The depth of the recursion is given by the �rst element of the input list.fh[]i # x(Rec f g)h[]i # x fhli # x(Rec f g)h0 : li # x (Rec f g)hh : li # y ghh : y : li # x(Rec f g)h(S h) : li # xMinimalisation The program Min f denotes the unbounded minimalisation of thefunction f . Given the input list l, it returns the smallest number h such that freturns 0 on input h : l and terminates for all input y : l where y < h. In order tode�ne the behaviour of Min we �rst introduce the predicates all_successors and

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 37
gnm......... fb

b

0mFigure 2: The Behaviour of Sub f g.minl. The proposition all_successors R n holds if for all m � n, there existssome k such that m �R (S k).0 �R (S k)all_successors R 0 (S m) �R (S k) all_successors R mall_successors R (S m)The proposition minl R n holds if n is the smallest number such that n �R 0 andfor all m � n, there is some k such that n �R k.0 �R 0minl R 0 (S n) �R 0 all_successors R nminl R (S n)The behaviour of Min f is then given by the ruleminl (�h:converges_to f h : l) x(Min f)hli # xThe mechanisation in Coq contains a proof that the relation converges_to as de�nedabove is (at most) single-valued, that is PRF programs are deterministic.A URM program uses a speci�c number of elements from the list. The maximumvalue of the positions of the elements used by a program is called the natural arity ofthe program, and is de�ned as follows:`def natarity Zero = 0| Succ = (S 0)| Proj i = (S i)| Sub f g n m = max (natarity g) (n + m)| Rec b s = max (S (natarity b) (pred (natarity s))| Min f = pred (natarity f)The maximum natural arity of a list of programs is then de�ned as the functionmaxarity: (list prf) ! nat. It is then shown that the behaviour of a program isnot a�ected by the elements in its input list at a position greater than its natural arity.

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 38
g0 g1 g2 gk�1 f� � �0mb

b

... b

b

b

b

b
b

b
b

0
b k�1......

m = maxarity [g0,: : :,gk�1]� 1Figure 3: The De�nition of Subl m n f [g0; : : : ; gk�1].Substitution of a List of FunctionsWe now de�ne the function Subl: prf ! (list prf) ! prf such that, given a pro-gram f and a list of programs g = [g0; : : : ; gk�1], the program Subl f g converges to yon input l, if� for all i < k, there is some xi such that gihli # xi, and� the program fh[x0; : : : ; xk�1]i # y.g0hli # x0 � � � gk�1hli # xk�1 fh[x0; : : : ; xk�1]i # y(Subl f [g0; : : : ; gk�1])hli # yThis is achieved by using the operator Sub to pass the input list together with the outputvalues x0; : : : ; xi�1 to the program gi where i < k. The k outputs x0; : : : ; xk�1 are thengiven to the program f (see �gure 3). For i < k, the output values xi are kept inthe input list of the program gi+1 at a position which is greater than its natural arity,and therefore does not a�ect the output value xi+1. The function Subl is de�ned bystructural recursion over the list of programs [g0; : : : ; gk�1] as follows:`def Subl in f m [] n � Sub f Zero 0 0| f m [g0] n � Sub f g0 m n| f m (g0 : g1 : g) n� Sub (Subl in f m (g1 : g) (S n)) g0 0 (m+ n)`def Subl f g � (Subl in f (maxarity g) g 0)The following theorem is then derived to show that programs constructed using thefunction Subl have the expected behaviour.` 8f gl l x.(converges to (Subl f gl) l x) ,(9xl. (mapR prf nat (�g. converges to g l) gl xl) ^(converges to f xl x))

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 39The relation mapR: (A ! B ! Prop) ! (list A) ! (list B) ! Prop is de�ned inCoq such that l1 �(mapR R) l2 holds if l1 and l2 have the same length and all the elementsin l1 relate (with respect to R) with the corresponding elements in l2.[] �(mapR R) [] a �R b k �(mapR R) l(a : k) �(mapR R) (b : l)3.3.3 PRF ComputabilityThe PRF language is used as a model of computation by de�ning computable functionsas those which can be computed by a PRF program. Similarly to the implementationin HOL we �rst de�ne the type of n-ary partial functions from natural numbers tonatural numbers, and then de�ne the notion of PRF -computable functions.Vectors and Partial FunctionsThe set of vectors over a set A is de�ned inductively byvector A nat ::= Vnil: (vector A 0)| Vcons: (n: nat) ! A ! (vector A n)! (vector A (S n))The type vector A n of vectors with n elements of type A is dependent on the values ofA and n. Such a type cannot be de�ned in HOL because of its weaker type system. Thehead, tail and the elements in a particular position in a vector are de�ned inductivelyby the relations:Vhd A (S n) (Vcons n h t) h Vtl A (S n) n (Vcons n h t) tVel A 0 (S n) (Vcons n h t) h Vel A i n t xVel A (S i) (S n) (Vcons n h t) xThe head, tail, and the ith element in a vector for some i, are also de�ned by thefunctions:vhd: (A: Set) ! (n: nat) ! (vector A (S n)) ! Avtl: (A: Set) ! (n: nat) ! (vector A (S n)) ! (vector A n)vel: (A: Set) ! (i: nat) ! (n: nat) ! (Hl: i < n)! (vector A n) ! ANote that the type of the fourth argument of vel is the proposition (i < n) and thereforeterms involving vel need a proof that the second argument is smaller than the third inorder to be correctly typed.In general, theorems involving the Vhd, Vtl and Vel relations are easier to prove thanthose involving the functional counterparts if rule induction can be used. On the otherhand, theorems and assumptions involving equalities on terms containing the abovefunctions can be used as rewriting rules. In order to obtain the best of both worlds,the two kinds of de�nitions are introduced in the mechanisation and are shown to beequivalent.The following two functions which map vectors into lists and vice-versa are alsode�ned:

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 40listify: (A: Set) ! (n: nat) ! (vector A n) ! (list A)vectrify: (A: Set) ! (l: list A) ! (vector A (length A l))where length A l returns the length of list l whose elements are in the set A.The type of n-ary partial recursive functions over the natural numbers is de�ned tobe that of the single-valued relations between vector nat n and nat:pfunc arity � mk pfuncf reln : (Rel (vector nat arity) nat);One valued: (one valued (vector nat arity) nat reln)gwhere Rel A B is the type of the relations between the sets A andB, and the propositionone_valued A B R holds if the relation R is single-valued.`def one_valued A B R � 8a b c. (R a b)) (R a c)) (b = c)The type pfunc is a record where the �eld reln is a relation between vectors andnatural numbers, and the �eld One_valued is a theorem stating that reln is single-valued.It can be seen that this is a dependent record as the type of the second �eld dependson the value of the �rst �eld. The type pfunc can be considered as a subtype of reln,since objects of type pfunc are the objects of type reln which are proved to satisfy theproperty given by One_valued.Given a function g:(vector nat n) ! nat one can construct a total single-valued re-lationG such that v �G c if and only if g(v) = c, and therefore an object of type pfunc n.The function pfuncize: (n: nat) ! ((vector nat n) ! nat)) ! (pfunc n) is de-�ned in order to produce this particular construction.PRF Computable FunctionsA PRF program p:prf is said to compute an n-ary partial function f:pfunc n if pconverges to the same values the relation in f (given by reln n f) holds.`def 8p n f. computes p n f �8v x. (reln n f v x) ,(converges to p (listify nat n v) x)A partial function is de�ned to be PRF -computable if there is some PRF programwhich computes it.`def 8n f. computable n f � 9p. computes p n fThe mechanisation includes the de�nition of several partial functions (mostly throughthe use of pfuncize) which are shown to be PRF -computable. A list of these functionstogether with the PRF programs that compute them is given in (Zammit 1997).3.3.4 The Smn TheoremEnumerating PRF programsA set A is said to be e�ectively denumerable if there is a bijection f : A! N such thatboth f and f�1 are e�ectively computable functions. A function is e�ectively computableif it is computable in some informal sense (unless the notion of computability on that

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 41type of function is formalised, e.g., if its range and domain are the natural numbers),and therefore this notion is not de�ned in Coq. However, because of the constructivenature of the Calculus of Constructions, every function de�ned in Coq is e�ectivelycomputable, hence one can show that a set A is e�ectively denumerable by de�ningtwo Coq functions f: A ! nat and g: nat ! A and by showing that f and g arebijections and inverses of each other.The mechanisation in Coq includes the de�nitions of a function Godel: prf ! natwhich associates a number (the G�odel number) with a PRF program, and a functionProg: nat ! prf which enumerates PRF programs. These two functions are provedto be the inverses of each other and bijective, and so we prove that the set of PRFprograms is e�ectively denumerable. The function Prog is then used to de�ne thefunction pf_compute_Prog: (n:nat) ! (e:nat) ! pfunc n which takes two naturalnumbers n and e and returns the partial function of arity n which is computed bythe program with G�odel number e. (Note that every computable function can thus bee�ectively represented by its arity and the G�odel number of a program which computesit.)̀ def 8n e. fcompute_Prog n e� �v. (converges_to (Prog e) listify nat n v)`def 8n e. pf_compute_Prog n e� mk_pfunc n (fcompute_Prog n e)(fcompute_Prog_one_valued n e))where fcompute_Prog_one_valued is the theorem which states that the relation con-structed by fcompute_Prog is single-valued. The function pf_compute_Prog n e is de-noted by �(n)e .The Smn TheoremGiven an (m + n)-ary function f , and m numbers x = (x0; : : : ; xm�1), one can de�nean n-ary function g by �xing the �rst m arguments of f to x.g(y0; : : : ; yn�1) = f(x0; : : : ; xm�1; y0; : : : ; yn�1)The Smn theorem, also called the parametrisation theorem, states that for �xed m andn if f is computed by some program with G�odel number e, then the G�odel number of aprogram computing g can be computed from m, n, e and x0; : : : ; xm�1. In other words,for all m and n, there is a total computable (m+ 1)-ary function smn such that8e; x; y: �(n)smn (e;x)(y) = �(m+n)e (x; y)where x = (x0; : : : ; xm�1) and y = (y0; : : : ; yn�1).The function �(n)smn (e;x) can be computed by a program which takes the arguments(y0; : : : ; yn�1) and applies the program which computes �(m+n)e (x; y) to the list[x0; : : : ; xm�1; y0; : : : ; yn�1]:This program is de�ned in Coq as the function smnprf:

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 42
`def 8m n e x. smnprf m n e x� Subl (Prog e) ((constants [x0; : : : ; xm]) ++ (projections n))where the functions constants and projections are de�ned such thatconstants [c0; : : : ; cl] = [Constant c0; : : : ; Constant cl]projections n = [Proj 0; : : : ; Proj (n� 1)]and where the program Constant c always converges with value c.The function smn is then given by the object (pf_smnprf m n): pfunc m`def 8m n v. vf_smnprf m n v� (Godel (smnprf m n (vhd nat m v)(listify nat m (vtl nat m v))))`def pf_smnprf � �m n. (pfuncize (S m) (vf_smnprf m n))Showing that the function pf_smnprf m n is computable for all m and n was ratherlaborious and needed several lemmas, most of which were proved by (rule, or structural)induction. In particular the proof needed the fact that all the functions used in thede�nition of Prog are PRF computable. Unfortunately, the statements of some of thelemmas needed for the proof of the Smn theorem involved constant names which werede�ned only to be used in the de�nition of other constants. For example, a numberof lemmas involved the function Subl_in which was de�ned only to be used in Subl.Actually, most of the lemmas concerning properties of the function smnprf (which isde�ned in terms of Subl) are proved by induction on more general properties involvingSubl_in. This is probably due to a bad theory structure. For instance, more generalresults on Subl can probably be derived in the module deriving it, so that no lemmason Subl_in are required outside this module. We point out that there is a lack of proofdevelopment tools aimed at the structuring and re-structuring of mechanised theoriesinteractively.3.3.5 Concluding Remarks on the Coq FormalisationThis section describes the mechanisation of the Smn theorem in the Coq system. Com-putability was formalised according to a model of computation based on the de�nitionof partial recursive functions, and all the results in this mechanisation are derived byconstructive proofs. Table 2 shows the lengths of di�erent parts of the source code ofthe mechanisation with comments removed. The part with title \PRF Computabil-ity" is rather lengthy since it includes the proofs of the computability of a number offunctions. This involves the de�nition of PRF programs which are shown to computethe particular functions. Similarly to the mechanisation of computability in HOL, theproofs in Coq are very detailed and a large number of them derive results which wouldbe considered trivial in the informal mathematical literature.3.4 A Comparative Study of HOL and CoqIt can be noted from the two case studies described in sections 3.2 and 3.3 that thestrongest point of the Coq system is the expressive power of the Calculus of Inductive

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 43Introductory Mechanisationde�nitions: 40 linesproofs: 890 linesTotal: 930 linesThe PRF Languagede�nitions: 50 linesproofs: 1210 linesTotal: 1260 linesPRF Computabilityde�nitions: 490 linesproofs: 6450 linesTotal: 6940 linesEnumerating Programs and the Smn Theoremde�nitions: 100 linesproofs: 2170 linesTotal: 2270 linesTable 2: On the Source Code of the Mechanisation in Coq.Constructions. The HOL logic is much simpler but users can rely on a greater
ex-ibility o�ered by the metalanguage. As a result HOL theorem proving is much moreimplementation-oriented, while in Coq the implementation of simple tactics (which maynot be used often during a mechanisation) is discouraged by having a speci�cation andproof language (on top of the metalanguage) in which all user interactions are made. Inthis section we compare the way objects are de�ned (section 3.4.1) and how theoremsare proved (section 3.4.2) in these two systems. Other considerations are discussed insection 3.4.3, and some concluding remarks are given in section 3.4.4.3.4.1 De�nitionsA de�nition can be considered as a name given to an object by which it can be referredto in a theory. A concept can be formalised by de�ning it in terms of previously de�nedconcepts, or by deriving its existence and associating a name with it. Concepts canalso be formalised through the declaration of axioms and both systems allow users tointroduce axioms in theories. However, an axiomatic theory can be inconsistent whilethe de�nition mechanisms of Coq and HOL guarantee that purely de�nitional theoriesare always consistent.The de�nition mechanism in Coq introduces new constant names in an environmentand allows these terms to be convertible with their de�ning terms. This applies toboth simple abbreviations (�-conversion) and inductive de�nitions (�-conversion). Sinceproofs and theorems are �rst class objects in CIC, the name of a theorem is actuallya constant de�nition given to its proof term. In fact, although the speci�cation lan-guage Gallina gives di�erent constructs for de�ning terms and for theorem proving,one can, for instance, use tactics to de�ne terms and the de�nition mechanism to provetheorems. The system di�erentiates between de�nitions and theorems by labelling the

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 44former objects as transparent and the latter as opaque. Transparent objects are con-vertible with their de�ning terms while opaque objects are not. The Gallina languageprovides commands for labelling objects as opaque or transparent manually.The HOL logic treats type and constant de�nitions di�erently, and the core systemprovides one primitive inference rule for type de�nitions and two for constant de�nitions.Other inference rules are given for deriving theorems. The function of the HOL primitiverules for de�nitions is illustrated below, where the di�erences between the de�nitionmechanism for constants in HOL and in Coq are discussed.Type De�nitionsThe HOL system has one primitive rule for type de�nitions, which introduces a newtype expression as a nonempty subset of an existing type �, given a term P : � ! boolwhich denotes its characteristic predicate. However, in practice, the user introducesnew types through the type de�nition package (Melham 1988) which speci�es ML stylepolymorphic recursive types as well as automatically deriving a number of theoremsspecifying certain properties about the type (such as the fact that the type constructorsare injective).Such types are speci�ed in Coq by inductively de�ned sets and types, and the cor-responding theorems derived by HOL's type de�nition package are either returned astheorems by the de�nition mechanism of Gallina or follow from the elimination andintroduction rules of the set or type.The obvious advantage of having types as terms in CIC over HOL's simple type the-ory is a much more expressive type system which allows quanti�cation over types anddependent types. For instance, the dependent record type of n-ary partial functions,pfunc n, was introduced in the mechanisation in Coq so that the arity of a functioncan be declared in its type. Such information cannot be stored in the simple typesof HOL and therefore was declared in all the statements involving n-ary partial func-tions. (Compare the de�nition of COMPUTES in section 3.2.1 and that of computes insection 3.3.3.)A mechanism which translates objects in a dependent type theory into HOL objectsis described by Jacobs and Melham (1993) and an extension of the HOL logic to coverquanti�cation over types is proposed by Melham (1992).Constant De�nitionsHere we list the di�erent mechanism by which constant de�nitions can be speci�ed inCoq and in HOL.Simple De�nitions In HOL given a closed term e : � , a new constant c : � can beintroduced in the current theory by the primitive rule of constant de�nition whichalso yields the theorem ` c = e. Thus, while in the Calculus of Constructionsconstants are convertible (�-convertible) with their de�ning terms, in HOL theinterchangeability of c and e is justi�ed by the above theorem, which needs to beused whenever c and e have to be substituted for each other in other theorems.Speci�cations The second primitive rule which introduces constants in HOL theoriesis called the rule of constant speci�cation. It introduces a constant c: � obeyingsome property P (c) if its existence can be shown by a theorem ` 9x:P (x). The

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 45theorem ` P (c) is returned by the rule. Note that only the existence of some x isrequired, rather than the existence of a unique x, and nothing else can be inferredabout c apart from P (c) (and anything which can be inferred from P (c)). Becauseof its intuitionistic nature, there is no such rule in the Calculus of Constructionsalthough any constructive proof of 9x: �:P (x) is actually a pair (w : �; p : P (w))containing a term of type � and a proof stating that this term satis�es P . TheHOL manual (Gordon and Melham 1993) introduces a primitive inference rule fortype speci�cation as well, but there is no implementation of this rule yet.Recursive De�nitions The de�nition of primitive recursive functions over a recursivetype is justi�ed in HOL by a theorem stating the principle of primitive recursionwhich can be automatically derived by the type de�nition package. A library forde�ning well-founded recursive functions, which in general requires user interven-tion for proving that a relation is well-formed, is also included in the HOL system(Slind 1996). In Coq, recursive functions are de�ned by a �xpoint operator. Thesyntax of actually de�ning such functions implicitly in the Coq is very crude.However, a mechanism which allows function de�nitions in an ML like syntaxwith pattern matching is provided in the Gallina language. This mechanism canalso be used on the de�nition of functions over dependent types.Inductive De�nitions The CIC includes rules for inductive de�nitions and are thusinbuilt in Coq. The Gallina speci�cation language provides constructs for intro-ducing (possibly mutually) inductive de�nitions as well as tactics for reasoningabout them. Inductive de�nitions can be used for introducing inductive types andsets as recursive data types and also for inductively de�ned relations. Supportfor coinductive and corecursive de�nitions and reasoning by coinduction is alsoprovided by the Coq implementation of CIC.The HOL system provides a number of packages for de�ning inductive relations,which include the package by Melham (1991) (see also (Camilleri and Melham1992)), support for mutually inductive de�nitions (Roxas 1993) and the morerecent implementation due to Harrison (1995b). Besides providing a mechanismfor specifying de�nitions, these packages include ML functions for reasoning aboutthem and for automating them. It is argued (for instance in (Harrison 1995a)) thatinductive de�nitions can be introduced earlier in the HOL system and a numberof frequently used relations in existing theories (such as the inequalities on naturalnumbers) can be rede�ned inductively so that users can apply the principle of ruleinduction on them, much in the same fashion that it is done by Coq users.3.4.2 Theorem ProvingThis section illustrates the di�erent proof strategies by which users of the Coq and HOLsystems perform the actual theorem proving.Forward ProvingForward theorem proving is performed in HOL by applying ML functions which re-turn theorems. This is done in Coq by constructing terms whose type corresponds totheorems. However since HOL users have direct access to the metalanguage, one can

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 46implement more elaborate mechanisms for forward theorem proving than simple con-structions of terms in Coq. In general, theorem proving in Coq is done in a backwardsmanner by applying tactics.Backward ProvingBoth theorem provers support interactive tactic-based goal-directed reasoning. Therequired theorem is stated as a goal and the user applies tactics which break the goal intosimpler subgoals until they can be proved directly. Tactics also provide a justi�cationfor the simpli�cation of a goal into subgoals, which derives the goal as a theorem fromderivations of the subgoals. A goal usually consists of the statement which is requiredto be proved together with a number of assumptions which a proof of the goal can use.As mentioned in section 2.4.2, backward proving is supported in HOL through animplementation of a goalstack data structure which provides a number of operations(including specifying goals, applying tactics, moving around subgoals, etc.) as MLfunctions. Tactics and tacticals are also ML functions and users can implement newtactics during theory development. On the other hand, Coq tactics, tacticals and theoperations on the internal goalstack are provided as constructs of the Gallina language.As a result, implementing a new tactic in Coq involves the non-trivial task of extendingthe Gallina language and in general Coq users tend to implement less tactics duringtheory development than HOL users do. Moreover, HOL users can also implementtactics `on the
y' by combining di�erent tactics, tacticals, and general ML functionsduring a single interaction.We also remark that HOL tactics are much more elaborate and numerous than Coqones. One reason for this arises from the di�erent nature of the Calculus of InductiveConstructions and the HOL logic. Since theorems in Coq are essentially types, tac-tics correspond to the di�erent ways terms can be constructed and broken down (theintroduction and elimination rules of the constructs). On the other hand, tactics inHOL have to be implemented using the much less powerful (and less general) primitiveinference rules. Moreover, the powerful notion of convertible terms of CIC makes in-ference rules such as rewriting with the de�nitions and beta conversion unnecessary inCoq. However, tactics for unfolding de�nitions and changing a goal or assumption to aconvertible one are also provided, both because it facilitates theorem proving and alsobecause higher-order uni�cation is undecidable and user intervention may sometimes beessential.The considerable di�erence between the number (and nature) of tactics in HOLand in Coq and the availability of a speci�cation and proof language makes Coq aneasier system to learn. New HOL users are faced with hundreds of inference rules andtactics to learn, and possibly a new programming language to master in order to beused e�ectively as a metalanguage. New Coq users need to learn how to use about�fty language constructs and most theory development can be done without the needof extending Gallina.Finally we note that assumptions in Coq are labelled with names while they areunnamed in HOL. This a�ects the way users of the systems use assumptions duringthe construction of a proof. Basically, Coq users select the assumptions they needby their name while HOL users apply tactics which try to use all the assumptions.Nevertheless, HOL users can implement tactics (on the
y, or otherwise) which selecta subset of, or a particular element from, the list of assumptions through �ltering

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 47functions and other techniques discussed in (Black and Windley 1995). However westress that selecting an assumption simply by its name is de�nitely more straightforwardthan any such techniques. During the implementation described in section 3.2 theneed of writing several �ltering functions was sometimes tedious and overwhelming.Tactics which make use of all the assumptions can however be quite powerful andmay save several repetitive proof steps. One can for instance consider the power ofASM_REWRITE_TAC in HOL which repetitively rewrites with all the assumptions, togetherwith a number of theorems supplied by the user and a list of basic pre-proved theorems(such as `8A. (> _ A) = >.)AutomationThe HOL system is equipped with more decision procedures and automation tools thanCoq. HOL (HOL90 version 9:1� and Hol98) includes automation for rewriting, a tau-tology checker, semidecision procedures for �rst-order reasoning, a decision procedurefor Presburger arithmetic, as well as an implementation of Nelson and Oppen's tech-nique for combining decision procedures. Since most proofs in the mechanisation ofcomputability in HOL are of a highly technical nature, the use of such decision proce-dures saved a lot of time and thinking about trivial proofs. The Coq system (version6:2) provides tactics for tautology checking, decision procedures for intuitionistic Di-rect Predicate Calculus (which is the �rst-order Sequent Calculus of Gentzen withoutcontraction rules), for Presburger arithmetic, and for a number of problems concern-ing Abelian rings. The Gallina language maintains a user de�nable hint list, wheretactics can be included into the list and goals can then be automatically solved by theapplication of one or more of these tactics.Reasoning with Equality and EquivalenceHOL's notion of equality is extremely powerful and since equivalence of propositionsis de�ned as equality on boolean values, the same properties enjoyed by equality holdalso for equivalence. Equality is introduced in HOL by a primitive rule, REFL, whichreturns the theorem ` t = t for any term t; and the primitive rule of substitution allowsany subterms of a theorem to be substituted by their equals. The rule of extensionality(which can be derived in HOL) yields the equality of any two functions which give thesame results when applied to the same values. (More formally, the rule of extensionalityis 8x:f(x) = g(x) ` f = g.) As a result, equivalent predicates can be substituted foreach other and assumptions can be substituted with the truth value >. Hence, theoremproving in HOL can rely a lot on rewriting, for example, statements like a ^ b) a _ ccan be easily proved by the tactic:DISCH_TAC THENASM_REWRITE_TAC []The importance of equality in HOL theorem proving is emphasised by a class ofinference rules called conversions (see section 3.2.1, page 29) which are specialised forderiving equalities.Equality in CIC is introduced by the inductive de�nitioneq A a a refl_equal

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 48and results like symmetry, transitivity and congruence can then be derived. Howeverfunctions are intensional and equivalence of propositions is di�erent from their equal-ity. Basically, two propositions, a and b, can be proved to be equivalent in Coq byconstructing a term with type ((a ! b) � (b ! a)) and little support is given for tak-ing advantage of the symmetric nature of bi-implication. The need for more powerfulsupport of equality is reduced by having the notion of convertible terms. However,here we remark on the inability to construct a term t : T1 directly, where t has typeT2 which is not convertible with T1 and it can be proved that T1 and T2 are equal.For example, given some term v: (vector nat (n+m)) where m and n are variables,then one cannot specify v as having type vector nat (m+ n) even though (n+m) and(m + n) are equal. This problem is encountered in the mechanisation in section 3.3,and for this particular example it is solved by de�ning a function Change_arity, suchthat, given a vector v: (vector A n) and a proof t of (n = m), then the type ofChange_arity n m t A v is (vector A m):`def Change_arity� �n;m:nat, t:(n = m), A: Set, v: (vector A n).eq_rec nat n (vector A) v m t).and it is proved that8n:nat, t:(n = n), A:Set, v:(vector A n).Change_arity n n t A v = vThis theorem is proved using the eq_rec_eq axiom.Now, if plus_sym represents the theorem 8n;m:n+m = m+ n, and the term v hastype vector nat (n+m) thenChange_arity (n + m) (m + n) (plus_sym n m) nat vhas the required type vector nat (m+ n).3.4.3 MiscellaneousThis section lists some other considerations of the di�erences between the approachesof Coq and HOL to the mechanisation of theories.Classical and Constructive ReasoningHOL's logic is classical, and the axiom of the excluded middle is introduced in the HOLtheory which de�nes boolean values. One can ask however whether any support canbe given to users who may want to use HOL and still reason constructively. The CICis constructive and so the law of the excluded middle cannot be derived and all Coqfunctions have to be computable. However, one can still reason classically to some extentin Coq by loading a classical theory which speci�es the law of the excluded middle asan axiom, although it should be stressed that this does not give Coq the full powers ofclassical reasoning.Since all functions in Coq are computable, n-ary partial functions are de�ned in Coqas single-valued relations rather than as Coq functions, so that partial functions whichare not computable can still be speci�ed in the mechanisation. On the other hand,

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 49functions in HOL need not be computable (a classical proof of their existence is enoughto de�ne them), and n-ary partial functions are de�ned in HOL as functions mappinglists of natural numbers to the representation of `possibly unde�ned natural numbers'given in section 3.2.1, page 30. The advantage of the formalisation of partial functionsin HOL is that a function application can be directly substituted by its value.The proof of the Smn theorem in Coq is constructive; however, the literature ofcomputability contains a number of theorems whose proof requires classical reasoning.In particular, we mention the theorem which states the existence of an uncomputablefunction, for example, in (Cutland 1980). The proof of this theorem in Coq was notattempted by the author, and it is unclear whether this theorem can be proved in Coqwithout using the law of the excluded middle. We also point out that the mechanisa-tion of the theory of computation in Coq required the notion of e�ectively computablefunctions. Such notion is informal by nature, and therefore was not formalised. It ispointed out in section 3.3.4, however, that because of the constructive nature of the Coqlogic, the formal de�nition of e�ectively computable functions is not required as all Coqfunctions are e�ective by nature. The proofs in HOL of theorems which use the notionof e�ectively computable functions were not attempted during the mechanisation. Theauthor is again not sure whether such results can be derived in HOL.The Use of Proof ObjectsThe Coq system stores proof terms in its theory �les and uses for these terms include:1. Program extraction: Given some program speci�cation S, a constructive proofthat there is some program satisfying it contains an instance of a program for whichS holds, hence one can obtain a certi�ed program from a proof of its speci�cation.This facility is supported by the Coq system which provides a package whichextracts an ML program from a proof term, as well as providing support forproving the speci�cation of functions written in an ML syntax (Paulin-Mohring1989; Parent 1993; Paulin-Mohring and Werner 1993).2. Extracting proof texts written in a natural language: A proof term of type � canbe seen as an account of the proof steps involved in deriving the theorem � , andCoq provides tools for extracting a proof written in a natural language from proofobjects (see section 2.5.2).3. Independent proof checking: Proof terms can be checked by an independent proofchecker to gain more con�dence in their correctness. Moreover, such proof termscan be easier to translate into proof accounts of another theorem prover than anactual proof script or an ML program (as HOL proof scripts actually are). TheHOL system is truth-based rather than proof-based and it does not store proofsin its theories.The Sectioning MechanismThe Gallina speci�cation language allows Coq proof scripts to be structured into sec-tions, and one can make de�nitions and prove theorems which are local to a particularsection. The need of local de�nitions and results is often encountered during theorydevelopment, where for instance, the de�nition of some particular concept can facilitate

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 50the proof of a number of results but does not contribute much to the overall formalisationof the theory.3.4.4 Concluding RemarksThe two case studies, and especially more extensive mechanisations of di�erent math-ematical theories, show that both HOL and Coq are robust systems and practical inmechanising mathematical results. The strongest point of HOL is the
exibility given tothe users by means of the metalanguage; while Coq theorem proving relies on the powerof the Calculus of Inductive Constructions. Here, we give some concluding remarks onthese features.The Flexibility of the MetalanguageBy allowing a theorem proving session to be given within a general purpose metalan-guage, HOL o�ers a higher degree of
exibility than Coq. As a result, HOL users imple-ment a larger number of new inference rules during theory development than Coq users.For example, the mechanisation of the theory of computation in HOL includes severalconversions for animating the de�nitions, simple and more elaborate tactics which avoidrepetitive inferences and most backward proofs include tactics implemented `on the
y'using tacticals and other ML functions. The syntax of Gallina can be extended, saywith predicates on terms so that one can �lter a sublist of assumptions to be usedby some tactic, but then one asks whether a speci�cation language as powerful as themetalanguage is required to implement the required �ltering functions during theoremproving. Having a speci�cation language surely has its advantages: the system is easierto learn by new users, and proof scripts are in general easier to follow; also, theoremproving support tools like a debugger or a graphical user interface are probably easier todevelop for a speci�cation language with a limited syntax rather than for a general pur-pose programming language. However, the power of a Turing-complete metalanguageis not to be underestimated, for it can be used for instance to derive theorems throughthe manipulation of proof terms.The Expressiveness of the Calculus of Inductive ConstructionsThe restrictions due to the speci�cation language are relieved by the power of CIC. Thefact that theorems are proved by simply constructing and breaking down terms makesthe implementation of tactics specialised for particular logic constructs unnecessary andthe powerful notion of convertibility replaces the implementation of conversions for everyde�nition. No new tactics or inference rules are implemented in the mechanisation of thetheory of computation in Coq, both because the inference power of the simple constructsof Gallina is enough for most reasoning, and also because the non-trivial task of actuallyimplementing a new elaborate tactic in Coq discourages the development of simpletactics which are used only to substitute a small number of inferences. The power of CICis also emphasised by its highly expressive type system which allows quanti�cation overtypes and dependent types and thus gives a more natural formalisation of mathematicalconcepts than a simple type theory. We have seen however, how the stronger notion ofequality and equivalence in HOL simpli�es most formalisations.The primitive inference rules of HOL are too simple and are rarely used in practice;most reasoning is performed by higher level inferences. The simplicity of the primitive

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 51rules gives a straightforward implementation of the core inference engine, on whosecorrectness the soundness of the HOL system relies. Although CIC is more complexthan the HOL logic, it is sound and due to the Curry-Howard isomorphism theorems inCIC can be checked by a type checking algorithm, on whose correctness the soundnessof the Coq system relies. Thus, one can have a very powerful logic whose theorems canstill be checked by a simple algorithm.The feasibility of actually doing so may however be questioned. Proof terms maybecome very large, and ���-convertibility may become infeasible for large objects, al-though these factors do not yield any signi�cant problems for the mechanisation of theresults in section 3.3.3.5 On Tactic ProofsTactic-based interactive proof discovery is one of the most commonly used methods forimplementing mechanised proofs. Most of the proofs implemented in the mechanisationof computability in HOL, and all the proofs implemented in the mechanisation in Coqwere discovered interactively by applying tactics. This mechanism is indeed quite e�ec-tive for the interactive discovery of proofs because users can use and implement powerfultactics to automate several proof steps, and usually users do not need to remember allthe previous steps of interaction during theorem proving. However, since tactic proofsare essentially lists of interaction steps they are unreadable and hard to follow.Figure 4 gives an example of a short HOL tactic proof taken from the mechanisationof computability theory. Twelve tactics were applied before the goal was proved. Thechoice of which tactic to apply during each interaction step was determined rapidly,and the proof was found in a few minutes. This is mostly due to the fact that thegoal is rather simple, and because of the fact that the overall strategy for �nding thisparticular proof was known by the author. It should be noted, however, that thisparticular theorem is a very simple one, and several such theorems are proved duringthe mechanisation before non-trivial results can be derived. The �gures in tables 1and 2 show that successful tactic proofs of important results require several hundredsof tactics. Finding a proof may require many more interaction steps than those in thesuccessful proof because the user may have to backtrack through the application of anumber of tactics which resulted in unprovable subgoals.Unfortunately, because of their unreadability, tactic proofs like the one in �gure 4do not o�er much more than a list of interaction steps which prove a particular theoremwhen applied to a particular release of a proof development system. The tactic proofis entirely targeted at the proof development system, and no additional information isgiven to the user to help her understand it.The ability to follow a proof can be very important if one needs to implementa di�erent proof to derive a similar theorem, or to derive the same theorem after ade�nition has been modi�ed slightly. Because of the interactive nature of tactic proofs,their modi�cation often relies on feedback from the proof development system. Forexample, proofs involving a modi�ed de�nition are re-run until one fails. The failedproof is then modi�ed by discovering new proof steps interactively. Users would be ableto make more modi�cations without the need of feedback from the system if the proofscan be followed without running them.The proofs implemented in the case studies often make use of de�nitions introduced

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 52
val EXEC_STEP_MAXREG = prove (--`8P m p1 r1 p2 r2.(EXEC_STEP P (p1, r1) = (p2, r2)))(MAXREG P < m))(r1 m = r2 m)`--,REPEAT GEN_TAC THENASM_CASES_TAC (--`Final P (p1, r1)`--) THENL[REPEAT STRIP_TAC THENIMP_RES_THEN(fn t => RULE_ASSUM_TAC (REWRITE_RULE [t]))Final_EXEC_STEP THENIMP_RES_TAC PAIR_EQ_EQ THENASM_REWRITE_TAC [],ASM_REWRITE_TAC [EXEC_STEP] THENIMP_RES_TAC NOT_Final THENIMP_RES_TAC MAXREG_instruction_MAXREG THENREPEAT STRIP_TAC THENIMP_RES_TAC LESS_EQ_LESS_TRANS THENIMP_RES_TAC MAXREG_exec_instruction]);Figure 4: An Example of a Tactic Proof.

much earlier in the mechanisation or very simple results about the de�ned objects, ratherthan theorems stating some high-level properties of the de�ned concepts. This can beattributed to bad theory design, in the sense that not enough properties concerning thede�ned concepts are derived. It is therefore probable that several similar properties arederived as subgoals of di�erent theorems. Ideally, such properties should be identi�edto �nd out whether some lemma which generalises them can be derived. However, it ishard to identify these properties and the proof fragments which derive them by readingthe tactic proof steps. Such properties can be identi�ed during interactive theoremproving if the user notices that similar subgoals keep reappearing.Since theorems stating simple results are also used in the later stages of some mech-anisation, the proof steps in a tactic proof can use theorems representing results of awide range of complexity: high-level results and very trivial results are used in the proofsteps of the same proof. This inhomogeneity in the proof steps can also be seen in thecomplexity of the tactics used. Specialised tactics which automate many proof stepsare used together with tactics which automate a few. Apart from making tactic proofsharder to follow, this inhomogeneity also a�ects the e�ort required in implementingtactic proofs since the number of theorems and tactics which a user has to considerincreases as the theory is mechanised. The inhomogeneity in the complexity of theproof steps can also be noticed in the tactic proofs of other HOL theories (for example,those supplied with the HOL system), as well as in proofs of other tactic-based theo-rem provers. It can also be noticed in Mizar proofs since theorems derived in the earlystages of a mechanisation, or in very basic theories, are also used in proofs implemented

CHAPTER 3. CASE STUDIES ON TACTIC-BASED THEOREM PROVERS 53towards the end of the mechanisation.We therefore argue that although the tactic-based proof style is quite e�ective inthe interactive discovery of a proof, the implementation of tactic proofs relies too muchon feedback from the system. It is not practical to implement, follow, modify or correcttactic proofs without feedback. However, several activities, which include the structur-ing of a mechanised theory, and the actual implementation of the proof, may dependon the ability of the user to follow and understand the mechanised proofs. As a result,systems which use tactic-based proof implementation may require tools and e�ectiveuser-interfaces which aid the user to perform these activities without having to fol-low the proofs. Alternatively, proof styles which do not rely on too much �ne-grainedinteraction with the system to follow the proofs can be more suitable for the overallmechanisation of a theory than one which relies solely on tactic-based implementation.The ability to implement mechanised proofs which are easy to follow can therefore o�erseveral advantages to the mechanisation of mathematical theories.

Chapter 4The Implementation of aDeclarative Proof Language inHOL4.1 IntroductionIn section 2.4 we discussed the fact that the HOL theorem prover (Gordon and Melham1993) is implemented according to the LCF philosophy, in the sense that:� HOL theorems are represented by an ML abstract data type whose signaturefunctions correspond to the primitive rules of a sound deductive system of theHOL logic. This ensures that theorems derived in the system are valid sentences.� The user is given the
exibility to implement proof procedures in the meta-language ML in order to facilitate the theorem proving process.� The HOL system includes a number of ML functions which allow users to �ndproofs interactively by applying tactics.The majority of proofs implemented in HOL, and most other proof development systems,are found interactively using the tactic-based goal-oriented environment. However, asshown in the case studies in Chapter 3, tactic-based proofs are not informative to ahuman reader and it is hard to modify and maintain them without feedback from theinteractive theorem prover. On the other hand, proofs implemented in the Mizar prooflanguage (Trybulec 1978) are easier to follow since they o�er more valuable informa-tion to a human reader than do tactic proofs. Mizar proofs are usually described asdeclarative, since proof steps explicitly state the conclusion and what is used to deriveit, as opposed to tactic-based procedural proofs which consist of the list of interactionsrequired to derive the proof.In this chapter we illustrate the implementation of a declarative proof language inHOL. The language is called SPL, standing for Simple Proof Language, and is based onthe theorem proving fragment of Mizar. The motivation of this implementation is toexperiment with possible ways of increasing the theorem proving power of the languageduring the mechanisation of a theory. The SPL language is extensible, in the sense thatthe user can implement new theorem proving constructs and include them in the syntaxof the language. Such extensibility is important because theory-speci�c proof procedures54

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 55which use facts derived during the development of a theory can be implemented. TheMizar language is not extensible, and this feature is often claimed to be desirable (seethe conclusions of (Rudnicki and Trybulec 1997)).Our work is in some respect similar to that done by Harrison (1996b) who im-plemented a Mizar mode in HOL. This mode is, however, very much based on thetactic-based environment in HOL since Mizar proof constructs are translated into HOLtactics. The SPL language is richer than the Mizar mode in HOL since, for instance,SPL scripts can be structured into sections to allow a more modular presentation. Theprocessing of SPL scripts is not based on HOL tactics. Recently, Syme (1997a) hasdeveloped a declarative proof language, DECLARE, for software veri�cation and usedit to verify the type correctness of Java (Syme 1997b; Syme 1998). This language is,however, not extensible, although this is suggested in the future work section of (Syme1997a).In the following section we illustrate the SPL language with a small example anddescribe the use of the SPL proof constructs. The processing of SPL scripts into HOLinferences is then described in section 4.3. The di�erent types of proof procedureswhich can be implemented to extend the language are listed in section 4.4, which alsodescribes the use of a database of trivial knowledge which can be used to derive trivialfacts automatically. A number of concluding remarks are then given in section 4.5.4.2 The Structure of SPL ScriptsThe SPL proof language is based on the theorem proving fragment of the Mizar languagealthough there are a number of di�erences between the two languages. In this sectionwe give an overview of the structure of SPL scripts by �rst illustrating it with the help ofa simple example, and then discussing the signi�cance of the di�erent SPL constructs.The syntax of SPL is given in Appendix A1.4.2.1 An ExampleFigure 5 gives an example of a small SPL script which contains one section and in whichthe following theorems are derived:R_refl =` 8R. Symmetric R) Transitive R)(8x. 9y. R x y)) Reflexive RR_equiv =` 8R. Symmetric R) Transitive R)(8x. 9y. R x y)) Equivalence RThe predicates Reflexive, Symmetric, Transitive and Equivalence are de�ned as follows:`def 8R. Reflexive R � (8x. R x x)`def 8R. Symmetric R � (8x y. R x y = R y x)1For comparison, the syntax of the Mizar language is available on the World Wide Web ashttp://www.mizar.org/language/syntax.html.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 56
section on_symm_and_transgiven type ":'a";let "R:'a ! 'a ! bool";assume R_symm: "Symmetric R"R_trans: "Transitive R"R_ex: "8 x. 9 y. R x y";theorem R_refl: "Reflexive R"proofsimplify with Reflexive, Symmetric and Transitive;given "x:'a";there is some "y:'a" such thatRxy: "R x y" by R_ex;so Ryx: "R y x" by R_symm, Rxy;hence "R x x" by R_trans, Rxy, Ryx;qed;theorem R_equiv: "Equivalence R"<Equivalence> by R_refl, R_symm and R_trans;end; Figure 5: An Example SPL Proof Script.
`def 8R. Transitive R � (8x y. R x y) 8z. R y z) R x z)`def 8R. Equivalence R � (Reflexive R ^ Symmetric R ^ Transitive R)These de�nitions are de�ned in HOL and are imported into the environment of SPLusing a number of appropriate functions (as will be described later in section 4.3).The �rst line of the script opens a section with name on_symm_and_trans which isclosed by the end; on the last line. Sections are opened in order to declare reasoningitems, which include the introduction of assumptions, the declaration and proof oftheorems, etc.The �rst two reasoning items in this section are called generalisations, and introducethe type variable :'a and the variable R so that they can be used in later reasoningitems. Type variables and HOL variables introduced by generalisations implicitly bind

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 57all their free occurrences in the formulae within their scope.2 In our case, the scopeof the variables :'a and R starts from their declaration and ends when the section isclosed.The two generalisations are followed by the introduction of three assumptions la-belled with R_symm, R_trans and R_ex. Labels are used to denote facts which includeaxioms, de�nitions, assumptions, theorems and the results in proof steps.The �rst theorem, R_refl, is then declared and proved. The proof consists of thelist of reasoning items between the proof and the qed constructs. The �rst line ofthe proof declares a number of simpli�ers which are used during the theorem provingprocess. This particular declaration states that the de�nitions of Reflexive, Symmetricand Transitive will be used automatically to simplify the assumptions and theoremsused in the proof. (In the particular implementation of the SPL on top of the HOLtheorem prover described in this chapter, the simpli�ers are applied during the �rststep of proof-checking.) As a result, the user does not have to use such de�nitionsexplicitly in later justi�cations. In other words, the use of the above de�nitions isassumed to be trivial in the context of this proof. A new generalising variable x is thenintroduced, the scope of which extends to the end of this proof. The next reasoningitem is an existential result. It introduces a new variable y and the result R x y labelledwith Rxy. The variable y existentially quanti�es all the statements in its scope (thatis, the proof). The result 9x.R x y is justi�ed by the fact denoted by the label R_ex,i.e., the assumption 8x.9y.R x y. Justi�cations of the form: : : by premise1, premise2, : : : ;are called straightforward justi�cations (see appendix A for the general form of suchjusti�cations). The conclusion of the justi�cation is derived automatically from thepremises using an inbuilt prover. The proof then follows to derive two more results,R y x and R x x, both of which are justi�ed using straightforward justi�cations. Cer-tain constructs such as so, hence, then, and therefore are ignored by the proof checker,and they are only used to make the proof more readable. In Mizar, such constructs areused to show that the previous result is used automatically in the justi�cation of thecurrent statement. The last derived result corresponds to the statement of the theoremand therefore it completes the proof.The second theorem is derived by a straightforward justi�cation. The expression<Equivalence> is a simpli�er declaration which is local only to the justi�cation.All declarations (assumptions, generalising variables, simpli�ers, etc.) with theexception of theorems, exist only within the section or proof they are introduced. Thescope of theorems starts from after they are justi�ed and extends to the end of the script.The theorems derived in the script given in �gure 5 can still be used outside sectionon_symm_and_trans, however their statements are expanded, or generalised, accordingto the variables and assumptions local to this section, that is to the statements givenin page 55.2Note that the representation of HOL terms does not include quanti�cation over types | all typevariables are implicitly universally quanti�ed. We use a simple mechanism for universally quantifyingtype variables explicitly which is described in section 4.3.2.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 584.2.2 Sectioning Proof ScriptsSPL scripts are structured into sections so that results whose proofs make use of thesame declarations can be organised together. The approach presented here is in somerespect similar to the sectioning mechanism of the Coq system (Barras et al. 1996).A proof script consists of a list of sections, and sections can be nested to improve theoverall structure of scripts. The advantages of declaring information locally can also beseen in the simple example given earlier in �gure 5. In particular, the statements of thetheorems declared in the proof script are shorter than their fully expanded form givenin page 55, and therefore:� Repetitive information in the statements of theorems is avoided, for instance theantecedents of the two theorems in our example are declared once as the assump-tions local to both theorems.� The unexpanded form of the statement of theorems in the section in which theyare derived is due to the fact that they are specialised by the information declaredlocally, which includes the generalising variables and assumptions. As a result,justi�cations using such theorems do not have to include the assumptions which areused in deriving them. For example, when the theorem R_refl is used in justifyingthe theorem R_equiv, there was no need to include the three assumptions used inderiving R_equiv. As a result, justi�cations which use unexpanded results areshorter, and also easier to proof check, than those which use the results in theirfully generalised form.� Since proof statements and proofs are shorter, scripts are easier to read.In order to maximise the advantages of readability and proof-checking e�ciency, scriptscan be organised by implementing proofs which share the same information in onesection. This results in a better overall structuring of the proof script, especially ifnested sections are used to present the hierarchical structure of the mechanised theory.A section corresponds to a local context within the SPL environment. All decla-rations, with the exception of theorems, exist and are visible from the line they aredeclared until the end of their context. As mentioned earlier, theorems exist from theirjusti�cation to the end of the script, and are expanded when their context is closed. Theexpansion mechanism involves the generalisation of the theorem according to the vari-ables and assumptions local to the context the theorem is speci�ed. Only the variablesfree in the theorem and the assumptions used in its proof are considered for expansion.This mechanism is described in more detail in section 4.3.5.Local contexts can also be created by other SPL constructs. For instance, proofscreate local contexts; all proof steps derived within a particular proof are local onlyto its context and therefore they cannot be used outside it. Declarations also can bespeci�ed locally to a segment of a script using the following construct.locallocal declarationsinscript segmentend;

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 59In this construct, the scope of the local declarations extends to the end of the scriptsegment. The scope of the declarations in this segment extends to the end of the contextthe local : : : in : : : end is speci�ed.4.2.3 Reasoning ItemsReasoning items correspond to the individual proof steps and declarations speci�ed inSPL scripts. The di�erent kinds of reasoning items are described below.Generalisations and AssumptionsGeneralisations introduce variables and type variables which universally quantify theirfree occurrences in the proof script formulae implicitly. Assumptions represent hypothe-ses which are introduced in order to be used in justi�cations. The free variables andtype variables of an assumption are automatically introduced as generalisations unlessthey have already been introduced earlier in the current context. Assumptions andvariables can also be introduced together by declaring quanti�ed assumptions, such asgiven some "x:num" and "y:num" such thatle_x_y: "x < y";Theorems and ResultsResults or facts are introduced by declaring them as labelled statements and then justi-fying them. Results which are required outside their section are speci�ed as theorems.Most results, however, are used only within the proof or section they are derived and canbe called proof step results, or simply proof steps. Proof steps can also be existentiallyquanti�ed, for example:there is some "x:num" and "y:num" such thatle_x_y: "x < y"justi�cation of 9x y: x < y ;The above statement is called an existential result and introduces the variables x andy in the current context and the result labelled with le_x_y. The variables x and yexistentially quantify all the formulae in their context. The di�erent kind of justi�cationswhich can be used in deriving results are discussed in section 4.2.4.AbbreviationsArbitrary terms can be represented by an abbreviation which can be declared locally.For example, the abbreviation declarationdefine y_def: "y = (x * 2 + 1)";introduces the variable y as an abbreviation for x * 2 + 1. It also introduces the as-sumption y = x * 2 + 1 labelled with y_def so that it can be used to substitute theabbreviating variable with the term it represents. An abbreviating variable implicitlybinds all its free occurrences in the formulae in its context. The role of abbreviationsis to reduce the size of sentences, which results in better readability of SPL scripts andalso in faster proof-checking.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 60Declaring Simpli�ersSimpli�ers are proof procedures which modify sentences, usually into an equivalentsimpler form (hence the term simpli�ers). Simpli�ers are denoted in SPL by an identi�er.For example, the identi�er lambda denotes a proof procedure which normalises termsin the lambda calculus into ��-long normal form. The labels of facts which consist ofequalities denote a simpli�er which uses the fact as a rewriting rule. The user can alsoimplement simpli�ers as HOL proof procedures during the mechanisation of a theoryand associate SPL identi�ers with them.Simpli�ers can be declared so that sentences are automatically simpli�ed when theyare speci�ed. For example, the conclusion and premises of a straightforward justi�cationare simpli�ed according to the declared simpli�ers during proof search. The declaredsimpli�ers are applied one by one (no particular order should be assumed) until none isapplicable. A term rewriting system can therefore be used to simplify terms by declaringthe equalities representing the rewrite rules of the system as simpli�ers.A number of mathematical theories are canonisable, that is, their terms can beuniquely represented by a canonical, or normal form. Theories whose terms can be nor-malised e�ectively have a decidable word problem since two terms are equal if and onlyif their respective normal forms are syntactically identical. The main role of simpli�ersis to allow the user to implement theory-speci�c normalisers so that the equality ofterms does not have to be proved explicitly.The discovery of normal forms is a very important task in mathematics and themathematical literature often includes methods of transforming terms into their normalform. The implementation of normalisers is actually a formal way of representing suchmethods. We therefore argue that the implementation of normalisers is an essentialpart of a formal mathematical text. The use of simpli�ers for the normalisation ofterms has been used in our case study in chapter 9 to reduce the length of formal proofsconsiderably. We also believe that this has improved the readability of the proofs sincenormalisations are often considered to be trivial in informal proofs once they have beendiscovered and documented. This underlines our argument that the implementation ofnormalisers, and proof procedures in general, should be considered as an important partof the mechanisation of mathematics.Declaring Trivial FactsFacts which are considered trivial can be stored in a knowledge database which can beused by SPL proof procedures during proof-checking. The database organises facts intocategories, and the SPL language includes the knowledge declaration construct of theformconsider Category Fact1, Fact2, : : : ;to store the facts Fact1;Fact2; : : : in the category Category . These facts can thenbe used automatically by the proof procedures which are able to query the knowledgedatabase. The use of the knowledge database is described in more detail in section 4.4.1.4.2.4 Proofs and Justi�cationsThe statements of theorems and proof step results are followed by their justi�cation. Thelength and complexity of justi�cations ranges from one line in the case of straightforward

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 61justi�cations, to several possible nested arguments. We refer to the statement which aparticular justi�cation is deriving as the conclusion of the justi�cation.Straightforward Justi�cationsStraightforward justi�cations are the simplest kind of justi�cations and consist of theby construct, an optional prover name, and the arguments of the prover. A prover isa (HOL) decision procedure which derives the conclusion of the justi�cation from thegiven arguments. For example, a decision procedure for proposition logic can be usedto justify the conclusion (A) B) from the arguments A) (C _ B) and C) B.If no prover name is given, a default one is assumed. In the examples given in thischapter, the default prover is assumed to be a tableau-based prover for �rst-order logicwith equality. The calculus this prover implements is complete for �rst-order logicwith equality. However, because of the simplicity of the justi�cations of SPL scripts,very restrictive resource bounds are used during the proof search process so that onlya small �nite search space is considered. The identi�er of this prover is fol, and itsimplementation as a HOL proof procedure is described in the next chapter. The folprover takes a possibly empty list of sentences as an argument. A number of
ags canalso be speci�ed before or after the prover name. For example, the following statementuses the
ag pure which instructs the �rst-order prover not to give special treatment toequalities."8 x y. (x = y) _ :(x = y)" by pure fol;A list of simpli�ers can be speci�ed before the by token as illustrated in the justi�cationof the last theorem in �gure 5.The default prover used in the case study in chapter 9 takes an expression con-structed by a number of sentences and the operators on, then and and, in order toincrease the readability of the scripts and for proof-checking e�ciency. Such structuredjusti�cations are introduced in chapter 6.Proof Justi�cationsThe proofs of theorems usually consist of several arguments rather than a straightfor-ward justi�cation. Such arguments are given in a proof justi�cation which consists of asequence of reasoning items enclosed between a proof and a qed or end.A proof justi�cation creates a new context in the SPL environment in which thenecessarily proof results are derived. A number of results can be declared as beingrelevant for the justi�cation of the prover using the case directive, as illustrated by theexample in �gure 6.The conjunction of the relevant results is expanded according to the variables andthe assumptions introduced in the proof. If no results are speci�ed as relevant, the lastresult derived in the proof is instead expanded and used for justifying the conclusionof the proof. The expanded result (or conjunction of the relevant results) is calledthe justifying fact, and the aim of a proof justi�cation is to construct an appropriatejustifying fact. An optional straightforward justi�cation can be speci�ed after the qedstatement in order to be used with the justifying fact to derive the proof conclusion.Such a straightforward justi�cation can also be speci�ed at the start of the proof usingthe proceed construct, as shown below.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 62
theorem Rel_equiv: "Equivalence Rel"proofcase "Reflexive Rel"prooflet "x:'a";..."Rel x x" by : : : ;simplify with Reflexive;end;case "Symmetric Rel"proofgiven "x:'a" and "y:'a" such thatxRy: "Rel x y";..."Rel y x" by : : : ;simplify with Symmetric;end;case "Transitive Rel"proofgiven "x:'a", "y:'a" and "z:'a" such thatxRy: "Rel x y" andyRz: "Rel y z";..."Rel x z" by : : : ;simplify with Transitive;end;simplify with Equivalence;qed; Figure 6: Declaring Relevant Proof Step Results in SPL Proofs.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 63theorem "8 n. n � Factorial n"proofproceed by induction on "n";case base: "0 � Factorial 0"proof...end;case ind: "(n � Factorial)) (SUC n � Factorial (SUC n))"proof...end;qed;where induction is assumed to be the identi�er of a prover which uses the principle ofmathematical induction on the conjunction of the base case and the induction step caseto justify its conclusion.If no straightforward justi�cation is speci�ed, a default prover (fol in the case ofthe examples given in this chapter) is used.The above treatment of proof justi�cations is di�erent from that used by other sys-tems which include the Mizar mode in HOL of Harrison (1996b). In Harrison's systemreasoning items are used in a proof to break down the conclusion which can be referredto by a thesis directive. For example, the introduction of an assumption within a proofcorresponds to the application of the HOL tactic DISCH_TAC which simpli�es a conclu-sion (thesis) of the form A) C into C and includes the assumption A. As a result,the structure of the proofs in this system are very much based on the structure of theirconclusions. The structural dependency of a proof on its conclusion is also observed inMizar proofs. On the other hand, SPL proofs construct a justifying fact irrespectiveof the structure of their conclusion. The derivation of the conclusion from the justi-fying fact is then done automatically, or as instructed by the optional straightforwardjusti�cation. This particular approach o�ers greater
exibility in the way proofs areimplemented. For instance, the user can formulate a theorem in a statement which isadequate for its later use, and proceed to prove an equivalent statement whose structuremay make it easier to prove. To illustrate this, van Gasteren (1990) gives the examplethat results stating the symmetry of some relation � are more useable if they are for-mulated by an equality x � y = y � x, although it may be easier to prove the statementx � y) y � x; an equality is used in the de�nition of symmetry in page 56, but thejustifying statement of the relevant subproof in �gure 6 is an implication ("Rel x y" isassumed and "Rel y x" is derived).We believe that this approach is more true to the declarative style of reasoning thanone in which the structure of proofs is greatly in
uenced by their conclusion. Withhindsight, however, most proofs in the case study illustrated in chapter 9 proceed bygeneralising on the universal variables of the conclusion, and introducing its antecedentsas assumptions (though not necessarily in the same order as they are speci�ed in theconclusion). As a result, the provers which automate the derivation of the conclusion

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 64from a justifying statement may assume that these probably have a very similar structurein order to increase the proof-checking e�ciency.Iterative EqualitiesSimilarly to Mizar, results can be justi�ed by iterative equalities such as:abc: "a + (b + c) = a + (c + b)" by commutativity." = (a + c) + b" by associativity." = (c + a) + b" by commutativity;This justi�cation derives the result "a + (b + c) = (c + a) + b" labelled with abc.The structure of such calculational justi�cations greatly improves the readability andwritability of proof scripts. In SPL, one can also label the individual lines, as inabc: "a + (b + c) = a + (c + b)" (1) by commutativity." = (a + c) + b" (2) by associativity." = (c + a) + b" by commutativity;such that fragments of the above sequence can also be referred to later. Given twolines labelled with l1 and l2, one can use the label abcfl1-l2g to refer to the result"R1 = R2" where Ri refers to the term on the right hand side of the equality in the linewith label li. Similarly, the label abcf-lig refers the result "L = R2" and abcfli-g refersto "Ri = R" where L is the left hand side term of �rst line, and R is the one on the righthand side in the last line. In our example, the following labelled results are derived:abcf-1g: "a + (b + c) = a + (c + b)" abcf-2g: "a + (b + c) = (a + c) + b"abcf1-2g: "a + (c + b) = (a + c) + b" abcf1-g: "a + (c + b) = (c + a) + b"abcf2-g: "(a + c) + b = (c + a) + b" abc: "a + (b + c) = (c + a) + b"The syntax for iterative equalities can be extended to consider other transitive re-lations apart from equality, and the SPL knowledge database can be used to storethe required transitivity results required by the proof checker. This feature was notimplemented in the proof checker in HOL since its use was not required during thedevelopment of the case study.Case SplittingA case splitting justi�cation corresponds to the natural deduction rule for eliminatingdisjunctions, and has the following structure:"C"consider cases [straightforward justi�cation of A1 _ � � � _ An ;]suppose "A1": justi�cation of C...suppose "An": justi�cation of Cend cases;

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 65
Sentence = [< Simpli�ers >] Unsimpli�ed SentenceUnsimpli�ed Sentence =[[Abstractions]] (Label Identi�er j Formula) [[Applications]]j Compound SentenceCompound Sentence =(Compound Sentence)j Rule Identi�er Rule ParamsRule Identi�erFigure 7: The Syntax of SPL Sentences.

4.2.5 SPL SentencesSPL sentences are the expressions in the syntax of the language which denote facts.In their simplest form, sentences consist of the label denoting some fact in the currentenvironment, such as a derived result or an assumption. A sentence can also consistof a HOL formula, in which case the formula is introduced as an assumption (unlessit already occurs as a fact in the environment) so that the sentence can denote it.However, as shown by their syntax given in �gure 7, sentences can be constructed byapplying a number of inferences which include simpli�cations, abstractions (generalisa-tions), applications (specialisations) and other inference rules implemented during themechanisation of a theory.Simpli�cationsSimpli�ers can be applied to individual sentences so that the facts they represent areautomatically simpli�ed with the applied simpli�ers as well as with those declared inthe environment. Since a fact consisting of an equality can be denoted as a simpli�erto represent a rewriting rule, one can use expressions of the form: : : <Rule>Sentence : : :to use the fact Rule to rewrite the fact denoted by Sentence during proof-checking. Theuse of such explicit rewrites for equality reasoning can reduce the proof-checking time,although if overused it results in a procedural style of proof implementation which canbe hard to follow.AbstractionsThe facts introduced in a context are specialised according to the locally declared vari-ables and assumptions. As a result unnecessary inferences such as variable instantiationsare avoided during proof-checking. However, during the implementation of a proof, onemay need a more general form of a result than the one which is available in the currentcontext. The role of abstractions is to generalise a fact according to the variables and

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 66assumptions introduced in its context which implicitly specialise it. This inference cor-responds to the way functions can be constructed by lambda abstraction in functionalprograms and the lambda calculus. SPL facts can be generalised using the followingthree kinds of abstractions:� Generalising type variables so that they can be instantiated,� Generalising variables occurring freely in a fact so that it can specialised,� Discharging assumptions deriving a fact, so that free variables in the assumptionscan be generalised by the above kind of abstraction, and the resulting fact can beapplied to di�erent facts.Type variable and free variable abstractions are denoted by the abstracted HOL typeor term. Assumption abstractions are denoted by the label of the assumption. We �ndthe inferences given by abstractions to be very useful when the sectioning mechanism isused to structure proof scripts. Figure 8 illustrates the use of abstractions to generalisethe local statement of the fact Q_P from P x into 8x.Qx) P x.ApplicationsApplications are the inverse of abstractions, in the sense that they involve the explicitspecialisation of facts. The possible kinds of applications include:� Instantiating type variables.� Specialising universally quanti�ed facts.� Eliminating implications through the rule of Modus Ponens.Although in a declarative language abstractions can be unambiguously determined bythe name of the free variable or by the label of the assumption, in general applica-tions cannot. For example, it is not clear whether the application of the statement8x; y:P (x; y) to some constant term c should result in 8y:P (c; y), 8x:P (x; c) or P (c; c)unless applications are de�ned procedurally according to a well speci�ed algorithm. Therole of applications is to reduce the search space through explicit instantiations and elim-ination of implications. It should be noted that an instantiation of a variable may resultin specialising a higher-order theorem into a �rst-order one, and can therefore greatlyreduce the proof-checking time. Since such inferences can be of a great advantage, thefollowing applications are supported by SPL:� type variables can be instantiated simultaneously with each other by an explicitsubstitution,� (term) variables can be instantiated individually, either by an explicit substitution,or by giving a term in which case the �rst variable (reading the term from leftto right) in the sentence matching the type of the term is instantiated. In eithercase the variable to be instantiated is moved to the beginning of the theorem bythe usual rules which transform (classical) formulae into prenex form before thetheorem is specialised.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 67

let "x:'a" and "y:'a";section on_Passume Px: "P x"and Py: "P y";theorem P_unique: "x = y" by Px, Py, : : : ;end on_P;section on_Qassume Qx: "Q x";theorem Q_P: "P x" by Qx, : : : ;assume Qy: "Q y";theorem Q_unique: "x = y"proofPy: "P y" by ["x",Qx] Q_P, Qy;"x = y" by P_unique, Q_P, Py;end;end on_Q; Figure 8: The Use of Abstractions.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 68The applications which correspond to the elimination of implication are not considered.We remark that the e�ect of this kind of applications (i.e.,Modus Ponens) can beachieved by using structured justi�cations as described in section 6.2.2, page 102.Alternatives to the approach described above include the representation of variableapplications simply by terms (rather than explicit substitutions) and proof search heuris-tics can be developed for focusing the instantiation of variables according to the givenapplications3. It is not clear, however, whether such an approach would result in sub-stantial e�ciency gains. One can also modify the representation of HOL terms so thatsubterms can be labelled. This would allow the user to state explicitly which hypothesisis being eliminated so that implication-elimination application can be implemented.Inference RulesA sentence can also be constructed by applying some inference rule explicitly. Aninference rule is denoted by an identi�er, and the user can implement theory-speci�cHOL inference rules and include them in the syntax of SPL during mechanisation.However, the use of inference rules in the construction of sentences is not encouragedbecause of its procedural nature. The only SPL inference rule which is implemented hasthe identi�er select and is used to construct facts involving the Hilbert choice operator.It takes a variable v and a sentence denoting some fact P [v] and derives P ["v:P [v]].4.3 Proof Checking SPL Scripts in HOLThe proof checker of the SPL language implemented in HOL processes proof scripts intwo steps:� Parsing the input text into an internal (ML) representation of the language con-struct;� Processing the constructs to modify the environment of the proof checker.The SPL state is represented by an ML object of type reason_state and consists of theinput string and the environment of type reason_environment. The implementation ofthe proof checker consists of a number of ML functions which parse and process SPLconstructs. Such functions take and return objects of type reason_state. A number ofother functions which act on objects of type reason_state are also implemented. Theseinclude functions which extract proved theorems from the SPL environment so that theycan be used in HOL, add HOL axioms, de�nitions and theorems to the environment,and add new input text in order to be parsed and processed.The processing of SPL scripts can therefore be invoked during a HOL theoremproving session by calling the appropriate ML functions. As a result, the user canimplement an SPL script, process it within a HOL session and use the derived resultsin HOL inference rules and tactics or in the implementation of proof procedures inML. Moreover, the SPL language is extensible: the user can implement HOL proofprocedures and include them in the language syntax. Therefore, one can develop atheory by repeating the following steps:3For example, one can give priority to instantiations suggested by the applications over those sug-gested by uni�cation during proof search.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 69(i) deriving a number of theorems using SPL proofs,(ii) using the derived theorems in the implementation of HOL proof procedures,(iii) extending the SPL language to make use of the new proof procedures.This approach combines the readability of SPL proofs with the extensibility of the HOLsystem. The mechanisation of group theory described in chapter 9 is developed usingthis approach. In this case, new proof procedures were implemented as the theory wasmechanised in order to automate the proof steps which would be considered trivial bythe reader.ML references are used to store the functions which parse and process the SPLlanguage constructs (including the processors of reasoning items) so that they can beupdated by the user during the development of a theory. This implementation designwas originally used to allow the author to alter the syntax and semantics of the lan-guage easily during the development of a theory when the implementation of the SPLlanguage was still in its experimental stages. However, we now believe that the
exi-bility o�ered by this design can indeed be a desirable feature of proof languages. Thisallows the proof implementor, for instance, to include new reasoning items (rather thanjust proof procedures) which make use of derived theorems during the implementationof a theory. One can also change substantial parts of the syntax of the language to onewhich is believed to be more appropriate to the particular theory being mechanised.Ideally, any alterations made to the syntax of the language should be local to particularsections. In order to achieve this, one needs a number of design changes to the currentimplementation of the language since the use of ML references allows the user to updatethe syntax globally rather than locally.In the following sections we �rst look at how the SPL environment and facts arerepresented and then describe the parsing and processing mechanisms.4.3.1 The Environment of SPLThe SPL environment consists of the information which has been declared or derivedby the SPL constructs. Because of the hierarchical structure of SPL scripts, the envi-ronment is structured as a stack of layers containing the information declared locally.An empty layer is created and pushed on top of the stack at the beginning of a sectionor proof. Processing reasoning items a�ects only the information in the top layer. Atthe end of a section or proof, the top layer is popped from the stack and all the infor-mation stored in this layer, with the exception of theorems, is destroyed. Theorems areexpanded and inserted into the new top layer. We say that a layer has been openedwhen it is pushed on top of the environment stack. We also say that a layer has beenclosed when it is popped from the stack.Each layer contains a list of locally derived or assumed facts labelled by their identi-�er, a list of variables and type variables introduced by reasoning items, a list of declaredsimpli�ers, a list of facts stored in the trivial knowledge database and some other in-formation (e.g., the name of the section, the current conclusion in case of a proof layer,etc.).There are three kinds of variables which can be introduced:Universal variables which are introduced by generalisations and quanti�ed assump-tions,

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 70Existential variables which are introduced by existential results,Abbreviating variables which are introduced by abbreviations.These kinds of variables implicitly bind all their free occurrences in the formulae speci�edin their context, and can be called binding variables.4.3.2 The Representation of SPL Facts in HOLSPL facts are represented by pairs (vl, � ` t) where vl is a list of type variables, and� ` t is a HOL theorem. The conclusion t represents the statement of the fact, and thehypothesis list � is the list of SPL assumptions used in deriving it. Any type variablesin vl universally quantify the statement t. The type variables occurring in t but notin vl do not universally quantify the fact t and therefore cannot be instantiated duringproof search.The list of type variables quantifying SPL facts is required in their representationbecause the HOL term syntax does not include explicit quanti�cation over types. Typevariables are included in the simple types of HOL in order to construct polymorphictheorems. The scope of type variables includes both the theorem hypotheses and theconclusion, and therefore polymorphic HOL theorems can be assumed to be `templates'which can generate new theorems through type instantiation. A theorem � ` t can beseen as being universally quanti�ed by all the type variables which occur in it, that is:8 TyVars�` t: (� ` t)where TyVars' represents the type variables in '. However, the HOL rule for typeinstantiation, INST_TYPE restricts the instantiation to the type variables which are notfree in the hypotheses �, although the more general rule of instantiating all the typevariables occurring in a theorem can be easily derived by discharging the hypotheses,instantiating, and undischarging the hypotheses back. This suggests that type variablesare seen as quantifying only the conclusion of a theorem, that is, a polymorphic theorem� ` t is visualised as � ` 8(TyVarst � TyVars�): tThis particular visualisation somehow corresponds to the HOL approach of consideringthe list of hypotheses more of a working space during theorem proving rather than aspart of the theorem statement.We cannot assume that SPL formulae are implicitly quanti�ed by all the type vari-ables occurring in them since one cannot instantiate the type variables which occurin the assumptions of a proof. Such an instantiation would require the instantiationof the type variables in the assumptions as well in order to be sound. Therefore, thetype variables occurring in the assumptions are introduced as generalisations so thatthey bind the type variables of the formulae speci�ed in the proof, and therefore cannotbe instantiated during theorem proving. On the other hand, one cannot eliminate alltype instantiations as otherwise polymorphic theorems could not be used. As a result,in order to use type variables soundly and e�ectively, one is required to specify whichtype variables occurring in SPL facts can be instantiated. This explains why the typevariables quantifying facts are included in their representation.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 714.3.3 Parsing Proof ScriptsThe object embedding system of Slind (1991) is used to embed the SPL language inSML. Basically, using this system the text of SPL scripts and script fragments is enclosedin backquotes (`) so that they can be easily written and read. The texts are howeverinternally represented as ML objects from which ML strings representing the lines ofthe proof texts can be extracted. Once extracted the strings are then parsed using theSPL language parser.The SPL language uses the HOL syntax for terms and types. SPL expressionsrepresenting terms and types are given to the internal HOL parser after a simple pre-processing stage which, for instance, gives the type :bool to expressions representingformulae, and inserts types for any free variables in terms according to the types of thecurrent list of binding variables.The implementation of the parser is quite straightforward, and is based on the syntaxgiven in appendix A.4.3.4 Processing SPL ConstructsThis section lists the e�ect of processing the individual SPL constructs.SectionsAs described in section 4.3.1, a section opens a new layer which is closed at the end ofthe section.Local DeclarationsLocal declarations of the formlocallocal declarationsinscript segmentend;are processed by �rst opening a new layer to store the local declarations. When theseare processed, another layer is opened to store the declarations in the script segment. Atthe end of the script segment, the two layers are closed and the information stored in thesegment layer is transferred to the original layer which is now on top of the environmentstack (see �gure 9). Any results derived in the script segment are expanded accordingto the variables and assumptions introduced in the local declarations. For example,after the script fragment given below is processed, the label Qx will denote the fact8x:num.P x) Q x.locallet "x: num";assume Px: "P x";inQx: "Q x" by Px;end;

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 72
Segment
Layer

Local

Declarations

Local

Declarations

Segment

Layer

Information

Figure 9: Processing Local Declarations.
GeneralisationsGeneralisations introduce variables and type variables as universal variables.AssumptionsAn assumption of a labelled formula L:A introduces the fact ([],A ` A) with label L.ResultsA theorem or proof step result opens a new layer to store the declarations of its justi�-cation. The justi�cation proceeds by constructing a justifying fact which is used in thederivation of the conclusion of the result (see section 4.2.4). The justi�cation layer isclosed when the conclusion is derived which is then included as a fact.Existential ResultsExistential results of the formthere is some x such thatL: "P x"justi�cation of 9x:P x ;are justi�ed in the same way as non-existential results are. When the existential fact([],� ` 9x:P x) is derived using some assumptions �, the variable x is introduced as anexistential variable, and the fact ([],P x ` P x) is introduced with label L. As a result,the label L denotes the expected statement, but all results derived in the current contextusing it will have the assumption P x rather than �. The justi�ed fact ([],� ` 9x:P x) isthen used to replace the assumption P x with � when such results are expanded. Thisis explained in detail in section 4.3.5 below.AbbreviationsAn abbreviation L:"a = t" introduces the variable a as an abbreviating variable. Thestatement of the abbreviation is introduced as an assumption.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 73Declarations of Simpli�ers and Trivial FactsThe declarations of simpli�ers and trivial facts are simply included in the top layer ofthe environment stack.4.3.5 Expanding SPL FactsWhen an environment layer is closed, theorems are expanded, or generalised, accordingto the assumptions and binding variables used in deriving them. The expansion processis performed as follows:1. The result is �rst expanded according to the introduced binding variables. Thevariables are considered in the reverse order they are introduced, and the e�ect ofthe expansion is as follows:� Expanding according to a universal variable, u say, involves the dischargingof all the assumptions in which u occurs freely and then generalising theresult if u is free in its conclusion.� An existential variable, x, is introduced only when some existential result([],� ` 9x:P x) is derived. The theorems using this result will have the as-sumption P x rather than � and the role of the expansion process is to replacethe assumption P x with �.Expanding with x proceeds by discharging all hypotheses, with the exceptionof P x, which contain a free occurrence of x, and introducing the existentialquanti�er if x is free in the conclusion of the theorem. The assumption P x isthen removed by eliminating the existential quanti�er from the derived fact([],� ` 9x:P x). For example, if after discharging the relevant assumptionsand introducing the existential quanti�er the statement of the theorem hasbeen expanded to �;P x ` 9x:Qthe hypothesis P x is then replaced with � by� ` 9x:P x �; P x ` 9x:Q�;� ` 9x:Q CHOOSE (x,� ` 9x:P x)where CHOOSE: term � thm ! thm ! thm is the following HOL inferencerule: �1 ` 9x:s �2; sfx ! vg ` t�1;�2 ` t CHOOSE (v, �1 ` 9x:s)� If a local abbreviation a = t is introduced, the variable a needs to be replacedwith the term it abbreviates if it occurs in the statement of some theoremswhen the current layer is closed. Basically, this substitution (in both hypothe-ses and conclusion of the theorems) is done using the assumption a = t. Thisassumption is then discharged from the hypotheses of the theorem, the vari-able a is generalised and then specialised to the term t, which results in thetautological antecedent t = t which can be easily eliminated.2. Any local assumptions which are not discharged during the previous step are nowdischarged.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 743. The result is then universally quanti�ed with any type variables introduced locally.4.4 Proof SupportThe following kinds of proof procedures are supported by the SPL language. The usercan implement any of these kinds of proof procedures in ML during the developmentof a theory, associate SPL identi�ers with them, and include them in the syntax of thelanguage.Inference Rules which allow the user to derive facts in a procedural manner usingany forward inference rule. The use of these rules is not encouraged because itmay reduce the readability of proof scripts.Simpli�ers which can be used to normalise terms, and to perform calculations whichwould be considered trivial in an informal proof. Any HOL conversions can beincluded by the user as SPL simpli�ers.Proof Search Procedures which are used to derive the conclusions of straightforwardjusti�cations. The following provers are used to support the proof-checking of SPLscripts:fol the tableau calculus for �rst-order logic with equality described in the nextchapter.cfol the fol prover modi�ed for coloured �rst-order logic. (see chapters 7 and 8,and in particular section 8.5.)taut a tautology checker.The SPL implementation includes a knowledge database which can be used to storefacts which are considered to be trivial. This database can be queried by any of theabove kinds of proof procedures in order to obtain trivial facts automatically. The useof this database is described in the next section.4.4.1 A Database of Trivial KnowledgeOne major di�erence between formal and informal proofs is the level of detail betweenthe two. Informal proofs contain gaps in their reasoning which the reader is requiredto �ll in order to understand the proof. The author of an informal proof usually hasa speci�c type of reader in mind, one who has a certain amount of knowledge in anumber of mathematical �elds, and one who has read and understood the precedingsections of the literature containing the proof. The author can therefore rely on his,usually justi�ed, assumptions about what the intended reader is able to understandwhen deciding what to include in an informal proof and what can be easily inferred bythe reader, and can (or must) therefore be unjusti�ed. For example, if one assumes thatsome set A is a subset of B, and that some element a is a member of A, then the inferencewhich derives the membership of a in B can usually be omitted if the reader is assumedto be familiar with the notions of set membership and containment. On the other hand,the case studies described in chapter 3 show that even when a substantial fragment of atheory has been developed, formal tactic proofs may still contain inferences which usetrivial results which have been derived much earlier in the mechanisation.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 75Since the need to include explicitly such trivial inferences in most formal proofsystems results in the observed di�erence between the size and readability of formaland informal proofs, we have experimented with the implementation of a simple user-extensible knowledge database which proof procedures can query to derive trivial factsautomatically.The knowledge in the database is organised into categories each containing a list offacts. New categories can be added during the development of a theory. For example, inorder to derive the trivial inference illustrated in the example given earlier this section,one can include a membership category with identi�er in_set in order to include factsof the form x is a member of X, and a containment category subset which includesfacts of the form X is a subset of Y . SPL facts can then be stored in the databaseduring proof implementation using the construct:consider in_set a is a member of Asubset A is a subset of B ;In order that these facts can be used by proof procedures, the user is also required toimplement ML functions which query the database. Such functions take the knowledgedatabase as an argument together with a number of other arguments depending on thecategory they query. For example, a function to query the in_set category may takea pair of terms representing an element and a set. Query functions return a theoremwhen they succeed. ML references can be used to store the searching routine of thequery function so that it can be updated during the development of a theory, as shownin the SML fragment in �gure 10.The user can then implement proof procedures (such as simpli�ers) which call thisquery function.Query functions can also be implemented to handle existential queries. For examplean existential query function for the subset category can take a set X as an argumentand looks for a fact of the form X subset of Y for some set Y . A di�erent existentialquery function on the same category would look for some fact Y subset of X. Sincemany such facts may be derived by the knowledge database, existential query functionsare implemented to return a lazy sequence of facts satisfying the query.Query functions can be updated when new results are derived which can be used inthe automatic deduction of trivial facts. For example, given the derived fact8x;X; Y:(x is in X)) (X subset of Y)) (x is in Y)one can then update the in_set query function so that given some query a is in B it1. calls the appropriate existential subset query function to check whether there issome set A such that A subset of B can be derived from the database, and2. queries in_set (recursively) to check whether a is in A for some A satisfying theprevious query.Given the required facts, the new in_set query function can then derive and returnthe fact a is in B using the above result. As the search function is stored in an MLreference, updating a query function a�ects the behaviour of all the proof procedureswhich use it.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 76

fun in_set_search kdbs (e, s) =look for the fact ``e is in s" in kdbsand return it if found ;otherwise raise an exceptionlocal(* store the search function in a reference *)val in_set_ref = ref in_set_searchin(* the query calls the stored search function: *)fun in_set kdbs query = (!in_set_ref) kdbs query(* updating the query function *)fun update_in_set new_qf =let val old_in_set = !in_set_reffun new_in_set kdbs query =old_in_set kdbs query (* try the old query : *)handle _ => (* if it fails *)new_qf kdbs query (* try the new one: *)in in_set_ref := new_in_set (* update the store function: *)endend; Figure 10: The Implementation of a Query Function.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 77Since some search is needed in the handling of most queries, and since the samequery may be made several times during theorem proving, the output of successful non-existential queries is cached to avoid repeated search. In the current implementationcaches are stored globally and are reset when a layer containing knowledge which cana�ect the query concerned is closed. A better approach would be to store caches locallyin each layer.Case studies involving the implementation of formal proofs in SPL showed thatthe length of the proofs can be substantially reduced through the use of a knowledgedatabase. This reduction of proof length is due to the implementation of theory-speci�cquery functions which make use of derived theorems, as well as the implementation ofproof procedures which are able to query the database. We notice that the implemen-tation of such functions with the intention of minimising the di�erence between formaland informal proofs involves the understanding of what authors of informal proofs con-sider to be trivial by the intended reader. Therefore, the implementation of functionscapable of deriving facts which are considered to be trivial by a knowledgeable reader isa formal means of illustrating what can be considered obvious in some particular proofand how such obvious facts can be derived. We argue that this is a formal means ofrepresenting a particular kind of knowledge and understanding in a mathematical �eldother than giving a list of detailed formal proofs. We believe that the presentation ofsuch information should be included in a formal development of a mathematical �eld.In our case study, the only proof procedures which use the knowledge database arethe simplifying procedures. The main reason for this is the fact that the proof searchprocedures were implemented before the experimental database was designed. However,in principle the proof procedures can be redesigned and implemented to be able to querythe database. We will consider this area for future work and believe that the length offormal proofs can be greatly reduced with such a feature.4.5 ConclusionsIn this chapter we have illustrated the implementation of an extensible proof language inthe HOL system. The language supports a declarative style of proof implementation andis very similar to the Mizar language although the two languages di�er in many aspects.In particular the proof-checking power of the SPL proof language can be extended duringthe development of a theory by implementing proof procedures which make use of resultsderived in earlier sections of the theory. We have argued in section 2.5.3 (page 25) thatsuch extensibility of a proof language is necessary for the implementation of machinecheckable proofs which can also be followed by a human reader. During the developmentof a particular theory, the user can extend:� the proof procedures used to justify the proof statements,� the simpli�ers which normalise terms into canonical forms;� the inference rules used to derive facts in a forward manner (although it is sug-gested that the frequent use of such rules should be avoided because of theirprocedural nature); and,� the knowledge database by adding new knowledge categories, and by implementingand updating appropriate query functions.

CHAPTER 4. A DECLARATIVE PROOF LANGUAGE IN HOL 78The user can also extend the syntax and semantics of the language by updatingor modifying the language parser and processor. However, the author has not yetexperimented with extensive case studies on using such a feature, although its use inthe mechanisation of mathematics seems to be advantageous.ML references are used in order to store the functions which may be updated bythe theory developer. It is desirable that the above-mentioned extensions be local toparticular theories, or to theory sections, and this requires a number of design changesto the current implementation.A sectioning mechanism is used to structure theories in a modular fashion. As-sumptions and other information can be declared local to certain sections and, with theexception of proved theorems, local information is not visible in di�erent contexts.We strongly believe in the necessity of the extensibility of the language since, sim-ilarly to informal mathematics, formal mathematical texts should not include only theimplementation of proofs. Informal mathematics also includes, amongst other thingssuch as examples and counterexamples, techniques for �nding the normal forms of terms,algorithms for speci�c calculations, rules of thumbs for �nding the proofs of theorems,etc. A formal way of presenting these is by implementing the appropriate proof proce-dures, which also results in reducing the length of formal proofs. If such proceduresare used to minimise the di�erence between formal and informal proofs, then they alsocontribute to the comprehensibility of formal mathematical texts.

Chapter 5A Tableau Prover as a HOLDerived Rule5.1 IntroductionIn the previous chapter we illustrated the simple proof language SPL and the implemen-tation of a proof checker for this language in the HOL proof development system. Thisproof checker derives HOL theorems from SPL facts and it is supported by a number ofuser-de�ned and inbuilt proof procedures. In particular, a tableau prover for �rst-orderlogic with equality is used to check most of the straightforward justi�cations of SPLresults. This prover is implemented as a derived rule in HOL, and in this chapter weillustrate the proof calculus used and its implementation.The design of proof calculi for the automated deduction of theorems in �rst-orderlogic with equality, and the implementation of proof procedures based on such calculiis in general not a trivial task because of the many ways equations can be used to inferresults. In particular, the handling of equality in tableau-based calculi needs specialattention since the problem of deciding whether a tableau can be closed by consideringonly its literals is undecidable (Voda and Komara 1995). The calculus implemented asa HOL derived rule is based on the T BSE calculus of Degtyarev and Voronkov (1998)which gives a complete semi-decision procedure for �rst-order logic with equality despitethis problem.In order to guarantee the correctness of the theorems derived in the HOL system, allHOL inferences are performed by a simple core inference engine. The implementationof the tableau calculus as a HOL derived rule therefore requires the use of this inferenceengine in deriving the required theorem. For e�ciency reasons the proof search stageof the algorithm does not use the HOL representation for terms and theorems, andonly when a closed tableau is found is the core inference engine used to derive a HOLtheorem.The de�nition of the calculus is given in the next section, and its implementation ofthe HOL derived rule is described in section 5.3. Since the derived rule can only be usedto reason with �rst-order formulae, a mechanism for translating higher-order formulaeinto equivalent �rst-order ones is described in section 5.4. A number of concludingremarks and directions for future work are given in section 5.5.In this chapter we use the notation s � t to ambiguously represent the equationsx = y and y = x. Similarly, we use x 6� y for both :(x = y) and :(y = x).79

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 805.2 A Clausal Tableau with Rigid Basic SuperpositionThe calculus described here refutes a list of clauses (skolemised �rst-order sentencesin conjunctive normal form) by looking for a closed tableau (i.e., a tableau which isshown to represent an unsatis�able formula). The reader unfamiliar with the notions ofsemantic tableaux and tableau-based calculi is referred to appendix B which illustratesthe use of tableaux in refuting sentences in �rst-order logic with or without equality.In this section we �rst give a brief discussion on clausal tableaux and on the useof tableaux in reasoning in �rst-order logic with equality. In section 5.2.2 we givethe de�nition of the calculus which is implemented as a HOL derived rule, and insection 5.2.3 we illustrate it with the help of some examples.5.2.1 On Clausal Tableaux and Rigid Basic SuperpositionWe use the multiset notation for representing tableaux: A tableau is a multiset of openbranches, and a branch is a multiset of formulae. The tableauf fL11; : : : ; L1n1g; : : : ; fLm1; : : : ; Lmnmg gis denoted by L11; : : : ; L1n1 j � � � jLm1; : : : ; Lmnm :A branch B = fL1; : : : ; Lng is refutable if the sentence 8~x:(L1 ^ � � � ^ Ln) is unsat-is�able, where ~x represents the list of variables free in B. A tableauT = L11; : : : ; L1n1 j � � � jLm1; : : : ; Lmnmis refutable if 8~y:(L11 ^ � � � ^ L1n1) _ � � � _ (Lm1 ^ � � � ^ Lmnm)is unsatis�able, where ~y is the list of variables free in T .An advantage of refuting a set of clauses over general formulae is that one canrestrict the application of the tableau expansion rules to those which result in theimmediate closure of a branch without a�ecting the completeness of the calculus for pure�rst-order logic. Because of this restriction, such connection tableau calculi (see (Letz1993)), which include model elimination based methods (Loveland 1968), are muchmore e�cient than non-clausal tableau calculi. Unfortunately, tableau calculi for �rst-order logic with equality cannot be restricted to tableaux with this connection propertywithout losing their completeness.Reasoning in �rst-order logic with equality is not straightforward because of themany ways an equation can be used (e.g., an equation a = b can be used to infer P [b]from P [a] and Q[a] from Q[b], and it is tautological if a and b are the same). If onedoes not take special care, the proof search can easily become intractable even fortrivial problems. In the case of tableau calculi, the problem of whether the literals in abranch can be refuted is NP-complete (Gallier, Narendran, Plaisted, and Snyder 1990),and the problem of whether a tableau can be refuted by considering only its literals isundecidable (Voda and Komara 1995).Recently, Degtyarev and Voronkov (1998) proposed a tableau calculus, T BSE, whichis complete for �rst-order logic with equality and is based on rigid basic superposition(BSE). Although the inference rules of T BSE do not (and cannot) close all tableaux

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 81whose literals represent invalid sentences, all refutable tableaux can be expanded toones which can be closed by this calculus1. The basic restriction, which was originallyused in narrowing (Fay 1979; Hullot 1980) and involves the application of equalitieson non-variable subterms, is used to reduce the search space. The inference rules ofthe calculus are also restricted by ordering equality constraints which are quanti�er free�rst-order formulae on literals of the form:� s ' t representing the equality of s and t,� s � t where � is a reduction ordering (see (Klop 1992)) total on ground terms.A solution of a constraint C is a substitution � such that C� is valid. A constraint issaid to be satis�able if it has a solution. A commonly used reduction ordering is thelexicographical path ordering (Kamin and L�evy 1980) which is de�ned as an extension>lpo of any total ordering > on function symbols as follows:Given s = f(s1; : : : ; sm) and t = g(t1 : : : ; tn), then s>lpo t if and only if:� si�lpo t for some i 2 f1; : : : ;mg, or� f > g, and s>lpo tj for all j 2 f1; : : : ; ng, or� f = g, hs1; : : : ; smi>lexlpo ht1; : : : ; tni, and s>lpo tj for all j 2 f1; : : : ; ng, wherehx1; : : : ; xlimlex hy1; : : : ; yli for a given ordering m if there is some j � l such thatxi = yi for all i < j and xj m yj.Algorithms for solving such constraints are given in (Comon 1990; Nieuwenhuis 1993;Nieuwenhuis and Rubio 1995).The calculus CBSE described in this chapter refutes a list of clauses using rigid basicsuperposition. It is basically the T BSE calculus modi�ed slightly to look for a closedconnected tableau if possible, and relies on BSE if this fails. Tableau branches are alsoclosed when they can be refuted without instantiating their free variables. Reasoningwith ground equations is much simpler than reasoning with non-ground ones. Theground literals in a tableau branch can be shown to be refutable in polynomial time byusing, for instance, algorithms based on congruence closure (Shostak 1978; Nelson andOppen 1980).5.2.2 The CBSE CalculusThe inference rules of the CBSE calculus are applied to constraint tableaux of the formT � C where T is a tableau and C is an ordering equality constraint.Given a set of clauses �, a tableau is expanded by choosing a branch B and a clausein � whose free variables are instantiated to new ones which do not occur in the tableau.The leaf node in B is then branched by all the literals in the instantiated clause, andsome inequalities are added in the resulting branches in order to be used in equalityreasoning. More precisely, given a literal L and a branch B, we de�ne the insertion of1We stress that a tableau is refutable if it represents an invalid formula, and it is closed if it is shownto be refutable.

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 82L in B, denoted by B � L, by:B � P (s1; : : : ; sn) =B;P (s1; : : : ; sn) [fhs1; : : : ; sni 6= ht1; : : : ; tni j :P (t1; : : : ; tn) 2 BgB � :P (s1; : : : ; sn) =B;:P (s1; : : : ; sn) [fhs1; : : : ; sni 6= ht1; : : : ; tni j P (t1; : : : ; tn) 2 BgB � (s = t) = B; (s = t)B � (s 6= t) = B; (s 6= t)where P is a predicate symbol other than equality and an expression of the formht1; : : : ; tni denotes the term hin(t1; : : : ; tn) where hi0, hi1, etc. , are function symbolswhich do not occur in �.The above method of inserting literals into a branch allows one to consider onlythe equations and inequations in the branches in closing the tableau without losingrefutational completeness (see (Gallier, Narendran, Plaisted, Raatz, and Snyder 1993)and (Beckert 1997)).Tableau branches can be simpli�ed or even refuted by using techniques to reasonwith ground equations in order to avoid redundant instantiations. Let E be a set ofequations, and let the relation $E be de�ned such that s $E t if and only if there issome term p and some a � b in E such that s = p[a] and t = p[b]. Therefore, if theequations in E [fs = tg are ground, then E ` s = t if and only if s$�E t. A branch Bwhich is in a constraint tableau T � C and contains an inequality s 6= t can be refutedif s� $�Eq(B)� t�, where Eq(B) is the set of equalities in B and � is the most generalsubstitution satisfying the constraint C. Similarly, an equality in B of the formh: : : ; si�1; si; si+1; : : : i 6= h: : : ; ti�1; ti; ti+1; : : : ican be simpli�ed to h: : : ; si�1; si+1; : : : i 6= h: : : ; ti�1; ti+1; : : : iif si� $�Eq(B)� ti�. Congruence closure algorithms can be used to decide whether s$�E tfor terms s and t and a set of equations E.The inference rules of the BSE calculus (i.e., rigid basic superposition with equa-tional re
exivity) are used on tableau branches that may need the instantiation of freevariables to be closed. Because of the fact that the tableau expansion rules together withthe rules of the BSE calculus for closing branches give a complete semi-decision proce-dure for �rst-order logic with equality, the CBSE calculus, which is given in �gure 11,is refutationally complete for �rst-order logic with equality. In the implementation de-scribed in section 5.3, the expansion rule tries to select a clause which results in animmediate closure of a branch in order to gain some of the e�ciency of connectiontableau calculi.

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 83
L1 j � � � jLm � fg (Start)B1 j � � � jBn � CB1 � L1 j � � � jB1 � Lm j � � � jBn � C (Expand)B1; h: : : ; si�1; si; si+1; : : : i 6� h: : : ; ti�1; ti; ti+1; : : : i j � � � jBn � CB1; h: : : ; si�1; si+1; : : : i 6� h: : : ; ti�1; ti+1; : : : i j � � � jBn � C (Simplify)B1; s 6� t jB2 j � � � jBn � CB2 j � � � jBn � C (Trivial Close)B1; l � r; s[p] � t j � � � jBn � CB1; l � r; s[r] � t j � � � jBn � C [fl � r; s[p] � t; l ' pg (lrbs)B1; l � r; s[p] 6� t j � � � jBn � CB1; l � r; s[r] 6� t j � � � jBn � C [fl � r; s[p] � t; l ' pg (rrbs)B1; s 6� t jB2 j � � � jBn � CB2 j � � � jBn � C [fs ' tg (er)� The terms lrbs, rrbs and er stand for Left Rigid Basic Superposition, Right Rigid BasicSuperposition and Equational Re
exivity respectively.� The rules are only applicable if the following conditions hold:1. The constraint at the conclusion of each rule is satis�able.2. In the start and expand rules, L1 _ � � � _ Lm is an instance C� of a clause C inthe given set of clauses where � maps all the free variables in C to some variableswhich do not occur in the constraint tableau in the premise.3. In the simplify rule, si� $�Eq(B1�) ti� , where � is the most general solution of theconstraint C.4. In the trivial close rule, s� $�Eq(B1�) t� , where � is the most general solution ofthe constraint C.5. In the basic superposition rules, the term p is not a variable.6. the right-hand side of the rigid equation at the premise of each rule is not of theform q � q.7. In the left basic superposition rule, s[r] 6= t.Figure 11: The Inference Rules of the CBSE Tableau Calculus.

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 845.2.3 Some ExamplesIn this section we give a number of simple examples to illustrate the above calculus.The �rst example �nds a proof for the sentence(G(e) ^ (8x:G(x)) p(e; x) = x)))(G(f) ^ (8x:G(x)) p(x; f) = x)))(e = f)by refuting the set of clauses: :G(x) _ p(e; x) = x:G(x) _ p(x; f) = xG(e)G(f)e 6= fwhere e and f are constants. Formulae of the form G(x)) f [x] = g[x] occurred quiteoften in the mechanisation of group theory described in chapter 9, where propositionsof the form G(x) are used to denote the fact that x is a member of some set G (usuallyassumed to be a group). The above sentence states that if a left identity and a rightidentity exist in a set, then they are equal.The proof search is initialised by starting with the �rst clause. This is then followedby an expansion step with the fourth clause since equality re
exivity can immediatelybe used to close one of the branches::G(v1) j p(e; v1) = v1 � fg (start):G(v1); G(f); hv1i 6= hfi j p(e; v1) = v1 � fg (expand)p(e; v1) = v1 � fv1 ' fg (er)Note that the inequality hv1i 6= hfi is included in the branch when the literal G(f) isinserted in the branch fG(v1)g. The constraint fv1 ' fg is a simpli�ed equivalent formof fhv1i ' hfig.At this point there is no clause which can be used for an expansion step whichcan be immediately followed by the closure of a branch. Unlike the connection tableaucalculus for pure �rst-order logic this does not imply the failure of the current path inthe proof search. The second clause is used for expansion, and this can be followed byan expansion with the third clause and an equational re
exivity step.p(e; v1) = v1 � fv1 ' fgp(e; v1) = v1;:G(v2) j p(e; v1) = v1; p(v2; f) = v2 � fv1 ' fg (expand)p(e; v1) = v1;:G(v2); G(e); hv2i 6= hei j p(e; v1) = v1; p(v2; f) = v2 � fv1 ' fg (expand)p(e; v1) = v1; p(v2; f) = v2 � fv1 ' f; v2 ' eg (er)Finally, the last clause is used for expansion. This results in a tableau with a singlebranch. Since the substitution in the constraint maps all the free variables in the branchto constants, the trivial closure rule which uses reasoning on ground equations can be

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 85
:G(v1)G(f)hv1i 6= hfi�

p(e; v1) = v1:G(v2)G(e)hv2i 6= hei�
p(v2; f) = v2e 6= f�

Figure 12: A Closed CBSE Tableau.used to close the tableau.p(e; v1) = v1; p(v2; f) = v2 � fv1 ' f; v2 ' egp(e; v1) = v1; p(v2; f) = v2; e 6= f � fv1 ' f; v2 ' eg (expand)fg � fv1 ' f; v2 ' eg (trivial close)The closed tableau found by this proof is illustrated in �gure 12.In the second example, we illustrate the use of the simplify rule by refuting the setof clauses below: :I(x) _ x = e I(f)P (e; y) :P (f; c)where e, f and c are constants.The following is a CBSE refutation of these clauses::I(v1) j v1 = e � fg (start):I(v1); I(f); hv1i 6= hfi j v1 = e � fg (expand)v1 = e � fv1 ' fg (er)v1 = e; P (e; v2) � fv1 ' fg (expand)v1 = e; P (e; v2);:P (f; c); he; v2i 6= hf; ci � fv1 ' fg (expand)v1 = e; P (e; v2);:P (f; c); hv2i 6= hci � fv1 ' fg (simplify)fg � fv1 ' f; v2 ' cg (er)The inequality he; v2i 6= hf; ci is simpli�ed into hv2i 6= hci so that equality re
exivitycan be used to close the tableau.In the following example we show how a branch is closed using the rules of rigidbasic superposition. The branch we consider is the following:f(a) = a; g(f(x)) = f(g(x)); h(g(y); y) = f(y); h(g(z); z) 6= g(a) � fgwhere x, y and z are free variables and a is a constant. We use the lexicographical

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 86path ordering with f � g � h � a as the required reduction ordering in the tableauconstraints. If the equations in this branch are treated naively, then the search spacewhich needs to be considered is very large since there are numerous possible inferenceswhich can be considered. However, the search space which is considered by the rigidbasic superposition rules is much restricted. For example, there are only two possibleinferences which can be applied on the above branch. These are a left rigid superpositionof the �rst literal on the third, and a left rigid superposition of the second literal on thethird. We denote the application of a superposition rule by orienting the equality ofthe superpositioning literal using l ! r or l r, and underlining the superpositionedsubterm.The �rst possible inference is a superposition of f(a) ! a on h(g(y); y) = f(y),which gives the branchf(a) = a; g(f(x)) = f(g(x)); h(g(y); y) = a; h(g(z); z) 6= g(a) � fy ' agWe do not include the ordered constraints f(y) � h(g(y); y) and f(a) � a because theyare trivially satis�able. The only possible inferences at this stage is a superposition ofh(g(y); y) ! a on h(g(z); z) 6= g(a), resulting in the following branch which cannot beclosed, and no other rigid basic superposition rule is applicable to it:f(a) = a; g(f(x)) = f(g(x)); h(g(y); y) = a; a 6= g(a) � fy ' a; z ' agWe now consider the second possible inference which can be applied on the originalbranch. This is a superposition of g(f(x)) f(g(x)) on h(g(y); y) = f(y), which gives:f(a) = a; g(f(x)) = f(g(x)); h(g(y); y) = g(f(x)); h(g(z); z) 6= g(a) � fy ' g(x)gThis can only be followed by a superposition of f(a)! a on h(g(y); y) = g(f(x)):f(a) = a; g(f(x)) = f(g(x)); h(g(y); y) = g(a); h(g(z); z) 6= g(a) � fx ' a; y ' g(x)gand then only by a superposition of h(g(y); y) ! g(a) on h(g(z); z) 6= g(a), which resultsin the following trivially refutable branch:f(a) = a; g(f(x)) = f(g(x)); h(g(y); y) = g(a); g(a) 6= g(a) � fx ' a; y ' g(x); z ' yg:5.3 The Tableau Calculus in HOLIn this section we describe the implementation of the CBSE calculus as a HOL derivedrule. This rule takes a list of theorems �1 ` t1; : : : ;�n ` tn and refutes the formulaet1; : : : ; tn to return a theorem with the conclusion ?, that is:�1 ` t1 � � � �n ` tn�1 [� � � [�n ` ? CBSE

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 87This rule can be used, for instance to prove a goal p by refuting the conclusion of :p ` :pto return :p ` ?, which can be used to infer p::p ` :p ASSUME o mk_neg p:p ` ? CBSE` p CCONTR pThe formulae t1, : : : ,tn are assumed to be �rst-order. As one often requires to reasonwith higher-order formulae, a mechanism for translating higher-order formulae into �rst-order ones is described in section 5.4.For e�ciency reasons, the implementation of the proof search algorithm does notuse the HOL term representation, but a simple representation better suited for �rst-order formulae. The CBSE rule transforms the given HOL theorems into �rst-orderclauses in this representation and then uses them to �nd a closed tableau. The list ofinferences required to �nd the closed tableau are then used to derive a HOL theorem.The refutation process of the derived rule can therefore be seen as consisting of threedistinct stages:1. the preprocessing stage, in which HOL theorems are transformed into a set ofclauses;2. the actual proof search, in which the CBSE rules are applied to the set of clausesto �nd a closed tableau;3. the proof transformation stage, where a successful sequence of CBSE inferences isused to derive the required HOL theorem.We remark that the main motivation of this implementation is to use the derived ruleas a proof checking support for the SPL language. Since the straightforward justi�ca-tions in SPL scripts in general correspond to rather simple problems, our implementationis not meant to be used as an e�cient tool for �nding non-trivial proofs. In particular,we have not experimented with a wide range of search strategies and heuristics to copewith large search spaces, and we have not put substantial e�ort in removing any redun-dant inferences from the proof found by the search stage of the implementation beforea HOL theorem is derived.The three stages of the refutation process are described in more detail in sec-tions 5.3.2 (preprocessing theorems), 5.3.3 (proof search), and 5.3.4 (proof transfor-mation). Since terms in the HOL logic can be polymorphic, we �rst illustrate the waypolymorphic theorems are handled in section 5.3.1.5.3.1 Reasoning with Polymorphic FormulaeAs described in section 1.2.2, HOL terms are typed by simple (i.e., �rst-order) expres-sions which may contain type variables. Type variables can be instantiated to othertypes, and this provides a means of de�ning polymorphic constants and deriving poly-morphic theorems. In order to use such polymorphic formulae e�ectively, the imple-mentation of �rst-order proof calculi as derived rules in a theorem prover must be ableto instantiate type variables during the refutation process. However, most commonlyused implementations do not instantiate type variables during the proof search process,

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 88but treat polymorphism in a rather indirect way. For instance, type instantiation is per-formed in the preprocessing stage of the MESON prover supplied with the HOL system.Given a list of theorems to be used for refutation, a polymorphic theorem is instantiatedto a number of less general theorems according to the ground types in the input list.This method is incomplete and often generates several redundant clauses. The classicalprover of Isabelle considers terms to be untyped during the proof search, and any typeinstantiations are performed during the proof transformation stage. If an invalid typeinstantiation is encountered during the transformation process, the proof search stageis used again to �nd another (possibly invalid) proof. However type instantiation (ofsimple types) can be easily incorporated in the proof search process of a �rst-order logiccalculus. In this section, we illustrate how this can be done after remarking on a coupleof points on the validity of type instantiations.The Validity of Type InstantiationsIt should be noted that not all type instantiations are valid. Given a theorem � ` t, theinstantiation of the types in t (without the instantiation of the types in �) is valid if1. no type variables occurring in � are instantiated,2. no distinct variables become identi�ed after the instantiation. This occurs whentwo variables with the same name but with di�erent types (such as x:'a and x:'b),which are considered as distinct in HOL, are instantiated to the same variable (forexample with f'a! 'bg).The �rst restriction implies that given the input list of theorems �1 ` t1; : : : ;�n ` tn forrefutation, the type variables in ti which are also in �i, for 1 � i � n, should be markedas uninstantiatable and the rest as instantiatable, such that only the instantiatable typevariables can be considered for instantiation during proof search. We remark, thatthe instantiation of an uninstantiatable type variable may result in the derivation ofan unexpected theorem, or otherwise in a failed proof transformation. For example,suppose the CBSE calculus is used to derive the (invalid) formulaP (c:num list)) 9x:'a list.P xwhere P is some polymorphic predicate of type :'a list ! bool and c:num list issome constant. This is done by refuting the conclusion ofP (c:num list)) 9x:'a list.P x` P (c:num list)) 9 x:'a list.P xwhich is transformed into the clauses:P (x:'a list)P (c:num list)where the type variable (:'a) is marked as uninstantiatable, and as a result the refutationfails. Please note that the above sentence is in general not valid. This can be seen bysubstituting P x with LENGTH (SETIFY x) > 1, and c with [1,2]. The resulting sentenceis not valid because it could be used to inferLENGTH (SETIFY [1,2]) > 1) 9x:'a list. LENGTH (SETIFY x) > 1

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 89which yields9 x:'a list. LENGTH (SETIFY x) > 1The type instantiation f:'a ! :oneg will then result in an invalid result as the type:one contains only one distinct element.On the other hand the derivation of :P(c:num list) from ` 8 (x:'a list).:P x isequivalent to the refutation of the same two clauses with the di�erence that the typevariable (:'a) is marked as instantiatable, and therefore the refutation succeeds withthe type substitution f'a! numg and the substitution fx! cg.The second restriction given earlier suggests that distinct variables with the samevariable name (but di�erent type) should be renamed before proof search. This restric-tion avoids, for instance, the invalid instantiation of 9 (x:'a),(x:'b).P (x:'a,x:'b)into 9 (x:'a),(x:'a).P (x:'a,x:'a) which is equivalent to 9 (x:'a).P (x:'a,x:'a).From Polymorphic First-Order Formulae to Untyped OnesGiven two �rst-order term languages L = L(�L;XL) and T = T (�T ;XT), where �Land �T are disjoint collections of function symbols with �xed arities, and XL and XTare disjoint sets of variables, one can de�ne the typed language Ltyp(T) of the terms inL typed with the terms in T , as the set consisting of:21. typed variables x : �, where x is in XL and � (called the type of x : �) is in T ,2. typed constants c : �, where c is a constant in �L, and � (called the type of c : �)is in T ,3. typed compound terms of the form:(f : �1 ! � � � ! �n ! �)(t1; : : : ; tn)where f is a non-constant function in �L, and �i is the type of ti for i 2 f1; : : : ; ng,and we call � the type of the above compound term.As a consequence of the above discussion on the validity of type instantiations, wepartition the set of type variables XT into two countable sets: a set XiT of instantiatablevariables, and a set XuT of uninstantiatable variables.We de�ne the (untyped) �rst-order language fTgL as the set of terms over thesignature �fTgL and the set of variables XfTgL, where� XfTgL = XL [XiT , i.e., the variables in L and the instantiatable variables in T ,� �fTgL = �L[�T [XuT [fpairg, where pair is a new binary function symbol, andwe write (s; t) to denote pair(s; t). The set of function symbols in fTgL consistsof the set of functions in L, the functions in T , the uninstantiatable variables inT , and the new symbol pair.2For the purposes of this section we do not impose the restriction that constants and functions mustbe of a speci�c type, e.g., 0 must be of type num.

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 90We now de�ne the transformation U : Ltyp(T) ! fTgL as follows:U(x : �) 7! (�; x), where x is a variableU(c : �) 7! (�; c), where c is a constantU((f : �1 ! � � � ! �n ! �)(t1; : : : ; tn)) 7! (�; f(U(t1); : : : ;U(tn)))In other words, we transform a typed term t : � into a pair (�; t0) (where t0 representsthe term t whose subterms are all transformed recursively into pairs as described here)and treat them as untyped �rst-order terms. Uninstantiatable type variables are treatedas constants, and the use of the pair function symbol ensures that the uni�cation of twopaired terms results in the instantiation of type variables to types, and the instantiationof (term) variables to untyped terms. It should be noted, though, that in order to avoidinvalid instantiations, no distinct typed variables should have the same name (see thediscussion earlier this section).We illustrate this transformation process with the following two simple examples.The literalP (x : 'a list; LENGTH x)is transformed intoP ((list(w1); v1); (num; LENGTH(list(w1; v1))))and the literalQ(x : 'a; (x : num) + 1)into Q((w1; v1); (num; +((num; v2); (num; 1))))where w1, v1 and v2 are new distinct variables.5.3.2 Preprocessing FormulaeThe role of the preprocessing stage is to transform the given list of theorems �1 `t1; : : : ;�n ` tn into a list of �rst-order clauses represented in the format accepted bythe proof search stage. First-order clauses are represented as lists of literals, and aliteral is either an equation, an inequation, a positive non-equation, or a negated non-equation. Equations and inequations contain a pair of terms, and non-equations containa predicate symbol and a list of terms. A term is represented as a pair consisting of atype and an untyped term (as illustrated in the previous section).The given theorem is �rst converted into skolemised conjunctive normal form usinga number of derived rules supplied with the HOL system. The universal quanti�ers andthe conjunctions in the conclusions of each theorem are then eliminated to give a list ofdisjunctive theorems. Finally, the conclusions of the resulting disjunctive theorems aretranslated into the proof search representation marking the appropriate type variablesas uninstantiatable, and being sure that distinct variables are given distinct names. Itshould be noted that care must be taken to mark the type variables in the hypothe-ses of the original theorems as uninstantiatable, rather than the type variables in thehypotheses of the �nal disjunctive theorems which may contain additional hypothesesincluded during preprocessing. For instance, the skolemisation of a theorem adds ahypothesis representing the de�nition of the Skolem function, e.g., skolemising

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 91� ` 8x.9y.P x yresults in�, (s =�x."y.P x (y x)) ` P x (s x)and any type variables which occur in P x y but not in �, occur also in the hypothesesof the above skolemised theorem. Instantiations on these type variables are valid sincethey do not instantiate the types in �.5.3.3 Proof SearchThe proof search stage takes a list of clauses and looks for a closed tableau whichcan be constructed using an implementation of the inference rules in �gure 11. Thesearch strategy used is suitable for proof checking the straightforward justi�cations ofSPL proofs, but is rather ine�cient in solving complex problems. Shostak's algorithmfor congruence closure (Shostak 1978) is used to reason with ground equations, andconstraints are solved using a simple, but incomplete, algorithm. We �rst have a lookat the congruence closure algorithm, the way constraints are handled, and then at thesearch strategy used.Congruence ClosureCongruence closure algorithms construct the congruence classes of a set of �rst-orderterms according to a �nite set of ground equations. More formally, let T = T (�;X) bethe set of terms over a signature � and a set of variables X, then the congruence closureof a binary relation R over the terms in T is the least binary relation R̂ satisfying:aRbaR̂b aR̂a aR̂bbR̂a aR̂b bR̂caR̂c a1R̂b1 � � � anR̂bnf(a1; : : : ; an)R̂f(b1; : : : ; bn)for every terms a; a1; : : : ; an; b; b1; : : : ; bn in T and function f in �.Given a �nite set of ground equations E, a congruence closure algorithm computesR̂E for the relation RE de�ned as follows:aREb if and only if a = b 2 E:It can be shown by Birkho�'s theorem (Birkho� 1935) that for arbitrary ground termsa and b the statement aR̂Eb is equivalent to a$�E b and equivalent to deciding whetherthe equality x = y can be deduced from the equations in E using the rules of re
exivity,symmetry, transitivity and substitution of equals for equals.Congruence closure algorithms (Shostak 1978; Nelson and Oppen 1980) can thereforebe used to decide a ground equality given a �nite list of ground equational axioms.Equivalently, they can be used to decide the equality of two (possibly non-ground)terms from an equational theory when the instantiation of variables is not required.Such algorithms are usually quite e�cient, deciding the required equality in quadratictime with respect to the number of equations in E.We have used Shostak's algorithm for congruence closure (Shostak 1978) rather thanother algorithms since the congruence classes are computed incrementally without theneed of any precomputation. This is relevant in our case because congruence classes

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 92are built as the tableau branches are expanded and are required to close and simplifybranches at every stage during the proof search.Similarly to Nelson and Oppen's algorithm, Shostak's algorithm uses the followingdata structures:1. use: storing how terms are contained within each other; use(a) returns the list ofterms of the form f(: : : ; a; : : :) in the set of terms being considered;2. find: storing the actual congruence classes; find(a) returns a representative mem-ber of the congruence class of a.Shostak's algorithm also uses the following data structure for e�ciency:3. sig: having the invariant sig(f(u1; : : : ; un)) = f(find(u1); : : : ; find(un)).The following procedures are used by the algorithm:1. merge: where merge(a; b) merges the congruence classes of a and b by updating theuse, find and sig data structures.2. canon: where canon(a) updates the use and sig data structures, and returnsfind(a).The main loop of the algorithm applies merge(canon(a); canon(b)) on each equality a = bin the given equational theory. An equality x = y is then decided by checking whetherthe representative members of the congruence classes of x and y are equal, that iswhether canon(x) = canon(y). Cyrluk, Lincoln, and Shankar (1996) give a very clearpresentation of Shostak's algorithm for congruence closure (as well as Shostak's al-gorithm for combining decision procedures). Kapur's treatment of this algorithm ascompletion is also very illuminating (Kapur 1997).Solving ConstraintsOrdering equality constraints are used to restrict the proof search space, and a solutionto the constraint in a closed tableau gives a global substitution which instantiates thetableau into a trivially refutable one (that is, one which is refutable when its terms areconsidered to be ground). As explained in section 5.2.1, ordering equality constraints arequanti�er free �rst-order formulae on literals with the predicate symbols ' (equality)and � which is a reduction ordering total on ground terms. A lexicographical pathordering is used as the required reduction ordering. In the current implementation,we have not solved the constraints using the complete algorithms illustrated in theliterature (Comon 1990; Nieuwenhuis 1993; Nieuwenhuis and Rubio 1995) because oftheir exponential nature, and mostly because of the simplicity of the problems thederived rule is used to solve. Although we use complete methods for solving equalityconstraints (i.e., a syntactic uni�cation algorithm), ordering constraints are shown to beunsatis�able only if their transitive closure can be easily rejected when substituted withthe solution of the equality constraint. An ordering constraint s � t is easily rejected ifs and t are ground and t � s, or if s is a subterm of t.The tableau constraints are represented as a pair (C'; C�) where C' is a list ofequality constraints in solved form (i.e., a substitution), and C� is a list of orderingconstraints. Including an equality constraint s ' t in C' also involves the instantiation

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 93of the constraints in C� with the solution of C' [fs ' tg. When an ordering constraints � t is inserted in C�, the constraint s � u is also inserted for every t � u in C�.Because of the incompleteness of this method, the search space considered during therefutation process is larger than the ideal one. More e�cient incomplete methods forsolving constraints are given by Plaisted (1993b)The Search StrategyA tableau branch is represented as a pair consisting of a list of literals together withthe data structures representing the congruence closure of the equational theory of thebranch. A constraint tableau is represented as a pair consisting of a lazy list of openbranches and the constraints. The head of the lazy list corresponds to the leftmostbranch of the tableau, and the last element of the list corresponds to the rightmostone. The strategy given below is used for looking for a closed tableau. We remarkthat although this strategy suits our purposes, it is not recommended for solving hardproblems.� The inference rules are applied to the leftmost open branch of the tableau, andtherefore only the head of the lazy list is considered at any stage of the proofsearch. The �rst element of the tail of the list is computed only when it is needed,that is when the branch represented by the head element is closed and discarded.� A bound is given on the number of times that a clause can be used by the expansionrule. The least-used clauses are given higher priority, and expansions which canbe immediately followed by the closure of a branch (through a trivial closure oran equality re
exivity rule) are applied �rst. This gives a certain degree of thegoal-directedness of the connection tableau. Clauses which contain an equationare then given a higher priority to those which do not.� The simplify and trivial closure rules are applied eagerly on any inequalities in-serted in the branch. The congruence closure of the equational theory of thebranch is computed incrementally as the tableau expands. When an equationa = b is inserted in the branch, the congruence classes of a and b are merged andthe inequations of the branch are simpli�ed and possibly refuted.The congruence closure is also updated whenever new free variables are con-strained (substituted). If a previously unconstrained variable v is constrained,to t say, the congruence classes of v and t are merged. As a result the congruenceclosure of the branch can be seen as being instantiated by a global substitution(i.e., the most general solution of the constraint) applied to the tableau.� The equational re
exivity rule is tried on inequalities after they are inserted inthe branch and simpli�ed.� Since Shostak's algorithm for congruence closure refutes an inequation a 6= b bycomputing the canonical form of a, canon(a), and the canonical form of b, canon(b),and checks whether canon(a) = canon(b), the computed canonical forms may alsobe used to refute the tableau if they are uni�able. This procedure can be describedas a new rule B1; s 6� t jB2 j � � � jBn � CB2 j � � � jBn � C [fcanon(s) ' canon(t)g er-canon

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 94which depends on the actual implementation of the congruence closure algorithmused. This rule is applied after equational re
exivity fails to close the branch.� When all the clauses have been used the same number of times by the expansionrule, the rigid basic superposition rules with equality re
exivity are applied toclose the branch. If the branch cannot be closed, the clauses are used again forexpansion. This is repeated until the clauses are used a given number of times(the bound mentioned earlier).� If a closed tableau is not found, the current bound is incremented by one and theproof search is applied again. This is repeated until a maximum bound is reached.Since the problems the proof procedure is expected to solve are rather simple, avery low maximum bound is chosen (only 3). The number of times the rigid basicsuperposition rules are applied to close a branch is also bounded (by 5).When a closed constraint tableau is found, the proof search stage returns a simpli�edlist of the inferences used together with a substitution solving the constraint. These areused by the proof transformation stage to derive a HOL theorem. The simpli�ed list ofinferences consists of:� Expansions, which also contain the instance of the clause used.� Closures: in this case, no distinction is made between the di�erent inference rules(trivial close, equational re
exivity, or equational re
exivity on canonical terms)which are used.5.3.4 Deriving a HOL TheoremThe role of this �nal stage of the derived rule is to construct a HOL theorem from theclosed tableau found by the previous stage. The substitution and the list of expansionand closure rules given by the proof search stage are translated into HOL natural deduc-tion inferences. The closure of a branch B is translated into the derivation of a theoremB ` ? and an expansion rule is translated into an elimination of the disjunctive clauseused for expansion instantiated with the given substitution. The translating processproves a HOL theorem stating the inconsistency of instantiations of the list of clausesderived during the preprocessing stage. This theorem can then be used to derive therequired inconsistency of the list of theorems given as arguments to the derived rule.Congruence closure is used to derive the inconsistency of a given branch B. Thisis done by computing the congruence classes according to the equational theory ofthe branch and by looking for an inequality s 6= t such that s and t are in the samecongruence class, or for two literals P (s1; : : : ; sn) and :P (t1; : : : ; tn) such that si andti are in the same class for i 2 f1; : : : ; ng. However, since we need to derive a HOLtheorem, the congruence closure algorithm described in section 5.3.3 is modi�ed tobe used as a HOL derived rule. The data structures and the functions in Shostak'salgorithm are modi�ed to store and return HOL theorems. For example, the canonfunction which computes the canonical form of a given term t is modi�ed to return atheorem� ` t = t0

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 95where t0 is the canonical form of t and � is the list of equations used in computing t0.For e�ciency purposes, lazy theorems (Boulton 1993) are used in the implementation.These are ML functions which derive a theorem only when it is needed, and can there-fore be used to avoid the computation of unnecessarily HOL inferences. We use lazytheorems of type converters ! thm where converters is the type of the SML functionswhich translate the terms from the internal term representation used by the congruenceclosure algorithm into HOL terms and vice-versa. By using such lazy theorems, theimplementation of the congruence closure algorithm is independent of the way its termrepresentation is translated into HOL terms.5.4 From Higher-Order to First-Order LogicThe CBSE derived rule and other semi-decision procedures for �rst-order logic can beused to reason with higher-order formulae by transforming them into equivalent �rst-order ones. Such a transformation can be done in three steps:1. Normalising the terms into �-long � normal form;2. Eliminating quanti�cation over functions and predicates;3. Eliminating lambda abstractions.The �rst step is quite straightforward and can be performed in HOL using theappropriate inference rules supplied with the system. Quanti�cation over functions andpredicates is usually eliminated by introducing a new constant � : (
 ! �) !
 ! �(� for \apply") and then transforming terms of the form (f x) into (� f x) (see forexample (Kerber 1990)). As a result, higher-order formulae, such as 8P: P x) P y,are transformed into �rst-order ones, 8P: � P x) � P y. The third step givenabove involves the transformation of lambda abstractions into equivalent lambda-freeterms, usually through the introduction of new constants. It should be noted that astraightforward renaming of abstractions into new constants is often not appropriatesince even trivial sentences are not transformed into valid �rst-order formulae. Forinstance, the sentence (a = b)) P (�x: f x a)) P (�x: f x b)is not transformed into a valid one if the two terms (�x: f x a) and (�x: f x b)are renamed into di�erent constants. However, one can convert these two terms to((�y; z; x: y x z) f a) and ((�y; z; x: y x z) f b) and introduce a constantg = (�y; z; x: y x z)such that the above sentence is transformed into the valid �rst-order formula:(a = b)) P (g f a)) P (g f b)In general, given a term of the form�v1; : : : ; vm: t1 � � � tn

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 96we �rst abstract all the occurrences of the variables v1; : : : ; vm from the terms t1 � � � tnand eliminating the abstractions recursively from them. By abstracting any occurrencesof the term s from another term t we mean the transformation of t into the �-convertible((�x: t0) s) where t0 is the term t with all its occurrences of s substituted with x.The resulting terms with the exception of the variables v1; : : : ; vn, are then abstractedfrom the main term. The resulting abstraction is �nally renamed into a new constant.Abstractions which are �-convertible are given the same constant. We illustrate thisprocedure with an example. Given the term�v1; v2: f (�v3: v1) (�v3: v2 v3)we �rst abstract the bound variables v1 and v2 from the terms (�v3: v1) and (�v3: v2 v3)to give �v1; v2: f ((�x1; v3: x1) v1) ((�x1; v3: x1 v3) v2)and then eliminate the abstractions recursively from the body terms, which in this caseinvolves the introduction of the new constantsc1 = �v1; v2: v1, andc2 = �v1; v2: v1 v2;to give the term: �v1; v2: f (c1 v1) (c2 v2):We now abstract the terms in the body with the exception of v1 and v2 from the mainterm: (�x1; x2; x3; v1; v2: x1 (x2 v1) (x3 v2)) f c1 c2and �nally we rename the abstraction:c3 f c1 c2where c3 = �v1; v2; v3; v4; v5: v1 (v2 v4) (v3 v5):We remark that although this translation from higher-order logic to �rst-order logic wase�ective in transforming higher-order formulae into equivalent �rst-order ones duringour case study, the two logics are very di�erent in nature and no such transformationcan be complete.5.5 Conclusions and Future WorkIn this chapter we have illustrated the implementation of a tableau calculus for �rst-order logic as a derived rule in the HOL theorem prover. This derived rule is usedas the main prover for checking the straightforward justi�cations of the SPL scriptsimplemented in the mechanisation of group theory described in Chapter 9. Since ingeneral such justi�cations do not represent hard problems, there was no need to puta considerable amount of e�ort in handling very large search spaces, and in �ndinglong proofs. Although the proof calculus is complete for �rst-order logic with equality,we impose very strict resource bounds during proof search. Furthermore, the method

CHAPTER 5. A TABLEAU PROVER AS A HOL DERIVED RULE 97used for solving equality constraints is very simple and incomplete 3. Although thisimplementation is suitable for its purpose, more e�cient search strategies are requiredif one needs to use it in deriving less trivial statements.An interesting direction for future research is the investigation of ways of incorpo-rating theory speci�c decision procedures with such a calculus. The proof checking ofSPL scripts involves the application of theory speci�c simpli�ers before the refutationprocess. Although this method proved to be quite e�ective, simpli�ers and also decisionprocedures can be used by a �rst-order proof calculus during the refutational processin order to enhance its deductive power. Such techniques have been studied recentlyin (Bj�rner, Stickel, and Uribe 1997) where, for example, decision procedures are usedby a �rst-order prover to suggest a substitution which potentially refutes a given set ofclauses.A database of trivial knowledge is used in the automatic derivation of simple factsduring the proof checking of SPL scripts. Such database can be queried by other theoryspeci�c (or more general) proof procedures. It is shown in our case study that the useof simpli�ers which are able to query this database can greatly increase the power ofthe SPL proof checker during the mechanisation of a theory. This results in the abilityto write formal proofs which are quite similar to those found in informal texts wheretrivial facts are often omitted. We have not yet tried to modify the implementation ofthe CBSE calculus presented here to be able to query such a database. We believe thatsuch a modi�cation will result in the ability to implement shorter and possibly morereadable formal proofs.

3Note that the use of an incomplete constraint solving method does not con
ict with the completenessof the calculus for �rst-order logic with equality. The consequence of using an incomplete constraintsolving algorithm is that inferences which in principle would fail due to the inconsistency of the constraintin their conclusion can still be considered during proof search. As a result the search space consideredduring proof search is larger than the ideal one.

Chapter 6Structured StraightforwardJusti�cations6.1 MotivationThe Mizar proof language, and similar languages such as SPL (chapter 4) and DE-CLARE (Syme 1997a; Syme 1998), are often described as supporting a declarativeproof style as opposed to the more procedural style of tactic-based proof development(see, for instance, (Harrison 1997) for a comparison of di�erent proof styles). Althoughthe distinction between a declarative and a procedural style is somewhat vague, declar-ative proofs do not explicitly state all the details on how a theorem is proved, but ratherstate what is needed. For instance, simple results in a proof script can be derived bystraightforward justi�cations which are usually of the formC by P1, : : :, Pnwhere P1; : : : ; Pn are the premises of the justi�cation and C is its conclusion. Suchstatements� state explicitly which conclusion is being justi�ed,� list the premises which are required to derive the conclusion,� do not explain how the premises are used in deriving the conclusion.Straightforward justi�cations are checked by using a simple automatic theoremprover which looks for a proof of the conclusion from the given premises. The complexityof the proofs that can be found automatically by the proof checker is a very importantfactor in determining the readability of the scripts which can be implemented in thesystem. If the proof checker can automate complex proofs which are very hard to �nd,then quite uninformative proofs can be implemented in the system, and furthermore,such proofs would require substantial resources in order to be machine checked. On theother hand, if only very simple inferences can be implemented, the resulting proofs willbe too detailed to follow and hard to implement.The inferences which are allowed to be machine checked are often restricted tothose which are obvious according to some speci�c de�nition of obviousness. Obviousinferences are those which are considered to be easily followed by a human reader as wellas e�ciently checked by machine. Speci�c de�nitions of obvious inferences are usually98

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 99based on the e�ort required to check the inference. For instance, Davis (1981) de�nedobvious inferences as those that have a proof involving at most one substitution instanceof each premise. Rudnicki (1987) observed that such inferences may still be hard to proofcheck and in general, one can justify any conclusion with a Davis obvious inference byrepeating the premises of the justi�cation. Rudnicki proposed an alternative de�nitionof obvious inferences, according to which an inference is obvious if there is not muchnon-determinism involved in �nding its proof when using a speci�c algorithm givenin (Rudnicki 1987).In practice it is quite hard to formalise obviousness by a rigid de�nition based ona general deductive mechanism. The actual de�nition of the notion of obviousnessin a particular system is simply determined by the implementation of the algorithmused in the proof checking process, and such an algorithm is improved and optimisedas new versions of the system are released. As we argued in section 2.5.1, a humanreader often relies on his understanding to infer facts rather than on mechanical means,and therefore the notions of human obviousness and machine obviousness can be quitedi�erent. Given the di�culty of de�ning a practical notion of obviousness, we callthe inferences which can be proof checked by a particular system as straightforwardinferences, taking the adjective `straightforward' from `straightforward justi�cations'.We can also denote the inference of a conclusion from a number of premises given instraightforward justi�cations by an inference ruleP1 � � � PnC (Straightforward)which we call the straightforward inference rule. This rule depends on the (particularversion of the) particular system considered. In SPL (as well as in other systems such asthe Mizar mode in HOL of Harrison (1996b)), the user can use di�erent straightforwardrules by explicitly stating which prover is used during the proof checking process.Although straightforward justi�cations do not mention explicitly the particular in-ferences which are used in deriving the conclusion from the premises, it is often observed(by van Gasteren (1990) for example) that mentioning certain inferences used in thejusti�cation can improve the readability of the proof. The reason for this is that thereadability of a proof depends on the e�ort required by the reader to �ll in the gaps inthe proof, and therefore mentioning a number of the inferences used can reduce such ane�ort. The use of `inference-less' (general or speci�c) straightforward rules in justifyingproof results may not be ideal for the development of readable proofs. On the otherhand, a proof which explicitly states all the inferences used is too detailed and low-levelto be followed easily.In this chapter we introduce the notion of straightforward justi�cations which ex-plicitly state some of the inferences used in the derivation of their conclusion. Themotivations for the use of such justi�cations include:� improving the readability of the proofs by giving more relevant information to thereader;� giving more relevant information to the proof checker so that proofs can be foundmore e�ciently;� exploring whether some inferences can be stated in straightforward justi�cationswithout making the resulting proofs too detailed or procedural;

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 100� exploring whether simple results can be derived by a less implementation-basedmechanism than that of using straightforward rules intended to automate obviousinferences.The mechanism we use involves the distinction between trivial inferences and relevant,or substantial, inferences, and using these notions in de�ning generalised inferenceswhich involve the application of a relevant inference and several trivial ones. Onlysuch generalised inferences can be used in straightforward justi�cations. The resultingjusti�cations are called structured straightforward justi�cations since the generalisedinferences used are represented by binary operators on premises which give them morestructure than inference-less justi�cations.In the next section, we discuss how inference rules can be generalised accordingto a number of trivial inferences, or manipulations on formulae which can be appliedimplicitly to the premises and conclusion of the rules. We introduce the syntax andsemantics of structured straightforward justi�cations in sections 6.3 and 6.4. A numberof results on such justi�cations are given in section 6.5, and a concluding discussion isgiven in section 6.6. A mechanism for restricting the proof search required for verifyingstructured justi�cations is then illustrated in chapter 8, after the relevant notation andresults required for de�ning this mechanism and proving its soundness and completenessare developed in chapter 7.6.2 On Explicitly Stated Inferences and Implicitly AppliedManipulationsIt is mentioned in section 3.5 that tactic-based proofs often contain very basic resultsand inferences, even when the proofs are implemented at a mature stage of the mech-anisation where several high-level results have been derived. Such trivial inferencesrarely contribute to the comprehensibility of the proofs, and it is often the case thatover-detailed proofs are hard to follow as well as tedious to implement. It is there-fore desirable that such inferences are omitted from proofs by providing the necessarilyautomation to derive them `implicitly'. Of course, not all the steps of a mechanisedproof are trivial. A considerable number of steps use high-level theorems and applytheory-speci�c proof procedures. Such proof steps can give a good idea of how the con-clusion of the proof is derived. A mechanised proof can therefore be seen as containing anumber of substantial inferences which contribute to the comprehensibility of the proof,together with a number of trivial ones which potentially hinder it. In this section we dis-cuss the possibility of implementing proofs which consist only of substantial inferencesand any trivial inferences can be applied implicitly. In section 6.2.1 below we describethe notion of generalising an inference which involves the de�nition of an inference rulewhose premises and conclusion can be implicitly manipulated according to a given set ofinferences. Structured straightforward justi�cations, in which a number of generalisedinferences are stated explicitly, are introduced in section 6.2.2.6.2.1 Generalising InferencesIdeally, the inference rules which are used in the mechanisation of proofs should bede�ned in such a manner that no trivial inferences are needed in proof implementa-tion. If a number of inferences are identi�ed as trivial, one can usually generalise an

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 101arbitrary substantial inference rule by applying the trivial inferences before and afterthe substantial inference is applied. More formally, let us consider a set of inferencesI = fI1; I2; : : : g. Each rule takes one premise from which it infers a conclusion, andthis inference is assumed to be trivial, in the sense that it can (and should) be omittedfrom the implementation of proofs. Note that in this thesis we consider only trivialinferences which take a single premise A and return a conclusion B, or in other words,which implicitly manipulate the formula A into B. Trivial inferences which can takemore than one premise may be considered in future. We can de�ne a binary relation!I over formulae such thatA!I B if and only if AB (Ii) for some Ii in I.We can also denote the expression A!I B by an instance of an inference rule (I):AB (I) if and only if A!I Balthough such a rule is non-deterministic as several inferences in I can be applicable tothe premise A, and therefore several possible conclusions can be inferred by (I). Now,given an inference rule, denoted by R say, which infers a conclusion from a number ofpremises P1 � � � PnC (R)it can be generalised into a rule RI in which a number of inferences in I can be appliedimplicitly to its premises and conclusion. If we de�ne the rule I� such thatAB (I�) if and only if A!�I Bwhere!�I is the re
exive transitive closure of!I , then the rule RI is de�ned as follows:P1 � � � PnC (RI) if and only if P1P 01 (I�) � � � PnP 0n (I�)C 0 (R)C (I�)for some formulae P 01; : : : ; P 0n and C 0.We say that the conclusion C is derived from the premises P1; : : : ; Pn by the rule(R) and the implicit application of the inferences in I. We also say that (RI) is ageneralisation of (R) according to the implicit inferences in I.For example, let us consider the inferences given by the following rules to be trivial:P [x+ 0]P [x] (+0) P [x+ y]P [y + x] (+comm) P [(x+ y) + z]P [x+ (y + z)] (+assoc)P [n+m]P [l] (+calc1) P [l]P [n+m] (+calc2)where in the (+calc1) and (+calc2) rules, the number l is the sum of the numbers n andm

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 102We de�ne the set A = f+0;+comm;+assoc;+calc1;+calc2g, and given the inferencerule x > y y > zx > z (+trans)we can de�ne the generalised rule (+transA), which for instance can be used to derive1 + (2a+ 3) > 4b (3 + 1)b > b+ (0 + a)2a+ 4 > a+ b (+transA)A mechanism for checking instances of (+transA) can be implemented by �rst simpli-fying the terms in the premises and the conclusion into some normal form according tothe inferences in A and then checking whether the resulting formulae are as required bythe inference rule (+trans).Theory-speci�c simpli�ers can be declared in SPL scripts so that they can be usedautomatically to normalise the terms in the premises and conclusions of straightforwardjusti�cations during proof checking. The calculations performed by the simpli�ers cantherefore be seen as the implicit inferences generalising the straightforward rule used tocheck SPL justi�cations (i.e., the CBSE derived rule illustrated in the previous chapter).Note that the straightforward rule generalised with the implicit inferences given by thesimpli�ers does not correspond to the straightforward rule augmented with the simpli-�ers (which involves the use of the simpli�ers during the proof checking mechanism ofthe straightforward rule, rather than just before or after). For example, the straight-forward rule generalised with the simpli�er given by the rule x+ 0! x does not solvethe goal 9a:b+ a = b, though an augmented rule would.6.2.2 Straightforward Justi�cations with Explicitly Stated InferencesWe now consider the de�nition of straightforward justi�cations which explicitly statea number of the �rst-order inferences which are used in deriving the conclusion ofthe justi�cation from the given premises. However, these rules are generalised by anumber of trivial inferences which manipulate �rst-order formulae into equivalent orweaker ones. As a result, although such justi�cations contain a certain amount ofinformation on what inferences are used in the derivation, this information is not over-detailed since a number of inferences are applied implicitly in the derivation processand therefore not mentioned in the justi�cation. This is an alternative method to theuse of a straightforward justi�cation contains a list of premises, and no informationabout which �rst-order inferences are used in justifying the conclusion is given (apartfrom the fact that the overall inference is obvious according to an implementation-basedde�nition of obviousness).The �rst-order inferences used implicitly in deriving the conclusion of a justi�ca-tion are described in section 6.4.1 and correspond to simple manipulations such as theinstantiation of universally quanti�ed variables and the application of the commuta-tivity of the conjunction and disjunction operators. Inferences are stated explicitly byconstructing expressions using the following binary operators:on which corresponds to the rule of Modus Ponens: ((A) B) on A) derives B.and which corresponds to the introduction of conjunction: (A and B) derives A^B.

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 103then which is used to abbreviate certain expressions involving the on operator, and cor-responds to the transitivity of implication: (A) B) then (B) C) derives A) C.An expression of the form (X then Y) on Z is equivalent to Y on (X on Z).Straightforward justi�cations constructed using the above operators are called struc-tured straightforward justi�cations, or simply structured justi�cations, as opposed tothe unstructured ones which simply list the required premises. It is not hard to im-plement proofs involving structured justi�cations since only three operators need to beremembered and understood. Furthermore, since these operators correspond to gen-eralised inferences, structured justi�cations omit several tedious details such as theinstantiation of variables and structural manipulations on formulae. The following is anexample of a valid structured justi�cation."9c.8 x. x > c) x > d" by"8x y z. (x > y) ^ (y > z)) x > z" on "9c. c > d";It should be noted that a structured justi�cation can be used to justify several conclu-sions. For instance, the justi�cation of the above statement can also be used to derivethe following conclusion:"9c.8 z. d > z) c > z"Because of their non-deterministic nature, the generalised inferences corresponding tothe on, and and then operators cannot be implemented as functions which take twopremises and infer a conclusion, but rather as proof checking functions which checkwhether a given conclusion follows from the given premises. The formal de�nition ofthe syntax and semantics of structured justi�cations is given in the next two sections.6.3 The Syntax of Structured Justi�cationsFor the purposes of this chapter, the syntax of structured straightforward justi�cationsis de�ned as follows:Structured Justi�cation = by Structured ExpressionStructured Expression = Sentencej Then Expression on Structured Expressionj Structured Expression and Structured ExpressionThen Expression = Structured Expressionj Then Expression then Then ExpressionSuch justi�cations are preceded by their conclusion in proof scripts, and a Sentence inthe above syntax represents a premise in the justi�cation. Expressions which containthe then operator at the top level (denoted by Then Expressions in the above syntax)can only occur on the left-hand side of an on operator. The on, and and then operatorsassociate to the left, and and has a higher precedence than then, which has a higherprecedence than on. Examples of conclusions justi�ed by structured justi�cations aregiven in �gure 13.We recall that the premises of an SPL justi�cation can be given as arguments tospeci�c proof checkers (simply called provers). For the case of structured justi�cations,

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 104
"9x.C(x)" by "8x.A(x)) C(x + 1)" and "8x.B(x)) C(x + 2)"on "8x.A(x) _ B(x)";"R(c,e)" by "8x,y,z.R(x,y)) R(y,z)) R(x,z)" on"R(c,d)" and ("8x,y.R(x,y)) R(y,x)" on "R(e,d)");"9c.D(c)" by "8x,y.(A(x,y) ^ B(x)) , C(y,x)"then "8x,y.C(x,y)) D(x)"on "8x.9c. A(x,c)" and "B(d)";Figure 13: Examples of Structured Justi�cations.

one can use provers which accept structured expressions as arguments. The �rst-ordertableau prover described in chapter 5 used to check unstructured SPL justi�cationsis modi�ed (see chapter 8) so that it can be used to check structured justi�cationse�ciently. This modi�ed prover is used as the default prover during the mechanisationof group theory described in chapter 9.6.4 The Semantics of Structured Justi�cationsThe semantics of structured justi�cations is given in terms of the inferences which areassumed implicitly during the implementation of proofs, and the semantics of the on,and, and then operators which correspond to the inferences that are stated explicitly.We �rst de�ne the set of implicit inferences and then give the semantics of structuredexpressions.6.4.1 Implicit First-Order InferencesThe inferences which are assumed implicitly in structured justi�cations are de�ned interms of a binary relation� over �rst-order formulae. In other words, the manipulationof a formula A into B using a number of these inferences, that is A�� B where�� isthe re
exive transitive closure of�, is omitted from structured justi�cations. We givethe following de�nitions.De�nition 6.1 (Single Step Implicit Derivation) The relation� over �rst-orderformulae is the smallest binary relation which satis�es the following rules, categorisedinto 9 groups:1. For all formulae A and B which have the same negation normal form (see sec-tion 1.2.1), it is the case that A� B.2. For every formula A, we have A� > ?� A

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 1053. For every formula A, A� A ^A A _A� A4. For all formulae A and B,A ^B� A A� A _BA ^B� B B� A _B5. For all formulae A, B and C,A ^ (B _ C)� (A ^B) _ (A ^C)(A _B) ^ (A _ C)� A _ (B ^C)6. For every variable x, and formula A, if x is not free in A, then(8x:A)� A A� (9x:A)(9x:A)� A A� (8x:A)7. For every variable x, and all formulae B and C, if x is not free in C, then(8x:B) ^ C � 8x:(B ^ C) 9x:(B _ C)� (9x:B) _C(9x:B) ^ C � 9x:(B ^ C) 8x:(B _ C)� (8x:B) _C8. For every variable x, formula A and term t, if no free variable in t becomes boundin Afx! tg, then8x:A� 8x:Afx! tg 9x:Afx! tg� 9x:A9. For all formulae A and B, if A� B then for every formula C,A ^ C � B ^ C A _ C � B _ C8x:A� 8x:B 9x:A� 9x:BWe say that A implicitly derives B in a single step if A� B holds. �De�nition 6.2 (Implicit Derivations) For all �rst-order formulae A and B, we saythat A derives B implicitly if A �� B where �� is the re
exive transitive closure of�. We also de�ne the following inference rule denoted by��:AB (��) if and only if A�� B.�The following two results follow immediately from the above de�nition.Proposition 6.1 (Correctness of Implicit Inferences) For all formulae A and B,

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 1061. if A� B then 8~x:(A) B);2. if A�� B then 8~x:(A) B);where ~x denotes the list of variables free in A) B.Proof: The �rst statement can be easily checked for each rule in the above de�nition of� using the standard results on the validity of classical implication (given in (Fitting1996) for instance). The second statement follows from the �rst one, and the re
exivityand transitivity of implication. �Proposition 6.2 (Contrapositiveness of � and ��) For all formulae A and B,1. if A� B then :B�� :A;2. if A�� B then :B�� :A.Proof: For each rule X � Y in de�nition 6.1, it follows that :Y �� :X from therule adjacent to X � Y in the de�nition (or from the other rule in the same group forthe case of the rules in group 5), and from the fact that two formulae can be derivedfrom each other implicitly if they have the same negation normal form (i.e., the rule ingroup 1). For example, it can be shown that :A�� :(A ^B) given that A ^ B � Aas follows: :A� :A _ :B by the top right rule in defn. 6.1(3)� :(A ^B) by the rule in defn. 6.1(1).The second statement of this proposition follows from the �rst one and the fact that�� is the re
exive transitive closure of�. �It should be noted that the inference given by�� is weaker than the classical �rst-order implication. For instance, for any formula A whose negation normal form is not> or ?, and for any formula B whose negation normal form is not ?,A ^ :A 6�� ? > 6�� A _ :A (A) B) ^A 6�� B:Such inferences are therefore required to be stated explicitly in structured justi�cations.The implicit inferences are however strong enough to derive a large number of ma-nipulations on formulae, for example it can be shown by the rules in groups 3, 4 and 9that A ^B� (A ^B) ^ (A ^B) by defn. 6.1(3)� B ^ (A ^B) by defn. 6.1(4) and 6.1(9)� B ^A by defn. 6.1(4) and 6.1(9),A _B� (B _A) _B by defn. 6.1(4) and 6.1(9)� (B _A) _ (B _A) by defn. 6.1(4) and 6.1(9)� (B _A) by defn. 6.1(3),

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 107and similarlyA ^ (B ^C)�� (A ^B) ^ C (A ^B) ^ C �� A ^ (B ^ C)A _ (B _C)�� (A _B) _ C (A _B) _ C �� A _ (B _ C)A�� A _ (A ^B) A _ (A ^B)�� AA�� A ^ (A _B) A ^ (A _B)�� A:The �fth group of rules allows formulae to be manipulated into each other by distributingthe conjunctions over the disjunctions, and vice-versa. The manipulations(A ^B) _ (A ^C)�� A ^ (B _ C) A _ (B ^ C)�� (A _B) ^ (A _ C)can be derived as follows:(A ^B) _ (A ^ C)� ((A ^B) _ (A ^ C)) ^ ((A ^B) _ (A ^C)) by defn. 6.1(3)� (A _ (A ^ C)) ^ ((A ^B) _ (A ^ C)) by defn. 6.1(4) and 6.1(9)� (A _A) ^ ((A ^B) _ (A ^ C)) by defn. 6.1(4) and 6.1(9)� A ^ ((A ^B) _ (A ^ C)) by defn. 6.1(3) and 6.1(9)� A ^ (B _ (A ^ C)) by defn. 6.1(4) and 6.1(9)� A ^ (B _ C) by defn. 6.1(4) and 6.1(9):A _ (B ^ C)� (A ^A) _ (B ^ C) by defn. 6.1(3) and 6.1(9)� ((A _B) ^A) _ (B ^ C) by defn. 6.1(4) and 6.1(9)� ((A _B) ^ (A _C)) _ (B ^C) by defn. 6.1(4) and 6.1(9)� ((A _B) ^ (A _C)) _ ((A _B) ^C) by defn. 6.1(4) and 6.1(9)� ((A _B) ^ (A _C)) _ ((A _B) ^ (A _ C)) by defn. 6.1(4) and 6.1(9)� (A _B) ^ (A _ C) by defn. 6.1(3):The sixth group of rules in the de�nition removes and adds any redundant quanti�ers,and the seventh group allows two formulae which have the same prenex form to beimplicitly derivable from each other. Note that the rule8x:(B ^ C)�� (8x:B) ^C

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 108where the variable x is not free in C, can be derived as follows:8x:(B ^ C)� (8x:(B ^ C)) ^ (8x:(B ^ C)) by defn. 6.1(3)� (8x:B) ^ (8x:(B ^ C)) by defn. 6.1(4) and 6.1(9)� (8x:B) ^ (8x:C) by defn. 6.1(4) and 6.1(9)� (8x:B) ^ C by defn. 6.1(6) and 6.1(9)and the rules 9x:(B ^ C)�� (9x:B) ^C(9x:B) _ C �� 9x:(B _ C)(8x:B) _ C �� 8x:(B _ C)where x is not free in C, can be derived similarly. The two rules in the eight groupallow the specialisation of universally quanti�ed variables, and the generalisation ofexistentially quanti�ed ones, and can be used for instance to derive8x:P (x)� 8x:P (f(x)) 9x:P (f(x))� 9x:P (x):8x:P (x)� 8x:P (c) P (c)� 9x:P (c) (by gp. 7)� P (c) (by gp. 7) � 9x:P (x):8x:P (x)� 8y:8x:P (x) (by gp. 6) 9x:P (x)� 9x:9y:P (x) (by gp. 6,9)� 8y:8x:P (y) � 9x:9y:P (y)� 8y:P (y) (by gp. 6,9) � 9y:P (y) (by gp. 6):where y is not free in P (x). The last group of rules in the de�nition states that therelation � and hence �� are monotonic with respect to ^, _, 8 and 9. It is also thecase that the following manipulations hold:8x:(P (x) ^Q(x))� (8x:(P (x) ^Q(x))) ^ (8x:(P (x) ^Q(x)))�� (8x:P (x)) ^ (8x:Q(x))(8x:P (x)) ^ (8x:Q(x))� 8y:((8x:P (x)) ^ (8x:Q(x)))�� 8y:((8x:P (y)) ^ (8x:Q(y)))�� 8y:(P (y) ^Q(y))�� 8x:(P (x) ^Q(x)):

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 109where the variable y is not free in P (x) and Q(x). The following can be derived in asimilar fashion: (9x:P (x)) _ (9x:Q(x))�� 9x:(P (x) _Q(x))9x:(P (x) _Q(x))�� (9x:P (x)) _ (9x:Q(x)):6.4.2 Explicitly Stated InferencesInferences are stated explicitly in structured justi�cations by using structured expres-sions which involve the operators on, and and then. We give the following de�nitions forthe semantics of structured expressions and structured justi�cations.De�nition 6.3 (Explicit Derivation) We say that a structured expression X explic-itly derives a formula C if X C, where the binary relation between structuredexpressions and formulae is de�ned as the smallest relation satisfying the following fourrules: A�� CA CX (A) B) Y A(X on Y) BX A Y B (A ^B)�� C(X and Y) CX (A) B) Y (B) C)(X then Y) (A) C)where A, B and C are formulae and X and Y are structured expressions. �De�nition 6.4 (Justi�cation by Structured Expressions) For every formula Cand structured expression X, we say that X justi�es C if and only if X C. �Example 6.1 As an example, we show that the following conclusion is justi�ed cor-rectly:"9c. C(a,c)" by "8x,y,z.A(x,y)) B(y,z)) C(x,z)"on "8x.9c.B(x,c)" and "A(a,b)";First of all, it is the case that(8x.9c.B(x; c)) and (A(a; b)) (9c.A(a; b) ^ B(b; c)) (1)by using the third rule in de�nition 6.3, and the following:� (8x.9c.B(x; c))�� 9c.B(b; c), and so (8x.9c.B(x; c)) 9c.B(b; c);� A(a; b)�� A(a; b), and so A(a; b) A(a; b);� (9c.B(b; c)) ^ (A(a; b))�� 9c. (A(a; b) ^ B(b; c)).

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 110It is also the case that8x; y; z.A(x; y)) B(y; z)) C(x; z) (9c.A(a; b) ^ B(b; c))) (9c.C(a; c)) (2)as 8x; y; z.A(x; y)) B(y; z)) C(x; z)�� 8x; y. (9z.A(x; y) ^ B(y; z))) (8z.C(x; z))�� 8x; y. (9z.A(x; y) ^ B(y; z))) (9z.C(x; z))�� (9c.A(a; b) ^ B(b; c))) (9c.C(a; c)):Therefore, by the second rule of de�nition 6.3 and equations (1) and (2) above, it is thecase that((8x; y; z.A(x; y)) B(y; z)) C(x; z)) on (8x.9c.B(x; c)) and (A(a; b))) 9c.C(a; c): �6.5 Results on Structured Justi�cationsIn this section we give a number of results on the structured justi�cations given in theprevious section. We start by showing that the on and and operators generalise theinference rules of Modus Ponens and the introduction of conjunction respectively, andthat an expression of the form (X then Y) on Z is equivalent to Y on (X on Z).Proposition 6.3 (on Generalises Modus Ponens) For all formulae A, B and C,the expression A on B C holds if and only if there are some P , Q and R such that1. A�� (P) Q),2. B�� P , and3. Q�� C,so that C can be derived from A and B by:AP) Q (��) BP (��)Q (MP)C (��)Proof: Given that A on B C, then from de�nition 6.3 it must be the case that thereis some D such that A (D) C) and B D, and therefore from de�nition 6.3 itfollows that A�� (D) C) and B�� D. The above three results in the statement ofthe proposition can be satis�ed by choosing P to be D and Q to be C. For the converse,given the above three hypotheses, it follows thatA�� (P) Q) by the �rst hypothesis�� (P) C) by the third,

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 111and therefore A (P) C). From the second hypothesis, we get B P , and henceA on B C as required. �Proposition 6.4 (and Generalises ^-Introduction) For all formulae A, B and C,the expression A and B C holds if and only if there are some P and Q such that1. A�� P ,2. B�� Q, and3. P ^Q�� C,so that C can be derived from A and B by:AP (��) BQ (��)P ^Q (^-Intro)C (��)Proof: Similarly to proposition 6.3, this result follows from de�nition 6.3. �Before showing that structured expressions involving the then operator are equiv-alent to certain expressions involving the on operator, we �rst give the de�nitions ofequivalence on structured expressions.De�nition 6.5 (Equivalent Structured Expressions) Two structured expressionsX and Y are equivalent if X C holds if and only if Y C holds for every formulaC. �Proposition 6.5 (Elimination of then) For all structured expressions X, Y and Z,the expression (X then Y) on Zis equivalent to Y on (X on Z):Proof: For all formulae C, given that (X then Y) on Z C then there is some formulaA such that (X then Y) (A) C) and Z A, and so there must be some B suchthat X (A) B) and Y (B) C). Hence, we can derive C explicitly fromY on (X on Z) as follows:Y (B) C) X (A) B) Z A(X on Z) BY on (X on Z) CFor the converse, if Y on (X on Z) C, then there is some B such that Y B) Cand X on Z B, and therefore there is some formula A such that X (A) B) andZ A. Hence, X (A) B) Y (B) C)(X then Y) (A) C) Z A(X then Y) on Z C

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 112Therefore, the structured expressions (X then Y) on Z and Y on (X on Z) are equiv-alent. �Since the syntax of structured justi�cations restricts the use of the then operator tothe left hand side of an on operator, one can in general rewrite a structured expressioninvolving the then operator into equivalent ones which do not.A number of other results on the properties of structured expressions are given inthe next proposition.Proposition 6.6 For all structured expressions X, Y and Z, and formulae A and B,the following results hold:1. If X is not a then expression and X A and X B then X (A ^B).2. The expression (X on Y) on Z is equivalent to (X on Z) on Y .3. The expression X and Y is equivalent to Y and X.4. The expression X on (Y and Z) is equivalent to (X on Y) on Z.5. The expression (X and Y) and Z is equivalent to X and (Y and Z).6. (X then Y) then Z (A) B) if and only if X then (Y then Z) (A) B).7. If (X on Z) and (Y on Z) A then (X and Y) on Z A.Proof: The �rst statement follows by induction on the structure of X. In the light ofproposition 6.5 we can assume without loss of generality that the expression X does notcontain the then operator. We need to consider the following three cases:� The expression X is a formula: Therefore we are required to show that if X �� Aand X �� B then X �� (A ^B) which follows byX � (X ^X)�� (A ^X)�� (A ^B):� The expression X is some on expression Y on Z where if Y P1 and Y P2then Y (P1 ^ P2), and if Z P1 and Z P2 then Z (P1 ^ P2) for allformulae P1 and P2. Now, since (Y on Z) A then there is some formula C suchthat Y (C) A) and Z Cand since (Y on Z) B then there is some formula D such thatY (D) B) and Z D:As a result, Y (C) A) ^ (D) B)�� (C ^D)) (A ^B)and Z (C ^D)

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 113and therefore Y on Z (A ^B):� The expression X is some and expression Y and Z where if Y P1 and Y P2then Y (P1 ^ P2), and if Z P1 and Z P2 then Z (P1 ^ P2) for allformulae P1 and P2. Now, since (Y and Z) A then there are some formulaeAY and AZ such thatY AY ; Z AZ ; and (AY ^AZ)�� Aand since (Y and Z) B there are some formulae BY and BZ such thatY BY ; Z BZ ; and (BY ^BZ)�� B:As a result, Y (AY ^BY) and Z (AZ ^BZ)and it is the case that(AY ^BY) ^ (AZ ^BZ)�� (AY ^AZ) ^ (BY ^BZ)�� A ^Band therefore Y and Z (A ^B):The next �ve statements in the current proposition are quite straightforward, andtheir proofs are similar to that of proposition 6.5. The proof of the last statement isgiven below.If (X on Z) and (Y on Z) A then it follows from the de�nition of that theremust be some formulae H and I such that (X on Z) H, (Y on Z) I, and thatH ^ I �� A. Now, from (X on Z) H we get that there is some formula J such thatX (J) H) and Z J , and from (Y on Z) I it follows that there is some Ksuch that Y (K) I) and Z K.In order that (X and Y) on Z A, it is su�cient that there exist some formulaeU , V and W such that� X U ,� Y V ,� Z W , and� (U ^ V)�� (W) A),so that: X U Y V (U ^ V)�� (W) A)(X and Y) (W) A) Z W(X and Y) on Z AWe choose the formulae U , V and W to beU = (J) H) V = (K) I) W = J ^K

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 114and check that they satisfy the above four requirements:� It is the case that X (J) H), and that� Y (K) I).� Since Z J and Z K, then Z (J ^ K) by the �rst statement of thisproposition.� It also follows that ((J) H) ^ (K) I))�� ((J ^K)) A), as shown below:(J) H) ^ (K) I)� (:J _H) ^ (:K _ I) (same NNF)�� (:J ^ :K) _ (:J ^ I) _ (H ^ :K) _ (H ^ I) (distributivity)�� :J _ :J _ :K _ (H ^ I) (weakening the �rst three disjuncts)�� (:J _ :K) _ (H ^ I) (re-bracketing)� (J ^K)) (H ^ I) (same NNF):Therefore, if (X on Z) and (Y on Z) A then (X and Y) on Z A. �It should be noted that the converse of proposition 6.6(7) does not hold in general,as seen by the following counterexample.Example 6.2 (Counterexample to the Converse of Prop. 6.6(7)) It is the casethat ((A and (B) C)) on (A) B)) (A ^ C) holds, asA ^ (B) C)� A ^ (:B _ C)� (A ^ :B) _ (A ^ C)� (A) B)) (A ^ C):However, (A on (A) B)) and ((B) C) on (A) B)) (A ^C) does not hold. Al-though this statement seems implausible, we do not have the necessarily results toshow in a more formal manner that it does not hold. The required results are given inchapters 7 and 8, and the above statement is shown to be false in example 8.5. �6.6 DiscussionThis chapter gives the de�nition of the syntax and semantics of structured straightfor-ward justi�cations which state some of the �rst-order logic inferences used in deriving aconclusion from a number of premises. These justi�cations, however, omit several sim-ple inferences such as the instantiation of universally quanti�ed variables and certainmanipulations on the structure of formulae. In chapter 8 we illustrate a mechanismfor checking structured justi�cations by looking for a proof of the conclusion from thepremises in a very restricted search space. The restriction on the search space dependson the inferences which are explicitly stated in the justi�cation. In the following chapterwe introduce a number of de�nitions and results which are used in showing that a proofsearch based on the restrictions on the search space given in chapter 8 is sound andcomplete according to the semantics of structured justi�cations given in this chapter.

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 115
section on_symm_and_transgiven type ":'a";let "R:'a ! 'a ! bool";assume R_symm: "Symmetric R"R_trans: "Transitive R"R_ex: "8 x. 9 y. R x y";theorem R_refl: "Reflexive R"proofsimplify with Reflexive, Symmetric and Transitive;given "x:'a";there is some "y:'a" such thatRxy: "R x y" by R_ex;so Ryx: "R y x" by R_symm on Rxy;hence "R x x" by R_trans on Rxy and Ryx;qed;theorem R_equiv: "Equivalence R"<Equivalence> by R_refl and R_symm and R_trans;end; Figure 14: An SPL Proof Script using Structured Justi�cations.

Chapter 9 illustrates the mechanisation of a number of results in group theory in whichmost of the results are justi�ed by means of structured justi�cations.Figure 14 gives an example of a simple SPL script which uses structured justi�ca-tions. The same results given in this example are derived using unstructured justi�-cations in the proof script in �gure 5, page 56. Since structured justi�cations containmore information which is relevant to the understanding of the proof, they are easier tofollow than unstructured ones. Since this information can also be used to restrict thesearch space during proof checking, they can also be machine checked more e�ciently.Furthermore, the implementation of structured justi�cations during proof developmentdoes not need much more e�ort than the implementation of unstructured ones since thedetailed inferences which would make the justi�cation tedious to implement are omitted.One problem with the use of structured justi�cations is that there is no straightfor-ward way of using the last derived result implicitly in the current justi�cation. In Mizarone can use the then construct to show that the previous result is used automaticallyin the current justi�cation. For example, one can implement the proof:

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 116"R x y" by R_ex;then "R y x" by R_symm;then "R x x" by R_trans, Rxy;in which the result "R x y" is used implicitly as a premise in the justi�cation of "R y x",and similarly, "R y x" is used automatically in the justi�cation of "R x x". In general,such a mechanism cannot be used with structured justi�cations because one is requiredto give some information on how the premises are being used. In the SPL language usedin the case study described in chapter 9, an exclamation mark (!) is used to denote thelast derived result, and statements like then, hence, therefore and so are ignored duringproof checking. The above proof fragment can be implemented as follows:"R x y" by R_ex;then "R y x" by R_symm on !;hence "R x x" by R_trans on Rxy and !;Although structured justi�cations can be more readable than unstructured ones, theinability to use the last derived result automatically may reduce their readability. In�gures 15 and 16 we give two SPL proofs of the nonobv theorem. The proof in �gure 15uses unstructured justi�cations in which the then and hence statements denote thefact that the previously derived result is used implicitly in the current one. The proofin �gure 16 uses structured justi�cations in which an exclamation mark denotes thepreviously derived result. For completeness, �gure 17 shows a proof of the same theoremusing structured justi�cations without !. It can be noted that most of the use of theexclamation mark in the proof in �gure 16 is of the form:: : : by : : : on !This is also observed in the proofs implemented in the mechanisation of group theory,and therefore one can de�ne the then construct such that:then C by expis an abbreviation ofC by (exp) on !We will see in section 8.2.4 that the problem of checking the validity of the structuredjusti�cations de�ned in this chapter is undecidable. In particular, checking whether twoformulae are implicitly derivable from each other (i.e., whether A �� B for arbitraryformulae A and B) is undecidable. This suggests that the implicit derivability de�nedin section 6.4.1 is too strong and therefore cannot in general be considered to representtrivial derivations. Most of the structured justi�cations that were implemented in thecase study (chapter 9) are rather easy to machine check, and probably only a small(possibly decidable) subset of the implicit derivations are actually used in practice.Section 8.5 illustrates how the search space considered during proof checking of thescripts implemented in the case study is restricted to a �nite one. As a result, only adecidable subset of the explicit derivations discussed in this chapter could be checkede�ectively. Alternative de�nitions of implicit and explicit inferences in the pure �rst-order logic may be considered in future.One of the motivations for the de�nition and use of structured justi�cations ina declarative language is to explore whether simple results can be derived by a less

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 117

assume sr: "8x y. P(x,y) _ Q(x,y)"sq: "8x y. Q(x,y)) Q(y,x)"tp: "8x y z. P(x,y) ^ P(y,z)) P(x,z)"tq: "8x y z. Q(x,y) ^ Q(y,z)) Q(x,z)";theorem nonobv: "(8x y. P(x,y)) _ (8x y. Q(x,y))"proofgiven "a:'a" and "b:'a";assume 1: ":P(a,b)";then 2: "Q(b,a)" by sr, sq;given "x:'a" and "y:'a";auxstep: "8z. Q(a,z)"proofgiven "z:'a";":P(z,b)) Q(a,z)"proofassume ":P(z,b)";then "Q(z,a)" by sr, tq, 2;hence "Q(a,z)" by sq;end;hence "Q(a,z)" by sr, tp, 1;end;"Q(x,a)" by auxstep, sq;hence "Q(x,y)" by auxstep, tqqed;Figure 15: An SPL Proof of nonobv using Unstructured Justi�cations.

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 118

assume sr: "8x y. P(x,y) _ Q(x,y)"sq: "8x y. Q(x,y)) Q(y,x)"tp: "8x y z. P(x,y) ^ P(y,z)) P(x,z)"tq: "8x y z. Q(x,y) ^ Q(y,z)) Q(x,z)";theorem nonobv: "(8x y. P(x,y)) _ (8x y. Q(x,y))"proofgiven "a:'a" and "b:'a";assume 1: ":P(a,b)";then 2: "Q(b,a)" by sr then sq on !;given "x:'a" and "y:'a";auxstep: "8z. Q(a,z)"proofgiven "z:'a";":P(z,b)) Q(a,z)"proofassume ":P(z,b)";then "Q(z,a)" by sr then (tq on 2) on !;hence "Q(a,z)" by sq on !;end;hence "Q(a,z)" by (sr and !) on (tp on 1);end;"Q(x,a)" by sq on auxstep;hence "Q(x,y)" by tq on auxstep and !;qed; Figure 16: An SPL Proof of nonobv using Structured Justi�cations.

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 119

assume sr: "8x y. P(x,y) _ Q(x,y)"sq: "8x y. Q(x,y)) Q(y,x)"tp: "8x y z. P(x,y) ^ P(y,z)) P(x,z)"tq: "8x y z. Q(x,y) ^ Q(y,z)) Q(x,z)";theorem nonobv: "(8x y. P(x,y)) _ (8x y. Q(x,y))"proofgiven "a:'a" and "b:'a";assume 1: ":P(a,b)";then 2: "Q(b,a)" by sr then sq on 1;given "x:'a" and "y:'a";auxstep: "8z. Q(a,z)"proofgiven "z:'a";auxstep_1: ":P(z,b)) Q(a,z)"proofassume auxstep_1_1: ":P(z,b)";then auxstep_1_2: "Q(z,a)" by sr then (tq on 2) on auxstep_1_1;hence "Q(a,z)" by sq on auxstep_1_2;end;hence "Q(a,z)" by (sr and auxstep_1) on (tp on 1);end;3: "Q(x,a)" by sq on auxstep;hence "Q(x,y)" by tq on auxstep and 3;qed;Figure 17: An SPL Proof of nonobv using Structured Justi�cations without !.

CHAPTER 6. STRUCTURED STRAIGHTFORWARD JUSTIFICATIONS 120implementation-based mechanism than that given by the use of a theorem proving al-gorithm which de�nes a notion of obvious inferences (see section 6.1, page 100). Thecurrent de�nition of the semantics of structured justi�cations does not depend on analgorithm for checking the justi�cations. Instead, the semantics is given in terms of triv-ial manipulations on �rst-order formulae, and in terms of three quite simple inferencerules. Furthermore, the mechanism for restricting the search space during the proofchecking of structured justi�cations does not depend on the proof calculus or searchstrategy used. These remarks therefore suggest that the de�nition of structured justi�-cations is independent of the algorithm used in checking them. However, the problemof checking the validity of structured justi�cations is undecidable and thus one needsto impose implementation-based bounds on the search space considered during proofchecking. Because of this, the semantics of structured justi�cations that can be machinechecked in practice is not entirely implementation independent.

Chapter 7A Coloured First-Order Logic7.1 IntroductionThis chapter gives the de�nition of a pure �rst-order logic in which formulae are an-notated with colours. The annotations are used to restrict the search space duringautomated theorem proving. The de�nitions and results given here are used in the nextchapter to show how the inferences stated explicitly in structured straightforward justi-�cations (chapter 6) can be used to reduce the e�ort required during the proof checkingprocess of such justi�cations.The process of automating the discovery of a proof of a �rst-order sentence, whichcan be called the conclusion or goal, from a number of assumptions, or hypotheses,usually involves the refutation of the set of sentences consisting of the assumptions andthe negation of the goal. The refutation is done by showing the inconsistency of the setof sentences, that is, showing that one can derive falsity (?) or an inconsistent pair ofsentences X and :X. In general, one can restrict the refutational process to consideronly the literals of a given set of sentences. This can be seen for instance from thede�nition of a consistency property given in (Fitting 1996) and shown here:De�nition 7.1 (First-Order Consistency Property) Let C be a collection of setsof �rst-order sentences. It is called a consistency property with respect to a �rst-orderlanguage L, if for every set S 2 C:1. For every literal A in L, not both A and :A are in S.2. The literal ? =2 S.3. If ' ^ 2 S then S [f'; g 2 C.4. If ' _ 2 S then S [f'g 2 C or S [f g 2 C.5. If 8x:' 2 S then S [f'fx! tgg 2 C for every closed term t of L.6. If 9x:' 2 S then S[f'fx! pgg 2 C for some parameter p of LPAR (the de�nitionof LPAR and parameters is given in section 1.2.1). �Note that in the �rst condition in the above de�nition, the formulae A and :A areliterals. It is also shown that a set of sentences is satis�ed in some model if it isconsistent. This result is given by the model existence theorem:121

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 122Theorem 7.1 (Model Existence Theorem) If C is a consistency property with re-spect to a �rst-order language L, and S 2 C then S is satis�able (in some Herbrandmodel for LPAR).Proof: see for instance (Fitting 1996). �Intuitively, a set of sentences can be shown to be satis�able by checking that all thesets of literals which can be derived from it are consistent. Conversely, a refutationalprocess checks that an inconsistent set of literals can be derived from the given sentences.In this chapter we give a mechanism for restricting the refutational process by check-ing the inconsistency of certain literals only. This is done by annotating the literals ina given set of sentences with colours and allowing only pairs of literals of particularcolours to be considered inconsistent. The restriction is given through the de�nitionof a connectability relation between colours: two literals are allowed to be consideredinconsistent if and only if they are complementary and their colours relate with eachother according to the connectability relation.This mechanism can be used to restrict the way the given sentences can be usedduring theorem proving. This results in a more e�cient proof checking process since asmaller search space is considered. For instance, let us consider the proof of the sentenceX from the assumptions Y) X and Y using the connection method (Andrews 1981;Bibel 1981) (see also section 2.3.1). This involves the refutation of the three clausesY :Y _X :Xby the following matrix: �Y :Y :XX �The literals in the clause corresponding to the implication Y) X are connected withthe literals in the other clauses, :X and Y , such that every path in the above matrix hasa connection. In general, the matrix proof of some goal from two hypotheses using theelimination of implication has the above form: the literals in the clauses correspondingto the implication connect with the literals of the other clauses. Therefore if we aregiven the information that a conclusion C can be derived from two sentences I and Jby the elimination of implication in I by J , then one can restrict the proof search toonly look for connections between the literals in the clauses of I with the literals inthe clauses of :C and J . Note that in general, there may be literals in the clauses of:C which can be connected with the literals in the clauses if J . By using the abovementioned restriction, such connections are ignored during proof search and therefore asmaller search space is considered.The particular restriction on the proof search mentioned in the previous paragraphcan be done by annotating the literals in I, C and J with the colours red, green andblue respectively, say, and allowing the connection of red literals with green and blueones only. In general, the inferences stated explicitly in structured straightforwardjusti�cations can be used to restrict the search space considered during proof checkingusing the colouring mechanism described in this chapter. This restriction is illustratedin chapter 8.In the next section we introduce the basic de�nitions of the �rst-order logic withcoloured formulae. In section 7.3 we show how a set of coloured sentences can be

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 123mapped into an equivalent set of uncoloured sentences, and in section 7.4 we showhow certain recolourings of the formulae preserve the consistency or inconsistency ofcoloured sentences. An interpolation theorem for the coloured �rst-order logic is givenin section 7.5, and an undecidability result is given in section 7.6. A brief summary ofthis chapter is given in section 7.7.7.2 A First-Order Logic with Coloured Formulae7.2.1 Basic De�nitionsIn this section we introduce a set of colours P, and a �rst-order language whose formulaeare coloured with P. Atomic formulae can be associated with only one colour, so it isenough to annotate only the predicate symbols with colours since there is exactly onepredicate symbol in every atom.An atomic formula in this language is a pair consisting of an uncoloured atom anda colour.De�nition 7.2 (Palette) A palette is a countable set of colours. �Note that in general, the role of the colours is to restrict the search space during arefutational proof, and therefore only a �nite set of colours is considered during proofsearch (since proofs are �nite). However, we need a palette to be countably in�nite incertain cases where, for instance, we need the existence of some new colour j which isnot in some given palette P (for example, in de�nition 8.4 in the next chapter). Inthis chapter and in chapter 8, all sets of colours are in�nite unless otherwise stated. Acoloured �rst-order language is now de�ned as follows.De�nition 7.3 (Coloured Language) Let P be a palette, a coloured �rst-order lan-guage is a �rst-order language L(�PR;�F ;X) where �R is a collection of relation symbolswith �xed arities, �F is a collection of function symbols with �xed arities, X is a setof variables, and �PR is the collection of relation symbols of the form (P; i) with arityn, where P is in �R, the colour i is in P, and n is the arity of P . For simplicity wewill refer to the language L(�PR;�F ;X) by LP . We represent a coloured predicate (P; i)with P i. �For simplicity, we assume that all formulae are in negation normal form (NNF) andthat expressions such as A) B and :(A) B) are syntactic sugarings for :A _ Band A _ :B. The set of relation symbols, R, contains the nullary predicate > and theliterals >() and :>() are denoted by > and ? respectively. It should be noted that thelanguage LP does not contain the literals > and ?, but rather literals of the form >iand ?i for i 2 P.We also give the de�nition of a connectability relation between colours. This relationdetermines which complementary literals are allowed to be regarded as inconsistentduring a refutational proof search: a complementary pair of literals will be consideredto be inconsistent if their colours relate with each other according to the connectabilityrelation considered. Since the complementary relation over literals is symmetric, theconnectability relation is required to be symmetric as well. We can also assume that aconnectability relation is �nite since only a �nite number of sentences (and thus colours)are used in any particular proof.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 124De�nition 7.4 (Connectability Relation) A connectability relation is a �nite sym-metric relation over a set of colours. If K is a connectability relation and i, j are twocolours, then we use the notation i �K j to denote the fact that i and j relate with eachother in K (i.e., (i; j) 2 K). �A connectability relation is usually speci�ed using the following de�nition and no-tation.De�nition 7.5 (Full Connection) Given two �nite sets of colours P1 and P2 wede�ne the full connection between P1 and P2, denoted by P1 $ P2, as the connectabilityrelation in which all the colours in P1 relate with all the colours in P2 and vice-versa:P1 $ P2 = (P1 �P2) [(P2 �P1):For simplicity we denote fig $ P, fig $ fjg, and P $ fig by i$ P, i$ j, and P $ irespectively, where P is some palette and i and j are colours. We also use the notationP1 $ P2 $ P3 $ � � � $ Pn�1 $ Pn to represent the relationP1 $ P2 [P2 $ P3 [� � � [Pn�1 $ Pn: �The atoms of an uncoloured �rst-order formula can be annotated with some colourusing the following mapping.De�nition 7.6 (Colouring Formulae) Given a colour i 2 P and a formula 	 in anuncoloured �rst-order language L, we de�ne the formula 	i in LP as follows:(P (t1; : : : ; tn))i = P i(t1; : : : ; tn)(:')i = :('i)(' ^)i = ('i) ^ (i)(' _)i = ('i) _ (i)(8x:')i = 8x:('i)(9x:)i = 9x:(i)where P is a predicate, ' and are formulae and x is a variable. We will refer to theset f�i j � 2 Sg by Si. �We also give the following de�nitions on coloured formulae, sets of coloured formulae,and connectability relations.De�nition 7.7 (Having some Colour, Homogeneously Coloured) We say thata formula 	 2 LP has colour i if there is some � 2 L such that 	 = �i. A formula ishomogeneously coloured if all its literals have the same colour. �Note that a formula 	 is homogeneously coloured if and only if 	 = �i for someuncoloured formula � and colour i.De�nition 7.8 (Colours in a Formula, new to a Formula) A colour i is said tobe in the coloured formula � if there is some atom Ai in �; it is in the set S if there issome � in S such that i is in �, and it is in the connectability relation K over P if there

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 125is some j 2 P such that i �K j. A colour is new to � if it is not in �, and we denotethe set of colours in � by C(�). We give similar de�nitions for `new to S', `new to K',C(S) and C(K). �De�nition 7.9 (Connectability Relation on Sets) Given two sets S1 and S2 ofcoloured sentences and a connectability relation K, we say that S1 relates with S2in the extension of K to sets, and write S1 �K S2, if there are some colours i 2 C(S1)and j 2 C(S2) such that i �K j. �De�nition 7.10 (Uncoloured Projection) Let B = Ai be a coloured literal. Theuncoloured projection of B (denoted by BU) is the literal A. We also de�ne 'U and SUas the uncoloured counterparts of a coloured formula and a set of coloured formulaeS respectively. �De�nition 7.11 (Range) Given a colour i and a connectability relation K, we de�nethe range of i in K (and denote it by K(i)) as the set of colours in K which relate to i:K(i) = fj j i �K jg: �De�nition 7.12 (Restriction of K to S) Given the connectability relation K andset S of coloured formulae, the restriction of K to S, also called the subrelation of Krelevant to S, is the connectability relation KdSe de�ned as follows:KdSe = f(i; j) j i �K j and both i and j are in Sg: �The following example illustrates the de�nitions given in this section.Example 7.1 Let the palette P = fi; j; k; lg where i, j, k and l are distinct colours,and let us denote the connectability relation fi; jg $ fk; lg by K1. Theni �K1 k i �K1 l j �K1 k j �K1 l:Also, let K2 = i$ j $ k, then i �K2 j j �K2 k:Then K1(i) = fk; lg and K2(j) = fi; kg. Now letS1 = fAi; (B ^ C)jg, andS2 = fAi; Bj ^ Ckg;then l is new to S1, to S2 and to K2 but it is in K1. We also have thatS1 6�K1 S1 S1 �K1 S2 S2 �K1 S2S1 �K2 S1 S1 �K2 S2 S2 �K2 S2and thatK1dS1e = fg K2dS1e = i$ j K1dS2e = fi; jg $ k K2dS2e = K2:Finally, the uncoloured projection SU1 = SU2 = fA;B ^ Cg. �

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 1267.2.2 The Consistency of Sets of Coloured FormulaeIt should be noted that since the coloured language LP is de�ned as the �rst-orderlanguage L(�PR;�F ;X), the same notions of validity (for formulae) and satis�ability(for sets of formulae) that apply in the standard (i.e., uncoloured) �rst-order logic stillapply for LP . For example, the set S = fAi;:Ajg is satis�able if i 6= j as the twopropositions Ai and Aj are di�erent. However, we require a notion of consistency withrespect to some connectability relation K. In particular we want the set S above to beinconsistent with respect to K if and only if i �K j. Basically, we de�ne a K-consistencyproperty which is equivalent to the uncoloured de�nition of consistency (De�nition 7.1)with the exception that a complementary pair of literals make a set inconsistent onlyif their colours relate in K. Similarly, we deem a set of coloured sentences containing aliteral ?i to be inconsistent if i is in the connectability relation considered.De�nition 7.13 (Coloured Consistency Property) Let C be a collection of sets ofcoloured sentences, and K a connectability relation. Then C is said to be a K-consistencyproperty with respect to a coloured language LP if for every set S 2 C the followingconditions hold:1. For every pair of colours i, j, such that i �K j, and every literal A 2 L, not bothAi and :Aj are in S.2. For every colour i in K, the literal ?i =2 S.3. If ' ^ 2 S then S [f'; g 2 C.4. If ' _ 2 S then S [f'g 2 C or S [f g 2 C.5. If 8x:' 2 S then S [f'fx! tgg 2 C for every closed term t of L.6. If 9x:' 2 S then S [f'fx! pgg 2 C for some parameter p of LPAR. �Note that conditions 3{6 of the de�nition of a K-consistency property given above areidentical to those of de�nition 7.1 of a consistency property. We now de�ne K-consistentand K-inconsistent sets of sentences, and give a number of examples.De�nition 7.14 (Consistent Sets of Coloured Formulae) A set of coloured sen-tences S is said to be consistent with respect to a connectability relation K, or simplyK-consistent, if it is a member of some K-consistency property, otherwise it is said tobe inconsistent with respect to K (or K-inconsistent). �Example 7.2 (Consistent and Inconsistent Sets of Coloured Formulae)� The set fXi;:Xj ;Xk;:X lg is consistent with respect to i $ k [j $ l but it isinconsistent with respect to i$ l.� The set fXi ^ :Xjg is i$ j-inconsistent.� The set fXi; (X) Y)j ;:Y kg is fi; jg $ k-consistent but it is not i $ j $ k-consistent. �The following proposition follows immediately from the de�nition of the consistencyof a coloured set of sentences.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 127Proposition 7.1 Let S be a set of coloured sentences and K a connectability relation.If all the colours in S relate with each other, that is i �K j for all i, j in S, then S isK-consistent if and only if SU is consistent.Proof: Trivial; by de�nitions 7.1 and 7.13. �It is often convenient to represent a set of coloured formulae and a connectabilityrelation as a single entity. This is given by the following de�nition of a coloured �rst-order problem.De�nition 7.15 (Coloured First-Order Problem) A pair (S;K) consisting of a setof coloured sentences S and a connectability relation K is called a coloured �rst-orderproblem, or simply a coloured problem. We say that (S;K) is consistent if S is K-consistent, otherwise (S;K) is said to be inconsistent. �7.3 From Coloured Formulae to Uncoloured OnesIn this section we de�ne a mapping from sets of coloured sentences into `equivalent'sets of uncoloured ones. More precisely, given a connectability relation K over a set ofcolours P, we de�ne a mappingDK : L(�PR;�F ;X)! L(�0R;�F ;X)where �0R is some collection of predicate symbols with �xed arities, such that a set S ofcoloured sentences is K-consistent if and only if DK(S) = fDK(�) j � 2 Sg is consistent,or equivalently satis�able. We call the mapping DK a decolourisation mapping. Themain application of this mapping is to be able to extend a number of results in �rst-orderlogic to the coloured logic by means of their representation in �rst-order logic.7.3.1 The De�nition of a DecolourisationThe required mapping is given in de�nition 7.17 and maps a literal in L(�PR;�F ;X) toa literal in L(�P�PR [f>;?g;�F ;X). The atoms in the formulae of the range of thismapping are annotated with a pair of colours. For simplicity, we will refer to a formula'(i;j) by 'ij . Please note that if i 6= j, then 'ij 6= 'ji.Before we give the de�nition of the mapping DK we �rst consider the conditionsit needs to satisfy for the simple case when K = (i $ j), and i 6= j. One importantcondition is that for every literal ADK(Ai) = :DK(:Aj);such that when it is applied to the elements of the K-inconsistent set S = fAi;:Ajg weget DK(S) = fDK(Ai);DK(:Aj)g = f:DK(:Aj);DK(:Aj)gwhich is unsatis�able. Similarly, we also need that DK(:Ai) = :DK(Aj) so that theset f:Ai; Ajg is mapped into an unsatis�able set. Other properties of this particular

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 128mapping should include: DK(Ai) 6= :DK(:Ai), andDK(Aj) 6= :DK(:Aj);so that the sets fAi;:Aig and fAj ;:Ajg are mapped into satis�able sets (since i 6�K iand j 6�K j).Now, given a coloured literal Bi, we de�ne the literal (Bi)xj in LP�P as the literalB coloured with a pair containing i and j (that is, either (i; j) or (j; i)) so that it iscomplementary to the literal (:Bj)xi.De�nition 7.16 (Decolourisation according to a Single Colour) Given a literalBi in the coloured language L(�PR;�F ;X), and a colour j 2 P, the literal (Bi)xj in thelanguage L(�P�PR [f>;?g;�F ;X) is de�ned as follows:(Bi)xj = >, if B = >= ?, if B = ?= Aij , if B = A, for atomic A 6= >= :Aji, if B = :A, for atomic A 6= > �In other words, we have (>i)xj = > (?i)xj = ?(Ai)xj = Aij (:Ai)xj = :Aji:where A is atomic and A 6= >.It is easy to check that for the case of K = fi$ jg if the mapping DK is de�ned asDK(Ai) = (Ai)xjDK(Aj) = (Aj)xifor any literal A then it satis�es the conditions discussed earlier this section.Example 7.3 The following are some examples of the use of the mapping Xxc whereX is a literal and c a colour.f(Ai)xj; (:Ai)xjg = fAij ;:Ajig and is thus satis�able.f(Ai)xj; (:Aj)xig = fAij ;:Aijg and hence unsatis�able.f(Aj)xi; (:Ai)xjg = fAji;:Ajig and hence unsatis�able.f(Aj)xi; (:Aj)xig = fAij ;:Aijg and hence satis�able. �We usually write Bixj instead of (Bi)xj. We will now see that Bixj and (:Bj)xiare indeed complementary literals, and that the mapping (xj) is injective on the set ofcoloured literals Ac where c is a colour and A is a literal other than > and ?.Proposition 7.2 For every literal Bi, it is the case that :(Bixj) = (:Bj)xi.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 129Proof: We consider the following four cases:� Let B = >, then :(>ixj) = :> = ?and (:>i)xj = ?ixj = ?:� Let B = ?, then :(?ixj) = :? = >and (:?i)xj = >ixj = >:� Let B = A for some atom A 6= >. Then:(Aixj) = :(Aij);and (:Aj)xi = :(Aij):� Let B = :A for some atom A 6= >. Then:((:Ai)xj) = :(:(Aji)) = Aji;and (:(:Aj))xi = (Aj)xi = Aji:Therefore, :(Bixj) = (:Bj)xi for every literal Bi. �Proposition 7.3 For all literals B1, B2, and colours i, j, m and n, if neither B1 norB2 are > or ?, and if Bixj1 = Bmxn2 then B1 = B2, i = m and j = n.Proof: From the de�nition of Bixj1 and Bmxn2 we can assume that if Bixj1 = Bmxn2either both B1 and B2 are positive literals or else they are both negative:� If both B1 and B2 are positive then B1 = A1 and B2 = A2 for some atoms A1and A2. So Bixj1 = Aixj1 = Aij1 and Bmxn2 = Amxn2 = Amn2 . Therefore A1 = A2,i = m and j = n.� Now, if both B1 and B2 are negative, then B1 = :A1 and B2 = :A2 for someatoms A1 and A2, and so Bixj1 = (:Ai1)xj = :Aji1 and Bmxn2 = (:An2)xm =:Anm2 . And again A1 = A2, j = n and i = m.In either case B1 = B2, i = m and j = n. �We now consider the conditions which DK needs to satisfy if K contains more thanone pair of colours. Basically if i �K j1, i �K j2, : : : , i �K jn, we need the setsfDK(Ai);DK(:Ajx)g to be unsatis�able for all x 2 f1; : : : ; ng. Furthermore, if i 6�K kthen the set fDK(Ai);DK(:Ak)g has to be satis�able (even if i = k). We de�ne DK(Ai)to be the conjunction of all the literals in fAixk j i �K kg, so that if i �K j, then one ofthe conjuncts in DK(Ai) (which is Aixj) is the complement of one of the conjuncts inDK(:Aj) ((:Aj)xi = :(Aixj)), and thus the set fDK(Ai);DK(:Aj)g is unsatis�able.Given a connectability relation K and a formula �, the result of the required mappingDK is de�ned below as �xK� where � is some total ordering on the palette P. Notethat since P is a countable set of colours, then there is at least one such ordering. Anytotal ordering � on P can be used in the following de�nition. As usual, we write i < jif i � j and i 6= j, and i � j and i > j if j � i and j < i respectively.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 130De�nition 7.17 (Decolourisation) Given a coloured formula � in the coloured lan-guage L(�PR;�F ;X), a connectability relation K, and a total ordering � on P, theformula �xK�, or simply �xK, in L(�P�PR [f>;?g;�F ;X) is de�ned as follows:(Ai)xK� = >, if i 62 C(K)= ^j [K(i)]�Aixj, otherwise(� ^ ')xK� = (�xK�) ^ ('xK�)(� _ ')xK� = (�xK�) _ ('xK�)(8x:')xK� = 8x:('xK�)(9x:')xK� = 9x:('xK�)where ^j [x1;::: ;xn]P (j) = P (x1) ^ � � � ^ P (xn)and [K(i)])� is the �nite list containing the colours in the range K(i) sorted in ascendingorder according to the ordering �. If S is a set of coloured formulae, we will refer tothe set f�xK� j � 2 Sg by SxK�. �In the following, we write XxK instead of XxK� whenever the total ordering � canbe understood from the context. We will also write XixK instead of (Xi)xK wheneverthere is no danger of ambiguity.Example 7.4 Let the palette P = fi; j; k; lg where i < j < k < l, and let X be atomicand not equal to >.1. If S1 = fXi ^ :Xjg and K1 = i$ j thenSxK11 = fXij ^ :Xijg:2. If S2 = fXi; (:X _ Y)j ;:Y kg and K2 = i$ j $ k thenSxK22 = fXij ; (:Xij ^ :Xkj) _ (Y ji ^ Y jk);:Y jkg:3. If S3 = fXi;:Xj ;Xk;:X lg and K3 = i$ k [j $ l thenSxK33 = fXik;:X lj;Xki;:Xjlg:4. If S4 = fXi ^Xj ;:Xk _ Y lg and K4 = fi; jg $ k thenSxK44 = fXik ^Xjk; (:Xik ^ :Xjk) _>g:5. If S5 = fXi;:Xig and K5 = i$ i thenSxK55 = fXii ^ :Xiig:6. If S6 = fXi;:Xig and K6 = i$ j thenSxK66 = fXij ^ :Xjig: �

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 131We now give the following de�nition of satis�ability by decolourisation.De�nition 7.18 (Satis�able by Decolourisation) A set S of coloured �rst-orderformulae is said to be satis�able with respect to the decolourisation according to K, orsimply K-satis�able, if SxK is satis�able. Similarly, S is K-unsatis�able if SxK is notsatis�able. �Example 7.5 (Satis�able and Unsatis�able sets by Decolourisation) The setsin Example 7.4 above are as follows: the set S1 is K1-unsatis�able, S2 is K2-unsatis�able,S3 is K3-satis�able, S4 is K4-satis�able, S5 is K5-unsatis�able, and the set S6 is K6-satis�able. �7.3.2 Correctness of the Decolourisation MappingIn this section we will show that the decolourisation mapping given in de�nition 7.17above is correct. In other words, we will show that a set is satis�able by decolourisationif and only if it is consistent according to the connectability relation considered.First of all, it is straightforward to show that the following results hold.Proposition 7.4 Let S be a set of coloured sentences and K a connectability relationthen:1. If (' ^)i 2 S and S is K-satis�able then S [f'i; ig is K-satis�able.2. If (' _)i 2 S and S is K-satis�able then S [f'ig or S [f ig is K-satis�able.3. If (8x:')i 2 S and S is K-satis�able then S [f'fx ! tgig is K-satis�able forevery closed term t.4. If (9x:')i 2 S and S is K-satis�able then S [f'fx ! tgig is K-satis�able forsome closed term t.5. If (9x:')i 2 S and S is K-satis�able then S [f'fx ! tgig is K-satis�able forevery closed term t whose root is new to S.6. The set S [f8x:'ig is K-satis�able if and only if S [f'fx! tgig is K-satis�ablefor all closed term t.7. The set S [f9x:'ig is K-satis�able if and only if S [f'fx! tgig is K-satis�ablefor every closed term t whose root is new to S [f9x:'ig.8. Let i, j be colours such that i �K j. If there is some sentence ' such that 'i 2 Sand :'j 2 S, then S is K-unsatis�able.9. Let i 2 C(K), if ?i 2 S then S is K-unsatis�able.Proof: For each case, the proof follows from the de�nition of K-satis�ability and thecounterpart of the proposition for an uncoloured language. We illustrate below theproof for the �rst case.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 132Let (' ^)i 2 S, and let SxK be satis�able (i.e.,S is K-satis�able).Now, (' ^)i 2 S) (' ^)ixK 2 SxK) ('ixK ^ jxK) 2 SxK) SxK [f�ixK; 'ixKg is satis�able as SxK is.) S [f�i; 'ig is K-satis�able.The proofs of the other cases proceed similarly. �Given this proposition, it follows that every K-satis�able set of coloured sentencesis K-consistent.Theorem 7.2 (K-Satis�ability Implies K-Consistency) For every connectabilityrelation K, the collection of all K-satis�able sets is a K-consistency property.Proof: Given K then for any K-satis�able set of coloured sentences, all the conditionsin De�nition 7.13 hold by Proposition 7.4. �To deduce the converse of this theorem we need to show that given a K-consistencyproperty C, all the sets in CxK = fSxK j S 2 Cg are satis�able. This task would bequite straightforward if we could show that CxK is a consistency property, but in generalthis is not the case. The reason for this is that some of the literals in C are mapped intoconjunctions in CxK and as a result the third condition in de�nition 7.1 may not hold.That is, if S[f'^ g 2 CxK then it may not be the case that S[f'^ ;'; g 2 CxK.An example of this is given here.Example 7.6 (CxK is not a Consistency Property) Let the setS = fAi; Bj _ :Ak; Bjg;and the connectability relation K = i$ j $ k with i < j < k, so thatSxK = fAij ; (Bji ^Bjk) _ :Ajk; Bji ^Bjkg:Note that although the singleton set fSg is a K-consistency property, fSxKg is not a�rst-order consistency property, as it does not contain the set SxK [fBji; Bjkg. �However, we can extend the set fSxKg in example 7.6 above by the set of formulae:SxK [fBji; Bjkg = fAij ; (Bji ^Bjk) _ :Ajk; Bji ^Bjk; Bji; Bjkgsuch that fSxK; SxK [fBji; Bjkgg is a consistency property. In general, given a K-consistency property C, we can always construct a �rst-order consistency property con-taining CxK. Unfortunately, a precise de�nition of the required construction is quiteelaborate and one needs a lengthy proof to check its correctness. The following theo-rem has its proof sketched below, and the sceptical reader is directed to the detailedpresentation in Appendix C.1.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 133Theorem 7.3 (K-Consistency Implies K-Satis�ability) If a collection of colouredsentences C is consistent with respect to some connectability relation K, then every setin C is K-satis�able.Proof (Sketch): Let CxK be fSxK j S 2 Cg. Now let C0 be some set which extendsCxK such that for all S [f' ^ g 2 C0, the set S [f' ^ ;'; g 2 C0. Then C0 is aconsistency property as it satis�es all the conditions in de�nition 7.1. Now, for everyset S 2 C, it follows that SxK 2 CxK � C0. So SxK is satis�able and thus S is K-satis�able. A more detailed proof is given in appendix C.1 where it is shown how therequired set C0 can be constructed from C. �Due to theorems 7.2 and 7.3, the notions of K-satis�ability and K-consistency areequivalent. Thus all the results which hold for K-satis�ability (and in particular thosegiven in proposition 7.4) also hold for K-consistency. The equivalence of K-consistencyand K-satis�ability is stated in the following theorem, and some applications of thisresult are given in the next section.Theorem 7.4 (K-Satis�ability is Equivalent to K-Consistency) For every set ofcoloured sentences S and a connectability relation K, then S is K-satis�able if and onlyif it is a member of some K-consistency property.Proof: follows from theorems 7.2 and 7.3. �7.3.3 ApplicationsThe �rst result derived below in this section allows us to show that a set of colouredsentences is consistent according to some connectability relation given the assumptionthat it is known to be consistent according to some other connectability relation. Notethat given two connectability relations K1, K2 and a K1-consistent set S, then in order toshow that S is also K2-consistent one needs only to show that the �rst two conditions inde�nition 7.13 hold since conditions 3{6 do not depend on the particular connectabilityrelation being considered. This is given by the following proposition and is used in theproof of propositions 7.6 and 7.7.Proposition 7.5 Let K1 and K2 be two connectability relations. In order to show thatevery K1-consistent set is also K2-consistent it is su�cient to show that:1. For every K1-consistent set S, colours i, j and literal A, if i �K2 j then not bothAi and :Aj are in S.2. For every K1-consistent set S and colour i 2 C(K2), ?i =2 S.Proof: Let C be the set of all K1-satis�able sets of coloured sentences. Then C is theset of all K1-consistent sets by theorem 7.4 and is also a K1-consistency property byproposition 7.4. If we assume further that the above two conditions hold then C is aK2-consistency property as well. This follows from the fact that the �rst two conditionsof de�nition 7.13 correspond to the above assumptions, and conditions 3{6 follow fromthe fact that C is a K1-consistency property. �

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 134We can now use the proposition above characterising K2-consistency in terms ofK1-consistency to show that a set consistent according to some connectability relationK1 is also consistent according to any subrelation of K1. Intuitively, the connectabilityrelation is a restriction on which literals can be used in showing that a set is inconsistent.If a set cannot be shown to be inconsistent according to a particular restriction, then itcannot be shown to be inconsistent according to a stronger restriction.Proposition 7.6 Given a set S of coloured sentences and connectability relations K1and K2 such that K2 � K1, if S is K1-consistent then it is also K2-consistent.Proof: Let S be K1-consistent, and let K2 � K1.1. We show that for every colours i and j such that i �K2 j, if the literal Ai 2 Sthen :Aj =2 S. Now, since K2 � K1 it follows that i �K1 j and so not both Aiand :Aj are in S.2. For the second case we need to show that if i 2 C(K2) then ?i =2 S. Now, ifi 2 C(K2) then i 2 C(K1) and therefore ?i =2 S as S is K1-consistent.Hence, it follows that S is K2-consistent by proposition 7.5. �The role of the next proposition is to allow us to simplify a given problem (S;K)into one which considers only the subset of K which is relevant to S, that is (S;KdSe).Proposition 7.7 A set S of coloured sentences is K-consistent if and only if it is KdSe-consistent.Proof: If S is K-consistent, then it is also KdSe-consistent by proposition 7.6 as KdSe �K. Now, let S be KdSe-consistent.1. We need to show that for any literal A and colours i, j such that i �K j, if Ai 2 Sthen :Aj =2 S. If we assume that there is some literal A such that both Ai and:Aj are in S then the colours i and j are in S and so i �KdSe j, which contradictsthe assumptions that both Ai 2 S and :Aj 2 S and that S is KdSe-consistent.2. We show that if i 2 C(K) then ?i =2 S by contradiction. If ?i 2 S and i 2 C(K)then i is also in C(S) and hence in C(KdSe) as well. But once again this contradictsthe assumption that S is KdSe-consistent.Hence, it follows that S is KdSe-consistent by proposition 7.5. �7.4 Changing the Colour of FormulaeThe colours in a coloured problem (S;K) are simply a mechanism for identifying whichcomplementary literals in S are allowed to contribute to the refutation of S. The actualnames of the colours in the problem (S;K) is irrelevant and one can rename somecolour i in (S;K) to some new colour which is not in the problem without a�ectingthe consistency of (S;K). In this section we give a number of de�nitions which allowsus to recolour literals, and show how the consistency of a problem may be a�ected byrecolouring certain literals in it.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 1357.4.1 The De�nition of Recolouring MappingsA recolouring mapping is de�ned below as a mapping which changes all, or some of, thecolours in a formula, set or problem to some single colour.De�nition 7.19 (Recolouring Mapping) Given some coloured literal A and colourj, we de�ne the j-recolouring of A as (AU)j and denote it by A!j. Similarly, given aformula ' and a set of coloured formulae S, we de�ne !j and S!j as ('U)j and (SU)jrespectively. Given a set of colours P, we de�ne the P to j recolouring of the literal A(denoted by A(P!j)) as follows:A(P!j) = Bj, if A = Bi for some literal B and i 2 P= A, otherwise.The formula '(P!j) is de�ned similarly as the formula ' with all its P coloured literalsrecoloured with j, and S(P!j) denotes the set f (P!j) j 2 Sg. We abbreviateA(fig!j), '(fig!j) and S(fig!j), etc. by A(i!j), '(i!j) and S(i!j), etc. �We now de�ne the renaming of a colour which involves the recolouring of the literalsof some particular colour in a formula (set of formulae, connectability relation, etc.) toa colour which is new to the formula (set, relation, etc.).De�nition 7.20 (Renaming Colours) Given two coloured formulae 	 and �, wesay that 	 is obtained from � by renaming one colour, and write �!rc 	, if for somecolour i 2 C(�) and j =2 C(�), then 	 = �(i!j):We denote the re
exive transitive closure of the relation!rc by the relation urc. We saythat two formulae, � and 	 are isomorphic by renaming colours if and only if � urc 	.The de�nition and notation of colour renaming can be extended to sets of formulae, setsof colours, connectability relations, coloured problems, etc. �The following proposition shows that the relation urc is symmetric and therefore anequivalence relation.Proposition 7.8 (Symmetry of !rc, Equivalence of urc) The relations !rc andurc are symmetric, and the relation urc is an equivalence relation.Proof: We �rst show that !rc is symmetric. Given the two coloured formulae (or setsof formulae, coloured problems, etc.) � and 	, if �!rc 	 then	 = �(i!j)for some i 2 C(�) and j =2 C(�). Therefore j 2 C() and i =2 C(), and also� = 	(j!i)and hence 	 !rc �. Consequently the relation urc is symmetric as well as it is there
exive transitive closure of !rc. As urc is re
exive and transitive by de�nition, itfollows that it is an equivalence relation. �

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 136
An alternative way of characterising the colour renaming relation urc betweencoloured objects (such as formulae, sets of formulae, etc.) is by a bijective functionmapping the colours in one object to another. This is given by the following proposi-tion.Proposition 7.9 (Recolouring Bijection) Given two coloured formulae (or alterna-tively sets of coloured formulae, sets of colours, etc.) A and B, where the set C(A) is�nite, then A urc B if and only if there is a recolouring bijection R mapping the coloursin A to the colours in B such that R(A) = B.Proof: We �rst show the `only if' direction. Given that there is a bijection R mappingthe colours in A to B then the sets C(A) and C(B) have the same number of elements,n say. Now, let C(A) = fi1; : : : ; ing and C(B) = fj1; : : : ; jng, and let fk1; : : : ; kng be aset of n colours such that for all x 2 f1; : : : ; ng the colour kx =2 C(A) and kx =2 C(B).Then A !rc A(i1!k1)!�rc ((A(i1!k1))���)(in!kn)!�rc (((A(i1!k1))���)(in!kn))(k1!j1)!�rc (((((A(i1!k1))���)(in!kn))(k1!j1))���)(kn!jn)= B:Hence A urc B.For the `if' direction, we �rst show that if A !rc B then there is a bijection Rmapping the colours in A to the colours in B such that R(A) = B. Given that A!rc Bthen there is a colour i 2 C(A) and j 2 C(B) such that B = A(i!j), and so C(B) =(C(A)� fig) [fjg. Therefore, we de�ne R as follows:R(x) = x, if x 6= i= j otherwise.Now to show that such a mappingR exists given that A urc B, we notice that if A urc Bthen there is a �nite sequence of formulae hX1;X2; : : : ;Xni such thatA = X1 !rc X2 !rc � � � !rc Xn = B:Therefore there are bijective mappings R1;R2; : : : ;Rn�1 where Rx maps the colours inXx to the colours in Xx+1 for x 2 f1; : : : ; n� 1g. Hence we de�ne R to be ((R1 �R2) �� � � �Rn�1). �7.4.2 Consistency Results on Recoloured SetsIt is straightforward to show that if two coloured problems are isomorphic by renamingcolours then they are equivalent, in the sense that they are either both consistent orboth inconsistent.Proposition 7.10 (Renaming Colours Preserves K-Consistency) Given sets ofsentences S1, S2 and connectability relations K1, K2 such that (S1;K1) urc (S2;K2),then S1 is K1-consistent if and only if S2 is K2-consistent.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 137Proof: Straightforward; by showing that SxK11 is satis�able if and only if SxK22 is. �One can also recolour literals of more than one colour into a single one in certaincoloured problems without a�ecting their consistency. For example, let us consider theconnectability relation K = i $ j $ k. A pair of coloured literals is K-inconsistentif and only their uncoloured projections are complementary and one of the literals iscoloured with j and the other one with i or k. One can thus recolour all the k-colouredliterals (if any) in the pair with i without a�ecting its consistency. In general, forK = i$ j $ k, a set S is K-consistent if and only S(k!i) is. The following propositiongives a more general statement on the recolouring of a number of literals in a problemwithout a�ecting its consistency. Basically if two disjoint sets of colours P1 and P2 areidenti�ed in the colours of a problem (S;K) such that P1 is the range under K for each ofthe colours in P2, then all the literals coloured with P2 can be recoloured to any colourin P2 without a�ecting the consistency of the problem. For the case of K = i$ j $ k,we can see that the set P1 = fjg and P2 = fi; kg. This result is derived here.Theorem 7.5 Given a connectability relation K, and two disjoint sets of colours P1and P2 such that K(i) = P1 for every i 2 P2, then for every colour m 2 P2, a set S ofcoloured �rst-order sentences is K-consistent if and only if the recoloured set S(P2!m)is K-consistent.Proof: First of all we notice that if P1 and P2 are given as required, then for all coloursi and j in P2, the colours i 6�K j since the set K(i) = P1 and P1 \ P2 = fg.Now given a connectability relation K, the sets of colours P1, P2, and a colourm 2 P2, we prove the `only-if' direction by de�ning the collection of sets C1 as follows:C1 = fS(P2!m) j S is K-consistent and P2 � C(S)gand we deduce that C1 is a K-consistency property. Showing that C1 satis�es condi-tions 2{6 of De�nition 7.13 is routine and we illustrate here only the proof of the �rstcondition.� Let some set S(P2!m) 2 C1 and suppose that some literals Ai and :Aj are inS(P2!m), and that i �K j. If i = m and j = m then i 6�K j as m 6�K m. Also, ifi 6= m and j 6= m then Ai and :Aj are both in S, which is a contradiction as S isK-consistent. Therefore, one of the colours, say j, is equal to m, and the other, i,is not. So, Ai 2 S and :Ak 2 S for some k 2 P2, and thus i �K k. But this is acontradiction, as S is K-consistent.Thus C1 is a K-consistency property and so whenever S is K-consistent, so is S(P2!m).The proof of the `if' case proceeds similarly. First we de�ne C2 as follows:C2 = fS j S(P2!m) is K-consistent and P2 � C(S)gand show that C2 is a K-consistency property. Once again, we only give the proof of the�rst condition.� Let some set S 2 C2 contain the literals Ai and :Aj and let i �K j. Now thecolours i and j cannot be both outside P2 as S(P2!m) is K-consistent. Also, i andj cannot be both in P2 as i �K j, and therefore one, say i, is outside P2, while

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 138the other, j, is in P2. As i �K j, then i 2 K(i) = P1. Hence, Ai 2 S(P2!m) and:Am 2 S(P2!m), but this is a contradiction as i �K m and the set S(P2!m) isK-consistent.Hence, C2 is a K-consistency property and consequently, the set S is K-consistent when-ever S(P2!m) is. �7.5 Coloured InterpolantsIn this section we derive an interpolation theorem for the coloured �rst-order logic. Ournotion of an interpolant is a generalisation of the standard de�nition of an interpolantfor �rst-order sentences. An (uncoloured) interpolant is de�ned as follows:De�nition 7.21 (Interpolant for Sentences) The �rst-order sentence I is called aninterpolant for the sentence X) Y if every function symbol and relation symbol (withthe exception of > and ?) in I occurs in both X and Y and the sentences X) I andI) Y are valid. �Or equivalently, interpolants can be de�ned on �nite sets of sentences. We �rst de�nethe notion of a set of sentences partitioned by a pair of sentences and then de�neinterpolants for partitions.De�nition 7.22 (Partitions) Let S, S1 and S2 be sets of sentences. The pair (S1; S2)is a partition of the set S if� S1 [S2 = S, and� S1 \ S2 = fg. �It is clear that if (S1; S2) is a partition of some set S then so is (S2; S1).De�nition 7.23 (Interpolant for Sets) Given that S is a �nite set of sentences andthat (S1; S2) is a partition of S then the sentence I is said to be an interpolant for(S1; S2) if every function symbol and relation symbol (with the exception of > and ?)in I occurs in both S1 and S2 and the sets S1[fIg and S2[f:Ig are both unsatis�able.� Note that I is an interpolant for X) Y if and only if :I is an interpolant for(fXg; f:Y g).An interesting and quite important result in �rst-order logic states that every validimplication has an interpolant. This result is due to Craig (1957) and is called Craig'sinterpolation theorem.Theorem 7.6 (Craig) If a �rst-order sentence X) Y is valid then it has an inter-polant. Or equivalently, every pair of sets which partition a �nite unsatis�able set ofsentences has an interpolant.Proof: see for instance (Fitting 1996) �We are interested in generalising this result to the coloured �rst-order logic. Inparticular we would like to show that given a �nite K-inconsistent set S partitioned

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 139by (S1; S2), then there is some uncoloured `interpolant' I such that the sets SU1 [fIgand SU2 [f:Ig are unsatis�able. Furthermore, we want these sets to be inconsistentaccording to the restrictions given by the connectability relation K. Therefore we needthe set S1 [fX1g to be K-inconsistent for some coloured sentence X1 where XU1 = I.Similarly, S2 [fX2g has to be K-inconsistent for some coloured sentence X2 whereXU2 = :I. In general X1 and X2 may be of di�erent colours, although we restrict thatall the coloured predicates in X1 occur in S2, and similarly that all coloured predicatesin X2 occur in S1. We de�ne coloured interpolants as follows.De�nition 7.24 (Coloured Interpolant) The pair of coloured sentences (X1;X2) issaid to be a K-interpolant for the partition (S1; S2) of some �nite set, if:1. All the function symbols in X1 and X2 occur in both S1 and S2.2. The sets S1 [fX1g and S2 [fX2g are K-inconsistent.3. Let X 01 be the negation normal form of X1 and X 02 be the negation normal formof :X2, then(a) X 01U = X 02U ;(b) for every position p, if X 01jp = P i(~t) and X 02jp = P j(~t) for some predicatesymbol P and list of terms ~t, then i �K j and if P 6= > and P 6= ? then thecoloured predicate symbol P i occurs in S2 and P j occurs in S1. �Example 7.7 Let some set S be partitioned by the pair(S1; S2) = (fCi;8x:Ai(x) _ :Bkg; f:Aj(c) ^Dj; Bjg)and let the connectability relation K be i$ j $ k. Then(9x::Aj(x) ^Bj;8x:Ai(x) _ :Bk)is a K-interpolant for (S1; S2). �Note that this notion of a coloured interpolant generalises the standard de�nitionof uncoloured interpolants, in the sense that if (X1;X2) is a K-interpolant of (S1; S2),then XU1 is an interpolant of (SU1 ; SU2). In particular (Ii;:Ii) is an (i $ i)-interpolantfor (Ri1; Ri2) if and only if I is an interpolant for (R1; R2).We now show that every partition of a �nite K-inconsistent set of coloured sentenceshas a K-interpolant. We �rst introduce some notion of consistency which we call K-interpolation consistency and show that K-interpolation consistent sets are K-consistent.De�nition 7.25 (Coloured Interpolation Consistency) A set of sentences is saidto be K-interpolation consistent if it has some partition without a K-interpolant. �Lemma 7.1 The collection of all K-interpolation consistent sets of sentences is a K-consistency property.Proof: The proof of this lemma generalises the proof of Craig's Interpolation Theoremgiven in (Fitting 1996). Given a connectability relation K, we show that if some set Sis K-interpolation consistent then it satis�es all the conditions in De�nition 7.13;

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 1401. Suppose that for some literal A and colours i, j, both Ai 2 S and :Aj 2 S, weshow that if i �K j then S is not K-interpolation consistent. Let the pair of sets(S1; S2) partition S, then either both Ai and :Aj are in the same set (S1 or S2)or else they are in di�erent sets. If both literals are in the same set S1, say, thenlet X1 = >i and let X2 = ?j. It is easy to see that (X1;X2) satis�es the �rst andlast conditions of De�nition 7.24; and since i �K j, both S1[fX1g and S2[fX2gare K-inconsistent. Thus, (X1;X2) is a K-interpolant for (S1; S2). Now, if Ai and:Aj are in di�erent sets, say Ai 2 S1 and :Aj 2 S2, then let X1 = :Aj andX2 = Ai. Once more, (X1;X2) is a K-interpolant for (S1; S2), and therefore S isnot K-interpolation consistent.2. Let ?i 2 S and i �K j for some colour j. We show that every partition (S1; S2)of S has a K-interpolant. Basically, if ?i 2 S1 then let X1 = >i and let X2 = ?j .The pair (X1;X2) satis�es all the conditions in De�nition 7.24 and is thus a K-interpolant for (S1; S2). The argument is similar if ?i 2 S2.3. Suppose that ' ^ 2 S, we need to show that S [f'; g is K-interpolationconsistent. Let us assume that S[f'; g is not K-interpolation consistent, that is,every partition of S[f'; g has a K-interpolant, and we show that every partitionof S has a K-interpolant as well. Let (S1; S2) partition S, and let us assumewithout loss of generality that ' ^ 2 S1. Then (S1 [f'; g; S2) partitions S [f'; g and therefore has some K-interpolant (X1;X2). Therefore S1 [f'; ;X1gand S2[fX2g are K-inconsistent. Now, (X1;X2) is also a K-interpolant for (S1; S2)as all the function symbols, and coloured predicates in S1 [f'; g occur also inS1, and S1 [fX1g is K-inconsistent since S1 [f'; ;X1g is.4. Let '_ 2 S, we need to show that either S [f'g or S [f g is K-interpolationconsistent. We prove the contrapositive, that is, we assume that both S[f'g andS[f g are not K-interpolation consistent and show that S is not K-interpolationconsistent. Let (S1; S2) partition S, and let ' _ 2 S1. The proof for the casewhere ' _ 2 S2 proceeds similarly. Then (S1 [f'g; S2) and (S1 [f g; S2)partition the sets S [f'g and S [f g respectively, and thus they have someinterpolants (X1;X2) and (Y1; Y2). Therefore, S1 [f';X1g and S1 [f ; Y1g areK-inconsistent and hence S1 [fX1 ^ Y1g is also K-inconsistent, otherwiseS1 [fX1 ^ Y1g is K-consistent) S1 [fX1; Y1g is K-consistent) S1 [f';X1; Y1g is K-consistent, orS1 [f ;X1; Y1g is K-consistent as ' _ 2 S1) S1 [f';X1g is K-consistent, orS1 [f ; Y1g is K-consistent:Also, S2 [fX2g and S2 [fY2g are K-inconsistent and so S2 [fX2 _ Y2g is K-inconsistent. Hence (X1 ^ Y1;X2 _ Y2) is a K-interpolant for (S1; S2), as :(X1 ^Y1)U = :XU1 _:Y U1 = (X2 _ Y2)U and the sets S1 [f'g and S1 [f g contain thesame predicates and function symbols as the set S1.5. Let 8x:' 2 S. Suppose that S [f'fx ! tgg is not K-interpolation consistentfor some closed term t, we show that every partition of S has a K-interpolant.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 141Suppose that (S1; S2) partitions S and let 8x:' be in one of (S1; S2), say S1. Now(S1[f'fx! tgg; S2) is a partition of S[f'fx! tgg and therefore it has some K-interpolant (X1;X2). Therefore S1 [f'fx! tg;X1g is K-inconsistent and henceso is S1 [fX1g by Proposition 7.4(3). Also, S2 [fX2g is K-inconsistent. But,we cannot assume that (X1;X2) is a K-interpolant of (S1; S2) as some functionsymbols in X1 (and X2) may be found in t, and so in S1 [f'fx ! tgg, but notin S1. However, if this is the case then there must be some term t0 in X1 whoseroot is not found in S1. Now, let X 01 = X1ft0 ! yg and X 02 = X2ft0 ! yg where yis some variable which does not occur in X1, then S1 [f9y:X 01g is K-inconsistentby Proposition 7.4(5), and so is S2 [f8y:X 02g by Proposition 7.4(3). Hence, if allthe function symbols in X 01 are found in S1 then (9y:X 01;8y:X 02) is a K-interpolantfor (S1; S2). If not, we can repeat the same process on (9y:X 01;8y:X 02) until aK-interpolant is constructed.6. Let 9x:' 2 S, and that for every parameter p the set S [f'fx ! pgg is notK-interpolation consistent, we show that every partition (S1; S2) of S has a K-interpolant. Let us assume that 9x:' 2 S1, and let p be some parameter new toS1 and S2. Now (S1 [f'fx! pgg; S2) partitions the set S [f'fx! pgg and soit has some interpolant (X1;X2). SoS1 [f'fx! pg;X1g is K-inconsistent) S1 [f'fx! pg;9y:X1fp! ygg is K-inconsistent) S1 [f9y:X1fp! ygg is K-inconsistent:Also since S2 [fX2g is K-inconsistent, then so is S2 [f8y:X2fp! ygg and hence(9y:X1fp! yg;8y:X2fp! yg) is a K-interpolant for (S1; S2). The proof for thecase where 9x:' 2 S2 proceeds similarly.Thus the collection of all K-interpolation consistent sets of coloured sentences is aK-consistency property. �Theorem 7.7 Given a connectability relation K and a �nite K-inconsistent set S, thenevery partition of S has some K-interpolant.Proof: Suppose that S is partitioned by (S1; S2) and let us assume that (S1; S2) doesnot have a K-interpolant. Then S is K-interpolation consistent and by the above lemma,S is K-consistent. Consequently, given that S is K-inconsistent then (S1; S2) must havesome K-interpolant. �Unfortunately, the converse of this theorem does not hold. In other words, if somepartition of a �nite set S of coloured sentences has a K-interpolant, then it does notfollow that S is K-inconsistent. This is illustrated in the following counterexample.Example 7.8 Let K be the connectability relation (i$ j $ k $ l), and let(S1; S2) = (f:Ai _ :Akg; fAj _Alg)(X1;X2) = (Aj ;:Ak)

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 142then S1[fX1g and S2[fX2g are both K-inconsistent as it can be seen from the followingmatrix representations �:Ai Aj:Ak � �Aj :AkAl �and furthermore (X1;X2) satis�es the other conditions (i.e., 1 and 3) of de�nition 7.24,and is thus a K-interpolant for (S1; S2). However, the set S1 [S2 is K-consistent asillustrated by the following matrix. �:Ai Aj:Ak Al�Note that the path f:Ai; Alg is not K-inconsistent as i 6�K l. �In order that the set S1 [S2 is K-inconsistent whenever the sets S1 [fX1g andS2 [fX2g are, one requires that there is some subset P1 of the colours in S1 and somesubset P2 of the colours in S2 such that:� The colours in S1 are disjoint from the colours in S2, i.e.,C(S1) \ C(S2) = fg.� All the colours in P1 relate with all the colours in P2, i.e., (P1 $ P2) � K.� The only colours in S1 that relate with some colour in S2 are the colours in P1.Similarly, the only colours in S2 that relate with some colour in S1 are the coloursin P2, that is P1 = fi 2 C(S1) j i �K j; j 2 C(S2)g;P2 = fi 2 C(S2) j i �K j; j 2 C(S1)g:� All the colours in P1 relate with all the colours in X1, and all the colours in P2relate with all the colours in X2, that is((P1 $ C(X1)) [(P2 $ C(X2))) � K:� The colours in X1 relate with no other colour in S1 apart from those in P1, andthe colours in X2 relate with no other colour in S2 apart from the colours in P2,that is fi 2 C(X1) j i �K j; j 2 C(S1)g � P1;fi 2 C(X1) j i �K j; j 2 C(S1)g � P1:It can be checked that in example 7.8, the partition (S1; S2) and the connectabilityrelation K do not satisfy the above conditions. In particular there is no sets P1 andP2 which satisfy the second and third conditions. However, the above conditions aresatis�ed for (S1; S2) and the connectability relation K [i$ l withP1 = fi; kg P2 = fj; lg:It can also be checked that the set S1 [S2 is (K [i$ l)-inconsistent.We call a partition well-coloured if it satis�es the �rst three conditions of the above.This notion is de�ned below in de�nition 7.27 which requires the following de�nition.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 143De�nition 7.26 (Outside Connecting Colours) Given the connectability relationK and sets S1 and S2 of coloured formulae, we denote the set of colours in S1 that relatewith some colours in S2 byS1 K! S2 = fi 2 C(S1) j i �K j for some j 2 C(S2)g:Similarly, we de�ne the following:S1 K S2 = fj 2 C(S2) j i �K j for some i 2 C(S1)g:We also de�ne the outward connecting colours in some set of coloured sentences Saccording to K, and denote it by K " S, as the colours in S that relate with somecolours not in S: K " S = fi 2 C(S) j i �K j for some j 62 C(S)g: �The following result follows from the above de�nition.Proposition 7.11 Given the sets S1 and S2 of coloured formulae, and a connectabilityrelation K, then (S1 K! S2) = (S2 K S1).Proof: follows from the de�nitions of S1 K! S2 and S2 K S1. �Well-coloured partitions are now de�ned as follows.De�nition 7.27 (Well-Coloured Partition) A pair of sets of coloured sentences(S1; S2) is said to be a well-coloured partition of some set S with respect to someconnectability relation K if1. S1 [S2 = S,2. C(S1) \ C(S2) = fg,3. for every colour i 2 (S1 K! S2) and j 2 (S1 K S2) it is the case that i �K j. �Note that the third condition in the above de�nition corresponds to the second andthird conditions given on page 142 for the set S1 [S2 to be K-inconsistent wheneverS1 [fX1g and S2 [fX2g are K-inconsistent where XU1 = :XU2 . The sets P1 and P2given in the conditions on page 142 can be de�ned byP1 = (S1 K! S2) P2 = (S1 K S2):It is clear that if (S1; S2) is a well-coloured partition of some set S with respect to Kthen so is (S2; S1); it also the case that (S1; S2) is a partition (as S1 \S2 = fg from thesecond condition in de�nition 7.27).The third condition in the above de�nition can be substituted with the equationKdSe = KdS1e [KdS2e [(S1 K! S2)$ (S1 K S2)as shown in the following proposition.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 144Proposition 7.12 Given a partition (S1; S2) of a set S of coloured sentences such thatC(S1) \ C(S2) = fg then (S1; S2) is a well-coloured paritition of S with respect to someconnectability relation K if and only if KdSe = KdS1e[KdS2e[(S1 K! S2)$ (S1 K S2).Proof: Let us assume that (S1; S2) is a well-coloured paritition of S with respect to Kand that C(S1) \ C(S2) = fg. The third condition in de�nition 7.27 is equivalent to(S1 K! S2)$ (S1 K S2) � K:Now, since i 2 (S1 K! S2)) i 2 C(S1) � C(S)and j 2 (S1 K S2)) j 2 C(S2) � C(S)then all the colours in (S1 K! S2)$ (S1 K S2) are in S and therefore(S1 K! S2)$ (S1 K S2) � K) (S1 K! S2)$ (S1 K S2) � KdSeand so since KdSe � K our goal is equivalent to(S1 K! S2)$ (S1 K S2) � KdSe if and only ifKdSe = KdS1e [KdS2e [(S1 K! S2)$ (S1 K S2):The `if' direction of the above is straightforward and we show that the `only if' directionholds by assuming its left-hand side and considering the following two cases:� KdSe � KdS1e [KdS2e [(S1 K! S2) $ (S1 K S2): if (i; j) 2 KdSe then eitherboth i and j are in the same set in the partition (i.e., in S1 or S2) in whichcase (i; j) is in KdS1e or KdS2e, or else they are in di�erent sets in which case(i; j) 2 (S1 K! S2)$ (S1 K S2).� KdS1e[KdS2e[(S1 K! S2)$ (S1 K S2) � KdSe: it is the case that KdS1e � KdSeand that KdS2e � KdSe, and it is already assumed that (S1 K! S2) $ (S1 K S2)is a subset of KdSe. �Theorem 7.8 below gives a number of su�cient conditions for which the set S1 [S2is K-unsatis�able whenever the sets S1 [fX1g and S2 [fX2g are for some sentencesX1 and X2 such that :XU1 = XU2 . The conditions given in this theorem correspond tothose given on page 142. The �rst three conditions on page 142 are given by the factthat the partition (S1; S2) is required to be well-coloured with respect to K, so that thesets P1 and P2 mentioned on page 142 are given by:P1 = (S1 K! S2) P2 = (S2 K! S1):The last two conditions on page 142 are satis�ed by restricting the sentences X1 andX2 to be homogeneously coloured, by m and n respectively, say, and by the conditions:1. K(m) = (S1 K! S2) and K(n) = (S2 K! S1),

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 1452. m =2 C(S1) and n =2 C(S2).The results on recolouring literals given in section 7.4 can be used with theorem 7.8 toshow that the conditions given on page 142 are also su�cient for the set S1 [S2 to beK-unsatis�able whenever the sets S1 [fX1g and S2 [fX2g are.Theorem 7.8 Given a connectability relation K, two sets of coloured sentences S1, S2,such that (S1; S2) is a well-coloured partition (of S1 [S2) with respect to K, and twocolours m and n such that1. K(m) = (S1 K! S2) and K(n) = (S2 K! S1),2. m =2 C(S1) and n =2 C(S2),then, the set S1 [S2 is K-consistent if and only if there is some uncoloured sentence Xsuch that the sets S1 [fXmg and S2 [f:Xng are K-consistent.Proof: We �rst show the `only if' direction. Given the connectability relation K andtwo colours m and n, we de�ne the palettes P1 and P2 as follows:P1 = K(m) and P2 = K(n):We further assume that for all i 2 P1 and j 2 P2 it is the case that i �K j, and de�nethe collection of sets of coloured sentences C as follows:C = fS1 [Rm j for any sets S1 and R for whichthere is some set S2 such that(S1; S2) is a well-coloured partition with respect to K,P1 = (S1 K! S2) and P2 = (S1 K S2),m 62 C(S1) and n 62 C(S2),S1 [S2 is K-consistent, andS2 [f:Xng is K-inconsistent for all X 2 Rg:We now show that C is a K-consistency property by deriving all the conditions inDe�nition 7.13. Let S 2 C, then S = S1 [Rm for some sets S1 and R for which thereis some set S2 satisfying the requirements in the above de�nition of C. Note that S1and Rm are disjoint as otherwise i = j = m but m =2 C(S1), and also m 6�K m sinceK(m) = P1 and P1 � C(S1). Similarly n 6�K n.1. Suppose that there are two literals Ai and :Aj in S and let us assume that i �K j.Then not both Ai and :Aj are in S1 as S1[S2 is K-consistent. Also, they cannotbe both in Rm as m 6�K m. Hence, one of them (say Ai) is in S1 and the other(:Aj) is in Rm. So j = m and therefore i 2 P1 as K(m) = P1. Also, S2 [fAngis K-inconsistent by the last condition in the de�nition of C above as :A 2 R.However, this implies that (S2 [fAng)(fn;ig!i) is K-inconsistent by theorem 7.5as K(i) = K(n) = P2 and fi; ng [P2 = fg. Now(S2 [fAng)(fn;ig!i) = (S2 [fAng)(n!i) = S2 [fAig;as n =2 C(S2). Therefore, S1[S2 is K-inconsistent as Ai 2 S1. But this contradictsthe condition in the de�nition of C that S1 [S2 is K-consistent, and so i 6�K j.

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 1462. Let ?i 2 S and that i �K j for some j. Now, ?i =2 S1 as S1 [S2 is K-consistent.Also, if ?i 2 Rm then S2 [f>ng is K-inconsistent and hence S2 is K-inconsistent.As a result S1 [S2 is K-inconsistent which is a contradiction.3. Let (A^B) 2 S, we need to show that S [fA;Bg 2 C. First of all, if A^B 2 S1then let S01 = S1 [fA;Bg, and since S1 [S2 is K-consistent then so is S01 [S2.As a result S01 [Rm which is S [fA;Bg is in C. Now, if A ^ B 2 Rm then letR0 = R [fAU ; BUg. Since S2 [f:A!n _ :B!ng is K-inconsistent by the lastcondition in the de�nition of C, then both S2 [f:A!ng and S2 [f:B!ng areK-inconsistent. As a result for every X 2 R0, the set S2[f:Xng is K-inconsistent,and consequently S [fA;Bg, being S1 [R0m, is in C.4. Suppose that (A _ B) 2 S, we need to show that S [fAg or S [fBg is in C.If A _ B 2 S1 and given that S1 [S2 is K-consistent, then S1 [fAg [S2 orS1 [fBg [S2 is K-consistent. If S1 [fAg [S2 is K-consistent we de�ne S01 to beS1[fAg; otherwise, if S1[fBg[S2 is K-consistent we let S01 be S1[fBg. In anycase, S01[Rm 2 C and therefore one of S[fAg and S[fBg is in C. Alternatively,if A _ B 2 Rm then S2 [f:A!n ^ :B!ng is K-inconsistent. As a result, eitherS2 [f:A!ng or S2 [f:B!ng is K-inconsistent. Similarly to the previous case, ifS2 [f:A!ng is K-inconsistent we de�ne R0 to be R [fAUg, and if S2 [f:B!ngis K-inconsistent then R0 is de�ned as R[fBUg. In any case, the set S2 [f:Xngis K-inconsistent for every X 2 R0, and therefore S1 [R0m 2 C. So S [fAg 2 Cor S [fBg 2 C.5. Suppose that (8x:A) 2 S, we show that for every closed term t, the set S[fAfx!tgg is in C. Brie
y, if 8x:A 2 S1 then S1 [S2 [fAfx ! tgg is K-consistentand hence we de�ne S01 to be S1 [fAfx ! tgg in order that S01 [Rm 2 C.Otherwise, 8x:A 2 Rm and so since S2 [f9x::Ag is K-inconsistent, we have thatS2 [f:Afx! tgg is K-inconsistent for every closed term t. Therefore we chooseR0 to be R [fAUfx! tgg so that S1 [R0m 2 C.6. Let (9x:A) 2 S, we show that S [fAfx ! pgg 2 C for some parameter p. Now,if 9x:A 2 S1 then S1 [S2 [fAfx ! pgg is K-consistent for every parameter pnot found in S1 [S2, so we choose S01 to be S1 [fAfx ! pgg for some such pso that S [fAfx ! pgg = S01 [Rm. Also, if 9x:A 2 R, then S2 [f:(9x:AU)gis K-inconsistent, and therefore S2 [f:AUfx ! pgg is K-inconsistent for everyparameter p new to S2. Hence, we de�ne R0 to be R [f:AUfx ! pgg for somesuch p. Thus S1 [R0m, which is S [fAfx! pgg, is in C.We thus conclude that C is a K-consistency property. Now, let S1 and S2 be asrequired by the statement of this theorem, and that for some sentence X, the setsS1[fXmg and S2[f:Xng are K-inconsistent. Then S1[S2 is K-inconsistent, otherwisethe set S1 [fXmg would be in C and therefore K-consistent.The `if' direction follows from Theorems 7.5 and 7.7. Given that the set S1 [S2 isK-inconsistent, then the partition (S1; S2) has a K-interpolant (Y1; Y2). We can de�neX to be Y U1 , and so :X = Y U2 . Now, since S1 [fY1g is K-inconsistent, we can applyTheorem 7.5 to recolour all the colours in Y1 tom, and thus S1[fXmg is K-inconsistent.Similarly, the set S2 [f:Xng is K-inconsistent as well. �

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 1477.6 An Undecidability ResultThe consistency of a coloured �rst-order problem is in general undecidable since one canreduce the validity problem of a �rst-order sentence X to the consistency of the colouredproblem (fXig; i$ i). Apart from such a trivial reduction, the following theorem showsthat the validity of a �rst-order sentence X can be reduced to the consistency of somecoloured sentence Y i) Zj according to the connectability relation i$ j where i 6= j.Theorem 7.9 Given a �rst-order sentence X, then there are �rst-order sentences Yand Z such that X is valid if and only if Y i) Zj is i$ j-consistent.Proof: Let X be a �rst-order sentence. We can transform the negation :X into a listof clauses C1; : : : ; Cn such that X is valid if and only if8C1 ^ � � � ^ 8Cnis unsatis�able, where 8Cx represents the disjunction Cx universally quanti�ed by allits free variables. The above list of clauses can be transformed into an equivalent listin which each clause contains either positive literals only, or negative literals only. Thiscan be done by substituting every clause of the form:A1 _ � � � _ :An _B1 _ � � � _Bmwhere Ax and By are atoms, with the pair of clauses:A1 _ � � � _ :An _ :D(~x)B1 _ � � � _Bm _D(~x)where D is a new predicate constant symbol which does not occur in the list of clauses,and ~x is the list of variables free in the original clause:A1 _ � � � _ :An _B1 _ � � � _Bm:This can be repeated until the original list of clauses C1; : : : ; Cn is transformed into theequivalent list N1; : : : ; Nr; P1; : : : ; Ps where all the literals in Nx are negative, and allthe literals in Py are positive. Now, it can be seen that the only pairs of complementaryliterals obtained from this list of clauses contain one (instantiation of a) literal fromsome negative clause Nx, and one (instantiation of a) literal from a positive clause Py.We can explicitly impose the restriction that the only complementary pairs of literalsin which one literal is from N1; : : : ; Nr, and the other is from P1; : : : ; Ps are allowed tobe used in showing the inconsistency of the set of clauses. Or in other words, we colourthe negative clauses with some colour i, and the positive clauses with j, and check fori$ j-inconsistency. That is, the sentence X is valid if and only if^0<p�r 8N ip ^ ^0<p�s8P jp

CHAPTER 7. A COLOURED FIRST-ORDER LOGIC 148is i$ j-inconsistent; or whether0@ ^0<p�r 8N ip1A) 0@: ^0<p�s8P jp1Ais i$ j-consistent. �As a corollary we get the undecidability of i$ j-consistency.Corollary 7.1 (i$ j-Consistency is Undecidable) The i $ j-consistency prob-lem of coloured �rst-order sentences is undecidable.Proof: follows from the undecidability of the validity problem of pure �rst-order logicand theorem 7.9. �7.7 SummaryThis chapter gives the de�nition of a �rst-order logic whose literals are annotated withcolours. The role of the annotations is to restrict the way literals can be used to showthe inconsistency of a set of sentences during a refutational theorem proving process.The results and de�nitions given in this chapter are used in chapter 8 to illustrate howthe inferences given in structured straightforward justi�cations can be used to restrictthe search space considered during proof checking. The results given in this chapterinclude:Section 7.2 contains the basic de�nitions of the coloured �rst-order logic, in partic-ular a coloured problem is de�ned in terms of a set of coloured sentences and aconnectability relation between colours. A notion of coloured consistency is givenin which complementary literals are considered inconsistent if and only if theircolours relate with each other according to the connectability relation.Section 7.3 shows how a coloured problem can be translated into an equivalent set ofuncoloured �rst-order sentences.Section 7.4 shows how one can change the colours of a coloured problem withouta�ecting its consistency or inconsistency.Section 7.5 gives an interpolation theorem for the coloured �rst-order logic whichgeneralises the interpolation theorem due to Craig. The result given here statesthat given a valid implication X) Y , then it has an interpolant I such thatX) I and I) X can be derived using the same restrictions imposed on thederivation of X) Y .Section 7.6 shows that the problem of deciding a coloured problem with only twocolours is in general undecidable. This result is relevant because it is used in thenext chapter to show that the validity of the structured straightforward justi�ca-tions given in chapter 6 is undecidable.

Chapter 8Proof Checking StructuredStraightforward Justi�cations8.1 IntroductionIn chapter 6 we de�ned the notion of structured justi�cations which include (not over-detailed) information on which inferences are used in the justi�cation process. Thesejusti�cations are intended to improve the readability and proof checking e�ciency ofdeclarative language proof scripts. This information is built up by using the opera-tors on, then and and which construct structured expressions from the premises in thejusti�cation. For example, one can implement the following justi�ed conclusion:"(b > c)) (a > c)"by "8 x; y; z.(x > y) ^ (y > z)) x > z" on "a > b";The above statement is valid since the sentence8x; y; z:(x > y) ^ (y > z)) (x > z)can be used to derive the formula(a > b)) 8z:(b > z)) (c > z)using a number of implicit inferences (or trivial manipulations), so that one can applythe inference rule of Modus Ponens on this formula and the sentence a > b to derive8z:(b > z)) (a > z):This sentence can then be used to implicitly derive the conclusion(b > c)) (a > c):This derivation can be represented by8x; y; z:(x > y) ^ (y > z)) (x > z)(a > b)) 8z:(b > z)) (a > z) (��) (a > b)(a > b) (��)8z:(b > z)) (a > z)(b > c)) (a > c) (��) (MP)149

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 150where the rule (��) represents the implicit derivations de�ned in section 6.4.1. In gen-eral, the derivation of a conclusion from a structured justi�cation can be representedby a number of implicit derivations and a number of explicit derivations which corre-spond to the operators in the justi�cation. This is described in section 6.4.2 where thesemantics of structured justi�cations is given.The semantics of structured justi�cations is non-deterministic, and in general, astructured justi�cation can be used to derive several conclusions. For example, thestructured justi�cation given above can also be used to derive the conclusion"(c > a)) (c > b)"since 8x; y; z:(x > y) ^ (y > z)) (x > z)8x:(x > a)) (a > b)) (x > b) (��)(a > b)) 8x:(x > a)) (x > b) (��) (a > b)(a > b) (��)8x:(x > a)) (x > b)(c > a)) (c > b): (��) (MP)As a result, one cannot implement functions corresponding to the operators on, and, andthen which take two premises and infer a conclusion. On the other hand, it is necessaryto implement checking functions (decision procedures) which check whether a particularconclusion follows from a given justi�cation.In this chapter we show how one can proof check structured justi�cations by restrict-ing the search for a proof of the conclusion from the premises in a given justi�cationaccording to the operators in the justi�cation. We use the de�nitions and results givenin chapter 7 to de�ne the required restriction, and therefore assume familiarity withthe material in chapter 7, as well as with the material in chapter 6 which introducesthe de�nitions of structured justi�cations and implicit and explicit derivations. In theapproach given in this chapter, a coloured problem (S;K) is constructed from a givenjusti�ed assertion C by P such that P justi�es C if and only if (S;K) is inconsistent. Itshould be noted that the colouring and the connectability relation in a coloured prob-lem (S;K) denote a restriction on the way the sentences in S can be used to show itsinconsistency. Therefore it is only necessary to consider a smaller search space whenshowing the inconsistency of (S;K) than when showing the inconsistency of the un-coloured projection of the sentences in S. This restriction on the search space resultsin the proof checking of structured justi�cations being more e�cient than the checkingof unstructured justi�cations.We stress that the main result given in this chapter is not an algorithm for check-ing structured justi�cations. The main result is that a structured justi�cation can bechecked by restricting the search space considered by �rst-order theorem provers. Thisrestriction is given in terms of the coloured �rst-order logic given in chapter 7 and isindependent of the particular �rst-order logic semi-decision procedure used in checkingthem. The fact that� the restriction on the proof search required to check structured justi�cations doesnot depend on the algorithm used to check them,� and the fact that the semantics of structured justi�cations is non-deterministicsuggest that proofs involving structured justi�cations are not procedural. Althoughstructured justi�cations contain some information on what inferences are required to

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 151justify the conclusion, they do not correspond to a speci�c procedure for deriving theconclusion from the justi�cation.We recall that the de�nition of the validity of structured justi�cations (de�nition 6.4)is given in terms of the explicit derivations relation , which is de�ned in terms of theimplicit derivations relation��. Since, the main goal of this chapter is to show how onecan check the validity of structured justi�cations by constructing a coloured problem(S;K) and then checking the K-inconsistency of S, we �rst show in section 8.2 howone can construct an inconsistent coloured problem from an implicit derivation. Thisconstruction is also shown to be sound and complete in the sense that an implicitderivation is valid if and only if the corresponding coloured problem is inconsistent.Section 8.3 then shows how one can construct a coloured problem from a conclusionjusti�ed by a structured justi�cation. In section 8.4, it is shown that the colouredproblem constructed by the method given in section 8.3 is inconsistent if and only ifthe given justi�ed conclusion is valid. Section 8.5 illustrates how the CBSE derivedrule given in chapter 5 is modi�ed so that it can be used to proof check structuredjusti�cations. A summary of this chapter is given in section 8.6.8.2 Proof Checking Implicit First-Order InferencesIn this section we show how one can check whether a �rst-order sentence B can beimplicitly derived from another sentence A (that is, whether A�� B; see de�nition 6.2on page 105) by restricting the search for a proof of A) B. This restriction is givenin section 8.2.1 and it is shown to give sound and complete methods for checking im-plicit �rst-order derivations in sections 8.2.2 and 8.2.3. These results are then usedin section 8.2.4 to show that the problem of checking implicit �rst-order derivations isundecidable.8.2.1 A Restricted Proof Search for Checking Implicit InferencesGiven the �rst-order sentences A and B, the implicit derivation A�� B can be checkedby looking for a refutational proof of A) B in which complementary pairs of literalsare allowed to be used in refuting f:(A) B)g if one literal in the pair is taken fromA and the other one from B. More formally, and using the notation introduced inchapter 7, it is the case that A�� B if and only if fAi;:Bjg is i$ j-inconsistent fordistinct colours i and j. This claim is proved in the following two sections and given astheorem 8.3 on page 157.This result is used to derive the main goal of this chapter, which is to show howone can check the validity of a structured justi�cation by �rst constructing a colouredproblem (S;K), and then showing that (S;K) is inconsistent. In particular, we canalready see that one can show that a conclusion C can be justi�ed by P where P is asingle sentence, by showing that (S;K) is inconsistent whereS = fP i;:Cjg; andK = i$ jfor distinct colours i and j. This follows from the main result of this section (theo-rem 8.3) and the fact that

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 152C by Pis valid if and only if P C (by de�nition 6.4) and that P C if and only if P �� C(by de�nition 6.3).8.2.2 Soundness of the RestrictionIn this section we show that for sentences A and B the restriction given in section 8.2.1for searching for a proof of A) B in order to check whether A �� B is sound, inthe sense that whenever a proof of A) B is found according to the given restrictions,it is the case that A �� B. In order to show this result we need the following ratherstraightforward proposition.Proposition 8.1 Let A and B be some �rst-order formulae such that A�� B. For allterms t and t0 where t is either a constant, parameter or variable, and no free variablein t0 becomes bound in Aft! t0g and Bft! t0g, it is the case thatAft! t0g�� Bft! t0gwhere for any formula C, the expression Cft ! t0g represents the formula C with allits occurrences of t replaced with t0.Proof: The fact that Aft ! t0g� Bft ! t0g whenever A� B can be easily checkedfor each rule in de�nition 6.1. The statement of this proposition follows from this resultand the fact that �� is the re
exive transitive closure of �. �We now show that the sentence B can be implicitly derived from some sentence Aif fAi;:Bjg is i$ j-inconsistent for distinct colours i and j.Theorem 8.1 Given two sentences X and Y , and distinct colours i and j, if fXi;:Y jgis i$ j-inconsistent then X �� Y .Proof: For any formula Z, let us de�ne the set DZ containing the sentences that canbe implicitly derived from Z: DZ = f� j Z �� �g:Now, let the collection of sets C be de�ned as follows:C = fP i [Qj j P � DX and Q � D:Y ; for sentences X and Ysuch that it is not the case that X �� Y g:Note that all the formulae in the sets in C are homogeneously coloured by i or j.We show that C is an i $ j-consistency property. Let some set S 2 C, thenS = P i [Qj where P � DX and Q � D:Y for some sentences X and Y such that it isnot the case that X �� Y . Note that for every formula 'i 2 S the formula ' is in P ,and for every 'j 2 S we have ' 2 Q.1. Suppose that there is some literal A, such that both Ai and :Aj are in S. ThenA 2 P � DX and (:A) 2 Q � D:Y . Therefore, X �� A and :Y �� :A. Also,by proposition 6.2, A �� Y . Hence X �� Y which is a contradiction. As aresult, not both Ai and :Aj are in S for every literal A and set S in C.

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 1532. Since X � > then P [f>g � DX and therefore S[f>ig 2 C. Hence by the abovecase, ?j =2 S. Similarly, as :Y � >, it follows that Q [f>g � D:Y and thatS [f>jg 2 C. And again ?i =2 S. Therefore for any colour k in i$ j, ?k =2 S.3. Let some conjunctive sentence 	 2 S. We consider the two cases where 	 =(' ^)i, or 	 = (' ^)j for some sentences ' and .If (' ^)i 2 S then X �� (' ^) � ', and similarly X �� . ThereforeP [f'; g � DX and hence S [f'i; ig 2 C.For the second case, if (' ^)j 2 S then :Y �� ' ^ � ' and also :Y �� .So Q [f'; g � DY and so S [f'j ; jg 2 C.4. We now assume that a disjunctive sentence 	 2 S and consider the cases where	 = (' _)i and 	 = (' _)j .Let ('_)i 2 S. We are required to prove that either S[f'ig 2 C or S[f ig 2 C.In other words, we need to show that there are some sentences X1 and Y1 suchthat P [f'g � DX1 , Q � D:Y1 and it is not the case that X1 �� Y1; or thatthere are some sentences X2 and Y2 where P [f g � DX2 , Q � D:Y2 and it is notthe case that X2 �� Y2. Suppose that this is not true; that is, for all sentencesX1, Y1 either X1�� Y1, or P [f'g * DX1 , or else Q * D:Y1 ; and for all X2, Y2,either X2 �� Y2 or P [f g * DX2 or Q * D:Y1 . In particular, let X1 = X ^ ',Y1 = Y , X2 = X ^ and Y2 = Y . Then X1 � X �� � for every � 2 P andX1� ', hence P [f'g � DX1 . Also Q � D:Y1 , and therefore it must be the casethat X1 �� Y1, i.e.,X ^ '�� Y . Similarly, X2 �� Y2, or simply X ^ �� Y .But this results in a contradiction as since X �� ' _ � (because ' _ � 2 P) wehave: X � X ^X�� X ^ (' _)� (X ^ ') _ (X ^)�� Y _ Y� Y:The second case, where ('_)j 2 S, proceeds similarly. We assume that S[f'jg =2C and S [f jg =2 C and show that this gives a contradiction. Therefore, we havethat for all sentences X1 and Y1 either X1�� Y1, or P * DX1 or Q[f'g * D:Y1 ;and for all X2 and Y2 either X2 �� Y2, or P * D:Y2 or else Q [f g * D:Y2 .Now, let X1 = X, Y1 = Y _ :', X2 = X and Y2 = Y _ : . Then P � DX1 .Also, for all � 2 Q, it is the case that :Y1 �� � and that :Y1 � :Y �� ' andso Q [f'g � D:Y1 . So we conclude that X1�� Y1 and with a similar argumentX2�� Y2. Hence X � X ^X�� (Y _ :') ^ (Y _ :)� Y _ (:' ^ :)�� Y _ Y� Y

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 154which is a contradiction.5. Let 8x:'i 2 S then 8x:' 2 P and so X �� 8x:'�� 'fx! tg for all closed termt. Therefore, P [f'fx ! tgg � DX and S [f'fx ! tgig 2 C for every closedterm t. Similarly, if 8x:'j 2 S then S [f'fx! tgjg 2 C for every closed term t.6. Suppose that some existential formula 	 2 S. We consider the two cases where	 = 9x:'i or 	 = 9x:'j separately.For the �rst case, we are given that 9x:'i 2 S and we are required to show thatS[f'fx! pgig 2 C for some parameter p. Similarly to the fourth case above, weprove this by contradiction. Suppose that S [f'fx! pgig =2 C for all parametersp, then for all sentences X1 and Y1, either P [f'fx! pgg * DX1 , or Q * D:Y1or else X1�� Y1. Let p be some parameter which does not occur in X or Y , andlet X1 = X ^'fx! pg and Y1 = Y . Now, for all � 2 P , we have X �� �, and soX ^ 'fx! pg� X �� �. Moreover, X ^ 'fx ! pg� 'fx! pg and thereforeP [f'fx ! pgg � DX1 . Also, Q � D:Y1 and hence it must be the case thatX1�� Y1, or in other words X ^ 'fx! pg�� Y . But since p does not occur inX and Y we get X ^ '�� Y by Proposition 8.1 as(X ^ 'fx! pg)fp! xg = X ^ ' and Y fp! xg = Y:But this is contradictory since, using the fact that X and Y are sentences, wederive the following: X � X ^X�� X ^ 9x:'� 9x:(X ^ ')�� 9x:Y� Y:The second case is very similar to the �rst one. If 9x:'j 2 S and we assume thatS[f'fx! pgjg =2 C then we get that for every parameter p and sentences X1 andY1, either P [f'fx! pgg * DX1 , or Q * D:Y1 or else X1�� Y1. In particular,we let p be some parameter which does not occur in X or Y , and X1 = X andY1 = Y _ :'fx ! pg. Then P � DX1 , and also Q [f'fx ! pgg � DY1 . Thus,we are left with X1�� Y1, i.e.,X �� Y _:'fx! pg. Hence by Proposition 8.1,X �� Y _ :'. This can be used to deduce thatX � 8x:X�� 8x:(Y _ :')� Y _ :(9x:')�� Y _ Y� Ywhich contradicts our assumption that X 6�� Y .Therefore C is an i$ j-consistency property. Now, if it is not the case that X �� Ythen the set fXi;:Y jg 2 C and is thus i $ j-consistent. With this statement we

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 155conclude that if fXi;:Y jg is i$ j-inconsistent then X �� Y . �8.2.3 Completeness of the RestrictionWe now show the converse of theorem 8.1, or in other words whenever A�� B, thena proof of A) B can be found according to the restriction given in section 8.2.1. Themain part of the proof of this statement is given by the following lemma.Lemma 8.1 For all formulae X and Y such that X � Y , and for every set S ofcoloured sentences and substitution � which maps every free variable in X and Y to aclosed term, if S [fXi�g is i$ j-consistent then so is S [fY i�g.Proof: We proceed by rule induction on the relation �. The proofs of most of thecases are routine and we present here a few of the less trivial ones. Let us de�neK = i$ j:We use ��x to denote the substitution which maps the variable x to itself and any othervariable y to y�. Also, we represent the substitution � restricted to all the free variablesin some term t by �jt. Note that most of the implications in the proofs of the followingcases can be substituted with a bi-implication (,). We do not do this since our goal issimply to show the implicationS [fXi�g is K-consistent) S [fY i�g is K-consistent:� The sentence X = A ^ (B _C) and Y = (A ^B) _ (A ^ C).S [f(A ^ (B _C))i�g is K-consistent) S [fAi� ^ (Bi� _ Ci�)g is K-consistent) S [fAi�;Bi� _ Ci�g is K-consistent) S [fAi�;Bi�g is K-consistent, orS [fAi�; Ci�g is K-consistent) S [fAi� ^Bi�g is K-consistent, orS [fAi� ^ Ci�g is K-consistent) S [f((A ^B) _ (A ^ C))i�g is K-consistent.� The sentence X = 8x:A and Y = 8x:Afx! tg where no free variable in t becomesbound in Afx! tg.S [f(8x:Ai)�g is K-consistent) S [f8x:(Ai��x)g is K-consistent) S [fAi��xfx! cgg is K-consistent for every closed term c.) S [fAifx! cg��xg is K-consistent for every closed term c.

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 156In particular, S[fAifx! cg��xg is K-inconsistent for all closed terms c which areof the form tfx! c0g�jt where c0 is any closed term. That is,S [fAifx! (tfx! c0g�jt)g��xg is K-consistent for every closed term c0) S [fAi(fx! tgfx! c0g�jt)��xg is K-consistent for every closed term c0) S [fAifx! tgfx! c0g�jt��xg is K-consistent for every closedterm c0 as no free variable in t is bound in Afx! tg,and thus no free variable in t is bound in Afx! tgfx! c0g) S [fAifx! tgfx! c0g��xg is K-consistent for every closed term c0) S [fAifx! tg��xfx! c0gg is K-consistent for every closed term c0) S [f8x:(Aifx! tg��x)g is K-consistent) S [f(8x:Aifx! tg)�g is K-consistent.� The sentence X = A ^ C and Y = B ^ C, where A � B with the inductionhypothesis that for all S and � if S[fAi�g is i$ j-consistent then so is S[fBi�g.S [f(A ^ C)i�g is K-consistent) S [fAi�; Ci�g is K-consistent) S [fBi�; Ci�g is K-consistent by the induction hypothesis) S [f(B ^ C)i�g is K-consistent:� The sentence X = 8x:A and Y = 8x:B, where A � B with the induction hy-pothesis that for all S and � if S [fAi�g is i$ j-consistent then so is S [fY i�g.S [f(8x:Ai)�g is K-consistent) S [f8x:Ai��xg is K-consistent) S [fAi��xfx! cgg is K-consistent for every closed term c) S [fBi��xfx! cgg is K-consistent for every closed term cby the induction hypothesis) S [f(8x:Bi)�g is K-consistent:We thus conclude that if S [fXi�g is i$ j-consistent then so is S [fY i�g. �We are now ready to prove the required result.Theorem 8.2 For every sentence X and Y , if X �� Y then fXi;:Y jg is i $ j-inconsistent.Proof: Suppose that X �� Y , that is, there is a �nite sequence of sentences Zx wherex 2 f1; : : : ; ng such that X = Z1� Z2� � � �� Zn = Yand let us assume that fXi;:Y jg is i$ j-consistent. Note that for all substitutions �Xi = Zi1 = Zi1�

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 157as X is a sentence. Now if fZi1�;:Y jg is i$ j-consistent thenfZi2�;:Y jg is i$ j-consistent by Lemma 8.1) fZi3�;:Y jg is i$ j-consistent by Lemma 8.1...) fZin�;:Y jg is i$ j-consistent.where � is any substitution which maps all the free variables in Zx to some closed terms.Again we note that Y i = Zin = Zin�for all � since Y is a sentence. But the statement that fY i;:Y jg is i$ j-consistent isa contradiction, and therefore fXi;:Y jg must be i$ j-inconsistent. �For completeness we give the correspondence between implicit derivation and incon-sistency according to the connectability relation i$ j in the following theorem.Theorem 8.3 (Checking �� by a Coloured Problem) Given two sentences Aand B, and two distinct colours i and j, then A �� B if and only if fAi;:Bjg isi$ j-inconsistent.Proof: By theorems 8.1 and 8.2. �8.2.4 The Undecidability of First-Order Implicit and Explicit Deriva-tionsIn theorem 7.9 in section 7.6 we have seen that the validity of every �rst-order sentenceX is equivalent to the i $ j-consistency of Y i) Zj for some sentences Y and Zand distinct colours i and j. By theorem 8.3, this is in turn equivalent to whether thesentence Z can be implicitly derived from Y . As a consequence of these results we getthe undecidability of implicit derivations.Theorem 8.4 (Undecidability of ��) The problem of checking whether X �� Yfor all �rst-order sentences X and Y is undecidable.Proof: Follows from the undecidability of the validity problem of pure �rst-order logicand theorems 7.9 and 8.3. �Since the de�nition of the explicit �rst-order derivations given in section 6.4.2 isbased on the de�nition of implicit derivations, it follows from the undecidability ofimplicit derivations that the validity of explicit derivation is also undecidable.Theorem 8.5 (Undecidability of) The problem of checking whether X C foran arbitrary structured expression X and �rst-order sentence C is undecidable.Proof: Follows from theorem 8.4 and de�nition 6.3 (page 109). �As a particular case of theorem 8.5, the validity of structured straightforward justi�-cations (de�nition 6.4, page 109) is undecidable. As a result, it is necessarily to impose

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 158(implementation-based) bounds on any proof search required to check structured justi-�cations. This issue is discussed in section 8.5, which describes the mechanism used inchecking the structured justi�cations implemented in the mechanisation of group theoryillustrated in chapter 9.8.3 From Structured Justi�cations to Coloured Problems8.3.1 A Restricted Proof Search for Checking Structured Justi�ca-tionsThe previous section illustrated how implicit inferences are equivalent to the inconsis-tency of coloured �rst-order problems. In this section, we show how a coloured problemcan be constructed from a structured straightforward justi�cation such that the result-ing problem is inconsistent if and only if the justi�cation is valid. This construction givesa mechanism for restricting the proof search required for checking such justi�cations.The construction of a coloured problem given in this section requires the notion ofstructured expressions whose formulae are coloured. Coloured structured expressionsare introduced in the following de�nition.De�nition 8.1 (Coloured Structured Expressions) A coloured structured expres-sion is a structured expression constructed from coloured �rst-order sentences. We ex-tend the de�nition and notation of the colouring mapping in de�nition 7.6 to structuredexpressions as follows: (X on Y)i = X i on Y i(X and Y)i = X i and Y i(X then Y)i = X i then Y ifor every colour i and structured expressions X and Y . The notions of recolouring andisomorphism by renaming colours given in chapter 7 can also be extended to colouredstructured expressions. �We also de�ne a coloured structured problem as follows.De�nition 8.2 (Coloured Structured Problem) A coloured structured problem isa pair (S;K) where S is a set of coloured structured expressions and K is a connectabilityrelation. �Note that since the set of coloured structured expressions includes the set of colouredsentences (since a sentence is a structured expression), �rst-order coloured problems area special case of coloured structured problems.We now have a look at how a coloured problem can be constructed from a givenstructured justi�cation. In the light of proposition 6.5 which states that structuredjusti�cations involving the then operator can be transformed into equivalent ones whichdo not contain it, we de�ne the required construction of coloured problems accordingto justi�cations which contain only the on and and operators. The construction is donein two steps:� A coloured structured problem is constructed from the given justi�cation, as givenby de�nition 8.3 below which introduces the relation)c;

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 159� The coloured structured problem is transformed into a �rst-order coloured prob-lem. This transformation is given in de�nition 8.4 which introduces the relations!c and !�c .The �rst step is now given in the following de�nition.De�nition 8.3 (Structured Justi�cations to Coloured Structured Problems)Let C be a sentence and P be a structured expression. The justi�ed conclusion C by Pcan be transformed to the coloured structured problem (fP i;:Cjg; i$ j), and write(C by P))c (fP i;:Cj)g; i$ j): �The second step is given by breaking up the coloured structured expressions in thecoloured structured problem according to the following rules.De�nition 8.4 (Convergence of Structured Coloured Problems) The relation!c on coloured structured problems is de�ned as the smallest relation satisfying thefollowing rules:� For all structured expressions X and Y , colours i, sets S of coloured expressionsand connectability relations K:(S [f(X on Y)ig;K)!c (S [fXi; Y jg;K [i$ j)where j is new to (S [f(X on Y)ig;K).� For all structured expressions X and Y , colours i, sets S of coloured expressionsand connectability relations K:(S [f(X and Y)ig;K)!c (S [fXi; Y jg;K [K(i!j))where j is new to (S [f(X and Y)ig;K).We denote the re
exive transitive closure of !c by !�c . We say that a coloured struc-tured problem (S;K) converges to the coloured problem (S0;K0), and denote it by(S;K) +c (S0;K0), if (S;K) !�c (S0;K0) and there is no coloured structured problem(S00;K00) for which (S0;K0)!c (S00;K00). �De�nition 8.5 (Breaking Expressions Up) Let X be some on-expression Y on Z,or some and-expression Y and Z such that(S [fXig;K)!c (S [fY i;Zjg;K0)for some set of coloured structured expressions S, connectability relations K and K0 andcolours i and j, then we say that the coloured structured expression Xi is broken upinto Y i and Zj by the application of the relation !c. We say that Y i (and similarlyZj) has been broken up from Xi by the application of !c. We also say that a colouredstructured expression U has been broken up from V by some applications of !c� if U = V , or� if U has been broken up from V by the application of !c, or

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 160
S [f(X on Y)ig S [f(X and Y)igS [fXi; Y jg S [fXi; Y jgc c

Fig. 18. The Application of the Relation !c.� U has been broken up from some coloured structured expression W by the ap-plication of !c and W has been broken up from V by some applications of therelation !c. �Note that in the rule breaking up and expressions, the colours that relate with thenew colour j in K [K(i!j) are exactly the colours that relate with i in K, which arealso the colours that relate with i in K [K(i!j), that isK [K(i!j) = K [f(j; k) j i �K kg [f(k; j) j k �K ig:The application of the relation !c is illustrated in �gure 18. We also illustrate theabove de�nitions with the following examples.Example 8.1 (Justi�cations to Coloured Problems)1. A coloured problem is constructed from a justi�ed conclusion of the formC by A on B;where A, B and C are formulae as follows:C by A on B)c (f(A on B)i;:Cjg; i$ j)!c (fAi;Bk;:Cjg; k $ i$ j)where the colours i, j and k are distinct from each other. It can be seen that ifA = (B) C), then the �nal coloured problem is of the form(f(B) C)i;Bk;:Cjg; k $ i$ j)which is inconsistent.2. A coloured problem is constructed from a justi�ed conclusion of the formC by A and B;where A, B and C are formulae as follows:C by A and B)c (f(A and B)i;:Cjg; i$ j)!c (fAi;Bk;:Cjg; fi; kg $ j)

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 161where the colours i, j and k are distinct from each other. It can be seen that ifC = (A ^B), then the �nal coloured problem is of the form(fAi;Bk; (:A _ :B)jg; fi; kg $ j)which is inconsistent.3. The following justi�ed conclusionC by (A then B) on D;is �rst transformed into the equivalentC by B on (A on D);and then the following coloured problem is constructed:C by B on (A on D))c (fB on (A on D)i;:Cjg; i$ j)!c (fBi; (A on D)k;:Cjg; k $ i$ j)!c (fBi;Ak;Dl;:Cjg; l $ k $ i$ j)where the colours i, j, k and l are distinct from each other.4. The following justi�ed conclusionC by A on (B and D);converges to:C by A on (B and D))c (f(A on (B and D))i;:Cjg; i$ j)!c (fAi; (B and D)k;:Cjg; k $ i$ j)!c (fAi;Bk;Dl;:Cjg; fk; lg $ i$ j)� The following proposition is straightforward.Proposition 8.2 Given the coloured structured problems (S;K) and (S0;K0) such that(S;K)!�c (S0;K0) then1. K � K0, and2. C(S) � C(S0).Proof: The �rst part of the current proposition follows from the fact that whenever(S;K) !c (S0;K0) then K � K0. The second part follows from the fact that whenever(S;K)!c (S0;K0) then C(S0) = C(S) [fjg where the colour j is new to (S;K). �We also give the following de�nitions.

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 162De�nition 8.6 (Construction of a Coloured Problem) Given a set S of colouredformulae, and a connectability relation K, we say that the coloured problem (S;K) isconstructed from the justi�ed conclusion C by P , and write(C by P) +c (S;K)if (C by P))c (S0;K0) and (S0;K0) +c (S;K) for some coloured structured problem(S0;K0). We also write (C by P)!�c (S00;K00);where (S00;K00) is a coloured structured problem, and say that C by P can be trans-formed into (S00;K00) if (C by P))c (S0;K0) and (S0;K0)!�c (S00;K00) for some colouredstructured problem (S0;K0). �De�nition 8.7 (Consistency of Structured Problems) Given a set S of colouredstructured expressions and a connectability relation K, the coloured structured problem(S;K) is said to be consistent if whenever (S;K) +c (S0;K0) then the coloured problem(S0;K0) is consistent. Similarly, (S;K) is said to be inconsistent if whenever (S;K) +c(S0;K0) then (S0;K0) is inconsistent. �We will show in proposition 8.7 below that given some coloured structured problem(S;K), if there is some coloured problem (S0;K0) such that (S;K) +c (S0;K0), then(S0;K0) is consistent if and only if (S00;K00) is consistent for all coloured problems(S00;K00) for which (S;K) +c (S00;K00). As a result, a coloured structured problem(S;K) is consistent if and only if (S;K) +c (S0;K0) holds for some consistent colouredproblem (S0;K0). Similarly, (S;K) is inconsistent if and only if (S;K) +c (S0;K0) forsome inconsistent coloured problem (S0;K0). It thus follows that a coloured structuredproblem is inconsistent if and only if it is not consistent.It can be easily checked that all conclusions justi�ed by a structured expression canbe used to construct some coloured problem, or in other words that all applicationsof the relation !c terminate to a coloured problem. This is given by the followingproposition.Proposition 8.3 (Termination of !c) For every coloured structured problem (S;K)where S is �nite, there is some coloured problem (S0;K0) such that (S;K) +c (S0;K0).Proof: For the purpose of this proof, let us de�ne the order of a coloured structuredproblem (S;K) as the number of times the on and and operators occur in S. It canbe seen from de�nition 8.4 that the relation !c is applicable to a coloured structuredproblem if and only if its order is greater than 0, and that the order of a colouredproblem decreases at every application of !c. As a result, all repetitive applications of!c terminate in a coloured structured problem whose order is 0, that is, in a colouredproblem. �The following proposition shows that a number of properties of structured colouredproblems are preserved when the latter are transformed into coloured problems.Proposition 8.4 For all coloured structured problems (S;K) and (S0;K0) such that(S;K)!�c (S0;K0), then

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 1631. if K = KdSe then K0 = K0dS0e;2. if C(S) = C(K) then C(S0) = C(K0);3. if no colour in K relates with itself, then no colour in K0 relates with itself.Proof: The �rst two parts of this proposition follow from the fact that at each applica-tion of the relation!c the new colour (j in de�nition 8.4) introduced by the applicationis introduced to both the set and the connectability relation of the coloured structuredproblem. The last part follows from the fact that the new colour (j) does not relatewith itself in K0 whenever (S;K)!c (S0;K0). �Proposition 8.5 For every formula C and structured expression P , if it is the casethat C by P !�c (S;K) for some coloured structured problem (S;K), then1. K = KdSe,2. C(S) = C(K), and3. for all colour i 2 K, we have i 6�K i.Proof: From de�nition 8.3, if (C by P))c (S0;K0), then S0 = fP i;:Cjg and K0 =i$ j for some colours i and j where i 6= j. Therefore, it is the case that K0 = K0dS0e,C(S0) = C(K0), and that no colour in i $ j relates with itself. The three parts of thisproposition then follow by proposition 8.4 above. �8.3.2 A Con
uence PropertyNote that an application of the relation !c (as given by the rules in de�nition 8.4)introduces a new colour nondeterministically to a coloured structured problem andas a result the relation !c is not con
uent. In particular, it is not the case thatif (S;K) +c (S1;K1) and (S;K) +c (S2;K2) for coloured structured problems (S;K),(S1;K1) and (S2;K2) then (S1;K1) = (S2;K2). It can be shown, however, that therelation !c satis�es a con
uence property modulo isomorphism by renaming colours.In other words, whenever(S1;K1)!�c (S2;K2) and (S3;K3)!�c (S4;K4);if (S1;K1) urc (S3;K3) then there are coloured structured problems (S5;K5) and (S6;K6)such that(S2;K2)!�c (S5;K5); (S4;K4)!�c (S6;K6) and (S5;K5) urc (S6;K6):This is derived by showing that !c is also strongly con
uent modulo isomorphism byrenaming colours.Proposition 8.6 (Strong Con
uence of !c modulo urc) Given four colouredstructured problems (Si;Ki) for i 2 f1; : : : ; 4g, such that (S1;K1) urc (S3;K3) and(S1;K1)!c (S2;K2) and (S3;K3)!c (S4;K4)

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 164
(S1;K1) urc (S3;K3) (S1;K1) urc (S3;K3)or(S2;K2) urc (S4;K4) (S2;K2) (S4;K4)(S5;K5) urc (S6;K6)c c c cc cFig. 19. The Relation !c is Strongly Con
uent Modulo urc.then either (S2;K2) urc (S4;K4) or else there are two coloured structured problems(S5;K5) and (S6;K6) such that(S2;K2)!c (S5;K5) and (S4;K4)!c (S6;K6);and (S5;K5) urc (S6;K6). (see �gure 19)Proof: Given that (S1;K1) urc (S3;K3) then there is a recolouring mappingR such thatR(S1;K1) = (S3;K3). Also, since (S1;K1) !c (S2;K2) then there is some set E1 � S1consisting of one coloured structured expression and some set E2 � S2 consisting of twocoloured structured expressions such thatS1 �E1 = S2 �E2 and (E1;K1)!c (E2;K2):Similarly, as (S3;K3) !c (S4;K4) then there is some set E3 � S3 consisting of onecoloured structured expression and some set E4 � S4 consisting of two coloured struc-tured expressions such thatS3 �E3 = S4 �E4 and (E3;K3)!c (E4;K4):We consider the two cases where R(E1) = E3 or R(E1) 6= E3.� If R(E1) = E3 then we claim that (S2;K2) urc (S4;K4). We prove this claim byconsidering whether E1 contains an on expression or whether it contains an andexpression separately.If E1 = (A on B)i for some expressions A and B and colour i, thenE3 = R(E1) = f(A on B)lgwhere l = R(i). Therefore,S2 = S1 �E1 [fAi; Bjg K2 = K1 [i$ jS4 = S3 �E3 [fAl; Bmg K4 = K3 [l$ m

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 165where j is new to (S1;K1) and m is new to (S3;K3). Now, if we de�ne therecolouring mapping R0 such thatR0(X) = R(X)(j!m)for allX, where Y (j!m) for some arbitrary coloured object Y represents the objectY with all the occurrences of the colour j replaced with m (see de�nition 7.19).Therefore R0(S2;K2) = (S4;K4) and so (S2;K2) urc (S4;K4).We now consider the case where E1 = f(A and B)ig for some A, B and colour i.Therefore E3 = f(A and B)lg where the colour l = R(i), andS2 = S1 �E1 [fAi; Bjg K2 = K1 [K(i!j)1S4 = S3 �E3 [fAl; Bmg K4 = K3 [K(l!m)3where j and m are new to (S1;K1) and (S3;K3) respectively. By de�ningR0(X) = R(X)(j!m)again, we get that R0(S2;K2) = (S4;K4) and hence it is the case that (S2;K2) urc(S4;K4).� If on the other hand R(E1) 6= E3 then we claim that there is some (S5;K5) and(S6;K6) such that(S2;K2)!c (S5;K5); (S4;K4)!c (S6;K6) and (S5;K5) urc (S6;K6):The proof of this claim can be done by case analysis on whether S1 and S3 are onor and expressions (4 cases in all). Since the proofs of these cases are quite similarwe present only the case where E1 contains an on expression while E3 contains anand expression. So, we have thatE1 = f(A on B)ig E3 = f(C and D)lgand therefore S2 = S1 �E1 [fAi; Bjg K2 = K1 [i$ jS4 = S3 �E3 [fC l;Dmg K4 = K3 [K(l!m)where j andm are new to (S1;K1) and (S3;K3) respectively. Let us also denote thecolour R(i) by p, and R�1(l) by r. Please note that E3 � R(S2) and R(E1) � S4as R(S1;K1) = (S3;K3). If we now de�ne the followingS5 = (S2 �R�1(E3)) [fCr;Dsg K5 = K2 [K(r!s)2S6 = (S4 �R(E1)) [fAp; Bqg K6 = K4 [p$ qwhere s and q are new to both (S2;K2) and (S4;K4) then(S2;K2)!c (S5;K6); and (S4;K4)!c (S6;K6):

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 166Moreover, if we de�ne the recolouring mapping R0 such thatR0(X) = (R(X)(j!q))(s!m)for all X, then it is routine to show thatR0(S5;K5) = (S6;K6)and therefore (S5;K5) urc (S6;K6). �The required con
uence result follows from the above proposition by Newman'sTheorem (Newman 1942) which states that every strongly con
uent relation is con
uent.Theorem 8.6 (Con
uence of !c modulo urc) Given four coloured structured prob-lems (Si;Ki) for i 2 f1; : : : ; 4g, such that(S1;K1)!�c (S2;K2); (S3;K3)!�c (S4;K4) and (S1;K1) urc (S3;K3)then there are coloured structured problems (S5;K5) and (S6;K6) such that(S2;K2)!�c (S5;K5); (S4;K4)!�c (S6;K6) and (S5;K5) urc (S6;K6):Proof: Follows from proposition 8.6 by a result of Newman (1942) (see also (Plaisted1993a)) that every strongly con
uent relation is con
uent. �The following corollary follows easily from theorem 8.6.Corollary 8.1 Given the coloured structured problems (S1;K1) and (S3;K3), and thecoloured problems (S2;K2) and (S4;K4) such that(S1;K1) +c (S2;K2); (S3;K3) +c (S4;K4) and (S1;K1) urc (S3;K3)then (S2;K2) urc (S4;K4).Proof: If (S1;K1) +c (S2;K2), (S3;K3) +c (S4;K4) and (S1;K1) urc (S3;K3) then thereare coloured structured problems (S5;K5) and (S6;K6) such that(S2;K2)!�c (S5;K5); (S4;K4)!�c (S6;K6) and (S5;K5) urc (S6;K6)by theorem 8.6. However, since (S2;K2) and (S4;K4) are coloured problems then(S5;K5) = (S2;K2) and (S6;K6) = (S4;K4): �We conclude this section by showing that if a coloured structured problem convergesto some consistent coloured problem, then all the coloured problems it converges to areconsistent.Proposition 8.7 For every coloured structured problem (S;K) and for all colouredproblems (S0;K0) and (S00;K00) such that(S;K) +c (S0;K0) and (S;K) +c (S00;K00)then S0 is K0-consistent if and only if S00 is K00-consistent.

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 167Proof: If (S;K) +c (S0;K0) and (S;K) +c (S00;K00) then (S0;K0) urc (S00;K00) by corol-lary 8.1, and therefore S0 is K0-consistent if and only if S00 is K00-consistent by proposi-tion 7.10. �8.4 Soundness and Completeness of the Restricted ProofChecking of Structured Justi�cations8.4.1 Soundness and Completeness for Particular CasesIn this section we show the soundness and completeness of the mechanism for con-structing a coloured problem from a justi�ed conclusion for two particular cases. Moreprecisely, we show that if the justi�ed conclusionC by Pconverges to the coloured problem (S;K), then (S;K) is inconsistent if and only if Pjusti�es C for the cases that P = A on B and P = A and B where A and B aresentences1. The `only if' direction states that if a proof is found using the restrictionsgiven by the constructed coloured problem then it is the case that the conclusion C canbe justi�ed by P . This corresponds to the soundness of the mechanism of constructingcoloured problems in order to proof check structured justi�cations. Similarly, the `if'direction corresponds to the completeness of the proof checking mechanism. The roleof the proofs given in this section is to give an idea of what is required to derive thesoundness and completeness results for the general case.Proposition 8.8 For all �rst-order sentences A, B, C, if(C by A on B) +c (S;K)for some coloured problem (S;K), then S is K-inconsistent if and only if (A on B) C.Proof: As illustrated in example 8.1(1),(C by A on B) +c (fAi;Bk;:Cjg; k $ i$ j):By corollary 8.1 if (C by A on B) +c (S;K) then(S;K) urc (fAi;Bk;:Cjg; k $ i$ j)and therefore (S;K) is inconsistent if and only if fAi;Bk;:Cjg is k $ i$ j-inconsistent.The set fAi;Bk;:Cjg can be partitioned into(fAi;:Cjg; fBkg)which is also well-coloured with respect to k $ i$ j. We can therefore use theorem 7.8to deduce that fAi;Bk;:Cjg is k $ i$ j-inconsistent if and only iffAi;:Cj ; Ikg and fBk;:Iig1It can be also noted that the fact that (S;K) is inconsistent if and only if P justi�es C can be easilyshown to hold for the particular case where P is a �rst-order sentence by theorem 8.3 and de�nitions 6.3and 6.4.

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 168are for some �rst-order sentence I. As an aside, we note that I can be chosen suchthat the pair (Ik;:Ii) is a k $ i$ j-interpolant for (fAi;:Cjg; fBkg) by theorem 7.7,although this property is not required for the current proof.Now, fAi;:Cj ; Ikg is k $ i$ j-inconsistent if and only iffAi;:Cj ; Ijg is i$ j-inconsistent by thm. 7.5 and prop. 7.7, fAi;:(I) C)jg is i$ j-inconsistent, A�� (I) C) by theorem 8.3:Also, fBk;:Iig is k $ i$ j-inconsistent if and only iffBk;:Iig is k $ i-inconsistent by prop. 7.7, B�� I by theorem 8.3:Thus, (S;K) is inconsistent if and only if there is some I such thatA�� (I) C)B�� Iand by the de�nition of the relation (de�nition 6.3), this is indeed equivalent towhether (A on B) C as required. �Proposition 8.9 For all �rst-order formulae A, B, C, if(C by A and B) +c (S;K)for some coloured problem (S;K), then S is K-inconsistent if and only if (A and B) C.Proof: As illustrated in example 8.1(2),(C by A and B) +c (fAi;Bk;:Cjg; fi; kg $ j):By corollary 8.1 if (C by A and B) +c (S;K) then(S;K) urc (fAi;Bk;:Cjg; fi; kg $ j)and therefore (S;K) is inconsistent if and only if fAi;Bk;:Cjg is fi; kg $ j-inconsistent.The set fAi;Bk;:Cjg can be partitioned into(fBk;:Cjg; fAig)which is well-coloured with respect to fi; kg $ j. We can therefore use theorem 7.8 todeduce that fAi;Bk;:Cjg is fi; kg $ j-inconsistent if and only iffBk;:Cj; I ig and fAi;:Ijgare for some �rst-order formula I. The set fBk;:Cj; I ig can be partitioned into(f:Cj ; Iig; fBkg)

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 169which is well-coloured with respect to fi; kg $ j as well. Hence, by theorem 7.8, it isthe case that fBk;:Cj ; Iig is fi; kg $ j-inconsistent if and only iff:Cj ; Ii; Jkg and fBk;:Jjgare for some formula J .Now, f:Cj; I i; Jkg is fi; kg $ j-inconsistent if and only iff:Cj; Ii; J ig is i$ j-inconsistent by thm. 7.5 and prop. 7.7, f:Cj; (I ^ J)ig is i$ j-inconsistent, (I ^ J)�� C by theorem 8.3:Also, fBk;:Jjg is fi; kg $ j-inconsistent if and only iffBk;:Jjg is k $ j-inconsistent by prop. 7.7, B�� J by theorem 8.3:And also, fAi;:Ijg is fi; kg $ j-inconsistent if and only iffAi;:Ijg is i$ j-inconsistent by prop. 7.7, A�� I by theorem 8.3:Thus, (S;K) is inconsistent if and only if there are formulae I and J such thatA�� IB�� J(I ^ J)�� Cand by the de�nition of the relation (de�nition 6.3), this is indeed equivalent towhether (A and B) C. �An Overview of the Proof of the Soundness and Completeness Result forthe General CaseIn the previous two propositions we have shown that the method of checking the validityof a justi�ed conclusionC by Pby �rst constructing a coloured problem (S;K) and then showing that S isK-inconsistentis sound and complete for the two particular cases of P = A on B and P = A and B forsentences A and B. Our goal is to show that P justi�es C if and only if the constructedcoloured problem is inconsistent for any structured justi�cation P . This is given intheorem 8.7 below, and its proof proceeds by induction on the structure of P , whichrequires the three cases:� the base case where P is a formula,� the �rst inductive case where P is some on expression X on Y ,� the second inductive case where P is some and expression X and Y ,

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 170where X and Y are structured expressions. The proof of the base case is quite straight-forward, and the proofs of the two inductive cases are a generalisation of the proofs ofpropositions 8.8 and 8.9 respectively, where the structured expressions X and Y gener-alise the sentences A and B. In this section we identify the results which are requiredin order to generalise the proof of propositions 8.8 and 8.9 into the proofs of the twoinductive cases. Since the proofs of the two propositions are quite similar we only con-sider the proof of the case where P is an on-expression here. However, the proof oftheorem 8.7 considers both inductive cases in detail.The key step in the proof of both of the above propositions is the partitioning ofthe set S into some appropriate (S1; S2) and using theorem 7.8 to shown that S is K-inconsistent if and only if S1[fImg and S2[f:Ing are K-inconsistent for some coloursn and m, and sentence I. This step is used once in the proof of proposition 8.8 andtwice in the proof of proposition 8.9. In the particular case of proposition 8.8, we have(C by A on B) +c (fAi; Bk;:Cjg; k $ i$ j)and fAi; Bk;:Cjg is partitioned into(fAi; :Cjg; fBkg)and is k $ i$ j-inconsistent if and only if the setsfAi; :Cj; Ikg fBk; :Iigare for some sentence I. The curves connecting the coloured sentences correspond tothe way the colours in the above sets relate with each other according to the relationk $ i$ j.For the general case where P = X on Y for some structured expressions X and Y ,we have (C by X on Y)!�c (fXi; Y k;:Cjg; k $ i$ j)and although we can partition fXi; Y k;:Cjg into(fXi; :Cjg; fY kg)we cannot use theorem 7.8 to show that it is k $ i $ j-inconsistent if and only if thesets fXi; :Cj; Ikg fY k; :Iigare for some I, since the structured expressions X and Y may not be (unstructured)sentences.We can apply the relation !c on the coloured structured problem(fXi; Y k;:Cjg; k $ i$ j)as follows (fXi; Y k;:Cjg; k $ i$ j)!�c (SX [fY k;:Cjg;KXY)!�c (SX [SY [f:Cjg;K0XY)

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 171where SX and SY are sets of coloured sentences such that(fXi; Y k;:Cjg; k $ i$ j) +c (SX [SY [f:Cjg;K0XY)by �rst breaking up all the structured expressions in Xi and then those in Y k. In orderto generalise the proof of proposition 8.8, we need to be able to use the sets SX and SYin the same way that we used the sentences A and B above. In other words, we needto be able to partition SX [SY [f:Cjg into(SX [f:Cjg; SY)and show that it is K0XY -inconsistent if and only if the setsSX [f:Cj; Ikg and SY [f:Iigare for some sentence I.An important result which is required to perform this step is given in proposition 8.11(and illustrated in example 8.4) and allows us to show that the subsets SX , SY andf:Cjg are connected (by the relation �K0XY , see de�nition 7.9 on page 125) with eachother according to K0XY in the same way that the sentences Ai, Bk and :Cj connectwith each other according to k $ i$ j. More precisely,SX �K0XY SY SX �K0XY f:Cjg SY 6�K0XY f:Cjg;or as shown in the following diagram.SX [SY [f:CjgFurthermore,� the sets SX and SY have no colour in common, and no one which is equal to j(which is the only colour in f:Cjg);� the colours in SX that relate with the colours in SY relate also with the colour j,that is (SX K0XY! SY) = (SX K0XY! f:Cjg);� all the colours in SX K0XY! SY relate with all the colours in SY K0XY! SX .These properties allow us to use the sets SX , SY and f:Cjg in a similar fashion that weuse the sentences Ai, Bk and :Cj in the proof of proposition 8.8, and are generalisedinto the de�nition of well-coloured partitions given in section 8.4.2 below. This notion ofwell-coloured partitions is also a generalisation of the notion of well-coloured partitions(for partitions of two elements) given in de�nition 7.27. For completeness, we now canpartition SX [SY [f:Cjg into(fSX [f:Cjg; SY g)which is well-coloured with respect to K0XY and therefore, by theorem 7.8, it is K0XY -inconsistent if and only if the setsfSX [f:Cjg; Ikg fSY ; :Iig

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 172are for some sentence I. This sequence of steps is repeated in more detail in the proofof theorem 8.7. In the following section we de�ne the notion of well-coloured partitionsof more than two elements, which, as suggested in this section, plays an important rolein the proof of theorem 8.7.8.4.2 On Well-Coloured PartitionsIn this section we generalise the notion of well-coloured partitions given in section 7.5(page 143) to consider partitions of more than two elements. The motivation for thede�nition of this notion is mentioned towards the end of the previous section, and(informally) involves the ability to use the sets of coloured sentences in a well-colouredpartition fS1; : : : ; Sng in the same freedom that individual coloured sentences can beused.A partition P = fS1; : : : ; Sng of a set S of coloured structured expressions is well-coloured if no two sets in P have a colour in common, and there are some sets of coloursPx � C(Sx) for every Sx 2 P such that if Sx �K Sy for distinct Sx and Sy in P then allthe colours in Px relate with all the colours in Py, and no other colour in C(Sx) apartfrom the colours in Px relates with the colours in S that are not in Sx. This is givenmore formally below:De�nition 8.8 (Well-Coloured Partition) A �nite set of sets P = fS1; S2; : : : ; Sngis said to be a well-coloured partition of a set S of coloured structured expressions withrespect to a connectability relation K, if1. SP = S,2. for all x; y 2 f1; : : : ; ng, if x 6= y then C(Sx) \ C(Sy) = fg.3. for all distinct x; y; z 2 f1; : : : ; ng, if (Sx K! Sy) 6= fg and (Sx K! Sz) 6= fg then(Sx K! Sy) = (Sx K! Sz).4. for all x; y 2 f1; : : : ; ng, if Sx �K Sy then for every colour i 2 (Sx K! Sy) andj 2 (Sx K Sy) it is the case that i �K j. �We illustrate the above de�nition with the following example.Example 8.2 (Well-Coloured Partition) Let the sets S1, S2 and S3 beS1 = fAi; BjgS2 = fCk;Dl; EmgS3 = fF n; Gog;for some formulae A, B, C, D, E, F and G and distinct colours i,j,k,l,m,n and o. Letthe connectability relation K beK = (i$ j) [(l$ m) [(j $ fk; l; n; og);

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 173and let the set S = S1 [S2 [S3. The way the colours in S relate with each otheraccording to K can be illustrated by the following diagram:f Ai; Bj; Ck; Dl; Em; F n; Go gWe can also illustrate which subsets of sets in fS1; S2; S3g have colours which relatewith each other by the following diagram:S1 S2 S3Now, if we let P = fS1; S2; S3g, then1. SP = S,2. C(S1) \ C(S2) = C(S1) \ C(S3) = C(S2) \ C(S3) = fg,3. We have the following: (S1 K! S2) = (S1 K! S3) = fjg(S2 K! S1) = fk; lg(S3 K! S1) = fn; og(S2 K! S3) = (S3 K! S2) = fgand therefore the partition P of S satis�es the third condition in de�nition 8.8.4. It is the case that S1 �K S2; S1 �K S3; S2 6�K S3and thus the fourth condition in de�nition 8.8 is also satis�ed.As a result, the partition P is well-coloured with respect to K.We also note that if we de�ne K0 = K [i$ kthen the partition P is not well-coloured with respect to K0 since(S1 K0! S2) = fi; jg(S1 K0! S3) = fjgand so (S1 K0! S2) 6= (S1 K0! S3) and as a result the third condition in de�nition 8.8 isnot satis�ed. �In the following proposition, it is shown that the fourth condition in de�nition 8.8can be replaced with the equationKdSe = [1�x�nKdSxe [[1�x�nx<y�n((Sx K! Sy)$ (Sx K Sy)):

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 174In other words, the subrelation of K relevant to S consists of the subrelations of Krelevant to the elements of the partition, together with the full-connections of Px andPy for each Sx �K Sy where Px is the set of colours in Sx that relate with any of thecolours in S � Sx, and the Py is the set of colours in Sy that relate with any of thecolours in S � Sy. Note that this result is a generalisation of proposition 7.12. Thischaracterisation of KdSe is an important tool for manipulating expressions denotingconnectability relations during the proofs in this section, as well as in visualising theway particular subsets of sets in coloured problems connect with each other.Proposition 8.10 For every set of sets P = fS1; S2; : : : ; Sng such that1. SP = S for some set S,2. for all x; y 2 f1; : : : ; ng, if x 6= y then C(Sx) \ C(Sy) = fg.then� for all x; y 2 f1; : : : ; ng, if Sx �K Sy then i �K j for every colour i 2 (Sx K! Sy)and j 2 (Sx K Sy),if and only if� KdSe = [1�x�nKdSxe [[1�x�nx<y�n((Sx K! Sy)$ (Sx K Sy)):Proof: First of all we note that we do not need the third condition in de�nition 8.8 forthe conclusion of this proposition to hold. The following proof is similar to the proof ofproposition 7.12 given on page 144. Our goal is to show that[Sx�KSy((Sx K! Sy)$ (Sx K Sy)) � K (1)if and only if KdSe = [1�x�nKdSxe [[1�x�nx<y�n((Sx K! Sy)$ (Sx K Sy)): (2)We notice that (1) is equivalent to[Sx�KSy((Sx K! Sy)$ (Sx K Sy)) � KdSesince if (i; j) 2 ((Sx K! Sy)$ (Sx K Sy)) for some Sx and Sy then both i and j are inthe colours of the set S. This is also equivalent to[1�x�nx<y�n((Sx K! Sy)$ (Sx K Sy)) � KdSe (3)as the relation ((Sx K! Sy) $ (Sx K Sy)) for Sx 6�K Sy is empty. Now, the statement(3) follows from (2) by the standard results in set theory. To show the converse, weassume that (3) holds and derive the following two statements:

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 175� The statementKdSe � [1�x�nKdSxe [[1�x�nx<y�n((Sx K! Sy)$ (Sx K Sy))follows from the fact that if i �K j and i; j 2 C(S) then either i and j are in someset Sx in which case (i; j) 2 SKdSxe or else they are in di�erent sets, Sx and Sysay, in which case (i; j) 2 S((Sx K! Sy)$ (Sx K Sy)).� The statement[1�x�nKdSxe [[1�x�nx<y�n((Sx K! Sy)$ (Sx K Sy)) � KdSefollows from the fact that KdSxe � KdSe for every Sx � S and from the assump-tion (3). �Example 8.3 Let fS1; S2; S3g be a well-coloured partition of some set S with respectto a connectability relation K such thatS1 �K S2 S1 �K S3 S2 6�K S3:We can denote the three subsets with the following �gure:S1 S2 S3which shows which subsets have colours that relate with each other. It is the case byproposition 8.10 thatKdSe = KdS1e [KdS2e [KdS3e [(P1 $ P2) [(P1 $ P3)where P1 = (S1 K! S2) = (S1 K! S3)P2 = (S2 K! S1)P3 = (S3 K! S1):Note that the connection between the subsets S1 and S2 in the diagram above representsthe full-connection P1 $ P2. Similarly, the connection between S1 and S3 representsP1 $ P3. The subrelationsKdS1e, KdS2e and KdS3e are not represented in the diagram.Now, if S1 6�K S2 S1 �K S3 S2 �K S3as shown by the following diagram S1 S2 S3then KdSe = KdS1e [KdS2e [KdS3e [(P1 $ P3) [(P2 $ P3)

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 176where P1 = (S1 K! S3)P2 = (S2 K! S3)P3 = (S3 K! S1) = (S3 K! S2): �The following proposition states that the application of the relation!c on a colouredstructured problem (S;K) where S can be partitioned into a well-coloured partition,results in a coloured structured problem (S0;K0) where S0 can also be partitioned intoa well-coloured partition. Furthermore, the subsets in the partition of S0 are connectedwith respect to K0 in the same way that the subsets in the partition of S connect witheach other with respect to K.Proposition 8.11 Let (S;K) be a coloured structured problem, and let fS1; : : : ; Sng bea well-coloured partition of S with respect to K. If (S;K) !�c (S0;K0) then there aresome sets S01, : : : ,S0n such that:1. The elements in S0x for 1 � x � n have been broken up from the elements in Sxby some applications of the relation !c.2. Sx �K Sy if and only if S0x �K0 S0y.3. fS01; : : : ; S0ng is a well-coloured partition with respect to K0.Proof: The statement of this proposition follows from the fact that !�c is the re
exivetransitive closure of!c and from the fact that the above three results hold if (S;K)!c(S0;K0). Without loss of generality we can assume that the application of the relation!c breaks up a coloured structured expression in S1 as illustrated by the followingdiagram. (S1 [S2 [� � � [Sn;K)(S01 [S2 [� � � [Sn;K0)cTherefore our goal is to show that there is some set S01 such that:1. There is some element X in S1 and elements X1, X2 in S01 such thatS1 � fXg = S01 � fX1;X2gand that the structured expression X is broken up into X1 and X2 by the appli-cation of !c.2. S1 �K Sx if and only if S01 �K0 Sx for 1 < x � n; and Sx �K Sy if and only ifSx �K0 Sy for x; y 2 f2; : : : ; ng.3. fS01; S2; : : : ; Sng is a well-coloured partition of S0 with respect to K0.To prove the required statement we consider the two cases where the coloured structuredexpression X is (Y on Z)i or (Y and Z)i for some colour i and structured expressions Y

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 177and Z. In each case the set S01 is (S1�fXg)[fY i;Zjg where the colour j is new to (S;K).If X = (Y on Z)i then K0 = K [i $ j, and if X = (Y and Z)i then K0 = K [K(i!j).The �rst required result ((1) above) follows easily by choosing X1 = Y i and X2 = Zj .The second and third results are also straightforward, and follow from the facts that:� for the case when X is a coloured on expression, the colour j is new to (S;K) andrelates only with the colour i in K0, and i occurs only in the subsets S1 and S01;� for the case when X is a coloured and expression, the colour j is also new to (S;K)and relates in K0 with all the colours in (S;K) that relate with i in K. �Example 8.4 Let X, Y be structured expressions, C be a sentence, and let(fXi; Y k;:Cjg; k $ i$ j)!�c (S;K)for some coloured structured problem (S;K). By proposition 8.4, K = KdSe. Thepartition f fXig; fY kg; f:Cjg gof the set fXi; Y k;:Cjg is well-coloured with respect to k $ i $ j, and therefore byproposition 8.11, there are sets SX , SY and S:C such that:1. The elements in SX , SY and S:C have been broken up by some applications of!c from the elements in X, Y , and f:Cjg respectively. Since :C is neither anon-expression, nor an and-expression, then S:C = f:Cjg.2. It is the case that SX �K SY and SX �K f:Cjgbut SY 6�K f:Cjg.3. The partition fSX ; SY ; f:Cjgg of S is well-coloured with respect to K. Thus notwo distinct sets in the partition have a colour in common andS = SX [SY [f:Cjg:From the fact that no colour in K relates with itself (by proposition 8.4(3)) wededuce that Kdf:Cjge = fg;and by proposition 8.10 we getK = KdSXe [KdSY e [(PX $ j) [(PX $ PY);where PX = (SX K! SY) = (SX K! f:Cjg)PY = (SY K! SX)and it is the case that fjg = (f:Cjg K! SX):

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 178The following diagram (Xi Y k :Cj; k $ i$ j)(SX SY :Cj; K)c � c �illustrates the application of the relation!�c on (fXi; Y k;:Cjg; k $ i$ j). The curveconnecting the set SX with f:Cjg represents the relation (PX $ j) and the curveconnecting SX with SY represents (PX $ PY). �8.4.3 Soundness and Completeness for the General CaseIn this section we prove that if C by P +c (S;K) for every structured expression P ,conclusion C and coloured problem (S;K), then P justi�es C if and only if (S;K) isinconsistent. This result is given by theorem 8.7 below, whose proof uses the followingproposition.Proposition 8.12 Given the sets of coloured structured expressions S, S1 and S2 whereS \S1 = fg, S \S2 = fg, and the set S contains an on or an and expression, and giventhe connectability relations K1 and K2, then1. there is some set S0 of coloured structured expressions and connectability relationsK01 and K02 such that(S [S1;K1)!c (S0 [S1;K01) (S [S2;K2)!c (S0 [S2;K02);2. if K1dSe = K2dSe then K01dS0e = K02dS0e;3. if C(S) \ C(S1) = fg and C(S) \ C(S2) = fg then if (S K1! S1) = (S K2! S2) then(S0 K01! S1) = (S0 K02! S2).Proof: Let X be some on or and expression in S, and let j be any colour new to S, S1,S2, K1 and K2. The proof of this proposition follows by considering the following twocases:� If X = (Y on Z)i for some colour i and structured expressions Y and Z then(S [S1;K1)!c (((S � fXg) [fY i;Zjg) [S1;Zjg;K1 [i$ j)(S [S2;K1)!c (((S � fXg) [fY i;Zjg) [S2;Zjg;K2 [i$ j):1. The �rst part of this proposition follows by choosingS0 = (S � fXg) [fY i;Zjg; K01 = K1 [i$ j and K02 = K2 [i$ j:2. Since both the colours i and j are in S0 thenK01dS0e = K1dSe [i$ jand similarly K02dS0e = K2dSe [i$ j;

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 179and therefore K01dS0e = K02dS0e if K1dSe = K2dSe.3. Since j 62 C(S1) and i is in C(S), and therefore not in C(S1) because C(S) \C(S1) = fg, then (S0 K01! S1) = (S K1! S1)and similarly (S0 K02! S2) = (S K2! S2):Thus (S0 K01! S1) = (S0 K02! S2) if (S K1! S1) = (S K2! S2).� If X = (Y and Z)i then(S [S1;K1)!c (((S � fXg) [fY i;Zjg) [S1;Zjg;K1 [K(i!j)1)(S [S2;K2)!c (((S � fXg) [fY i;Zjg) [S2;Zjg;K2 [K(i!j)2):1. We chooseS0 = (S � fXg) [fY i;Zjg; K01 = K1 [K(i!j)1 ; K02 = K2 [K(i!j)2 ;and it can be checked that the �rst part of this proposition follows easily.2. Using the fact that for every set S, connectability relation K, colour i in Sand colour j new to (S;K) it is the case thatK [K(i!j) = K [f(j; k) j i �K kg [f(k; j) j k �K igwe getK01dS0e = (K1 [f(j; k) j i �K1 kg [f(k; j) j i �K1 kg)dS0e= K1dS0e [f(j; k) j i �K1 k; k 2 C(S0)g [f(k; j) j i �K1 k; k 2 C(S0)g= K1dS0e [f(j; k) j i �K1dS0e kg [f(k; j) j i �K1dS0e kgNow C(S0) = C(S)[fjg and j 62 C(K1) and therefore K1dS0e = K1dSe. ThusK01dS0e = K1dSe [f(j; k) j i �K1dSe kg [f(k; j) j i �K1dSe kg:Similarly,K02dS0e = K2dSe [f(j; k) j i �K2dSe kg [f(k; j) j i �K2dSe kg;and therefore K01dS0e = K02dS0e if K1dSe = K2dSe.3. For the �nal case we use the fact that the colours that relate with j in K0 areexactly the colours that relate with i in K, and thereforeS0 K01! S1 = ((S K1! S1) [fjg if i 2 (S K1! S1)S K1! S1 otherwise

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 180and similarly S0 K02! S2 = ((S K2! S2) [fjg if i 2 (S K2! S2)S K2! S2 otherwise.Thus (S0 K01! S1) = (S0 K02! S2) if (S K1! S1) = (S K2! S2). �The following corollary of proposition 8.12 is used in theorem 8.7.Corollary 8.2 Given the sets of coloured structured expressions S, S1 and S2 whereS \S1 = fg, S \S2 = fg, and the set S contains an on or an and expression, and giventhe connectability relations K1 and K2 then1. there is some set S0 of coloured formulae and connectability relations K01 and K02such that(S [S1;K1)!�c (S0 [S1;K01) (S [S2;K2)!�c (S0 [S2;K02);2. if K1dSe = K2dSe then K01dS0e = K02dS0e;3. if C(S) \ C(S1) = fg and C(S) \ C(S2) = fg then if (S K1! S1) = (S K2! S2) then(S0 K01! S1) = (S0 K02! S2).(Note that the set S0 in this corollary contains only coloured formulae, while the set S0in the statement of proposition 8.12 contains coloured structured expressions.)Proof: Follows from the fact that !�c is the re
exive transitive closure of !c and fromproposition 8.12. �Theorem 8.7 For every structured expression P , sentence C, and coloured problem(S;K) such that (C by P) +c (S;K)then S is K-inconsistent if and only if P C.Proof: The proof proceeds by induction on the structure of P :� The Base Case (P is some sentence A): For all sentences A and C such that(C by A) +c (S;K)then S is K-inconsistent if and only if A C.Proof: Since A is a sentence(C by A) +c (fAi;:Cjg; i$ j);and A C if and only if A �� C. Therefore the goal of this case follows fromtheorem 8.3. �� The on-Induction Case (P is some expression (X on Y)): Given the hypotheses:

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 181(Xi Y k :Cj; i$ k $ j) (Xi :Aj ; i$ j)(SX Y k :Cj; KXY) (SX :Aj ; KX) (Y k :Bi; i$ k)(SX SY :Cj; K0XY) (SY :Bi; KY)c � c �c � c �
Fig. 20. The on Case.1. for every sentence A, if (A by X) +c (S0;K0) then S0 is K0-inconsistent if andonly if X A;2. for every sentence B, if (B by Y) +c (S00;K00) then S00 is K00-inconsistent ifand only if Y B;we are required to show that for every sentence C if(C by X on Y) +c (S;K)then S is K-inconsistent if and only if (X on Y) C.Proof: By the de�nition of !�c we get(C by X on Y)!�c (fXi; Y k;:Cjg; k $ i$ j);(A by X)!�c (fXi;:Ajg; i$ j);(B by Y)!�c (fY k;:Big; k $ i):Figure 20 illustrates how the relation !c is applied on the coloured structuredproblems(fXi; Y k;:Cjg; k $ i$ j); (fXi;:Ajg; i$ j); (fY k;:Big; k $ i)during the proof of this case.By corollary 8.2 we deduce that there is a set SX of coloured formulae such that(fXi; Y k;:Cjg; k $ i$ j)!�c (SX [fY k;:Cjg;KXY)(fXi; :Ajg; i$ j)!�c (SX [f:Ajg;KX)where KXY dSXe = KXdSXe = KSX ; say, and(SX KXY! fY k;:Cjg) = (SX KX! f:Ajg) = PX ; say.Note that the colour i relates with k and j in KXY since (i$ k $ j) � KXY byproposition 8.2. Thus i 2 PX .

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 182Now, since ffXig; fY kg; f:Cjgg is well-coloured with respect to k $ i $ j it isthe case by proposition 8.11 that fSX ; fY kg; f:Cjgg is well-coloured with respectto KXY , and that SX �KXY fY kg; SX �KXY f:Cjgwhile fY kg 6�KXY f:Cjg, and thereforeKXY = KSX [(PX $ k) [(PX $ j):Similarly, since ffXig; f:Ajgg is well-coloured with respect to i$ j, it is the casethat fSX ; f:Ajgg is well-coloured with respect to KX . It is also the case thatSX �KX f:Ajgand that KX = KSX [(PX $ j):We now use corollary 8.2 again to deduce that there is some set SY such that(SX [fY k;:Cjg;KXY)!�c (SX [SY [f:Cjg;K0XY)(fY k;:Big; k $ i)!�c (SY [f:Big;KY)where K0XY dSXe = KY dSXe = KXY dSXe = KSX ;K0XY dSY e = KY dSY e = KSY ; say, and(SY K0XY! (SX [f:Cjg)) = (SY KY! f:Big) = PY ; say.Note that the colour k is in PY since it relates with i in K0XY because of the factthat (i$ k $ j) � K0XY by proposition 8.2.By proposition 8.11 we deduce that fSX ; SY ; f:Cjgg is well-coloured with respectto K0XY , and thatSX �K0XY SY ; SX �K0XY f:Cjg; SY 6�K0XY f:Cjg;and so K0XY = KSX [KSY [(PX $ PY) [(PX $ j):Similarly, fSY ; f:Bigg is well-coloured with respect to KY andSY �KY f:Big; KY = KSY [(PY $ i):To summarise (see also �gure 20),(fXi; Y k;:Cjg; i$ k $ j) +c (SX [SY [f:Cjg;K0XY)(fXi;:Ajg; i$ j) +c (SX [f:Ajg;KX) for all A(fY k;:Big; i$ k) +c (SY [f:Big;KY) for all B:

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 183where K0XY = KSX [KSY [(PX $ PY) [(PX $ j)KX = KSX [(PX $ j)KY = KSY [(PY $ i):The rest of this proof is now similar to the one of proposition 8.8. The set SX [SY [f:Cjg can be partitioned into(SX [f:Cjg; SY)which is well-coloured with respect to KXY asK0XY dSX [f:Cjge = KSY [(PX $ j)PX = (SX [f:Cjg) K0XY! SYPY = SY K0XY! (SX [f:Cjg);and so K0XY = K0XY dSX [f:Cjge [K0XY dSY e [(PX $ PY)Therefore by theorem 7.8, SX [SY [f:Cjg is K0XY -inconsistent if and only ifSX [f:Cj; Ikg and SY [f:Iigare for some �rst-order sentence I. Now SX [f:Cj; Ikg is K0XY -inconsistent ifand only if SX [f:Cj ; Ikg is KSX [(PX $ fj; kg)-inconsistent by prop. 7.7, SX [f:Cj ; Ijg is KSX [(PX $ j)-inconsistent by theorem 7.5, SX [f:Cj ; Ijg is KX-inconsistent, SX [f:(I) C)jg is KX -inconsistent, X (I) C) by the �rst induction hypothesis:Also, SY [f:Iig is K0XY -inconsistent if and only ifSX [f:Iig is KSY [(PY $ i)-inconsistent by prop. 7.7, SY [f:Iig is KY -inconsistent, Y I by the second induction hypothesis.Thus, (SX [SY [f:Cjg;K0XY) is inconsistent if and only if there is some I suchthat X (I) C)Y Iand by the inductive de�nition of this is equivalent to whether X on Y C.Finally, by corollary 8.1, whenever (X on Y) +c (S;K) holds then(S;K) urc (SX [SY [f:Cjg;K0XY)

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 184and therefore (S;K) is inconsistent if and only if (SX [SY [f:Cjg;K0XY) is. Thisconcludes the proof of this case. �� The and-Induction Case (P is some expression (X and Y)): Given the hypotheses:1. for every sentence A, if (A by X) +c (S0;K0) then S0 is K0-inconsistent if andonly if X A;2. for every sentence B, if (B by Y) +c (S00;K00) then S00 is K00-inconsistent ifand only if Y B;we are required to show that for any sentence C if(C by X on Y) +c (S;K)then S is K-inconsistent if and only if (X and Y) C.Proof: By the de�nition of !�c we get(C by X and Y)!�c (fXi; Y k;:Cjg; fi; kg $ j);(A by X)!�c (fXi;:Ajg; i$ j);(B by Y)!�c (fY k;:Bjg; k $ j):Figure 21 illustrates how the relation !c is applied on the coloured structuredproblems(fXi; Y k;:Cjg; fi; kg $ j); (fXi;:Ajg; i$ j); (fY k;:Bjg; k $ j)during the proof of this case, and by a similar argument to the previous case wededuce that(fXi; Y k;:Cjg; fi; kg $ j) +c (SX [SY [f:Cjg;K0XY)(fXi;:Ajg; i$ j) +c (SX [f:Ajg;KX) for all A(fY k;:Bj; i$ k) +c (SY [f:Big;KY) for all B:where K0XY = KSX [KSY [(PX $ j) [(PY $ j)KX = KSX [(PX $ j)KY = KSY [(PY $ j)KSX = K0XY dSXe = KXdSXeKSY = K0XY dSY e = KY dSY ePX = (SX K0XY! :Cj) = (SX KX! :Aj)PY = (SY K0XY! :Cj) = (SY KY! :Bj)and i 2 PX k 2 PY :

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 185(Xi Y k :Cj; fi; kg $ j) (Xi :Aj; i$ j)(SX Y k :Cj; KXY) (SX :Aj; KX) (Y k :Bj; k $ j)(SX SY :Cj; K0XY) (SY :Bj; KY)c � c �c � c �
Fig. 21. The and Case.We now proceed in a similar fashion to the previous case and to the proof ofproposition 8.9. The set SX [SY [f:Cjg can be partitioned into(SY [f:Cjg; SX)which is well-coloured with respect to K0XY , and by theorem 7.8 we deduce thatSX [SY [f:Cjg is K0XY -inconsistent if and only ifSY [f:Cj; Iig and SX [f:Ijgare for some �rst-order formula I. Now, the set SY [f:Cj; Iig can be partitionedinto (f:Cj ; Iig; SY)which is well-coloured with respect to K0XY as well. Hence by theorem 7.8, it isthe case that SY [f:Cj; Iig is K0XY -inconsistent if and only iff:Cj; Ii; Jkg and SX [f:J jgare for some sentence J .The set f:Cj; Ii; Jkg is K0XY -inconsistent if and only iff:Cj ; Ii; J ig is i$ j-inconsistent by thm. 7.5 and prop. 7.7, f:Cj ; (I ^ J)ig is i$ j-inconsistent, (I ^ J)�� C by theorem 8.3:Also, SY [f:J jg is K0XY -inconsistent if and only ifSY [f:J jg is KSY [(PY $ j)-inconsistent by prop. 7.7, SY [f:J jg is KY -inconsistent, Y J by the second induction hypothesis.

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 186And also, SY [f:Ijg is K0XY -inconsistent if and only ifSX [f:Ijg is KSX [(PX $ j)-inconsistent by prop. 7.7, SX [f:Ijg is KX-inconsistent, X I by the �rst induction hypothesis.Thus, (SX [SY [f:Cjg;K0XY) is inconsistent if and only if there are sentences Iand J such that X IY J(I ^ J)�� Cand by the de�nition of this is equivalent to whether X and Y C holds.Finally, by corollary 8.1, whenever (X and Y) +c (S;K) then(S;K) urc (SX [SY [f:Cjg;K0XY)and therefore (S;K) is inconsistent if and only if (SX [SY [f:Cjg;K0XY) is. Thisconcludes the proof of this case. �The above case concludes the proof of the current theorem. �Example 8.5 In this example, we show that it is not the case that(A on (A) B)) and ((B) C) on (A) B)) (A ^ C)for distinct literals A, B and C (see also example 6.2 on page 114). It is the case thatthe justi�ed conclusion(A ^ C) by (A on (A) B)) and ((B) C) on (A) B))converges to the coloured problem (S;K) whereS = fAi; (A) B)j ; (B) C)k; (A) B)l;:(A ^ C)mgK = (m$ i$ j) [(m$ k $ l):Now, the coloured problem (S;K) is inconsistent if and only if the following colouredmatrix is refutable: �Ai :Aj :Bk :Al :AmBj Ck Bl :Cm �where the curves above the matrix illustrate which columns have literals which canconnect with each other according to the connectability relation K. Note that thismatrix cannot be refuted since the pathfBj ;:Bk;:Al;:Amg

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 187does not have a connection since j 6�K k. As a result it is not the case that(A on (A) B)) and ((B) C) on (A) B)) (A ^ C)by theorem 8.7. �8.5 Modifying the CBSE Derived Rule to Check Struc-tured Justi�cationsIn this chapter and in chapters 6 and 7 we illustrated how one can use structured justi-�cations in a declarative language in order to give more information on what inferencesare needed to derive the conclusion of the justi�cation. This information improves boththe readability of proofs by reducing the e�ort required in following the justi�cation, andthe proof checking e�ciency by restricting the proof search. This restriction involvesthe colouring of sentences given in the justi�cation according to de�nitions 8.3 and 8.4.In this section we show how the CBSE derived rule described in chapter 5 is modi�ed inorder to check structured justi�cations. The modi�ed rule illustrated in this section isused in checking the proof scripts developed during the mechanisation of group theorydescribed in chapter 9.The structured justi�cations de�ned in chapter 6 can be used to derive their conclu-sion according to pure �rst-order logic, and section 8.3 gives the restrictions requiredon pure �rst-order logic calculi in order to proof check structured justi�cations. How-ever, for e�ciency reasons the equality predicate requires special treatment during proofsearch and the CBSE derived rule given in chapter 5 implements a proof calculus for�rst-order logic with equality. The de�nition of a syntax and semantics for structuredjusti�cations for �rst-order logic with equality is not considered in this thesis. We believethat this (and the de�nition of structured justi�cations for other logics and theories) isan interesting direction for future work since it is not straightforward to de�ne struc-tured justi�cations which are easy to understand and e�cient to proof check. Insteadof giving new operators on structured expressions to handle equality, the CBSE derivedrule is modi�ed according to the restictions given in this chapter, and we discuss thee�ect of such restrictions on proof checking justi�cations involving formulae containingthe equality predicate.We recall that during the expansion rule of the CBSE calculus, the insertion of aliteral in a branch may result in the insertion of a number of inequalities which are thenused by other rules of the calculus to close the branch. More precisely, the additionalinequation hs1; : : : ; sni 6= ht1; : : : ; tniis inserted in the branch B whenever a literal L = P (s1; : : : ; sn) is inserted in the branchand :P (t1; : : : ; tn) is in B, and whenever a literal L = :P (s1; : : : ; sn) is inserted in Band P (t1; : : : ; tn) is in B. This mechanism is described in section 5.2.2, page 81, byde�ning the operator � on branches and literals. The CBSE rule is modi�ed so that ittakes coloured formulae and restricts the insertion of additional inequalities accordingto the connectability relation considered. Given a connectability relation K, a colouredliteral L, and a tableau branchB containing coloured literals and a number of uncolouredequations and inequations, we de�ne the coloured insertion of L in B, and denote it by

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 188B �K L, as follows:B �K P i(s1; : : : ; sn) =B;P i(s1; : : : ; sn) [fhs1; : : : ; sni 6= ht1; : : : ; tni j :P j(t1; : : : ; tn) 2 B; i �K jgB �K :P i(s1; : : : ; sn) =B;:P i(s1; : : : ; sn) [fhs1; : : : ; sni 6= ht1; : : : ; tni j P j(t1; : : : ; tn) 2 B; i �K jgB �K (s = t)i = B; (s = t)B �K (s 6= t)i = B; (s 6= t)This de�nition of the �K operation di�ers from the de�nition of the � operator given insection 5.2.2 in the fact that additional inequations are inserted in a branch if the coloursof the literals `giving' the inequation (i.e., the literals P i(s1; : : : ; sn) and :P j(t1; : : : ; tn)in the �rst part of the de�nition, and :P i(s1; : : : ; sn) and P j(t1; : : : ; tn) in the second)relate with each other according to K. Note that the equations and inequations insertedin a branch using the �K operator are not coloured. The Expansion rule in �gure 11 isthen modi�ed so that literals are inserted using �K rather than �:B1 j � � � jBn � CB1 �K L1 j � � � jB1 �K Lm j � � � jBn � C (ExpandK)where B1 j � � � jBn is a tableau, C is a constraint, and L1 _ � � � _ Lm is an instanceL01� _ � � � _ L0m� of some clause in the the set of clauses being refuted, and � is asubstitution which maps all the free variables in L01; : : : ; L0m to distinct free variablenew to B1 j � � � jBn � C. The CBSE calculus is modi�ed by replacing the Expand rulewith the ExpandK rule. This is the only modi�cation applied to the CBSE rule usedto check the coloured inconsistency of a coloured problem which is constructed from astructured justi�cation as described in de�nitions 8.3 and 8.4.Given the restriction on the CBSE derived rule described above, one can use the andoperator to construct structured expressions in which one expression explicitly derives anequation and the other requires the derived equation to derive the goal. More formally,if a structured expression E1 explicitly derives a conjunctions of equation E, that isE1 E where E = ((a1 = b1) ^ � � � ^ (an = bn));and another structured expression, E2 say, explicitly derives some formula A, then aconclusion C can be justi�ed as follows:C by E1 and E2;if A `E C. By A `E C we mean that C can be derived from A by substituting equalsfor equals according to the equations in E. We do not prove this claim in this thesis,although we state that we have found no counterexample to this statement during ourcase studies. The informal intuition justifying this statement is that the restrictions onthe proof search allow the derivation (in pure �rst-order logic) of E from E1 and of Afrom E2, and thus E ^ A from E1 and E2. Since the rules of rigid basic superposition,equational re
exivity, simpli�cation and trivial closure are not restricted by the coloursof the literals in the tableau, the equalities in E can then be used to derive C from A.The following is an example of a conclusion justi�ed with a structured expressionwhich involves a premise containing an equation.

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 189
:P (f(b))P (f(a))P (a):P (x)hf(a)i 6= hf(b)ihxi 6= hai x = bhf(a)i 6= hf(b)i

Fig. 22. A Coloured First-Order Tableau.(P (f b)) by ((8 x.P x) (x = b)) on (P a)) and (P (f a));Note that ((8 x.P x) (x= b)) on (P a)) (a= b)(P (f a)) (P (f a))and P (f a) `a= b P (f b):Figure 22 illustrates the coloured tableau constructed from the structured justi�ca-tion given above. The connections between tableau nodes illustrate which literals havecolours which relate with each other according to the connectability relation in thecoloured problem constructed from the structured justi�cation considered. As shownin the �gure, the additional inequalities inserted in the left and right tableau branchesrespectively are: hf(a)i 6= hf(b)i hf(a)i 6= hf(b)ihxi 6= haiThe left branch can be closed by equational re
exivity on the second additional inequa-tion giving the constraint fx ' ag. The right branch can then be closed by congruenceclosure after instantiating the variable x with a. Note that because of the colouring ofthe tableau, the following inequalities are not included in the tableau branches:hai 6= hf(b)i hai 6= hf(b)ihxi 6= hf(a)iand as a result, a smaller search space is considered during the refutational process.Finally, we note that the undecidability of the validity of structured justi�cations

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 190(theorem 8.5) implies that there is no complete terminating algorithm that checks struc-tured justi�cations. As a result, the (implementation-based) bounds on the proof searchdescribed in section 5.3.3 are used to restrict the search space considered during theproof checking process to a �nite one. We recall that, given a list of clauses �, theimplementation of the CBSE rule restricts� the number of times the expansion rule can be used on each clause, and� the number of times the basic rigid superposition rules can be applied.The �rst restriction may correspond to a restriction on the number of times the implicitinference rule� is applied to replicate sub-formulae involving the universal quanti�er.For instance, the relation� replicates a sub-formula in the following cases:A� A ^A A ^ (B _ C)� (A ^B) _ (A ^ C):The second restriction may correspond to a restriction on the number of substitutionsof the equations in the conjunction of equations E are applied to derive a conclusion Cfrom a formula A in A `E C.The bounds given in section 5.3.3 were not found to be over-restrictive during theimplementation of the case study described in chapter 9, in the sense that the structuredjusti�cations that were used during the implementation of the case study could beproof checked according to these bounds. This suggests that the explicit and implicitderivations de�ned in chapter 6 are too strong and cannot be considered to representtrivial inferences. The de�nition of weaker and decidable implicit derivations should beconsidered in future.8.6 SummaryIn this chapter we have used the de�nitions and results on the coloured �rst-order logicgiven in chapter 7 to de�ne a restriction on the proof search required to check thestructured justi�cations given in chapter 6. In particular, it is shown that a formula Ximplicitly derives a formula Y (i.e.,X �� Y) if and only if Xi) Y j is consistent withrespect to the connectability relation i$ j where the colours i and j are distinct. Thisresult is used to show that the problem of checking implicit and explicit derivations isundecidable.A method for constructing a coloured problem from a conclusion and a structuredjusti�cation is then illustrated. This method is shown to correspond to a sound andcomplete restriction on the proof search required to check structured justi�cations. Inother words, a structured justi�cation is valid if and only if its constructued colouredproblem is inconsistent. The proof of the soundness and completeness result used theresults on coloured interpolants derived in section 7.5.The CBSE rule de�ned in chapter 5 is then modi�ed so that it can be used to checkstructured justi�cations. The modi�ed CBSE rule is used to check the justi�cations inthe proofs implemented during the case study described in chapter 9. We argued thatalthough the implicit and explicit derivations de�ned in chapter 6 have an undecidablevalidity problem, it is likely that only a small, possibly decidable, subset of these are usedin practice, and that therefore it is desirable that de�nitions of weaker and decidableimplicit and explicit derivations should be considered as future work. It is also desirable

CHAPTER 8. CHECKING STRUCTURED JUSTIFICATIONS 191that the notion of structured justi�cations, which are currently limited to the pure �rst-order logic, should be extended to the �rst-order logic with equality as well as to otherlogics and theories.

Chapter 9A Mechanisation of GroupTheory9.1 IntroductionThis chapter illustrates the mechanisation of a number of results of group theory usingthe SPL language. The mechanisation is based on the textbook by (Herstein 1975)and includes results on normal groups, quotient groups and the isomorphism theorems.The mechanisation also includes the implementation of a number of proof proceduresin SML which are used in automating a number of inferences omitted from the formalproofs.The motivations for this mechanisation include:� investigating the idea that the incorporation of proof procedures implementedduring the mechanisation of the theory in order to automate trivial inferences cansubstantially reduce the di�erence between formal and informal proofs;� the use of structured straightforward justi�cations in order to check whether theycan be used to develop readable proof scripts, and whether any substantial e�ortis needed in the implementation of proofs using such justi�cations.The proof scripts developed during the mechanisation are much more readable thantactic-based proofs such as the ones described in chapter 3. Furthermore, the imple-mentation of simpli�ers and query functions on the facts stored in the SPL databaseof trivial knowledge are used extensively to automate the inferences which are oftenomited from the literature.The results on group theory given in this chapter, as well as many other related re-sults, have been mechanised in proof development systems before. For instance, Gunter(1990) mechanised a number of results on group theory in HOL. Kamm�uller (1997)proved Sylow's theorem in Isabelle, and von Wright (1992) and Laibinis (1996) for-malised lattice theory in HOL. Jackson (1995) formalised a substantial amount of resultsin abstract algebra, including results on groups, using the Nuprl proof development sys-tem. Bailey (1998) mechanised Galois theory in LEGO using several techniques includ-ing coercions and literate programming to improve the presentation of the implementedproof scripts. Several results on groups, rings, lattices and other algebraic structuresare also mechanised in the Mizar system. The contribution of the work presented in192

CHAPTER 9. A MECHANISATION OF GROUP THEORY 193this chapter lies in the use of an extensible declarative proof language in which proofprocedures are implemented during the mechanisation in order to be used in minimisingthe di�erence between formal and informal proofs.This chapter is organised as follows. In section 9.2 we give the de�nition of groupsin HOL and describe the preliminary results that are derived and how they are usedin implementing proof procedures that are then incorporated in the SPL language.Section 9.3 gives a number of results on congruences, cosets and the product of subsetsof groups. Further results, such as the existence of quotient groups and the isomorphismtheorems are given in section 9.4. A concluding discussion is then given in section 9.5.9.2 Group Theory in SPLGroups are one of the most common algebraic structures in mathematics and havebeen studied intensively in the nineteenth and twentieth centuries. Groups are alsoextended to other algebraic structures including rings, �elds and vector spaces. In ourmechanisation we follow (Herstein 1975) in de�ning and reasoning about groups, andderive all the results up to and including the second isomorphism theorem with theexception of those involving �nite groups.9.2.1 The De�nition of GroupsA group is a pair (G; �) where G is a nonempty set and � is a binary operator over theelements in G such that1. G is closed under �: 8x; y 2 G: x � y 2 G.2. � is associative: 8x; y; z 2 G: x � (y � z) = (x � y) � z.3. G contains an identity element: 9e 2 G: 8x 2 G: x � e = e � x = x.4. Every element in G has an inverse: 8x 2 G: 9x�1 2 G: x � x�1 = x�1 � x = e.Terms of the form p�q are usually abbreviated to pq when the binary operator concernedcan be understood form the context.It is straightforward to give a polymorphic de�nition of groups in HOL by represent-ing sets by their characteristic predicate and the product as a curried binary operator:`def Group (G:� ! bool; p:� ! � ! �) �(GClosed (G; p)) ^(GAssoc (G; p)) ^9e:�. (G e) ^ (GId (G; p) e) ^(8x. G x) GhasInv (G; p) e x)where`def GClosed (G; p) � 8x y. G x) G y) G (p x y)`def GAssoc (G; p) � 8x y z. G x) G y) G z)((p x (p y z)) = (p (p x y) z))and the identity predicate GId is de�ned such that given a group (G; p) and an elemente, it holds if e is both a left and right identity for all the elements in G:

CHAPTER 9. A MECHANISATION OF GROUP THEORY 194`def GLeftId (G; p) e � 8x. G x) (p e x = x)`def GRightId (G; p) e � 8x. G x) (p x e = x)`def GId Gp e � GLeftId Gp e ^ GRightId Gp eand the predicate GhasInv is de�ned in terms of the predicate GInv which takes a group(G; p) and the elements e, x and x1, and holds if x1 is both a left and right inverse of xon the assumption that e is an identity element in G.`def GLeftInv (G; p) e x x1 � (p x1 x = e)`def GRightInv (G; p) e x x1 � (p x x1 = e)`def GInv Gp e x x1 � GLeftInv Gp e x x1 ^ GRightInv Gp e x x1`def GhasInv (G,p) e x � 9x1. G x1 ^ GInv (G; p) e x x1The de�nition of groups given above is equivalent to a simpler one in which the identityelement e is only assumed to be a right identity and the inverse element x�1 of x isonly assumed to be a right inverse. Deriving the equivalence of these two de�nitionsallows one to show that a structure is a group without showing that the chosen identityelement is a left identity and that the chosen inverse is a left inverse.Given a group (G; p), an identity element can be selected by the function IdG, andgiven an element in G, its inverse can be selected by the function InvG; these functionsare de�ned as follows:`def IdG (G; p) � "e. G e ^ GId (G; p) e`def InvG (G; p) x � "x1. G x1 ^ GInv (G; p) (IdG (G; p)) x x1Deriving theorems showing that IdG (G; p) is an identity element in G and thatInvG (G; p) x is an inverse of x is done by using the select inference rule described insection 4.2.5, page 68.9.2.2 Preliminary ResultsGiven the de�nitions in the previous section, one is required to derive a number of resultswhich although very simple in nature, will be extremely useful in the development ofthe theory. In (Herstein 1975) the following results are derived after the de�nition ofgroups is given:1. The identity element is unique and every element has a unique inverse;2. The following theorems on inverses8a 2 G: (a�1)�1 = a 8a; b 2 G: (a � b)�1 = b�1 � a�1;3. The cancellation laws: for every a, u and w in G(a � u = a � w)) u = w (u � a = w � a)) u = w:The uniqueness of the identity and inverse elements allows one to uniquely identifythe identity and the inverse of an element a by the terms e and a�1. We derive the sameHOL theorems in SPL which allow us to identify the identity and inverses by IdG (G; p)and InvG (G; p) a respectively throughout the rest of the theory. The proofs of the

CHAPTER 9. A MECHANISATION OF GROUP THEORY 195uniqueness theorems are similar to the ones found in the literature and are shown inthe code fragment in �gure 23. The proofs are rather detailed since the mechanisationof the theory is still at an early stage. The length of the proofs is slightly decreased byspecifying the de�nitions of GId, GInv and GAssoc as simpli�ers so that they are unfoldedautomatically before proof search. This is speci�ed by the simplify with statement inthe code.The results given in the second point above allow the author and the reader to ma-nipulate and simplify terms involving inverses. Such manipulations are then performedwithout any justi�cation once these results are derived. It is desirable that at an earlystage in the mechanisation, such results are derived and used in some mechanism whichallows the implementer to treat such manipulations as trivial and which therefore canbe omitted from later formal proofs. In particular, proofs in later sections of the theorydo not have to contain the level of detail of those given in �gure 23. The mechanismwe use is a term rewriting system which normalises terms representing group elements.The application of Knuth-Bendix completion (Knuth and Bendix 1970) on the groupaxioms e � x = xx � e = xx�1 � x = ex � x�1 = ex � (y � z) = (x � y) � zgives the following strongly normalising term rewriting system (see for instance (Plaisted1993a)): e � x ! xx � e ! xx�1 � x ! ex � x�1 ! e(x � y) � z ! x � (y � z)(x�1)�1 ! xe�1 ! ex�1 � (x � y) ! yx � (x�1 � y) ! y(x � y)�1 ! y�1 � x�1:Note that the orientation of the associative law in the rewriting rule is di�erent fromthat in the de�nition of GAssoc given in the previous section.These rules are derived manually in SPL as the theorems given in �gure 24, and areused in the group theory normaliser (or simpli�er) described in section 9.2.3.The cancellation theorems are derived after the normaliser is implemented and in-corporated in the theory. We give their proofs below to illustrate the e�ect of thisnormaliser on the length of the proofs. The term inv is an abbreviation for InvG (G; p),fol is the identi�er of the prover for �rst-order logic with equality and groups is the

CHAPTER 9. A MECHANISATION OF GROUP THEORY 196
let "G:'a ! bool" and "p:'a ! 'a ! 'a";assume GroupG: "Group (G,p)";Closed: "GClosed (G,p)"and Assoc: "GAssoc (G,p)" by <Group>GroupG;simplify with GLeftId GRightId GId (* Simplifying terms with the *)GLeftInv GRightInv GInv (* definitions of identity, *)GAssoc GClosed; (* inverse, assoc. and closure *)(* will be done automatically *)let "x:'a" "x1:'a" "x2:'a" "e:'a" "f:'a";assume Gx: "G x", Ge: "G e" and Gf: "G f"Gx1: "G x1" and Gx2: "G x2";GIde: "GId (G,p) e" (* e is an identity element *)GIdf: "GId (G,p) f" (* f is an identity element *)GInvx1: "GInv (G,p) e x x1" (* x1 is an inverse of x *)GInvx2: "GInv (G,p) e x x2"; (* x2 is an inverse of x *)theorem GIds_equal: "e = f"proof"e = p e f" by GIdf on Ge." = f" by GIde on Gf;end;theorem GInvs_equal: "x1 = x2"proof"x1 = p e x1" by GIde on Gx1." = p (p x2 x) x1" by GInvx2." = p x2 (p x x1)" by Assoc on (Gx and Gx1 and Gx2)." = p x2 e" by GInvx1." = x2" by GIde on Gx2;end; Figure 23: Proofs of the Uniqueness Results.

CHAPTER 9. A MECHANISATION OF GROUP THEORY 197
` 8G p. Group (G; p)) (8x. G x) (p (IdG (G; p)) x = x))` 8G p. Group (G; p)) (8x. G x) (p x (IdG (G; p)) = x))` 8G p. Group (G; p)) (8x. G x) (p (InvG (G; p) x) x = IdG (G; p)))` 8G p. Group (G; p)) (8x. G x) (p x (InvG (G; p) x) = IdG (G; p)))` 8G p. Group (G; p)) (8x y z. G x) G y) G z)(p (p x y) z = p x (p y z)))` 8G p. Group (G; p)) (8x. G x) (InvG (G; p) (InvG (G; p) x) = x))` 8G p. Group (G; p)) (InvG (G; p) (IdG (G; p)) = IdG (G; p))` 8G p. Group (G; p))(8x. G x) (8y. G y) (p x (p (InvG (G; p) x) y) = y)))` 8G p. Group (G; p))(8x. G x) (8y. G y) (p (InvG (G; p) x) (p x y) = y)))` 8G p. Group (G; p))(8x. G x) (8y. G y)(InvG (G; p) (p x y) = p (InvG (G; p) y) (InvG (G; p) x))))Figure 24: The Rules for Normalising Group Terms.

identi�er for the group theory simpli�er.theorem Cancel_left : "(p z x = p z y)) (x = y)"proofassume zx_eq_zy: "p z x = p z y";"x = p (inv z) (p z x)" <groups> by fol."= p (inv z) (p z y)" by zx_eq_zy."= y" <groups> by fol;qed;theorem Cancel_right: "(p x z = p y z)) (x = y)"proofassume xz_eq_yz: "p x z = p y z";"x = p (p x z) (inv z)" <groups> by fol." = p (p y z) (inv z)" by xz_eq_yz." = y" <groups> by fol;qed;9.2.3 Preliminary Simpli�ers and Database Query FunctionsA simpli�er for group terms, groups, is implemented (in SML as a HOL derived rule)which normalises terms by rewriting with the rules given in �gure 24. The main di�cultywith the implementation of the required term rewriting system lies in the fact that the

CHAPTER 9. A MECHANISATION OF GROUP THEORY 198rewriting rules are conditional. Each rule can be applied to some term only if theappropriate subterms are members of a group. It would be cumbersome if the requiredconditions have to be derived manually and supplied as parameters to the normaliserwhenever they are needed. Furthermore, such conditions are simply considered to betrivial in the mathematical literature, and it is therefore desirable that they are derivedautomatically. The term rewriting system is therefore implemented so that it queriesthe SPL knowledge database (see section 4.4.1) in order to satisfy a rule's conditionsbefore it is applied. A rule is not applied if one of its conditions cannot be automaticallyderived by the query functions.A number of knowledge categories are included in the database to store the knowl-edge required by the group theory normaliser. The appropriate query functions are thenimplemented. The categories that are included in the database are as follows:� is_group: Storing facts of the form Group Gp. Queries to this category are satis�edif the given pair is a group.� is_closed: Storing facts of the form GClosed Gp. Queries to this category alsoconsult the is_group category to derive the required fact.� in_set: Storing applications (G x). Queries of this form are satis�ed if one of thefollowing holds:1. the fact (G x) is stored in the in_set category.2. the term x is of the form IdG (G; p) and (G; p) is a group. The fact that (G; p)is a group (that is Group (G; p)) is derived by querying the is_group databasecategory.3. the term x is of the form InvG (G; p) y, the pair (G; p) is a group, and y is inG.4. the term x is of the form p y z, the set G is closed under p and both y andz are in G.Note that in general, query functions depend on each other. This interdependenceevolves and becomes more complex as new results are used to implement new queryfunctions and update the existing ones.As mentioned above, the groups normaliser repeatedly applies the rules in �gure 24whose conditions can be automatically deduced by querying the knowledge database.For example, in order to apply the rule` 8G p. Group (G; p)) (8x. G x) (p (IdG (G; p)) x = x))on, say, the term p (IdG (G; p)) a, the is_group category is �rst queried by the groupsnormaliser to deduce the fact�1 ` Group (G; p)for some assumptions �1. The in_set category is then queried to deduce�2 ` G awhere �2 is the list of assumptions required to deduce this theorem. Given the abovetwo theorems, one can then apply the rewrite rule to simplify p (IdG (G; p)) a into a byderiving and rewriting with the HOL theorem:

CHAPTER 9. A MECHANISATION OF GROUP THEORY 199�1 [�2 ` p (IdG (G; p)) a = aThe other rules in �gure 24 are treated similarly. A rule is applied only if all itsconditions can be deduced automatically by the relevant queries to the trivial knowledgedatabase.When using the groups normaliser to simplify the implementation of formal proofsone needs to supply enough knowledge in the database so that the conditions of therewriting rules can be derived automatically. This is done through the consider state-ment as illustrated below. The terms id and inv abbreviate the identity element and theinverse function respectively, and it is assumed that they are declared as default sim-pli�ers in the section containing the following proof segment so that they are unfoldedautomatically during proof checking.assume GroupG: "Group (G,p)"Gx: "G x";(* the facts "G x" and "Group (G,p)" are storedas trivial facts in the appropriate categories *)consider in_set Gxis_group GroupG;theorem Idem_id: "(p x x = x)) (x = id)"proofassume pxx_eq_x: "p x x = x";"x = p (inv x) (p x x)" <groups> by fol."= p (inv x) x" by pxx_eq_x."= id" <groups> by fol;end;It is not hard to see that the same query can be applied several times during thenormalisation process. For instance, the condition Group (G; p) is found in all the rulesin �gure 24 and is therefore queried at each application of the rules. This led to thedecision to cache the output of query functions, as mentioned in section 4.4.1.9.2.4 SubgroupsA subgroup is a subset of a group which is also a group under the same product. Wede�ne subgroups by`def SubGroup p H G � (Subset H G) ^ (Group (H; p))where the predicate Subset H G is de�ned as follows`def Subset X Y � (8x. X x) Y x)Note, however that in the above de�nition of SubGroup we do not impose the restrictionthat the set G has to be a group under the product p, and therefore terms of the formSubGroup p H G should be used together with some assumption Group (G; p).

CHAPTER 9. A MECHANISATION OF GROUP THEORY 200The introduction of this de�nition allows one to extend the query functions describedin the previous section. First of all we include the following categories in the database� is_subset: Storing facts of the form Subset X Y . A query of this form is satis�edif the required fact is stored in the is_subset category, or if there is some set Zsuch that Subset X Z and Subset Z Y hold, or there is some product p for whichSubGroup p X Y .� is_subgroup: Storing SubGroup p H G. Such query is satis�ed if the required factis stored in this category, or there is some set Z such that SubGroup p H Z andSubGroup p Z G hold.The following query functions can now be updated:� is_group: Group (G; p) is satis�ed if there is some setX such that SubGroup p G X.� in_set: G x is satis�ed if there is some subset H of G containing x.The initial implementation of these query functions supports the above derivations sincethese only require the de�nition of Subset and SubGroup and a number of straightforwardresults (transitivity of Subset and SubGroup, etc.) which are proved in SPL.A result which is taken for granted in (Herstein 1975) is the fact that the identityelement eH of a subgroup H of G is the same as the identity element eG of G. Thisfollows from the fact that eH � eH = eH and from the theorem Idem_id whose proof isgiven in section 9.2.3 which states that 8x 2 G: (x � x = x)) x = eG. The uniquenessof the inverse element is used to derive the fact that the inverse in H is the same as theinverse in G. Since these results are taken for granted in the literature, a simpli�er isimplemented which rewrites terms using the following rules` 8G p. Group (G; p))(8H. SubGroup p H G) (IdG (H; p) = IdG (G; p)))` 8G p. Group (G; p))(8H. SubGroup p H G)(8x. H x) (InvG (H; p) x = InvG (G; p) x)))substituting the identity and inverses in H to those in G. The in_set query functionsare updated so that a query of the form H x is satis�ed if the term x is of the form� IdG (G; p) where G is a group and H is a subgroup of G, or� of the form InvG (G; p) x where x is in H, G is a group and H is a subgroup of G.The implementation of the simpli�er and the above derivations updating in_setqueries proved to be useful in our case study. At this stage, it is becoming evidentthat the development of this theory involves both the derivation of theorems in SPLand the implementation of HOL proof procedures in SML. Queries to the databasecategory in_set are made very often during the implementation suggesting that theability to automate set containment is very useful in the mechanisation of group theory.A simpli�er inset is also implemented which substitutes an application X x with thetruth value T if x can be shown to be a member of X by querying in_set.

CHAPTER 9. A MECHANISATION OF GROUP THEORY 2019.3 Congruences, Cosets and Subgroup ProductsGiven a subgroup H of a group G we say that a � b mod H for a; b 2 G, if ab�1 2 H.The `congruent mod' relation is an equivalence relation and therefore partitions a groupinto distinct equivalence classes. Each equivalence class is equal to some set fha j h 2 Hgwhere a is some representative member of the class (as ea = a is in the class). This setis denoted by Ha and is called a right coset of H in G. Similarly, a left coset aH ofH in G is de�ned by aH = fah j h 2 Hg. It can be shown that there is a one-to-onecorrespondence between any two right cosets in G, and therefore if G is �nite it canbe partitioned into a �nite number of right cosets of the same size. Hence, the numberof elements in some right coset must divide the number of elements in G, which wedenote by o(G). Since He = H is a right coset in G, o(H) must be a divisor of o(G).This result is due to Lagrange and is usually referred to as Lagrange's Theorem. Thereasoning deriving it is implemented as SPL proofs. All the results leading to Lagrange'stheorem are proved in SPL in much the same way as they are proved in (Herstein 1975).However, the SPL proofs of Lagrange's theorem itself attempted by the author turnedout to be much more detailed and tedious than the one given in the literature. Weattribute this to a lack of proof procedures and results concerning �nite sets.The HOL de�nition of the congruence mod relation is given by`def CongruentMod (G; p) H a b � H (p a (InvG (G; p) b))and it is shown in SPL that this relation is re
exive, symmetric and transitive, andhence an equivalence relation:` 8G H p. Group (G; p))SubGroup p H G)GEquivalence G (CongruentMod (G; p) H)A sentence of the form GEquivalence X R holds if R is an equivalence relation on theelements of the set characterised by X.`def GEquivalence X R �GReflexive X R ^ GSymmetric X R ^ GTransitive X R`def GReflexive X R � (8a. X a) R a a)`def GSymmetric X R �(8a b. X a) X b) R a b) R b a)`def GTransitive X R �(8a b. X a) X b) R a b)(8c. X c) R b c) R a c))In the literature right and left cosets of some subgroup H of G are denoted by termsof the form Ha and aH respectively, for some element a 2 G. Juxtaposition is also usedin the notation for the product of two subgroups H and X de�ned as follows:HX = fa 2 G j a = hx; h 2 H;x 2 Xg:Although cosets and products are de�ned on subgroups, the notation of juxtaposi-tioning subgroups and group elements is also used for arbitrary subsets of a group. For

CHAPTER 9. A MECHANISATION OF GROUP THEORY 202example, although it is not mentioned explicitly in (Herstein 1975), the term aS is usedto denote the set fas j s 2 Sg where S is an arbitrary subset of some group G, ratherthan a subgroup. This is evident when terms like a(Hb) are used where Hb is a rightcoset which, although it is a subset of G, it is not a subgroup.The HOL de�nitions for right cosets, left cosets and products of subgroups are givenbỳdef RightCoset (H; p) a � (�b. 9h. H h ^ (b = p h a))`def LeftCoset a (H; p) � (�b. 9h. H h ^ (b = p a h))`def SProd p X Y � (�x. 9h. X h ^ 9k. Y k ^ (x = p h k))We also include the following de�nition to represent sets of the form a(Hb)`def LRCoset a (H; p) b � (�x. 9h. H h ^ (x = p a (p h b)))These de�nitions do not impose any restrictions on the sets H, X and Y , andtherefore results involving them need to specify whether H, X and Y are subgroups,subsets of some group or arbitrary sets. In general, these four functions are used toconstruct subsets of a group in the same way that the notation of juxtaposing subsets andgroup elements is used to denote subsets. We call these functions subset constructingfunctions. The in_set category query function of the knowledge database is updatedsuch that a query H (p a b)) is satis�ed if H is of the form:� RightCoset (X; p) b where a 2 X, or� LeftCoset a (Y; p) where b 2 Y , or� SProd p X Y where a 2 X and b 2 Y .Similarly, a query H (p a (p b c) is satis�ed if H is of the form� LRCoset a (Y; p) c where b 2 Y .The subset category is also updated so that a query Subset H G is satis�ed if H is ofthe form:� RightCoset (X; p) b where X � G and b 2 G, or� LeftCoset a (Y; p) where Y � G and a 2 G, or� SProd p X Y where X � G and Y � G, or� LRCoset a (X; p) b where X � G, and a; b 2 G.The notation of juxtapositioning subsets and group elements does not result inambiguities if parentheses are omitted since it can be shown that(ab)c = a(bc) (ab)H = a(bH) (Ha)b = H(ab) (aH)b = a(Hb)(HX)a = H(Xa) (aH)X = a(HX) (Ha)X = H(aX) (HX)Y = H(XY)where a, b and c are elements of some group G and H, X and Y are subsets of G. Theseresults are derived in SPL so that they are used, manually or otherwise, to manipulate

CHAPTER 9. A MECHANISATION OF GROUP THEORY 203expressions involving the subset constructing functions RightCoset, LeftCoset, SProdand LRCoset. Other simple results which have been derived in SPL for this purposeinclude He = H eH = Hwhere H is a subset of some group G, and e is the identity element in G.Since one of our motivations of this mechanisation is to try to minimise the di�erencebetween the length of formal and informal proofs by automating the calculations whichauthors of informal proofs consider to be trivial, we have included in the system a sim-pli�er which normalises terms involving the subset constructing functions. The normalform for such terms according to the implemented normaliser consists of a product ofsubsets associated to the right:S1(S2(� � � Sn) � � �) or (bS1)(S2(� � � Sn) � � �)where each set Si, for 0 < i � n is of the form X or Xa, where X is a set not constructedby any of the subset constructing functions, and a and b are non-identity group elementsnormalised using the rules in �gure 24. For example, the normal form of the set(((ae)H)(X(ba�1)))(((aY)a)((bZ)c))is (aH)((Xb)((Y ab)(Zc))):We orient the rules which manipulate the sets constructed using the subset constructingfunctions as follows:a(bH)! (ab)H (Ha)b! H(ab) (aH)b! a(Hb)(HX)a! H(Xa) a(HX)! (aH)X H(aX)! (Ha)X(HX)Y ! H(XY) He! H eH ! Hand add the extra rule H((aX)Y)! (Ha)(XY):It can be checked (using, for instance, Knuth-Bendix completion) that the above tenrules with the ten rules in section 9.2.2 de�ne a con
uent and terminating term rewritingsystem. Note that the rules normalising group elements are needed for con
uence asillustrated by the examples in �gure 25.The above ten rules are represented by conditional equalities since each rule is validif there is some group G such that all group elements in the rule are elements of G andall the sets in the rule are subsets of G. For example, the rule (Ha)b! H(ab) is validif there is some group G such that H � G, and a; b 2 G. This rule is represented by theHOL theorem` 8p G. Group (G; p)) (8H. Subset H G)(8a. G a) (8b. G b)(RightCoset (RightCoset (H; p) a; p) b =RightCoset (H; p) (p a b)))))The simpli�er which normalises terms constructed using the subset constructing func-tions is named cos. Each rule is applied only if all its conditions are automatically

CHAPTER 9. A MECHANISATION OF GROUP THEORY 204
(Ha)e H(ae)Ha ae! a

((Ha)b)c(Ha)(bc) (H(ab))cH((ab)c)H(a(bc)) (ab)c! a(bc)Figure 25: The Need for the Group Element Normaliser in Normalising Subsets.
derived by appropriate queries to the knowledge database. The following additionaltheorem is used by the simpli�er to rewrite terms involving the function LRCoset:` 8p H a b. LRCoset a (H; p) b =LeftCoset a (RightCoset (H; p) b; p))The examples given in the next section show how a number of SPL proofs using thissimpli�er are quite similar to those found in the literature.9.4 Further ResultsThis section illustrates a number of interesting results in group theory which are mech-anised as SPL proofs. In particular, normal subgroups are de�ned and shown to beexactly those subgroups whose left cosets are equal to their right cosets. Quotientgroups, which are groups whose elements are cosets and whose product element is theproduct of subsets, are also de�ned. Section 9.4.2 gives the de�nition of homomor-phisms and isomorphisms, as well as a number of results including the two isomorphismtheorems.9.4.1 Normal Subgroups and Quotient GroupsAlthough, in general, the left cosets and right cosets of a subgroup are di�erent, Galoisidenti�ed the particular criterion which a subgroup must satisfy so that its left cosetsare equal to its right cosets. This property is called normality, and a normal subgroupis de�ned as follows:`def NormalSG (G:'a ! bool; p) N �(SubGroup p N G ^8g. G g) 8n. N n) N (p g (p n (InvG (G; p) g))))that is, a subgroup N of G is normal if for every g 2 G and n 2 N , gng�1 2 N .Equivalently, N is normal if gNg�1 = N for every g 2 G, as given by the followingtheorem:

CHAPTER 9. A MECHANISATION OF GROUP THEORY 205` 8G N p. Group (G; p))(NormalSG (G; p) N =SubGroup p N G ^(8g. G g) (LRCoset g (N; p) (InvG (G; p) g) = N)))Given this result, it can be shown that if N is a normal subgroup of G, then Ng = gNfor every g 2 G, as shown by the following proof fragment:"RightCoset (N,p) g= RightCoset (LRCoset g (N,p) (invG g),p) g" by gNg'=N."= LeftCoset g (N,p)" <cos> by fol;where gNg'=N is the label of the theorem stating that gNg�1 = N if N is a normalsubgroup of a group G and g 2 G. It can be seen that the above SPL proof is quitesimilar (in terms of the number of proof steps) to the informalby gNg�1 = N we get Ng = (gNg�1)g = gN:The simpli�cation of (gNg�1)g into gN which is unjusti�ed in the informal proof isautomatically derived by the cos simpli�er. The use of appropriate notation in theinformal proof, however, makes it much shorter (in terms of the number of symbols)than the one implemented in SPL. The problem of reducing the number of symbolsthrough the ability to introduce notation safely during the mechanisation of a theoryare not discussed in this thesis. It is however evident that e�orts on improving thenotation of terms used in mechanised proofs is quite desirable.The fact that the left cosets of a subgroup N are equal to its right cosets is also asu�cient condition for N to be normal. If for every g 2 G it is the case that gN = Nafor some a 2 G, then since g is in gN it must also be in Na. The group element g is alsoin Ng and thus Na and Ng have an element in common. Now, since the right cosets ofa subgroup partition the whole group, then Ng and Na must be equal, and thereforegN = Ng. This is enough to show that:"LRCoset g (N,p) (invG g)= RightCoset (LeftCoset g (N,p),p) (invG g)" <cos> by fol."= RightCoset (RightCoset (N,p) g,p) (invG g)" by gN=Ng."= N" <cos> by fol;and that therefore N is normal in G. The local fact labelled by gN=Ng is the result thatgN = Ng. The equation gN = Ng can also be used to show that the product of tworight cosets is itself a right coset:(Na)(Nb) = N(aN)b = N(Na)b = NNab = Nabwhich is derived in SPL by:"SProd p (RightCoset (N,p) a) (RightCoset (N,p) b)= SProd p N (RightCoset (LeftCoset a (N,p),p) b)"<cos> by fol."= SProd p N (RightCoset (RightCoset (N,p) a,p) b)"by Normal_gN_Ng on Ga."= RightCoset (SProd p N N,p) (p a b)"<cos> by fol."= RightCoset (N,p) (p a b)" by SProd_Idem on GroupG & NsgG;

CHAPTER 9. A MECHANISATION OF GROUP THEORY 206where Normal_gN_Ng is the theorem stating that gN = Ng for g 2 G, Ga is the facta 2 G, GroupG is the fact that (G; p) is a group, and NsgG the fact that N is a subgroupof G. The theorem SProd_Idem states that the product HH of a subgroup H is equalto H.The result that NaNb = Nab is quite important since it is used to show that theset of right cosets of a normal subgroup N of a group G is itself a group. This group iscalled the quotient group of G by N , and is denoted by G=N . The identity element ofG=N is N and the inverse element of a coset Na in G=N is Na�1.The quotient group of a subgroup N of G is denoted in HOL by the functionQuotientGp de�ned by`def QuotientSet (G:'a ! bool; p) H ��X. 9(a:'a). G a ^ (X = RightCoset (H; p) a)`def QuotientGp (G:'a ! bool; p) N � (QuotientSet (G; p) N; SProd p)and it can be shown that all the conditions making QuotientGp (G; p) N a group aresatis�ed if N is normal.` 8G N p. Group (G; p)) NormalSG (G; p) N)Group (QuotientGp (G; p) N)` 8G N p. Group (G; p)) NormalSG (G; p) N)(IdG (QuotientGp (G; p) N) = N)` 8G N p. Group (G; p)) NormalSG (G; p) N) (8a. G a)(InvG (QuotientGp (G; p) N) (RightCoset (N; p) a) =RightCoset (N; p) (InvG (G; p) a)))The e�orts required in implementing the proofs of the results given in this sectionare not much greater than understanding the proofs in the literature, and rewritingthem in SPL and �lling a few gaps in the informal arguments.9.4.2 Homomorphisms and IsomorphismsA homomorphism is a structure-preserving mapping from one group into another. Thenotion of a structure-preserving function between groups is given by the HOL de�nition`def Str_Pres (G:'a ! bool; p) (H:'b ! bool; q) (f:'a ! 'b) �(8x y. G x) G y) (f (p x y) = q (f x) (f y)))or in other words, � : G! H is structure-preserving if �(x�Gy) = �(x)�H �(y) for everyx; y 2 G, where �G and �H are the products of G and H respectively. Homomorphismsare de�ned in HOL by`def Homomorphism (G:'a ! bool; p) (H:'b ! bool; q) f �(fInto G H f) ^ Str_Pres (G; p) (H; q) fwhere fInto G H f holds if f maps every element in G into H:`def fInto X Y (f:'a ! 'b) � (8x. X x) Y (f x))

CHAPTER 9. A MECHANISATION OF GROUP THEORY 207Since it is quite tedious to show that (f x) is in some set Y whenever fInto X Y f andx 2 X, a database category fun_into is used to store facts of the form fInto X Y f ,and the function querying in_set is updated such that a query Y (f x) is satis�ed if� fInto X Y f and (X x) hold for some set X.Examples of homomorphisms include the identity function and the function mappingevery element into the identity.` 8G p. Homomorphism (G; p) (G; p) I` 8G p G0 q. Group (G0; q))Homomorphism (G; p) (G0; q) (K (IdG (G0; q)))where K and I are the usual combinators:` 8x y. K x y = x` 8x. I x = xIt can be shown that for every homomorphism � of G into H it is the case that�(eG) = eH and �(x�G1) = �(x)�H1 where eX represents the identity element of somearbitrary group X and x�X1 is the inverse of x in X. These results are derived in SPLand are used with the fact that homomorphisms are structure-preserving to simplifyterms involving some homomorphism. Basically, a simpli�er named hom is implementedwhich rewrites terms by the rules:` 8G p G0 q f. Homomorphism (G; p) (G0; q) f)(8x y. G x) G y) (f (p x y) = q (f x) (f y)))` 8G p. Group (G; p)) (8G0 q. Group (G0; q))(8f. Homomorphism (G; p) (G0; q) f)(f (IdG (G; p)) = IdG (G0; q))))` 8G p. Group (G; p)) (8G0 q. Group (G0; q))(8f. Homomorphism (G; p) (G0; q) f) (8x. G x)(f (InvG (G; p) x) = InvG (G0; q) (f x)))))Similarly to the other simpli�ers (such as groups and cos) mentioned in this chapter, theconditions in each rule are derived automatically by querying the knowledge databasebefore it is applied. A database category is_homomorphism is used to store facts of theform Homomorphism (G; p) (G0; q) f . The function querying the fun_into is updated suchthat fInto G G0 f is satis�ed if f is a homomorphism of G into G0.Given a homomorphism f of G into H, we de�ne its kernel by the setKf = fx 2 G j f(x) = eHg:`def Kernel G (H; q) (f:'a ! 'b) � � x. G x ^ (f x = IdG (H; q))The kernel is a subgroup of G and if k 2 Kf then

CHAPTER 9. A MECHANISATION OF GROUP THEORY 208"f (p g (p k (invG g)))= q (f g) (q (f k) (f (invG g)))"<hom> by fol." = q (f g) (f (invG g))"<groups, fk_i> by fol." = q (f g) (invH (f g))"<hom> by fol." = iH"<groups> by fol;where iG and iH abbreviate the terms representing the identity elements in G and H,invG and invH abbreviate the inverse functions of G and H, and fk_i is the result thatf k = iH. Therefore gkg�1 2 Kf , and hence Kf is a normal subgroup of G.A homomorphism is called an isomorphism if it is one-to-one, and two groups aresaid to be isomorphic if there is an isomorphism from one group onto the other. Thenotation G � H is used to denote the fact that G is isomorphic to H. We give thefollowing HOL de�nitions:`def Isomorphism (G; p) (H; q) (f:'a ! 'b) �Injective G f ^ Homomorphism (G; p) (H; q) f`def Isomorphic (G; p) (H; q) �9(f:'a ! 'b). Bijective G H f ^ Homomorphism (G; p) (H; q) f`def Injective X (f:'a ! 'b) �8x1. X x1) 8x2. X x2) (f x1 = f x2)) (x1 = x2)`def Surjective X Y (f:'a) 'b) �8y. Y y) 9x. X x ^ (f x = y)`def Bijective X Y (f:'a ! 'b) �fInto X Y f ^ Injective X f ^ Surjective X Y fThe isomorphism relation is an equivalence, however this cannot be represented inHOL by the termGEquivalence (Group:'a ! bool) Isomorphicas this would infer the type of Isomorphic to be :'a ! 'a ! bool, instead of the moregeneral :'a ! 'b ! bool. (Recall that GEquivalence X R denotes the fact that therelation R:'a ! 'a ! bool on the elements in X:'a ! bool is an equivalence.) Thisis an example of the di�culties resulting by representing sets in Church's Higher OrderLogic by their polymorphic characteristic predicates. Such problems can be avoided ifone formalises an axiomatic set theory in HOL as suggested for instance by Gordon(1996).The following two interesting results on homomorphisms and isomorphisms areproved in SPL:� If � is a homomorphism of G onto G0 with kernel K, then G=K � G0.� If � is a homomorphism of G onto G0 with kernel K and N 0 is a normal subgroupof G0, then if N = fx 2 G j �(x) 2 N 0g it is the case that G=N � G0=N 0.Similarly to the other results described in this chapter, not much e�ort was requiredin implementing the required SPL proofs once the informal proofs were understood.

CHAPTER 9. A MECHANISATION OF GROUP THEORY 209However, attempts at the implementation of proofs of results on �nite groups resultedin rather longer and more detailed proofs than those found in the literature. This isbecause of the fact that not enough e�ort was put in implementing proof procedureswhich automate the inferences considered trivial while reasoning about �nite sets. Webelieve that the implementation of such proof procedures is not a trivial task since most(trivial, or otherwise) results on �nite sets require mathematical induction, and theautomation of proofs involving induction requires substantial e�ort.9.5 DiscussionThis chapter illustrated the mechanisation of a number of results of group theory in theproof language SPL. The mechanisation followed the exposition of Herstein (1975) inthe de�nitions and results derived.The proof scripts implemented during the mechanisation are quite readable andmuch easier to follow than tactic-based proofs. The readability of the SPL proofs isattributed to the following factors.� The proofs contain information which is relevant for a human reader who is try-ing to follow the proofs. The SPL language is based on (a small fragment of)Mizar which has a rather easy to follow syntax and supports a declarative styleof proof development. Furthermore, structured straightforward justi�cations areused to prove simple results. Such justi�cations contain some of the inferencesused in the derivation process and omit all tedious inferences such as particularinstantiations of variables. The e�ort required for the implementation of proofsusing structured justi�cations was not much greater than the e�ort required inimplementing unstructured ones. It was actually noticed that by explicitly statingthe inferences in structured justi�cations, one can have a better idea of whetherthe justi�cations used contain all the necessarily premises and whether they canbe machine checked by the prover of the system.� The scripts are organised into sections such that theorems which have the samehypotheses are grouped together. This has the e�ect of shortening the statementsof the theorems as well as the formal proofs, which also results in scripts whichare relatively easy to follow.� Local abbreviations are used to abbreviate commonly used subterms.� Appropriate simpli�ers which are able to query the SPL database of trivial knowl-edge are implemented and incorporated in the SPL language as the mechanisationof the theory progresses. The use of simpli�ers greatly reduced the length of theformal proofs. The database of trivial knowledge is used to store and derive factswhich are considered to be trivial by the author of the proofs. As a result, much te-dious inferences are omitted from the formal proofs and are derived automaticallyduring proof checking.� Meaningful identi�er names are given to assumptions and proof step results. Theparser of the SPL language allows certain characters, which are usually used todenote operators such as = and +, to be used in the name of identi�ers. As aresult, the identi�er names used can be quite expressive and close to the facts

CHAPTER 9. A MECHANISATION OF GROUP THEORY 210they are representing. For instance, an identi�er name gN=Ng was used for the factgN = Ng in the proof fragment given in page 205.Figure 26 illustrates an SPL proof of one of the results derived in the mechanisation.The result states that the function �x:Nx is a homomorphism ifN is a normal subgroup.It is practically a rewording of the fact that (Na)(Nb) = Nab, for all elements a andb of some group G and where N is normal in G, which is derived as the theoremNormal_NaNb_Nab. It can be seen that the proof of the theorem derived in �gure 26uses only the theorem Normal_NaNb_Nab together with locally declared assumptions andthe necessarily de�nitions, most of which are speci�ed as simpli�ers so that they areunfolded implicitly during proof search. The same theorem can be derived by the HOLtactic proof:val Homo_RightCoset = prove(--`8(G:'a ! bool) p. Group (G,p))(8N. NormalSG (G,p) N)Homomorphism (G,p) (QuotientGp (G,p) N) (RightCoset (N,p)))`--,REWRITE_TAC [Homomorphism,QuotientGp,fInto,Str_Pres,QuotientSet] THENREPEAT STRIP_TAC THENL[BETA_TAC THENEXISTS_TAC (--`x:'a`--) THENASM_REWRITE_TAC [],CONV_TAC SYM_CONV THENIMP_RES_TAC Normal_NaNb_Nab]);The above proof is shorter than the (relevant fragment of the) SPL proof given in�gure 26, however it is harder to follow because it is not targeted to a human readerbut to the HOL proof checker. The complexity of the proof steps in the tactic proof isnon-homogeneous as the proof includes rather rather trivial inferences, such as BETA_TACand CONV_TAC SYM_CONV, as well as the relevant inference IMP_RES_TAC Normal_NaNb_Nab.Table 3 lists the lengths of di�erent fragments of the source code developed duringthe mechanisation of group theory. For each part of the mechanisation, the total lengthof the source code is divided as follows:ML declarations which include the de�nitions of ML functions corresponding to sim-pli�ers and the query functions of the database of trivial knowledge.HOL de�nitions which involve the de�nition of HOL constants using the functionssupplied with the system.SPL proofs which are basically the proofs of results in SPL.The lengths in table 3 can be compared with the lengths of the di�erent fragmentsof the source code of the mechanisation of the theory of computation in HOL given intable 1, page 34. It can be seen that a substantial amount of the mechanisation of grouptheory is dedicated to the implementation of proof procedures. On the other hand,almost all of the implementation of the mechanisation of the theory of computationconsists of tactic proofs. Thus, although it is noticed that not much e�ort was requiredduring the implementation of the SPL proofs of the results given in this chapter, quite

CHAPTER 9. A MECHANISATION OF GROUP THEORY 211
let "G: 'a ! bool""p: 'a ! 'a ! 'a";assume GroupG: "Group (G,p)";consider is_group GroupG;let "N:'a ! bool";assume NorN: "NormalSG (G,p) N";NsgG: "SubGroup p N G" by <NormalSG>NorN;consider is_subgroup NsgG;define GN_def: "GN = QuotientSet (G,p) N"P_def: "P = SProd p"GNP_def: "GNP = QuotientGp (G,p) N";then GNP: "GNP = (GN,P)"<GN_def,P_def,GNP_def,QuotientGp> by fol;simplify with GNP;theorem Homo_RightCoset: "Homomorphism (G,p) GNP (RightCoset (N,p))"proofinto: "fInto G GN (RightCoset (N,p))"prooflet "a:'a";assume Ga: "G a";consider in_set Ga;then "GN (RightCoset (N,p) a)"<GN_def,inset> by fol;simplify with fInto;end;strpr: "Str_Pres (G,p) GNP (RightCoset (N,p))"prooflet "a:'a" "b:'a";assume Ga: "G a"and Gb: "G b";consider in_set Ga and Gb;"RightCoset (N,p) (p a b) =P (RightCoset (N,p) a) (RightCoset (N,p) b)"<P_def>by Normal_NaNb_Nab on GroupG & NorN & Ga & Gb;simplify with Str_Pres;end;"Homomorphism (G,p) GNP (RightCoset (N,p))"<Homomorphism>by into and strpr;qed; Figure 26: A SPL Proof of a Theorem on Homomorphisms.

CHAPTER 9. A MECHANISATION OF GROUP THEORY 212
Sets, Relations and FunctionsML declarations: 160 linesHOL de�nitions: 230 linesSPL proofs: 420 linesTotal: 810 linesIntroducing GroupsML declarations: 400 linesHOL de�nitions: 80 linesSPL proofs: 230 linesTotal: 710 linesSubgroupsML declarations: 230 linesHOL de�nitions: < 10 linesSPL proofs: 260 linesTotal: 490 linesCongruences, Cosets and Products of SubgroupsML declarations: 420 linesHOL de�nitions: 20 linesSPL proofs: 1530 linesTotal: 1970 linesNormal Subgroups and Quotient GroupsML declarations: -HOL de�nitions: 10 linesSPL proofs: 630 linesTotal: 640 linesHomomorphisms and IsomorphismsML declarations: 130 linesHOL de�nitions: 30 linesSPL proofs: 1120 linesTotal: 1280 linesTable 3: On the Source Code of the Mechanisation of Group Theory.

CHAPTER 9. A MECHANISATION OF GROUP THEORY 213a lot of e�ort was needed in the implementation of the proof procedures that automatethe trivial inferences omited from the formal SPL proofs. The possibility of reducingthe e�ort required in the implementation of proof procedures (especially simpli�ers anddatabase query functions), by developing specialised high-level languages for instance,is an interesting direction for future research.Although the SPL proofs of the results given in this section are quite similar to theproofs given in the literature, the SPL proofs of the results on �nite groups attempted bythe author were not as clear as the informal ones. The reason for this is that substantialautomation may be required to derive the inferences on �nite sets which are consideredto be trivial by a human reader. In particular, several of the results that are consideredto be rather trivial in the informal literature may require some form of induction to bederived formally. The automation of proofs involving induction is not straightforward,since for instance, one often requires the discovery of lemmata which are general enoughfor their induction hypothesis to be used in the inductive proof. The implementation ofthe necessarily proof procedures that would make reasoning about �nite sets relativelystraightforward is also an interesting direction for future work.

Chapter 10ConclusionsThe work presented in this thesis investigates the implementation of machine-checkableproofs in a format that is more easily followed by a human reader. In this chapterwe �rst summarise the main contributions of this thesis, and then discuss a number ofdirections for future work in this area of research.10.1 Summary of the Main ContributionsIn this section we summarise the main contributions of this thesis which aims at theimplementation of machine-checkable proofs in a readable format. The motivationsfor this research are discussed in section 2.5 and include the fact that it is easier toimplement, correct, and modify proofs if they can be followed easily. The contributionssummerised in this section are categorised as follows:� Case studies involving tactic-based proof environments: Mechanised proofs areusually found using a tactic-based environment, and in chapter 3 we study thestyle of tactic-based proof discovery and argue that proofs found in this mannerare very hard to follow.� The implementation of the SPL proof checker : The SPL proof language, whichis based on the Mizar language is discussed in chapter 4. SPL proofs are morereadable than tactic proofs because of their declarative nature. Furthermore,the SPL language is extensible, in the sense that the deductive power of its proofchecker can be extended in a disciplined way during the mechanisation of a theory.� Structured straightforward justi�cations: The notion of structured straightforwardjusti�cations is studied in chapter 6. These justi�cations di�er from the unstruc-tured justi�cation of Mizar and similar languages by including more informationon which inferences are used to derive the conclusion of the justi�cation. It is ar-gued that structured justi�cations are easier to follow and more e�cient to proofcheck than unstructured ones. Chapter 8 discusses how the search space con-sidered for checking structured justi�cation can be restricted. The results givenin chapter 8 use a version of �rst-order logic whose formulae are annotated withcolours in order to restrict the proof search. This coloured �rst-order logic isstudied in chapter 7. 214

CHAPTER 10. CONCLUSIONS 215� The implementation of the CBSE derived rule: The CBSE tableau calculus, whichis complete for �rst-order logic with equality, is described in chapter 5. Thiscalculus is implemented as a HOL derived rule and is used in checking SPL scripts.� The Mechanisation of Group Theory in SPL: The proofs of a number of results ingroup theory are implemented in SPL, and discussed in chapter 9. This mecha-nisation is a case study in the use of an extensible declarative proof language forthe implementation of readable, machine-checkable proofs.These contributions are discussed in more detail below.Case Studies Involving Tactic-Based Proof EnvironmentsChapter 3 discusses two case studies involving tactic-based proof development systems.The �rst case study involves the mechanisation of a number of results in the theoryof computation using the HOL system. This mechanisation is based on the UnlimitedRegister Machine (URM) model of computation as discussed in the textbook by Cut-land (1980), and includes the proof of the result that partial recursive functions canbe computed by URM programs. The second case study involves the proof of the Smntheorem in the Coq system. The proof of this theorem is based on a model of compu-tation similar to the partial recursive functions model. The proofs implemented duringthese case studies were found interactively using the tactic-based environment of thetwo systems. Unfortunately, as discussed in section 3.5, it is extremely hard to followtactic proofs without the appropriate feedback from the theorem proving system. In atactic-based proof environment, tactics are applied interactively to solve certain goalsautomatically, or to break goals into simpler subgoals. A tactic proof of a theoremcontains the sequence of tactics required to prove the theorem, and it is hard to followsince it does not state the e�ect of the application of each tactic on the goal. Similararguments on the unreadability of tactic proofs can be found, for instance, in (Harrison1997) and (Syme 1998). As a result, other proof styles are required for the implementa-tion of machine-checkable proofs if the readability of the proofs is a requirement. Thetwo case studies are also used in section 3.4 to compare the di�erent ways that theoriesare mechanised in the HOL and Coq systems.The Implementation of the SPL Proof CheckerOne of the main contributions of this thesis is the implementation of a proof checkerfor a declarative proof language. We call this language SPL which is short for `SimpleProof Language'. Proofs implemented in a declarative language do not explicitly stateall the details about how a theorem is proved, but rather state what is required. TheSPL language is based on the theorem proving fragment of the Mizar language. Theproof checker of the SPL language derives HOL theorems from SPL proof scripts, andtherefore the proof checker is fully-expansive. In other words, all theorems are derivedby the primitive inferences of the HOL core inference engine in order to minimise humanerrors in the proofs.A sectioning mechanism, similar to that of the Coq system, is used to structure SPLscripts in a modular fashion. SPL scripts are divided into possibly nested sections. As-sumptions, abbreviations, and other information can be declared locally to each sectionin much the same fashion that variables and functions can be declared locally to di�erent

CHAPTER 10. CONCLUSIONS 216program modules in a structured programming language. As discussed in section 4.2.2,by sectioning proof scripts one can improve the readability and proof-checking e�ciencyof SPL scripts.In this thesis (and especially in chapter 2) we argue that proof steps which areconsidered to be obvious, or trivial, by human readers should be omitted during mech-anisation in order to improve the readability, as well as the ease of implementation, ofmachine-checkable proofs. This involves the implementation of proof checkers that areable to derive theorems whose proofs are implemented at a level of detail similar to thatfound in mathematical literature. An important issue discussed in this thesis is thatwhat a reader considers to be obvious depends on her familiarity and knowledge of thesubject, and therefore varies during the development of a theory | proof steps that areconsidered essential to the understanding of a proof given in the early stages of a theoryare often omitted in the proofs found in later stages of the same theory. In order toachieve the same e�ect in mechanised proofs, the deductive power of the proof checkershould vary during the mechanisation of a theory.One method of modifying the deductive power of the SPL proof checker during themechanisation of a theory is by the use of a database of trivial knowledge. This database,which is described in section 4.4.1, can be used to store facts which are considered to betrivial by the developer of the mechanised theory. The knowledge stored in the databaseis organised into categories, and the developer of the theory is required to implementfunctions (in ML) which query each database category. These query functions shouldbe able to derive HOL theorems from the knowledge stored in the database using theresults derived in the current state of the theory. The database is queried automaticallyby certain components of the proof checker, so that trivial facts need not be justi�edexplicitly in the mechanisation. The database and its query functions are implementedin such a manner that the user can improve the deductive power of the query functionsduring the mechanisation of the theory. This is done by including new categories inthe database, implementing new query functions, and updating the implementation ofexisting query functions. The sectioning mechanism of SPL allows the knowledge storedin the database to be local to particular sections only.The SPL proof checker is extensible in many other ways. During the mechanisationof a particular theory, the user can extend:� proof procedures used to justify the proof statements;� simpli�ers, which are used to normalise terms into canonical forms;� inference rules, which are used to derive facts in a forward (and somewhat proce-dural) manner;� the syntax and semantics of the SPL language constructs by updating the languageparser and other components of the proof checker.It should be noted that not all the above possible ways of extending the proof checkerwere used during the case study described in chapter 9. The mechanisation performedduring the case study made use of several database query functions and simpli�erswhich were implemented and extended during the development of the theory. However,no changes were made to proof procedures, the forward inference rules, and the syntaxand semantics of the language constructs. In particular, it is suggested that the frequentuse of forward inference rules should be avoided because of their procedural nature.

CHAPTER 10. CONCLUSIONS 217We remark that it was possible to implement the SPL proof checker on top of theHOL system because of the way the HOL system is designed. In particular,1. a Turing-complete metalanguage is available to allow the user to extend the systemwith new proof procedures and proof environments, and2. the fact that all HOL theorems are constructed using the core inference engineensures that such extensions are safe.It is possible to implement proof checkers of declarative languages such as SPL on topof other theorem proof environments given that they provide these two features.Structured Straightforward Justi�cationsIn this thesis we also study the notion of structured straightforward justi�cations whichare introduced in chapter 6. Simple Mizar statements are justi�ed by straightforwardjusti�cations which consist of the by keyword and a list of premises; for example:"a < b" by "8x; y; z. (x < y)) (y < z)) (x < z)", "a < c", "c < b";The Mizar proof checker then derives the conclusion "a < b" from the premises"8x; y; z. (x < y)) (y < z)) (x < z)";"a < c"; and"c < b":In structured straightforward justi�cations, one gives more information on what infer-ences are required to derive the conclusion from the premises in the justi�cation. Thisis done through the operators on, and and then which correspond to high-level, or gen-eralised, versions of the rules of implication elimination, introduction of conjunctions,and transitivity of implication respectively. For example, the conclusion above can bejusti�ed by:"a < b" by "8x; y; z. (x < y)) (y < z)) (x < z)" on"a < c" and "c < b";Structured straightforward justi�cations are however not over-detailed and omit severalsimple inferences such as the instantiation of universally quanti�ed variables and cer-tain manipulations on the structure of formulae as described in section 6.4.1. Most ofthe justi�cations implemented during the mechanisation of group theory described inchapter 9 are structured justi�cations. The implementation of structured justi�cationsduring this case study did not need much more e�ort than the implementation of un-structured ones since the detailed inferences which would make the justi�cation tediousto implement are omitted.The role of the operators in structured justi�cations is to give the reader more in-formation which is relevant to the understanding of the proof. This makes structuredstraightforward justi�cations easier to follow than unstructured ones. The semantics ofstructured justi�cations given in section 6.4 is non-deterministic, and therefore severalconclusions can be justi�ed by the same structured justi�cation. As a result, one can-not implement forward inference rules which derive a conclusion from its justi�cation,but rather proof checking functions which check that the conclusion follows from the

CHAPTER 10. CONCLUSIONS 218structured justi�cation. However, chapter 8 illustrates how one can restrict the searchspace considered during the proof checking of structured justi�cations. As a result, lesse�ort is required in checking structured justi�cations than unstructured justi�cations.The material on proof checking structured justi�cations given in chapter 8 makes useof a theory of coloured �rst-order logic in which formulae are annotated with colours.The colours are used to restrict the notion of the inconsistency of a �rst-order sentencesand are used to restrict the search space required in the automated theorem proving ofcoloured formulae. The theory of coloured �rst-order logic is described in chapter 7.It is shown in section 8.2.4 that the validity of �rst-order structured justi�cationsde�ned in chapter 6 is undecidable. As a result, the proof checker used in checkingthe structured justi�cations implemented in the mechanisation of group theory restrictsthe search space considered to a �nite one. The fact that these restrictions were notconsidered to be too strong during the mechanisation suggests that only a small, prob-ably decidable, fragment of the set of valid �rst-order structured justi�cations given inchapter 6 is required in practiced.The Implementation of the CBSE Derived RuleThe implementation of a tableau prover for �rst-order logic with equality as a derivedrule in the HOL system is described in chapter 5. The prover is based on the CBSEtableau calculus, which refutes a given list of clauses and uses the rules of rigid basicsuperposition (Degtyarev and Voronkov 1998) with equational re
exivity to close thetableau branches. Congruence closure is also used to close redundant branches (thatis, branches which do not need the instantiation of their free variables to be closed).During the proof search stage of the HOL derived rule, the expansion of clauses whichcan be immediately followed by the closure of a tableau branch are given priority overother expansions in order to gain some of the e�ciency of connection tableau calculi(see (Letz 1993)). The CBSE derived rule derives a HOL theorem when a closed tableauis found.The CBSE derived rule is modi�ed to proof check structured justi�cations as de-scribed in section 8.5. It is used as the main prover during the proof checking of theSPL scripts implemented during the case study described in chapter 9. Although theCBSE calculus is complete for �rst-order logic with equality, the search for a closedtableau is restricted to a small �nite search space because of the simplicity of the jus-ti�cations. Furthermore, the search strategy used for looking for closed tableaux (andits implementation) is unsuitable for �nding long and complex proofs.The Mechanisation of Group Theory in SPLChapter 9 describes the mechanisation of a number of results in group theory in the SPLdeclarative language. The mechanisation is based on the textbook by Herstein (1975)and includes all the results leading to, and including, the second isomorphism theorem,with the exception of those involving �nite groups.As discussed in more detail in section 9.5, the proofs implemented during this mech-anisation are quite readable and much easier to follow than tactic-based proofs. Thereasons for this improvement in the readability of the proofs include the following:� The proofs are declarative in nature, and contain information which is relevant fora human reader to understand them. The use of explicit variable instantiations

CHAPTER 10. CONCLUSIONS 219and the use of forward inference rules is avoided (with the exception of the use ofthe select rule described in page 68).� Structured justi�cations, which contain more information on what type of infer-ences are used in the derivation of the conclusion of the justi�cation, are usedinstead of unstructured ones.� Scripts are organised in a modular fashion into sections.� Simpli�ers which are able to query the SPL database of trivial knowledge areimplemented and included in the SPL language throughout the mechanisation ofthe theory.� The deductive power of the knowledge database is updated and extended through-out the mechanisation of the theory.In particular, the inhomogeneity in the complexity of the proof steps which is oftennoticed in mechanised proofs is greatly reduced by regularly updating and querying thedatabase of trivial knowledge. By the inhomogeneity in the complexity of the proofsteps we refer to the fact that the complexity of the proof steps in the same proof di�ersgreatly, and simple results derived during the early stages of a mechanisation can be stillused quite often in the proofs implemented during later stages of the mechanisation.10.2 Future WorkIn this section we discuss a number of directions for future work aimed primarily atinvestigating possible ways of improving the readability of mechanised proofs. Both im-provements on the work presented in the previous chapters, as well as research directionsnot considered in this thesis, are discussed below.The declarative style of proof implementation results in much more readable proofsthan the tactic-based, and other procedural, styles. The work presented in this thesissuggests that the extensibility of a proof language results in an improvement in thereadability of its proof scripts. An important direction of research is therefore the de-sign of extensible proof languages. The SPL proof checker is extensible since the theorydeveloper can implement new HOL proof procedures in ML and incorporate them inthe SPL language during mechanisation. However, the current implementation of theproof checker allows only global modi�cations to the proof language, and it is desirablethat certain modi�cations be local to certain theories, sections and proofs. This highlydesirable feature may require substantial changes to the overall design and implementa-tion of the proof checker. It should also be noticed that the proof procedures developedduring the mechanisations are implemented in a highly procedural fashion in SML.The possibility of developing possibly declarative languages for the implementation ofsimpli�ers, database query functions, and other proof procedures is also an interestingdirection for future research.The case study described in chapter 9 investigated the e�ect of extending the sim-pli�ers and the SPL knowledge database during the development of a theory. However,the implementation of the SPL proof checker also allows the extensibility of the proversused in justifying proof statements, as well as the syntax and semantics of the languageas a whole. For instance, one is able to extend the SPL language with theory-speci�c

CHAPTER 10. CONCLUSIONS 220constructs during theory development. Case studies on mechanisations involving theuse of such extensibility are required in order to evaluate their e�ect in practice.Another important area of research is the investigation of the type of automationrequired by proof checkers of declarative languages. The main component of the SPLproof checker is the CBSE derived rule described in chapter 5. This proof procedure ise�ective for �nding simple proofs in the classical �rst-order logic with equality. However,one often requires the proof procedures for other logics, including higher-order logicwhich is treated in SPL through an incomplete transformation from higher-order termsinto �rst-order ones, as well as in other theories such as natural and real arithmetic.Automated reasoning in particular theories in SPL is done through simpli�ers which areapplied before the CBSE rule (or other provers) are used to check the proof statements.More e�ective results can be achieved if the simpli�ers and other decision proceduresare incorporated in the �rst-order prover as studied, for instance, by Bj�rner, Stickel,and Uribe (1997). The incorporation of the knowledge database with the �rst-order(or higher-order) logic prover, so that trivial facts can be automatically derived by theprover, can also improve the deductive power of the proof checker. This will o�er thepossibility of greatly reducing the di�erence between formal and informal proofs sincethe authors of informal proofs omit the justi�cations of facts considered to be trivial.The possibility of specifying search strategy heuristics speci�c to particular theories, orsections, can also result in a substantial improvement to the current system. Anotherdirection for future research is the use of automated inductive theorem proving by theproof checker of a declarative language, since it is observed in chapter 9 that certainresults on �nite sets that are considered trivial by the authors of informal proofs mayrequire inductive reasoning.An important area of research which has not been considered in this thesis concernsthe feedback given by the proof checker in case of failure. The SPL proof checker doesnot provide any positive feedback when a conclusion cannot be justi�ed by the givenjusti�cation. It is desirable that in such cases the proof checker gives a useful errormessage which helps in understanding why the proof checking process failed.The development of user-interfaces which provide the interactive discovery of declar-ative proofs is also an interesting task which requires substantial work and research. Thispossibility has been studied recently by Syme (1998) during the development of the in-teractive IDECLARE system. One can also consider future work in the automateddiscovery of declarative proofs, and in the transformation of non-declarative proofs,such as proofs in a search-oriented format and tactic proofs, into machine-checkabledeclarative ones.Chapter 6 introduces the notion of structured straightforward justi�cations basedon explicitly stated inferences and implicitly assumed trivial inferences. Chapter 6 alsogives the de�nition of structured justi�cations based on implicit and explicit inferencesfor the pure �rst-order logic. It is argued (in chapters 6 and 8) that less e�ort is re-quired in following and proof checking structured justi�cations than unstructured ones.However, the validity of the structured justi�cations given in section 6.4 is shown tobe undecidable, and it is observed in chapter 9 that probably only a small, possiblydecidable, subsets of such justi�cations are used in practice. More work is therefore re-quired in restricting the de�nition of the structured justi�cations given in this thesis. Inparticular, the implicit �rst-order inferences de�ned in section 6.4.1 should be restrictedin some way.It is also desirable that one extends the notion of structured justi�cations to other

CHAPTER 10. CONCLUSIONS 221logics and theories. This is an interesting direction for future work since it is not straight-forward to de�ne structured justi�cations which have an intuitive semantics and yet canalso be proof checked e�ciently. One also requires that the e�ort required to implementproofs involving structured justi�cations is not much greater than implementing proofsinvolving unstructured ones. In chapters 7 and 8 it is shown how the inferences (or op-erators) given in structured justi�cations can be used to restrict the search space whichneeds to be considered by existing �rst-order deductive systems. This (implementation-independent) restriction is given in terms of annotations, or colours, on formulae. Itmay be possible to use the same technique during the development of mechanisms forproof checking the structured justi�cations for other logics and theories. In other words,structured justi�cations of a particular theory can be checked by restricting the searchspace of existing decision procedures for that theory. Incidentally, the use of anno-tations, also called colours, on expressions are used by Hutter and Kohlhase (1997)to restrict the uni�cation of higher-order terms, and also by Hutter (1997) to controlequational reasoning especially during inductive automated theorem proving.Finally we note that the readability of mechanised proofs relies on the readabilityof the terms and sentences used in the proofs. This issue is not studied in this thesis,and we noticed in chapter 9 that although a number of proofs mechanised during thecase study are observed to be similar to their informal counterparts when the number ofsteps in the proofs are compared, the length of the symbols in the formal proofs is stillmuch higher than that of the informal proofs. The authors of informal mathematicsvery often change the syntax of their language by introducing appropriate notations.It is therefore desirable that one is able to safely modify the term parser of the proofchecker during the mechanisation of a theory.

Appendix AThe Syntax of SPLIn this Appendix we give the syntax of the SPL language described in chapter 4 inExtended BNF.A.1 Reasoning ItemsSPL Script = Section f Section gSection =section Section NameReasoning Itemend [Section Name] ;(The Section Name following end is the same as the one following section.)Local Declarations =localReasoning ItemsinReasoning Itemsend ;Reasoning Items = f Reasoning Item gReasoning Item = [Reasoning Separator](Type Generalisationj Generalisationj Assumptionj Existential Assumptionj Step Resultj Existential Resultj Theoremj Abbreviation Declarationj Simpli�cation Declarationj Knowledge Declarationj Sectionj Local Declaration) 222

APPENDIX A. THE SYNTAX OF SPL 223Reasoning Separator =and j but j hence j now j so jthen j therefore j thus j ==>Type Generalisation = Type Generalisation Constructor Type Vars ;Type Generalisation Constructor = [given] [new] (type j types)Generalisation = Generalisation Constructor Var Terms ;Generalisation Constructor =letj [given] [new](var j vars j variable j variables)Assumption = Assumption Constructor Labelled Statements ;Assumption Constructor = (suppose j assume j given) [that]Existential Assumption =Existential Assumption ConstructorVar Terms Such That ConstructorLabelled Statements ;Existential Assumption Constructor = givenStep Result = [Step Result Constructor] Labelled Statement Justi�cation ;Step Result Constructor = fact j resultExistential Result =Existential Result ConstructorVar Terms Such That ConstructorLabelled StatementsJusti�cation ;Existential Result Constructor = there is [some]Theorem =Theorem Constructor Labelled StatementsJusti�cation ;Theorem Constructor = theorem j lemma j proposition j corollaryAbbreviation = Abbreviation Constructor Labelled Statements ;Abbreviation Constructor = define j setSimpli�cation Declarations =Simpli�cation Constructor Simpli�cation Lines ;

APPENDIX A. THE SYNTAX OF SPL 224Simpli�cation Constructor = simplifySimpli�cation Lines =Simpli�cation Line f [Separator] Simpli�cation Line g ;Simpli�cation Line = (with j without) Simpli�er Identi�ersKnowledge Declaration =Knowledge Constructor Knowledge Lines ;Knowledge Constructor = considerKnowledge Lines = Knowledge Line f [Separator] Knowledge Line gKnowledge Line = Category Identi�er Sentence ListLabelled Statements = Labelled Statement f [Separator] Labelled Statement gLabelled Statement =[case] [Label Identi�er :] StatementSuch That Constructor = such that j st j whereA.2 Justi�cationsJusti�cation =Proof Justi�cationj Case Splitting Justi�cationj Iterative Inequalities Justi�cationj Simple Justi�cationProof Justi�cation =Proof StartReasoning ItemsProof EndingProof Start =proof [[proceed] Simple Justi�cation ;]Proof Ending =Backward Proof Endingj (qed j end) [Simple Justi�cation]Backward Proof Ending =Backward Proof Constructor Labelled Statements Simple Justi�cation ;Backward Proof Constructor = (sufficient to show j sts)

APPENDIX A. THE SYNTAX OF SPL 225Case Splitting Justi�cation =Case Splitting Constructor [Simple Justi�cation ;]Case ItemsEnd Cases Constructor [Simple Justification]Case Splitting Constructor = (per j consider) casesEnd Cases Constructor = (end [cases] j qed)Case Items = Case Item f Case Item gCase Item = [Supposition Constructor] Labelled Statement Justi�cationSupposition Constructor = (suppose j case)Iterative Inequalities Justi�cation =Simple Justi�cationf : Part Formula Simple Justi�cation gSimple Justi�cation =[< Simpli�ers >] by [Flags][Prover Identi�er] [Flags] Prover ParamsProver Identi�er(Prover ParamsProver Identi�er depends on the Prover Identi�er following the optionalFlags .)Flags = Flag Identi�er f Flag Identi�er gFlag Identi�er = pureProver Identi�er = (cfol j fol j taut j tab)Prover Paramscfol = Structured ExpressionProver Paramsfol = [Sentence List]Prover Paramstaut = [Sentence List]Prover Paramstab = [Sentence List]Structured Expression = f Then Expression on g And ExpressionAnd Expression = Sentence f and Sentence gj (Structured Sentence)Then Expression = Sentence f then Sentence gj (Structured Sentence)

APPENDIX A. THE SYNTAX OF SPL 226A.3 SentencesSentence List = Sentence Item f [Separator] Sentence Item gSentence Item =[< Simpli�ers >] ((Sentence List) j Unsimpli�ed Sentence)Simpli�ers Simpli�er f [Separator] Simpli�er gSimpli�er =Simpli�er Identi�erj Label Identi�erj SentenceSentence = [< Simpli�ers >] Unsimpli�ed SentenceUnsimpli�ed Sentence =[[Abstractions]] (Label Identi�er j Formula) [[Applications]]j Compound SentenceCompound Sentence =(Compound Sentence)j Rule Identi�er Rule ParamsRule Identi�er(Rule ParamsRule Identi�er depends on the Rule Identi�er .)Rule Identi�er = selectRule Paramsselect = Term SentenceAbstractions = Abstraction f [Separator] Abstraction gAbstraction =Type Abstractionj Var Abstractionj Term AbstractionType Abstraction = Type VarVar Abstraction = Var TermTerm Abstraction = Label Identi�erApplications = Application f [Separator] Application gApplication =Type Applicationj Var ApplicationType Application = HOL Type Var = Type

APPENDIX A. THE SYNTAX OF SPL 227Var Application =Explicit Var Applicationj Implicit Var ApplicationExplicit Var Application = HOL Var Term[. Integer] = TermImplicit Var Application = TermTerms Term f [Separator] Term gType = "HOL Term"Types = Type f [Separator] Type gType = "HOL Type"Type Vars = Type Var f [Separator] Type Var gType Var = "HOL Type Var"Var Terms = Var Term f [Separator] Var Term gVar Term = "HOL Var Term"Formulas = Formula f [Separator] Formula gFormula = "HOL Formula"Part Formula = " HOL in�x HOL Term "Separator = , j and j &

Appendix BSemantic Tableaux forFirst-Order Logic With andWithout EqualitySemantic tableau calculi have become very popular recently in the automated deduc-tion community since they can be used for a variety of di�erent logics including classical�rst-order logic (Fitting 1996), higher-order logics (Kohlhase 1995; Konrad 1998), in-tuitionistic logic (Bittel 1992) and modal logics (Fitting 1972). This interest is alsoattributed to the success of model elimination (Loveland 1968) based procedures forclassical �rst-order logic which represent a competitive alternative to the resolutionparadigm. The main motivation of this appendix is to introduce the notions of se-mantic tableaux and tableau-based calculi and the problems involved in reasoning withequality in such frameworks.B.1 The Structure of TableauxIn general, a tableau can be visualised as a tree whose nodes can be labelled withformulae. That is,� The empty tree is a tableau� One or more tableaux branching from a node possibly labelled with a formulaconstructs another tableau.Usually, all the non-root nodes of the tableau are labelled with some formula. Concep-tually a tableau represents a formula according to the following rules:� A tableau which does not contain any nodes which are labelled with formulaerepresents >,� A tableau consisting of one node labelled with a formula A represents A.� The tableau constructed from some node and the tableaux T1; : : : ; Tn representsthe formula P1_� � �_Pn if the node is not labelled with a formula, and it representsA^(P1_� � �_Pn) if the node is labelled with A, where Pi is the formula representedby the tableau Ti. 228

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 229
CA:A :C :BBFigure 27: An Example of a Tableau.For example the tableau given in �gure 27 represents the formulaC ^ ((A ^ (:A _ :C)) _ (:B ^B)):Each branch of a tableau is said to represent the conjunction of the formulae labellingits nodes. By distributing the conjunctions over the disjunctions, we can show that theformula represented by a tableau is equivalent to the disjunction of all the formulaerepresented by the tableau branches. We denote the formula representing a tableau Tby hT i.A node labelled with a special symbol (�) called mark or close can be used inthe construction of tableaux during proof search. A tableau branch containing a nodemarked with such a symbol is said to be closed, otherwise it is said to be open. Atableau is closed if all its branches are closed.Some of the literature contains a di�erent de�nition of tableaux involving multisets.Basically, a branch is de�ned as a multiset of formulae (corresponding to the multisetof formulae labelling the nodes in the branch), and a tableau is de�ned as the multisetof the open branches. For instance, the tableau in �gure 27 can be represented byffC;A;:Ag; fC;A;:Cg; fC;:B;Bgg:We use the notation B;' to represent B[f'g, where B is a branch and ' is a formula;and B1 jB2 j : : : jBn to represent the tableau fB1; B2; : : : ; Bng where Bi is a branch fori 2 f1; : : : ; ng. We also use �' to denote the formula if ' is a negated formula : , or:' otherwise.We will use the tree representation for visualising tableaux, and the multiset repre-sentation for the formal de�nition of the inference rules of tableau calculi.B.2 Tableaux-Based Proof ProceduresTableaux are constructed by a number of refutational proof procedures, referred to astableau calculi. Given a �nite set of sentences � to be refuted, tableau calculi consistof the following types of inference rules:Start Select an initial tableau T0 whose representative formula is weaker than �, thatis � j= hT0i. The semantics of the double turnstile symbol, j=, depends on thelogic concerned.

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 230Expansion Given a tableau Ti, it is expanded to a tableau Ti+1 by adding more struc-ture to it, with the restriction that � j= hTi+1i given the assumption that � j= hTii.Substitution Apply some substitution to all the nodes in a tableau.Close A branch of a tableau is marked as closed (by labelling the leaf node with theclose symbol) if the set of formulae labelling its nodes is shown to be inconsistent.Given a tableau Tf , since hTf i is equivalent to the disjunction of the formulaerepresenting the branches, a closed tableau represents an inconsistent formulae,i.e., hTf i j= ?, if Tf is closed.A closed tableau derived using these inferences is therefore a formal proof object of theinvalidity of the formula it represents, and if it is constructed by this method it gives aproof of the inconsistency of �.Note that the substitution rule is non-local, in the sense that it a�ects all the formu-lae labelling the nodes in the tableau. Because of this, tableaux and related methodsare usually referred to as rigid variable methods. One can reduce this rigidity of tableauvariables by introducing universal variables which need not be instantiated by the sub-stitution rule (see (Beckert and H�ahnle 1992)).In a tableau implementation, it is more practical to keep the global substitutionapplied to the tableau in a separate data structure instead of applying it to all tableaunodes. In such case the global substitution can be seen as a constraint on the tableau.More precisely, a substitution fx1 ! t1; : : : ; xn ! tng can be seen as the constraintx1 ' t1 ^ � � � ^ xn ' tn where constraints of the form s ' t, called equality constraints,signify the fact that the term s must be equal to the term t. Furthermore, the validityof the constraint 9~x:s1 ' t1 ^ � � � ^ sn ' tn, where ~x represents the list of variables freein si ' ti for i � n, is equivalent to whether there is a substitution which syntacticallyuni�es (Robinson 1971) (see also (Jouannaud and Kirchner 1991)) the terms si and ti.This constraint is represented by the set fs1 ' t1; : : : ; sn ' tng, and a solution to thisconstraint is a substitution � such that si� ' ti� for i � n. A constraint is said to besatis�able if it has a solution. Uni�cation is often the mechanism used in �nding theappropriate substitutions to use in the tableau substitution rule. Therefore, the globalsubstitution applied to the tableau is a solution (or rather the most general solution) ofsome constraint set. The multiset notation of tableaux is extended to include constraintsby de�ning a constraint tableau as a pair T � C, where T is a tableau and C is a constraintset. One can then rephrase the substitution rule into a constrain rule:Constrain Given a constraint tableau T � C, the constraint C can be replaced withsome stronger satis�able constraint C0.We can also extend equality constraints to formulae by considering predicates, the unaryoperator :, and the binary operators ^ and _ as function symbols. For example, theconstraint (:P (f(x)) ^Q(y)) ' (:P (y) ^Q(z))is satis�ed by fy ! f(x); z ! f(x)g, and(:P (f(x)) ^Q(y)) ' (P (y) ^Q(z))is not satis�able.

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 231� �1 �2' ^ ' :(' _) :' : :(')) ' : � �1 �2' _ ' :(' ^) :' : ') :' � �1::' ':> ?:? >

1(t)8x:'(x) '(t):(9x:'(x)) :'(t) � �1(t)9x:'(x) '(t):(8x:'(x)) :'(t)Table 4: A Uniform Notation for First-Order Formulae.Apart from equality constraints, which represent the global substitution applied tothe tableau, one can de�ne other types of constraints whose purpose is to restrict thesearch space during theorem proving. These include ordering constraints which areoften used in equality reasoning.B.2.1 Free Variable TableauxA rather simple tableau calculus for �rst-order logic is the free variable semantic tableaucalculus whose branches contain nodes labelled by formulae which may contain freevariables. Tableau branches are closed by unifying complementary formulae labellingthe branch nodes. As with other tableau calculi, we de�ne this calculus by giving thestart, expansion, constrain and closure rules for refuting a �nite set of sentences �.Start Initialise by constructing the constraint tableau having one branch whose nodesare labelled by the formulae in �, and an empty constraint set.Expansion Select a branch in the tableau, and a formula ' labelling one of its nodes.Expand the selected branch according to the structure of ' using one of the rulesbelow. Table 4 shows the types of formulae classi�ed by their structure using theuniform notation introduced by Smullyan (1995) with the addition of a � class tocontain certain negated formulae. The expansion rules are:� Add �1 and �2 to the selected branch,� Branch the last node of the selected branch with �1 and �2,
 Add
1(y) to the selected branch where y is a free variable,� Add �1(f(~x)) to the selected branch where f is a new Skolem function symbol,and ~x is the list of variables free in the � formula1.� Add �1 to the selected branch.1This version of the � expansion rule is called the liberalised � rule (H�ahnle and Schmitt 1994). Itdi�ers from the � rule given in (Fitting 1996) which includes all the free variables in the branch asarguments to the skolem function f . Tableau calculi using the liberalised rule are more e�cient. Evenmore liberalised � rules are given in (Beckert, H�ahnle, and Schmitt 1993; Baaz and Ferm�uller 1995).

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 232
� � fg (Start)B1; � j � � � jBn � CB1; �1; �2 j � � � jBn � C (�-expansion) B1; � j � � � jBn � CB1; �1 jB1; �2 j � � � jBn � C (�-expansion)B1;
 j � � � jBn � CB1;
;
1(y) j � � � jBn � C (
-expansion) B1; � j � � � jBn � CB1; �1(f(~x)) j � � � jBn � C (�-expansion)B1; P (s1; : : : ; sm);:P (t1; : : : ; tm) jB2 j � � � jBn � CB2 j � � � jBn � C [fs1 ' t1; : : : ; sm ' tmg (Substitution + Close)1. The substitution + close rule is applicable only if the constraint in the conclusion issatis�able.2. In the start rule, � is the set of sentences to be refuted.3. In the
 expansion rule, y is a new free variable,4. In the � expansion rule f is a new Skolem function symbol, and ~x is the list of variablesfree in �. Figure 28: The Free Variable Tableau Calculus.

Constrain Given a tableau T � C having a branch with formulae and ' include theconstraint ' �' in C. This rules fails if C [f ' �'g is unsatis�able. This isequivalent to applying the most general uni�er of and �' to all the formulaelabelling the nodes of the tableau substituted with the most general solution of C.Close Given a tableau T � C, a branch is closed if it contains ?, or a pair of formulaewhich become complementary when substituted with the most general solution ofC.The above calculus is refutationally complete but is highly nondeterministic. Thisnondeterminism can be reduced by adding several restrictions to the above rules withoutimpairing the calculus' completeness. For instance, the �, �, � and � expansion rulescan be applied only once on each node, and the constrain rule can be resticted to literals,and can be immediately followed by a closure rule. The sentences in � can be simpli�edby pushing the negation to the literals and removing the > and ? literals. As a result,the � expansion rule will never be applicable. One can also use fair strategies whichmake sure that each node in the tableau will eventually be used for expansion. Finally,one can apply a bound on the tableaux considered during the proof search to limit thesearch space to a �nite one (e.g., tableau size, branch length, the number of times the
rule can be used, etc.). This bound is increased until a closed tableau is found.The free variable tableau calculus is given in �gure 28. The implementation ofleanTAP given in (Beckert and Posegga 1995) is an example of this calculus.

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 233B.2.2 Connection Tableaux CalculusThe free variable tableau calculus can be modi�ed to refute a set of formulae in clausalform. Since clauses are skolemised disjunctions universally quanti�ed implicitly, only
 and � expansion rules are applicable. One can also de�ne an expansion step corre-sponding to a number of � and � expansion steps so that the leaf node of a selectedbranch can be branched with all the literals in a clause in a single rule. That is, giventhe clause L1 _ � � � _ Lm, an inference rule can be de�ned to represent the sequence ofexpansions: B1;8x1; : : : ; xn:L1 _ � � � _ Lm j � � � jBn � CB1;8x2; : : : ; xn:(L1 _ � � � _ Lm)fx1 ! y1g j � � � jBn � C (
)... (
)B1; L1� _ � � � _ Lm� j � � � jBn � C (
)B1; L1� jB1; L2� _ � � � _ Lm� j � � � jBn � C (�)... (�)B1; L1� j � � � jB1; Lm� j � � � jBn � C (�)where � is the substitution fx1 ! y1; : : : ; xn ! yng and the (distinct) variables yi for1 � i � n do not occur in B1 j � � � jBn � C.One can construct a tableau consisting only of literals using this expansion rule onthe given set of clauses. In this case, the refutational completeness of the calculus ispreserved if the proof search is restricted to tableaux satisfying a number of structuralproperties which include connectedness (see the thesis of Letz (1993) in which a numberof such properties are de�ned and compared). A tableau is said to be connected ifeach inner node labelled with a literal L has an immediate successive leaf node labelledwith its complement �L. For instance, the tableau in �gure 27 is not connected becausethe node labelled with C does not have an immediate successor labelled with :C.The proof search space in the connected tableaux calculus can therefore be reducedby restricting expansion rules to those which yield a successive constrain and closurerule. This restriction makes tableau proof search on connection tableau much moree�cient than that of the free variable tableau illustrated earlier, and o�ers a high degreeof goal-directedness. The expansion-constrain-closure sequence of inferences de�nesthe extension rule of the connection tableau calculus. The other inference rules ofthe calculus are the start rule which constructs the connection tableau L1 j � � � jLmgiven a clause L1 _ � � � _ Lm, and the reduction rule which corresponds to a constrainrule followed by a closure rule. Note that all inferences of the connection tableaucalculus with the exception of the start rule result in the closure of some branch. Themodel elimination calculus of Loveland (1968) is a connection tableau calculus wherethe branch to be expanded is selected in a depth-�rst left (or right) most strategy. TheMESON theorem prover implemented in the HOL system is a model elimination calculuswith an optimised proof search strategy (Harrison 1996c).Figure 29 gives the rules for the connection tableau calculus. We illustrate this

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 234
L1 j � � � jLm � fg (Start)B1; L j � � � jBn � CB1; L1 j � � � jB1; Li�1 jB1; Li+1 j � � � jB1; Lm j � � � jBn � C [fL ' �Lig (Extension)B1; P (s1; : : : ; sl);:P (t1; : : : ; tl) jB2 j � � � jBn � CB2 j � � � jBn � C [fs1 ' t1; : : : ; sl ' tlg (Reduction)1. The rules are applicable only if the constraint in their conclusion is satis�able.2. In the start and extension rules, L1 _ � � � _Lm is an instance of a clause C in the set �of clauses being refuted, where each free variable in C is instantiated to a new variablewhich does not occur in the tableau.Figure 29: The Connection Tableau Calculus.

calculus by refuting the following set of clauses:P (x) _Q(x) _ :R(x) :P (c)P (y) _ :Q(y) R(c)as follows P (v1) jQ(v1) j :R(v1) � fg Start (P (x) _Q(x) _ :R(x))fx! v1gQ(v1) j :R(v1) � v1 ' c Extension :P (c)Q(v1); P (v2) j :R(v1) � fv1 ' c; v2 ' cg Extension (P (y) _ :Q(y))fy ! v2g:R(v1) � fv1 ' c; v2 ' cg Extension :P (c)fg � fv1 ' c; v2 ' cg Extension R(c)to �nd the closed connected tableau in �gure 30.B.2.3 Tableaux Calculi for First-Order Logic with EqualityThe methods for handling the equality predicate in tableau calculi for �rst-order logicinclude:1. Eliminating equality by transforming the set of sentences into an equivalent setwhich does not involve equality, and applying a tableau calculus for pure �rst-orderlogic.2. Adding new expansion and closure rules to the tableau calculus.3. Closing branches by E-uni�cation.The �rst method involves adding the equality axioms of re
exivity, symmetry, transitiv-ity and congruence on the function symbols involved in the set of sentences. Examples

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 235
P (v1):P (c)�fv1!cg Q(v1)P (v2):P (c)�fv2!cg :Q(v2)�fv1!v2g :R(v1)R(c)�fv1!cg

Figure 30: An Example of a Closed Connection Tableau.
B1; t � s; '[t0] j � � � jBn � CB1; t � s; '[s] j � � � jBn � C [ft ' t0g (Fitting �-expand)B1; t 6� t0 jB2 j � � � jBn � CB2 j � � � jBn � C [ft ' t0g (Equality Re
exivity)� The rules are applicable only if the constraint in their conclusion is satis�able.Figure 31: Fitting's Additional Expansion and Closure Rules.

of the second method include Fitting's approach in (Fitting 1996) which is an extensionof the technique of Je�rey (1967) for adding equality to ground tableau calculi. In Fit-ting's approach the rules given in �gure 31 are added to the free variable tableau rules.We use the notation x � y to ambiguously represent the equality literals x = y andy = x. Similarly, we use x 6� y for both :(x = y) and :(y = x). The main problem withsuch methods is that the use of equality is undirected, and the addition of such rulesresults in a very large search space and the untractability of solving even very simpleproblems.The success of completion-based methods (Knuth and Bendix 1970) for solving equa-tions, often called E-uni�cation problems, inspired the development of the third methodmentioned above, where a tableau branch is treated as an E-uni�cation problem andsolved usually using calculi based on unfailing completion (Bachmair, Dershowitz, andPlaisted 1989). More formally, a (general) E-uni�cation problem is of the formE1; : : : ; En `? Ewhere the formulae Ei for i 2 f1; : : : ; ng are equations whose free variables are im-plicitly universally quanti�ed, and E is an equation whose free variables are implicitlyexistentially quanti�ed. A solution to a problem of this form is a substitution � such

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 236that E1; : : : ; En ` E�:Note that the substitution � is applied only to the conclusion E. However, we recall thatfree variables in tableaux are treated rigidly and that substitutions are applied to thewhole tableau, and therefore the closure of a tableau branch cannot correspond to thesolution of a E-uni�cation problem. This lead to the de�nition of the rigid E-uni�cationproblem by Gallier, Raatz, and Snyder (1987). A rigid E-uni�cation problem is of theform E1; : : : ; En `?r Ewhere E and the formulae Ei for i 2 f1; : : : ; ng are equations whose free variables aretreated rigidly. A solution to this problem is a substitution � such thatE1�; : : : ; En� ` E�:This di�ers from the de�nition of the solution for the general E-uni�cation problem sincethe substitution � is applied to both the assumptions (E1; : : : ; En) and the conclusion(E) of the above problem.The problem of closing a tableau branch reduces to that of solving a number of rigidE-uni�cation problems. For instance, closing the branchfx1 � 1 = x1; x2 + x3 = x3 + x2; P (3 + (x2 � 1)); :P (4 + 3)gis equivalent to the rigid E-uni�cation problemx1 � 1 = x1; x2 + x3 = x3 + x2 `?r 3 + (x2 � 1) = 4 + 3and can be solved with the substitution fx1 ! 4; x2 ! 4; x3 ! 3g. The general E-uni�cation problem is undecidable, even for very simple equational theories (see (Siek-mann 1989)), but the rigid E-uni�cation problem has been shown to be NP-completeby Gallier, Narendran, Plaisted, and Snyder (1990). E�cient completion based al-gorithms for solving the rigid E-uni�cation problem have been developed in (Gallier,Narendran, Plaisted, and Snyder 1990; Goubault 1993; Becher and Petermann 1994;Kogel 1995) and proposed to be used in closing tableau branches during proof search.Although, in general a rigid E-uni�cation problem can have an in�nite number of so-lutions these algorithms yield a �nite complete set of solutions by enumerating thesubstitutions which are not equivalent to each other according to the rigid equationaltheory considered. For example, the problem f(a) = a `?r x = a has the solutionsfx ! fn(a)g for n = 0; 1; 2; : : : , but the set ffx ! agg is a complete set of solu-tions because all the possible solutions are equivalent to fx! ag given the assumptionf(a) = a.However, as can be seen in the tableau in �gure 32, a complete set of solutions closingone branch may not be enough to close a refutable tableau. The tableau can be closedby the substitution fx ! f3(a)g, but a complete set of solutions closing the branchfP (a);:P (x); f(a) = ag given by ffx ! agg and cannot be used to close the otherbranch f:Q(x); Q(f3(a))g. The reasons for this is that di�erent branches of the sametableau yield di�erent rigid equational theories, and therefore the notion of a completeset of solutions is only local to one branch rather than global to the whole tableau.In general, one cannot close a tableau by treating its branches as rigid E-uni�cation

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 237
P (a):P (x)f(a) = a :Q(x)Q(f3(a))Figure 32: Tableau Branches with Di�erent Rigid Equations.problems and solving them one by one using complete list of solutions.This led to the discovery of the simultaneous rigid E-uni�cation problem, where anumber of rigidE-uni�cation problems (representing the di�erent branches of a tableau)E11; : : : ; E1n1 `?r E1E21; : : : ; E2n2 `?r E2...Em1; : : : ; Emnm `?r Emneed to be solved simultaneously, that is, �nding a substitution � which solves all theabove rigid E-uni�cation problems. This problem turns out to be quite di�erent fromthe single rigid E-uni�cation problem and was shown to be undecidable (Degtyarev andVoronkov 1996), even for surprisingly small fragments of the problem (Plaisted 1995;Veanes 1997). As a result, the problem of deciding whether an expanded tableau canbe closed with respect to the theory of �rst-order logic with equality is undecidable.Degtyarev and Voronkov (1998) proposed the rigid basic superposition (BSE) cal-culus which enumerates a �nite set of answer constraints embedding solutions to agiven rigid E-uni�cation problem. When used to solve a number of simultaneous rigidE-uni�cation problems, it gives a terminating, and therefore incomplete, sequence ofsolutions to the problem. However, it gives a complete calculus for �rst-order logic withequality when used for closing tableau branches. That is, although the BSE calculus maynot close all the branches in a refutable (in principle) tableau, every refutable tableaucan be expanded (by the application of the expand rules) to one whose branches canbe closed by the BSE calculus. Figure 33 illustrates the three additional tableau ruleswhich solve the rigid E-uni�cation problem inherent in the tableau branches. Theserules are applied to constraint tableaux of the form T � C where T is a free variabletableau and C is an ordering equality constraint. Ordering equality constraints are �rst-order formulae over the two binary symbols ' (for equality constraints) and � (forordering constraints), where � is a reduction ordering, that is� it is a well-founded partial ordering on terms,� it is monotonic, i.e., if a � b then s[a] � s[b], and� it is closed under substitutions, i.e., if s � t then s� � t� for all substitutions �,

APPENDIX B. TABLEAUX FOR FIRST-ORDER LOGIC 238
B1; l � r; s[p] � t j � � � jBn � CB1; l � r; s[r] � t j � � � jBn � C [fl � r; s[p] � t; l ' pg (left rigid basic superposition)B1; l � r; s[p] 6� t j � � � jBn � CB1; l � r; s[r] 6� t j � � � jBn � C [fl � r; s[p] � t; l ' pg (right rigid basic superposition)B1; s 6� t jB2 j � � � jBn � CB2 j � � � jBn � C [fs ' tg (equality re
exivity)� The rules can be applied only if the following conditions hold1. the constraint at the conclusion of each rule is satis�able.2. in the basic superposition rules, the term p is not a variable. This is called thebasic restriction which results in a much restrictive search space without losingthe completeness of the calculus.3. the right-hand side of the rigid equation at the premise of each rule is not of theform q � q (to avoid the substitution of a term by itself).4. in the left basic superposition rule, s[r] 6= t (otherwise the literal t � t will beincluded in the tableau branch).Figure 33: Additional Tableau Rules for Rigid Basic Superposition.

which is also total on ground terms. Such orderings are described in (Klop 1992) forinstance. Nieuwenhuis and Rubio (1995) give e�cient algorithms for solving orderingequality constraints.The three rules in �gure 33 together with the start and expansion rules of the freevariable tableau give a refutationally complete calculus for �rst-order logic with equality.Note that these rules are de�ned on equations and inequations only; a positive literalP is treated as P � > and a negative literal :P as P 6� >.

Appendix CA Long ProofC.1 K-Consistency Implies K-Satis�abilityLet K be a connectability relation over a countable set of colours P which has sometotal order �. Let C be a K-consistency property and let CxK = fSxK� j S 2 Cg. Asillustrated in example 7.6, CxK is in general not a consistency property. However, wecan always construct a consistency property (C�K de�ned below) containing CxK. Theaim of this appendix is to give a detailed proof of this statement. A consequence of thisresult is that every K-consistent set is K-satis�able. (Theorem C.1 below).De�nition C.1 Given a �nite list l and an expression [j] representing some formulafor every j in l, let [̂j l [j] be de�ned as follows:[̂j [] [j] = fg[̂j (a:l) [j] = ff ^j (a:l) [j]gg [ff [a]; ^j (a:l) [j]g [X j X 2 [̂j l [j]gwhere ^j [x1;::: ;xn]P (j) = P (x1) ^ � � � ^ P (xn): �De�nition C.2 Given a set S of coloured sentences and a connectability relation K,we de�ne S�K =[8<: [̂j [K(i)]Aixj j Ai 2 S, Ai is a literal9=;where [K(i)] is the �nite list containing the colours in the range K(i) sorted in ascendingorder according to the ordering �. �
239

APPENDIX C. A LONG PROOF 240De�nition C.3 Given a connectability relation K and a set S of coloured sentences,we de�ne S�K = nSxK [[X j X � S�Ko : �De�nition C.4 Given a connectability relation K and a collection of sets of colouredsentences C, then we de�ne C�K =[fS�K j S 2 Cg: �Example C.1 Let the set S = fAi; Bj _ :Ak; Bjg, and the connectability relationK = i$ j $ k with i < j < k (as in example 7.6). Then,[̂m [K(i)]Aixm = ffAijgg[̂m [K(j)]Bjxm = ffBji ^Bjkg; fBji ^Bjk; Bji; BjkggAnd so S�K = ffAijg; fBji ^Bjkg; fBji ^Bjk; Bji; Bjkgg:Now S�K = fSxK [fg; SxK [fAijg; SxK [fBji ^Bjkg;SxK [fBji ^Bjk; Bji; Bjkg; SxK [fAij ; Bji ^Bjkg;SxK [fAij ; Bji ^Bjk; Bji; Bjkgg= ffAij ; (Bji ^Bjk) _ :Ajk; Bji ^Bjkg;fAij ; (Bji ^Bjk) _ :Ajk; Bji ^Bjk; Bji; Bjkgg:If C = fSg, then C�K = SfS�K j S 2 Cg = S�K which is a consistency property. �Proposition C.1 For every literal B 2 SxK, if B 6= > then there is some colouredliteral Ai 2 S such that B = Aixj and i �K j.Proof: If B 2 SxK then there is some coloured literal Ai 2 S such thatB = (Ai)xK = >; if i =2 C(K)= ^j [K(i)]Aixj; otherwise.If K(i) = fg then B = >. Otherwise, if K(i) 6= fg then B = Vj [K(i)]Aixj and since Bis a literal, and therefore not a conjunction, then K(i) must be some singleton set fjgwith i �K j. Therefore B = Aixj, Ai 2 S and i �K j as required. �Proposition C.2 Given a list l and an expression [j] representing a formula for everyj in l, then1. If l is non-empty then fĵ l [j]g 2 [̂j l [j].

APPENDIX C. A LONG PROOF 2412. For every S 2 [̂j l [j], it is the case that ĵ l [j] 2 S.3. For every S 2 [̂j l [j], if ' 2 S then� ' = [j], for some j in l, or� ' = ĵ l0 [j], for some list l0, such that l0 is a tail sublist of l and]l0 > 1,where l1 is a tail sublist of l2 if there is some list l3 such that l2 = l3 ++l1,and]l0 is the length of the list l0.Proof: The �rst two statements follow directly from De�nition C.1, and the thirdone proceeds by induction on l. The base case is trivial since no set S 2 [̂j [] [j].Now for the induction case, if S 2 [̂j (a:l) [j], then S = f ^j (a:l) [j]g, or else S =f [a]; ^j (a:l) [j]g [X, for some X 2 [̂j l [j]. We consider these cases separately:� If S = f ^j (a:l) [j]g then ' = ^j (a:l) [j], and if l is not empty then](a : l) > 1.However, if l is empty then ^j (a:l) [j] = [a] and a is in (a : l).� If S = f ^j (a:l) [j]; [a]g [X, for some X 2 [̂j l [j], then either ' = [a] (inwhich case we are done since a is in (a : l)), or ' = ^j (a:l) [j] (and the proofproceeds as in the previous case), or else ' 2 X. Now if ' 2 X it follows fromthe induction hypothesis that ' = [j] for some j in l (and hence in (a : l)), or' = ĵ l0 [j] for some l0 tail sublist of l (and hence of (a : l)) with]l0 > 1. �Proposition C.3 Given a list l and an expression [j] representing a non-conjunctiveformula for every j in l, then for every S 2 [̂j l [j], if ' ^ # 2 S then S [f'; #g 2[̂j l [j].Proof: As in the proof of proposition C.2(3) we proceed by induction on l. The basecase is once again trivial and for the induction case we consider the cases of whetherS = f ^j (a:l) [j]g or S = f ^j (a:l) [j]; [a]g [X for some X 2 [̂j l [j] separately:

APPENDIX C. A LONG PROOF 242� For the �rst case we have ' ^ # = ^j (a:l) [j] and we can assume that l is notempty otherwise ^j (a:l) [j] would not be a conjunction. Thus, ' = [a] and# = ĵ l [j]. Now, by proposition C.2(1) fĵ l [j]g 2 [̂j l [j] and thus by De�ni-tion C.1, f ^j (a:l) [j]; [a]; ĵ l [j]g (which is equal to S[f'; #g) is in [̂j (a:l) [j].� If S = f ^j (a:l) [j]; [a]g [X (and X 2 [̂j l [j]), then either ' ^ # = ^j (a:l) [j]and l is non-empty, or ' ^ # 2 X. (Note that ' ^ # 6= [a] as [a] is notconjunctive.)If '^# = ^j (a:l) [j], then ' = [a] and # = ĵ l [j]. Now, by Proposition C.2(2),ĵ l [j] is in X and thus in S. And since [a] is also in S, it follows that S [f'; #g = S which is in [̂j (a:l) [j].Now, if ' ^ # 2 X,X [f'; #g 2 [̂j l [j] by the induction hypothesis) f [a]; ^j (a:l) [j]g [(X [f'; #g) 2 [̂j (a:l) [j] by De�nition C.1) S [f'; #g 2 [̂j (a:l) [j]: �Proposition C.4 Given a list l and an expression [j] representing a formula for everyj in l, then for every i in l, there is some set S 2 [̂j l [j] with [i] 2 S.Proof: We proceed by induction on l. The base case is trivial, and for the induction casewe need to show that for all i in (a : l) there is some set S 2 [̂j (a:l) [j] with [i] 2 S.If i = a, then f ^j (a:l) [j]; [a]; ĵ l [j]g 2 [̂j (a:l) [j] for non-empty l, and f [a]g 2[̂j (a:l) [j] if l is empty. In any case, there is some set S 2 [̂j (a:l) [j] with [a] 2 S.On the other hand, if i 6= a then i must be in l, and by the induction hypothesis, there

APPENDIX C. A LONG PROOF 243is some set S0 2 [̂j l [j] such that [i] 2 S0. Now let S = f [a]; ^j (a:l) [j]g [S0. Thus [i] 2 S and it follows from De�nition C.1 that S 2 [̂j (a:l) [j]. �Proposition C.5 If S1 � S2 then S�K1 � S�K2 .Proof: Let X 2 S�K1 , then by De�nition C.2, the formula X 2 [̂j [K(i)]Aixj for someAi 2 S1, and since S1 � S2 then Ai 2 S2 and thus X 2 S�K2 . �Proposition C.6 Given a connectability relation K and a set of coloured sentences S,then1. For every literal Ai 2 S where i 2 C(K) there is some set X 2 S�K with AixK 2X.2. For every literal Ai 2 S and colour j such that i �K j, there is some set X 2 S�Kwith Aixj 2 X.3. For every set X 2 S�K, if the literal Aixj 2 X then Ai 2 S and i �K j.Proof:1. For all sets X 2 [̂j [K(i)]Aixj, we have ^j [K(i)]Aixj 2 X by Proposition C.2(2).Now AixK = ^j [K(i)]Aixj, and by De�nition C.2 it is the case that [̂j [K(i)]Aixj �S�K since Ai 2 S, and thus X 2 S�K.2. There is some set X 2 [̂j [K(i)]Aixj with Aixj 2 X by proposition C.4, and as inthe previous case, since [̂j [K(i)]Aixj � S�K it follows that X 2 S�K.3. Let Aixj 2 X for some X 2 S�K, then X 2 [̂m [K(n)]Bnxm for some literal Bn 2S. And since Aixj is not a conjunction, it follows from Proposition C.2(3) thatAixj = Bnxm for some m in K(n). Hence, since m is in K(n) then Bnxm 6= >,and therefore A = B, i = n and j = m, and thus Ai 2 S and i �K j. �Proposition C.7 For all sets X 2 S�K, if ' ^ # 2 X then X [f'; #g 2 S�K.

APPENDIX C. A LONG PROOF 244Proof: Since X 2 S�K, then X 2 [̂j [K(i)]Aixj for some Ai 2 S. Now' ^ # 2 X) X [f'; #g 2 [̂j [K(i)]Aixj (by Proposition C.3)) X [f'; #g 2 S�K (by De�nition C.2). �Proposition C.8 Given a connectability relation K and a set S of coloured sentences,then1. For every literal Ai 2 S and colour j such that i �K j there is a set X 2 S�K withAixj 2 X.2. For every literal B 2 X where X 2 S�K, if B 6= > then there is some literalAi 2 S such that B = Aixj and i �K j.Proof:1. If Ai 2 S and i �K j then by Proposition C.6(2) there is some Y 2 S�K such thatAixj 2 Y . Thus, Aixj 2 SxK[SfY g and since fY g � S�K then SxK[SfY g 2S�K.2. If X 2 S�K, then X = SxK [SZ for some Z � S�K. Hence, since B 2 X,either B 2 SxK or B 2 SZ. For the �rst case, B 2 SxK and by Proposition C.1B = Aixj for some Ai 2 S and where i �K j. Alternatively, if B 2 SZ for someZ � S�K, it follows that B 2 Y for some Y 2 Z, and therefore Y 2 S�K. ThusY 2 [̂j [K(i)]Aixjfor some literal Ai 2 S. As a result, B = Aixj for some j where i �K j byProposition C.2(3). �We are now ready to show that C�K is a consistency property.Lemma C.1 If C is a K-consistency property then C�K is a consistency property.Proof: We prove that C�K is a consistency property by showing that all the conditionsin De�nition 7.1 are satis�ed.1. Let X 2 C�K, then X 2 S�K for some S 2 C. Now, if a literal B 2 X then eitherB = >, or else B = Aixj, Ai 2 S and i �K j, by Proposition C.8(2). For the �rstcase Ai 2 S and i �K j) :Aj =2 S as S 2 C) (:Aj)xi =2 X, by Prop. C.8(1)) :(Aixj) =2 X) :B =2 X:For the second case, if B = >, then :> = ? and ? =2 X by case 2 below.

APPENDIX C. A LONG PROOF 2452. Let X 2 C�K, then X 2 S�K for some S 2 C. We are required to show that? =2 X. Suppose that ? 2 X, then ? = Aixj for some Ai 2 S and i �K jby Proposition C.8(2). Therefore A = ? by de�nition 7.16 on page 128 and so?i 2 S. It is also the case that i is in K as i �K j. But this is a contradictionsince S 2 C and C is a coloured consistency property.3. Let X 2 C�K and ' ^ 2 X, thenX 2 C�K) X 2 S�K for some S 2 C) X = SxK [[Y for some Y � S�K.We now consider the cases of whether ' ^ 2 SY or whether ' ^ 2 SxK.� If ' ^ 2 SY where Y � S�K, then' ^ 2 Z for some Z 2 Y , i.e.,Z 2 S�K) Z [f'; g 2 S�K by Proposition C.7) Y [fZ [f'; gg � S�K) SxK [[(Y [fZ [f'; gg) 2 S�K:Now, SxK [[(Y [fZ [f'; gg)= SxK [[Y [(Z [f'; g)= SxK [[Y [f'; g (since Z 2 Y)= X [f'; g:And therefore, X [f'; g 2 C�K.� If ' ^ 2 SxK then there is some formula � 2 S such that ' ^ = �xK.Now, � is either a literal and](K(i)) > 1, or else � is a conjunction. If � issome literal Ai 2 S then' ^ = AixK = ^j [K(i)]Aixjand therefore f' ^ g 2 [̂j [K(i)]Aixj by Proposition C.2(1). Hencef' ^ ;'; g 2 [̂j [K(i)]Aixjand thus f' ^ ;'; g 2 S�K.Since Y � S�K, we getY [ff' ^ ;'; gg � S�K) SxK [[(Y [ff' ^ ;'; gg) 2 S�K:

APPENDIX C. A LONG PROOF 246
Now, SxK [[(Y [ff' ^ ;'; gg)= SxK [[Y [f' ^ ;'; g= SxK [[Y [f'; g (since ' ^ 2 SxK)= X [f'; g:And therefore, X [f'; g 2 C�K.We now consider the case where � is not a literal, and therefore we assumethat it is some conjunctive formula � ^ � 2 S, and that �xK = ' and�xK = . But since S 2 C, then S [f�; �g 2 C as well. Now,(S [f�; �g)xK [[V 2 C�K for all V � (S [f�; �g)�K) (S [f�; �g)xK [[Y 2 C�K(as Y � S�K � (S [f�; �g)�K and by Proposition C.5)) SxK [f�xK; �xKg [[Y 2 C�K) X [f�xK; �xKg 2 C�K (as X = SxK [SY)) X [f'; g 2 C�K:The remaining cases follow easily from the fact that C is a K-consistency property, andwe consider only the fourth case for illustration.4. Let X 2 C�K and '_ 2 X. Now X = SxK[SY for some Y � S�K. Now since' _ 2 X is neither a literal nor a conjunction, ' _ 2 SxK and thus there issome � _ � 2 S and �xK = ' and �xK = . Hence, S [f�g 2 C or S [f�g 2 C.If S [f�g 2 C then,(S [f�g)xK [[V 2 C�K for all V � (S [f�g)�K) (S [f�g)xK [[Y 2 C�K as Y � S�K � (S [f�g)�K) SxK [f�xKg [[Y 2 C�K) X [f�xKg 2 C�K) X [f'g 2 C�K:Similarly, if S [f�g 2 C then X [f g 2 C�K, and hence X [f'g 2 C�K orX [f g 2 C�K. �Theorem C.1 If C is a K-consistency property, then every set S 2 C is K-satis�able.Proof: If S 2 C then S�K � C�K. By de�nition, S�K = fSxK [SX j X � S�Kg,and thus SxK 2 S�K as fg � S�K, and so SxK 2 C�K. Now, by Lemma C.1 C�K is aconsistency property and by the Model Existence theorem it follows that the set SxKis satis�able. Thus S is K-satis�able. �

BibliographyAndrews, P. B. (1981, April). Theorem proving via general matings. Journal of theACM 28 (2), 193{214.Anonymous (1994, June 26{July 1,). The QED manifesto. In A. Bundy (Ed.), 12thInternational Conference on Automated Deduction, Volume 814 of LNAI, Nancy,France, pp. 238{251. Springer-Verlag.Baaz, M. and C. G. Ferm�uller (1995, May). Non-elementary speedups between dif-ferent versions of tableaux. In P. Baumgartner, R. H�ahnle, and J. Posegga (Eds.),Proceedings of the 4th International Workshop on Theorem Proving with Ana-lytic Tableaux and Related Methods, Volume 918 of LNAI, Berlin, pp. 217{230.Springer.Bachmair, L., N. Dershowitz, and D. A. Plaisted (1989). Completion without failure.In H. A��t-Kaci and M. Nivat (Eds.), Resolution of Equations in Algebraic Struc-tures, Volume 2: Rewriting Techniques, Chapter 1, pp. 1{30. New York: AcademicPress.Back, R., J. Grundy, and J. von Wright (1996, November). Structured calculationalproof. TUCS Technical Report 65, Turku Centre for Computer Science, Lem-mink�aisenkatu 14A, 20520 Turku, Finland. Also available as ANU Technical Re-port TR-CS-96-09.Bailey, A. (1998, January). The Machine-Checked Literate Formalisation of Algebrain Type Theory. Ph. D. thesis, Faculty of Science and Engineering, The Universityof Manchester.Barras et al., B. (1996, November). The Coq Proof Assistant Reference Manual. ProjetCoq | INRIA-Rocquencourt, CNRS-ENS Lyons. (Version 6.1).Becher, G. and U. Petermann (1994, September). Rigid uni�cation by completion andrigid paramodulation. In B. Nebel and L. Dreschler-Fischer (Eds.), Proceedings ofthe 18th German Annual Conference on Arti�cial Intelligence : KI-94: Advancesin Arti�cial Intelelligence, Volume 861 of LNAI, Berlin, pp. 319{330. Springer.Beckert, B. (1997, February). Semantic tableaux with equality. Journal of Logic andComputation 7 (1), 39{58.Beckert, B. and R. H�ahnle (1992, June). An improved method for adding equalityto free variable semantic tableaux. In D. Kapur (Ed.), Proceedings of the 11thInternational Conference on Automated Deduction (CADE-11), Volume 607 ofLNAI, Saratoga Springs, NY, pp. 507{521. Springer.Beckert, B., R. H�ahnle, and P. H. Schmitt (1993, August). The even more liberalized�-rule in free variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici247

BIBLIOGRAPHY 248(Eds.), 3rd Kurt G�odel Colloquium (KGC), LNCS 713, Brno, Czech Republic, pp.108{119. Springer.Beckert, B. and J. Posegga (1995). leanTAP : Lean tableau-based deduction. Journalof Automated Reasoning 15 (3), 339{358.Benzm�uller et al., C. (1997, July13{17).
MEGA: Towards a mathematical assis-tant. In W. McCune (Ed.), Proceedings of the 14th International Conference onAutomated deduction, Volume 1249 of LNAI, Berlin, pp. 252{255. Springer.Bibel, W. (1981, October). On matrices with connections. Journal of the ACM 28 (4),633{645.Birkho�, G. (1935). On the structure of abstract algebras. In Proceedings of theCambridge Philosophical Society 31(4), pp. 433{454.Bittel, O. (1992, September). Tableau-based theorem proving and synthesis oflambda-terms in the intuitionistic logic. In D. Pearce and D. Wagner (Eds.), Pro-ceedings of the European Workshop JELIA '92 on Logics in AI, Volume 633 ofLNAI, Berlin, FRG, pp. 262{278. Springer Verlag.Bj�rner, N. S., M. E. Stickel, and T. E. Uribe (1997, July13{17). A practical in-tegration of �rst-order reasoning and decision procedures. In W. McCune (Ed.),Proceedings of the 14th International Conference on Automated deduction, Volume1249 of LNAI, Berlin, pp. 101{115. Springer.Black, P. E. and P. J. Windley (1995, September). Automatically synthesized termdenotation predicates: A proof aid. See Schubert, Windley, and Alves-Foss (1995),pp. 46{57.Boole, G. (1848). The calculus of logic. The Cambridge and Dublin MathematicalJournal 3, 183{198.Boulton, R. J. (1993, August). Lazy techniques for fully expansive theorem proving.Formal Methods in System Design 3 (1/2), 25{47.Camilleri, J. and T. Melham (1992, August). Reasoning with inductively de�ned rela-tions in the HOL theorem prover. Technical Report 265, University of CambridgeComputer Laboratory.Chang, C. C. and H. J. Keisler (1990). Model Theory (3rd ed.), Volume 73 of Studiesin Logic and the Foundations of Mathematics. Amsterdam: North-Holland.Church, A. (1936). An unsolvable problem of elementary number theory. AmericanJournal of Mathematics 58, 345{363.Church, A. (1940). A formulation of a simple theory of types. Journal of SymbolicLogic 5, 56{68.Comon, H. (1990). Solving symbolic ordering constraints. IJFCS: International Jour-nal of Foundations of Computer Science 1 (4), 387{411.Constable et al., R. L. (1986). Implementing mathematics with the Nuprl proof devel-opment system. Prentice Hall.Coquand, T. and G. Huet (1986, May). The calculus of constructions. Rapport deRecherche 530, INRIA, Rocquencourt, France.

BIBLIOGRAPHY 249Coscoy, Y. (1997, September). A natural language explanation for formal proofs.In C. Retor�e (Ed.), Proceedings of the 1st International Conference on LogicalAspects of Computational Linguistics (LACL-96), Volume 1328 of LNAI, Berlin,pp. 149{167. Springer.Coscoy, Y., G. Hahn, and L. Th�ery (1997, April). Extracting text from proofs. InTyped Lambda Calculus and Applications (Edinburgh), Volume 902 of LNCS.Springer-Verlag.Craig, W. (1957). A new form of the Herbrand-Gentzen theorem. Journal of SymbolicLogic 22, 250{268.Cutland, N. J. (1980). Computability: An introduction to recursive function theory.Cambridge: Cambridge Univ. Press.Cyrluk, D., P. Lincoln, and N. Shankar (1996). On Shostak's decision procedure forcombinations of theories. In M. A. McRobbie and J. K. Slaney (Eds.), Proceedingsof the 13th International Conference on Automated Deduction, (New Brunswick,NJ), Volume 1104 of Lecture Notes in Arti�cial Intelligence, pp. 463{477. Springer-Verlag.Davis, M. (1965). The Undecidable. Basic papers on undecidable propositions, unsolv-able problems and computable functions. Raven Press, Hewlett, N.Y.Davis, M. (1981, 24{28 August). Obvious logical inferences. In P. J. Hayes (Ed.),Proceedings of the 7th International Joint Conference on Arti�cial Intelligence(IJCAI '81), Los Altos, CA, pp. 530{531. William Kaufmann.de Bruijn, N. G. (1970). The mathematical language AUTOMATH, its usage,and some of its extensions. In M. Laudet, D. Lacombe, L. Nolin, andM. Sch�utzenberger (Eds.), Proceedings Symposium on Automatic Demonstration,Versailles, France, Dec 1968, Volume 125 of Lecture Notes in Mathematics, pp.29{61. Berlin: Springer-Verlag.de Bruijn, N. G. (1980). A survey of the project AUTOMATH. In J. R. Hindley andJ. P. Seldin (Eds.), Essays on Combinatory Logic, Lambda Calculus and Formal-ism, pp. 580{606. London: Academic Press.Degtyarev, A. and A. Voronkov (1996, October). The undecidability of simultaneousrigid E-uni�cation. Theoretical Computer Science 166 (1-2), 291{300.Degtyarev, A. and A. Voronkov (1998). What you always wanted to know about rigidE-uni�cation. Journal of Automated Reasoning 20 (1), 47{80.Fay, M. (1979, February). First-order uni�cation in an equational theory. In Pro-ceedings of the Fourth Workshop on Automated Deduction, Austin, Texas, pp.161{167.Fitting, M. (1972). Tableau methods of proof for modal logics. Notre Dame Journalof Formal Logic 13 (2), 237{247.Fitting, M. C. (1996). First-Order Logic and Automated Theorem Proving (2nd ed.).Graduate Texts in Computer Science. Berlin: Springer-Verlag. 1st ed., 1990.Frege, G. (1879). Begri�sschrift, eine der Arithmetischen Nachgebildete Formel-sprache des Reinen Denkens. Halle. English translation in From Frege to G�odel,a Source Book in Mathematical Logic (J. van Heijenoort, Editor), Harvard Uni-versity Press, Cambridge, 1967, pp. 1{82.

BIBLIOGRAPHY 250Gallier, J., P. Narendran, D. Plaisted, S. Raatz, and W. Snyder (1993, January). Analgorithm for �nding canonical sets of ground rewrite rules in polynomial time.Journal of the ACM 40 (1), 1{16.Gallier, J., P. Narendran, D. Plaisted, and W. Snyder (1990, July/August). Rigid E-uni�cation: NP-completeness and applications to equational matings. Informationand Computation 87 (1/2), 129{195.Gallier, J. H., S. Raatz, and W. Snyder (1987, 22{25 June). Theorem proving usingrigid E-uni�cation equational matings. In Proceedings, Symposium on Logic inComputer Science, Ithaca, New York, pp. 338{346. The Computer Society of theIEEE.Girard, J.-Y. (1972). Interpr�etation fonctionelle et �elimination des coupures dansl'arith�etique d'ordre sup�erieur. Ph. D. thesis, Universit�e Paris VII.G�odel, K. (1931). �Uber formal unentscheidbare s�atze der principia matematica undverwandter systeme I. Monatshefte f�ur Matematik und Physik 38, 173{98. EnglishTranslation in (Davis 1965), pp. 4{38.Gordon, M. (1985). Why higher-order logic is a good formalism for specifying andverifying hardware. Technical Report 77, University of Cambridge Computer Lab-oratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK.Gordon, M. (1996, August). Set theory, higher order logic or both? See von Wright,Grundy, and Harrison (1996), pp. 191{201.Gordon, M. J., A. J. Milner, and C. P. Wadsworth (1979). Edinburgh LCF: A Mech-anised Logic of Computation, Volume 78 of Lecture Notes in Computer Science.Springer-Verlag.Gordon, M. J. C. and T. F. Melham (1993). Introduction to HOL: A Theorem ProvingEnvironment for Higher Order Logic. Cambridge University Press.Goubault, J. (1993, August). A rule-based algorithm for rigid e-uni�cation. In G. Got-tlob, A. Leitsch, and D. Mundici (Eds.), 3rd Kurt G�odel Colloquium (KGC), LNCS713, Brno, Czech Republic, pp. 202{210. Springer.Gries, D. and F. B. Schneider (1995). Teaching math more e�ectively, through calcu-lational proofs. American Mathematical Monthly 102, 691{697.Grundy, J. (1996, May). Transformational hierarchical reasoning. The ComputerJournal 39 (4), 291{302.Grundy, J. and T. L�angbacka (1997, December). Recording HOL proofs in a struc-tured browsable format. In M. Johnson (Ed.), Algebraic Methodology and SoftwareTechnology: 6th International Conference, AMAST'97, Volume 1349 of LectureNotes in Computer Science, Sydney, Australia, pp. 567{571. Springer-Verlag.Gunter, E. (1990, October). Doing algebra in higher order logic. In Proceedings of theThird HOL Users Meeting, Computer Science Department, Aarhus University,Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark. Technical ReportDAIMI PB { 340 (December 1990).H�ahnle, R. and P. H. Schmitt (1994, October). The liberalized �-rule in free variablesemantic tableaux. Journal of Automated Reasoning, 13 (2), 211{222.

BIBLIOGRAPHY 251Haken, A. (1985, August). The intractability of resolution. Theoretical ComputerScience 39 (2{3), 297{308.Halmos, P. (1983). How to write mathematics. In D. E. Sarason and L. Gillman(Eds.), Selecta Expository Writing, pp. 157{186. Springer-Verlag.Hanna, F. K. and N. Daeche (1985). Speci�cation and veri�cation using higher-orderlogic. In C. J. Koomen and T. Moto-oka (Eds.), Computer Hardware DescriptionLanguages, pp. 418{433. Elsevier Science Publishers, North-Holland.Harrison, J. (1995a, August). HOL done right. Unpublished Draft.Harrison, J. (1995b, September). Inductive de�nitions: Automation and application.See Schubert, Windley, and Alves-Foss (1995), pp. 200{213.Harrison, J. (1996a). Formalized mathematics. Technical Report 36, Turku Centre forComputer Science (TUCS), Lemmink�aisenkatu 14 A, FIN-20520 Turku, Finland.Harrison, J. (1996b, August). A Mizar mode for HOL. See von Wright, Grundy, andHarrison (1996), pp. 203{220.Harrison, J. (1996c, July30 August{3). Optimizing proof search in model elimina-tion. In M. A. McRobbie and J. K. Slaney (Eds.), Proceedings of the ThirteenthInternational Conference on Automated Deduction (CADE-96), Volume 1104 ofLNAI, Berlin, pp. 313{327. Springer.Harrison, J. (1997). Proof style. Technical Report 410, University of Cambridge Com-puter Laboratory, New Museums Site, Pembroke Street, Cambridge, CB2 3QG,UK.Herstein, I. (1975). Topics in Algebra (2nd ed.). New York: John Wiley & Sons.Huang, X. (1994, June/July). Reconstructing proofs at the assertion level. InA. Bundy (Ed.), Proceedings of the 12th International Conference on AutomatedDeduction, Volume 814 of LNAI, Berlin, pp. 738{752. Springer.Huang, X. and A. Fiedler (1996, July30 August{3). Presenting machine-found proofs.In M. A. McRobbie and J. K. Slaney (Eds.), Proceedings of the Thirteenth Inter-national Conference on Automated Deduction (CADE-96), Volume 1104 of LNAI,Berlin, pp. 221{225. Springer.Huang, X. and A. Fiedler (1997). Proof presentation as an application of NLG. InProceedings of the 15th International Joint Conference on Arti�cial Intelligence(IJCAI), Nagoya, Japan.Hullot, J.-M. (1980). Canonical forms and uni�cation. In W. Bibel and R. Kowalski(Eds.), Proceedings of the Fifth Conference on Automated Deduction, Volume 87of Lecture Notes in Computer Science, pp. 318{334. Les Arc: Springer.Hutter, D. (1997, June). Coloring terms to control equational reasoning. Journal ofAutomated Reasoning 18 (3), 399{442.Hutter, D. and M. Kohlhase (1997, July13{17). A colored version of the �-Calculus. InW. McCune (Ed.), Proceedings of the 14th International Conference on Automateddeduction, Volume 1249 of LNAI, Berlin, pp. 291{305. Springer.Jackson, P. B. (1995, January). Enhancing the Nuprl Proof Development System andApplying it to Computational Abstract Algebra. Ph. D. thesis, Cornell University.

BIBLIOGRAPHY 252Jacobs, B. and T. F. Melham (1993). Translating dependent type theory into higherorder logic. In TLCA '93 International Conference on Typed Lambda Calculi andApplications, Utrecht, 16{18 March 1993, Volume 664 of Lecture Notes in Com-puter Science, pp. 209{229. Springer-Verlag.Je�rey, R. C. (1967). Formal Logic: Its Scope and Limits. New York, N.Y.: McGraw-Hill Book Co.Jouannaud, J.-P. and C. Kirchner (1991). Solving equations in abstract algebras: Arule-based survey of uni�cation. In J.-L. Lassez and G. Plotkin (Eds.), Computa-tional Logic: Essays in Honor of Alan Robinson. MIT-Press.Joyce, J. J. and C.-J. H. Seger (Eds.) (1993, August). Proceedings of the 6th Inter-national Workshop on Higher Order Logic Theorem Proving and its Applications(HUG'93), Volume 780 of Lecture Notes in Computer Science, Vancouver, B.C.,Canada. Springer-Verlag, 1994.Kalvala, S. (1994). Annotations in formal speci�cations and proofs. Formal Methodsin System Design 5, 119{144.Kamin, S. and J.-J. L�evy (1980). Two generalizations of the recursive path ordering.Unpublished manuscript.Kamm�uller, F. (1997). Formal proof of Sylow's theorem. Submitted to the Journal ofAutomated Reasoning.Kapur, D. (1997). Shostak's congruence closure as completion. In Proceedings of the8th International Conference on Rewriting Techniques and Applications (RTA-97), Volume 1232 of LNCS, Berlin, pp. 23{37. Springer-Verlag.Kerber, M. (1990). How to prove higher order theorems in �rst order logic. SekiReport SR-90-19, Fachbereich Informatik, Universit�at Kaiserslautern, Germany.Kleiner, I. and N. Movshovitz-Hadar (1994, December). The role of paradoxes in theevolution of mathematics. American Mathematical Monthly 101 (10), 963{974.Klop, J. W. (1992). Term rewriting systems. In S. Abramsky, D. M. Gabbay, andT. S. E. Maibaum (Eds.), Handbook of Logic in Computer Science, Volume 2,Chapter 1, pp. 1{116. Oxford: Oxford University Press.Knuth, D. E. (1992). Literate Programming. CSLI Lecture Notes Number 27. Stan-ford, CA, USA: Stanford University Center for the Study of Language and Infor-mation. Distributed by the University of Chicago Press.Knuth, D. E. and P. E. Bendix (1970). Simple word problems in universal algebra.In J. Leech (Ed.), Computational Problems in Abstract Algebra, Proceedings ofa Conference Held at Oxford Under the Auspices of the Science Research Coun-cil, Atlas Computer Laboratory, 29. Aug. to 2. Sept. 1967, Oxford, pp. 263{297.Pergamon Press.Koetsier, T. (1991). Lakatos' Philosophy of Mathematics, A Historical Approach.Amsterdam: North-Holland.Kogel, E. D. (1995, May). Rigid E-uni�cation simpli�ed. In P. Baumgartner,R. H�ahnle, and J. Posegga (Eds.), Proceedings of the 4th International Work-shop on Theorem Proving with Analytic Tableaux and Related Methods, Volume918 of LNAI, Berlin, pp. 17{30. Springer.

BIBLIOGRAPHY 253Kohlhase, M. (1995, May). Higher-order tableaux. In P. Baumgartner, R. H�ahnle,and J. Posegga (Eds.), Proceedings of the 4th International Workshop on TheoremProving with Analytic Tableaux and Related Methods, Volume 918 of LNAI, Berlin,pp. 294{309. Springer.Konrad, K. (1998). Hot: A concurrent automated theorem prover based onhigher-order tableaux. Seki Report SR-98-03, Fachbereich Informatik, Universit�atSaarbr�ucken. accepted for TPHOLs'98.Kreisel, G. (1958). Hilbert's programme. Dialectica 12, 346{372.Laibinis, L. (1996, August). Using lattice theory in higher order logic. See von Wright,Grundy, and Harrison (1996), pp. 315{330.Lakatos, I. (1976). Proofs and Refutations: The logic of Mathematical Discovery.Cambridge University Press. Edited by John Worrall and Elie G. Zahar.Lamport, L. (1995, August/September). How to write a proof. American Mathemat-ical Monthly 102 (7), 600{608.Lecat, M. (1935). Erreurs de Math�ematiciens. Brussels.Letz, R. (1993, June). First-Order Calculi and Proof Procedures for Automated De-duction. Ph. D. thesis, Technische Hochschule Darmstadt.Loveland, D. W. (1968, April). Mechanical theorem-proving by model elimination.Journal of the ACM 15 (2), 236{251.Luo, Z. and R. Pollack (1992, May). The LEGO proof development system: A user'smanual. Technical Report ECS-LFCS-92-211, University of Edinburgh.MacKenzie, D. (1995, Fall). The automation of proof: an historical and sociologicalexploration. IEEE Annals of the History of Computing 17 (3), 7{29.Martin-L�of, P. (1984). Intuitionistic Type Theory. Napoli: Bibioplois. Notes ofGiowanni Sambin on a series of lectues given in Padova.McCune, W. (1997, December). Solution of the Robbins problem. Journal of Auto-mated Reasoning 19 (3), 263{276.Melham, T. F. (1988, July). Using recursive types to reason about hardware andhigher order logic. In G.J. Milne (Ed.), International Workshop on Higher OrderLogic Theorem Proving and its Applications, Glasgow, Scotland, pp. 27{50. IFIPWG 10.2: North-Holland.Melham, T. F. (1991, August). A package for inductive relation de�nitions in HOL.In M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley (Eds.), Proceedings ofthe 1991 International Workshop on the HOL Theorem Proving System and itsApplications, Davis, California, USA, pp. 350{357. IEEE Computer Society Press,1992.Melham, T. F. (1992, September). The HOL logic extended with quanti�cation overtype variables. In L. J. M. Claesen and M. J. C. Gordon (Eds.), Higher Order LogicTheorem Proving and its Applications: Proceedings of the IFIP TC10/WG10.2Workshop, Volume A-20 of IFIP Transactions, Leuven, Belgium, pp. 3{18. North-Holland/Elsevier.

BIBLIOGRAPHY 254M.J.C. Gordon (1988). HOL: A proof generating system for higher-order logic. InG.M. Birtwistle and P.A. Subrahmanyam (Eds.), VLSI Speci�cation, Veri�cationand Synthesis, pp. 73{128. Boston: Kluwer Academic Publishers.Naur, P. (1994). Proof versus formalization. BIT: BIT 34, 148{164.Nelson, G. and D. C. Oppen (1980, April). Fast decision procedures based on con-gruence closure. Journal of the ACM 27 (2), 356{364.Newman, M. H. A. (1942). On theories with a combinatorial de�nition of `equiva-lence'. Annals of Mathematics 43 (2), 223{243.Nieuwenhuis, R. (1993, August). Simple LPO constraint solving methods. Informa-tion Processing Letters 47 (2), 65{69.Nieuwenhuis, R. and A. Rubio (1995, May). Theorem proving with ordering andequality constrained clauses. Journal of Symbolic Computation 19 (4), 321{351.Nordstr�om, B., K. Petersson, and J. M. Smith (1990). Programming in Martin-L�oftype theory: an introduction. Clarendon.Parent, C. (1993, May). Developing certi�ed programs in the system Coq - the Pro-gram tactic. In H. Barendregt and T. Nipkow (Eds.), International Workshop onTypes for Proofs and Programs, Volume 806 of Lecture Notes in Computer Science,pp. 291{312. Springer-Verlag.Paulin-Mohring, C. (1989, January). Extracting F!'s programs from proofs in theCalculus of Constructions. In A. for Computing Machinery (Ed.), Sixteenth An-nual ACM Symposium on Principles of Programming Languages, Austin.Paulin-Mohring, C. and B. Werner (1993, ??). Synthesis of ML programs in the systemCoq. Journal of Symbolic Computation 15 (5-6), 607{640.Paulson, L. C. (1994). Isabelle: a generic theorem prover, Volume 828 of LectureNotes in Computer Science. New York, NY, USA: Springer-Verlag Inc.Peano, G. (1895{97). Formulaire de Math�ematiques.Plaisted, D. A. (1993a). Equational reasoning and term rewriting systems. In D. Gab-bay, C. Hogger, J. A. Robinson, and J. Siekmann (Eds.), Handbook of Logic inArti�cial Intelligence and Logic Programming, Volume 1, Chapter 5, pp. 273{364.Oxford: Oxford University Press.Plaisted, D. A. (1993b). Polynomial time termination and constraint satisfaction tests.In C. Kirchner (Ed.), Proceedings of the 5th International Conference on RewritingTechniques and Applications (RTA-93), Volume 690 of LNCS, Berlin, pp. 405{420.Springer-Verlag.Plaisted, D. A. (1995). Special cases and substitutes for rigid E-uni�cation. TechnicalReport MPI-I-95-2-010, Max-Planck-Institut f�ur Informatik, Saarbr�ucken.Prasetya, I. S. W. B. (1993, August). On the style of mechanical proving. See Joyceand Seger (1993), pp. 475{488.Putnam, H. (1979). Philosophy of mathematics: A report. In Current Research inPhilosophy of Science, pp. 386{398. East Lansing Michigan: Philosophy of ScienceAssociation.Robinson, J. A. (1965, January). A machine-oriented logic based on the resolutionprinciple. Journal of the ACM 12 (1), 23{41.

BIBLIOGRAPHY 255Robinson, J. A. (1971). Computational logic: The uni�cation computation. MachineIntelligence 6, 63{72.Robinson, P. J. and J. Staples (1993, February). Formalizing a hierarchical structureof practical mathematical reasoning. Journal of Logic and Computation 3 (1), 47{61.Roxas, R. E. O. (1993, August). A HOL package for reasoning about relations de�nedby mutual induction. See Joyce and Seger (1993), pp. 129{140.Rudnicki, P. (1987, December). Obvious inferences. Journal of Automated Reason-ing 3 (4), 383{394.Rudnicki, P. (1992, June). An overview of the MIZAR project. Available by ftp frommenaik.cs.ualberta.ca as pub/Mizar/Mizar_Over.tar.Z.Rudnicki, P. and A. Trybulec (1997, January). On equivalents of well-foundedness.Available on the web at http://www.cs.ualberta.ca/~piotr/Mizar/Wfnd/.Schubert, E. T., P. J. Windley, and J. Alves-Foss (Eds.) (1995, September). Proceed-ings of the 8th International Workshop on Higher Order Logic Theorem Provingand Its Applications, Volume 971 of Lecture Notes in Computer Science, AspenGrove, UT, USA. Springer-Verlag.Shankar, N., S. Owre, and J. M. Rushby (1993, February). The PVS Proof Checker:A Reference Manual. Menlo Park, CA: Computer Science Laboratory, SRI Inter-national.Shostak, R. E. (1978, July). An algorithm for reasoning about equality. Communica-tions of the ACM 21 (7), 583{585.Siekmann, J. H. (1989, March{April). Uni�cation theory. Journal of Symbolic Com-putation 7 (3-4), 207{274.Simons, M. (1996, December). The Presentation of Formal Proofs. Ph. D. thesis,Technische Universit�at Berlin.Slind, K. (1991, November). Object language embedding in Standard ML of NewJersey. In Proceedings of the Second ML Workshop held at Carnegie Mellon Uni-versity, Pittsbugh, Pennsylvania, Septermber 26-27, 1991, CMU SCS TechnicalReport.Slind, K. (1996, August). Function de�nition in higher-order logic. See von Wright,Grundy, and Harrison (1996), pp. 381{397.Smullyan, R. M. (1995). First-Order Logic (Second corrected ed.). Dover Publications,New York. First published 1968 by Springer-Verlag.Sommerhalder, R. and S. van Westrhenen (1988). The theory of computability: pro-grams, machines, e�ectiveness and feasibility. Addison-Wesley publishing com-pany.Syme, D. (1997a). DECLARE: A prototype declarative proof system for higher orderlogic. Technical Report 416, University of Cambridge Computer Laboratory, NewMuseums Site, Pembroke Street, Cambridge, CB2 3QG, UK.Syme, D. (1997b). Proving Java type soundness. Technical Report 427, Universityof Cambridge Computer Laboratory, New Museums Site, Pembroke Street, Cam-bridge, CB2 3QG, UK.

BIBLIOGRAPHY 256Syme, D. (1998). Declarative Theorem Proving for Operating Semantics. Ph. D. thesis,University of Cambridge. Submitted for Examination.Tarski, A. (1936). Der wahrheitsbegri� in den formalisierten sprachten. Studia Philo-sophica 1, 261{405.Thompson, S. (1991). Type Theory and Functional Programming. Reading, MA, USA:Addison-Wesley.Thurston (1994, April). On proof and progress in mathematics. BAMS: Bulletin ofthe American Mathematical Society 30 (2), 161{177.Tourlakis, G. (1984). Computability. Reston Publishing Company.Trybulec, A. (1978). The Mizar-QC/6000 logic information language. Bulletin of theAssociation for Literary and Linguistic Computing 6, 136{140.Turing, A. M. (1936). On computable numbers, with an application to the Entschei-dungsproblem. Proceedings of the London Mathematical Society 42 (2), 230{265.van Gasteren, A. J. M. (1990). On the shape of mathematical arguments, Volume 445of Lecture Notes in Computer Science. New York, NY, USA: Springer-Verlag Inc.Veanes, M. (1997). The undecidability of simultaneous rigid E-uni�cation with twovariables. In 5th Kurt G�odel Colloquium (KGC), LNCS 1289, pp. 305{318.Voda, P. J. and J. Komara (1995, July). On Herbrand skeletons. Technical report,Institute of Informatics, Comenius University Bratislava. Revised January 1996.von Wright, J. (1992). Doing lattice theory in higher order logic. Technical Report136, �Abo Akademi, Turku, Finland.von Wright, J., J. Grundy, and J. Harrison (Eds.) (1996, August). Proceedings ofthe 9th International Conference on Theorem Proving in Higher Order Logics(TPHOLs'96), Volume 1125 of Lecture Notes in Computer Science, Turku, Fin-land. Springer.Weber, M., M. Simons, and C. Lafontaine (1993). The generic development languageDeva: presentation and case studies, Volume 738 of Lecture Notes in ComputerScience. New York, NY, USA: Springer-Verlag Inc.Whitehead, A. N. and B. Russell (1910). Principia Mathematica. Cambridge: Cam-bridge University Press.Windley, P. J. (1994, September). Specifying instruction-set architectures in HOL: Aprimer. In T. F. Melham and J. Camilleri (Eds.), Proceedings of the 7th Interna-tional Workshop on Higher Order Logic Theorem Proving and Its Applications,Volume 859 of Lecture Notes in Computer Science, Valletta, Malta, pp. 440{455.Springer-Verlag.Wong, W. (1994). mweb: Proof script management utilities. Manual of the HOLcontrib package.Zammit, V. (1996, August). A mechanisation of computability theory in HOL. Seevon Wright, Grundy, and Harrison (1996), pp. 431{446.Zammit, V. (1997, March). A proof of the Smn theorem in Coq. Technical Report 9-97,The Computing Laboratory, The University of Kent, Canterbury, Kent, UK.

