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Synopsis 

 

This research studies the p-centre problem in the continuous space. This problem is 

particularly useful in locating emergency facilities, such as fire-fighting stations, police 

stations and hospitals where it is aimed to minimise the worst-case response time. This 

problem can be divided into a single facility minmax location problem (1-centre) and multi-

facility minmax location problem (p-centre). The solution of the 1-centre location problem 

can be found optimally in polynomial time by using the well known Elzinga-Hearn algorithm 

for both the weighted and the unweighted case. The objective of the p-centre problem is to 

locate p facilities (p>1) so as to minimise the radius of the largest circle. However, in this 

case, we cannot always guarantee optimality as the problem is known to be NP hard. 

The aim of the research is to develop and analyse powerful meta-heuristics including 

the hybridisation of exact methods and heuristics to solve this global optimisation problem. 

To our knowledge this is the first study that meta-heuristics are developed for this problem. 

In addition larger instances previously used in the literature are tested .This is achieved by 

designing an efficient variable neighbourhood search, adapting a powerful perturbation 

method and extending a newly developed reformulation local search. Large instances are 

used to evaluate our approaches with promising results. As all these algorithms use the 1-

centre problem as part of their local search, simple but effective enhancements are designed 

to speed up the Elzinga-Hearn algorithm. 

This thesis is organised as follows:   

In chapter 1, a brief review on location analysis and its importance is provided first. This 

is followed by a description of the problem under study and a motivation for this research 

including applications and a brief description of a possible classification of location 

problems. Solution methods with an emphasis on meta-heuristics are used in this study, are 

also briefly reviewed in this chapter. A detailed literature review on the p-centre problem in 

the continuous space is then given highlighting first the single facility location problem 

before discussing the multi-facility case. A brief review on exact techniques used for the 

vertex p-centre problem is discussed as this will be integrated into one of our solution 

approaches when solving the continuous problem.   
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In chapter 2, we revisit the well-known Elzinga-Hearn algorithm for the 1-centre 

location problem in the continuous space for both the unweighted and the weighted cases. 

Though this algorithm is polynomial, as it is used many many times in our search methods, 

enhancements that efficiently determine the best points that can be used as initial starting 

points for the algorithm to cut down some of the unnecessary computations are proposed 

which displayed interesting results. Furthermore, extra tests using large instances are also 

used to evaluate the two best enhancements. The best variants are then chosen as part of the 

local search based on the “locate-allocate procedure” when solving the p-centre problem 

using a simple multi-start approach for illustration purposes. This is then integrated in the 

other powerful meta-heuristics that are developed in subsequent chapters.   

In chapter 3, a Variable Neighbourhood Search heuristic (VNS) which uses two 

neighbourhood structures namely the customer-based and the facility-based is adapted to 

solve this related location problem. This is followed by two effective improvement schemes 

that are introduced in the second phase of our local search based on the well-known 

Cooper’s locate-allocate approach. The idea of covering circles is exploited when defining 

the neighbourhoods within VNS. A learning mechanism is then incorporated within the 

search on the best enhancement of the facility-based neighbourhood. Computational 

results of the proposed enhancements using existing datasets (n=439, 575, 783, 1002 and 

1323 TSP-Lib) with various values of p (p=10 to 100 with an increment of 10) demonstrate 

the power of our VNS-based methods. For the smallest of these instances (n = 439) optimal 

solutions are reported and used for comparison with the best VNS variant yielding less than 

half of a one percent. 

Chapter 4 provides a brief explanation of the perturbation heuristic originally 

designed for the p-median problem. Two types of perturbations namely a gradual and a 

strong perturbation are then adapted for our problem where the amount of perturbation is 

made dynamic. In addition, efficient enhancements are proposed and a learning scheme is 

embedded into the search. This meta-heuristic shows to be efficient when tested on the same 

datasets that were used in the previous chapter. 

In chapter 5, the idea of using the optimal solution of the discrete problem as the initial 

solution in the continuous space is given first. The new concept of reformulation local search 

(RLS) originally designed for the multi-source Weber problem is then adapted and enhanced 
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further by a scheme for generating a tighter Z value iteratively as the new upper bound when 

solving optimally the vertex p-centre problem. The idea here is to augment the set of the 

potential sites by the newly found continuous points at the continuous stage. The shifting 

between the two spaces continues until no improvement is found. Several stopping criteria 

are also proposed followed by two enhancements when solving the discrete case including 

the use of forbidden regions. Finally, extensions of RLS are proposed. These incorporate the 

use of injection points to allow for diversification of the search and the management of the 

memory at the discrete phase to control the size of the discrete problem. Computational 

experiments with encouraging results are reported. 

In the last chapter, the conclusions of this research are summarised followed by several 

suggestions which are believed to be useful for future research.  
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Chapter 1 

Problem Description and Review of  the 
Continuous Centre Problems 

A description of the problem under study including its importance is presented followed 

by some applications and a brief description of a possible classification of location analysis of 

the p-centre problem. The meta-heuristic methods that we aim to investigate in this research 

are briefly covered. This chapter also presents a literature review on continuous location 

problems with an emphasis on the p-centre problem in the continuous space. Finally, a brief 

review on the vertex p-centre is also provided as some of the methods will be incorporated as 

part of our methodology when solving the continuous case.  

1.1 Facility location problems 

Location is one of the most important logistic activities, which is used for the purpose 

of reducing the costs of the logistics system, improving customer service or reducing 

delivery of some materials. Location analysis is used to determine the location of facilities in 

order to contribute to achieving those objectives. An example of a location problem could be 

a company determining where to locate its plants or warehouses to minimise the distance 

between these facilities and demand points. It could also be used in the public sector for 

determining where to locate emergency facilities such as ambulances services, police units 

and fire stations to minimise the maximum distance or response time (travel time). 

1.1.1 The importance of location analysis 

The decision maker can use location analysis to answer the following questions:  

 How many facilities should be built? 

 Where should these facilities be? 

 What should the size of the facility be? 

 How should demand be allocated? 
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However, before answering these questions one should determine the purpose of 

solving the location problem. The difference is mainly whether the problems are in the 

private sector or in the public sector where the objective function differs from one to the 

other. For instance, the objective of locating police units may be to minimise the maximum 

distance between the stations and the demand points (customers). On the other hand, in the 

case of locating toxic dumps and stations of nuclear power, the location of facilities need to 

be sited as far as possible from the centres of residential dwelling. Manufacturing 

companies in the private sector seek to achieve profit maximisation and their aim is to 

capture the largest possible market share. Therefore, they determine the location of their 

facilities (plants, warehouses, etc.) on the basis of cost reduction by minimising the total 

cost of transportation and the fixed cost of establishing such facilities. Note that the 

location problem does not relate to the siting and size of the facilities only, but also to the 

allocation of demand points to these facilities, see Eilon et al., (1971) and Daskin (1995). 

For more information on location methods, see Drezner and Hamacher (2001), and Eiselt 

and Marianov (2011). 

1.1.2 Classification of location problem 

One of the key criteria used to classify location problems is the topographical criterion, 

which divides location problems into two basic models, namely continuous and discrete. In 

continuous location models, there are an infinite number of candidate locations as facilities 

can be located anywhere on the plane. In discrete location, the sites of the facilities are 

assumed to occur only on a network or on a graph. In other words, the facilities can be sited 

only on the nodes or on the links of the network. There is therefore a finite number of 

candidate locations which are considered as feasible locations of the facilities or also known 

in the literature as potential sites. Problems can also be divided further into capacitated or 

uncapacitated, then into single facility or multi-facility. The path that we will follow in this 

research is shown in bold as represented in Figure 1.1.  
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Figure 1.1: Classes of location-allocation problems with bold showing our research path 

Facility location problems can also differ in their objective function, which can be 

grouped into three categories: p-median, p-centre and covering problems. The next three 

subsections describe briefly these three models as these will provide research ingredients in 

our research methodology. 

a) p-median problem 

The p-median problem, originally developed by Hakimi (1964), is to locate p facilities 

with the objective to minimise the demand-weighted total travel distance between the 

demand points and their corresponding nearest facilities. This is also equivalent to 

minimising the average weighted distance. Several authors considered that the p-median 

problem is one of the most well-known facility-location problems, which is also called the 

minisum problem. 

b) p-centre problem 

The p-centre problem was also originally developed by Hakimi (1964, 1965). The 

objective function is to minimise the maximum distance or response time between the 

demand points and the nearest facility using a given number (p) of facilities. This is also 

known as the minimax problem. The p-centre problem has been used to solve location 

problems of emergency facilities such as medical facilities (ambulances), police stations, 
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and fire stations etc where the aim is to minimise the maximum time to respond to an 

emergency. Other applications include the locations of transmitters to maximise the lowest 

signal level received, and the location of sirens so to evacuate people as soon as possible, 

among other applications, Murray and Xiao (2006).  

When the location is on the continuous plane, the problem becomes the continuous p-centre 

problem which will be investigated in this research.   

c) Covering problem 

In the covering location model, each demand point is not necessarily assigned to one 

facility only, but must be allocated to at least one facility. There are two common covering 

problems, namely the set covering problem and the maximum covering location problem. 

The first one aims to minimise the number of facilities subject to a prescribed covering 

distance constraint, whereas the second aims to locate a known number of facilities to 

maximise the coverage of the demand points (see Daskin, 1995). Here, we briefly describe 

the former as it will be used in our research. The objective function aims to locate a 

minimum number of facilities (p) so that all demand points are within a given specified 

distance or time service (say 4 miles or 10 minutes). The classical model will be revisited as 

it will be used as part of our search methodology when solving the discrete vertex p-centre 

problem with the aim in generating discrete solutions as initial solutions for the 

continuous p-centre problem.   

1.2 The research problem and its impact 

This research explores the p-centre problem in the continuous space. Here, the facility locations 

can be located anywhere on the plane. Therefore, their solutions may be infeasible as they 

may be in a river, a lake or on top of a building. However, such a solution could be used to 

assist the user to limit the generation of potential sites which can, in some situations, be 

expensive to obtain. The solution can also be used as a green-field solution as a guide. 

Research that introduce barriers into the search to avoid such infeasible regions, as 

investigated by Hamacher and Klamroth (2000) and Klamroth (2001), could also be worth 

revisiting. 
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In the continuous space the problem with unweighted Euclidean distances for n given 

points (demand points) has a succinct geometrical interpretation. For instance, when the 

number of facility locations is one, the problem reduces to find the smallest circle that encloses 

all the demand points, where the centre (X) of this circle is precisely the location of the new 

facility. This problem is also known in the literature under various names such as the Euclidean 

1-centre problem or the minimum spanning circle. Equivalently, the continuous p-centre 

problem (p > 1) seeks to cover the given points (n) with p circles where the radius of the 

largest circle is minimised. 

For the 1-centre problem, there are several but similar optimal algorithms including the 

algorithm of Elzinga-Hearn (1972). Though the Elzinga-Hearn’s algorithm is polynomial of 

the order 2( )O n and hence can be very fast it is still useful to explore this problem as the 

solution of the 1-centre problem will be part of the solution of the p-center problem when 

applying and designing heuristics. A short study that aims to enhance its implementation will 

be carried out in chapter 2. However, the p-centre problem is known to be an NP hard 

problem, see Megiddo and Supowit (1984). In other words, the problem cannot be solved 

exactly when the number of demand points and facilities are large enough. According to 

Brimberg et al. (2008) in their review paper, there is a rich though limited literature on 

continuous location problems when compared to discrete location problems. In addition, it is 

worth noting that the only largest existing data set, where the optimal solutions are known, is 

the instance with n=439 (TSP-Lib) with p=10 to 100. These results are provided by Chen and 

Chen (2009). These will be used to evaluate our meta-heuristics. The only other optimal 

solution method is given by Drezner (1984b), but it was limited to n=30 and p=5 only. These 

two methods will be reviewed later in this chapter.  Also, to our knowledge, there are only 

greedy type methods, and hence this is the first study where meta-heuristics are explored. We 

examine a variable neighbourhood search, a perturbation-based approach and a reformulation 

local search. As a by-product in this study good quality solutions for large instances, which 

have not been done before, will be produced which can also be used as benchmarks for future 

research. 

From a practical view point, it is worth mentioning some real life applications which 

shows the usefulness of the study. For example, Valinsky (1955) studied a fire-fighting 

system to determine the optimal location of fire-fighting units in city of New York whereas 
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Mansfield and Wein (1958) constructed a model to help the management of a railroad, in 

choosing amongst alternative locations of an automatic classification yard. In 1962, Burstall 

et al. used the Varignon Frame method to determine the location of several factories in 

London. The optimal location of checking stations on rail lines was explored by Young 

(1963). For further details, see Drezner and Hamacher, (2001) and recently the edited book 

by Eiselt and Marianov (2011).  

Gleason (1975) used the set covering-based method to find the minimum number of bus 

stops to guarantee that no customer need walk more than a specified distance to reach a bus 

stop. This method was also used to locate emergency medical facilities (ReVelle et al., 

1977). Mathematical programming models were developed by Saatcioglu (1982) for the 

airport location selection problem, based on Turkish data. Price and Turcotte (1986) 

suggested a study that helped the Red Cross find the locations of mobile blood donor clinics 

in Quebec City, Canada. Other important applications include the locations of broadcasting 

stations, amplification stations (locations of transmitters) for cellular phones and the locations 

of the minimum number of defensive missiles, see Ezra et al. (1994) and Daskin (2008) for 

more details. Other applications will be presented in section 1.4 as part of the review section 

of the p-centre problem. 

The next section will cover those meta-heuristics that will be adapted in this study.  

1.3 Methods relevant to our research 

The exact methods are not always practical to solve large combinatorial problems, as 

these may require an excessive computational time. Therefore, heuristic methods which are 

approximate methods, have been suggested to find optimal or near optimal solutions 

within a reasonable amount of computing time. The basic idea of heuristic procedures is that 

a feasible solution is constructed by using some rules which are based on mathematical logic, 

common sense and experience. Iterative and improvement procedures are usually used to 

improve the solution. 

The term heuristic is derived from the Greek word heuriskein, which means to discover, 

to find or to explore. There are many definitions of the term heuristic, a modern definition of 
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heuristics can be found in Reeves (1993) "A heuristic is a technique which seeks good (i.e. 

near-optimal) solutions at a reasonable computational cost without being able to guarantee 

either feasibility or optimality, or even in many cases to state how close to optimality a 

particular feasible solution is".  

As mentioned above, heuristic methods have been used to find near-optimal solutions. 

The main criteria for evaluating their performance can be classified under two headings; the 

solution quality and the computational effort, measured in terms of CPU time. Furthermore, 

other criteria such as simplicity, ease of control, flexibility, interaction and friendliness can 

also be considered as secondary criteria. For more details, see Salhi (1998).  

Based on Salhi (2006), we can classify heuristic methods into three classes, which are:  

(a) only accept improving moves, (b) accept improving and non-improving moves and (c) 

use more than one solution at a time. The next subsections will cover the used meta-

heuristics in this research that fall under the first category. Here, we describe briefly those 

heuristics and meta-heuristics that we will explore in this study. These include the classical 

multi-start approach, variable neighbourhood search, perturbation-based heuristic and 

reformulation local search.   

The classical Multi-Start Approach 

The classical Multi-start approach is a randomised approach which starts from a random 

initial solution at the beginning of each run. The idea is that one of these solutions may lead 

to the right region which includes the global minimum. However, this approach is considered 

to be a blind search, as it may revisit the same local minima or poor regions more than once.  

In the next chapter, this approach will be used to test the efficiency of our 

enhancements on the original Elzinga-Hearn algorithm when solving the p-centre problem. 

This is also similar to the heuristic described by Drezner (1984b) called H1. In addition, in the 

implementations of the other meta-heuristics which we explore in this research, the CPU time 

corresponding to 10,000 iterations of this approach will be used as our stopping condition. 

Besides, this approach will be used to generate initial solutions for our meta-heuristics.  
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Variable Neighbourhood Search (VNS) 

VNS combines the elements of random search with a systematic way of exploring 

different regions of the solution space through the use of different neighbourhoods followed 

by a local search. VNS was first developed by Brimberg and Mladenovic (1996) and Hansen 

and Mladenovic (1997) to solve the multi-source Weber problem and the p-median problem 

respectively. VNS was also shown to be applied successfully in solving several combinatorial 

problems (see Hansen and Mladenovic (2003)). The idea of VNS is that a random neighbour 

of the current solution is generated in the first defined neighbourhood and a local search is 

performed on it. If a better solution is found, it is chosen and the search reverts back to the 

first neighbourhood, otherwise the search is enhanced using the next usually larger 

neighbourhood. This continues until all the specified neighbourhoods have been searched 

where the algorithm either restarts from the first neighbourhood or stops depending on the 

allocated CPU. The motivation of VNS is that it provides a systematic mechanism for 

expanding the neighbourhood search in the area of the solution surrounding a local minimum 

trap. In other words, VNS is very simple to use and has proved to be very popular as shown 

by the regular biannual VNS mini conferences (the last one being VNS 2014 having taken 

place in Djerba, Tunisia this October) and the special issues dedicated to the area (the last one 

being Computers and Operations Research edited by Mladenović et al. (2014)). In this 

research, we will explore the power of VNS while introducing new ingredients into the 

search. This will be investigated in chapter 3. 

Perturbation-Based Heuristic 

In this approach some perturbations or noises are introduced to explore infeasible 

solutions while guiding the search. This approach was adopted by Salhi (1997) for the p-

median problem as well as for the uncapacitated facility location problem. The idea is to 

allow the number of facilities of a solution to go over and under the required number of 

facilities (p), by a certain amount (q). Hanafi and Freville (1998) and Zainuddin and Salhi 

(2007) also adapted this perturbation-based heuristic for the knapsack problem and the 

capacitated multi-source Weber problem respectively. In this research we will revisit this 

approach in chapter 4 while considering the characteristics of the continuous p-centre 

problem. 
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Reformulation Local Search (RLS) 

Very recently, Brimberg et al. (2014) developed a new local search for solving the 

multi-source Weber problem. In the reformulation local search (RLS), the discrete location 

problem is first solved optimally or heuristically by using the demand points as potential 

sites. This is then followed by applying a local search to turn such a solution into a 

continuous one (local optimum in the continuous space). The new obtained continuous 

locations are then added as potential sites to the problem. The augmented discrete location 

problem is then solved and its new solution is used again as a starting point for the 

continuous problem. This procedure, which shifts between the two spaces, continues until a 

stopping condition is met usually when no improvement can be found in solving the 

augmented discrete problem. It is worth noting that the idea of using the discrete solution as 

a starting solution for the continuous space, but without adding the new continuous 

locations to the problem, was originally developed by Hansen and Mladenović (1998) and 

also used by Gamal and Salhi (2001) for the multi-source Weber problem where an exact 

method is used in the former and a heuristic in the latter when solving the discrete 

problem. This new RLS approach, which to our knowledge was used only once, will be 

revisited and extended in chapter 5. 

1.4 Continuous centre problems-a review  

1.4.1 Introduction 

The objective of the p-centre problem is to minimise the maximum distance between a 

demand point and its nearest facility. The p-centre problem also fits in the class of minimax 

problems. For a review on continuous covering problems including a history of the p-centre 

problem, see the comprehensive chapter by Drezner (2011) given in the edited book by Eiselt 

and Marianov (2011) which also includes various location methods and applications. For 

more references see the edited book by Drezner and Hamacher (2001).  

The next two sections cover the single and the multiple facilities cases respectively. These 

are reviewed here as they make up the basis of our research. 
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1.4.2 Single facility minmax location problems (1-centre) 

According to Eiselt and Marianov (2011), the 1-centre location problem with 

unweighted Euclidean distances has a long history. In 1857, the English mathematician James 

Joseph Sylvester (1814-1897) discussed this problem by posing the question of finding the 

smallest circle that encloses a given set of points in the plane (Sylvester 1857). In 1860, he 

published the analysis of this problem and other related problems and he noted that the 

optimal solution can be determined by two or three points. The solution of the latter is based 

on whether the triangle is obtuse or acute.  Sylvester then continued to describe his algorithm 

based on a solution method of Peirce with no citation. For more details, see Eiselt and 

Marianov (2011, p. 63-72).  

According to Hurtado et al., (2000) Sylvester’s algorithm is very simple and is based 

on the geometric fact that the smallest circle is determined by either two or three points. The 

method for obtaining a solution is briefly described here: (i) for every pair of points 

determine their midpoint and its corresponding circle and for every three points determine 

also the centre of the circle, (ii) for every circle check if all points are encompassed by it and 

(iii) out of all such "feasible" circles choose the smallest one. His crude algorithm, guarantees 

optimality and has a time complexity of )( 4nO , where n is the number of demand points. 

In 1885, Chrystal unknowingly reinvented the approach of Sylvester. Chrystal observed 

that the circle that includes all the vertices of the convex hull does also include all the set of n 

points. Therefore, he excluded all the points that are not vertices of the convex hull from the 

problem, which may significantly decrease the number of the points which determines the 

problem. The algorithm of Chrystal starts with a large circle that includes all the demand 

points and decreases the radius of the circle iteratively, until the optimal solution (smallest 

circle) is reached. In other words, the radius is reduced by examining a pair of vertices of the 

convex hull with the other demand point at each iteration. Chrystal showed that the bound on 

the number of iterations is )1(
2

1
mm , where m refers to the number of vertices in the convex 

hull (m < n). This is because there are 2/)1( mm possible segments connecting the vertices 

and any segment cannot be considered more than once. 



 

 

11 

 

The unweighted 1-centre problem in the continuous space can also be formulated as 

follows: 

Given n distinct points P i  =  (a i, b i); i=1,…,n in the plane,  find a point X  =  (x, y)
2  that 

minimises the maximum Euclidean distance from X to the given points  ),(  i.e., iPXd  

Let f(X) = max d(X,  P i). The problem is to minimize f(X), i.e.  

                       1≤i≤n 

 min      max d(X,  P i).  
2X   1≤i≤n 

A standard transformation is to write the problem as follows: 

         min Z 

s.t. d(X,  Pi) ≤ Z for i = 1, . . ., n. 

        
2X  

Bass and Schubert (1967) improved the performance of Sylvester's algorithm (1857) by 

determining the set of extreme points of a given set of points of finite cardinality in the plane. 

Firstly, an initial set of extreme points is chosen on the basis of extreme values of the 

coordinates. These are the two points with the largest and the smallest X-axis and the two 

points with the largest and the smallest Y-axis. Secondly, finding the extreme points of the 

convex hull, the algorithm of Sylvester is then used. This algorithm runs in )( 4 nLognhO 

time, where h  is the number of extreme points of the convex hull.  In the next chapter, the idea 

of choosing the two points with the largest and the smallest X-axis and Y-axis will also be 

used to enhance the algorithm of Elzinga-Hearn (1972). Drezner and Shelah (1987) showed 

that the complexity of the Elzinga-Hearn algorithm is )( 2nO . 

Eiselt and Marianov (2011) tested the efficiency of the Sylvester-Crystal (SC) 

algorithm and Elzinga-Hearn (EH) algorithm on instances varying in size from n=10 to 

10,000, where they showed EH is more efficient than SC. They also showed that one iteration 

of SC consumes relatively more CPU time than the EH algorithm which requires fewer 

iterations than SC, especially when n is large (n ≥ 200). 
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Drezner and Wesolowsky (1980) provided an algorithm for the weighted 1-centre 

location problem with lp distances. The algorithm starts by choosing randomly an initial point 

and the three points whose weighted distances are the farthest from this initial point. The 

optimal solution Z (1-centre problem when n=3) for these three points is first found. If the 

weighted distance from the solution to any point is not greater than the value of Z, the search 

stops and the optimal solution is found, otherwise the fourth point that has the greatest 

weighted distance from the solution point is determined and the three points that have the 

maximum weighted distance are selected among the four points. The procedure is repeated 

until the search stops. This is almost identical to the Elzinga-Hearn (1972) algorithm. The 

authors also provided a formulation to find the optimal solution for the three points (n=3) 

when using the Euclidian distance. The idea of choosing the three points that have the 

maximum weighted distances will also be examined in the next chapter. 

The work of Carbonet and Mehrez (1980) dealt with the single facility location 

problem which minimises the maximum rectilinear distance where the locations of 

prospective demand points are considered to be random variables. Through the concept of the 

expected value of perfect information, it was shown for the one-dimensional location 

decisions that a substantial reduction in the maximum distance can be realised by the 

adoption of a wait-and-see policy.  

The work of Chakraborty and Chaudhuri (1981) was a note on a geometrical solution for the 

single facility minimax location problem with Euclidean distances. The basic idea was 

similar to the one developed by Peirce (reported by Sylvester (1860)) and by Chrystal (1885). 

Chrystal used a circle of infinite radius through two adjacent points on the convex hull as the 

starting solution, while Peirce's algorithm reported by Sylvester used the minimum angle rule 

instead. The starting point of Chrystal-Peirce algorithm for the unweighted case is to 

construct a large circle which covers all the points Pi, and which passes through two points, Ps 

and Pt, and then define Xk as the centre of the circle, and Sk = {Ps, Pt}. Let ∠ Ps Pv Pt = 

min{∠ Ps Pj Pt: Pj ∉ Sk}, if ∠ Ps Pv Pt is obtuse, stop (the minimum circle has diameter). 

Otherwise, compute the centre of the circle, passing through Ps, Pt, and Pv. If the triangle 

∆ Ps Pt Pv is not obtuse, stop, else, drop the point among Ps, Pt, and Pv with the obtuse 

angle. Rename the remaining points Ps and Pt, and repeat this procedure by using these 

points as initial starting points. To a large extent, the efficiency of the Chrystal-Peirce 
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algorithm depends on how the starting point is chosen. Chakraborty and Chaudhuri used a 

different starting point and proposed the following by selecting a centre X and let Ps be the 

farthest point from X. The triangle ∆  X Ps Pt with the hypotenuse along X Ps  is constructed 

and Pt is selected as the point that maximises the hypotenuse (Pt 
jS PP

Max


/),( jS PPl ( jPP  s . XP  s

)). The centre of the new circle is at the intersection of this hypotenuse with the perpendicular 

bisector of Ps Pt. 

Hearn and Vijay (1982) presented a classification scheme for the single facility 

minmax location problem with respect to both the weighted and the unweighted Euclidean 

distances. When the positive weights are all equal, this reduces to the equiweighted 

(unweighted) problem. They also proposed an extension of the Chrystal-Peirce algorithm to 

the weighted case by proposing how the sequences of the centres of the circles are determined 

from one iteration to the next. 

Megiddo (1983) presented an algorithm for the weighted Euclidean distance which run 

in O(n (log n)
3
(log log n)

2
) time. The author mentioned that for the unweighted case, the most 

efficient algorithm known is an O(n log n) algorithm which is proposed by Shamos and Hoey 

(1975). This algorithm utilises the data structure known as "Farthest point Voronoi diagram". 

It is not clear whether the generalisation of this concept into the weighted Voronoi diagrams 

might yield equally efficient algorithms for problems such as the weighted 1-centre 

location problem. For the weighted case the problem can be solvable in O(n
3
) time on the 

assumption that these techniques can solve quadratic equations in constant time.  

According to Maffioli and Righini (1994), an iterative algorithm for solving the 1-

centre problem on the plane with both the weighted and the unweighted Euclidean 

distance was presented in Righini (1993). This algorithm is similar to the algorithm given 

by Hearn and Vijay (1982). The algorithm starts by choosing randomly three points ( sP , 

tP  and uP ) among the n demand points. Let X be the centre of the circle and find the 

farthest point from X and call it sP . If this point is encompassed by the current circle, stop 

as the circle covers all points and the solution is optimal. Otherwise find the farthest point 

from sP  and call it tP , compute the midpoint between these two points ( sP  and tP ) and call 

it M, and then find the farthest point from M and call it uP . Finally, rename these three 
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points ( sP , tP  and uP )  as ( sP , tP  and uP ) and repeat this procedure by using  these points 

as initial starting points. The complexity of this algorithm is O(n
2
). 

Hurtado et al. (2000) studied constrained versions of the Euclidean 1-centre location 

problem. The authors provided an O(n + m) time algorithm for the problem of finding the 

smallest circle that covers a given set of n points with a centre constrained to satisfy m linear 

constraints. This is an interesting area that could be explored in the future. 

1.4.3 Multi-facility minmax location problems (p-centre) 

The minimax location-allocation problem or the p-centre problem as commonly 

known in location theory, is the following: given n demand points on the plane and a 

weight associated with each demand point (wi, i=1,…,n), find p facilities on the plane that 

minimise the maximum weighted distance between each demand point and its closest new 

facility. 

This problem can also be considered as a MinMaxMin type problem with the following 

objective function: 

 

where 

      n : the number of demand points (fixed points or customers) 

      p : the number of facilities to open 

      ( , )i i iP a b :  the location of demand point ( 1,...., )i i n  

      0iw  :  the weight of demand point ( 1,...., )i i n    

     1( ,...., )pX X X : the decision variables vector related to these p facility locations with     

          ),( jjj yxX   representing the location of the new facility j with
2; 1,...,jX j p   

( , )i jd P X : the Euclidean distance between iP  and jX ( 1,...., ; 1,...., )i n j p   

In general, the continuous p-centre problem has not received much attention from 

researchers compared to other facility location problems such as the p-median problem. It is 

1,..., 1,...,
[ ( , )]i i j

X i n j p
Z Min Max w Min d P X

 

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worth noting that most of the p-centre studies used greedy type heuristic methods with the 

rest covering a handful of exact methods. To our knowledge, there is not a single meta-

heuristic for this continuous problem. Our study will try to fulfil some of these gaps. The  

review of the solution methods for this problem will be presented under two subsections, 

namely heuristic and exact methods. 

1.4.4 Heuristic methods for the p-centre problem 

Chen (1983) proposed an algorithm to solve both the minimax and the minisum 

location-allocation problems with weighted Euclidean distances. This method is based on 

providing differentiable approximations to the location-allocation objective functions. Thus, 

if p facilities are required to be located with respect to n given points, the problem reduces to 

minimising a nonlinear unconstrained function with the 2p variables pp yxyx ,,...,, 11 . In both 

the minisum and the minimax location problems, instances with up to n =100 and p = 10 

were solved. Since both the original problems and their approximations are neither convex 

nor concave, in the large problems the solution was usually only a local minimum, whose 

solution quality could depend on the initial starting points. The author also discussed the 

possibility of extending this approach to cater for the case where the costs are not necessarily 

proportional to the Euclidean distances. 

Drezner (1984b) presented two heuristics and an optimal algorithm for the p-centre 

location problem with weighted Euclidean distance. The first heuristic (H1), which is of a 

multi-start type that is similar to the "alternate location-allocation method" proposed by 

Cooper (1963 and 1964) for the Weber problem except that in the location phase the 1-centre 

problem is solved instead of the 1-median problem. This heuristic starts by randomly 

choosing p points out of the n demand points as centres for the problem. Each demand 

point is then allocated to its nearest centre making p distinct partitions where the 1-centre 

problem is solved for each partition. If the solution is improved (there is a change in any new 

location), this process (location-allocation phases) is repeated until there are no changes in 

the location of the facilities or the allocation of demand points. This algorithm is repeated 

several times using different starting random locations and the best solution is chosen as the 

final solution of the problem. The second heuristic (H2) is an enhancement of H1, which 

incorporates the allocation of the critical points from one partition (circle) to another. The 



 

 

16 

 

H1 heuristic will be used in our testing in the next chapter. Also, we adapt H2 in our local 

searches which will be presented in chapter 3. The optimal algorithm will be explained in the 

next subsection. 

Watson-Gandy (1984) presented an algorithm to solve the problem on the plane with 

weighted Euclidean distances. The author proposed a suitable approach to generate partitions 

of demand points by using a given value for the radius of the largest circle R. For any two 

points (Ps and Pt), if d(Ps, Pt) > 2R or d(Ps, Pt) > rs + rt (where ss wRr / , s = 1,…,n), then 

these two points are allocated to different facilities, otherwise the value of R is exceeded. The 

author also used the graph colouring algorithm proposed by Brown in (1972) to construct 

these partitions. This algorithm was examined on instances from n = 10 to 50 demand points 

with differing weight ranges.  

Dyer and Frieze (1985) described a simple and fairly intuitive heuristic to solve the 

weighted p-centre problem in the plane. They chose a point of the largest weight for the first 

centre, and then they successively selected new centres so that the next centre selected at 

the point that has the largest weighted distance from its nearest centre. This scheme was 

repeated until the required number of centres is achieved. This has the useful property 

that the solution of  )1( p centre is a superset of the p-centre solution. However, this 

scheme can also be seen to be restrictive as the optimal solution is unlikely to have such a 

property. Their heuristic requires only )(npO  distance evaluations, arithmetic operations 

and comparisons. The authors also showed that the ratio of the objective function value of 

their heuristic solution to that of the optimum is bounded by min  )1,3(   with   

i

i

wMin

wMax
. 

Eiselt and Charlesworth (1986) designed three constructive heuristic methods 

known as SWITCHOFF, CRITICAL and STEPDOWN to solve the p-centre problem in the 

plane with the unweighted Euclidean distance. In all these algorithms, the Elzinga-Hearn 

algorithm (1972) was used to solve the 1-centre problem within each cluster. The first 

method closely resembles the "alternate location-allocation method" proposed by Cooper 

(1963 and 1964). The only difference is due to the different objective functions, where 

the authors used the Elzinga-Hearn algorithm instead of the Weiszfeld algorithm which is 
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used to solve the 1-median problem. The second algorithm is related to the "vertex 

substitution method" of Teitz and Bart (1968) which was suggested to solve the p-median 

problem. The main idea is to reallocate one of the critical points of the largest circle 

(points on its circumference) to another circle (non-critical clusters). If the solution is 

improved (reduction in the critical distance), the new solution is recorded and the 

procedure is repeated from this new solution; otherwise we retain the old solution and 

reassign another critical point. Note that this method is similar to the H2 heuristic given 

by Drezner (1984b). The third method (STEPDOWN) is a technique, which starts with n 

open centres by choosing all the n demand points. In each iteration, the two clusters with 

the closest facilities are combined and their new centre is found. This reduction scheme is 

repeated until the required number of centres say p, is reached. In chapter 3, the idea of 

this second algorithm (CRITICAL) will be adapted in order to be used to improve the 

performance of our local search. 

Ezra et al. (1994) developed an algorithm for the location of the p-centre problem 

with Euclidean distances. This is based on the repeated solution of finite relaxation 

problems using an interactive computer graphical method to find the locations of p circles 

that had very similar radii to cover all demand points. The user needs to find the initial 

points to be included in the relaxation set and to inspect on the screen at every stage 

whether the displayed solution, as demonstrated by circles covering the demand region, is 

feasible. If it is not, a new demand point is selected and added to the relaxation set. Here, 

the authors extended the method of Chen and Handler (1987) of optimally solving the p-

centre location problem which we will explain next in the exact methods subsection.  

A Voronoi Diagram Heuristic (VDH) was proposed by Suzuki and Okabe (1995) to 

solve the continuous p-centre problem for area coverage instead of point coverage. This is 

applicable for instance in agriculture, fire forest protection, irrigation and warning sirens, etc. 

The idea of VDH for the continuous p-centre problem is to choose randomly p points (p 

centres) on the plane as an initial configuration. The Voronoi diagram is then constructed 

using these p centres, to form a set of polygons V = {V1, . . . , Vp} called ‘Voronoi polygons’. 

The centre of each Voronoi polygon is then computed by solving the 1-centre problem with 

respect to the vertices of the polygon. This process continues until the centre locations do not 

change or the required number of iterations (maximum number of iterations) is achieved. 
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Suzuki and Drezner (1996) investigated the p-centre problem for demand originating in an 

area rather for the special case of a square area. The authors suggested a heuristic solution 

procedure based on the VDH of Suzuki and Okabe, followed by a finishing up algorithm 

based on a non-linear programming formulation to improve the solution further. 

Pelegrin and Canovas (1998) proposed a new assignment rule (NAR) based on seed 

points for the continuous p-centre problem. The authors suggested three modifications to 

generate a set of p seed points, S = {S1,...,Sp}. The first modification extends the method 

given by Dyer and Frieze (1985). Here, the two farthest points are chosen as the first two 

seed points (S1 and S2) instead of choosing them randomly any point (S1).  The choice of the 

other seed points is the same for both the other two procedures, where the new seed point is 

selected as the farthest demand point from the seed points previously generated. In the 

second modification, the authors suggested using the first seed point as the farthest demand 

point from the gravity centre of the demand points. The third modification extends the 

algorithm provided by Plesnik (1987) which was proposed for the p-centre problem in 

graphs. In the allocation part of the heuristics, each demand point is usually allocated to its 

nearest facility, but in the original class of seed points algorithms, every point is allocated to 

its nearest seed point. It was shown, using computational experiments, that both the 

running times and the solutions quality are significantly improved by this new assignment 

rule.  

Wei et al. (2006) proposed the constrained Voronoi diagram heuristic (CVDH) for 

solving the p-centre location problem for area coverage by extending the method (VDH) 

given by Suzuki and Okabe (1995). The main difference between VDH and CVDH is that in 

the first step of the original VDH p centres are generated randomly in the region as an initial 

configuration, while in CVDH p centres are generated randomly in the feasible siting region 

which may not be convex. The authors also adapted constrained minimum covering circle to 

solve the 1-centre problem by modifying the way the new 1-centre problem was solved by 

controlling feasibility. The idea was also initially discussed by Plastria (2002). A case study 

for emergency warning sirens in Dublin, Ohio was used to demonstrate the usefulness of this 

practical modification.  
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To our knowledge, there is no meta-heuristic for this problem. We aim to remedy this 

weakness by addressing this issue through the design and analysis of three types of meta-

heuristics that will be given in the next chapters.  

1.4.5 Exact methods for the p-centre problem 

Drezner (1984a) proposed two optimal algorithms for the solution of the 2-centre and 

the 2-median location problems with Euclidean distances on the plane. The idea is that any 

two demand points can be separated by a straight line. Since the optimal location of a 

facility within every set can be found optimally, the problem reduces to finding an efficient 

way of defining these straight lines. The author efficiently solved problems up to 100 

demand points. However, for the minimax version, he just applied equal weights (unweighted 

case), and solved the single-facility problem using the method of Drezner and Wesolowsky 

(1980). 

As mentioned earlier, Drezner (1984b) also presented a polynomial algorithm for 

solving the p-centre location problem optimally. The main steps of this algorithm are the 

following: Find a feasible solution to the problem using any heuristic and let Z0 denote 

the value of the objective function as a feasible solution. Construct all maximum sets based 

on Z0 and find a feasible solution for the corresponding a set covering problem. A 

maximum set with respect to Z0 is the set of demand points encompassed by a circle of (i) 

a radius < Z0 and (ii) any additional external point if added will make the radius of the 

new circle > Z0. If a solution is found, use the new Z as Z0 and repeat, otherwise Z0 is the 

optimal solution. The optimal algorithm was tested on small instances varying in size from 

n=10 to 60 solved with p= 2, from n=10 to 50 with p= 3, from n=10 to 40 with p= 4 and from 

n=10 to 30 with p= 5. It could be interesting to explore this optimal approach further though 

no one has pursued it so far. Note that the construction of the maximum set can be time 

consuming especially if the process is repeated several times. 

A similar algorithm was proposed by Vijay (1985) where the sequences of p-cover 

problems assuming a given radius were solved by a zero-one integer programming code. Some 

simple geometric properties were also used to generate each p-cover problem much more 

efficiently. 
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Chen and Handler (1987) adapted the relaxation method originally suggested for the p-

center problem on a network by Handler and Mirchandani (1979), to the p-centre problem in 

the continuous space with Euclidean distances. For any optimal solution, the locations of these 

circles will be among the finite number of circles n  + 








2

n
+ 









3

n
, where n  is the number of 

null circles (a service point at a demand point), 








2

n
 is the number of circles determined by 

two points on the two ends of a diameter and 








3

n
is the number of circles determined by three 

points on the circumference (edges of an acute triangle).  It is worth noting that the number of 

these circles becomes very large when n is large. In this work, the authors introduced useful 

ideas to reduce this total number. The main idea is that a relaxed problem using a subset of m 

points out of the n points (m << n) is chosen and the optimal solution is found using a set-

covering algorithm to find a set of p circles which cover all the m points in the relaxed 

problem. If the solution is feasible for the original problem, then it is also optimal for the 

original problem. Otherwise, the relaxed problem is augmented by adding a point and the 

procedure is repeated. Here the authors suggested adding the farthest point from its nearest 

centre. It is worth noting that at each iteration any circle with a radius larger than or equal to 

the current solution (Rmax) is removed from further consideration which reduces significantly 

the number of circles to be examined in the next set covering problem to be solved. 

Chen and Chen (2009) presented new variants of a relaxation algorithm for both the 

continuous and the discrete p-centre problems. The relaxation method for the minimax 

location problem is an algorithm to optimally solve a location problem by solving a 

succession of small sub-problems which get slightly larger in size with the number of 

iterations. In creating new relaxation algorithms, the authors were guided by three 

factors, namely (1) the sizes of the sub-problems, (2) the number of sub-problems and (3) 

the values of the coverage distances. The authors reported excellent computational results for 

both the continuous and the discrete p-centre location problems, especially for the latter 

where several large instances are used. The authors only reported the optimal solutions 

for the n = 439 TSP instance using several values of p and hence which we will use these 
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in our testing. For completeness, these new relaxation algorithms are therefore described 

here. 

 Enhancements on the classical relaxation algorithm  

In this section, the authors proposed two simple modifications on the classical relaxation 

algorithms to improve its performance, which are as follows:  

i) Efficient updating of the upper bound 

The first improvement of the relaxation algorithms is a simple change to the classic 

relaxation algorithm of Chen and Handler (1987) which led to a considerable effect on its 

performance. In the previous algorithm, when the feasible solution for the relaxed problem is 

found, we have to check if it is also feasible for the original problem. Here, the authors 

mentioned that the p-centre problem has two equivalent interpretations. In the first one, we 

need to locate p circles that cover all the points and the aim is to minimise the radius of the 

largest circle. In the second interpretation, they said that a set of p circles is a feasible 

solution for the problem, if these circles cover all the points. Here, the authors look at the set 

of p circles (at most) that cover all the points in the sub-problem, and then they check 

whether these also cover all the points in the original problem. In other words, the authors 

viewed the p-centre problem as a problem of locating a set of p service points, rather than 

locating a set of p circles, then any set of p service points is a feasible solution (not 

necessarily optimal) for the original problem. Therefore, they considered the feasible solution 

that consists of the centre of the circles that cover the points in the sub-problem. This is also a 

feasible solution for the original problem but they check if its value is less than the current 

upper bound. If it is, the best candidate and upper bound are both updated, and the search 

continues. This simple change has a very positive effect on the performance of the new 

relaxation-based algorithm. 

ii)  Adding more than one point 

In the classic relaxation algorithm, a single demand point is added to the sub-problem. 

However, the authors suggested to add more than one point at a time as it may reduce the 

number of "uninformative'' steps, and thus reduce the number of sub-problems. On the 

other hand, if too many points are added at once, the smaller sub-problems may become too 

big to be solved. They also suggested adding the k demand points that are farthest from 
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the service points of the current feasible solution. The choice of k can be crucial to the 

success of their method. 

 Reverse relaxation  

In the classic relaxation algorithm, they start with an upper bound of infinity, and 

continue to reduce it until the value of the optimal solution is reached. However, here, they 

started with a lower bound of zero instead, and constantly increasing it, until the value of 

the optimal solution is reached. The authors combined relaxation with the approach used for 

the discrete problem that was suggested by Ilhan et al. (2002) and which consists of two 

phases. In the first phase, a tight lower bound on the optimal solution is computed using LP 

only and in the second one the lower bound is gradually increased until the value of the 

optimal solution is reached. Note here that any LP solution which is not feasible is not put 

forward for the ILP in phase 2 which reduces the number of unnecessary ILP problems to be 

solved. This algorithm (Reverse Relaxation) is based on two facts. The optimal solution of 

the p-centre problem for the relaxed problem is a lower bound on the optimal solution of the 

original problem. This helps the authors to find tight lower bounds on the optimal solution, 

and also show that if an optimal solution for a relaxed problem covers all of the points, such 

a solution is also optimal for the original problem. The second fact shows that we can limit 

ourselves to a finite set of possible values for the objective function value. This helps to 

find the optimal solution, by going over all the finite set of possible values for the solution, 

starting from the current lower bound until a solution is found. 

 Binary relaxation   

The final relaxation algorithm, known as the binary relaxation, is similar to the one 

used by Daskin's (1995, 2000) for the vertex p-centre problem. Binary relaxation solves 

relatively few sub-problems with typically small coverage-distance values. At every step in 

the binary search, we check if there is a solution to the sub-problem with a value less than the 

Coverage Distance or not. If not, their lower bound is updated to be the Coverage Distance, 

otherwise there is a solution to the sub-problem. Here, they need to check if it is a feasible 

solution to the original problem. If it is, they update the Upper Bound to be the value of the 

solution, otherwise they add points to the sub-problem. In order to determine the optimal 

solution and to see whenever they need to update the Upper Bound , they also check if 

there is a solution to the sub-problem with a value less than the Upper Bound or not. If 
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the problem is infeasible, then the search stops with the optimal solution being the value of 

the current Upper Bound.  

1.5 Techniques for the vertex p-centre problem 

The facility locations can be restricted to the nodes of the network; in this case the 

problem is referred to as a vertex centre problem. The centre problem that allows facilities 

to be sited anywhere on the network is known as the absolute centre problem. As the 

discrete p-centre problem will be solved as part of our research methodology the two methods 

that are commonly used in the literature are briefly described here. These include the 0-1 ILP 

formulation and the set covering-based approach.  The first one is used here for completeness 

whereas the second one will be discussed in this section and revisited in chapter 5 as we will 

use it in our research.   

0-1 ILP formulation 

The binary linear programming formulation of the vertex p-centre location problem is 

as follows: 

DMinimise                                                                                               (1.1) 

Subject to: 
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where 

I  set of demand nodes, I = {Pi, i=1 ,…, n} 

J  set of candidate facility sites, J = {Fj,  j=1,…, m} 

D = maximum distance or time between a demand node and the nearest facility 

p  The number of facilities to be located     

),( jiij FPdd   = the distance between demand node iP  and candidate facility site jF  

    


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                                                           otherwise,     0
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The objective function (1.1) aims to minimise the maximum distance between each 

demand node and its closest open facility. Constraint (1.2) guarantees that each demand 

node is assigned to exactly one facility. Constraints (1.3) restrict demand nodes to be 

assigned to open facilities. Constraint (1.4) ensures that p facilities are to be located. 

Constraints (1.5) guarantee that the maximum distance between a demand node and its 

nearest facility is greater than or equal to the distance between any demand node and the 

nearest facility. Finally, constraints (1.6) are the integrality constraints. 

For fixed values of p facilities, the vertex p-centre problem can be solved in polynomial 

time, this can be achieved by evaluating all the O(n
p
) possible combinations of p values 

facility locations. Obviously, this evaluation is not realistic in terms of CPU time, even if the 

p and n were moderate, and hence more sophisticated methods based on the set covering 

problem are required, (see Daskin, 1995 and Salhi and Al-khedhairi, 2010). For variable 

values of p, Kariv and Hakimi (1979) proved that in a general graph both the continuous and 

the discrete p-centre problems are NP-hard. See also Megiddo and Supowit (1984) for the 

proof of the NP-hardness of these problems and other related ones.  

Solving the ILP model defined by (1.1) – (1.6) using Cplex proved to be inefficient 

when n ≥ 100  and p ≥ 10 taking more than 5 hours of CPU time without guaranteeing 

optimality, see Alharbi (2010). The author also introduced some reduction schemes to reduce 
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the CPU time but though some improvements were obtained, the model was still requiring an 

excessive amount of computational time. These tests were carried out on a PC with 1.5 

GHz processor and 512 MB of RAM. Other methods, as will be described next, are used 

more efficiently to tackle this problem.   

Set Covering-based approaches 

The objective function of this approach is to find the locations of the minimum set of 

p facilities such that each demand point is covered within a given specified distance or 

time (service standard). Minieka (1970) suggested a basic algorithm that depends on 

solving a finite sequence of Set Covering Problems (SCP). The idea is to choose a covering 

distance as a radius and to check whether all demand points are covered within this radius 

using no more than p facilities. The mathematical formulation and the solution method 

adopted will be provided in chapter 5. 

Daskin (1995) developed an algorithm based on Minieka's idea for solving the 

unweighted vertex p-centre problem using the bisection method that reduces the gap 

between the upper and lower bounds of the optimal solution. This technique will be adapted 

in chapter 5 to find the optimal discrete solution which will be used as an initial solution for 

the continuous problem. 

Daskin (2000) studied the problem again when he proposed a new approach based on 

Lagrangian relaxation.  This method was interesting but was not as competitive as the others 

that are given next. 

Ilhan and Pinar (2001) introduced an exact method for solving the vertex p-centre 

problem optimally, which consists of two phases, namely the LP-Phase and the IP-Phase. In 

the first phase, they computed a lower bound to the optimal solution of the problem by 

solving a series of feasibility problems based on an LP formulation for a successive value of 

R until the LP problem is feasible. In the second phase, starting from the last value of R 

they also used feasibility problems to check if it is possible or not to serve all demand 

points without increasing the number of facilities (p). The idea is that if the solution is not 

feasible in the first phase, which is very fast to perform, then there is no need to go for the 

second phase using such a value of R.  When, the solution is feasible in phase 1, then the 

value of R (say R0) is used as a lower bound for the covering radius in the second phase. If 
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the solution is infeasible for the specific radius R then the value of R is increased until 

feasibility is reached, where the current value of R refers to the optimal solution of the 

vertex p-centre problem. 

Ilhan et al. (2002) developed a simple and efficient exact algorithm for the vertex p-

centre problem, which utilises a set covering sub problem for the solution of the vertex p-

centre problem. The algorithm is also similar to the algorithm described by Daskin (1995), 

however this algorithm utilises different sub problems, rather than using a specific sub 

problem. Here, at each iteration, the authors set a threshold coverage distance as a radius and 

check whether it is possible to cover all demand pointes with p or with less facilities within 

this radius, and then update the lower )(L  and the upper )(U  bounds on the optimal radius. 

In brief, the initial L  and U  values are selected first and an appropriate set covering problem 

is solved by using 
2

UL
R


 . Then a check to see whether p or less facilities can cover all 

demand points within this radius is performed. If yes, they reset U  to the coverage distance, 

otherwise they reset L  to the coverage distance. If UL  , the search stops; otherwise they 

set the coverage distance 
2

UL
R


  and then this process is again repeated. 

Elloumi et al. (2004) used Minieka's idea to solve the problem through the use of a 

greedy heuristic and the IP formulation of the sub-problem. 

Al-Khedhairi and Salhi (2005) proposed some modifications to the Daskin algorithm 

(1995) and to the one provided by Ilhan and Pinar (2001). In the first approach, they 

proposed tighter initial lower and upper bounds, and a more appropriate binary search 

method to decrease the number of sub-problems to be solved. They used the p
th 

minimum value in the distance matrix (dij)i,j as the lower bound instead of zero, and they set 

the upper bound as ij
JjIi

dMaxMinU
 

 . Moreover, they used the Golden Section method as a 

binary search instead of the bisection method to tighten the upper and lower bounds. In 

Ilhan and Pinar (2001), the authors also introduced modifications of some steps by using 

jumps in the updating of R to reduce the number of ILP iterations needed to find the 

optimal solution while Phase I was kept unchanged.   
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Recently Salhi and Al-khedhairi (2010) improved this implementation further by 

using a tighter initial upper bound (U) as the solution of an efficient heuristic. They also 

derived lower bound (L) accordingly where L = α U (α ≅ 0.80). Note that if L dose not 

yield a lower bound, L becomes U and the process continues until a proper range of (L, 

UB) is found. These two bounds were then used within a bisection method as in Daskin’s 

algorithm. It was found that the optimal solutions could be obtained with relatively fewer 

iterations. A simple but effective implementation of this set covering-based method will be 

adapted for the new reformulation local search (RLS) when solving the discrete problem 

which will be described in chapter 5. 

1.6 Summary  

In this chapter, a brief introduction to location theory and the definition of the research 

problem were first given. This was followed by applications for the p-centre problem and the 

meta-heuristics that will be used in our research. This chapter also covered the review on the 

continuous p-centre problem while emphasizing both the single and the multi-facility cases. 

In addition, a brief recap on the techniques used for the vertex p-centre problem was provided 

as some of these methods will be incorporated into our approaches in this research. 

 In the next chapter, we will concentrate on exploring the possibility of speeding up the 

implementation of Elzinga-Hearn algorithm, which is the basis of most local searches that 

will be used when solving the planar p-centre problem in subsequent chapters. 
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Chapter 2 

Enhancements for the solution of the continuous    

1-centre problem 

2.1 Introduction  

In this chapter, a review of the well known Elzinga-Hearn optimal algorithm for the 1-centre 

problem on the plane is first given. Though the algorithm is polynomial, speed up procedures 

are still worthwhile as our aim is to solve the p-centre problem by resolving the 1-center 

problem a large number of times. Our proposed enhancements produced a considerable saving 

when tested on several random instances with various sizes. In addition, we present 

computational results of the Multi-Start method for the continuous p-centre problem to 

demonstrate the effects of our enhancements against the original Elzinga-Hearn 

implementation.  

2.2 The Elzinga-Hearn algorithm for the unweighted 

case 

As we mentioned in chapter 1, in 1972, Elzinga and Hearn discovered geometrical 

solutions for some minimax location problems. They considered four closely related 

minimax location problems. Each involves locating a point in the plane to minimise the 

maximum distance plus a possible constant ik  (i=1,…,n) to a finite set of points ( iP , 

i=1,…,n). The four distinct variations were generated by either restricting all of the ik  to be 

zero, or letting all (or some) of them be positive. The first case is one facility minimax 

location with the unweighted Euclidean distance, which is called the Euclidean Delivery Boy 

Problem. Here, the constants ik  are all equal to zero )0( ik . For example, this represents 

locating a site for an emergency helicopter that serves all the demand points so that it is as 

close as possible to the farthest point. The second case is the Euclidean Messenger Boy 

Problem and here ik  > 0 for some point iP  (or all). This is an extension of the first one where 
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the helicopter travels first to the point 
iP  and then to some other place (e.g., a hospital) situated 

at a distance ik  away. Here, the messenger boy is located at the point X  in order to move from 

X  to a point iP  and then deliver a message a distance ik  away with the aim of minimising 

the maximum total Euclidean distance. The third case is one facility minimax location with 

the unweighted Rectilinear distance (the Rectilinear Delivery Boy Problem) whereas the last 

one is about the Rectilinear Messenger Boy Problem that has the same interpretation except 

that the emergency vehicle is restricted to traveling on a grid. 

Here, the objective of the Elzinga-Hearn algorithm (1-centre location problem) is to 

minimise the maximum distance between a customer and its nearest facility. This problem 

has a succinct geometrical interpretation, which is to find the smallest circle that encloses a 

given set of n points (customers). The centre of this circle is precisely the location of the new 

facility, as shown in Figure 2.1. Note that any circle can be determined by two or three points. 

 

 

 

  

    

 

It can be noted that in Figure 2.1 (a), the minimum covering circle is determined by two 

points (P1 and P2) that are at the two ends of the diameter where its centre is at the midpoint 

of points P1 and P2. In Figure 2.1 (b), the minimum covering circle is determined by three 

points (P1, P2, and P3) that are on its circumference (edges of an acute triangle) with its centre 

being at the circumcenter of the triangle (P1 P2 P3).  

The idea of this algorithm is to construct successively larger and larger circles, defined 

by two or three points, until the optimum is attained. The approach is formally given next. 

 

   Figure 2.1: The circle can be determined by two points or by three points 
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The Elzinga-Hearn algorithm 

Step 1: Select two random points, Ps and Pt 

Step 2: Construct the circle whose diameter is d (Ps, Pt). 

a) If this circle includes all points, then the centre of the circle is the optimal solution 

X  and stop. 

b) Else, select a point Pu outside the circle. 

Step 3: If the triangle determined by Ps, Pt and Pu is an obtuse or a right angled triangle, 

rename the two points on the two ends of the hypotenuse as Ps and Pt and go to Step 2. 

Step 4: Else, construct the circle passing through these three points. (The centre of the circle is 

at the intersection of the perpendicular bisectors of two sides of the triangle.) If the 

circle includes all the points, then the centre of the circle is the optimal solution X and 

stop, else go to Step 5. 

Step 5: Select a point Pv not enclosed by the circle and let Q  

 ),(),,(),,( uvtvsv PPdPPdPPdMaxArg  be the point among {Ps, Pt, Pu} that is 

farthest from Pv. Extend the diameter through the point Q to a line that divides the 

plane into two half planes. Let the point L be the point among {Ps, Pt, Pu} that is in 

the half plane opposite Pv. Go to Step 3 using the three points Q, L, and Pv. See 

Figure 2.2 for an illustration. 

 

 

 

 

 

 

 

Figure 2.2: Choose the three points among the four points (Ps, Pt, Pu and Pv ) in Step 5   
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Note: In Step 5, the point Pu could not be on the diameter. This is because if this point (Pu) 

was on the diameter, it means that the circle is determined by two points (Pt and Pu), where its 

centre (X) would have been already found in Step 3. 

2.3 Enhancements to the Elzinga-Hearn algorithm for the 

unweighted case  

Elzinga and Hearn (1972) noted that their algorithm has two weaknesses: (i) selection 

of the starting points (Step 1) and (ii) the selection of the uncovered points (Step 2 (b) and 

Step 5), which will be explained later. This weakness gave rise to the design of six 

enhancements which are given next. 

2.3.1 Variant (1): V1 

The steps of this variant (V1) are similar to the steps of the original algorithm, except 

that Step 1, is modified and Step 3 of the original algorithm is not needed here. Thus, the 

steps of V1 are as follows including those unchanged steps given here for convenience. 

Step 1: Select the two starting points, Ps and Pt that have the greatest distance between any 

two points. Mathematically ),(),(
,...,1

,...,1 ji

nj

nits PPdMaxArgPP


 , (see Figure 2.3).  

Step 2: Construct the circle whose diameter is d(Ps, Pt). 

a) If this circle covers all points, then the centre of the circle is the optimal solution X  

and stop. 

b) Else, select a point Pu which is not enclosed by the circle. 

Step 3: Construct the circle passing through these three points (Ps, Pt and Pu). If the circle 

covers all the points, then the centre of the circle is the optimal solution X and stop, 

else go to Step 4. 

Step 4: Select a point Pv not enclosed by the circle, and let Q be the point among {Ps, Pt, Pu} that 

is farthest from Pv. Extend the diameter through the point Q to a line that divides the 

plane into two half planes. Let the point L be the point among {Ps, Pt, Pu} that is in 

the half plane opposite Pv. Go to Step 3 using the three points Q, L, and Pv. 
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Note 1: In this variant (V1), Ps and Pt in Step 1 are selected as those farthest apart. Step 3 of 

the original algorithm is not needed, because the use of the two points farthest apart as initial 

starting points (Step 1) guarantees that all the subsequent circles will be defined by three 

points. In other words, any uncovered point with the farthest two points ),( 21 PP  makes an 

acute triangle (see Figure 2.3). This means that we do not need to check the case when the 

circle is defined by 2 critical points, (see Figure 2.3). For instance, if the points P1 and P2 are 

the farthest two points, this means that there are no points in the region (a) and (c). 

Furthermore, any point in region (b) which is not encompassed by the circle, will make an 

acute triangle with the points P1 and P2. This is based on Thales' theorem, as shown in 

Appendix A1.  

 

 

 

 

 

 

 

Based on the above observation the use of the two points farthest apart (P1, P2) as initial 

starting points could lead to reducing the number of iterations significantly. On the other 

hand, to find these two points, the Euclidean distance should be calculated 2/)( 2 nn   times. 

The question is therefore:  

Is the time that we can save from reducing the number of iterations and checking the type of 

triangles (acute or not) less than the time required to find the farthest two points? 

The answer to this will be provided empirically in our computational results section. 

Note 2: We can reduce the time required to find the farthest two points by finding the 

maximum without using the square root as   22

, )()( jijiji yyxxMaxArg  
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Figure 2.3: Illustration of the farthest points (P1 and P2) and the corresponding regions 
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2 22

, )()( jijiji yyxxMaxArg  .  Though the saving by not computing the square root is 

very small for one pair of points, here this needs to be performed 
2

2 nn 
 times which can 

become not negligible.  

2.3.2 Variant (2): V2 

The steps of the second variant (V2) are the same as the steps of V1 except that Step   

2 (b) and Step 4 of V1are modified. The steps of V2 are summarised as follows: 

Step 1: Select the two farthest points, Ps and Pt as in V1. 

Step 2: Construct the circle whose diameter is d(Ps, Pt). 

a) If this circle covers all points, then the centre of the circle is the optimal solution X 

and stop. 

b) Else, select a point Pu that has the greatest distance from the previous solution 

(midpoint of Ps and Pt). 

Step 3: Construct the circle passing through these three points (Ps, Pt and Pu). If the circle 

covers all the points, record the centre of the circle (the optimal solution X) and stop, 

else go to Step 4. 

Step 4: Select a point Pv that has the greatest distance from the previous solution X and let Q 

be the point among {Ps, Pt, Pu} that is farthest from Pv. Extend the diameter through 

the point Q to a line that divides the plane into two half planes. Let the point L be the 

point among {Ps, Pt, Pu} that is in the half plane opposite Pv. Go to Step 3 using the 

three points Q, L, and Pv. 

The idea of Step 2 (b) and Step 4 are also proposed by Elzinga and Hearn, where they 

mentioned: "In practice it seems reasonable to choose the farthest point outside the current 

circle rather than just some point as indicated in Steps 2 and 3." (Elzinga and Hearn, 1972, p. 

382). However, they neither applied this idea nor tested it. Furthermore, Hearn and Vijay 

(1982) mentioned: "The speed of this method depends on whether the first two points are 

chosen randomly or by some heuristic, and on whether the outside point of Step 3 is chosen to 

be the farthest point or randomly." (Hearn and Vijay, 1982, p. 794). Their experiments are 

based on a random point outside and a farthest point outside the current circle with a random 
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start and a heuristic start.  In their limited experiment, they found that random starts are 

slightly faster. In the same work for the weighted case, Hearn and Vijay also used the idea of 

the farthest point from the current solution (weighted-farthest point). However, our results are 

different. This aspect will be further explained in our computational results section. 

Choosing the farthest point that is not covered by the current circle leads to reducing the 

number of iterations. This is because the choice of the farthest point from the centre of the 

circle will create a new larger circle that covers most of the points, see Figure 2.4. 

 

 

 

 

 

 

 

If we choose any random point not encompassed by the circle (let it be P6) as in Figure 

2.4 (a), the new circle is determined by three points (P1, P3 and P6). When we compare this 

circle with the previous circle (its centre X1), we note that it did not cover any additional point 

except (P6). However, when we choose the farthest point outside the current circle as in 

Figure 2.4 (b) the new circle is determined by three points (P1, P3 and P5), which covers all 

the points except point P7. On the other hand, to find the farthest point outside the current 

circle, the Euclidean distance should be calculated n times. The efficiency of this variant, 

known as V2, will be shown in our computational results section. 

2.3.3 Variant (3): V3 

Here, we will use the idea initially proposed by Bass and Schubert (1967) to improve 

Sylvester's algorithm (1857), where the two initial starting points are chosen on the basis of 

Figure 2.4: The choice of any point or a farthest point outside the current circle 
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extreme values of the coordinates. The steps of this variant (V3) are similar to the steps of the 

original algorithm, except that Step 1, which is modified as follows: 

Step 1: Choose four points that determine the maximum and the minimum point in the x-axis 

and the y-axis. Let },,,{ 2121 jjiiB  with )(1 ii xMinArgi  , )(2 ii xMaxArgi  , 

)(1 jj yMinArgj   and )(2 jj yMaxArgj  . Choose BPs   and BPt   such that

),(),(

),(

ji

BBPP

jits PPdMaxArgPP

ji 


 .  

Other steps are unchanged. 

These four chosen points namely 121 ,, jii  and 2j  are illustrated in Figure 2.5. 

 

 

 

 

 

 

Note that, using the two points that have the greatest distance between those four points 

(max and min of x-axis and y-axis) as the initial starting points does not necessarily cover all the 

points, as shown in Figure 2.6.  

Using the farthest two points of the four points (max and min of x-axis and y-axis) as 

the initial starting points leads to reducing the number of iterations significantly. On the other 

hand, finding these two points requires an extra number of calculations, as the largest and the 

smallest value of x-axis and y-axis need to be found, and then the two points that have the 

greatest distance among these four points will also need to be determined. Our 

computational results will demonstrate the effectiveness of this variant which we refer to 

as V3. 

x 

Figure 2.5: The four extreme points with the max and the min x-axis and the y-axis 
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2.3.4 Variant (4): V4 

All the steps of this variant (V4) are the same as the steps of the original algorithm 

except that Steps 1, 2 (b) and 5 are modified. The steps of this variant are as follows: 

Step 1: As Step 1 in V3. 

Step 2: Construct the circle whose diameter is d(Ps, Pt) and centre X. 

a)  If the circle covers all points, then its centre is the optimal solution X and stop. 

b) Else, select a point Pu = ),(
,...,1

XPdMaxArg i
ni

.  

Step 3: If the triangle determined by Ps, Pt and Pu is an obtuse or a right triangle, rename the 

two points on the two ends of the hypotenuse as Ps and Pt and go to Step 2. 

Step 4: Else, construct the circle passing through these three points and let X be its centre. If 

the circle covers all the points, stop, else go to Step 5. 

Step 5: Select a point Pv not enclosed in the circle such that Pv = ),(
,...,1

XPdMaxArg i
ni

. Let Q 

be the point among {Ps, Pt, Pu} that is farthest from Pv. Extend the diameter through 

the point Q to a line that divides the plane into two half planes. Let the point L be the 

point among {Ps, Pt, Pu} that is in the half plane opposite Pv. Go to Step 3 using the 

three points Q, L, and Pv.  

 ),(),,(),,( uvtvsv PPdPPdPPdMaxArgQ   
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Uncovered points 

Min x-axis (i1) 
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Figure 2.6: The two farthest points among the four points (max and min of x-axis 

and y-axis) not covering all points  
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We will test the efficiency of this variant in the computational results section. This 

enhancement, known as V4 can be considered as a combination of V2 and V3. 

2.3.5 Variant (5): V5 

The steps of V5 are similar to the steps of the original algorithm, except that Steps 1 

and 2, are modified. In addition, Step 3 of the original algorithm is not needed here. The steps 

of this variant are as follows: 

Step 1: Select the two farthest points, Ps and Pt as in V1. 

Step 2: Construct the circle whose diameter is d (Ps, Pt). 

a) If the circle encloses all points, then its centre is the optimal solution X and stop. 

b) Else select a point Pu that has the greatest distance between the two points Ps  

and Pt, (as shown in Figure 2.7).  

Step 3: Construct the circle passing through these three points (Ps, Pt and Pu). If the circle 

covers all the points, then its centre is the optimal solution X and stop, else go to 

Step 4. 

Step 4: Select a point Pv not enclosed by the circle, and let Q be the point among {Ps, Pt, Pu} that 

is farthest from Pv. Extend the diameter through the point Q to a line that divides the 

plane into two half planes. Let the point L be the point among {Ps, Pt, Pu} that is in 

the half plane opposite Pv. Go to Step 3 using the three points Q, L, and Pv. 

 ),(),,(),,( uvtvsv PPdPPdPPdMaxArgQ   

Here we extend V1 by choosing the third point which is farthest from the other two 

points having the greatest sum distance, as shown in Figure 2.7. In other words, 

 ),(),( ts

PtP

PsPu PPdPPdMaxArgP 


 . This leads to reducing the number of iterations.  

However, finding these three points requires an extra number of calculations. This 

needs finding the farthest two points (the Euclidean distance (without using square root) 

should be calculated 2/)( 2 nn   times) as well as the third point )( uP  which requires checking 

 ),(),( ts PPdPPd   in the distance matrix )2( n  times. The gain in computation time 

against the extra computational burden for this variant, known as V5, will be shown in our 

computational results section. 
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2.3.6 Variant (6): V6 

The steps of this variant (V6) are the same as those of the previous variant (V5) except 

that Step 4 is modified as follows: 

Step 4: Select a point Pv not enclosed in the circle such that Pv = ),(
,...,1

XPdMaxArg i
ni

. Let Q 

be the point among {Ps, Pt, Pu} that is farthest from Pv. Extend the diameter through 

the point Q to a line that divides the plane into two half planes. Let the point L be the 

point among {Ps, Pt, Pu} that is in the half plane opposite Pv. Go to Step 3 using the 

three points Q, L, and Pv. 

This variant is a combination of V2 and V5 and its efficiency will be presented in our 

computational results section. 

2.4 The Elzinga-Hearn algorithm for the weighted case  

Here, the objective of the Elzinga-Hearn algorithm is to minimise the maximum 

weighted Euclidean distance between a demand point and its nearest facility.  

Let wi > 0 be a positive constant weight applied to a demand point i, i = 1, …, n.   

All the other notation is unchanged.   

The objective becomes: 

Figure 2.7: The third point with the farthest two 
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Minimise f (X) = max{ wi d(X, Pi): i = 1, …, n }. 

   
.2X
 

The optimal solution is guaranteed using a geometrical approach based on the 

following interesting results. It can be shown that the optimal solution for the weighted 

minimax location problem can be determined by one, two or three points only. These are 

usually referred to in the literature as the critical points.  

Result 1 (Case of 2 points Ps and Pt): 

For 2 points Ps and Pt, let L(Ps,  Pt) = { X : ws  d(X,  Ps) = wt  d(X,  Pt)}, that is,  

L(Ps,  Pt) is the set of  points whose weighted distance to point Ps equals the weighted 

distance to point Pt . If the ratio , then L(Ps, Pt) reduces to a straight line, i.e., the 

perpendicular bisector of the line joining point Ps and point Pt. If r ≠ 1, then L(Ps, Pt) is a 

circle with radius  and centre 
 
known as the Apollonius circle. Figure 

2.8 shows the set L for the unweighted and the weighted cases of two points (Ps, Pt).  

Figure 2.8 (a) shows the feasible solutions when all weights are equal (unweighted case), 

which are the set of points L(Ps,  Pt) that are located on the line L. In other words, for any 

point of L(Ps,  Pt) the distance from this point to the point Ps is equal the distance from that 

point to the point Pt. However, the optimal solution is at point X, because at this point the 

distance (from X to Ps and from X to Pt) is the minimum distance. In Figure 2.8 (b), the same 

idea can be applied when r ≠ 1 (weighted case), however the set of points L(Ps,  Pt) is now a 

circle, and the weighted distance is used. Thus the optimal solution is at the point X, where 

the circle and the line Ps Pt intersect. 
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Result 2 (case of 3 points): 

This result is used to find the optimal location of the weighted case (1-centre problem) 

of 3 points (n=3), where the optimal solution can be determined by two or three points. In 

other words, the optimal solution of the location problem with 3 points Ps, Pt, and Pu is 

determined by one of the pair of points: Ps and Pt {a=X(Ps,  Pt)}, or Ps 
and Pu 

{b=X(Ps,  

Pu)}, or Pt and Pu 
{c=X(Pt,  Pu)}, or the optimal solution is determined by all three points in 

which case the solution lies at the intersection of L(Ps,  Pt), L(Ps,  Pu) and L(Pt,  Pu) {d1, d2}. 

Namely, if there is an intersection between all the three circles (L(Ps,  Pt), L(Ps,  Pu) and L(Pt,  

Pu)), the intersection points will be at two points only (d1 and d2). Figure 2.9 displays these 

five candidate points. 

 

 

 

 

 

 

 

 

 

From the five possibilities {a, b, c, d1, d2}, the choice will reduce to choosing one point 

from {d1, d2} or from {a, b, c}. In other words, the optimal location can be either at the two 

intersection points between all the three circles {d1, d2} as shown in Figure 2.9 or there would 

be no intersection at all as illustrated in Figure 2.10. This means that, the solution cannot be at 

the intersection of two circles only. The proof of this is given in Appendix A2. 
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Figure 2.9: The optimal solution for the 3 points (Pt, Ps, Pu) 
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 (i) Case when there is no intersection 

If there is no intersection between L(Ps,  Pt), L(Ps,  Pu) and L(Pt,  Pu), the optimal 

solution can be determined by 2 points only. In other words, the optimal solution can be at 

{a, b or c}, as shown in Figure 2.10.  

Note that the task is straightforward and hence it will not require a heavy extra 

computational burden. 

 

  

 

 

 

 

 

 

 

 

 

 

 

(ii) Case when there is an intersection 

We can classify this case into two types, which are as follows: 

a) The intersection is outside the triangle  

If the intersection between the circles is outside the triangle Ps Pt Pu, the optimal solution can 

be determined by 2 points only as in the previous case (i). The optimal solution can be at one 

of the three points namely a, b or c as shown in Figure 2.11. 

 

Ps 

Pt 

Pu 

ctu 

csu 

cst 

Figure 2.10: Case of no intersection between circles 
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b) The intersection is inside the triangle 

If the intersection between the circles is inside the triangle Ps Pt Pu then the optimal 

solution can be either at points d1 or d2 as shown in Figure 2.12.  

 

 

 

 

 

 

 

 

  Figure 2.12: The optimal solution for the 3 points (inside the triangle i.e., d1 or d2) 
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Figure 2.11: The intersection is outside the triangle Ps Pt Pu  
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Note: 

If the intersection of these three circles is outside the triangle as in Figure 2.11, the 

optimal solution will be defined by two points. If this intersection is inside the triangle as in 

Figure 2.12, the optimal solution will be determined by three points. The proof of this note is 

as follows:  

Proof 

In Figure 2.11, the circle with its centre at ctu presents the optimal solution at point c, 

which is determined by two points Pt and Pu. Here we will prove that this solution (at point c) 

is better than the solution at point d1 (determined by the three points Pt, Pu and Ps). In other 

words, if the intersection of the circles is outside the triangle, the optimal solution will be 

determined by two points, which means that any solution outside the triangle is not an 

optimal solution. The optimal solution is either inside the triangle (determined by three 

points) or on one side of the triangle (determined by two points), which means that the 

optimal solution cannot be outside the triangle.   

In Figure 2.11, the intersection is outside the triangle at d1 and d2 and the optimal 

solution is determined by two points Pt and Pu at point c.  

  both points d1 and c are located on the circumference of the circle whose centre is at ctu. 

 wt  d(d1, Pt) = wu  d(d1, Pu) and wt  d(c, Pt) = wu  d(c, Pu)  

 d(d1, Pt)> d(c, Pt) because the points Pu, c and Pt are located on the straight line ( ut PP ), 

whereas, the points Pu, d1 and Pt do not lie on this straight line. 

  the solution at point c is therefore better than the one at point d1.                                       ■ 

Figure 2.12 shows that the optimal solution at point d1 is determined by three points Pt, 

Pu and Ps. Here we will prove that the solution at point d1 is better than the solution at point c 

which is determined by two points Pt and Pu.  

wt  d(d1, Pt) = wu  d(d1, Pu) = ws  d(d1, Ps), because this point (d1) is the intersection point of 

all these three circles.  

wt  d(c, Pt) = wu  d(c, Pu), because this point (c) is the intersection point of the circle whose 

centre is at ctu with the line segment ut PP . 
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wt  d(a, Pt) = ws  d(a, Ps), because this point (a) is the intersection point of the circle cst with 

the line segment st PP . 

As the point c is located outside the circle whose centre is at cst and the point d1 is located on 

the same circle. 

 ws  d(c, Ps) > ws  d(d1, Ps), which means that the solution at the point d1 is better than  the 

one at point c.                                                                                                                                                      ■ 

In order to know whether there is an intersection between the circles or not, we must 

perform the following checks. 

For any two circles on the plane, several situations may occur. (i) There is no 

intersection between the two, (ii) one of them contains the other or (iii) one of them touches 

the other from the outside or from the inside. The conditions to guarantee the existence or not 

of the intersection between two circles is given in Appendix A3 and the coordinates of the 

intersection between the two circles, if this exists, is provided in Appendix A4.  

Based on the above results, the following algorithm was developed by Elzinga and 

Hearn (1972) to find the optimal location of the weighted 1-centre problem in the continuous 

space. 

The Elzinga-Hearn algorithm (Weighted) 

Step 1: Choose any two points randomly Ps and Pt. Solve the weighted minimax location 

problem with Ps and Pt and let Z = ws d (X, Ps), where X is computed by using Result 1. 

Step 2: If wi d(X, Pi) ≤ Z for all Pi (i =1,...,n), stop, else select a point Pu such that wu d (X, Pu) 

>  Z and go to Step 3. 

Step 3: Solve the weighted minimax location problem with Ps, Pt, and Pu, for X and Z using 

Result 2.  

Step 4: If the location X is determined by two points, say Ps and Pt go to Step 2. 

Else, X is determined by three points. If wi d(X, Pi) ≤ Z for all Pi, stop, otherwise 

choose the point Pv such that wv d(X, Pv) > Z. 
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Step 5: Using Ps, Pt, Pu and Pv, choose all combinations of two points to find the location X 

using Result 1, and choose all combinations of three points to find the location X 

using Result 2.  

If X and Z are determined by two points, call them Ps and Pt and go to Step 2. 

If X and Z are determined by three points, call them Ps, Pt, and Pu, and go to Step 5.  

2.5 Enhancements to the Elzinga-Hearn algorithm for the 

weighted case  

In this section, we will present six enhancements on the original Elzinga-Hearn 

algorithm for the weighted case. In general, the modifications are similar to those that have 

been proposed for the unweighted case. 

Variant (1w): W1 

The steps of this variant (W1) are the same as the steps of the original algorithm 

except that Step 1 is modified as follows: 

Step 1: Choose the two farthest points Ps and Pt that have the greatest weighted distance 

between any two points. Solve the weighted minimax location problem with Ps and 

Pt and let X be the solution with Z = ws d(X, Ps) using Result 1. 

The other steps are unchanged. 

In Step 1, the two points Ps and Pt are defined by )},({),(
,...,1,

ji

ji

ji

nji

jits PPd
ww

ww
MaxArgPP








   

Variant (2w): W2 

Here, the steps are similar to those of the original algorithm except that Steps 1, 2 

and 4 are modified. The steps of this variant are as follows: 

Step 1: As Step 1 of W1. 

Step 2: If wi d(X, Pi) ≤ Z for all Pi, stop, else select a point Pu such that wu d(X, Pu) > Z that 

has the greatest weighted distance from X and go to Step 3. 

Step 3: This step is unchanged.  
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Step 4: If the location X is determined by two points, say Ps and Pt go to Step 2, 

Else, X is determined by three points. If wi d(X, Pi) ≤ Z for all Pi then stop, otherwise 

choose the point Pv such that wv d(X, Pv) > Z and which has the greatest weighted 

distance from X. 

Step 5: This step is unchanged. 

Variant (3w): W3 

All the steps of W3 are the same as the ones of the original algorithm except that Step 1 

which is modified as follows: 

Step 1: Choose four points that determine the maximum and the minimum point in the x-axis 

and the y-axis. Let },,,{ 2121 jjiiB  with )(1 iii xwMinArgi  , )(2 iii xwMaxArgi  ,

)(1 jjj ywMinArgj   and )(2 jjj ywMaxArgj  . Choose Ps and Pt such that 

)},({),(

  ),(

ji

ji

ji

BBPP

jits PPd
ww

ww
MaxArgPP

ji









. Use Result 1 to solve the weighted 

minimax location problem with 𝑃𝑠 and 𝑃𝑡, and let X be the solution with

),( ss PXdwZ  . 

Variant (4w): W4  

This variant (W4) is a combination of W2 and W3 and its steps are as follows: 

Step 1: As Step 1 of W3. 

Step 2: As Step 2 of W2. 

Step 3: As Step 3 of the original algorithm. 

Step 4: As Step 4 of W2. 

Step 5: As Step 5 of the original algorithm. 

Variant (5w): W5 

The steps of this variant are the same as those of the original algorithm except that steps 

1 and 2 are modified as follows: 

Step 1: As Step 1 of W1. 

Step 2: If wi d (X, Pi)  ≤ Z for all Pi, stop. 

Else: 
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a) In the first iteration select a point Pu that has the greatest weighted distance 

between the two points Ps and Pt. 

b) Else choose a point Pu such that wu d (X, Pu) > Z and go to Step 3. 

The other steps are unchanged. 

Variant (w6): W6 

The steps of W6 are the same as the ones of W5 except that Step 2 (b) and Step 4 are 

modified as follows:  

Step 1: As Step 1 of W5. 

Step 2: If wi d (Pi, X)  ≤ Z for all Pi, stop. 

Else: 

a) In the first iteration select a point Pu that has the greatest weighted distance 

between the two points Ps and Pt. 

b) Else, choose a point Pu such that wu d (Pu, X) > Z that has the greatest weighted 

distance from X and go to step 3. 

Step 3: As Step 3 of W5. 

Step 4: As Step 4 of W2. 

Step 5: As Step 5 of W5. 

2.6 Empirical results for the enhancements 

The original algorithm and our enhancements were tested on random instances varying 

in size from n=10 to 100 in increments of 10. For each value of n, 100 random instances were 

tested and average results were reported. The demand points with their x and y coordinates 

were generated randomly using a uniform distribution within a square area from 0 to 100. In 

other words, )100,0(ix  and niyi ,...,1);100,0(  . For the case of the weighted problem, 

we also generated the weight (wi, i=1,…,n), in a uniform range from 1 to 10.  The original 

algorithm and the enhancements were coded in C++ using Visual Studio 2008.  A laptop 

computer with a Intel Core 2 Duo processor, 2.0 GHz CPU and 4G memory was used to 

conduct these experiments. For simplicity, we referred to V0 and W0 as the original 

algorithms for the unweighted and the weighted case respectively.  
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2.6.1 Computational results of the unweighted case 

According to Table 2.1, we noted that all the enhancements required fewer iterations. 

The average total number of iterations of V6 was the lowest number of iterations of 1.089, 

whereas V0 required 8.193.  

Table 2.1: Average CPU time (in seconds) over 100 instances and number of iterations 

for n = 10 to 100 (unweighted case) 

n 

V0 V1 V2 V3 

Average   

CPU 

Iterations of Average   

CPU 

Iterations of 
Average   

CPU 
Iterations of Average   

CPU 

Iterations of 

2 pt 3 pt Total 2 pt 3 pt Total  2 pt 3 pt Total 2 pt 3 pt Total 

10 0.00004 0.34 0.80 1.14 0.00003 1 1.01 2.01 0.00002 1 0.80 1.78 0.00002 0.73 1.19 1.92 

20 0.00006 0.37 0.84 1.19 0.00004 1 1.08 2.08 0.00005 1 0.84 1.84 0.00003 0.93 0.93 1.86 

30 0.00010 3.24 4.76 8 0.00009 1 0.97 1.97 0.00013 1 0.73 1.73 0.00005 1.02 2.47 3.49 

40 0.00012 3.66 12 8.80 0.00021 1 0.90 1.90 0.00021 1 0.69 1.68 0.00008 1.02 2.78 3.77 

050 0.00015 3.61 5.55 9.16 0.00025 1 0.86 1.86 0.00027 1 0.72 1.72 0.00010 1.11 2.81 3.92 

60 0.00029 3.58 5.92 9.50 0.00050 1 0.84 1.84 0.00034 1 0.74 1.74 0.00011 1.27 3.23 4.50 

70 0.00019 3.96 6.50 10.46 0.00064 1 0.86 1.86 0.00061 1 0.69 1.69 0.00010 1.37 3.42 4.79 

80 0.00037 4.02 7.09 11.11 0.00095 1 0.94 1.94 0.00098 1 0.70 1.70 0.00007 1.43 3.57 5 

90 0.00031 4.32 6.85 11.17 0.00093 1 0.91 1.91 0.00097 1 0.69 1.69 0.00007 1.57 3.79 5.36 

100 0.00029 4.24 7.16 11.40 0.00121 1 0.87 1.87 0.00128 1 0.65 1.65 0.00008 1.66 3.87 5.53 

Average 0.00019 3.13 5.75 8.19 0.00049 1 0.92 1.92 0.00049 1 0.73 1.72 0.00007 1.21 2.81 4.01 
 

n 

V4 V5 V6 

Average   

CPU 
Iterations of Average   

CPU 
Iterations of Average   

CPU 
Iterations of 

2 pt 3 pt Total 2 pt 3 pt Total 2 pt 3 pt Total 

10 0.00001 0.71 0.97 1.68 0.00002 0.34 0.82 1.16 0.00004 0.34 0.80 1.14 

20 0.00003 0.71 0.97 1.68 0.00008 0.36 0.85 1.21 0.00007 0.36 0.84 1.20 

30 0.00003 0.86 1.55 2.41 0.00012 0.38 0.73 1.11 0.00016 0.38 0.73 1.11 

40 0.00002 0.84 1.70 2.54 0.00017 0.34 0.69 1.03 0.00021 0.34 0.69 1.03 

50 0.00006 0.89 1.71 2.60 0.00040 0.36 0.70 1.06 0.00029 0.35 0.72 1.07 

60 0.00009 1 1.83 2.83 0.00054 0.35 0.74 1.09 0.00049 0.35 0.74 1.09 

70 0.00009 1.04 1.88 2.92 0.00072 0.39 0.70 1.09 0.00061 0.39 0.69 1.08 

80 0.00009 1.03 1.98 3.01 0.00082 0.37 0.71 1.08 0.00091 0.37 0.70 1.07 

90 0.00012 1.10 1.96 3.06 0.00113 0.37 0.69 1.06 0.00101 0.37 0.69 1.06 

100 0.00017 1.22 1.83 3.05 0.00129 0.39 0.65 1.04 0.00128 0.39 0.65 1.04 

Average 0.00007 0.94 1.64 2.58 0.00053 0.37 0.73 1.093 0.00051 0.36 0.73 1.089 

2 pt: # iterations when the solution was found by two points (solution determined by a right triangle or an acute triangle) 

3 pt: # iterations when the solution was found by three points (solution determined by an obtuse triangle) 

Total: total # iterations (2 pt +3 pt)  

To illustrate the average CPU time of these enhancements, a line chart was also shown in    

Figure 2.13.                        
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Figure 2.13: Average CPU time of the enhancements over 100 instances for n =10 to 100  

(case of unweighted) 

We noted that the enhancements V3 and V4 were better than the original algorithm and 

the other enhancements in all cases (from n = 10 to 100). However, V0 was quicker than V1, 

V2, V5 and V6 when n was greater than 30. We also noted that there was no clear difference 

between V3 and V4 when n was less than 20. However, when n < 70, V4 was quicker than V3 

and when n > 70 the latter became faster than V4. In brief, we noted that V3 and V4 gave 

better results than V0, especially when n was large.  

The following rule can then be used when solving the 1-centre problem as part of the p-

centre problem:  

 If n ≤ 70 use V4, else use V3. 

To illustrate the differences in CPU time between the original algorithm and the other 

enhancements, the deviation in % of the enhancements from the original algorithm were 

computed as follows.  

100.
)(

(%)
Ori

OriEnh

Time

TimeTime
Deviation


    

where TimeEnh and TimeOri refer to the CPU time required by the enhancement and the 

original algorithm respectively. 

The results were summarised in Table 2.2 and shown in Figure 2.14. 
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 Table 2.2: Deviation (%) from the original algorithm (V0): case of the unweighted 

 
  Figure 2.14: Deviation (%) of the CPU time from the original algorithm                    

(unweighted from n 10 to 100) 

It has been noted that the use of the enhancements (V3 and V4) can save up to 81% and 

83% of the time of the original algorithm, when n = 80 and 40 respectively. The average 

saving of about 56% and 64% was recorded for V3 and V4 respectively. 

Comments:  

It is worth noting however that the curve in Figure 2.13 showed some irregularities with 

respect to the original algorithm when using three points. There was a sharp increase in the 

CPU time when n=60 and n=80 compared to the overall trend. On the other hand, there was 
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The original (V0)
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n 

n 
The Original  

Average CPU Time 

variant  

V1  

variant  

V2  

variant  

V3  

variant  

V4  

variant  

V5  

variant  

V6  

10 0.00004 -25 -50 -50 -75 -50 0 

20 0.00006 -33.33 -16.67 -50 -50 33.33 16.67 

30 0.00010 -10 30 -50 -70 20 60 

40 0.00012 75 75 -33.33 -83.33 41.67 75 

50 0.00015 68.35 80 -31.97 -60 166.67 93.33 

60 0.00029 72.41 17.24 -62.07 -68.97 86.21 68.97 

70 0.00019 236.84 221.05 -47.37 -52.63 278.95 221.05 

80 0.00037 156.76 164.87 -81.08 -75.68 121.62 145.95 

90 0.00031 200 212.90 -77.42 -61.29 264.52 225.81 

100 0.00029 317.24 341.38 -72.41 -41.38 344.83 341.38 

Average 0.00019 105.83 107.58 -55.57 -63.83 130.78 124.82 



 

 

51 

 

also a decrease from n=70 onward. This could be due to the original Elzinga-Hearn 

algorithm consuming a relatively short time for small values of n. In addition, the amount of 

computing time also depends on the initial starting points as well as the uncovered point, 

which in the original algorithm these were randomly selected. To overcome this drawback a 

large number of extra tests were then performed to better understand this phenomenon. 

Additional tests for V0, V3 and V4: 

Since V3 and V4 were the best variants and the differences in their average CPU time 

when n ≤ 100 were relatively small, extra data sets (n =50 to 1000) with an increment of 50 

were used to better assess the performance of these two variants.  These data sets were also 

used to show the performance of the original algorithm. As before 100 instances were used 

for each value of n and the averages were recorded. Table 2.3 provides the same information 

as the one given in Table 2.1. 

Table 2.3: Average CPU time and number of iterations for V0, V3 and V4 over 100 

instances for n = 50 to 1000 (case of unweighted) 

n 
V0 V3 V4 

Average   

CPU 

Iterations of Average   

CPU 

Iterations of Average   

CPU 

Iterations of 

2 pt 3 pt Total 2 pt 3 pt Total 2 pt 3 pt Total 

50 0.00018 3.61 5.61 9.22 0.00007 1.11 2.84 3.95 0.00003 0.89 1.72 2.59 

100 0.00026 4.26 6.80 11.06 0.00009 1.66 3.87 5.53 0.00011 1.22 1.83 3.05 

150 0.00051 4.83 7.99 12.82 0.00012 2.12 4.82 6.94 0.00016 1.35 1.92 3.27 

200 0.00069 5.05 8.83 13.88 0.00012 2.36 5.09 7.45 0.00020 1.44 1.74 3.18 

250 0.00087 5.29 9.13 14.42 0.00019 2.59 5.48 8.07 0.00027 1.49 1.78 3.27 

300 0.00114 5.35 9.14 14.49 0.00020 2.81 5.82 8.63 0.00036 1.52 1.73 3.25 

350 0.00129 5.51 9.74 15.25 0.00028 3.03 6.05 9.08 0.00036 1.63 1.72 3.35 

400 0.00154 5.84 9.66 15.50 0.00034 3.17 6.32 9.49 0.00045 1.70 1.72 3.42 

450 0.00160 5.90 9.89 15.79 0.00040 3.30 6.61 9.91 0.00051 1.71 1.79 3.50 

500 0.00189 5.87 10.68 16.55 0.00046 3.43 6.81 10.24 0.00054 1.73 1.82 3.55 

550 0.00222 6.23 9.86 16.09 0.00047 3.46 6.90 10.36 0.00058 1.64 1.94 3.58 

600 0.00254 6.49 11.36 17.85 0.00054 3.73 7.35 11.08 0.00062 1.64 2.12 3.76 

650 0.00279 6.69 11.31 18 0.00058 3.66 7.36 11.02 0.00069 1.66 2.16 3.82 

700 0.00284 6.60 11.38 17.98 0.00063 3.60 7.72 11.32 0.00077 1.54 2.16 3.70 

750 0.00313 6.65 11.90 18.55 0.00068 3.18 8.03 11.21 0.00084 1.55 2.05 3.60 

800 0.00337 6.53 12.12 18.65 0.00072 3.31 7.68 10.99 0.00096 1.71 1.98 3.69 

850 0.00333 6.45 11.70 18.15 0.00078 3.62 7.81 11.43 0.00106 1.73 2.01 3.74 

900 0.00360 6.90 11.47 18.37 0.00081 3.89 8.67 12.56 0.00110 1.63 2.12 3.75 

950 0.00388 6.79 11.83 18.62 0.00086 3.94 8.80 12.74 0.00123 1.69 2.10 3.79 

1000 0.00401 6.58 11.71 18.29 0.00090 4.14 8.53 12.67 0.00123 1.74 2.08 3.82 

Average 0.00208 5.87 10.11 15.98 0.00046 3.11 6.63 9.73 0.00060 1.56 1.92 3.48 
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Summary results from Table 2.3 based on the average CPU time for V0, V3 and V4 were 

displayed in Figure 2.15.   

 

Figure 2.15: Average CPU time of V0, V3 and V4 over 100 instances from n =50 to 1000 

(case of unweighted) 

From Figure 2.15, we can conclude that the performances in terms of CPU time of V3 

and V4 support our claim shown earlier in Table 2.1, confirmed the validity of the previous 

rule (i.e., if n ≤ 70 use V4, else use V3). On the other hand, the differences in the average 

CPU time between the original algorithm and these two enhancements (V3 and V4) increased 

even more rapidly with n, where their averages (in seconds) were 0.00208, 0.00046 and 

0.00060 respectively. Also the original algorithm showed an overall increase in CPU time with 

respect to n demonstrating that there was no obvious irregularity as noted in the small data set.   
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2.6.2 Computational results of the weighted case 

According to Table 2.4, it has been observed that all the enhancements required a 

smaller number of iterations than the original algorithm (W0). The averages of the total 

number of iterations of W2 and W6 were the lowest with 2.32, nearly 4 times smaller than W0 

which used 8.21. With respect to the average CPU time, it was found that all the 

enhancements were faster than the original algorithm when n ≤ 40. In addition, the 

enhancements W3 and W4 were always quicker than the original algorithm for all values of n 

tested. The average CPU time of these enhancements were also displayed in Figure 2.16. 

Table 2.4: Average CPU time and number of iterations over 100 instances for n = 10 to 100 

(case of weighted) 

n 

Original Variant (W0) Variant (W1) Variant (W2) Variant (W3) 

Average   

CPU 

Iterations of Average   

CPU 

Iterations of Average   

CPU 

Iterations of Average   

CPU 

Iterations of 

2 pt 3 pt Total 2 pt 3 pt Total 2 pt 3 pt Total 2 pt 3 pt Total 

10 0.00020 3.02 2.56 5.58 0.00005 1.42 0.96 2.38 0.00006 1.35 0.89 2.24 0.00007 1.43 0.97 2.40 

20 0.00020 3.54 3.28 6.82 0.00014 1.39 1.13 2.52 0.00014 1.32 1.06 2.38 0.00009 1.48 1.22 2.70 

30 0.00025 3.89 3.63 7.52 0.00020 1.35 1.09 2.44 0.00020 1.31 1.05 2.36 0.00012 1.63 1.37 3 

40 0.00040 4.11 3.89 8 0.00031 1.33 1.10 2.43 0.00028 1.27 1.03 2.30 0.00022 1.70 1.47 3.17 

50 0.00052 4.36 4.03 8.39 0.00055 1.45 1.13 2.58 0.00055 1.32 1 2.32 0.00022 1.93 1.61 3.54 

60 0.00043 4.59 4.29 8.88 0.00075 1.43 1.14 2.57 0.00049 1.26 0.97 2.23 0.00026 1.96 1.67 3.63 

70 0.00058 4.94 4.51 9.40 0.00086 1.45 1.15 2.60 0.00085 1.30 1 2.30 0.00026 2.04 1.74 3.78 

80 0.00063 4.58 4.22 8.80 0.00114 1.49 1.15 2.64 0.00097 1.33 1.02 2.35 0.00029 2.09 1.75 3.84 

90 0.00090 4.84 4.47 9.31 0.00121 1.46 1.09 2.55 0.00149 1.37 1.03 2.40 0.00029 2.06 1.69 3.75 

100 0.00092 4.91 4.55 9.46 0.00162 1.46 1.10 2.56 0.00163 1.32 1 2.32 0.00037 2.08 1.72 3.80 

Average 0.00050 4.28 3.94 8.21 0.00068 1.42 1.10 2.53 0.00067 1.32 1.01 2.32 0.00022 1.84 1.52 3.36 

 

n 

Variant (W4) Variant (W5) Variant (W6) 

Average   

CPU 

Iterations of Average   

CPU 

Iterations of Average   

CPU 

Iterations of 

2 pt 3 pt Total 2 pt 3 pt Total 2 pt 3 pt  Total 

10 0.00006 1.45 1.01 2.45 0.00012 1.42 0.96 2.38 0.00008 1.35 0.89 2.24 

20 0.00007 1.45 1.21 2.66 0.00014 1.39 1.13 2.52 0.00018 1.32 1.06 2.38 

30 0.00008 1.54 1.28 2.82 0.00022 1.35 1.09 2.44 0.00018 1.31 1.05 2.36 

40 0.00007 1.50 1.26 2.76 0.00039 1.33 1.10 2.43 0.00033 1.26 1.03 2.28 

50 0.00015 1.62 1.30 2.92 0.00055 1.45 1.13 2.58 0.00046 1.32 1 2.32 

60 0.00013 1.58 1.29 2.87 0.00065 1.44 1.15 2.59 0.00054 1.27 0.98 2.25 

70 0.00018 1.62 1.32 2.94 0.00099 1.46 1.16 2.62 0.00086 1.31 1.01 2.32 

80 0.00019 1.74 1.40 3.14 0.00122 1.50 1.16 2.66 0.00110 1.34 1.03 2.37 

90 0.00027 1.75 1.38 3.13 0.00142 1.47 1.10 2.57 0.00131 1.38 1.04 2.42 

100 0.00047 1.71 1.36 3.07 0.00163 1.47 1.11 2.58 0.00146 1.33 1.01 2.34 

Average 0.00017 1.60 1.28 2.88 0.00073 1.43 1.11 2.54 0.00065 1.32 1.01 2.32 
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Figure 2.16: Average CPU time over 100 instances of the Enhancements for n = 10 to 100 

(case of weighted) 

In some cases, it has been observed that the differences in the CPU time between the 

original algorithm and other enhancements were very tiny. To highlight these differences, the 

deviation of the enhancements from the original algorithm was computed, see Table 2.5. The 

results were also given in Figure 2.17 for illustration purposes. 

Table 2.5: Deviation (%) from the original (weighted, from n =10 to 100) 

n 
The Original (W0) 

Average CPU Time 

Variant 

(W1) 

Variant 

(W2) 

Variant 

(W3) 

Variant 

(W4) 

Variant 

(W5) 

Variant 

(W6) 

10 0.00020 -75 -70 -65 -70 -40 -60 

20 0.00020 -30 -30 -55 -65 -30 -10 

30 0.00025 -20 -20 -52 -68 -12 -28 

40 0.00040 -22.50 -30 -45 -82.50 -1.52 -16.67 

50 0.00052 5.77 5.77 -57.69 -71.15 5.77 -11.54 

60 0.00043 74.42 13.95 -39.54 -69.77 51.16 25.58 

70 0.00058 48.28 46.55 -55.17 -68.97 70.69 48.28 

80 0.00063 80.95 53.97 -53.97 -69.84 93.65 74.60 

90 0.00090 34.44 65.56 -67.78 -70 57.78 45.56 

100 0.00092 76.09 77.17 -59.78 -48.91 77.17 58.70 

Average 0.000503 17.25 11.30 -55.09 -68.41 27.27 12.65 
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Figure 2.17: Deviation (%) of CPU time from the original algorithm (the weighted case, n 

from 10 to 100) 

It can be noted that the use of the best enhancements (W3 and W4) could save up to 

68% and 83% of the time of the original algorithm when n = 90 and 40 respectively, with an 

average saving of about 55% and 68% respectively.  

Additional tests for W0, W3 and W4: 

Since the differences in the CPU time between W3 and W4 were rather small especially 

when n =100 (0.00037 vs 0.00047 secs) as shown in Table 2.4, in this section, extra data sets 

were then used to further assess these two enhancements (W3 and W4), especially when the 

values of n are large. To be consistent with our previous experiments for the weighted case, 

we also used n = 50 to 1000 with an increment of 50 and using 100 instances for each value 

of n.  

Table 2.6 provides the same information as in Table 2.4, where the average CPU for the 

original algorithm and our two enhancements were displayed in Figure 2.15.  
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Table 2.6: Average of CPU time and number of iterations over 100 instances for W0, 

W3 and W4 for n = 50 to 1000 (case of weighted) 

n 

W0 W3 W4 
 

Average   

CPU 

Iterations of 
 

Average   

CPU 

Iterations of 
 

Average   

CPU 

Iterations of 

2 pt 3 pt Total 2 pt 3 pt Total 2 pt 3 pt Total 

50 0.00044 4.37 4.09 8.46 0.00017 1.70 1.44 3.14 0.00017 1.52 1.26 2.78 

100 0.00070 4.71 4.35 9.06 0.00041 2.08 1.72 3.80 0.00015 1.71 1.36 3.07 

150 0.00140 5.43 5.01 10.44 0.00051 2.18 1.77 3.95 0.00031 1.65 1.25 2.89 

200 0.00177 5.63 5.24 10.87 0.00074 2.31 1.91 4.22 0.00031 1.75 1.35 3.10 

250 0.00180 6.08 5.67 11.75 0.00096 2.50 2.09 4.59 0.00049 1.75 1.37 3.12 

300 0.00210 5.74 5.37 11.11 0.00108 2.51 2.15 4.66 0.00065 1.74 1.39 3.13 

350 0.00300 6.27 5.78 12.05 0.00131 2.50 2.03 4.53 0.00066 1.74 1.29 3.03 

400 0.00320 6.63 6.12 12.75 0.00153 2.54 2.04 4.58 0.00077 1.83 1.36 3.19 

450 0.00420 6.43 5.95 12.38 0.00142 2.60 2.12 4.72 0.00083 1.79 1.37 3.16 

500 0.00392 6.52 6.04 12.56 0.00160 2.64 2.16 4.80 0.00083 1.80 1.38 3.18 

550 0.00412 6.94 6.51 13.45 0.00158 2.68 2.25 4.93 0.00089 1.68 1.26 2.94 

600 0.00465 6.87 6.47 13.34 0.00230 2.66 2.26 4.92 0.00110 1.64 1.26 2.90 

650 0.00531 7.02 6.62 13.64 0.00257 2.65 2.25 4.90 0.00108 1.61 1.23 2.84 

700 0.00571 6.89 6.46 13.35 0.00270 2.71 2.28 4.99 0.00112 0.53 1.47 2 

750 0.00615 7.02 7.02 14.04 0.00270 2.76 2.33 5.09 0.00120 1.63 1.24 2.87 

800 0.00637 7.26 6.83 14.09 0.00333 2.71 2.29 5 0.00121 1.61 1.20 2.79 

850 0.00694 7.38 6.94 14.32 0.00360 2.85 2.42 5.27 0.00144 1.62 1.24 2.86 

900 0.00724 6.91 6.40 13.31 0.00355 2.93 2.42 5.35 0.00152 1.76 1.29 3.05 

950 0.00810 7.43 6.88 14.31 0.0039 2.84 2.29 5.11 0.00147 1.72 1.27 2.99 

1000 0.00887 7.59 7.06 14.65 0.0042 2.86 2.34 5.20 0.00154 1.71 1.28 2.99 

Average 0.00430 6.46 6.04 12.50 0.00201 2.56 2.13 4.69 0.00089 1.64 1.31 2.94 

 

  

Figure 2.18: Average CPU time of W0, W3 and W4 (weighted, from n =50 to 1000) 
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Figure 2.18 showed that both enhancements (W3 and W4) were found to be always 

much quicker than the original one, especially when n was large. It is worth mentioning that 

the results that were found in this section (when n =50 to 1000) were similar to the ones 

found in Table 2.4 (when n =10 to 100). However, the fourth variant (W4) was found to be 

consistently quicker than W3 for all n ≥ 100. Average CPU times (in seconds) of 0.00430, 

0.00201and 0.00089 secs were reported for W0, W3 and W4 respectively. 

In brief, on the basis of what we have mentioned above, we can conclude that W4 was 

the best enhancement for solving the 1-centre problem when incorporated as part of the p-

centre problem for the weighted case. Moreover, the CPU time for the original algorithm was 

found to increase even more rapidly with n when compared to W4. 

In general, we can confirm, based on our empirical results, that using our enhancements 

for solving the 1-centre problem in both the unweighted and the weighted cases, namely (V3, 

V4) and (W4) respectively, yielded better results in terms CPU times than the other ones. The 

effect of these enhancements will be noted even more when these are used as part of local 

search for solving the p-centre problem (p > 1). This will be shown in the next section.   

2.7 Effect of the enhancements on the continuous p-centre 

problem 

In this section, a Multi-Start Alternate Locate Allocate algorithm is used to show the 

impact of the proposed enhancements when solving the p-centre problem (p > 1). This 

algorithm is used for the unweighted and the weighted case, where both the original 

Elzinga-Hearn algorithm and its enhanced versions are used as our local search. 

The objective of the p-centre problem is to minimise the maximum distance between a 

demand point and its nearest facility.  

The formulation of this problem is given earlier in chapter 1, see subsection 1.4.3. 

As an example, consider in Figure 2.19 (a), where we have four possible locations (4 

open facilities) for the 4-centre problem. The objective function (minmax Z) for this case is the 

radius of the largest circle (circle centred at p2). Figure 2.19 (b) shows a better solution for the 

same problem as the solution is improved (Z' < Z).  In general, we cannot obviously state that this 

new solution is the optimal solution.  However, we can confirm that the solution within each 
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region (the 1-centre location problem) is the individual optimal solution. The p-centre is non 

convex and hence many local minima may exist. The problem is to find the right p clusters, 

which is in itself a hard combinatorial problem to solve. For each cluster the optimal solution can 

easily be found using Elzinga-Hearn algorithm or any of those chosen enhancements described in 

the previous section. 

 

 

 

 

 

 

 

 

 

2.7.1 A random multi start alternate algorithm 

The idea of this algorithm is to choose p initial facility points randomly and then divide the 

demand points set into p subsets. Each demand point is then allocated to the nearest facility. The 

exact location method (Elzinga-Hearn or proposed enhancements) is applied in each cluster to 

find the optimal single facility location. Each demand point is then reallocated again to the 

nearest facility. After all demand points have been completely reallocated, the exact location 

method is applied once again to improve the location of each facility. This procedure, which 

alternates between the location and the allocation phases, is repeated until no further 

improvement can be found. In order to have a better local minimum, this algorithm is repeated 

several times using different starting locations either randomly or using some forms of 

guidance that need to be defined. The main idea behind this algorithm is that one of them may 

lead to the right region which includes the global minimum. This principle is similar to the 
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Figure 2.19 (a): A feasible solution of a   

4-centre location problem 
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Figure 2.19 (b): A better solution of the same 
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alternate locate allocate procedure of Cooper (1964) used for the multi-source Weber problem. 

This is also similar to the heuristic described by Drezner (1984b) which is known as H1. 

Here, the original algorithm for both the unweighted and the weighted case, V4 and W4 will 

be used as part of our locate-allocate heuristic to find the optimal single facility minmax 

location problem in the continuous space in each region.  

The main steps of this multi-start alternate locate-allocate approach, which we call 

MSALA for short, are given in Figure 2.20. 

 

 

 

 

 

 

 

Figure 2.20: Multi-Start Alternate Locate-Allocate Algorithm (MSALA) 

In Step 1, p points are chosen randomly as initial starting points, however, this scheme 

could even be guided by introducing forbidden regions as explored by Luis et al. (2011) for the 

multi-source Weber problem. The implementation of Step 3 could also be made by recording 

the regions affected and devising a scheme for identifying neighbouring regions using 

Voronoi Diagrams as an example.  

2.7.2 Impact of our enhancements (V4 and W4) within MSALA (Step 2) 

In this section we implement MSALA that uses the original algorithm and the 

enhancements (V4 and W4) in Step 2 when solving the 1-centre problem as part of the          

p-centre problem. To assess the performance of these enhancements, we use our MSALA on 

an instance with n=500 with several values of p (p = 3, 5, 10, 15 and 20). Here, 10 instances 

are generated for each case and average results are reported to show the impact of the 

Step 1: Randomly select p initial starting locations. Allocate each demand point to 

the nearest facility to find p sets of demand point allocations. 

Step 2: For each of the p independent set of allocations, solve optimally the p 

independent single facility location problem using the 1-center problem on 

the continuous space (Elzinga-Hearn algorithm, variant V4 or variant W4). 

Step 3: Reallocate each demand point to its nearest facility for the new set of facility 

locations found in Step 2. If there are changes in the allocation, go to Step 2, 

otherwise stop and a local minimum has been found. 

Step 4:  Repeat Steps 1, 2, and 3 several times, say K times, and select the configuration 

with the least minmax distance. 
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enhancement when using within the MSALA. We test this for both the weighted and the 

unweighted cases. 

a) Computational results for the unweighted case  

In this section, we present computational results of the MSALA for the unweighted 

case. Table 2.7 showed the average objective function values, the average CPU time for the 

original algorithm and the average number of times when the best solution was found. Here, 

50 runs for the MSALA using the original algorithm (V0) were performed. Here, its CPU 

time was recorded which was then used as the stopping condition for the enhanced version 

(V4). Since this enhancement was much quicker than the original algorithm, the MSALA that 

used V4 obviously performed more iterations than the one with V0 as shown in Table 2.7. 

 For example, for p=10 the average CPU time (in seconds) for each instance with 50 

runs was 3.23 with an average objective function value (Z) of 20.839. Using the same time, 

enhancement (V4) generated around 86.50 iterations with an average objective function values 

20.513. The details were provided in Appendix B1, which consists of five tables (when          

n = 500 and p = 3, 5, 10, 15 and 20) where each table showed value of Z of MSALA for 10 

instances when using V0 and V4. In addition we reported the number of times when the best 

solution was found for both V0 and V4, as well as the CPU time used for MSALA when 

using V0 with 50 runs. For information, we also reported the total number of iterations 

required for V4 when using the latter CPU time consumed by V0 as our stopping criterion.  

Table 2.7: Average results over 10 instances of MSALA for V0 and V4 (the unweighted case, 

with n = 500) 

n=500 
The Original algorithm (V0)         

(for 50 runs) 

Variant (V4) 

(Using the total CPU time of  V0) 

p 
Average  

Z 

Average  

CPU Time 

(secs) 

Average 

number of  

bests*  

Average  

Z 

Average total 

# iterations
+
 

Average 

number of 

bests*  

3 47.600 1.243 4.3 47.600 88.6 6.8 

5 30.031 1.867 1.1 30.006 92.8 1.8 

10 20.839 3.227 0.5 20.513 86.5 1 

15 17.270 4.062 0.7 17.187 61.4 1 

20 14.841 5.015 0.7 14.797 60.8 1 

Average 26.116 3.083 1.5 26.021 78 2.3 

*: Number of times when the best solution was found divided by10 (instances). 

+: Total number of iterations when using the CPU time of V0 (50 runs) divided by10 (instances). 
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In brief, we can say that in most cases the values of the objective function when using 

the enhancement (V4) was slightly better than those found by the original algorithm. It has 

been observed that V4 performed 56% more iterations than V0 while consuming the same 

CPU time (about 78 iterations instead of 50). For smaller values of p (p ≤ 10) the number of 

iterations used was even larger. Figures 2.21 and 2.22 showed a summary of the comparison 

between V0 and V4, in terms of the total number of iterations and the average number of 

iterations for finding the best solutions respectively. 

 

Figure 2.21: The average number of iterations for the MSALA using V0 and V4 for the 

unweighted case (n=500) based on 50 runs of MSALA  

As we mentioned above, in most cases the values of the objective function when using 

V4 was slightly better than those found by V0. On the other hand, we can note that there was 

a clear difference in terms of the number of iterations used between V0 and V4 with a 

significant deviation of up to 92.8%. This significant difference in the number of iterations 

provided a greater opportunity for our heuristic (or any other meta-heuristic when used in the 

p-centre problem) to get a better solution without requiring extra CPU time. 

However, there was in general no significant difference between the values of the 

objective function of V0 and V4. The reason for this was due to the performance of the MSALA 

algorithm which is relatively poor compared to the other meta-heuristics, as will be shown in 

subsequent chapters. In other words, this approach is considered to be a blind search as a 
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significant number of additional iterations was used without necessary improving the 

solution. 

 

Figure 2.22: The average number of iterations when the best solution was found for the 

MSALA using V0 and V4 (n=500) 

 

b) Computational results for the weighted case  

In this section, we will provide the same information as presented in Table 2.7, where 

the results of the original algorithm for the weighted case (W0) versus those of W4 were 

compared. The results were also summarised in Table 2.8 whereas the detailed results can be 

found in Appendix B2. 

In brief, similar results, as found in the unweighted case, were also observed here. A 

summary of the comparison between W0 and W4, in terms of the total number iterations, was 

displayed in Figure 2.23, where the overall average value of W4 is 77.8 vs 50 iterations for 

W0. The average number of iterations when the best solution was found, was displayed in 

Figure 2.24, where their overall average values were 2.9 and 1.6 for W0 and W4 respectively. 
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Table 2.8: Average results over 10 instances of MSALA for W0 and W4 for n = 500            

(the weighted case) 

n=500 
The Original algorithm (W0)         

(for 50 runs) 

Variant (W4) 

(Using the total CPU time of  W0) 

p 
Average     

Z 

Average  

CPU Time 

(secs) 

Average 

number of  

bests*  

Average  

Z 

Average total 

# iterations
+
 

Average 

number of 

bests*  

3 406.218 1.211 3.9 405.797 90.8 8.2 

5 258.785 1.878 1.9 258.785 85.5 2.7 

10 178.981 2.833 0.7 178.072 80.3 1.1 

15 146.069 3.143 0.8 144.917 68.6 1.2 

20 126.007 3.588 0.7 124.019 63.6 1.1 

Average 223.212 2.531 1.6 222.318 77.8 2.9 

*: Number of times when the best solution was found divided by10 (instances). 

+: Total number of iterations when using the CPU time of W0 (50 runs) divided by10 (instances). 

In the weighted case, we have observed similar results as found in the unweighted case. 

A summary of the comparison between W0 and W4, in terms of the total number iterations, was 

displayed in Figure 2.23. The overall average value of W4 was 77.8 vs the 50 iterations for W0 

showing nearly a 55% increase in the number of iterations while using the same CPU time of 

W0. In terms of the number of iterations when the best solution was found, this was displayed 

in Figure 2.24, where their overall average values were found to be 2.9 and 1.6 respectively.  

 

Figure 2.23: The number of iterations for MSALA using W0 and W4 for the weighted case 

(n=500) 
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Figure 2.24: The average number of iterations when the best solution was found for the 

MSALA using W0 and W4 for the weighted case (n=500) 

As we mentioned above, although there was a significant difference between the 

number of iterations used and the number of iterations when the best was found when using 

W0 and W4, in this particular set of instances, there was however not a significant difference 

between their objective function values.  

2.8 Summary 

In this chapter, we presented a review of the Elzinga-Hearn algorithm aimed at solving 

optimally the 1-centre location problem in the continuous space. Furthermore, we proposed 

six enhancements for the unweighted and another similar six for the weighted case to the 

original implementation of the well-known Elzinga-Hearn algorithm. Our enhancements (V3 

and V4 for the unweighted case and variant W3 and W4 for the weighted case) outperformed 

the original implementation of the algorithm for all values of n which we tested. In brief V3 

and V4 yielded about 56% and 64% reduction in CPU time over V0 respectively. Similarly 

W3 and W4 produced about 55% and 68% time reduction over W0 respectively. To 

distinguish between the performance of the two chosen enhancements, extra tests using large 

value of n were performing which demonstrated that V3 (when n > 70) and V4 (when n ≤ 70) 
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for the unweighted and W4 for the weighted case are the best performers. To assess the 

performance of our enhancements for solving the p-centre problem, the Elzinga-Hearn 

algorithm and our enhancements (V4 and W4) were used as local search within a multi-start 

based approach based on the Cooper’s ‘locate-allocate’ principle. Ten instances of size n=500 

with various values of p were used. Our enhancements were found in contribute to producing 

slightly better results when compared to using V0 and W0 instead.  

In the next chapter a powerful meta-heuristic, namely a Variable Neighbourhood 

Search (VNS) is explored to investigate the problem further. 
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Chapter 3 

Adaptive VNS-Based Heuristics 

3.1 Introduction  

In this chapter, a brief review of Variable Neighbourhood Search (VNS) is first 

given. Two neighbourhood structures namely the Customer-based Neighbourhood (CN) 

and the Facility-based Neighbourhood (FN) are explored followed by powerful 

enhancements. In addition, effective refinements on the local search are also proposed. A 

learning scheme is then embedded into the search to produce an adaptive VNS with memory. 

These variants are tested on several large instances with encouraging results.  

The basic VNS 

The basic idea of VNS is to change neighbourhoods systematically while using a local 

search within each neighbourhood to get to a corresponding local minimum. A brief outline 

of the basic VNS approach is given in Mladenovic and Hansen (1997) but new versions as 

well as advanced implementations and applications can be found in Hansen et al. (2010).  

The different neighbourhood structures which we constructed are originally based on those 

used for the multi-source Weber problem with some additional changes to cater for the 

properties of the minimax objective function. In other words, we use the Elzinga-Hearn 

algorithm, or its enhanced versions, to solve the 1-centre problem instead of a Weiszfeld 

algorithm that is used for solving the 1-median problem. These include customer-based 

moves (e.g., the removal/addition of one or more demand points from a region), and facility-

based ones (e.g., opening/closing one or more facilities). This search continues until all the 

neighbourhoods have been searched, the allowed time (the total CPUmax) is reached or any 

other stopping rule (the total number of iterations or the number of iterations between two 

successive improvements) is met. The steps of the basic VNS algorithm is given in Figure 

3.1 with some of the main steps explained next. 
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Figure 3.1: Steps of the basic Variable Neighbourhood Search (VNS) 

Neighbourhood Structures  

Step 1b (i): (shaking) 

In this study, we use two types of neighbourhood, each with a maximum size Kmax 

which we refer to for simplicity as Max1 and Max2 respectively. These include: 

a) CN: Customer-based Neighbourhood  

We remove k customers randomly from their assigned facilities and allocate them randomly 

to the open facilities. This neighbourhood
1Max,...,1 ,)( KkCNXN kk  will be defined in 

subsection 3.2. 

b) FN: Facility-based Neighbourhood   

This type of neighbourhood is divided into two subtypes as follows:  

We remove k open facilities randomly and replace them with k facilities randomly 

selected 

             (i) at demand points (customers sites) or  

            (ii) anywhere in the plane. 

This neighbourhood which we denote by Nk (X) = FNk, 
2Max,...,1 Kk   will be defined in 

subsection 3.3.1. 

Step 0: Find an initial solution X, define the sequence of neighbourhoods Nk, k=1,…, Kmax; 

choose a stopping condition.  

Step 1: Repeat the following steps until the stopping condition is met:                                                           

(a)  Set k = 1. 

(b)  Repeat the following steps until k = Kmax: 

(i) Generate a neighbouring solution X' at random from the k
th

 neighbourhood of 

X (X ' ∈   Nk (X)).                                                                       “Shaking Step” 

(ii) Apply a local search based on Nk using X ' as the initial solution to obtain a 

local optimum X ''.                                                            “Local Search Step” 

(iii) If Z(X '') < Z(X), set X = X '', and k=1;                                       (Move or not) 

     otherwise, set k = k+1;          
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Step 1b (ii): (Local search) 

This step is made up of two phases: 

 Improve the location within each cluster using the Elzinga-Hearn algorithm or the 

enhancements proposed in Chapter 2. 

 Perform the locate-allocate procedure, which will be described in subsection 3.2.1. 

The next two sections cover the customer-based and the facility-based VNS respectively. 

3.2 The customer-based VNS(CN) 

In this section, we will first apply the original algorithm for the customer-based 

neighbourhood (CN) and then introduce three enhancements, followed by some 

computational results. 

The idea is to choose a number of demand points (k demand points, k=1,..,Kmax), which 

are then allocated to other clusters (other facilities). The locate-allocate procedure of 

Cooper’s approach is then introduced as a local search to improve upon the solution. If a 

better solution is found, we record such a solution (X) and start the procedure again with k=1 

(i.e., CN1 (X)); otherwise the next neighbourhood CN2 (X) is explored. Here, two demand 

points, (k=2) are reallocated to other facilities. This search continues until Kmax is reached 

where we revert back to k=1. 

The construction of 
1Max,...,1 ),( KkXCNk  is based on the following definitions: 

Let pjXPdXPdIPW ri
pr

jiij 1,...,   }; ),( Min),(:{
,...,1




                                              (3.1)   

be the set of customers served by facility jF  ).at   located facility  (i.e., jj XF  

Let    IBk  be the subset of customers from   I  with  || k Bk   that are selected for removal 

(randomly or using other means as we will see later)                                                         (3.2)   

jkkj WBBD   )( 
be the set of customers from jW that are selected to be removed; 

pj 1,...,  

 }facility    toallocated is  : {)( jikikj FPBPBD 
be the set of customers from  kB that are 

randomly reallocated to facility p,...jFj ,1 ;   
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Let 
 jjjkj DDWBW \)(ˆ  be the set of customers that are assigned to facility jF          (3.3)   

Define :)( kj BX  centre of the smallest circle that encompasses all customers (points) in 

)(ˆ
kj BW                                                                                                                                  (3.4) 

Note that )( kj BX  can be found by Elzinga-Hearn or other enhanced methods given in       

chapter 2.   

Let )}(),...,({)( 1 kpkkk BXBXXNCN                                                                             (3.5)  

Figure 3.2 illustrates the above idea where Figure 3.2 (a) shows a feasible solution of 

a 4-centre location problem with centres located at p1, p2, p3 and p4. The allocation of the 

demand point (A) to the facility centred at p2 shows a new feasible and better solution after 

the local search is used, see Figure 3.2 (b). Here, in the allocation process, the facility 

location of the source cluster is moved from p1 to p̄1 and the new facility location of the 

destination cluster is moved from p2 to p̄2. In this particular example, the other clusters 

were not affected though this not always true.  
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Figure 3.2 (a): A feasible solution of a           

4-centre location problem 
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Figure 3.2 (b): A better solution of the same        

4-centre location problem 
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 It is worth noting that it is not always possible that the allocation process yields a 

better solution. In order to test the efficiency of this allocation scheme, we will first apply this 

original algorithm and then explore three enhancements. 

3.2.1 The original VNS algorithm using Customer-based Neighbourhood (CN)  

This algorithm, which we call VNS(CN), is summarised in Figure 3.3 and a brief 

explanation of the main steps is given here. 

 

 

 

 

 

 

 

 

Figure 3.3: A basic Customer-Based VNS Algorithm (VNS(CN)) 

A brief explanation of the main steps 

Step 0 (the construction of the neighbourhood structures) 

Here we remove k customers randomly and allocate them to other open facilities. We 

refer to this type of neighbourhood as CNk; k=1,…,Kmax with Kmax denoting the number of 

neighbourhood structures. 
  

In the preliminary study, we observed that the performance of VNS is likely to be more 

efficient when the value of Kmax is relatively small. In addition, we noted that this relates to 

the number of open facilities (i.e., p), and setting Kmax to
maxK p 

 
 is found to be the most 

promising choice. 

Step 0: Specify Kmax and CPUmax and set 0Time  . Define the sequence of the neighbourhood 

structures CNk; k=1,…,Kmax using (3.1)(3.5). 

Step 1: Generate an initial feasible solution ( )X , record the objective function ( )Z X and set 1k  . 

Step 2:  

– Step 2a:  Generate a neighbouring solution ' ( )kX CN X using (3.1)(3.5) “Shaking Step”                                    

– Step 2b: Apply a local search to obtain X  starting from 'X              “Local Search Step” 

– Step 2c: If )()( XZXZ   set XX   and k=1.                                      “Evaluation Step” 

              Else  

                     if k = Kmax  set 1k  , else set 1 kk . 

Step 3: Stopping condition 

            If Time > CPUmax record the incumbent solution X and stop, else go to Step 2.  
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Step 1 (the initial solution) 

This is generated randomly by choosing p fixed points, though other schemes could also 

be used. 

Step 2b (the local search) 

A locate-allocate procedure, which is similar to that of Cooper (1964), is used here.  

(i) Given the p locations with their centres ( 1,..., )jX j p , allocate each customer to its  

nearest centre and define for each centre jX , the subset 
jW , as defined in (3.1)  

 

(ii) In each subset ( 1,..., )jW j p ,  determine the optimal location 
jX  using  our 

enhancements on the Elzinga-Hearn algorithm (i.e., if n ≤ 70 use V4, else use V3, as 

described in chapter 2). 
 

(iii) While there is a change in at least one of the subset 
jW  or in the location ; 1,...,jX j p , 

return to (i), else record the incumbent solution X and stop. 

This local search will be revisited in section 3.4. 

3.2.2 Possible schemes in the construction of the set Bk (Step 0). 

As we have mentioned earlier, any circle can be determined by three critical points on 

its circumference (edges of an acute triangle) or by two critical points on the two ends of its 

diameter. When the source cluster (source circle) contains a larger number of points than the 

number of its critical points, the selected point can be either a critical point or not. 

Therefore, the random selection of customers in kB  as defined by (3.2) can be classified 

into two main cases: In the first case, a non-critical point is chosen, whereas in the second 

case only a critical point can be selected. In the first case, there will be a change in the 

facility location of the destination cluster only. However, if a critical point is selected, there 

will be a change in the facility locations of both the source and the destination clusters. In 

the next subsections we will incorporate this information to modify the original algorithm 

VNS(CN) in order to improve its efficiency under subsections (a) and (b). 
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a) Initial construction of the set Bk 

Here the customers in Bk are randomly chosen from I . These customers can be 

critical or non-critical. In this case, we can conclude that the solution cannot be improved 

before applying the local search. However, when the local search is used, the change that has 

occurred in the facility of the destination cluster may or may not improve the solution. In the 

next subsections, both cases are discussed. 

i) There cannot  be an improvement in the solution before applying the local search 

When a non-critical point is selected and allocated to another cluster, its inclusion 

leads to an increase in the radius of the destination circle without reducing the radius of the 

source cluster. For instance, Figure 3.4 shows a feasible solution of four clusters whose 

facilities are located at p1, p2, p3 and p4. Also it shows allocating point a1 of cluster centred 

at p1 (source cluster) to the destination cluster centred at (p2), resulting to the destination 

cluster (including point a1) becoming larger with its new facility located at p̄2.  

 

 

  

 

  

 

 

 

 

The source cluster when solved without point a1 is not affected as its facility has not 

changed with its centre still at p1. This is because point a1 is not a critical point. From 

.     New facilities 

p4 

Figure 3.4: A feasible solution of a 4-centre location problem using 

a non-critical point as neighbour before applying the local search  
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Figure 3.4, we can also note that there has been no reduction in the radius of any circle. 

Therefore, the solution will not improve and can even yield to a worse solution if we only 

apply this phase. 

ii) Effect of the local search  

When the local search is applied, the change that has occurred in the facility location 

of the destination cluster can now lead to a change in the facility locations of some or all of 

the other clusters, which may produce a better solution. For instance, Figure 3.5 (a) shows a 

feasible solution of four clusters with facilities located at p1, p2, p3 and p4 and point a1 is 

now allocated to the destination cluster with centre p3. Thus the new facility of this cluster 

containing the point a1 is now moved to p̄3, though the facility of the source cluster (cluster 

p1 without point a1) has not changed. However, when the local search is applied, the points 

(c1, c2, a2 and d1) are allocated to the destination cluster with a facility centred at p̄3, as 

these points are now closer to facility p̄3 than their initial facilities. In this particular 

example, we can say that the change that has occurred in the facility of the destination 

cluster has an effect in the reallocation of other points which in turn led to a better 

solution. From this, we can note that the change that occurred in the facility located at p3 

(moving from p3 to p̄3) will lead to a change in the facility locations of the clusters with 

facilities centred at p1, p3 and p4. This is because clusters with centres p1 and p4 has each one 

lost a critical point (a2 and d1), when the destination cluster with centre p3 received these 

points, which contributed to a better solution. 

We can therefore conclude that the solution can improve, if the change in one of the 

new facility locations attracts one of the critical points of the largest circle. In other words, 

one of the critical points is now closer to one of the facilities than its initial facility. For 

instance, in Figure 3.5 (a), the point (a1) is chosen and reallocated to facility centred at p3, 

therefore this facility (p3) is moved to p̄3 and the critical point a2 became closer to p̄3 than 

its initial facility (p1). This could improve the solution when the local search is applied. 

However, this is not always the case. For example, in Figure 3.5 (b) though reallocating 

point a5 to facility p3 led to moving this facility to p̿3. The critical point (a2) is not allocated 

to facility p̿3 even when the local search is used. This is because point (a2) is still closer to 

its original facility (p1) than the location of facility p̿3. On the basis of what we have 

mentioned above, we can conclude that allocating a critical point to another cluster is likely 
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to be more efficient than allocating a non-critical point. This is explored in the next 

subsection. 

 

 

 

 

 

 

 

 

 

 

 

b) The construction of the set Bk using critical points only 

In this case, we only select critical points to make up the set .kB  When we choose a 

critical point to be allocated to another cluster, a change will occur in the facility locations 

of both destination and source clusters. Because the source cluster will lose at least one of its 

critical points, its radius could decrease. However, the destination cluster will receive at least 

one extra point, which originally was not assigned to it, and hence its radius could increase.  

We can therefore claim that the solution can improve before applying the local search 

only if the following conditions are satisfied: 

(i) one of the critical points of the largest circle are allocated to another circle  

(ii) the new radius of the destination cluster is still less than the old radius of the 

source cluster. 

Figure 3.5 (a): Reallocating a non-critical point that can 

improve the solution when applying the locale search 
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Figure 3.5 (b): Reallocating a non-critical point that cannot 

improve the solution when applying the locale search 
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However, even if (ii) is not achieved, the solution can be improved after the local search is 

applied. Therefore, we can classify the improvement in the solution into two cases, namely 

before or after applying the local search. These two scenarios are described next under (i) 

and (ii) respectively. 

i) Possible improvement without the local search 

In this section, we explain the improvement in the solution before applying the local 

search. Figure 3.6 (a) shows a feasible solution of four clusters with facilities located at p1, 

p2, p3 and p4 where a point a1 is allocated to the other cluster (p3). The source cluster 

(without point a1) and the destination cluster (with point a1) are then examined where the 

new facility location of the source cluster will be at p̄1 and p3 will move to p̄3. It can be 

noted that the solution has improved before applying the local search, because a critical 

point of the largest circle is allocated to another cluster when the new radius of the 

destination circle (R3) is found to be less than the old radius of the source circle namely Rmax, 

see Figure 3.6 (b). 

 

 

 

   

   

 

 

 

 

 

 

 

Note that this type of improvement is not possible if a non-critical point is chosen instead, 

because the source circle or any other circle will not get smaller, hence increasing the radius 

of the destination circle. 

Figure 3.6 (a): A feasible solution of a           

4-centre location problem 
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Figure 3.6 (b): Improvement, before applying the 

local search, because of a change in the source cluster  
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ii) Improvement after the local search  

When a critical point is chosen, the facility location of both the source and the 

destination clusters will change. When the local search is applied, this change can lead to 

allocating one of the critical points of the largest circle to one of the other facilities, 

resulting in an improved solution. In other words, the improvement can happen either 

because of a change in the facility of the source cluster or a change in the facility of the 

destination cluster. This differs from the case of choosing a non-critical point where the 

solution can be improved due to a change in the facility of the destination cluster only. In 

the following, we will explain such an improvement due to a change in the source cluster. 

Figure 3.7 (a) shows a feasible solution of four clusters with facilities located at p1, p2, p3 

and p4 where the point b3 is allocated to cluster p4. When the centre of the destination 

cluster is re-examined (cluster p4 containing the point b3) its facility has changed to p̄4. 

Similarly, when the source cluster is examined (cluster p2 without point b3), its new facility 

has now moved to p̄2.  

  

 

  

 

 

 

 

 

 

It can be noted that point a1 became closer to p̄2 than its initial facility (l < Rmax). This is 

because of the change in facility location of the source cluster. When the local search is 

applied, point a1 is allocated to source cluster (p̄2), as shown in Figure 3.7 (b). Facility p̄2 is 

now moved to p̿2 when its cluster includes point a1 and p1 is also moved to p̄1 (cluster p1 

without point a1). This means that the solution will improve as R̄max < Rmax. 
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Figure 3.7 (a): A feasible solution of a           

4-centre location problem 
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In summary, it is worth claiming that the improvement in the solution occurred because 

of the change in the facility of the source cluster. Such an improvement cannot happen in the 

case of choosing a non-critical point, where the change occurs in the facility location of the 

destination cluster only.  

In brief, on the basis of what we have mentioned, we can conclude that choosing a 

critical point is more efficient than choosing a non-critical point. In addition, allocating one 

of the critical points of the largest circle will have a positive impact on improving the 

solution, because the objective function aims to minimise the maximum distance. Note that 

Rmax may not decrease if the solution has more than one largest circle. In this case the 

repeat of this scheme will alleviate this drawback.  

Here, we propose three enhancements, in the first enhancement (CNV1), we will focus 

on allocating the critical points to other clusters randomly. The idea behind the second 

enhancement (CNV2) is to select a point from the largest circle and allocate it to another 

cluster, which is more efficient than choosing a point from another circle. We then combine 

both ideas to produce the third enhancement which we call (CNV3). 

3.2.3 Variant (CNV1):  Critical points-based neighbourhoods  

Instead of choosing randomly any point (a critical or a non-critical point) to define kB , 

the critical points from all the p circles will be selected only. A discussion about this 

construction is given in the previous subsection. The steps of this variant are the same as 

those of the original algorithm of Figure 3.3, except that Step 0 is replaced as follows:  

Step 0: Specify CPUmax and set 0Time  . Define the sequence of neighbourhood structures 

NCk using Ck EB  with kBk ||  instead of (3.2) with CE  denoting the set of critical 

points of all the circles. Note that (3.1) and (3.33.5) remain unchanged. 

3.2.4 Variant (CNV2):  Largest circle-based neighbourhoods  

We can say that the random selection of a point from the largest circle and allocating it 

to another circle can reduce the radius of the largest circle. Such an improvement is not 

necessarily guaranteed as the destination circle with the addition of the new point, when 

solved, may lead to a greater radius than the previous radius of the source circle. However, in 

the case of choosing a point from the largest circle, the possibility of reducing the radius of 
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the largest circle will be higher than the possibility of the other case (choosing a point not 

from the largest circle) except in the case of ties. Therefore, we choose some or all of the 

points of the largest circle to determine kB  in (3.2) instead and we allocate them randomly 

to the other clusters. The main steps of this variant are the same as the ones of the original 

algorithm, except that Step 0 of Figure 3.3 is replaced by:  

Step 0: Specify CPUmax and set 0Time  . Define the sequence of neighbourhood structures 

NCk using Gk EB   with kBk || instead of (3.2) with GE  denoting the set of points 

encompassed by the largest circle. Note that (3.1) and (3.33.5) remain unchanged. 

3.2.5 Variant (CNV3):  Critical points of the largest circle-based neighbourhoods  

In this enhancement, we will combine both variants (CNV1) and (CNV2) when 

constructing kB . Here, the critical points of the largest circle are chosen to form kB  only 

which are then allocated to the other clusters. Kmax is therefore set to 2 or 3 as a circle is 

determined by two points (Kmax = 2) or three points (Kmax = 3) only. The only step which is 

changed here is Step 0 of Figure 3.3 which is replaced by:  

Step 0: Specify Kmax, CPUmax and set 0Time  . Define the sequence of neighbourhood 

structures NCk using ck EB   with kBk ||  instead of (3.2) with CE  being the set of 

the critical points defining the largest circle at a given iteration. Note that (3.1) and 

(3.33.5) remain unchanged 

3.2.6 Computational results for the proposed customer-based VNS 

In our implementation, we used a CPU time corresponding to 10,000 iterations of 

MSALA (Multi- Start Alternate Locate-Allocate Algorithm) as the stopping condition. This 

section presents computational results of the MSALA algorithm, the original VNS 

algorithm of customer-based neighbourhood VNS(CN) and its three enhancements (CNV1, 

CNV2 and CNV3). The results were carried out for the unweighted case. Our chosen enhanced 

implementation of the Elzinga-Hearn algorithm described in chapter 2 (i.e., V3 or V4) is 

used in our local search. All our algorithms were programmed in C++ using Visual Studio 

2008.  A laptop computer with an Intel Core 2 Duo processor, 2.0 GHz CPU and 4G memory 

was used to conduct these numerical experiments. The optimal solutions for the small existing 

data set (n=439 TSP-Lib) with p =10 to 100 that were provided by Chen and Chen (2009) were 
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also used to assess the performance of our customer-based neighbourhood approaches. Note 

that this is the only data set for which optimal solutions exist and hence our heuristics will be 

tested on larger instances in later experiments. In this study, we ran the original algorithm 

VNS(CN) and the three enhancements 10 times, starting from a random initial solution, using 

a total time for each run as 
10

runs  10,000 of CPU . The computational results were presented using 

the deviations of the best and the average results. 

Deviations of the best results VNS(CN)  

Table 3.1 consists of the optimal solution and the deviations of the best results from the 

optimal solution for the 10 runs. The CPU time (in seconds) for the algorithms was also 

given. We showed the differences in the solution quality between MSALA, the original 

algorithm of VNS(CN) and the other enhancements. The deviations (%) of these algorithms 

were computed from the optimal solutions as 

Deviation (%) = 100.
)(

*

*

Z

ZZH 
 

where ZH and Z
*
 refer to the objective function values of a given heuristic 'H' and the optimal 

solutions respectively, where 'H' refers to MSALA, CNV1, CNV2 and CNV2. 

Table 3.1: Deviation (%) from the optimal solution for MSALA, the original algorithm of 

VNS(CN), and its enhancements (CNV1, CNV2  and CNV3) 

*CPU time when the best solution was found (recorded for information only) 

From Table 3.1, it can be noted that the deviation values increased with p for all the 

algorithms. We also conclude that the performance of the MSALA algorithm was relatively 

n = 439  

TSP-Lib 
The 

optimal 

solutions 

(Z) 

 

MSALA 
The Original 

Algorithm  VNS(CN) 

 

Variant (CNV1) 
 

Variant (CNV2) 
 

Variant (CNV3) 
 

Total 

Time 

(secs) 
p Deviation 

% 

CPU 

(Time)* 

Deviation 

% 

CPU 

(Time)* 

Deviation 

% 

CPU 

(Time)* 

Deviation 

% 

CPU 

(Time)* 

Deviation 

% 

CPU 

(Time)* 

10 1716.5099 2.02 115.61 0 5.42 0 6.76 0 7.45 0 6.14 43.51 

20 1029.7148 11.42 643.80 0 24.02 0 22.54 0 23.81 0 30.47 75.13 

30 739.19297 31.90 22.22 0 37.50 0 24.90 0 20.04 0 30.01 101.90 

40 580.00539 34.47 958.10 0 46.59 0 47.56 0 47.29 0 33.50 117.11 

50  468.54162 39.88 456.16 2.98 70.63 2.67 90.99 2.67 78.61 2.67 81.23 173.01 

60  400.19527 44.93 1216.84 6.11 89.23 2.64 115.90 2.92 53.85 2.46 62.43 198.42 

70 357.94553 59.27 75.19 3.80 107.20 3.80 155.30 1.27 88.84 1.27 73.68 208.74 

80 312.5 61.05 50.53 7.99 156.40 6.37 114.30 6.51 120.40 6.51 85.03 194.31 

90 280.90256 73.78 1360.94 6.15 127.20 6.15 135.90 5.77 107.80 2.93 110 198.81 

100 256.68019 66.58 1351.69 7.14 82.28 7.14 115.10 6.54 111.60 7.14 72.76 189.64 

Average 614.21882 42.53 625.11 3.42 74.65 2.88 82.93 2.57 65.97 2.30 58.53 150.06 
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poor compared to the original algorithm VNS(CN) and the three enhancements showing an 

overall average deviation of 42.53%, 3.42%, 2.88%, 2.57% and 2.23% respectively. 

Furthermore, it has been noted that the original algorithm and the three enhancements were 

able to find the optimal solution when p ≤ 40, while MSALA failed to find even a single one. 

For comparison purposes between the original algorithm and the three variants, we can say 

that the latter outperformed the former. In general, we can confirm that CNV3 was better than 

CNV1 and CNV2 in terms of solution quality and computational effort. The average CPU 

time when the best solution was found was also recorded for the original algorithm, CNV1, 

CNV2 and CNV3 as 74.65, 82.93, 65.97 and 58.53 secs respectively. This was shown just to 

illustrate that the best solution can be found much earlier and hence other stopping criteria 

could be derived instead. For instance the search could stop if no improvement is found after 

a few consecutive runs. 

Deviations of the average result (CN) 

To provide a more robust statistical analysis, we present the average results of the original 

algorithm and the variants CNV1, CNV2 and CNV3. 

Table 3.2 consists of the optimal solution and the deviations (%) of the average result 

from the optimal solution (10 runs) for the original algorithm VNS(CN) and the three 

enhancements.  Furthermore, their respective standard deviations (ST DEV) were also shown. 

 Table 3.2 Deviation (%) of the average result from the optimal solution for the original 

algorithm of VNS(CN), and its enhancements (CNV1, CNV2 and CNV3) 

n = 439  

TSP-Lib 

 

The    

optimal 

solutions 

(Z) 

The Original Algorithm   

VNS(CN) 

 

Variant (CNV1) 
 

Variant (CNV2) 
 

Variant (CNV3) 

p Average 

Z 

Deviation 

% 

ST 

DEV 

Average 

Z 

Deviation 

% 

ST 

DEV 

Average 

Z 

Deviation 

% 

ST 

DEV 

Average 

Z 

Deviation 

% 

ST  

DEV 

10 1716.5099 1723.980 0.44 12.03 1726.470 0.58 12.86 1731.450 0.87 12.86 1730.273 0.80 15.23 

20 1029.7148 1041.512 1.15 24.88 1035.611 0.57 18.66 1039.267 0.93 30.22 1045.168 1.50 33.71 

30 739.19297 742.069 0.39 7.76 741.308 0.29 6.69 742.912 0.50 11.42 744.795 0.76 11.94 

40 580.00539 599.705 3.40 10.15 601.763 3.75 16.60 593.232 2.28 14.49 591.258 1.94 12.48 

50 468.54162 502.483 7.24 24.88 492.574 5.13 9.12 488.237 4.20 9.22 489.390 4.45 9.19 

60 400.19527 428.763 7.14 7.77 424.510 6.08 5 425.304 6.27 4.85 426.167 6.49 6.65 

70 357.94553 375.252 4.84 3.40 376.792 5.27 4.49 377.436 5.45 6.82 374.216 4.55 7.68 

80 312.5 348.744 11.60 8.70 343.835 10.03 8.71 343.282 9.85 11.28 344.880 10.36 10.80 

90 280.90256 306.510 9.12 7.70 303.374 8 4.57 306.229 9.02 10.42 300.381 6.93 8.26 

100 256.68019 282.615 10.10 5.54 280.834 9.41 5.56 279.768 9 4.84 282.165 9.93 6.62 

Average 614.21882 635.163 5.54 11.28 632.707 4.91 9.23 632.712 4.84 11.64 632.869 4.77  12.26 
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 The average results also confirmed that the performance of CNV3 algorithm 

outperformed the other ones, where the average deviations from the optimal solution for the 

original algorithm, CNV1, CNV2 and CNV3 algorithms were 5.54%, 4.91%, 4.84% and 

4.77% respectively. In general we can say that the standard deviation values decrease with p 

showing that the objective function values of CNV1 were less spread than the ones found by 

CNV3 (i.e., 9.23 and 12.26), although CNV3 gave better results than the other ones.  

3.3 The facility-based VNS(FN) 

In this section, the facility-based neighbourhood algorithm, VNS(FN) for short, is 

presented followed by five enhancements on the original algorithm. Their steps are similar to 

those of the VNS(CN) given in Figure 3.3 except that in the shaking step, k open facility 

locations are selected randomly and inserted into other places. These facilities can be located 

either in the discrete space (demand points) or in the continuous space, as shown in Figure 

3.8 (a). This figure shows a feasible solution of four clusters with facilities located at p1, p2, 

p3 and p4. Here, facility p3 is located randomly in the continuous space as shown by p̄3. The 

point a1 and d1 are now closer to p̄3 than their original facilities located at p1 and p4 

respectively. 

 

  

 

 

 

 

 

  

 

Figure 3.8 (a): A feasible solution of a         

4-centre location problem 
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Figure 3.8 (b): A worse solution of the 

same problem 
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When the local search is applied, the new centre of the cluster at p1 (a2, a3 and a4) is 

moved to p̄1, the cluster (c1, c2, a1 and d1) with its initial centre at p̄3 is now moved to p̿3 and 

p4 (d2 and d3) is moved to p̄4, see Figure 3.8 (b). However, in this particular example a worse 

solution is generated as R̄max > Rmax. 

3.3.1 The original facility-based neighbourhood algorithm VNS(FN)  

As the chosen k open facilities are inserted randomly either at demand points or in the 

continuous space, we therefore classify this type of neighbourhood, which we denote by 

max( ); 1,...,kFN X k K , under two categories. We refer to these as VNS1(FN) and 

VNS2(FN). These are defined as follows: 

Algorithm VNS1(FN):- Remove k open facilities randomly from the current solution and 

replace them randomly at the fixed points. 

Here we define the k
th 

neighbourhood structure FNk (X); k=1,...,Kmax as  

(3.6)  \},...,{ and   where and  with \)( 1

1 1 








 

 XPPXXXXCXCCCXXXFN nrr

k

r

k

r

rkr

-

kkkk  

 

The main steps of VNS1(FN) are similar to VNS(CN) of Figure 3.3 except that Step 0 and 

Step 2a are replaced as follows:  

Step 0: Define FNk (X); k=1,...,Kmax  using (3.6) with  Kmax = 
maxK p 

 
.     

Step 2a : Generate ' ( )kX FN X  using (3.6) 

Algorithm VNS2(FN):- Remove k open facilities randomly and insert them randomly in the 

continuous space. 

Here the k
th 

neighbourhood structure max( ); 1,...,kFN X k K is defined as follows: 










 

 2

1 1

 and   where and  with \)( SXXXXCXCCCXXXFN rr

k

r

k

r

rkr

-

kkkk    

2

1,..., 1,..., 1,..., 1,...,

 with {( , ) : ( ) ( )& ( ) ( )}i i i i
i n i n i n i n

S x y Min a x Max a Min b y Max b
   

                              (3.7) 
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VNS2(FN) is similar to VNS1(FN) except that Step 0 and Step 2a are replaced by 

Step 0: Define FNk (X); k=1,...,Kmax using (3.7) with  Kmax = 
maxK p 

 
. 

Step 2a: Generate ' ( )kX FN X  using (3.7). 

Computational result of VNS1(FN) versus VNS2(FN) 

The existing data (n=439 TSP-Lib) with p =10 to 100 with an increment of 10 was also 

used here to assess the performance of these two variants. For each value of p we ran the 

approaches 10 times, starting from a random initial solution. Table 3.3 showed that the 

performance of VNS2(FN) was found to be better and relatively quicker than VNS1(FN). 

However, the objective function values of VNS1(FN) were much less spread than the ones 

found by VNS2(FN), where the ST Deviation values were 28.42 and 41.94 respectively. In 

general, we can conclude that VNS2(FN) outperformed VNS1(FN) in terms of the average 

and the best result, where the average deviations of the best result were 23.63% and 28.95% 

respectively. We therefore concentrate on proposing four simple but effective enhancements 

on VNS2(FN) which are described in the next subsection. 

Table 3.3: Deviation (%) of the average and the best result from the optimal solution for both 

the original facility-based algorithms (VNS1 and VNS2) 

*: CPU time when the best solution is found. 

 

 

 n =  

439  The optimal 

solutions  

(Z) 

The original algorithm VNS1(FN) 

 (Discrete case) 

 The original algorithm VNS2(FN) 

(Continuous case) 

TSP-

Lib 
Deviation 

Average 

Results  

Deviation 

Best 

Results  

 

ST 

DEV 

 

CPU   

Time* 

Deviation 

Average 

Results  

Deviation 

Best 

Results  

ST  

DEV 

CPU   

Time* 
p 

10 1716.510 2.85 1.45 24.64 16.92 1.43 0.61 8.85 23.34 

20 1029.710 15.42 11.42 33.67 35.52 12.79 5.73 58.46 23.86 

30 739.193 35.11 31.90 45.18 52.80 32.77 21.77 66.50 28.27 

40 580.005 39.28 13 72.36 51.15 27.13 9.06 73.41 47.63 

50 468.542 37.58 31.11 19.21 86.22 45.77 20.44 71.57 39.56 

60 400.195 44.58 37.75 19.02 108.40 38.72 18.86 39.33 68.97 

70 357.946 49.28 40.60 23.41 80.54 50.23 40.60 33.45 79.53 

80 312.500 50.87 40.06 16.02 132.56 48.88 40 25.34 85.81 

90 280.903 49.29 39.02 18.45 130.26 49.13 37.95 20.59 85.67 

100 256.680 51.16 43.23 12.21 118.43 53.65 41.23 21.94 91.48 

 Average 614.219 37.54 28.95 28.42 81.28 36.05 23.63 41.94 57.41 
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3.3.2 Some VNS2(FN) based enhancements 

There are some steps in VNS2(FN), especially in the shaking phase of Step 2a, which 

are worth examining. We aim to shake with a strong perturbation, also known as ‘Intensified 

shaking’ in the literature, see Mladenovic et al. (2013). Therefore, in the next subsections, we 

will present several modifications in Step 2a, leading to four effective enhancements. For 

simplicity and for the purpose of clarification, this step (Step 2a) is divided into two phases as 

follows: 

Facility Removal:- the removal of the k open facilities  

In this phase, the k facility candidates for removal are chosen based on certain rule that will 

be explained next.  

Facility Attraction:- relocating the chosen facilities 

Here, the k open facilities that have been chosen for removal are located into other well 

defined destination regions that we will describe later. 

A) VNS2(FNV1): The allocation of facilities between the small circles and the larger ones  

Since the objective function of the p-centre aims to minimise the maximum distance 

(Rmax), the first idea which comes to one’s mind is to reallocate the facilities with small circles 

and insert them randomly in the larger ones. Therefore, in this variant, we first order the 

facilities (circles) in descending order of their radii. We then choose k open facilities 

randomly from the bottom half (i.e., the smaller circles) and locate them also randomly in the 

continuous space of the larger circles (i.e., circles of the top half), where each of the k added 

facilities is located in a separate circle.  

The main steps of this enhancement are similar to the original algorithm (VNS2(FN)) 

except that Step 2a is replaced by: 

Step 2a: 

(i) Sorting the Facilities: 

 Sort the facilities (circles) in descending order of their radii. Make up two groups 

as follows:  (G1 as the set of the larger circles) with |G1| =[p/2] and G2 the set of 

the smaller circles with |G2| = p    |G1|. 

(ii) Facility Removal: 

Choose randomly k open facilities from G2. 
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(iii) Facility Attraction: 

Locate randomly the k facilities separately, each in the continuous space 

encompassed by the larger circles in G1.  

B) VNS2(FNV2): Largest circle-based removal and relocation 

When the solution of the p-centre location problem is not optimal, it is observed that 

the facility in the largest circle and at least one of its neighbouring facilities cannot be in the 

right location. This observation led us to explore the idea of reallocating the facility of the 

largest circle and the facility locations that are around it. The region that we choose the k 

open facilities from is called the covering circle, which we refer to as 'kCC . This is a circle 

with a dynamically increasing radius, from the centre of the largest circle to its (𝑘′)𝑡ℎ nearest 

facility. For the sake of simplicity let’s index the largest circle as 1C . This is defined by 

1 1( , )X R with 1X  as its centre and 1R  as its radius. The remaining 1p   circles are indexed in 

ascending order of their distances from the largest circle using the distance measure

1( , ); 2,...,jd X X j p .  The following notation is used. 

Notation 

jC : the j
th 

nearest circle to the largest circle 
1; 2,...,C j p  

jC : the area encompassed by circle ; 1,...,jC j p  

' :kCC the k  facilities encompassed by the artificial circle centred at 1X with a radius        

.,...,1 );1  (i.e.,  otherwise  and 1 if ),( 111 pkkRRkXXdR kk  


 

We refer to 'kCC  as the 'thk covering circle. This can also be defined as a sequence 

' 1 '{ } { ,..., }k kCC X X  representing the facility of the largest circle and the ' 1k  nearest 

facilities to it. 

The steps of this enhancement which we call VNS2(FNV2) are given in Figure 3.9, 

which also contains the updating of the 'kCC . In general, these steps are similar to the original 

algorithm VNS2(FN) except that Step 2a is replaced as follows: 
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Facility Removal: 

In the k
th

 neighbourhood, instead to choose k facilities randomly from X = ),...,( 1 pXX  

we choose these facilities from kCC  where kj CCX  ; j=1,…,k and kk  where k  is the 

level at that iteration, pk ,...,1 , see Figure 3.9.  The way the value of k   is updated is 

defined next. 

Facility Attraction: 

These k removed facilities are located randomly in the continuous space encompassed 

by the k larger circles separately. For instance, when k=2 we locate the first facility in the area 

encompassed by the 1
st
 largest circle ( 1C ) also known and the second one in the region of the 

2
nd 

largest circle randomly. 

The updating of 'kCC  

As the removal process of the k facilities and their insertion are linked to VNS and to 

the corresponding covering circle kCC   at a given iteration, we briefly describe how the value 

of k  is updated. This is also given in the algorithm that follows in Figure 3.9. We first 

remove a facility from 1CC namely the facility encompassed by the largest circle, this facility 

is then located randomly in 1CC . The local search is then applied on this perturbed solution. 

If the solution is not improved, we remove 2 facilities from 2CC and insert them randomly in

2CC . This process is repeated until we reach 
maxKCC . At this iteration if there is no 

improvement we revert back to 1k   as in the standard VNS but we continue increasing k   

by setting k =Kmax +1 instead. We also continue increasing the radius of the covering circle 

until we either reach 
pCC  (note that k can be any value between 1 and Kmax but pk  ) or an 

improved solution is found where we revert back to ' 1k k  . If the latter case happens, we 

decrease the radius of 
'kCC by setting ' ' 1k k   where we remove 1k k   facilities from 

' 1k pCC CC   and so on until we reach 1CC . However as 'k k , to control the increase and the 

decrease of 'k  we introduced an indicator which we call Flag . If 1Flag   the covering 

circle is increasing ( ' ' 1)k k  , otherwise it is decreasing ( ' ' 1)k k  . However if at any 

iteration we have 'k k , we then reset 'k k and 1Flag  . As we start with 1CC  we always 

initialise  to 1Flag . 
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Based on the neighbourhood structure described earlier and the way 
'kCC is updated, the 

VNS2(FNV2) algorithm is summarised in Figure 3.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The VNS2(FNV2) algorithm 

 

 

As an example in Figure 3.10, from 1CC  we select facility p1 to locate randomly in the 

area encompassed by 1CC . If the local search improves the solution, we will record the new 

solution and start again from the new 1CC ; otherwise we explore 2CC where we have two 

facilities p1 and p2. These will be located randomly in the largest and the second largest 

circles centred at p1 and p5 separately. 

 

  Step 0: Specify maxmax CPU ,K and set Time=0. Define the neighbourhood structures    

              max; 1,...,kFN k K   

Step 1: Generate an initial feasible solution X , record the objective function ( )Z X and set    

             ' 1k k   and 1Flag   

Step 2:  

– Step 2a:  (i) If '  set 'k k k k  and Flag=+1 

                              (ii) Generate ' ( )kX FN X                         ‘‘Shaking Step”                                 

– Step 2b: Apply a local search to obtain ''X starting from 'X             “Local Search Step” 

– Step 2c:                                                                                                   “Evaluation Step”  

   1 and 1  ,1 ),()(  ,set  )()( If  FlagkkXZXZXXXZXZ       

    Otherwise      

                   If k = Kmax set 1k  , else set k = k+1 

                  If 1Flag                                                                         “The update of 'kCC ” 

                           1 else  ,1set  then   if  Flagkkpk  

                   Else  

                          1 else , 1set   then  1 if  Flagkkk  

Step 3: Stopping condition. 

           If 
max  Time CPU we record the incumbent solution ( )X  and stop, else go to Step 2.                                                                    
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C) VNS2(FNV3): Controlling the facility insertion in VNS2(FNV2) using covering circles 

The idea of this enhancement is to modify VNS2(FNV2) in the location of the k 

removal facilities. Here, we locate randomly the k removed facilities in the area encompassed 

by the kCC  . The facility removal phase of Step 2a is unchanged as in VNS(FNV2) but the 

facilities attraction is replaced as follows:  

Facility Attraction: 

In the k
th

 neighbourhood instead to locate k= 1,…,Kmax facilities randomly in the larger 

circles we insert these facilities randomly in 'kCC  with k   being the level at that iteration, 

pk ,...,1 . 

For instance, in Figure 3.10, from the first level of the covering circle ( 1CC ), facility p1 

is selected to be located randomly again in the area encompassed by 1CC . If the local search 

improves the solution, the new solution is recorded and the search starts again from the 1CC ; 

otherwise the second level of the covering circle namely 2CC  is explored where two facilities 

located at p1 and p2 are removed. These two facilities are then located randomly again in the 

continuous space encompassed by the same covering circle namely 2CC . 

CC1 

CC9 

Figure 3.10: An example of the levels of covering circles that are 

dynamically increasing from the source region (i.e., CC1,...,CC9)  
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D) VNS2(FNV4): Location based on the critical points regions 

In the p-centre problem, there is a number of regions around each open facility that cannot 

contain any facility that could be worth opening. The following additional notation is used. 

Additional notations 

},...,1;),(:{ niRXPdWPCP jjijij  : the set of critical points of   

         (| | 3); 1,...,j jC CP j p   with (3.1).in  defined jW  

jlRC : the area encompassed by the circle centered at jCPl  with radius  jR ; pj ,...,1  


jCPl

jljj RCCCR


 :ˆ  the j
th 

critical region made up of jC and its | |jCP surrounding  

        ( ); 1,...,jl jRC l CP j p   

max

1

; 1,...,
k

k j

j

UCR CR k K


  : the union of the k critical region 

For example, Figure 3.11 (a) shows two critical points regions (i.e.,
1  with lRC l

representing the critical points a1 and a2). It can be shown that these two regions could not 

contain any facility worth considering. This is because if one of these regions contained a 

facility, the point of that region would have been already allocated to this facility. For 

instance, if the region of point a1 contained a facility, a1 would be closer to this facility than 

its serving facility located at p1, and therefore the point a1 would have already been allocated 

to that facility instead. This idea is similar to the interesting and powerful property given and 

proved in Mladenovic et al. (2003) and Drezner (1984b) for the discrete and the continuous 

cases respectively. Figure 3.11 (b) shows the same case for a circle defined by three critical 

points, which contains three regions (i.e., lRC1  with l representing the critical points a1, a2 

and a3) that also cannot contain any facility.  

In the preliminary study, we observed that when a new facility is inserted randomly in 

the area encompassed by the largest circle, the size of the circle will decrease. This is 

because at least one of its critical point will be allocated to the new facility. In addition, 

locating the new facility in one of the regions defined by the critical point (i.e., the regions 

with point a1 (
11aRC ) and a2 (

21aRC ) in Figure 3.11 (a)), the radius of the circle centred at p1 

will decrease. 
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However, locating a new facility in one of the regions of these critical points will give more 

chance to reduce the radius of the other circles. This is because the new facility will be 

closer to the other facility than if we locate it inside the circle centred at p1. This can attract 

some customers of the other clusters to be allocated to the new facility.  

We take this observation into account to define our neighbourhood for attracting 

facilities to produce our final enhancement VNS2(FNV4).  This is achieved by exploring 

those regions defined by 
jlRC  as the regions where a facility could be located; 

1,...,  and jj p l CP  . In general, the steps of VNS2(FNV4) are very similar to those of 

VNS2(FNV3) given in Figure 3.9, except that the second phase (Facility Attraction) of Step 

2a is replaced by the following:  

Facility Removal: 

This step is the same as the step of VNS2(FNV3). 

Facility Attraction: 

In the k
th

 neighbourhood, we insert randomly these k chosen facilities in kUCR   where 

k   is the level at that iteration, pk ,...,1 . Each facility is located randomly in the 

continuous space encompassed by jCR ;  j=1,…,p. 

x 

Figure 3.11 (a): An example of 2 regions that 

do not contain any facility for a circle defined 

by 2 critical points (a1, a2) 
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Figure 3.11 (b): An example of 3 regions that do 

not contain any facility for a circle defined by 3 

critical points (a1, a2, a3) 
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In this enhancement, the new 
thk neighbourhood structure that combines the facility attraction 

and the facility removal is defined as follows: 

}1      {)( max

11

,...,Kk;XX\XXFN
k

r

r

k

r

rk 


  

Where 1 '( ,..., ) ; '; ' 1,...,k kX X CC k k k p    and ' '

1( ,..., )k kX X UCR  with the thj facility 

being located in the continuous space delimited by ; 1,...,jCR j k  

For instance, Figure 3.12 shows the fourth level of the covering circle CC4 ( k  =4), 

which contains four facilities located at p1, p2, p3 and p4. Figure 3.12 also shows the areas       

( 4UCR ) where we have to insert the k chosen facilities. This includes jC


 ( 1C


, 2C


, 3C


, 4C


), 

lRC1 (a1, a2, a3), lRC2 (b1, b2), lRC3 (c1, c2, c3) and lRC4 (d1, d2). All these regions could be 

used as destination areas for inserting the k facilities (FNk; k=1,…,Kmax).  

 

 

 

 

 

 

 

 

For example, if k=3, we have to choose randomly three facilities among the facilities 

that are in CC4 (p1, p2, p3 and p4), these k chosen facilities are then relocated randomly again 

in the destination areas, namely each chosen facility is located randomly in jCR  separately 

(j=1,…,4) 
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Figure 3.12: An example of the fourth level of covering circle 

with its critical points regions (the destination regions)  
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3.3.3 Computational results using VNS based (FN) 

In this section, we present computational results of the MSALA algorithm, the original 

VNS for facility-based (FN) and the four enhancements. The existing data (n=439 TSP-Lib) 

with p=10 to 100 was used to assess the performance of these variants. Here, we also ran the 

original algorithm (FN) and the four enhancements 10 times, starting from a random initial 

solution, using a total time for each run as 
10

runs  10,000 of CPU .  

Deviations of the best results 

The deviations (%) from the optimal solutions and the CPU time (in seconds) when the 

best solution was found were shown in Table 3.4. 

Table 3.4: Deviation (%) of the best result from the optimal solution for MSALA, the original 

algorithm of VNS2(FN), and its enhancements (VNS2(FNV1),..., VNS2(FNV4)) 

*: CPU time when the best solution was found 

In general, the computational results showed that the deviation values increased with p 

for all versions. We can conclude that the original approach (VNS2(FN)) outperformed the 

multi-start approach, where their overall average deviation values of the best result were 

23.63% and 42.53% respectively. For the enhancements, all their performances were much 

better than the original algorithm VNS2(FN). However, it can be noted that there was a 

significant improvement in the solution in the last three variants VNS2(FNV2), VNS2(FNV3) 

and VNS2(FNV4), where their overall average deviation values were 2.61%, 2.33%, and 2.35% 

respectively. In addition, these three variants found the optimal solution when p ≤ 40, while 

  n =       

439 
 TSP-Lib 

 

The 

optimal 

solutions 

(Z) 

 

MSALA 

The Original 

Algorithm 

VNS2(FN) 

    Variant  

VNS2(FNV1) 

 

Variant 

VNS2(FNV2) 

 

Variant 

VNS2(FNV3) 

 

Variant 

VNS2(FNV4) 

p  Devia-

tion % 

CPU 

 Time* 

Devia-

tion % 

CPU 

Time* 

Devia-

tion % 

CPU  

Time* 

Devia-

tion % 

CPU 

 Time* 

Devia-

tion % 

CPU 

 Time* 

Devia-

tion % 

CPU 

 Time* 

10 1716.5099 2.02 115.61 0.61 23.34 1.37 15.20 0 11.11 0 4.53 0 9.20 

20 1029.7148 11.42 643.80 5.73 23.86 0 27.34 0 8.10 0 31.38 0 17.10 

30 739.19297 31.90 22.22 21.77 28.27 0.81 35.89 0 18.23 0 12.82 0 28.76 

40 580.00539 34.47 958.10 9.06 47.63 4.54 55.87 0 70.87 0 44.60 0 39.77 

50 468.54162 39.88 456.16 20.44 39.56 14.19 94.35 2.67 103.34 1.03 92.37 2.11 92.06 

60 400.19527 44.93  1216.84 18.86 68.97 14.98 97.32 3.62 90.67 3.62 65.01 3.27 106.20 

70 357.94553 59.27 75.19 40.60 79.53 19.45 75.47 2.71 158.54 3.43 114.71 1.27 124.39 

80 312.5 61.05 50.53 40 85.81 22.70 130.39 6.47 163.39 6.51 152.47 6.51 240.67 

90 280.90256 73.78  1360.94 37.95 85.67 28.12 122.47 3.50 133.26 3.85 102.65 3.79 166.33 

100 256.68019 66.58  1351.69 41.23 91.48 28.57 134.58 7.14 122.40 4.90 127.70 6.54 121.70 

 Average 614.21882 42.53   625.11 23.63 57.41 13.47 78.89 2.61 87.99 2.33 74.82 2.35 94.62 
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the second variant found the optimal solution 3 times when p ≤ 30, the first variant found the 

optimal solution only once, whereas the original algorithm VNS2(FN) cannot find any. In 

general, we can confirm that VNS2(FNV3) and VNS2(FNV4) were the best performers 

compared to the others in terms of solution quality with VNS2(FNV3) was slightly quicker 

than VNS2(FNV4).  

Deviations of the average results 

This section gives more details in terms of statistical analysis (deviations of the 

average results and ST deviations), in order to determine which of these two variants 

(VNS2(FNV3) and VNS2(FNV4)) perform better. Table 3.5 shows the optimal solution, the 

deviations (%) of the average result from the optimal solution for each algorithm (10 runs) 

and the standard deviation (ST Deviation). 

Table 3.5: Deviation (%) of the average result from the optimal solution for the original 

algorithm (VNS2(FN)) and its enhancements (VNS2(FNV1),..., VNS2(FNV4)) 

In terms of average results, the performance of VNS2(FNV4) was found to be better 

than the other approaches with an overall average deviation of just over 4%. It can be noted 

that the computations of the best variant of the customer-based VNS namely CNV3 were 

much quicker and its solution quality slightly better than VNS2(FNV4). The overall average 

deviation was 2.30% vs 2.35% and the average CPU time when the best solution was found 

was 58.53 vs 94.62 seconds respectively. However, the objective function value of 

VNS2(FNV4) was much less spread than the ones found by CNV3, (6.99 vs 12.26).  

  n =       

439 
 TSP-Lib 

 

The 

optimal 

solutions 

(Z) 

The original 

algorithm 

VNS2(FN) 

     

Variant  

VNS2(FNV1) 

 

Variant 

VNS2(FNV2) 

 

Variant 

VNS2(FNV3) 

 

Variant 

VNS2(FNV4) 

p 
Devia-

tion % 

ST 

DEV 

Devia-

tion % 

ST 

DEV 

Devia-

tion % 

ST  

DEV 

Devia-

tion % 

ST  

DEV 

Devia-

tion % 

ST  

 DEV 

10 1716.5099 1.43 8.85 1.83 5.39 0.58 12.86 0.44 12.03 0.88 15.92 

20 1029.7148 12.79 58.46 7.45 58.07 0 0 0.57 18.66 0 0 

30 739.19297 32.77 66.50 3.66 21.80 0 0 0.46 10.72 0.02 0.49 

40 580.00539 27.13 73.41 9.39 15.96 1.06 9.48 1.82 13.60 1.41 12.58 

50 468.54162 45.77 71.57 19.62 13.18 3.23 5.98 4.65 11.67 3.98 8.57 

60 400.19527 38.72 39.33 20.34 19 6.28 3.87 6.78 6.55 5.68 5.19 

70 357.94553 50.23 33.45 22.46 10.44 4.79 5.50 6.22 8.67 3.36 6.93 

80 312.5 48.88 25.33 31.82 18.27 8.56 5.96 9.09 7.96 10.01 10.64 

90 280.90256 49.13 20.59 33.57 7.49 6.40 5.70 8.83 6.79 5.76 3.27 

100 256.68019 53.65 21.94 32.84 13.53 9.44 6.05 10.94 8.97 8.96 6.27 

Average 614.21882 36.05 41.94 18.30 18.31 4.03 5.54 4.98 10.56 4.01 6.99 
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3.4 Enhancements on the allocation phase (local search)  

The second part of the Cooper’s locate-allocate procedure (i.e., the allocation phase) is 

also modified here. We propose two enhancements to be used when there is no improvement 

after the exchange between the location and the allocation phases. These include the 

allocation of the critical points and the closure of the non-promising facilities. 

3.4.1 Allocation of a critical point of the largest circle to another facility 

Since the aim of the p-centre problem is to minimise the maximum distance (Rmax) 

and the largest circle can be determined by three or two critical points, allocating one of these 

critical points to another cluster (destination cluster) can improve the solution. This is 

possible as long as the new radius of the destination cluster is less than Rmax. Here we focus 

on a simple but effective reallocation of the critical points of the largest circle to their 

neighbouring facilities.  

Additional notations 

lC = set of facilities encompassed by the circle 1max ),2,( CPlRlC   

lC   = set of facilities encompassed by the circle 1max ),,( CPlRlC   

lV  = :},,...,1;\{ 1CPlpjCCX llj  the set of facilities that are encompassed by lC but 

not by lC    

The reasoning behind this enhancement is to remove a critical point 1( )l CP and reallocate it 

in the neighbouring facilities that surround point l  based on the subset lV . This is performed 

for all 1l CP .  The main steps of this procedure, which we refer to ALLOC, are given in 

Figure 3.14.  

Note that in case there is more than one largest circle (case of tie) the procedure is repeated. 

This allocation process continues until a better allocation cannot be found. 

For instance, Figure 3.13 (a) shows a feasible solution of a 5-centre location problem 

with facilities located at p1, p2, p3, p4 and p5. Here, p1 is the location of the facility of 1CC  (the 

largest circle) with radius Rmax. This circle is determined by three critical points (a1, a2 and 

a3) representing CP1. Figure 3.13 (a) also shows 
1aC and 

1aC  based on the critical point 1a , 
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initially served from facility located at 
1p . There are three facilities that are located at p2, p3 

and p4 in the region of 
1aV . If we allocate a1 to one of these three facilities we can improve 

the solution as long as the new radius of the destination circle is less than the previous radius 

of the largest circle (Rmax). 

On the other hand, any facility outside 
1aC (the second level of the critical point) cannot 

be used to improve the solution even if its radius = 0 (i.e., a circle containing one customer 

only). This is because the new radius of the destination cluster will be greater than the 

previous radius of the largest circle (Rmax). For instance in Figure 3.13 (a), if we allocate the 

critical point a1 to facility located at p5 (contains one facility), the new radius of facility 

located at p5 will be greater than Rmax, because half the distance between p5 and a1 will be 

greater than Rmax. Furthermore, the cluster that has its facility situated between 
1aC   and 

1aC  

and which has one or more customers outside 
1aC  also cannot be used to improve the 

solution. For instance, facility at p3 has customer c1 outside 
1aC , as shown in Figure 3.13 (a). 

This facility cannot improve the solution, because the distance between customer c1 and the 

midpoint of 11ca  will be greater than Rmax.  

  

 

 

 

 

 

 

 

 

 

 
Figure 3.13 (a): The first and the second 

levels of allocating the critical points of 

the largest circle 
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However, not all the facilities that are within 
1aC  (even if all their customers belong to 

1aC ) can be used to improve the solution. This is because the new radius can be greater than 

Rmax as in the example of facility at p4. 

It is worth noting that some of the facilities that exist in the region of 
1aV  (p2, p3 and p4) 

can be used to improve the solution as the radius of the new circle can be less than Rmax. 

Figure 3.13 (b) shows the case where the critical point a1 is allocated to facility at p2 and the 

new radius (R̄max) becomes less than Rmax. 

The steps of the procedure (ALLOC) are summarised in Figure 3.14.  

 

 

Figure 3.14: The allocation procedure (ALLOC) 

To illustrate the impact of this reallocation, computational results of the Multi-Start 

algorithm using 1000 runs with and without this enhancement were reported in Table 3.6. 

The existing data set with known optimal solutions ( 439n   TSP-Lib) with 10 to 100p   

was used here. 

 

Step 1: Set 1max RRR   

   For each 1l CP                                     // set of critical points of the largest circle  

{ 

  Step 2: Solve the 1-centre problem for the largest circle without l and record its new radius ( )R l . 

        Step 3: Construct 
' '',  and l l lC C V   

        Step 4: For each lj V  (with | | 0)lV   do the following:         { 

(i) Allocate l to facility j 

(ii)  Solve the 1-centre problem for region j and record its radius Rj 

(iii)   maxIf jR R                      

            if ( ) & ( ) '  set ' ( ), '  and 'jR l R R l R R R l l l j j      

            else }   and , then jjllRRRR jj   

}    
   

Step 5:         

max maxif 'set '  and record '  (chosen critical point) and '(the facility attracting ')R R R R l j l         
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Table 3.6: Effect of the enhancement (based on 1000 runs of Multi-Start) 

 

 

 

 

 

 

The integration of this reallocation procedure has improved the solution by up to 13% 

(when 100p  ), with an average of over 4.5% while requiring a negligible extra computing 

time. 

It is worth noting that the neighbouring facilities could also be identified using a 

Voronoi diagram, see Preparata and Shamos (1985). Though constructing the Voronoi 

diagram is polynomial, this could require a larger time as the construction of the Voronoi 

diagram needs to be performed at every iteration, as the facility locations change from one 

iteration to the next. For such reasons, we have opted for this simple but effective allocation 

method. 

3.4.2 Removal of the non-promising facilities 

The idea is to identify those facilities that serve the critical demand points only and to 

allocate these points to other facilities which will lead to such facilities having no customers 

and hence a reduction in the number of facilities. Let q be the number of facilities saved. 

These q facilities are then located one at time in the continuous space encompassed by the 

larger circles. 

pj
CPW

Let
jj

j ,...,1
         otherwise,   0

  |;||| if   1
 



 

  

 

 

n= 439 
TSP-Lib 

Multi-Start (MSALA) 

Multi-Start  +  ALLOC  procedure 

Objective function           

& CPU 

Improvement 

Deviation (%) 

p  Z CPU Time Z CPU Time Z CPU Time 

10 1803.12 55.26 1753.08 55.28 2.78 0.03 

20 1140.29 77.22 1125.28 77.26 1.32 0.05 

30 975 91.13 975 91.13 0 0 

40 822.34 123.08 760.35 123.12 7.54 0.03 

50 739.19 133.44 698.77 133.55 5.47 0.08 

60 635.04 146.09 570.09 146.27 10.23 0.12 

70 570.09 160.30 570.09 160.40 0 0.06 

80 570.09 168.24 542.71 168.30 4.80 0.04 

90 570.09 175.74 570.09 175.74 0   0.00 

100 503.27 196.79 437.68 196.99 13.03 0.10 

Average 832.85 132.73 800.31 132.80 4.52 0.05 

https://catalogue.kent.ac.uk/Author/Home?author=Preparata%2C%20Franco%20P.
https://catalogue.kent.ac.uk/Author/Home?author=Shamos%2C%20Michael%20Ian.
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For instance, Figure 3.15 (a) shows a feasible solution of a 5-centre location problem. Here 

the critical points of the circle centred at p3, namely 1 2 3,  and c c c  are allocated to the facilities 

located at p5, p4 and p2 respectively. Note that there are no non-critical points encompassed by 

this circle. A feasible solution of a 4-centre for the same problem is then shown in Figure 3.15 

(b), where the new radius R1 = Rmax = R̄max. The facility initially located at 
3p can now be 

relocated in the largest circle centred at 1p leading to having two facilities, each with a radius 

≤ Rmax.  

 

 

 

 

 

 

 

 

 

 

 

 

Our preliminary study shows that this enhancement becomes more efficient when p is 

large as there is an opportunity to reduce the number of unnecessary facilities. Therefore, we 

propose two strategies for locating these saved facilities, which are as follows: 

– Allocating all  the saved of facilities in one step 

Here, we are locating all the saved facilities, in the largest circles in one go. For 

example, if we have saved q facilities, these facilities will be located randomly in the 

continuous space of the q largest circles, where each of the q facilities is located in a separate 

circle. The local search is then applied.  

Figure 3.15 (b): The same objective function 

value but for its corresponding 4-centre 

location problem (Step 2 of Figure 3.14) 
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Figure 3.15 (a): A feasible solution of a         

5-centre location problem (removal of       

the circle with centre p3) 
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– Allocating  the saved number of facilities one at a time 

Here, we are locating all the facilities one by one in the largest circle. Namely, one 

facility is located in the largest circle followed by the local search when the new largest circle 

is identified. The process is then repeated by locating a facility to the new largest circle. We 

continue this process until all the saved facilities are located.  

The steps of the removal procedure are summarised in Figure 3.16, where the latter 

strategy of allocating the saved number of facilities one at a time is used in Step 3. 

Figure 3.16: The removal procedure of the non-promising circles 

     Step 1: set 0q  and record 1C                                    //number of empty circles 

Step 2: For each facility j with 1; 1,..., doj j p    

 { 

For 
jl CP do  { 

(i) Construct lV   

(ii) For each lr V  assign l to facility r and solve the 1-center problem of the    

               affected region to yield rR .   

(iii)  If max go to the next  
l

r
r V
Min R R j


                                     // delete facility j                              

 Else  set 
l

r
r V

s Arg Min R


 and update temporarily the radius and the centre of the 

affected circle s  } 

             Facility j  is closed and q=q+1   

      } 

Step 3: If 0q   there is no change  and stop 

           Else  

          For 1,...,t q  

(i) locate the 
tht closed facility randomly in 1C  

(ii) Apply the ‘locate-allocate procedure’ to find the new solution for the     

            p q t   centre problem, and update 1C  if necessary. 
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To illustrate the differences in the performance between these two approaches, the 

computational results of MSALA algorithm using 1000 runs (without applying the previous 

procedure (ALLOC)) was presented in Table 3.7. This table shows the number of facilities 

that has been saved, the deviation (%) in the objective function and the CPU time for both 

strategies.  

Table 3.7: Results of the Multi-Start for 1000 iterations with and without the removal-based 

enhancement 

*: CPU time when the best solution was found  

The first method was found to be slightly quicker than the second one where the overall 

average deviations for the CPU time were 0.17% and 0.42% respectively. But the latter was 

more efficient when these enhancements were introduced using the solutions of MSALA, 

where the average improvement in the solution were 6.88 % and 9.09% respectively. This is 

because in the first method the local search was applied only once, while in the second one 

the local search was used several times, amounting to the number of facilities that have been 

saved. This obviously provided more opportunities for the second method to improve the 

solution while requiring more computational time. For instance, it can be noted that the 

solution has improved by 33.87% when p=100. In general, it can be noted that the efficiency 

of this enhancement increased with p, as shown in Figure 3.17. 

 

 

n= 439  

 TSP-Lib 

 

Multi-Start 

(MSALA) 

Multi-Start  +  Removal Enhancement 

One  step One by one  

#  

Saved 

Facilities  

Objective 

function & CPU 

Improvement 

Deviation (%) 

Objective 

function & CPU 

Improvement 

Deviation (%) 
 

p  
 

Z 
CPU  
Time 

 

Z 
CPU*  
Time 

 

Z 
CPU*  
Time 

 

Z 
CPU* 
Time 

 

Z 
CPU*  
Time 

10 1753.08 48.09 1753.08 48.10 0 0.03 1753.08 48.42 0 0.69 0 

20 1226.02 71.79 1226.02 71.90 0 0.14 1226.02 71.84 0 0.07 0 

30 975 92.00 975 92.10 0 0.11 975 92.03 0 0.03 0 

40 975 107.66 975 107.76 0 0.10 975 109.06 0 1.30 0 

50 834.74 141.20 813.37 141.34 2.56 0.10 822.34 141.42 1.49 0.16 1 

60 655.39 167.27 631.50 167.78 3.65 0.31 631.50 167.54 3.65 0.16 1 

70 580.01 175.50 551.28 175.87 4.95 0.21 503.27 176.02 13.23 0.29 3 

80 570.09 178.62 453.47 179.22 20.46 0.34 459.62 179.25 19.38 0.35 5 

90 570.09 190.11 475.16 190.41 16.65 0.16 459.96 190.94 19.32 0.44 6 

100 503.27 192.67 400 192.98 20.52 0.17 332.84 194.03 33.87 0.71 7 

Average 864.27 136.49 825.39 136.75 6.88 0.17 813.86 137.06 9.09 0.42 2.3 
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Figure 3.17: The number of saved facilities (from p = 10 to 100) 

3.5 Incorporating learning within the FN-based VNS  

In this section, we incorporate learning into our facility-based VNS heuristic. The aim 

is to identify any useful values of the parameters that are worth controlling in the search such 

as the most promising values of k, Kmax and the depth of the covered area (the source region 

that we choose the preselected facility candidates from). Note that the customer-based 

neighbourhood method (CNV3) does not have such a flexibility as the value of k is fixed to 2 

or 3, representing the number of critical points and also the source region is fixed being 

defined by the largest circle.  

The learning consists of two stages. In the first stage, we record some information 

about the behaviour of the facility-based VNS. This is performed during a certain time period 

(say for instance 25% of the total time). The information that we are interested in includes the 

use of the k
th

 neighbourhood, the value of Kmax and the depth of the covered area of the 

neighbourhood (the region that contains the preselected facility candidates). The second 

phase uses the information obtained to guide the search when using the facility-based VNS.  

Since VNS2(FNV4) is found to be the best performer, the learning process is carried out 

using this variant only. 
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3.5.1 Phase I: Learning process  

In this phase, we gather the information mentioned above. 

a) Depth of the covered area of the neighbourhoods (levels of the covering circle) 

As the chosen facility is found dynamically, the levels used of the covering circle are 

identified whenever the solution improves. If there is an improvement at a given level, the 

frequency of using such a level will be increased by one. 

b) Determination of the value of (k) 

We also record the number of times the solution is improved in a given neighbourhood, 

say k. Furthermore, as part of the process we also identify the minimum and the maximum k 

values where the latter will define Kmax. 

3.5.2 Phase II: Using the information from phase 1 

The information that is recorded in the first phase is then used to guide the search in 

VNS2(FN4). Two schemes are explored: 

a) The range (min, max)  

As the size of the covering circle is dynamic, we would like to determine the minimum 

and the maximum levels that have achieved improvement (i.e., the smallest and the largest 

covering circle that had been recorded). The same idea is also applied to fix the range for the 

value of (k), i.e. [a, b] where both a and b represent the smallest and the largest k 

respectively. Note that in the classical VNS, a = 1 and b=Kmax. However, in some cases, it 

was observed that the number of these levels ( k  ) and k can be further away from their 

respective means than what is deemed reasonable. Here, we consider those that lie beyond the 

mean + 2standard deviations as outliers and hence these are excluded from our analysis.  

To illustrate this idea, we ran VNS2(FNV4) for 25% of the total time for 1000 runs of 

the multi-start algorithm and recorded the number of facilities that were around the largest 

circle and the k values whenever there was an improvement in the solution. As an example 

Table 3.8 shows that the solution improved 9 times during this period.  
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Table 3.8: Information recorded by applying existing data (n=439 TSP-Lib) with p=100 

# Times improved 

solution 

# candidate facilities around 

the largest circle 

 

 k value 

1 10 1 

2 14 1 

3 27 1 

4 43 2 

5 35 3 

6 24 4 

7 10 4 

8 21 6 

9 24 3 

 

In this case, we can conclude that after excluding the outliers, the range of the levels of 

the covering circle k   (the number of the candidate facilities which were around the largest 

circle) was (12 - 34) and the range of k was (1 - 4), see Table 3.9 for detailed results where 

the range was given by [µ -  , µ +  ]  

 

Table 3.9: The use of the range of the levels of the covering circle ( k  ) and the number 

of neighbourhoods (k) 

# Times improved 

solution 

# candidate facilities around 

the largest circle 

 

 k value 

1 10 1 

2 14 1 

3 27 1 

4 43 2 

5 35 3 

6 24 4 

7 10 4 

8 21 6 

9 24 3 

Min 10 1 

Max 43 6 

Mean (µ)  23.111 2.778 

Std. Dev ( ) 11.096  1.716 

Range  (µ - , µ + ) (12.015, 34.207) (1.062, 4.494) 

 

A preliminary study showed that this method has two weaknesses: (i) there is a 

possibility that some levels within the range did not improve the solution leading to a waste 

of time in exploring these levels, and (ii) the probabilities of using each level is considered to 

be the same, meaning that all levels are equally important. It was however observed that 
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some levels improved the solution several times while others only a few times or none. These 

two weaknesses also occur in determining the k values. The next scheme attempts to 

overcome these two weak points.   

b) The frequency of occurrence 

In this case, we take the information (say the levels of the covering circle) that has been 

recorded, and compute the probabilities of occurrence of each level, based on the number of 

times a solution is improved. These probabilities are then used to choose the covering circle 

(the level that contains the preselected facility candidates). In other words, the higher the 

probability of a given level or neighbourhood is, the higher the chance that such level or 

neighbourhood will be chosen. Figure 3.18 illustrates how such a scheme can be used. 

The idea is to randomly choose   (0,1) uniformly and compute  with )(1  FL


 





L

t

tLF
1

)()( where P(t) refers to the probability of choosing the t
th

 level (t=1,..,p) or the  

maxneighbourhood ( 1,..., )tht t K .  

This technique is also referred to as the inverse method.  

 

 

 

 

 

 

 

 

Based on the information that has been recorded in Table 3.9, the probability P(t) where t 

refers to the number facilities at that level and the value of k were computed in Table 3.10. 

Figure 3.18:  Selection of  using the frequency of occurrence 

occurrence 

0 

1 

 

Kmax 

k 

F (k) 
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Table 3.10: Using the frequency of occurrence of the covering circle radii and the number of 

neighbourhoods (k) 
 

# candidate facilities 
 

P(candidate facilities) 
Neighbourhood 

 (k) 

 

P(k) 

10 2/9 1 3/9 = 1/3 

14 1/9 2 1/9 

21 1/9 3 2/9 

24 2/9 4 2/9 

27 1/9 6 1/9 

35 1/9 - - 

43 1/9 - - 

∑  1 - 1 

This method was more adaptive as both the levels and the values of k were pseudo-

randomly selected.  

A preliminary experiment using both schemes on the same TSP data set with n = 439 and 

p varying from 10 to 100 in steps of 10 was given in Table 3.11. The results based on 10 runs 

showed that applying the frequency-based scheme was more efficient than the range-based.  

Table 3.11: Deviation (%) of the average and the best results for VNS2(FNV4) using the 

range and the frequency of occurrence (10 random runs) 

*: CPU time when the best solution was found.  

For instance, the overall average deviations for the best results were 0.80% and 1.16%, with 

the average results were 1.96% and 2.65%. The ST Deviation values of 3.07 and 6.46 of 

schemes 2 and 1 respectively, also confirm that the frequency-based scheme was more 

reliable especially for large values of p (eg; p ≥ 30). 

n = 439  The optimal  

solutions  

(Z) 

Range   Frequency of occurrence   

TSP-

Lib 
Deviation 

Average 

Results  

Deviation 

Best 

Results  

ST 

DEV 
CPU *  

Time 

(secs) 

Deviation 

Average 

Results  

Deviation 

Best 

Results  

ST 

DEV 
CPU *  

Time 

(secs) 
 

p 

10 1716.5099 0 0 0 2.44 0 0 0 1.93 

20 1029.7148 0 0 0 9.38 0 0 0 7.06 

30 739.19297 0.29 0 6.69 13.15 0 0 0 9.42 

40 580.00539 1.42 0 12.55 23.18 0.45 0 8.33 40.18 

50 468.54162 3.09 0 12.38 86.68 2.69 0.94 4.04 48.63 

60 400.19527 4.20 1.98 7.37 84.25 2.92 0.85 6.17 77.33 

70 357.94553 1.58 1.23 3.28 69.79 1.42 1.27 1.62 65.39 

80 312.5 6.73 2.45 11.74 74.22 5.38 1.98 4.27 100.99 

90 280.90256 3.28 2.35 4.65 84.20 2.83 1.69 2.25 84.89 

100 256.68019 5.95 3.54 5.95 92.11 3.90 1.30 4 115.02 

Average 614.21882 2.65 1.16 6.46 53.94 1.96 0.80 3.07 55.08 
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3.6 Computational results of customer-based vs facility-

based with and without learning  

In this section, our enhancements (customer-based neighbourhood (CNV3) and the 

facility-based VNS2(FNV4) with and without learning) were used to test the following 

existing data sets (n=439, 575, 783, 1002 and 1323 TSP-Lib) with various values of p (p=10 

to 100 with an increment of 10). For n=439, we compared the computational results of our 

VNS based approaches to the optimal solutions provided by Chen and Chen (2009). For the 

other larger data set no optimal solutions are available. For our stopping criterion we performed 

the following experiment using a multi-start approach where we recorded the iteration number 

where the best solution was found after 1000 successive iterations without improvement. The 

detailed results were given in Appendix C2 where the average and the maximum CPU times 

were recorded. In our study we therefore relate our stopping criterion to the CPU times 

corresponding to 10,000 iterations of the multi-start approach. This value was chosen as it was 

the smallest value in 1000s to cover all these maximum values, see Appendix C2 for details. 

3.6.1 Comparison against optimal results (small data set) 

The TSP date set with n = 439 and various values of p was used for testing. These are 

the largest instances in the literature where optimal solutions were reported, see Chen and 

Chen (2009). 

For simplicity and ease of repeatability, the initial solution in our VNS-based heuristics 

was taken as the solution of the multi-start algorithm with 100 runs. In Table 3.12, the results 

for VNS(CNV3) and VNS2(FNV4) with and without learning were reported. Our experiments 

showed that both VNS heuristics (CNV3 and FNV4) produced better results than the multi-

start heuristic. In brief, the performance of VNS(CNV3) was slightly inferior to the 

VNS2(FNV4) without learning as the overall average deviation values from the optimal 

solutions were 0.43% and 0.36% respectively. It can be seen that VNS2(FNV4) with learning 

(with memory) was more effective, as the overall deviation has been reduced to 0.23% besides 

the algorithm was able to find the optimal solution 5 times (i.e., when p ≤ 40 and p = 70). 

The optimal solutions were found by Chen and Chen (2009) who used a relaxation 

method based on solving a succession of small sub-problems. Their idea is to start solving a 

small sub-problem and check whether or not all points are covered. If it is true the optimal 
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solution is also optimal for the original problem, otherwise k demand points are added and the 

problem is solved again. This is repeated until the optimal solution is found for the entire 

problem. However, the new relaxation algorithms, though very interesting, have the 

drawback of not being able to guarantee in advance the best value of k that needs to be used 

besides the lack of identifying the initial sub-problems to start with. The authors reported 

those values of k that were found promising which can be difficult to reproduce when solving 

a new instance. 

Table 3.12:  Deviation (%) from the optimal solution of VNS2(FNV4) (with and without 

learning) and VNS(CNV3)  

n  p  

The 

optimal 

solutions  

Multi-Start 

for 10,000 

iterations 

Neighbourhood 

Customer-based  

VNS(CNV3) 

Neighbourhood Facility-based  

VNS2(FNV4) 

 No Learning With Learning 

Z Deviation Deviation Deviation Deviation  

439 

10 1716.5099 2.02 0 0 0 

20 1029.7148 11.42 0 0 0 

30 739.19297 31.90 0 0 0 

40 580.00539 18.06 0 0 0 

50 468.54162 29.41 0.67 0.28 0.67 

60 400.19527 42.45 0.35 0.85 0.35 

70 357.94553 59.27 1.27 0 0 

80 312.5 30.70 1.20 1.20 0.02 

90 280.90256 25.93 0.40 0.40 0.40 

100 256.68019 27.46 0. 40 0.90 0.90 

Average 614.21882 

 

27.86 

 

0.43 

(4) 

0.36 

(5) 

0.23 

(5) 

( ): The number of cases when the optimal solution is obtained.  

 Bold: The best solutions found. 

3.6.2 Results on larger  data sets (no known optimal results) 

Four larger existing datasets (n= 575, 783, 1002 and 1323 TSP-Lib) were used to assess 

the performance of our enhancements, see Table 3.13. As no optimal solution is available for 

these cases, we computed the deviation from the best solution as Deviation (%) = 

( )
.100H best

best

Z Z

Z


 with ZH denotes the Z value found by heuristic ‘H’ and Zbest refers to the 

best value of Z found by the heuristics. Here, we also used, as our initial solution, the solution 

of the multi-start algorithm with 100 runs. 

In general, Table 3.13 shows that the performance of VNS2(FNV4) with learning 

outperformed all the others, yielded 20 best solutions.  The CN-based approach VNS(CNV3) 
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produced the best solution 13 times while VNS2(FN4) without learning obtained 7 only out 

of 40 times.  

 

Table 3.13: Deviation (%) of VNS2(FNV4) (with and without learning), VNS(CNV3), 

Multi-Start algorithm 

 

n  
 

p  

Z Deviation (%) 

Overall  best 

solutions  

Multi Start 

(10,000 

Iterations) 

 

VNS(CNV3) 

VNS2(FNV4) 

No    

 Learning 

With 

Learning 

 575  

  

10 67.926 1.91 1 1 0 

20 45.622 3.10 0 0.75 0 

30 35.556 9.05 0 0 0.16 

40 30.265 14.51 1.65 1.26 0 

50 26.173 17.84 0.37 2.40 1.13 

60 23.622 18.71 2.52 0 0.29 

70 21.059 14.76 2.12 1.77 0 

80 19.558 24.96 0.17 1.88 1.49 

90 17.923 23.57 0.81 2.37 0 

100 16.621 28.51 0.54 0.46 0.47 

Average 30.433 15.69 0.92 1.19 0.35 

 783  

 

10 79.313 0 0 0 0 

20 53.461 2.713 0.43 0.69 0 

30 42.395 11.84 0 2.06 0.49 

40 35.962 10.75 1.59 0 0.41 

50 31.409 15.17 0.19 0.87 0 

60 28.053 18.19 0 0.04 1.10 

70 25.446 20.89 0 1.57 0.69 

80 23.560 22.67 0.85 0.06 0 

90 21.710 24.71 1.57 3.67 0 

100 20.334 26.01 1.09 2.03 0 

Average 36.164 15.29 0.57 1.10 0.27 

1002  

 

10 2389.360 0.89 0 0 0 

20 1609.540 4.66 0 1.29 1.29 

30 1231.360 8.42 0.11 2.02 0 

40 1030.400 17.06 1.30 1.35 0 

50 906.228 16.39 0 1.14 0.19 

60 801.474 21.13 0.15 2.20 0 

70 727.154 17.70 0.98 1.29 0 

80 664.798 22.03 1.72 2.30 1.05 

90 604.494 28.27 0 1.73 0.75 

100 559.017 29.43 2.08 3.73 2.08 

Average 1052.383 16.60 0.63 1.71 0.54 

1323  

 

10 2897.490 0.33 0.24 0.07 0.07 

20 1886.820 4.41 0 0 0 

30 1466.970 8.29 1.62 2.67 0.98 

40 1236.380 12.41 0 0.34 1.21 

50 1060.820 15.99 0 1.46 0.42 

60 941.870 12.66 1.23 2.19 0 

70 844.967 19.38 0.93 1.62 0 

80 774.764 15.34 1.09 2.65 0 

90 720.625 24 0.66 0 2.12 

100 662.936 28.63 2.24 1.66 5.13 

Average 1249.364 14.14 0.80 1.27 0.99 

Overall  Average 592.086 15.43 0.73 1.32 0.54 

# Best 

 

(1) (13) (7) (20) 

( ): The number of cases when the optimal solution was obtained.           

Bold: The best solutions found. 
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It can also be observed that the multi-start algorithm (10,000 runs) achieved the best 

solution only once. In addition, the average deviation values also confirm that the 

performance of VNS2(FNV4) with learning always yielded relatively better results than those 

of the other enhancements, with an overall average deviation of 0.54%. These compare 

favourably with 0.73% and 1.32% for VNS(CNV3) and VNS2(FNV4) without learning 

respectively.  

In brief, we can confirm that the performance of VNS(CNV3) was better than 

VNS2(FNV4) without learning, but the incorporation of learning into the search has made 

VNS2(FNV4) to be the best performer. 

3.6.3 Time performance 

A comparison between the average total CPU time of the Multi-Start algorithm (10,000 

iterations) and the average CPU time when the best continuous solution was found as well as 

Chen and Chen's results (when it is available) was presented in Table 3.14. It is worth noting 

that the recording of when the best solution was obtained could be useful in designing a more 

advanced stopping rule. For instance this can show that using a stopping criterion where the 

search terminates after a certain number of runs (or time) without improvement. To achieve 

this, we recorded the CPU time when the best solution was found by a given heuristic as HT  

and computed the deviation from the CPU time required for 10,000 iterations of the multi-

start algorithm which we refer to as 
SMT .

. This was computed as follows:  

Deviation (%) = 100.
)(

.

.

SM

SMH

T

TT 
  

To provide a fair comparison in terms of CPU, we used the following transformation as 

given by Dongarra (2013) with ,
2

1
12

n

n
TT   where 1T represents the reported time in Machine 

1 and 2T  the estimated time in Machine 2.   𝑛1 and  𝑛2 refer to the number of Mflops in 

machines 1 and 2, respectively. For more information, see http://www.roylongbottom.org.uk. 

As the computer used by Chen and Chen (2009) cannot be easily identified for the number of 

Mflops, we provided an approximate time using a slightly slower but similar computer 

namely a PC Intel Pentium 4 (3.06 GHz), 2 GB of main memory. 
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For each value of n we ran the methods for p= 10 to 100 with an increment of 10 and 

recorded the average results. The details were given in Appendix C2 but the overall average 

deviation of the CPU time when the best solution was found was shown in Table 3.14.  

Table 3.14: Average CPU time of the Multi-Start algorithm (for p=10 to 100 in increment of 

10), Deviation (%) of CPU time for VNS2(FNV4) (with and without learning) and VNS(CNV3) 

*: CPU time when the best solution is found.  

k:is the best recorded value in Chen and Chen (2009). 

 

Table 3.14 showed that the overall deviations of CPU time when the best solution was found 

increased with n for all the algorithms. For instance, in VNS(CNV3), the overall deviations 

were found to be -81.73% and -50.79 % for n = 439 and 1323 respectively. 

 In general, it can be noted that applying VNS(CNV3) and VNS2(FNV4) required around 

50% of the time required by the multi start algorithm. 

3.7 Summary  

In this chapter, we first presented a basic variable neighbourhood search algorithm 

(VNS) using two types of neighbourhoods namely customer-based VNS(CN) and 

facility-based VNS(FN). Furthermore, we proposed three enhancements for VNS(CN) and 

four for VNS2(FN). Two modifications are also introduced to our local search (Cooper’s 

approach) to make it more efficient. Schemes based on identifying neighbourhoods 

around the critical points such as specific rules for eliminating circles with a few points 

etc, proved to be useful. In addition, the effect of learning when used within VNS2(FNV4) 

is explored and proved to be useful in improving the solutions.  

n          

Average total CPU 

time (10,000 

iterations)   

(s) 

Deviation (%)   

VNS(CNV3)           

(Best CPU Time)*  

VNS2(FNV4) 

 (Best CPU Time)* 

Chen and Chen's results 

(Continuous Solutions) 

No   

Learning 

With 

Learning 

Improved relaxation 

(k=7) 

Binary relaxation 

(k=6) 

439 1497.56 -81.73 -73.21 -74.64 -88.93 -98.76 

575 1681.81 -55.90 -47.52 -36.91  N/A N/A 

783 2762.45 -39.85 -39.65 -48.84  N/A N/A 

1002 4398.09 -45.43 -59.28 -57.98  N/A N/A 

1323 5662.98 -50.79 -33.67 -48.44  N/A N/A 

Average 3200.58 -54.74 -50.67 -53.36  N/A N/A 
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For n = 439 where optimal solutions are reported, the computational results show that 

the variant VNS2(FNV4) without learning overcame the other enhancements of the 

neighbourhood customer-based, where the overall deviation (%) in the objective function 

values is 0.36%. For the customer-based the variant VNS(CNV3) produced an overall 

deviation of 0.43%. It was found that VNS2(FNV4) with memory (with learning) is more 

effective, as the overall deviation has been reduced to 0.23%. Furthermore, this variant is able 

to find the optimal solution 5 times out of 10. For larger datasets (n= 575, 783, 1002 and 

1323), with no known optimal solution or best known, this method also outperforms the others 

by obtaining the best solution 20 times out of 40.  

In the next chapter we will explore another meta-heuristic that uses perturbation ideas 

to address the same problem. 
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Chapter 4 

Perturbation-Based Heuristics 

4.1 Introduction 

In this chapter, a brief review of perturbation-based heuristics is first given 

followed by the three types of moves that are adapted for the continuous p-centre 

problem. The original perturbation algorithm, which refers to the gradual perturbation 

“GRADPERT” is revisited in this study by allowing flexibility in the amount of 

perturbation leading to two new implementation namely “STRONGPERT-V1 and 

STRONGPERT-V2”. Powerful enhancements are then designed and embedded in 

GRADPERT and STRONGPERT-V2. The incorporation of learning within the search is 

shown to be effective by making the search more adaptive. The computational 

experiments show the high quality results found by these enhancements when compared 

to the original algorithm and the VNS meta-heuristic. 

4.2 A perturbation-based heuristic  

This approach guides the search by introducing some perturbations or noises into 

the problem. For the p-centre problem these can be achieved by allowing the number of 

facilities of a solution to go over and under the required number of facilities (p), by a certain 

value (q). In other words, the solution is allowed to be infeasible in terms of the number of 

open facilities. An initial solution of the p-centre problem is first found, then the number of 

open facilities is allowed to increase to ( )p p p q   by adding q facilities to the current 

solution. The removal of q facilities is then performed to reach a solution with p facilities 

where an intensification of the search is activated. The removal of facilities continues till the 

problem with ( )p p p q facilities is reached ( )p p p q  . At this stage the addition of q facilities is 

performed to get a feasible solution with p open facilities where intensification is activated 

again. We refer to this up and down shifting as one cycle of the perturbation procedure which 

is then repeated several times until one of the following two stopping criteria is met 
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whichever comes first. These include the maximum number of cycles without improvement 

( maxNCycle ) or the total CPU time reaches the maximum time allowed ( maxCPU ). 

The idea of moving between feasible and infeasible regions acts as a filtering process 

where the most attractive facilities have the tendency to remain in the promising set. Salhi 

(1997) proposed this heuristic for a class of large uncapacitated location problems including the 

p-median problem with interesting results. Hanafi and Freville (1998) also adapted a similar 

approach for solving a class of knapsack problems, whereas Zainuddin and Salhi (2007) 

modified this methodology to solve the capacitated multisource Weber problem. In the 

perturbation-based heuristic, there are three types of moves, namely the add, the swap, and 

the drop moves. In the add move, q open facilities are added and in the drop move q open 

facilities are removed from the current solution. The swap move is applied when the number 

of open facilities is p. In other words, when the number of facilities is p, a form of 

intensification based on the swap move is applied whereas when the solution has p±𝑠, 

s=1,...,q facilities a diversification is used instead. 

It is worth noting that the idea of perturbation shares some similarities, especially when 

going from p to p   q then up to p, to the large neighbourhood search proposed by Shaw 

(1998) and which proved to be successful when applied to a class of routing problems by 

Pisinger and Ropke (2010). More information and references for large neighbourhood search 

can be found in Ahuja et al. (2002). 

In this study we revisit this perturbation type meta-heuristic by introducing flexibility in 

the level of perturbation using a variable value of q  that is adaptively determined instead of 

considering a constant value throughout the search as usually used in the literature. Besides, 

the moves adopted for this problem such as the swap, the add and the drop moves as well as 

the way the optimal location is found within each cluster are also tailored to the p-centre 

problem.  In this perturbation approach, two types of local search are examined; When the 

number of facilities of a solution is , 1,...,p s s q  , we apply the locate-allocate procedure. 

We refer to this as the local search of type 1 “LS1”. When the number of facilities is p  we 

use a combined local search “LS2” made up of LS1 and the swap-based neighbourhood that 

will be described later. 
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The perturbation-based heuristic includes three types of moves, which are as follows: 

(i) the add move where q facilities are added into the current solution, (ii) the drop move 

where q open facilities are removed from the current solution and (iii) the swap move when 

the number of open facilities is p. This is performed by swapping one of the open facility 

location with a location in the continuous space either random or using forms of guidance. 

A brief explanation of the three types of moves 

In this subsection, the three moves that are used in our perturbation-based heuristic 

are presented alongside some basic enhancements. 

The drop move 

The strategy that we adopt is to remove q facilities one by one followed by LS1, 

which is a “locate-allocate” procedure similar to that of Cooper (1964) as explained in 

subsection 3.2.1 of chapter 3. This process is applied when the number of open facilities 

is p and going down to p q  or starting from p q and going down to p . Here, the 

facility chosen for removal is the one whose removal increases the objective function the 

least where the local search LS1 is then applied to find the new solution with one facility 

less. This procedure is repeated until q facilities are removed. 

The add move 

Here, q facilities are inserted when the number of open facilities is p with the aim to go 

over the required number of facilities to p + q (infeasible case). Similarly this is also applied 

when the number of open facilities reaches qp  , when we start adding facility one by one 

till we get to p. The way the new added facility is performed will be described in subsequent 

sections when LS1 is also applied at each new solution with p±s facilities (s=1,...,q). 

The swap move (LS2) 

The idea of the covering circle which was successfully applied for the facility-based 

VNS2(FNV2) is also adapted in this swap move. When the number of open facilities reaches 

p, we relocate randomly a location of one facility in the continuous space of the current 

covering circle CCk. 
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For example only for illustration all the (CCk) k=1,…8 of an 8-centre problem are shown 

in Figure 4.1. The formal definition of CCk can be found in subsection 3.3.2 of chapter 3. 

 

 

 

 

 

 

 

 

 

 

In brief, the procedure works as follows: we start from the first level (k = 1) of the 

covering circle 
1CC  (the largest circle) by dropping the facility sited at the centre of the 

largest circle and inserting a facility randomly in 
1CC . If the solution is not improved, when 

applying LS1, we move to 
2CC  which contains two facilities namely those sited at the centres 

of the largest circle and the nearest facility to it. One of these two candidate facilities is then 

randomly selected for dropping and inserting a facility randomly in CC2 which is then 

followed by LS1. If the new solution is improved we revert back to level 1, where the largest 

circle is identified again. Note that this is not necessarily the previous largest circle. Its 

corresponding covering circle
1CC is then defined and the process is repeated. If the solution is 

not improved we extend the search by exploring the next level. This process continues until 

the last level say lmax, which includes all the facilities, is reached. From that point we then start 

to reduce gradually the level of the covering circle until we get to level one. The swapping 

process is performed until no improvement is found after Kmax successive times (here we set 

Figure 4.1: An example of the levels of covering circles that are dynamically 

increasing from the source region of a 8-centre problem (i.e., largest circle) 
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maxK p 
 

). Note that at this point, we record the current level, say l̂ , and the direction 

whether we are in the process of increasing the level (Flag = 1) or decreasing the level (Flag 

= 1 ). This is important as this information is used when we reach p again in subsequent 

iterations as the search continues from the next level based on whichever level is reached at 

this iteration. In other words, if Flag=1 we set 1l l  , else we set 1l l   while we continue 

using the direction as defined by Flag. Initially Flag is set to 1 as the search starts from level 

1 which is based on CC1. 

We propose two types of perturbation, which are based on an adaptation of the 

perturbation originally given by Salhi (1997). We refer to the first one as the gradual 

perturbation “GRADPERT” and the second as the strong perturbation “STRONGPERT”. 

These two strategies differ in the way the q facilities are added within the search. These are 

described in the next two sections. 

4.3 The original perturbation (GRADPERT) 

Here, the new q facilities are added randomly one at a time in 
1CC (area encompassed 

by the largest circle) where “LS1” is activated in each of the q steps. A similar process is also 

used in the drop move except that the removal is not performed randomly. Note that in Salhi 

(1997) the added facility is inserted based on the largest cost saving over the potential facility 

sites as the problem was not a continuous but a discrete type location problem. For example, if 

q = 2, the first facility is inserted randomly in CC1, then LS1 is applied and the new largest 

circle is found again and CC1 defined. The second facility is then located in the new CC1 

where the number of open facilities becomes p+2. Similarly in the drop move, the facility that 

increases the objective function the least is dropped from p+2 to p+1, followed by LS1. A 

second facility is then chosen for removal by using the same procedure to reach p, see Figure 

4.2. Here, when the number of facilities is p, the swap move (LS2) is activated using a 

procedure PROC_LS2 which will be described in the next subsection.  

A full cycle of the perturbation which contains the three types of moves is defined as 

follows: starting from a solution with p facilities, q adds are followed by q drops, a swap is 

activated followed by q drops then q adds and finally a swap. See Figure 4.2 for an illustration 
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where a full cycle is represented. It is worth noting that there are two strategies that can be 

applied which differ in the choice of the solution used at the start in each cycle of the 

perturbation. These are described in the next two subsections. 

 

 

 

 

 

 

 

 

 

 

4.3.1 The first strategy (using the current solution) 

In this strategy, the current feasible solution (the last feasible solution that has been 

obtained) is used as the initial solution at the start of each cycle of the perturbation.  

Figure 4.2 illustrates the mechanism of “GRADPERT” whose steps are given in Figure 4.3. 

Explanation of some of the steps  

Step 1: The initial solution is generated randomly by choosing p fixed points. This solution is 

then improved using LS1, though other schemes could also be used such as the best solution 

of a multi-start procedure (say, with 100 runs) or the optimal solution of the vertex p-centre 

problem. The former will be tested in the computational results section. Note that we consider 

Full cycle 

 

Full cycle 

 

Figure 4.2: Gradual perturbation GRADPERT (q is fixed) 
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the CPUmax as the only condition as this is based on the CPU time recorded by 10,000 multi-

start. In general, we could also use Cyclemax as another stopping condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: A gradual perturbation algorithm (GRADPERT) 

Steps 2a and 3a (Applying the local search (LS1)) 

This local search is the same one that is used in subsection 3.2.1.  

Steps 2b and 3b (the use of LS2) 

When a solution with p facilities is obtained, an intensification is activated using the 

procedure PROC_LS2 which will be described next. Here, a swapping process is used where 

one facility is chosen randomly from the covering circle (level ˆl l ) and then relocated 

randomly in the same covering circle. Note that initially ˆ 1l  . The covering circle is a circle 

Step 0: Set q, Kmax, lmax and CPUmax and let p̄ = p, 𝑙=1and Flag=1. 

Step 1: Generate an initial feasible solution (X) and compute the objective function value Z(X).  

             Set Xbest =X and Zbest = Z(X). 

Step 2:  

Step 2a: Perturb the recent solution (X) by adding randomly one      “Perturbing by adding”                                      

            facility in CC1, apply LS1 to find the new X and set p̄ = p̄ +1 

Step 2b: If  p̄ = p, apply LS2 using PROC_LS2( l̂ , lmax , Kmax, X̂ , Flag)     “Swapping Step” 

        If Z )ˆ(X < Zbest then set Xbest = X̂  and Zbest = Z )ˆ(X ; 

       Set X= Xbest 

Step 2c: If  p̄ < p + q go to Step 2a,  else go to Step 3.                                                    

   Step 3:  

Step 3a: Perturb the recent solution (X) by dropping                    “Perturbing by removing”                                          

              the facility yielding the least extra cost, apply LS1 to find the new X and set p̄ = p̄   1 

Step 3b: If  p̄ = p, apply LS2 using PROC_LS2 ( l̂ , lmax, Kmax, X̂ , Flag).     “Swapping Step” 

                                  If Z )ˆ(X < Zbest set Xbest = X̂ and Zbest = Z )ˆ(X ;   

         Set X = Xbest                                                                 

                    Step 3c: If  p̄ > p   q go to Step 3a, else go to Step 4.       

Step 4:  If CPU time > CPUmax   record Xbest, Zbest and stop, else go to Step 2. 
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with a dynamically increasing radius, given by the distance between the centre of the largest 

circle and its (𝑙)𝑡ℎ nearest facility, as shown in Figure 4.1. In other words, if the solution is not 

improved, the radius of the covering circle increases with l (l =1,...,lmax) until the last level 

(lmax) is reached. At this point, the level is reduced gradually until level one 1( )l . However, if 

the solution is improved we return to 1l  again which is CC1 in the current solution. This 

swapping process is repeated until Kmax iterations are performed without improvement where 

we record the best solution X̂ , the current level reached l̂ and the direction of the search 

(increasing or decreasing using Flag=1 or -1 respectively). The steps of this procedure, which 

we call PROC-LS2, are given in Figure 4.4. 

PROC_LS2( l̂ , lmax , Kmax , 𝑿̂, 𝑭𝒍𝒂𝒈)         

(i) Let k=0 , X=Xbest and ll ˆ  

(ii) Generate a new feasible solution by swapping randomly one facility from 

X in level l, apply LS1 and set k=k+1. Let X   be the new solution. 

(iii)   If Z )(X   < Z(X), set X= X  , k=0, l=1, and go to step (ii) 

(iv)  If  FLAG=1  

                 If l < lmax then set l=l+1, else FLAG= 1  

       Else  

               If  l >1 then set l= l 1 , else FLAG=+1                  

(v) If k < Kmax, set k=k+1 and return to step (ii), otherwise set X̂ = X and ll ˆ . 

Figure 4.4: The PROC-LS2 procedure   

4.3.2 The second strategy 

In this strategy, the best feasible solution that has been obtained so far is used as the 

initial solution at the start of each cycle of the perturbation. 

The steps for using this strategy in GRADPERT are similar to those of Figure 4.3 except 

that in Step 2a and Step 3a the best solution is perturbed instead of the current one. For clarity, 

these 2 steps are reproduced here. 

Step 2a: Perturb the best solution (Xbest) by adding randomly one facility in CC1, apply LS1 to 

find the new X and set p̄ = p̄ +1 



 

 

120 

 

Step 3a: Perturb the best solution (Xbest) by dropping the facility that increases the objective 

function the least, apply LS1 to find the new X and set p̄ = p̄   1 

4.3.3 Empirical computational results of the original perturbation 

In this section, the existing data set (n=439 TSP-Lib) with p=10 to 100 was used to 

assess the performance of using the above two strategies. GRADPERT was run for 10 times, 

starting from the same random initial solution, which was the solution of the multi-start 

algorithm with 100 runs. Each run used a total CPU time 
CPUMS 

10
 where CPUMS was the CPU 

for the 10,000 runs as performed in the previous chapter. 

From Table 4.1, it can be clearly observed that using the second strategy yielded better 

results than those found by the first one. This was shown in terms of both the best and the 

average solutions. We also recorded the CPU time when the best solution was found for 

information only as this demonstrates that other stopping criteria such as max cycle without 

improvement could be useful. 

Table 4.1: Deviation (%) of the average and the best result from the optimal solution for the 

first and the second strategy  

*: CPU time when the best solution was found. 

 

The average deviation values from the optimal for the best results were found to be 

0.85% and 1.54% respectively with the average results of 1.61% and 2.10%. This level of 

performance was relatively high showing the power of perturbation.  In addition, the second 

one achieved the optimal solution 5 times whereas the first obtained 4 out of 10 times. 

n =  

439  

 

The optimal 

solutions  

(Z) 

The first strategy  

(using the current solution) 

The second strategy 

( using the best solution) 

TSP-

Lib 

Deviation 

Average 

Results  

Deviation 

Best 

Results  

 

ST 

DEV 

 

CPU   

Time* 

Deviation 

Average 

Results  

Deviation 

Best 

Results  

ST  

DEV 
CPU   

Time* 
p 

10 1716.5099 0 0 0 10.04 0 0 0 9.22 

20 1029.7148 0 0 0 11.37 0 0 0 11.72 

30 739.19297 0 0 0 20.95 0 0 0 17.42 

40 580.00539 0 0 0 51.17 0 0 0 26.74 

50 468.54162 2.75 2.16 1.94 76.96 1.49 0 4.52 113.35 

60 400.19527 2.85 2.46 1.39 81.60 2.71 0.35 5.59 63.58 

70 357.94553 1.40 1.27 0.77 74.58 1.28 1.23 0.30 101.58 

80 312.5 5.51 3.62 3.52 101.09 4.36 1.20 4.13 139.13 

90 280.90256 2.89 2.35 2.15 90.61 2.42 2.19 1.09 90.19 

100 256.68019 5.59 3.54 3.90 68.14 3.87 3.54 1.04 134.48 

 Average 614.21882 2.10 1.54 1.37 58.65 1.61 0.85 1.67 70.74 
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However, the solutions of the latter were found to be less spread than the ones by the former 

as shown by their ST deviations of 1.37 vs 1.67. 

4.4 The strong perturbation (STRONGPERT) 

 In this variant, when starting from a solution with p facilities, all the q facilities are 

added randomly in one step. Similarly, q  facilities are also added randomly for a solution with 

p q facilities to reach p facilities in one step, see Figure 4.5.  However, when we apply the 

drop move from p q to p  and from p  to p q , we retain the same dropping process that 

was used in the gradual perturbation. We call this variant “STRONGPERT”, short for the 

strong perturbation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the second strategy yields relatively better solutions than the ones found by the 

first strategy, as shown in Table 4.1, this is the chosen strategy that we select in 

STRONGPERT. Here, we also introduce two schemes for adding the new q facilities which 

differ in the way these new facilities are located randomly in the continuous space. These two 

variants are explained in the next subsections.  

p 

  Applying LS1             

 Using LS2   

Figure 4.5: Strong perturbation STRONGPERT (q is fixed) 
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4.4.1 STRONGPERT-V1 

In this scheme, we will focus on the larger circles. The idea behind this enhancement is 

to insert randomly q facilities in one step in the areas covered by the q larger circles (1
st

 

largest, the 2
nd

 largest, 3
rd

 largest,..., (q)
th

 largest circle). To illustrate this idea, consider qmax  

= 
maxK p 

 
, with p = 9, (i.e., qmax = 3). In this case, three new facilities are located randomly in 

the areas covered by the first, the second and the third largest circles separately. Once this is 

performed the local search LS1 is then applied. Figure 4.6 illustrates these new facilities 

denoted by p̄10, p̄11 and p̄12. 

 

 

 

 

 

 

 

  

 

In general, the steps of this algorithm (STRONGPERT-V1) are similar to those of the 

original algorithm (GRADPERT) of Figure 4.3 except that in Step 2a we add randomly q 

facilities in the areas covered by the q larger circles separately. For simplicity, Step 2a is given 

here.  

Step 2a: Perturb the best solution (Xbest) by adding randomly q facilities in the areas covered 

by the q larger circles separately then set p̄ = p̄ +q. 

y 

 
 

Figure 4.6: The first, the second and the third covering 

region (qmax=3) of a 9-centre location problem 
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4.4.2 STRONGPERT-V2 

When the solution of the p-centre location problem is not optimal, it can be noted that 

the facility serving the customers that are encompassed by the largest circle and at least one 

of the facilities that are around it are not in the right location. In this variant, which we call 

“STRONGPERT-V2” (short for the strong perturbation variant 2), we take this observation 

into account and introduce extra perturbations into the current solution (around the largest 

circle) in one step. Here, the idea of the covering circle is also used to introduce these extra 

perturbations. This is performed by adding randomly all the q facilities in CCq where LS1 is 

then activated. For example, see Figure 4.7 when q = 3. Here, these three new facilities (p̄10, 

p̄11 and p̄12) will be located randomly in CC3. The steps of this scheme (STRONGPERT-V2) 

are similar to the ones of GRADPERT of Figure 4.3 except that Step 2a is replaced as follows: 

Step 2a: Perturb the best solution (Xbest) by adding randomly q facilities in the continuous 

space encompassed by the covering circle CCq then set then set p̄ = p̄ +q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: An example of the levels of covering 

circles that are dynamically increasing from the 

source region of a 9-centre location problem 
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4.4.3 Empirical results of STRONGPERT-V1 vs STRONGPERT-V2 

In this section, computational results for both the STRONGPERT-V1 and the 

STRONGPERT-V2 were presented. The same data that were used to assess the performance 

of the original perturbation were also used here. Each algorithm was run for 10 times, using a 

total time for each run as 
10

MSALAfor  runs  10,000 of CPU . 

Table 4.2 shows that, in terms of the best solution, STRONGPERT-V2 was found to be 

better and relatively faster than STRONGPERT-V1 with an average deviation of 0.70% 

compared to 1.01%. However, the latter yielded solutions which were less spread than the 

ones found by its equivalent STRONGPERT-V2 (see ST deviation of 2.18 vs 2.47). However, 

the average performance of STRONGPERT-V2 was slightly inferior to its counterpart 

STRONGPERT-V1 with an average deviation of 1.68% and 1.63% respectively. 

STRONGPERT-V2 will, given its encouraging promising performance, be explored further 

in subsequent sections.  

Table 4.2: Deviation (%) of the average and the best result from the optimal solution for 

STRONGPERT-V1 and STRONGPERT-V2 

*: CPU time when the best solution was found. 

4.5 Perturbation-based enhancement  

In both perturbations, the number of the new facilities (q) that are used to go over and 

under the required number of facilities (p) is fixed (say for instance q = qmax). However, in 

this enhancement the value of q is relaxed and made dynamic starting from q =1 to qmax with 

n = 439  

TSP-

Lib 

 

The optimal 

solutions  

(Z) 

The strong perturbation (STRONGPERT) 

STRONGPERT-V1 STRONGPERT-V2 

Deviation 

Average Results  

Deviation 

Best Results  

ST  

DEV 

CPU   

Time* 

Deviation 

Average Results  

Deviation 

Best Results  

ST  

DEV 

CPU   

Time* p 

10 1716.5099 0 0 0 6.93 0 0 0 6.99 

20 1029.7148 0 0 0 10.31 0 0 0 10.40 

30 739.19297 0 0 0 15.18 0 0 0 18.99 

40 580.00539 0.53 0 8.29 37.08 0.45 0 8.33 29.40 

50 468.54162 1.73 0.47 3.64 107.48 1.80 0.67 3.42 68.94 

60 400.19527 2.55 1.98 1.19 91.06 2.44 0.35 3.21 81.43 

70 357.94553 1.32 1.23 0.37 78.61 1.25 1.23 0.08 83.83 

80 312.5 4.84 2.45 5.11 90.64 5.17 1.20 6.15 85.03 

90 280.90256 1.69 0.40 2.58 91.80 1.89 0.40 2.29 120.35 

100 256.68019 3.67 3.54 0.62 129.81 3.80 3.19 1.18 114.63 

 Average 614.21882 1.63 1.01 2.18 65.89 1.68 0.70 2.47 62.00 
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an increment of 1. This enhancement is used in both perturbations where in GRADPERT, 

LS1 is applied at each solution with a number of facilities p ± s, s = 1,..., qmax, while in 

STRONGPERT, LS1 is applied at the adding phase when q = qmax only. However, in both 

perturbations the local search LS2 is still used whenever a solution has p facilities. 

4.5.1 Enhancement on GRADPERT (Enh 1) 

This is formally defined as follows: 

Let a cycle of size q be defined as cycle (q) representing the sequence of moves made up of q 

add moves followed by q drops moves then a call to “LS2”, a drop of another q moves 

followed by q add moves and finally a call to LS2 again. 

In GRADPERT, cycle (qmax) is used throughout the search several times whereas here we use 

cycle (q) instead with q =1,2,......, qmax. See Figure 4.8 for an illustration. The main steps of 

this enhancement, which we call “Enh 1”, are similar to GRADPERT in Figure 4.3 except that 

in Step 0 we use q=1 and  maxq p 
 

, and Step 3c is replaced by: 

Step 3c:  

If p p q  , go to Step 3a  (it is unchanged),  

else  

      if q < qmax, set q = q+1, else set q =1; 

      go to Step 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

p 

Figure 4.8: The Gradual perturbation GRADPERT (with dynamic q) 
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4.5.2 Enhancement on STRONGPERT-V2 (Enh 2) 

This is a hybrid of Enh 1 where the value of q is dynamic (q =1,..., qmax) instead of 

being fixed, and STRONGPERT where the q new facilities are inserted randomly in the area 

of the covering circle (i.e., CCq) in one step. We call this enhancement Enh 2. Here, we start 

to add one facility randomly (q=1) into the first level of the covering circle (i.e., the first level 

referring to CC1). In case of (q=2), two new facilities are added randomly in the covering 

circle CC2 (the second level). This radius of the covering circle continues to increase with q 

until the last level is reached (i.e.,
maxqCC ). Recall that the last level is the covering circle with 

its radius as the distance between its centre (centre of C1) and its (qmax)
th

 nearest facility. 

Note: It is worth highlighting that the levels of the covering circle are determined by the 

value of q. The removal process is similar to the one used in STRONGPERT-V2, where q 

facilities are removed one by one followed by LS1 at each of the single moves, see Figure 4.9 

for an illustration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following steps of Enh 2 are as those in Figure 4.3 except that in Step 0 we use 1q  and 

Step 2a, Step 2c and Step 3c are replaced by:  

Step 2a: Perturb the best solution (Xbest) by adding randomly one facility in the continuous 

space encompassed by the covering circle CCq then set 1p p  . 

p 

Figure 4.9: The strong perturbation STRONGPERT-V2 (q is dynamic value) 
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Step 2c: If p p q  , go to Step 2a (it is unchanged), else apply LS1 and go to Step 3.       

Step 3c:  

If p p q  , go to Step 3a (it is unchanged), 

else  

if q < qmax, set 1q q  , else set q =1; 

go to Step 4.  

4.5.3 Computational Results of Enh 1 and Enh 2 

The same experiment as the one used in the previous section was conducted here. The 

approaches were also run for 10 times, starting from a random initial solution. The same 

stopping condition that was used in previous sections was also adopted here. The results 

were given in Table 4.3. It can be noted that the performance of Enh 1 was slightly better than 

Enh 2 with respect to the average deviation of the best results from the optimal solutions (i.e., 

0.58% vs 0.59%). However, in terms of the average results, Enh 2 outperformed Enh 1 where 

the average corresponding deviations were 1.30% and 1.59% respectively. The standard 

deviations of 2.17 and 1.60 for Enh 1 and Enh 2 respectively confirm that Enh 2 was 

relatively more stable. It is worth noting that this enhancement has made GRADPERT and 

STRONGPERT-V2 more effective, as the overall deviations were 0.85% and 0.70% as 

shown earlier in Table 4.1 and Table 4.2 respectively. 

Table 4.3: Deviation (%) of the average and the best result from the optimal solution for   

Enh 1 and Enh 2 

*: CPU time when the best solution was found. 

 

n =  439  
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Enhancement on GRADPERT  
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TSP-Lib Deviation 

Average 
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Deviation 
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Deviation 

Average 

Results  

Deviation 

Best 

Results  

 

ST  

DEV 

 

CPU   

Time* 
 

p 

10 1716.5099 0 0 0 7.52 0 0 0 5.62 

20 1029.7148 0 0 0 10.39 0 0 0 9.59 

30 739.19297 0 0 0 16.27 0 0 0 15.43 

40 580.00539 0 0 0 50 0 0 0 29.44 

50 468.54162 2.62 0.89 6.85 87.89 0.80 0 3.17 100.96 

60 400.19527 3.09 0.35 5.09 128.24 2.11 0.35 3.24 81.74 

70 357.94553 1.27 1.27 0 115.12 1.13 0.00 1.42 103.25 

80 312.5 4.49 1.20 5.72 125.73 4.39 1.98 4.76 109.41 

90 280.90256 1.05 0.40 2.46 283.86 0.97 0.40 2.58 106.22 

100 256.68019 3.37 1.69 1.62 126.28 3.58 3.19 0.80 146.87 

 Average 614.21882 1.59 0.58 2.17 95.13 1.30 0.59 1.60 70.85 
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4.6 Incorporating learning within the perturbation-based 

heuristic  

In this section we incorporate learning into our perturbation-based heuristics (Enh 1 and 

Enh 1). The aim is to identify the most promising values of q and qmax. It is worth noting that 

STRONGPERT (Enh 2) has more flexibility than GRADPERT (Enh 1), as the size of its 

covering circle is dynamic. Namely, in Enh 2, we can also record information about the 

radius of the covering circle (the destination circle that we insert the added facilities in).  

The learning process consists of two phases as in chapter 3. In the first phase, the 

information that is mentioned above is recorded during a certain time period (say for instance 

25% of the total time) which we call the learning phase. In the second phase, we use the 

obtained information about q, qmax and the level of the covering circle to guide the search 

during the remaining time of the perturbation-based heuristic, see Figure 4.10 for an 

illustration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.10: The gradual perturbation (selection of q using the frequency occurrence) 
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4.6.1 Phase I: Learning process  

In this phase, we gather the information mentioned above. 

Determination of the value of (q) 

Here, we record the number of times the solution is improved for each value of q  

(number of added/removed facilities). We also identify the minimum and the maximum q 

values where the latter relates to qmax. 

Size of the neighbourhood (the levels of the covering circle) 

In STRONGPERT, the destination region (covering circle) that we insert the facilities 

in is a circle with a dynamically increasing level (radius). The levels used of the covering 

circle are recorded, whenever the solution improves. In other words, if there is an 

improvement at a given level, the frequency of using such a level will be increased by one as 

performed in section 3.5 of chapter 3. 

4.6.2 Phase II: Integrating the information within the search 

The information (q value) that is recorded in the first phase is then used to guide the 

search in the perturbation-based heuristic by using the following frequency of occurrence 

based-scheme as this proved in chapter 3 to be superior than the other scheme such as the 

range-based scheme. 

The information that is recorded in the first phase is then used to guide the search by 

computing the probabilities of occurrence of each value of q, say P(q) which is based on the 

number of times a solution is improved. In other words, the higher the probability of a given 

value of q  is, the higher the chance that such a value will be chosen. These probabilities are 

then used to choose the values of q for both enhancements (Enh 1 and Enh 2) and to choose 

the level of the covering circle where the new open facilities are inserted in Enh 2.  

The same mechanism of using the inverse method, as described in chapter 3, is also 

implemented here. 
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4.7 Computational results  

In this section, the perturbation-based heuristics namely GRADPERT (Enh 1) and 

STRONGPERT-V2 (Enh 2) with and without learning were evaluated using the existing data 

sets (n=439, 575, 783, 1002 and 1323 TSP-Lib) with various values of p (p=10 to 100 with an 

increment of 10). The optimal solutions for the small data set (n=439) that were provided by 

Chen and Chen (2009) were used to assess the performance of our methods. For the larger 

data sets (n=575, 783, 1002 and 1323) no optimal solutions are available, therefore, we 

assessed the performance of these methods by comparing their results to the best solution of 

the proposed enhancements. The same stopping criterion used in the previous chapter was also 

used here. This was the corresponding CPU time for the multi-start procedure using 10,000 

iterations. For simplicity, the same multi-start algorithm but with 100 runs was also used as 

the initial solution in our perturbation-based heuristics.   

4.7.1 Comparisons against optimal results (small data set) 

Table 4.4 shows the optimal solutions for the TSP data set (when n=439), the 

deviations for both GRADPERT (Enh 1) and STRONGPERT (Enh 2) with and without 

learning and the multi-start algorithm with 10,000 iterations. The deviations of these methods 

were computed from the optimal solutions.  

Deviation (%) = 100.
)(

*

*

Z

ZZH 
 where *Z  refers to the optimal solution and HZ  is the 

solution found by heuristic ‘H’. The experiments show that the performances of Enh 1 and 

Enh 2 were always better than the one of the multi-start algorithm. In both cases (with and 

without learning), it can also be observed that the performance of Enh 2 was slightly better 

than its counterpart Enh1. The average deviation values without learning were 0.59% and 

0.65% respectively and 0.32% and 0.47% with learning. However, Enh 1 found 10 optimal 

solutions out of 20 (i.e., 5 times with learning when p ≤ 40 and p = 90 and 5 times without 

learning when p ≤ 40 and p = 70), while Enh 2 found 9 optimal solutions and the multi-start 

procedure was unable to find any. It is worth noting that Enh 1 did not always yield better 

results than its counterpart Enh 2 as shown by the case when p = 100. 

In general, in both perturbation-based heuristics (GRADPERT and STRONGPERT) the 

incorporation of learning has made the search, shown by Enh 1 and Enh 2, to be more 
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effective than without learning. The average deviation values for Enh 1 with and without 

learning were 0.47% and 0.65% respectively. For Enh 2, those were 0.32% and 0.59%. In 

addition, Enh 2 with learning found 5 optimal solutions out of 10 while 4 optimal solutions 

were found instead when no learning was incorporated into the search.   

Table 4.4: Deviation (%) from the optimal solution of GRADPERT, STRONGPERT          

(with and without learning)  

n p  

The 

optimal 

solutions 

Multi-Start 

for 10,000 

iterations 

GRADPERT 

(Enh1) 

STRONGPERT 

(Enh2) 

 No 

Learning 

 With 

Learning 

 No 

Learning 

With    

 Learning 

Z Deviation Deviation Deviation Deviation Deviation 

439 

10 1716.5099 2.02 0 0 0 0 

20 1029.7148 11.42 0 0 0 0 

30 739.19297 31.90 0 0 0 0 

40 580.00539 18.06 0 0 0 0 

50 468.54162 29.41 0.85 0.85 0.67 1.18 

60 400.19527 42.45 0.35 0.35 0.35 0.35 

70 357.94553 59.27 0 1.23 1.23 0 

80 312.5 30.70 3.23 0.96 1.98 0.96 

90 280.90256 25.93 0.40 0 0.40 0.40 

100 256.68019 27.46 1.69 1.35 1.30 0.35 

Average     614.21882 27.86               0.65           0.47            0.59 0.32 

# Optimal 

 

0 5 5 4 5 

Bold: The best solutions found.   

4.7.2 Results on larger data sets (no known optimal results) 

Four larger existing TSP data sets (n= 575, 783, 1002 and 1323 TSP-Lib) were used to 

assess the performance of our enhancements, see Table 4.5. In these data set, there are no 

known optimal solutions, therefore, we computed the deviation from the best solution as: 

Deviation (%) = 
( )

.100H best

best

Z Z

Z


 with ZH denoting the Z value found by heuristic ‘H’ and 

Zbest refers to the best value of Z found by any of the heuristics.  

Table 4.5 provided the same information as in the previous table. In general, in both 

cases (with and without learning), the performance of both perturbation heuristics were 

relatively much better than the multi-start procedure, as the overall average deviation values 

confirm that the performances of both perturbation heuristics were always equal or better than 

the performance of the multi-start algorithm. When learning was not considered, Enh 1 
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outperformed Enh 2, as the overall average deviations were found to be 0.69% and 0.90% 

respectively.  

Table 4.5: Deviation (%) of Multi-Start, Enh 1 and Enh 2 (with and without learning)                 

from the best solution 

 

 

n  

 

 

p  

Overall  

 

 best 

 

 solutions 

 

Multi- 

 Start 

(10,000 

Runs) 

The multi-start algorithm with 100 runs 

The Gradual    

 perturbation 

(Enh1) 

The Strong    

 perturbation 

(Enh2) 

Z 

 

No   

Learning 

 

With   

Learning 

 

No   

Learning 

 

With   

Learning 

 575  

  

10 68.604 0.90 0 0 0 0.90 

20 45.622 3.10 0 0 0.88 0 

30 35.795 8.32 0.85 0 0.86 1.05 

40 30.414 13.95 1.95 0.24 0.04 0 

50 26.669 15.65 1.07 0 0.49 0.39 

60 23.436 19.65 0.54 0.36 2.10 0 

70 21.219 13.89 1.02 0.66 1.02 0 

80 19.558 24.96 0.24 0 2.79 2.26 

90 18.028 22.85 0.84 0 0.23 1.45 

100 16.771 27.37 0.59 0 0.22 1.41 

Average 30.612 15.06 0.71 0.13 0.86 0.75 

 783  

 

10 79.313 0 0 0 0 0 

20 54.002 1.68 1.79 1.58 0 1.11 

30 42.974 10.33 0.63 4.19 2.98 0 

40 36.321 9.66 0.59 0 0.42 0.66 

50 31.357 15.36 0 3.34 2.10 0 

60 28.128 17.87 0.87 2.60 0 0.07 

70 25.446 20.89 0 1.46 1.67 2.16 

80 23.665 22.13 0.65 1.97 0.80 0 

90 21.759 24.43 0 2.69 0.90 2.70 

100 20.430 25.42 0.61 0.61 0 1.86 

Average 36.340 14.78 0.51 1.84 0.89 0.86 

 1002  

  

10 2389.360 0.89 0 0 0 0 

20 1607.530 4.79 0.13 0.13 0.13 0 

30 1231.360 8.42 0.49 0 1.49 0 

40 1021.410 18.10 2.24 0 2.24 0 

50 903.120 16.79 1.63 0 1.57 0.03 

60 795.709 22.01 2.57 0 0.73 0.59 

70 725.431 17.98 1.83 0.14 0.24 0 

80 660.019 22.91 0.14 0 1.99 0.14 

90 608.999 27.32 0 0 0 0.22 

100 564.795 28.10 0 1.03 1.90 0.21 

Average 1050.773 16.73 0.90 0.13 1.03 0.12 

1323  

 

10 2899.420 0.26 0.08 0 0.17 0 

20 1868.920 5.41 0 0.96 0.96 1.15 

30 1477.590 7.51 0 1.01 1.46 0.88 

40 1245.410 11.59 1.40 0 0 0.31 

50 1068.040 15.20 0 0 0.84 0 

60 940.691 12.80 0.10 0.10 0.10 0 

70 856 17.84 0.13 0 2.22 0.73 

80 783.228 14.09 0.63 0 0 0.72 

90 719.580 24.18 1.63 2.27 0.38 0 

100 663.035 28.61 2.19 0.77 1.98 0 

Average 1252.191 13.75 0.62 0.51 0.81 0.38 

Overall  Average 592.479 15.08 0.69 0.65   0.90 0.53  

# Best 
 

  1 12 21 9 18 

 

 Bold: The best solutions found.   



 

 

133 

 

Furthermore, Enh 1 achieved the best solution 12 times whereas its counterpart Enh 2 

achieved it 9 times out of 40 times. For the case of learning, the overall average deviation 

values confirm that the performance of Enh 2 with learning yielded relatively better results 

than those of Enh 1 where a deviation of 0.53% and 0.65% were found respectively. 

However, the latter obtained more best solutions than Enh 2 with 21 best solutions were found 

by Enh 1 against 18 out of the 40 instances respectively. 

In both Enh 1 and Enh 2, our experiments confirm that the incorporation of learning 

into the search has made these enhancements more effective. For GRADPERT, we can see a 

slight improvement in the overall average deviation where the overall average deviation 

decreased from 0.69 % to 0.65%. However, it can be observed that the incorporation of 

learning into STRONGPERT has made Enh 2 with learning much better than Enh 2 without 

learning, where the overall average deviation decreased from 0.90% to 0.53%, making it the 

best performer. However, Enh 2 did not always yield better results than its counterpart Enh1 

where the latter achieved the best solutions 33 times in total (12 times without learning and 

21 with learning out of 40) whereas Enh 2 achieved it 27 times in total (9 and 18 times). 

4.7.3 Time performance 

This section presents a comparison between the CPU time recorded for Chen and 

Chen's results (when it is available), the average total CPU time of the multi-start algorithm 

with 10,000 runs and the average CPU time when the best continuous solution was found say 

TH of our perturbation-based heuristics using the above two strategies. The information about 

when the best solution was usually obtained was recorded for information only as these can be 

used to design more efficient stopping rules if necessary. 

The Deviation is computed from the CPU time of the multi-start algorithm with 10,000 runs 

as Deviation (%) = 100.
)(

.

.

SM

SMH

T

TT 
, where TM.S refers to the CPU time of the multi-start 

algorithm and TH is the time for heuristic H when the best solution is found. 

The machine that we used was different to the one used by Chen and Chen. For a fair 

comparison between our enhancements and their results, the transformation that was given by 

Dongarra (2013) was used. This was conducted in the same way as explained in chapter 3. 
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In general, from Table 4.6, we can conclude that the overall deviations of CPU time for 

the perturbation heuristics when the best solution was found increased with n. For instance, in 

the case of Enh 1 without learning, the overall deviations were -73.83% and -46.99% when    

n = 439 and 1323 respectively. 

In brief, the overall average deviation values of CPU time for both perturbation 

heuristics when the best solution was found confirm that the best solution of the perturbation-

based enhancements (Enh 1 and Enh 2) required a CPU time which was less than 50% of the 

multi-start algorithm CPU time when the best was found. In other words, 50% of the CPU 

time of the multi-start algorithm could be large enough to be used as a stopping condition for 

our perturbation-based enhancements. Besides, this also showed that using another stopping 

rule such as the number of successive cycles without improvement could be one way 

forward. This can be useful as it is problem dependant instead of being fixed from the outset. 

Table 4.6: Average CPU time of the Multi-Start algorithm (for p=10 to 100 in increment of 

10), Deviation (%) of CPU time for Enh1 and Enh2 (with and without learning) 

 

 

 

 

 

 

 

 

 

*: CPU time when the best solution was found.  

k:is the best recorded value in Chen and Chen (2009). 

4.8 Comparison between VNS and perturbation-based 

heuristic 

In this section, the overall best solutions of the VNS-based heuristic approach of    

chapter 3 (VNS (CNV3) and VNS2 (FNV4) with and without learning) and the perturbation-

based heuristic (GRADPERT (Enh 1) and STRONGPERT-V2 (Enh 2) with and without 

learning) were compared just for information. 

n          

Average  

total CPU 

time (10,000 

iterations)  

(secs) 

Deviation (%)   

Perturbation-Based Enhancement 

 (initial solution based on 100 restarts) 

Chen and Chen's results 

(Continuous Solutions) 

Enh 1* Enh 2* 
Improved 

relaxation 

(k=7) 

Binary 

relaxation 

(k=6) 
No   

Learning 

With 

Learning 

No   

Learning 

With 

Learning 

439 1497.56 -73.83 -67.13 -87.22 -67.19 -88.37 -98.72 

575 1681.81 -59.99 -47.79 -60.68 -36.43  N/A N/A 

783 2762.45 -52.33 -54.76 -56.36 -46.32  N/A N/A 

1002 4398.09 -69.23 -65.43 -78.29 -58.59  N/A N/A 

1323 5662.98 -46.99 -67.06 -77.49 -59.47  N/A N/A 

Average 3200.58 -60.47 -60.43 -72.01 -53.60  N/A N/A 
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 Table 4.7 shows the deviation of these heuristics from the best results. It can be 

observed that the performance of VNS was slightly better than the perturbation heuristic where 

the overall average deviations were 0.16% and 0.18% respectively. In addition, VNS found 35 

best solutions whereas the other found 30 out of 50. However, it is worth noting that the VNS-

based heuristic did not always yield better results than its counterpart as shown when n = 575 

and 1002.  Note that the overall best solution was chosen from the best of any of the heuristics 

used in this work for comparison purposes. These results also highlighted that it could be worth 

exploring further the idea of perturbation. 

Table 4.7: Deviation (%) of the best solution of VNS and the perturbation-based heuristic from 

the best solution 

n  p  
Overall  

 best solutions 

 

VNS 

% 

 

Perturbation 

% 

 

 

 

n  
p  

Overall  

 best  solutions 

 

VNS 

% 

 

Perturbation 

% 

   439  

  

10 1716.510 0 0 

1002 

10 2389.360 0 0 

20 1029.710 0 0 20 1607.530 0.13 0 

30 739.193 0 0 30 1231.360 0 0 

40 580.005 0 0 40 1021.410 0.88 0 

50 471.699 0 0.18 50 901.455 0.53 0 

60 401.591 0 0 60 795.709 0.73 0 

70 357.946 0 0 70 725.431 0.24 0 

80 312.552 0 0.94 80 660.019 0.72 0 

90 280.903 0.40 0 90 604.494 0 0 

100 257.570 0.05 0 100 559.017 0 0.01 

Average 614.768 0.05 0.11 Average 1049.579 0.32 0.00 

 575  

  

10 67.926 0 0 

1323 

10 2897.490 0 0.07 

20 45.622 0 0 20 1868.920 0.96 0 

30 35.556 0 0 30 1466.970 0 0.72 

40 30.265 0 0.49 40 1236.380 0 0.34 

50 26.173 0 0.56 50 1060.820 0 0.08 

60 23.436 0.79 0 60 940.691 0.13 0 

70 21.059 0 0.76 70 844.967 0 0.57 

80 19.266 1.52 0 80 774.764 0 0.21 

90 17.805 0.67 0 90 719.580 0.15 0 

100 16.621 0 0.54 100 662.936 0 0.02 

Average 30.373 0.30 0.24 Average 1247.352 0.12 0.20 

 783  

 

10 79.313 0 0 Overall Average 595.646 0.16 0.18 

20 53.461 0 0.43 # Best  35 30 

30 42.395 0 0.96  

40 35.962 0 1 

50 31.357 0.17 0  

 

60 28.053 0 0.27  

 

70 25.446 0 0 

 

80 23.560 0 0.44 

90 21.710 0 0.23 

100 20.334 0 0 

Average 36.159 0.02 0.33 
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4.9 Summary  

In this chapter, a brief review of the perturbation-based heuristic was first given 

followed by the three moves that were used in this meta-heuristic. The idea behind the 

perturbation is to allow the number of facilities to be higher and lower than p in order to act 

as a filtering process where the best facilities have the tendency to remain in the promising 

set. Two types of perturbations (GRADPERT and STRONGPERT) were designed followed 

by an enhancement which included the use of dynamic values of q leading to Enh 1 and Enh 

2. Furthermore, the use of learning was incorporated within the search to make the search 

more adaptive. 

In the computational results section, five TSP data sets with n = 439, 575, 783, 1002, 

1323 and p varying from p =10 to 100 with a step of 10 were used as a platform to test our 

proposed perturbation (Enh 1 and Enh 2). The obtained results of the small data set (n=439) 

showed that Enh 2 with and without learning outperformed its counterpart Enh 1, where the 

average deviation were 0.32% and 0.59% vs 0.47% and 0.65% respectively. However, 

for the large data set (n=575, 783, 1002 and 1323), the performance of Enh 1 was better than 

Enh 2, but when learning is incorporated, the overall average deviation of Enh 2 has 

clearly improved to outperform Enh 1, where its deviation decreased from 0.90% to 0.53% 

vs 0.69% and 0.65% for Enh 1. Finally, the comparison between VNS and perturbation-

based heuristic was also presented, where the performance of the VNS-based heuristic was 

found to be slightly better than the perturbation-based heuristic. 

The next chapter will deal with a newly developed local search that is originally 

developed for the multi-source Weber problem. 
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Chapter 5 

Reformulation Local Search-Based Approaches 

5.1 Introduction 

It should be noted that the idea of using an optimal discrete solution as an initial 

solution for the continuous case is explored. This is extended to cover the new concept of 

reformulation local search (RLS) originally applied to the multi-source Weber problem, 

which is then adapted to solve this related continuous location problem. This is followed by 

systematically generating a tighter Z value as the new upper bound when solving the discrete 

problem. Some forms of relaxation in our stopping criteria are also analysed. Two 

enhancements on the RLS procedure are designed using forbidden regions followed by 

extensions that incorporate the idea of injection points for diversification purposes and 

memory management for controlling the size of the augmented discrete problem. 

Computational experiments are conducted yielding interesting results. Finally, the solutions 

of the best enhancements for VNS and the perturbation-based heuristics are used as starting 

solutions for the best RLS with the aim to produce good quality solutions for benchmarking. 

5.2 The discrete-based approach 

The idea of using the optimal or heuristic solution of the discrete problem as a 

starting solution for the problem in the continuous space has been considered by Hansen et 

al. (1998) and also Gamal and Salhi (2001) for the multi-source Weber problem. The 

earlier paper used an optimal method for the discrete problem whereas the latter adopted a 

powerful heuristic instead. In this section we adapt such a methodology focusing on the 

former approach to solve the continuous p-centre problem.  

It is worth noting that the optimal solution of the discrete case is obviously greater than 

or equal to the one found on the continuous space. This statement follows from the basic 

optimisation theory where )()( XfMinXfMin
CDC SSXSX 

 . In our case, DS  refers to the discrete 

space contained which is contained into the continuous space )( and XfSC  is the maximum 
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radius using the facilities located at ),...,( 1 pXXX  . As an illustration see Figure 5.1, where 

the optimal solution (Rmax) of the discrete case and the solution (R̄max) of continuous case, 

which is found after applying the local search on the optimal discrete solutions, are shown in 

Figure 5.1 (a) and Figure 5.1 (b) respectively with R̄max < Rmax. It is worth noting that in the 

continuous solution each circle can be determined by three demand points (critical points) on 

its circumference (vertices of an acute triangle) or by two critical points on the two ends of a 

diameter. However, in the discrete solution the circle can be defined by the location of two 

demand points, one as its centre and the other as a critical point on its circumference. Note 

that in special cases there may be several points which happen to lie on the circumference as 

well. 

 

 

 

 

 

 

 

 

 

 

There are two general approaches for solving optimally the vertex p-centre problem, 

as reviewed in chapter 1. These include: (i) the classical ILP-based-approach and (ii) the 

set covering problem-based (SCP) approach. The latter is known to be relatively more 

efficient, and hence, is the one we shall pursue here. It is based on the principles of 

Minieka's algorithm (1970) whose idea is to search over a range of coverage distances in 

order to find the smallest value that covers all the demand nodes. 
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Figure 5.1 (b): A feasible continuous solution of 

the same 4-centre location problem (R̄max < Rmax) 
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Figure 5.1 (a): An optimal solution of a           

4-centre discrete location problem 
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Daskin (1995) adopted this approach on a general graph using a binary search that 

requires an initial lower bound ( )L  and an upper bound ( )U . In this algorithm all 

distances are integer. In the original implementation 0L  and 
,

( , )i j
i j

U Max d P P . A 

bisection method is then adopted where the coverage distance 
2

UL
D


 is used to solve 

the Set Covering Problem (SCP), which is described in Figure 5.2 yielding the optimal 

number of facilities r. If  r p (i.e., the solution is feasible for the p -centre problem), 

set ;DU  else (i.e., r > p and the solution is infeasible) set 1 DL . This procedure is 

repeated until 1 LU  and the optimal solution U  is found. Al-Khedhairi and Salhi 

(2005) proposed, among other enhancements, tighter initial bounds for L  and U  using 

),(   ji
ij

PPdMinMaxL   and ),(   ji
ji

PPdMaxMinU  . The authors also proposed a more 

efficient implementation using )
2

(
UL

GD


  where )(xG  represents the nearest element 

to x in the distance matrix. In addition, when the set { ( , ) : ( , ) }i j i jS d P P L d P P U     

(i.e., there are no distance values between LU  and ) the optimal solution is then set to U

and the search stops even if .1 LU  Salhi and Al-Khedhairi (2010) improved this 

implementation further by using 
HZU   as the solution of a powerful meta-heuristic 

namely the multi-level heuristic originally designed by Salhi and Sari (1997) used for a 

class of routing problems. The lower bound L  is derived using UL   with 

8.0or  7.0 . The tighter 
HZ is, the closer   is to 1. The strength of this scheme is that 

even if U does not yield a lower bound, it will be systematically an upper bound 

instead. In this case, U  takes such a value and the lower bound is recomputed again 

using UL   again until a proper range ( UL  , ) is identified for the bisection procedure 

to proceed.  In other words, there are no redundant computations in the updating of L . 

The main steps of this enhanced SCP-based algorithm for the vertex p-centre problem 

are given in Figure 5.2.  
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Figure 5.2: The enhanced SCP-based algorithm for the vertex p-centre problem 

Further details on the vertex p-centre location problem can be found in Mladenović 

et al. (2003) and Salhi and Al-Khedhairi (2010) and references therein. 

This discrete-based approach, which we refer to as DBA for short, is given in Figure 5.3.  

 

 

 

 

 

 

Figure 5.3: The Discrete Based Approach (DBA) 

Computational results  

The existing data set (n=439, TSP-Lib) with p =10 to 100 with an increment of 10 was 

used to assess the benefits of DBA. The optimal solutions for this particular data set were 

reported in Chen and Chen (2009) whose algorithms were discussed in chapter 1 subsection 

Step 1: Choose  and set ( ( , ), )i j H
i j

U Min Min Max d P P Z and ( ( , ), )i j H
j i

L Max Max Mind P P Z

Construct 
0 { ( , ) : ( , ) }i j i jS d P P L d P P U   and set

0S S . 

Step 2: Calculate ( )
2

L U
D G


 where ( )G x  represents the element in S  nearest to x . 

Step 3: Solve the set covering problem (SCP) for the covering distance D , and let r be the 

number of facilities found. 

a) If the solution is feasible for the p-centre problem (i.e. r ≤ p), setU D ,  

b) Else (i.e., )r p   set L D .  

Step 4: Set 
0 0{ ( , ) : ( , ) } and i j i jS d P P S L d P P U S S     . 

            If S= ∅, the optimal solution is U and stop; else go to Step 2. 

Step 1: Solve the vertex p-centre problem using the SCP based-approach as given in Figure 

5.2 (or a heuristic if necessary). 

Step 2: For each facility and its associated demand points solve the 1-centre problem using 

the Elzinga-Hearn algorithm or the enhancements proposed in chapter 2. 

Step 3: Apply the ‘locate-allocate’ procedure with Step 2 used to solve the corresponding 1-

centre problems until no further improvement is found. 
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1.5.3. Table 5.1 shows that the average deviation of the optimal discrete solutions from the 

optimal continuous ones was around 25.22% with the average deviations were in the range the 

optimal continuous ones (15%  ̶  41%). It can be observed that when we applied the local 

search after solving the vertex p-discrete problem (i.e., DBA) the average deviation decreased 

to 18.85%, though the range remained large (6%  ̶  36%). In terms of computational effort, we 

also determined the deviation in percentage from the total CPU used to find the optimal 

discrete solution against the percentage of time for obtaining the continuous solution. In 

general, a larger proportion of the time was found to be consumed in solving optimally the 

vertex p-centre problem (92%). However, the CPU time for determining the continuous 

solution increased with p. For instance, when p = 10 it was around 1% of the total time only, 

but when p = 100, the time for computing the continuous solution (Steps 2 and 3 of Figure 

5.3) reached around 26%; see Table 5.1. 

To illustrate the deviation (%) of the optimal discrete solution and the continuous one 

found by DBA, a line chart was also displayed in Figure 5.4. It may be noted that in this 

particular experiment, the objective function values (from p=10 to 100) of the discrete 

case were found to be always greater than those obtained in the continuous phase of DBA. 

However, this claim may not always be true as theoretically we can only expect that the 

solution cannot get worse.  

Table 5.1: Deviation (%) of the solutions from the optimal solution and Deviation (%) of the 

CPU time for the optimal discrete solution and the continuous solution  

 n =439 

TSP-Lib  

The 

optimal 

solutions 

The objective function (Z) CPU Time 

The   

Optimal 

Discrete  

 

DBA 
 

Improvement 

(%) 

Total of 

CPU  

Time 

 

The optimal Discrete 

(Step 1 of DBA) 

Continuous phase 

(Steps 2 and 3 of 

DBA) 

p Z Deviation% Deviation% (secs) (secs) Deviation % (secs) Deviation % 

10 1716.5099 14.87 6.39 8.48 4.22 4.16 98.65 0.06 1.35 

20 1029.7148 15.14 9.42 5.72 5.42 5.29 97.56 0.13 2.44 

30 739.19297 19.53 15.25 4.28 5.07 4.96 97.81 0.11 2.19 

40 580.00539 15.82 11.73 4.09 4.68 4.37 93.32 0.31 6.68 

50 468.54162 20.38 17.02 3.36 4.93 4.83 97.97 0.10 2.03 

60 400.19527 24.94 20.99 3.95 5.42 5.17 95.44 0.25 4.56 

70 357.94553 32.52 25.96 6.56 6.30 5.76 91.40 0.54 8.60 

80 312.5 31.94 21.54 10.40 5.73 5.41 94.45 0.32 5.55 

90 280.90256 40.72 35.63 5.09 4.80 3.64 75.74 1.17 24.26 

100 256.68019 36.36 24.55 11.80 5.99 4.44 74.08 1.55 25.92 

Average    614.21882 25.22 18.85 6.37 5.26 4.80 91.64 0.45 8.36 
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Figure 5.4: Deviation (%) from optimality of the discrete solution and corresponding 

continuous solution found by DBA (n=439, p = 10 to 100) 

5.3 Adaptive RLS-based heuristics 

In this study, we first adapt the new reformulation local search (RLS) recently 

developed by Brimberg et al. (2014) for the multi-source Weber problem, to solve the 

continuous p-centre location problem. This will serve as a basis for our enhanced version 

which we shall present in the next section. The basic RLS is summarised as follows: We first 

start from an optimal (or heuristic) solution of the discrete problem followed by a 

mechanism, such as a local search, to turn such a solution into a continuous one. These new 

continuous locations are then added as potential sites to make up the augmented discrete 

location problem. This discrete problem, which still has the same number of demand points, 

is then solved again optimally (if possible) or heuristically. The new obtained solution of the 

discrete case is used again as a starting point for the continuous problem. This shift between 

the discrete and the continuous spaces continues until no improvement is found in solving 

either the continuous problem or the augmented discrete. The continuous case could be 

identified by the total cost, the changes in the allocation of the demand points to their regions 

or simply changes in the facility configuration.  
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5.3.1 Basic RLS for the continuous p-centre problem  

In this study, we solve the vertex p-centre problem optimally using the efficient 

implementation of the SCP-based approach, as given in Figure 5.2. Note that in Brimberg et 

al. (2014) a heuristic solution was used at this stage instead as the discrete p-median problem 

is relatively much harder to solve optimally than its counterpart the p-centre problem. For the 

local search in the continuous space, the Cooper’s locate-allocate procedure is used in the 

allocation of the demand points. The enhanced version of the original Elzinga-Hearn 

algorithm, as proposed in chapter 2 (V3 or V4), is used to solve the 1-centre problems. The 

main steps of the basic RLS for the continuous p-centre problem are given in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: A basic reformulation local search (RLS) for the continuous p-centre problem 

5.3.2 Empirical results for RLS and DBA 

The heuristics were coded in C++ and run on a PC computer with an Intel Core 2 Duo 

processor, 2.0 GHz CPU and 4G memory. For the optimal solution of the discrete problem 

(Steps 1 and 4), an integrated C++ code, with CPLEX (version 12.5.1) incorporated within it, 

was used. 

Step 1: Solve optimally the vertex p-centre problem with 
1{ ,..., }nE P P as the initial set of potential 

sites. Let
DX be the optimal locations for these p facilities and construct the p  sets of 

allocation by assigning each demand point to its nearest facility. 

Step 2: Solve the continuous problem 

– Step 2a: For each of the p independent sets of allocations, solve the continuous 1-centre 

problem optimally   

– Step 2b: Allocate each demand point to its nearest facility using the new set of facility locations 

found in Step 2a. If there are still changes in the demand point allocation return to Step 2a, 

otherwise let 
CX be the new facility configuration of the continuous problem and go to Step 3. 

 Step 3: If
C DX X then a local minimum is found ( *

CX X ) and stop; otherwise set 
CE E X .  

Step 4: Solve optimally the augmented vertex p-centre problem using E as the new set of potential 

sites and let 
DX be the optimal locations for these p facilities.  

             If  * set D C DX X X X , set * set D C DX X X X  , and stop; otherwise construct the p  sets of allocations by 

assigning each demand point to its nearest facility and go to Step 2. 
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Table 5.2 shows the deviations from the known optimal continuous solution for the 

DBA and the basic RLS, as well as their corresponding CPU times (in seconds). In general, it 

can be noted that the deviation values increased with p for both algorithms.  From Table 5.2, 

we can also conclude that RLS has improved the solution of DBA by over 3% on average with 

a maximum gain of nearly 8% was recorded when p =70.  

In terms of CPU time, RLS required nearly double the amount used by DBA, with 

average values of 4.22 and 7.95 secs respectively. Table 5.2 also shows that the average 

number of switches, which represents the number of calls to the vertex p-centre problem 

between the discrete and the continuous cases, was 2.3 though, in some cases, this number 

could reach up to 4 (eg., case of p =50).  In addition, we also recorded the total number of 

Cplex calls, as some cases were easier to solve than others, where the largest number was 

reported to be 55 while the average is only 36. 

Table 5.2: Deviation (%) of the DBA and RLS from the optimal solution 

n = 439 

TSP-Lib 

The optimal 

solution  

(Z) 

(Z) 

DBA  

(1) 

Reformulation Local Search (RLS) Total 

CPU 

Time 

Z 

(2) 

Improvement 

(%) 

CPU 

Time #   

Switches 

#   

Cplex 

Calls p 
Deviation 

%
 
(1) 

CPU 

Time 

Deviation 

% (2)
 
 

 

(1 - 2) (sec) 

10 1716.5099 5.95 4.22 5.95 0 3.57 1 26 7.79 

20 1029.7148 1.87 5.42 1.76 0.11 5.86 2 38 11.28 

30 739.19297 10.11 5.07 10.11 0 3.82 1 22 8.89 

40 580.00539 8.30 4.68 7.94 0.35 6.69 2 36 11.37 

50 468.54162 17.02 4.93 9.13 7.89 14.56 4 55 19.49 

60 400.19527 16.70 5.42 9.15 7.55 10.14 3 46 15.56 

70 357.94553 22.04 6.30 14.11 7.93 11.46 3 41 17.77 

80 312.5 20 5.73 18.93 1.07 11.07 3 41 16.80 

90 280.90256 17.99 4.80 14.84 3.15 7.11 2 29 11.91 

100 256.68019 14.11 5.99 12.01 2.10 5.24 2 26 11.23 

Average 614.21882 13.41 5.26 10.39 3.02 7.95 2.3 36 13.21 

 

Figure 5.6 showed a summary of the comparison between the DBA and the RLS solutions, in 

terms of deviation (%) from the optimal continuous solution. In these particular experiments, 

RLS proved to outperform DBA when p ≥ 50. 
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Figure 5.6: Deviation (%) of the solutions from the optimal solution for the 

DBA and RLS solution 

5.3.3 The use of a tighter upper bound (U) 

In Step1 of Figure 5.2, we set 
HZ  as the best solution of the multi-start algorithm 

using 100 runs and 8.0  as suggested by Salhi and Al-Khedhairi (2010). 

As RLS usually yields a new solution )'(Z in the ‘augmented’ discrete space which 

must be less than or equal to the previous Z  value (i.e., ZZ ' ), we take this observation 

into account when updating U . In other words, we set Z U  at the next round when 

solving the vertex p-centre problem instead of the original value of U .  It is worth 

noting that this updating tends to reduce the number of Cplex calls which often leads to a 

reduction in the CPU time as shown in Table 5.3. It can be confirmed that the overall 

average number of Cplex calls when using the new updating scheme of U and L  in the 

SCP-based approach was reduced to around 10% with the largest difference of 8 calls (55 - 

47) observed in the case of 50p  . In addition, in terms of CPU time, this updating 

produced an overall average saving of around 15%.  
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Table 5.3: CPU Time (sec) and the total number of Cplex calls for both cases                

(with and without updating of U ) 

n = 439 TSP-Lib 
# 

Switches 

Without updating With updating  

p 
#  

Cplex Calls 

CPU  

Time 

#  

Cplex Calls 

CPU  

Time 

10 1 26 7.79 24 6.41 

20 2 38 11.28 35 9.65 

30 1 22 8.89 22 9.05 

40 2 36 11.37 29 9.80 

50 4 55 19.49 47 16.52 

60 3 46 15.56 42 13.51 

70 3 41 17.77 37 13.81 

80 3 41 16.80 38 13.94 

90 2 29 11.91 26 9.23 

100 2 26 11.23 24 10.21 

Average 2.3 36 13.21 32.4 11.21 

The number of Cplex calls and CPU time (sec) for both cases (with and without updating) 

were also displayed in Figure 5.7 and Figure 5.8 respectively. 

 

Figure 5.7: Total number of Cplex calls for both cases (with and without updating) 
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Figure 5.8: Total CPU time for both cases (with and without updating) 

To illustrate the effect of the updating scheme on the number of switches, consider 

for example the case when 50p  . Table 5.4 and Figure 5.9 show the number of Cplex calls 

for each switch with and without the scheme.  It can be observed that at the beginning (the first 

switch) the number of Cplex calls in both cases were equal, then this number using the updating 

scheme started decreasing when compared to the other one. It is worth noting that the overall 

benefit of using such a scheme will be improved if the number of switches becomes large. 

Table 5.4: Number of Cplex calls for each switch with and without updating (case of p=50) 
 

n = 439 TSP-Lib # Cplex calls for each switch 

# Switches Without updating With updating 

0 (starting)  10 10 

1 10 10 

2 11 8 

3 11 9 

4 13 10 

∑  55 47 

Average 11 9.4 
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Figure 5.9: Number of Cplex calls for each switch for both cases 

 (with and without updating) when p=50 

5.3.4 Introducing flexibility within the stopping criteria 

The commonly used stopping criterion is to terminate the search when no improvement 

is found either in the discrete solution or in the continuous one whichever comes first.  

Because of the special characteristics of the solution for the p-centre problem where the 

optimal solution value is defined by one facility location only namely the circle with the 

largest radius, two other stopping rules are introduced here to respond to this particular 

characteristic. In the special situation when more than one circle happens to have the same 

largest radius (case of a tie) these rules would still be valid. These two options are described 

as follows: 

a) Allowing one extra iteration 

When there is no improvement in the objective function of the discrete or the 

continuous space, we allow an extra switch to be performed by adding the new continuous 

points that are different from the current potential sites. This situation arises when a new 

facility configuration is found but without an improvement in the Z value. For instance, 

Figure 5.10 (a) shows four locations of the optimal discrete problem namely p1, b1, c1 and d1. 

Consider p1 as the continuous location that has been added to the problem in the previous 

switch. Figure 5.10 (b) also shows four feasible locations in the continuous space (p1, p2, p3 

and p4) for the same problem. It can be seen that the solution cannot be improved as Rmax1 = 

R̄max1.  

6

7

8

9

10

11

12

13

14

0 1 2 3 4

With

updating

Without

updating

Switching 

# Cplex Calls 



 

 

149 

 

 

 

 

  

 

 

 

In Figure 5.11 (a), adding the three new continuous locations (p2, p3 and p4) to the 

problem cannot improve the discrete solution as Rmax1 = Rmax2, but the configuration is 

different and the discrete solution is also different as shown by (p1, p2, c3 and d2) instead of 

(p1, b1, c1 and d1), see Figures 5.11 (a) and 5.10 (a) respectively. However, the solution is 

now improved when the local search is applied on the new discrete solution as shown in 

Figure 5.11 (b) yielding R̄max2 < Rmax2. 
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Figure 5.11 (a): An optimal solution of the 

same 4-centre location problem but with 

different configuration  
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Figure 5.10 (b): A feasible solution of the 

continuous case for a 4-centre location problem 
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Figure 5.10 (a): An optimal solution of the 

discrete case for a 4-centre location problem 
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Figure 5.11 (b): A better solution 

of the same 4-centre location 

problem 
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This new stopping criterion is found to allow the search to continue and hence improve 

the solution in some cases. This happens rarely because when we add a new continuous 

location to the problem as potential site we might get another optimal solution for the 

augmented discrete location problem but with a different configuration. In other words, the 

largest circle could be the same while other circles may be different. When the local search is 

applied on this new optimal solution, the solution of the continuous problem might improve. 

This characteristic is unlikely to exist in the multi-source Weber problem but can happen in 

the continuous p-centre problem. 

b) No change in the solution configuration at the continuous space 

The idea here is that we allow the exchange between the discrete and the continuous 

cases to continue until no new continuous location is found irrespective even if the Z value 

remains unchanged. However, using this stopping condition will require the number of 

switches to be relatively large compared to the previous stopping rules. This additional 

flexibility could provide more opportunity to improve the solution as will be shown in the 

following computational results. This rule could be considered to be a generalisation of rule 

(a). Table 5.5 shows the number of the new points that were generated at each switch.  For 

instance, when p=50 the first switch when applying the local search on the optimal discrete 

solution, produced 47 new continuous locations and, when these points were added to the 

problem, 10 new other points were then found.   

Table 5.5: The number of new continuous locations when allowing the next switch  

 n = 439 TSP-Lib # new continuous locations (available for adding) 

Switching p=50 p=60 

0 (starting)  47 57 

1 10 26 

2 16 9 

3 11 8 

4 8 4 

5 4 6 

6 0 7 

7 - 5 

8 - 5 

9 - 4 

10 - 2 

11 - 6 

12 - 0 

∑  96 139 

Average 13.71 10.69 
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It can be observed that the number of the new added points was not necessarily 

decreasing. For instance, in the fourth switch when p=60 the number of the new points was 4 

but, when these points were added, 6 other new points have been found in the next switch. A 

summary of Table 5.5 was displayed in Figure 5.12 (a) and Figure 5.12 (b) when p=50 and 

p=60 respectively.  

 

 

 

5.3.5 Computational results for RLS with different stopping conditions 

The same data that was used earlier was also tested here. Table 6.6 shows the deviation 

values from the optimal solutions for RLS with the three different types of stopping 

conditions. We can conclude that the increase in the number of switches gave more chance to 

improve the solution, where the average values of switches were 2.3, 3.1 and 4.5 respectively 

and the average deviation values of these different stopping schemes were 10.39%, 10.38% 

and 10.21% respectively. In this study, we will use the latter stopping criterion as our 

stopping rule given its superiority. It can also be observed that the CPU time increased 

slightly with the number of switches where the average CPU times (in seconds) were 10.76, 

12.54 and 16.55 respectively. 

 

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12

   

p=60

# new continuous 

locations 

Switches 0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6

p=50

# new continuous 

locations 

Switches 

Figure 5.12 (a): Number of new available 

continuous locations when p=50 
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Table 5.6: Deviation (%) of the solutions from the optimal solution for the three 

stopping criteria 

 n = 439 

TSP-Lib 
The 

optimal  

solution  

(Z) 

No improvement in                       

the solution value Z 

 

One extra iteration (a) 
 

No new continuous facility 

configuration to add (b)   

p 

 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

10 1716.5099 5.95 1 24 6.41 5.95 2 35 8.89 5.95 2 35 9.26 

20 1029.7148 1.76 2 35 9.65 1.76 2 35 9.64 1.76 2 35 10.04 

30 739.19297 10.11 1 22 9.05 10.11 2 31 9.74 10.11 5 58 17.08 

40 580.00539 7.94 2 29 9.60 7.94 3 38 12.24 7.94 3 38 13.58 

50 468.54162 9.13 4 47 15.22 8.96 5 57 18.31 7.41 6 69 24.32 

60 400.19527 9.15 3 42 13.51 9.15 3 35 12.48 9.15 12 16 33.24 

70 357.94553 14.11 3 37 13.81 14.11 4 46 16.14 14.11 5 55 20.24 

80 312.5 18.93 3 38 11.94 18.93 4 45 13.76 18.82 4 45 14.14 

90 280.90256 14.84 2 26 9.23 14.84 3 34 13.28 14.84 3 34 12.15 

100 256.68019 12.01 2 24 9.21 12.01 3 30 10.93 12.01 3 30 11.44 

 Average 614.21882 10.39 2.30 32.40 10.76 10.38 3.10 38.6 12.54 10.21 4.50 41.50 16.55 

5.4 Enhancements on the RLS-based heuristic  

In the original RLS algorithm all the new continuous locations are introduced as 

additional potential sites when solving the discrete problem. It is worth noting that for the p-

centre problem it is not necessary that all the continuous locations need to be added in one 

step as in the multi-source Weber problem due to the property of the objective function. If we 

choose appropriately some of them in each single switch, this will increase the number of 

switches, which could provide more chance to improve the solution. Here, we propose two 

schemes that take this information into account. In the first one (RLS-Enh 1), we add one 

new continuous location only to the problem as a potential site whereas in the second (RLS-

Enh 2), we use the structure of VNS when adding the new continuous locations (i.e., the 

number to add will increase if the solution does not improve). 

Let us recall 1( ,..., )pX X X to denote the location of the p facilities found in the continuous 

space with X1 the centre of the largest circle and Xj the centre of the j
th

 nearest circle to X1 

based on the distance measure ),( 1 jXXd ; .,...,2 pj   For more information on the notation 

and the way of the covering circle CCj are defined, see subsection 3.3.2.  

Let 
kP be the 

thk point to be added as potential site; )(,...,1 maxmax pKKk  . 
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5.4.1 Adding one continuous location only (RLS-Enh 1) 

As there are several ways to add one new continuous location (k = 1) at each step, in 

this subsection, we propose three selection schemes. We refer to this as RLS-Enh 1. 

a) A random selection- Here, in each switch, one continuous location is selected 

randomly using a uniform distribution from the obtained continuous locations. In other 

words, },...,{ 11 pXXP  is chosen with probability1 p . 

b) The facility location of the largest circle- In this scheme, the facility location which is 

the centre of the largest circle is selected. In the case of a tie, one of the facilities of these 

competing largest circles is chosen randomly. The idea is that the inclusion of such an 

important location will guide the solution when solving the discrete problem. Here, 
11 XP  . 

c) The location of the nearest facility to the largest circle- In each switch, the facility 

location sited at the centre of the nearest circle to the largest circle is selected. The reasoning 

behind this is similar to (b) except that here some demand points that are enclosed in the 

largest circle could be reallocated to the new one which in turn may reduce the radius of the 

largest circle. Here, 
21 XP  . 

Computational results of the three selection rules 

Table 5.7 shows the results of the three schemes. This contains the deviation (%) of the 

solutions from the optimal solution, the CPU Time (sec), the number of switches and the 

number of Cplex calls. It is worth noting that the scheme that achieved the largest number of 

switches yielded better results than the others. For instance, schemes (a), (b) and (c) produced 

an average number of switches of 135.20, 136.80 and 115.10 times respectively while their 

respective average deviation values from the optimal solutions (in %) were 8.13, 8.12 and 9.01 

respectively.  

This was also true for the number of Cplex calls and the total CPU time consumed where 

the averages of the total CPU time were 349.74, 383.17 and 336.61 (sec) respectively. In 

general, we can say that the performance of the second scheme (b) was slightly better than the 

others. However, it is worth noting that this scheme did not always yield better results than its 

counterparts as shown when p = 30 and 60. It can also be noted that this enhancement (RLS-
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Enh 1) produced a relatively larger number of switches compared to the best implementation of 

the original RLS procedure besides it yielded a better average results (8.12% vs 10.21%), see 

Tables 5.6 and 5.7. 

Table 5.7: Deviation (%) of the solutions for three selection rules  

 n = 439   

 TSP-Lib 
The 

optimal  

solution     

(Z) 

Selection (a)  Selection (b) Selection (c) 

p 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

Deviation 

(%) 

# 

Switch-

es 

#  

Cplex 

Calls 

CPU 

Time 

(sec) 

Deviation 

(%) 

# 

Switch-

es 

#    

Cplex 

Calls 

CPU  

Time 

(sec) 

10 1716.5099 5.95 13 158 38.85 5.95 10 126 31.63 5.95 10 123 30.77 

20 1029.7148 0 45 500 130.39 0 32 341 72.15 0 44 494 125.13 

30 739.19297 6.48 38 371 100.02 9.34 47 442 100.45 6.64 73 696 205.69 

40 580.00539 7.20 63 545 175.99 7.37 74 616 194.90 7.37 72 593 193.03 

50 468.54162 11.24 103 903 227.73 8.04 99 877 279.85 8.04 98 849 260.30 

60 400.19527 6.38 185 1758 549.55 10.19 166 1494 417.59 16.70 146 1138 423.35 

70 357.94553 9.32 197 1710 556.01 14.83 122 1048 303.82 9.10 222 2061 668.91 

80 312.5 18.31 157 1221 376.58 11.53 318 2951 1016.67 15.95 145 1098 355.24 

90 280.90256 8.64 332 1841 674.97 6.148 322 2796 943.09 10.47 121 928 350.99 

100 256.68019 7.80 219 1715 667.32 7.80 178 1374 471.57 9.87 220 1678 752.67 

 Average 614.21882 8.13 135.20 1072.20 349.74 8.12 136.80 1206.50 383.17 9.01 115.10 965.80 336.61 

5.4.2 Adding k continuous locations within a VNS structure (RLS-Enh 2) 

Here, the number of the new continuous locations that are added as potential sites (say

k ) varies in the range ) ,1( maxK instead of being fixed to 1 (as in RLS-Enh 1) or p (as 

performed in the original RLS). We set pK max  to represent all the new found continuous 

locations. Furthermore, the structure of VNS is used where the value of k increased by one 

when there is no improvement, otherwise the value of k reverts back to 1k . In brief, we 

start by adding one continuous location ( 1k ) to the problem as a potential site, the new 

discrete location problem is then solved. If the new solution is improved, we revert back to 

1k , otherwise we explore adding 1k  new continuous locations. This process continues 

until maxKk  . We refer to this enhancement as RLS-Enh 2. Three selection schemes are 

proposed for the addition these k  new points: 

a) A random selection- The k points are chosen randomly from the new obtained 

continuous locations, max1 ,...,1};,...,{ KkXXP pk  . 
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b) Selection based on the location of the larger circles- The k points are chosen as the 

locations sited at the centre of the first k largest circles. In mathematical terms 
11 XP  and 

jk XP  , k=2,…,Kmax with   j

kSPX

pj
RMaxArgj

Sj 1,...1;

,...2
 




  

c) Selection based on the nearest circles to the largest circle- The first location is chosen 

as the centre of the largest circle and the remaining 1k  locations are taken as the centres     

of the nearest 1k  facilities to the largest circle. Here, we set max,...,1;,...,1; KkktXP tt  . 

Computational results for the three selection rules for RLS-Enh 2 

Table 5.8 shows the same information that was presented in Table 5.7. Here, it can also 

be observed that the scheme that achieved the largest number of switches yielded better 

results and consumes relatively more time than the others. The selection schemes (a), (b) and 

(c) yielded an average number of switches of 24.10, 28.50 and 25.30 respectively. Their 

respective average deviation values were 8.65%, 8.10% and 8.50% and their average total 

CPU times were 70.89, 86.12 and 75.08 (sec) respectively. Here, scheme (b) also 

outperformed (a) and (c) as shown in the previous experiment. However, the performance of 

(a) was found to be even worse than the one found in RLS-Enh 1 (a), while the percentage 

improvement in the performance of scheme (c) was the highest. We can also confirm that 

scheme (b) did not always yield better results than the other schemes, as shown in the case of

60 and 70p  . 

It is worth noting that the performance of RLS-Enh 2 was slightly better than the one by 

RLS-Enh 1 in (b) and (c) except in scheme (a). However RLS-Enh  2 has reduced the number 

of switches significantly by around 80%. For instance the average number of switches fell 

from 136.80 to 28.50, which led to a reduction in the average total CPU time by around 78% 

(i.e., from 383.17 to 86.12 seconds), see Tables 5.7 and 5.8. Given that RLS-Enh  2 improved 

the performance of the original RLS algorithm, in the next subsection we will focus on 

introducing extra guidance on RLS-Enh 2 only while adopting the three selection rules. 
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Table 5.8: Deviation (%) of the solutions for the three selection rules (a, b, c) 

 n = 439   

 TSP-Lib 
The 

optimal  

solution  

(Z) 

Scheme (a) Scheme (b) Scheme (c) 

p 

 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU  

Time 

(sec) 

 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

10 1716.5099 5.95 6 81 20.12 5.95 4 57 15.64 5.95 7 94 22.84 

20 1029.7148 0 11 134 36.76 0 11 125 36.71 0 10 124 38.39 

30 739.19297 6.48 10 108 29.28 8.82 28 291 109.10 6.48 11 114 32.80 

40 580.00539 6.04 22 207 64.19 7.37 13 113 39.44 7.20 18 166 60.79 

50 468.54162 12.09 23 212 67.68 9.13 24 207 65.72 9.67 35 318 105.25 

60 400.19527 6.38 35 327 99.15 10.19 28 262 77.21 9.37 26 231 74.29 

70 357.94553 15.11 38 318 108.57 11.87 45 414 123.34 9.32 45 374 123.34 

80 312.5 15.95 29 425 84.65 11.25 50 425 145.61 18.93 25 208 70.52 

90 280.90256 8.64 42 337 112.90 7.54 49 407 144.31 8.64 42 338 115.61 

100 256.68019 9.87 25 206 85.62 8.89 33 255 104.09 9.44 34 278 106.97 

 Average 614.21882 8.65 24.10 235.50 70.89 8.10 28.50 255.60 86.12 8.50 25.30 224.50 75.08 

5.4.3 Guiding the search of RLS-Enh 2 via forbidden regions 

In the previous subsections, all the new continuous locations were available for the 

selection to act as potential sites for the discrete problem. Given that the search is on the 

continuous space, some of these new continuous locations could be negligibly close to some 

of the potential sites and hence may not need to be considered. To achieve this, we restrict the 

choice by defining a small area around the new continuous locations as forbidden. In other 

words, any new continuous location which has any potential site in its forbidden region will 

be excluded from being selected. We aim to reduce the number of switches without affecting 

the quality of the solution.    

Here, we define a forbidden region by the area enclosed by a circle with its centre as the 

new continuous location. In this study, the radius of each forbidden area is computed as a 

percentage of the radius of its original circle. We set ii Rr  where  and Ri ir refer to the radius 

of the i
th

 forbidden circle and the radius of the i
th

 new found circle respectively. The 

parameter   is set close to zero say 05.0 . Note that if the local search is applied on the 

discrete solution with p facilities, this generates p new continuous locations with p p  

leading to p forbidden small circles. For instance, Figure 5.13 (a) shows an optimal solution 

of a 4-centre discrete location problem (p1, p2, p3 and p4), whereas Figure 5.13 (b) shows a 

feasible continuous solution of the same problem (p̄1, p̄2, p̄3 and p4). It can be noted that 
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applying the local search generates three new continuous locations say p̄1, p̄2 and p3, with the 

fourth facility (p4) remaining unchanged. 

 

 

 

 

 

 

 

 

Three forbidden regions based on p̄1, p̄2 and p̄3 are then produced. In this case, only one point 

(p̄1) can be chosen as potential site, while the others (p̄2 and p̄3) are rejected, as there are 

already potential sites namely c and b in these forbidden regions. 

Computational results  

The same n = 439 TSP-Lib data set was used here. In general, we can confirm that the 

introduction of forbidden regions improved the solution for all the three schemes (a, b, c). 

The average deviations without forbidden regions were 8.65%, 8.10% and 8.50% (as shown 

in Table 5.8) while with forbidden regions the figures reduced to 8.26%, 7.92% and 7.37% 

respectively as shown in Table 5.9. In addition, the average number of switches for all the 

three schemes has decreased to 21.40, 23.50 and 24.80 respectively. This has led to a decrease 

in the average total CPU times to 64.30, 68.09 and 73.23 (sec) respectively. 

It is worth noting that the use of forbidden regions had relatively more effect on scheme 

(c). For example, without using forbidden regions, the performance of scheme (b) was better 

than the one of (c) (i.e., 8.10% vs 8.50% respectively, see Table 5.8), however, using 

Figure 5.13 (a): An optimal solution of a           

4-centre discrete location problem 
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Figure 5.13 (b): A feasible solution of the 

same 4-centre continuous location problem  

Figure 6.1 (b): A feasible solution of a            
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forbidden regions scheme (c) outperformed (b) (i.e., 7.37% and 7.92% respectively). 

Furthermore, the former was able to find the optimal solution twice out of 10 (when p =20 and 

p =30) whereas the others achieved the optimal solution once only (when p =20). 

Table 5.9: Effect of forbidden region on the three selection rules (a, b, c) of RLS-Enh 2 with 

𝛽=0.05 

The forbidden regions were also tested with other values of  . It was observed that 

when was large, too many new continuous locations were removed from further testing 

which made the search converges prematurely. The detailed results were not given here but 

were found to be similar to those presented in Table 5.9, see Appendix D for more details. 

5.5 RLS extensions 

The search seems to converge prematurely using a few switches only which goes 

against the RLS principle which relies on the use of a large number of shifts between the 

discrete and the continuous problems. One way to overcome this drawback is to extend the 

search by providing diversification through the injection of extra points as commonly used in 

meta-heuristics and particularly in population-based methods such as Genetic Algorithms 

(GA). The idea of injection was also used successfully for chromosomes injection in GA by 

Salhi and Gamal (2003) for a class of discrete location problems, and recently being 

investigated in Brimberg et al. (2013) for the multi-source Weber problem as part of RLS. 

n = 439   

 TSP-Lib 
The 

optimal  

solution 

 (Z) 

Selection (a)  Selection (b)  Selection (c)  

p 
Deviation 

(%) 

# 

Switch-

es 

#   

Cplex  

Calls 

CPU 

Time 

(sec) 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

Deviation 

(%) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

10 1716.5099 5.95 4 57 14.45 5.95 4 59 14.44 5.95 6 80 19.91 

20 1029.7148 0 10 121 32.61 0 10 110 32.52 0 10 118 30.63 

30 739.19297 6.48 10 105 38.17 6.75 13 138 43.19 0 14 143 39.41 

40 580.00539 7.37 14 136 42.62 7.00 20 185 61.72 6.04 19 178 61.15 

50 468.54162 9.13 29 262 92.15 9.77 23 201 56.56 8.04 38 350 117.47 

60 400.19527 7.88 28 239 76.12 10.19 26 247 78.55 9.15 28 251 74.35 

70 357.94553 9.32 33 294 95.96 16.24 27 246 80.64 9.10 43 366 126.14 

80 312.5 18.93 21 177 56.97 9.53 38 320 105.79 18.93 24 196 62.75 

90 280.90256 8.64 29 215 80.67 6.15 37 294 104.07 8.64 30 226 82.97 

100 256.68019 8.89 36 288 113.32 7.58 37 293 103.39 7.80 36 304 117.54 

 Average 614.21882 8.26 21.40 189.40 64.30 7.92 23.50 209.30 68.09 7.37 24.80 221.20 73.23 
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Strategies on how to generate the new injection points and the number of points that needs to 

be injected are presented next. For simplicity, we refer to RLS without injection using 

selection (c) as RLS1 and the one with injection as RLS2. 

5.5.1 Injection strategies for the p-centre problem 

Here, we propose two strategies which differ in the number of points that will be 

inserted in the problem. These include the following: 

a) The first strategy (F1) 

Here, one point ( 1k ) is added randomly to the discrete problem. In other words, 

when RLS1 is stopped we inject one point randomly to the problem, with the aim to generate 

a new discrete optimal solution that would lead to new continuous points, triggering the 

process of switching. In subsequent iterations whenever the switching stops, we inject another 

point. This procedure is repeated until the following stopping condition is met. Here we 

consider the maximum allowed CPU time or the maximum number of injected points 

whichever is reached first. 

b) The second strategy (F2) 

This strategy is similar to F1 except that k new points ),...,1( maxKk  are randomly 

added to the problem based on the VNS structure. In other words, when RLS1 stops, we 

inject one point and let RLS1 continues. If the solution is not improved, we increase the value 

of k by one ( 1)k k  , otherwise (the solution is improved) we continue with RLS1 until it 

stops where the injection process is triggered again with 1k . In this study we set maxK  

MaxK p 
 

. 

5.5.2 Empirical comparison of F1 vs F2 

An empirical comparison between F1 and F2 was conducted using the CPU time 

corresponding to 10,000 iterations of the Multi-Start Alternate Locate-Allocate Algorithm 

(MSALA) as our stopping condition. This setting as used in the two previous chapters was 

also used here throughout the remainder of the chapter. The results were summarised in 

Table 5.10. In general, we can confirm that the performance of F2 was better than F1 with 
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average deviations of 6.501% and 6.899% respectively. However, F1 in some cases yielded 

better results than F2, as shown when p = 50 and p = 100.  This is because F1 can generate 

more switches than F2 as shown by its average of 24.80 for RLS1 and 413.80 for RLS2 

making a total of 438.60 switches, while F2 generated 385.10 switches in total (24.80+ 

360.30). 

Table 5.10: Details of the solutions of RLS2 based on F1 and F2 strategies 

n = 439   

 TSP-Lib 
The 

optimal  

solution  

(Z) 

The F1 Strategy (k = 1) The F2 Strategy (k=1, 2,.. Kmax) 

p 
Deviation 

(%) 

# Switches #  

Cplex 

Calls 

CPU 

Time* 

(sec) 

Deviation 

(%) 

# Switches #   

Cplex 

Calls 

CPU 

Time* 

(sec) 
RLS  

1 

RLS    

2 

 

Total 
RLS  

1 

RLS    

2 

 

Total 

10 1716.5099 5.95 6 142 148 1499 3.35 5.95 6 131 137 1499 3.36 

20 1029.7148 0 10 136 146 1434 27.09 0 10 121 131 1308 29.13 

30 739.19297 0 14 158 172 1573 26.02 0 14 131 145 1444 24.85 

40 580.00539 7.37 19 343 362 4007 7.49 7.37 19 379 398 3927 8.33 

50 468.54162 6.85 38 382 420 5011 366.70 8.04 38 464 502 4971 77 

60 400.19527 6.38 28 613 641 6802 51.31 6.38 28 318 346 3640 51.38 

70 357.94553 9.10 43 365 408 3999 97.62 9.10 43 434 477 4812 99.87 

80 312.5 18.93 24 676 700 6486 10.96 13.21 24 586 610 5365 1631.34 

90 280.90256 7.17 30 658 688 6087 123.03 7.17 30 508 538 5528 130.72 

100 256.68019 7.25 36 665 701 5904 1334.70 7.80 36 531 567 5027 111.78 

 Average 614.21882 6.90 24.80 413.80 438.60 4280.20 204.83 6.50 24.80 360.30 385.10 3752.10 216.78 

*: CPU time when the best solution is found, RLS1 refers to the case where no injection points are used. 

5.5.3 Enhancements on RLS2 

As the second strategy (F2) is found to yield relatively better results than those found by 

F1, this led us to consider F2 further by exploring two generation schemes for the k new 

points that are added as potential sites when solving the discrete problem. These schemes 

differ in the way the k extra points (injection points) are located randomly in the continuous 

space. These two strategies are explained in the next subsections. 

a) Midpoints-based strategy (F2a) 

The idea behind this strategy is to add the k extra points as a linear combination of the 

facility sited at the centre of the largest circle (i.e., located at 
1X ) and the other k nearest 

facilities to it located at .,...,2; kjX j   Let
kP  be defined as follows:  

kk XXP )1(1    with 
max,...,2);1,0( Kk   
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In particular for simplicity we use 1/ 2  , adopting a midpoint strategy which is 

similar to the one initially attempted by Brimberg et al. (2014) for the multi-source Weber 

problem. This result in the generation of the following new k points: 

max
1 ,...,1;

2
Kk

XX
P k

k 


  

b) Covering circle-based strategy (F2b) 

Here, the extra k points are added randomly in the 
thk covering circle 

kCC  whose 

definition is defined in subsection 3.3.2.  In other words, 
max,...,1; KkCCP kk  . 

5.5.4 Empirical comparison of F2a and F2b for RLS2 

An empirical comparison between F2a and F2b was performed using the same setting 

as before. According to Table 5.11, it can be observed that the performance of the second 

strategy (F2b) was better than (F2a) where the average deviations were 5.95% and 6.67% 

respectively. However, F2b did not always yield better results than F2a, as shown when p = 

70. It can be noted that both strategies almost generated the same number of switches with 

a total average of 333.90 and 324.90 respectively. 

Table 5.11: Details of the solutions of RLS2 based on F2a and F2b strategies 

n = 439   

 TSP-Lib 
The 

optimal  

solution     

(Z) 

Midpoints strategy (F2a) Covering circle strategy (F2b) 

p 
Deviation 

(%) 

# Switches #  

Cplex 

Calls 

CPU 

Time* 

(sec) 

Deviation 

(%) 

# Switches #   

Cplex 

Calls 

CPU 

Time* 

(sec) 
RLS 

1 

RLS   

2 

 

Total 
RLS  

1 

RLS    

2 

 

Total 

10 1716.5099 5.95 6 91 97 1108 2.54 4.56 6 125 131 1529 321.06 

20 1029.7148 0 10 55 65 2434 27.32 0 10 107 117 1299 26.51 

30 739.19297 0 14 177 191 1894 29.43 0 14 119 133 1511 26.23 

40 580.00539 6.04 19 53 72 684 88.88 5.91 19 247 266 3051 547.97 

50 468.54162 8.04 38 274 312 3076 112.61 6.85 38 295 333 4061 559.97 

60 400.19527 6.38 28 370 398 4204 203.37 6.11 28 444 472 5339 459.42 

70 357.94553 6.61 43 376 419 4204 2080.15 9.10 43 349 392 4590 115.42 

80 312.5 18.93 24 467 491 4844 10.82 15.95 24 406 430 4368 609.92 

90 280.90256 7.17 30 588 618 5495 127.60 3.79 30 504 534 5805 749.76 

100 256.68019 7.58 36 550 586 4654 116.40 7.25 36 495 531 5887 160.24 

 Average 614.21882 6.67 24.8 300.10 324.90 3259.70 279.91 5.95 24.80 309.10 333.90 3744 357.65 

*: CPU time when the best solution was found, RLS1 refers to the case where no injection of point was used. 
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5.6 Controlling the size of the augmented discrete problem 

As the number of injected points may render the size of the augmented problem too 

large for the vertex p-centre problem to be solved optimally within a reasonable amount of 

time, to overcome this handicap we aim to manage the size of the augmented problem as 

governed by the number of potential sites (i.e., set E ) by keeping it within a reasonable level. 

One way would be to restrict | |  where E K K  is an appropriate threshold for which the 

vertex p-centre problem can easily be solved. In Brimberg et al. (2014) the size is controlled 

by systematically deleting the old potential sites and using the newly added ones. In this 

study, we provide guidance by managing the size of E, we call this managed RLS2 as “M-

RLS” for short which will be used as our proposed RLS version.  

It is worth noting that the strategy of the covering circle (F2b) is used in M-RLS for 

adding the number of extra injected points, but with a change in the maximum number of 

added points. In F2b, the number of added points (k = 1,…,Kmax  with maxK
max max max, 1,...,  with . If lCC l l l p k l   

 
) is 

relatively small. These k points are added randomly in the continuous space encompassed by 

the covering circle CCk, which means that the maximum level of the covering circle is .
maxKCC  

Whereas, in M-RLS, we increase the maximum number of added point )( maxK  to be 

max(p,50). But the maximum level of the covering circle is still kept the same, where we 

refer to  maxmax  with ,...,1, lllCCl max max max, 1,...,  with . If lCC l l l p k l   
 

. In this case, it can be noted that the number of 

added points (k) can be greater than the maximum level of the covering circle )( maxl . In this 

case, if  maxlk  we revert back to 1l . 

In brief, we start to add temporarily one extra point randomly )1(  lk  to the problem 

in the covering circle (i.e., 11 CCP  ) and apply RLS1 (no injection of points is used). If the 

solution is improved we add permanently this new continuous point and start the add process 

again with k=1 and l=1. Otherwise we remove this point and move to explore the second level 

)2(  lk by adding temporarily two points randomly in 2CC  instead as potential sites and 

apply RLS1. If the solution is improved we add permanently these two points and start again 

from the first level )1(  lk , else we exclude these 2 points and add temporarily three points 

)3( k  in 3CC )3( l . When there is no improvement and we reach maxl = 
max max max, 1,...,  with . If lCC l l l p k l   

 
 we revert 
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back to 1l  but the number of added points continues increasing until k = Kmax = max(p,50) 

where this reverts back to k=1. The process continues, but if there is an improvement we start 

again from the first level, namely we set 1 lk . In other words, the number of potential 

sites increases by k points only when there is an improvement in the solution.  

5.7 Computational results 

The same data set as tested earlier, was used to evaluate the performance of M-RLS. 

For the small data set (n=439), we compared the results of M-RLS to the optimal solutions 

provided by Chen and Chen (2009). For the other larger data sets where no optimal solutions 

are available, the overall best solutions found in the previous chapters were used instead. The 

same stopping condition that was used in previous chapters (i.e., the CPU for 10,000 

iterations of MSALA) was also adopted here.  

5.7.1 Comparisons against optimal results (small data set n=439) 

In general, we can say that M-RLS gave encouraging results when compared to the 

other strategies (F1' and F2'). It is worth noting that adding a large number of extra injected 

points in the problem (M-RLS) has clearly improved the overall deviation (%) from 5.95 

to 3.74%, as shown in Table 5.11 and Table 5.12 respectively.  

Table 5.12: Solutions of M-RLS for small data set 

n = 439   

 TSP-Lib 
The 

optimal  

solution 

(Z) 

M-RLS 

p Deviation % 
# Switches # Cplex 

Calls 

CPU Time 

(sec) RLS1 RLS2 Total 

10 1716.5099 2.29 6 61 67 1270 179.36 

20 1029.7148 0 10 70 80 966 26.24 

30 739.19297 0 14 71 85 1081 26.55 

40 580.00539 2.11 19 103 122 2584 1119.84 

50 468.54162 2.98 38 163 201 3853 1401.66 

60 400.19527 3.64 28 199 227 4476 1175.27 

70 357.94553 5.31 43 182 225 3542 1778.74 

80 312.5 13.14* 24 196 220 3662 1522.68 

90 280.90256 3.79 30 225 255 3473 346.75 

100 256.68019 4.11 36 214 250 3726 1605.82 

 Average 614.21882 3.74 24.80 148.40 173.20 2863.30 918.29 

*: worst solution, RLS1 refers to the case where no injection of points was used. 
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In addition, M-RLS found 2 optimal solutions out of 10, (i.e., when p =20 and p = 30). It can 

be noted that within M-RLS, RLS1 had a smaller number of switches than RLS2 with the 

average of 24.80 and 148.40 respectively. 

5.7.2 Results on the larger data sets (no optimal solution known) 

The larger datasets with no known optimal solutions (n= 575, 783, 1002 and 1323 TSP-

Lib) were used to assess the performance of our proposed RLS namely M-RLS. For these 

large data sets we refered to the best known solutions found by the VNS-based heuristic 

(VNS2 (FNV4)) with learning) and the perturbation-based heuristic (STRONGPERT with 

learning).  

In this section, we assessed the performance of M-RLS using the deviation from the 

best solution which was computed as Deviation (%) = 100 H best

best

Z Z

Z


 with ZH denoting the Z 

value found by heuristic ‘H’ and Zbest is the best known value of Z.  

The results were shown in Table 5.13. It was found that the performances of both VNS 

and perturbation were relatively better than M-RLS, as the overall average deviation values 

from the best solutions were 0.61%, 0.90% and 5.38% respectively. It is worth noting that the 

performance of VNS2 (FNV4) and STRONGPERT were better than the performance of M-

RLS. One of the main reasons was that in some cases, especially when n =783, the optimal 

discrete solution required an excessive amount of time compared to the other cases, which 

acts as a bottleneck for the search. 

For instance, when n =783 and p=40, 50 and 60, the CPU time for 10,000 runs of the 

MSALA was found to be not enough even to find the optimal discrete solution, where their 

deviation values were 11.37% , 11.25% and 23.55% respectively. This is obviously the reason 

why in this case (n= 783 and p=40 and 50) the number of switches was recorded as zero. 

Furthermore, in some other cases (when p=80, 90) there was not enough time to explore the 

power of RLS2 (M-RLS). It may be interesting to use a powerful heuristic if necessary to 

replace the exact method. Another way would be to limit the time for the exact method and use 

the best feasible as the solution of discrete. Both ideas could be investigated in the future. 
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Table 5.13: Solutions of VNS, Perturbation and M-RLS for the larger data sets  

 

n 
p 

Overall  

 best 

 solutions  

VNS Perturbation M-RLS 

VNS2 (FNV4) 

With     

Learning 

STRONGPERT 

With       

Learning 

Deviation 

% 

# Switches #    

Cplex 

Calls 

CPU  

Time 

(sec) 
RLS  1 RLS 2 Total 

 575  

  

10 67.926 0 1.91 0 15 42 57 629 340.68 

20 45.622 0 0 1.99 21 7 28 290 930.70 

30 35.556 0.16 1.72 5.82 2 0 2 32 429.90 

40 30.265 0 0.49 6.31 9 0 9 101 241.25 

50 26.269 0.76 1.93 7.49 16 0 16 156 1589.55 

60 23.436 1.09 0 6.76 58 38 96 944 1410.98 

70 21.059 0 0.76 7.50 53 35 88 842 1138.74 

80 19.558 1.49 2.26 3.61 83 133 216 2041 894.33 

90 17.923 0 2.05 3.11 126 162 288 2647 1753.60 

100 16.697 0.01 1.86 3.93 143 225 368 3452 1222.62 

Average 30.431 0.35 1.30 4.65 52.60 64.20 116.80 1113.40 995.24 

 783  

  

10 79.313 0 0 1.31 9 41 50 544 78.59 

20 53.461 0 2.13 2.70 14 3 17 174 523.37 

30 42.395 0.49 1.37 4.17 0 0 0 11 1942.01 

40 35.962 0.41 1.66 11.37+ 0 0 0 5 2403.09 

50 31.357 0.17 0 11.25+ 0 0 0 5 2514.47 

60 28.053 1.10 0.33 23.55+ 0 0 0 2 2842.81 

70 25.446 0.69 2.16 9.63 0 0 0 10 3030.87 

80 23.560 0 0.44 10.72 6 0 6 61 949.08 

90 21.710 0 2.93 11.72 8 0 8 74 382.20 

100 20.334 0 2.34 5.05 139 74 213 2117 3334.01 

Average 36.159 0.29 1.34 9.15 17.60 11.80 29.40 300.30 1800.05 

 1002  

  

10 2389.360 0 0 1.32 14 33 47 671 44.68 

20 1607.530 1.42 0 2.52 34 35 69 879 953.71 

30 1231.360 0 0 2.42 30 48 78 977 374.83 

40 1021.410 0.88 0 6.62 78 6 84 1031 904.15 

50 903.120 0.54 0.03 2.98 84 69 153 1894 2547.73 

60 795.709 0.73 0.59 5.62 96 89 185 2501 1927.72 

70 725.431 0.24 0 3.39 256 135 391 5479 3872.99 

80 660.019 1.78 0.14 1.99 263 175 438 6154 3520.03 

90 604.494 0.75 0.97 3.39 278 228 506 6894 1012.92 

100 564.795 1.03 0.21 4.47 222 204 426 5670 2765.85 

Average 1050.323 0.74 0.19 3.47 135.5 102.20 237.70 3215 1792.46 

 1323  

  

10 2899.420 0 0 1.38 16 22 38 570 171.88 

20 1868.920 0.96 1.15 2.68 19 28 47 680 1083.13 

30 1477.590 0.26 0.88 3.96 21 4 25 302 2072.54 

40 1236.380 1.21 1.05 4.14 6 0 6 88 3965.57 

50 1060.820 0.42 0.68 4.14 24 1 25 325 3109.24 

60 940.691 0.13 0 8.26 11 0 11 129 5499.72 

70 844.967 0 2.05 3.66 102 72 174 2328 6431.40 

80 774.764 0 1.82 5.57 90 135 225 2910 2603.36 

90 719.580 2.27 0 2.02 165 147 312 3995 8375.45 

100 663.035 5.11 0 6.59 47 309 356 4946 329.03 

Average 1248.617 1.04 0.76 4.24 50.10 71.80 121.90 1627.30 3364.13 

 Overall Average 591.382 0.61 0.90 5.38 63.95 62.50 126.45 1564 1987.97 

+: Optimal discrete not guaranteed due to CPU time being larger than CPUmax., hence STRONG-RLS not used. 
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5.7.3 Post-optimality results 

For benchmarking purposes one way would be to combine the results of the 

approaches, namely VNS-based heuristics, the perturbation-based heuristics and STRONG-

RLS, by using RLS after VNS (case 1) and RLS after the perturbation (case 2). In other 

words, we wish to see if STRONG-RLS can improve the best continuous solution of VNS 

and the perturbation. These implementations would obviously require extra computing time 

but the obtained results could be used to see if the additional effort is worthwhile and whether 

better results could be produced for benchmarking purposes.  

For simplicity, we ran the perturbation and VNS for the same time as the time recorded 

by the multi-start procedure with 10,000 iterations say CPUmax. The stopping condition for 

M-RLS was either CPUmax or the number of extra injected points (Kmax) was reached in 10 

successive iterations without improvement whichever comes first. Here, the deviations (%) of 

these strategies (improvement) were based on the solutions of VNS or the perturbation. 

     100.
)(

(%)
H

CH

Z

ZZ
Deviation


  

where ZH refers to the solution of a given heuristic 'H' where 'H' refers to VNS2 (FNV4) and 

STRONGPERT and ZC denotes the value of Z found by case 1 and case 2. The five datasets 

(n= 439, 575, 783, 1002 and 1323) were used to test these strategies. In case 1, RLS 

improved the VNS2 (FNV4) solutions twice and the STRONGPERT solutions once, see 

Table 5.14.  

5.8 Summary 

In this chapter, we first presented the use of the optimal discrete solution as an initial solution 

when solving the continuous problem. The RLS procedure was reviewed and adapted to solve 

the p-centre location problem which was then enhanced by using the new discrete solution (Z) 

continuously as an upper bound for the next switch. Furthermore, we proposed two 

enhancements for RLS by incorporating forbidden regions. Extensions of RLS that cater for 

the introduction of injection points to provide diversification and avoid early stagnation 

alongside the management of the memory to control the size of the discrete problem were also 

explored. 
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Table 5.14: Post-optimality results 

 

n 
p 

VNS + M-RLS (case 1) perturbation + M-RLS (case 2) 

VNS2 (FNV4) 

With       

Learning 

M-RLS STRONGPERT        

With         

Learning 

M-RLS 

Z 
 Improv-  

 ement %  

CPU time 
Z 

Improv-   

 ement %  

CPU time 

Best RLS1 RLS2 Best RLS1 RLS2  

 439  

  

10 1716.510 1716.510 0 0 4.64 431.41 1716.510 1716.510 0 0 4.42 431.67 

20 1029.710 1029.710 0 0 7.88 742.45 1029.710 1029.710 0 0 10.13 742.99 

30 739.193 739.193 0 0 8.42 1013.57 739.193 739.193 0 0 6.65 1017.93 

40 580.005 580.005 0 0 15.37 1152.76 580.005 580.005 0 0 12 1162.24 

50 471.699 471.699 0 0 5.91 1725.15 474.088 474.088 0 0 4.54 1726.12 

60 401.591 401.591 0 0 4.53 1979.67 401.591 401.191 0.10 137.17 4.70 1979.88 

70 357.946 357.946 0 0 11.58 2079.79 357.946 357.946 0 0 12.53 2075.77 

80 312.552 312.552 0 0 5.16 1932.90 315.486 315.486 0 0 10.33 1932.98 

90 282.013 282.013 0 0 4.44 1983.70 282.013 282.013 0 0 8.58 1980.38 

100 258.979 258.979 0 0 9.14 1852.16 257.570 257.570 0 0 11.72 1857.01 

Average 615.020 615.020 0 0 7.71 1489.36 615.411 615.372 0.01 13.72 8.56 1490.70 

 575  

  

10 67.926 67.926 0 0 5.87 536.83 69.223 69.223 0 0 35.41 508.11 

20 45.622 45.622 0 0 51.70 892.94 45.622 45.622 0 0 97.62 847.06 

30 35.612 35.612 0 0 573.75 617.41 36.169 36.169 0 0 45.50 1146 

40 30.265 30.265 0 0 320.29 1118.76 30.414 30.414 0 0 108.62 1329.44 

50 26.469 26.469 0 0 9.70 1655.36 26.774 26.774 0 0 225.81 1441.13 

60 23.691 23.691 0 0 9.59 1779.99 23.436 23.436 0 0 71.69 1718.89 

70 21.059 21.059 0 0 24.12 2119.98 21.219 21.219 0 0 18 2128.47 

80 19.849 19.849 0 0 22.01 2146.65 20 20 0 0 195.82 1972.49 

90 17.923 17.923 0 0 11.21 2297.73 18.290 18.290 0 0 22.22 2285.99 

100 16.698 16.698 0 0 6.79 2525.88 17.007 17.007 0 0 38.08 2493.95 

Average 30.511 30.511 0 0 103.50 1569.15 30.816 30.816 0 0 85.88 1587.15 

 783  

  

10 79.313 79.313 0 0 21.18 889 79.313 79.313 0 0 36.48 873.55 

20 53.461 53.461 0 0 15.79 1540.22 54.601 54.601 0 0 28.19 1528.11 

30 42.604 42.604 0 0 202.64 1853.36 42.974 42.974 0 0 1646.68 409.75 

40 36.110 36.110 0 0 2405.21 0.12 36.560 36.560 0 0 2402.78 0.98 

50 31.409 31.409 0 0 1600.46 914.74 31.357 31.357 0 0 2059.51 456.31 

60 28.361 28.361 0 0 309.12 2533.98 28.147 28.147 0 0 920.21 1922.99 

70 25.622 25.622 0 0 36.26 3118.91 25.996 25.996 0 0 303.70 2852.03 

80 23.560 23.560 0 0 14.09 4452.55 23.665 23.665 0 0 18.53 4449 

90 21.710 21.710 0 0 21.48 3649.89 22.346 22.346 0 0 31.08 3617.41 

100 20.334 20.334 0 0 847.13 3228.76 20.809 20.809 0 0 638.28 3437.99 

Average 36.248 36.248 0 0 547.34 2218.15 36.577 36.577 0 0 808.54 1954.81 

 1002  

  

10 2389.360 2389.360 0 0 10.44 938.39 2389.360 2389.360 0 0 10.55 939.10 

20 1630.300 1630.300 0 0 27.35 1599.99 1607.530 1607.530 0 0 14.12 1614.56 

30 1231.360 1231.360 0 0 19.54 2543.52 1231.360 1231.360 0 0 19.94 2543.54 

40 1030.400 1030.400 0 0 20.58 2939.63 1021.410 1021.410 0 0 16.78 2944.01 

50 907.980 907.980 0 0 7.25 3676.63 903.399 903.399 0 0 21.97 3662.31 

60 801.474 801.474 0 0 19.20 4502.50 800.391 800.391 0 0 20.65 4502.07 

70 727.154 727.154 0 0 26.38 6614.81 725.431 725.431 0 0 19.02 6622.88 

80 671.751 671.751 0 0 21.48 7005.71 660.913 660.913 0 0 23.08 7004.51 

90 608.999 608.999 0 0 20.76 6863.39 610.328 610.328 0 0 51.52 6833.95 

100 570.636 570.636 0 0 39.08 7093.43 565.962 565.962 0 0 29.89 7103.22 

Average 1056.941 1056.941 0 0 21.21 4377.80 1051.608 1051.608 0 0  22.75 4377.01 

 1323  

  

10 2899.420 2899.420 0 0 34.11 1551.71 2899.420 2899.420 0 0 31.79 1555.34 

20 1886.820 1886.820 0 0 200.67 2239.70 1890.430 1890.430 0 0 250.97 2191.01 

30 1481.400 1481.400 0 0 33.15 3423.01 1490.640 1490.640 0 0 27.64 3428.15 

40 1251.340 1251.340 0 0 50.90 4043.55 1249.300 1249.300 0 0 36.23 4058.52 

50 1065.280 1065.280 0 0 91.60 5587.13 1068.040 1068.040 0 0 151.70 5526.99 

60 941.870 941.870 0 0 109.25 6419.92 940.691 940.691 0 0 77.16 6454.08 

70 844.967 844.967 0 0 100.15 7417.74 862.269 862.269 0 0 89.40 7427.35 

80 774.764 774.764 0 0 149.83 7757.81 788.885 788.885 0 0 127.44 7778.77 

90 735.878 734.371 0.21 226.89 59.92 8359.10 719.580 719.580 0 0 35.53 8383.32 

100 696.938 696.317 0.09 1709.72 170.83 8846 663.035 663.035 0 0 31.54 8984.88 

Average 1257.868 1257.655 0.03 193.66 100.04 5564.57 1257.229 1257.229 0 0 85.94 5578.84 

 Overall Average 599.318 599.275 0.01 38.73 155.96 3043.81 598.328 598.320 0.00 2.74 202.33 2997.70 
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The computational results showed that a significant improvement compared to the 

original implementation was found. For instance, the average deviation (%) when n =439 

has decreased by nearly half from 7.37% to 3.74%. 

 However, the best enhancements for VNS2 (VNS2 (FNV4) with learning) and the 

perturbation (STRONGPERT with learning) still outperformed the best RLS. One of the 

reasons was because in some data sets (not necessarily the largest, such as n =783) finding 

the optimal solution for the discrete problem consumed a relatively long time, leaving a 

negligible or no time to be used for further exploration of the search. The use of STRONG-

RLS was also tested after VNS2 (FNV4) and STRONGPERT to see if better results could 

be found for benchmarking purposes. However, in our experiments only three new better 

solutions were discovered. It is worth pointing at that the overall conclusion was not that 

disappointing given that the RLS concept is very new and future implementations will 

hopefully enhance its position as one of the major performers in global optimisation. 
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Chapter 6 

Conclusion and Suggestions 

The aims of this chapter are to provide a summary of the proposed approaches and the 

outcomes that have been found in this thesis followed by the research areas that could be 

explored in the future. 

6.1 Conclusion 

In this thesis, the p-centre location problem in the continuous space was 

investigated. Firstly, we proposed simple but effective enhancements on the original 

Elzinga-Hearn algorithm for both the weighted and the unweighted 1-centre problem on 

the plane. A Variable Neighbourhood Search heuristic (VNS) using both the customer-

based as well as the facility-based neighbourhood types was proposed to solve this related 

location problem. Furthermore, two effective enhancements on our local search (Cooper’s 

approach) were designed followed by a scheme that incorporates learning within the 

search. Two types of perturbation-based heuristic were proposed followed by efficient 

enhancements and a learning scheme. In this approach, we allowed the amount of 

perturbations to be variable. Finally, the new concept of Reformulation Local Search 

(RLS) which shifts between solving the continuous problem and the augmented discrete 

problem and which was originally designed for the multi-source Weber problem was 

adapted to solve this location problem. This was followed by a scheme for generating a 

tighter new upper bound when solving the discrete problem. Two enhancements on the RLS 

procedure that use forbidden regions were also proposed. Extensions of RLS were provided 

including the use of injection points for diversification and memory management at the 

discrete phase. Our approaches on the existing datasets (n = 439, 575, 783, 1002 and 1323 

TSP-Lib) were used with encouraging results.  

Chapter 1 concentrated on the literature review on the p-centre problem in the 

continuous space. A description of the problem under study and a motivation for this research 

was presented followed by applications and a brief description of a possible classification of 

location problem. To our knowledge there were only constructive heuristics and no meta-



 

 

170 

 

heuristic for this problem. Also it was noted that small to medium size instances were used 

only. Our study aimed to fill those gaps. The meta-heuristics methods that have been used in 

this research were also covered in the first chapter. The single facility minmax location 

problem (1-centre) and the multi-facility minmax location problem (p-centre) were then 

reviewed here including a brief description of the exact method used to solve the vertex       

p-centre problem as this has been incorporated into our search when solving the continuous 

case. 

In the second chapter, the Elzinga-Hearn algorithm (1-centre) for both the unweighted 

and the weighted case was described first. This was followed by a highlight of the weakness 

of this method which gave rise to the design of our enhancements. The idea behind these 

enhancements was to determine the best points that can be used as initial starting points for 

the algorithm as well as the best uncovered point (the point that is outside the current circle) 

to be the third point for the current solution. In our experiments, we noted that the best two 

enhancements (V3 and V4 for the unweighted case and W3 and W4 for the weighted case) 

outperformed the original algorithm (V0) for all values of n, whereas the other enhancements 

were found to be quicker than V0 when n < 30 for the unweighted case and when n < 50 for 

the weighted case. To distinguish between the performance of these two best enhancements 

(V3 vs V4 and W3 vs W4), additional tests using large value of n (n = 50 to 1000) were 

performed. In brief, our best enhancements yielded about 60% reduction in CPU time. In 

summary, we proposed interesting and effective rules that can be used when solving the 1-

centre problem as part of the p-centre problem. For illustration purpose, a simple multi-start 

approach was also used to show the effectiveness of these enhancements. 

In the third chapter, a VNS that includes the Customer-based Neighbourhood (CN) 

and one using the Facility-based Neighbourhood (FN) were designed to solve this 

continuous location problem. The original heuristic of FN was applied in two cases by 

swapping the facilities with random fixed points (discrete space VNS1(FN)) and with points 

in the continuous space (VNS2(FN)). Several enhancements were then developed for 

VNS(CN) and for VNS2(FN). In addition, two improvement procedures on our local 

search (Cooper’s approach) that use a critical point-based allocation and the removal of the 

non-promising circles were also proposed. Furthermore, a learning scheme based on 

previous iterations was incorporated into the search to identify the best area where to relocate 
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the open facilities using the levels of the covering circle. The computational results showed 

that incorporating learning within VNS2(FNV4) has clearly improved its initial 

performance to become the best performer. Using the CPU time for the Multi-Start 

algorithm of 10,000 runs on the data (n = 439 TSP-Lib), where optimal solutions are known, 

the VNS heuristic proved to be performing rather well. This was then applied in larger data 

sets with various value of p where no optimal solution is known. 

In chapter 4, the perturbation heuristic that allows the search to be infeasible by 

allowing additional or fewer facilities, was presented. The original perturbation 

algorithm and the strong perturbation which we call “GRADPERT” and 

“STRONGPERT” respectively were proposed and adapted for this problem. Furthermore, 

a powerful enhancement, where the number of new facilities (q) that could go over and 

under the required number of facilities (p) was relaxed and made dynamic instead of being 

fixed was developed. This is enhanced by incorporating learning within the search. The 

computational experiments on the small data set (n=439) where optimal solutions exist and on 

the large datasets (n
 

=
 

575, 783, 1002 and 1323), showed that when learning was 

incorporated within the search, the overall average deviation has clearly improved. 

Finally, the comparison between VNS and perturbation-based heuristic was also 

presented. In general, we can say that the performance of the VNS-based heuristic was 

slightly better than the perturbation-based heuristic, but in several cases the latter approach 

also yielded better solutions. 

In the fifth chapter, we investigated the idea of using the optimal solution of the 

discrete case as an initial solution for the continuous problem. The new concept of 

reformulation local search (RLS) which aims to shift between the continuous problem and the 

augmented discrete problem, and which was originally designed for the multi-source Weber 

problem, was adapted here. A scheme for generating a tighter upper bound when iteratively 

solving optimally the discrete problem was also presented. In order to increase the number of 

switchings between the discrete and the continuous phase, different stopping conditions were 

considered. Here, we designed two strategies for adding the new continuous locations as 

potential sites to the discrete problem. The VNS structure that has a variable number of added 

points was shown to be the best. This is enhanced by the use of forbidden continuous regions, 

where the new continuous locations that were very close to the potential sites were excluded 
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from being selected. Extensions of the RLS were also provided including the use of injection 

points as potential sites for diversification and the management of memory at the discrete 

phase. This is performed to control the size of the discrete problem. The computational 

experiments showed that the best scheme for RLS1 yielded encouraging results, when 

enhanced by STRONG-RLS. However, it was found in general that the performances of 

both VNS and the perturbation were relatively much better than the proposed RLS scheme 

which is still, in our view, in its infancy. 

6.2 Future research suggestions 

In this section, we highlight some research areas that we believe may be worthwhile 

studying in the future. The suggestions for this research can be divided into two categories. 

This includes improving the performance of the meta-heuristics used in this study and 

adapting these meta-heuristics to solve other related p-centre problems. 

6.2.1 Improving the performance of the used meta-heuristics 

In this section, we proposed several ideas which can lead to possible improvements on 

our meta-heuristics. These concepts are summarised as follows: 

Enhancing the local search  

The local search that has been used in this study is similar to that of Cooper (1964), 

which is based on switching between the location and the allocation phase until no further 

improvement can be found. In the third chapter, this local search included two enhancements 

on the Elzinga-Hearn algorithm and another two on the allocation phase where a critical 

point-based allocation and the removal of the non-promising circles are used. However, this 

local search could be made more powerful by including a short meta-heuristic such as RLS1, 

a mini perturbation (STRONGPERT-V2) or a Variable Neighbourhood Descent (VND). As 

this may require extra computational time, challenging implementation issues need to be 

taken into account.  

Enhancing the perturbation-based heuristics 

In the method proposed in Chapter 4 (STRONGPERT-V2), the way the q facilities 

are dropped could be revisited. In our study, the first candidate facility for removal is the 
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facility that increases the objective function the least (q facilities are chosen from all the open 

facilities). This drop process can be modified to be similar to the add process, so the q 

facilities to remove could be chosen from the covering circle instead. This can be followed 

further by a scheme that incorporates learning within this drop process.  

Enhancing the reformulation local search (RLS) 

The suggestions for the RLS, which is a very recent local search, are organised into 

three categories which are as follows:  

Guiding the search via forbidden regions and memory management 

In our proposed method (RLS), the new continuous locations that are very close to the 

potential sites (located in forbidden regions) are excluded from the selection as potential sites. 

This guidance can be reflected by excluding the potential sites that are very close to the new 

continuous locations instead. This is because the new continuous locations can be more 

informative than the old potential sites. Also, the way we manage the size of the memory 

could be based on the frequency of occurrence of the potential sites measured by small 

representative circles. In brief, those sites that are seldom selected could be ignored making 

the size of the discrete problem more manageable to solve without losing solution quality.  

Increasing the set of potential sites 

The perturbation scheme allows us to generate many candidate “centres” during its up 

and down trajectories. These new centres could be used within the RLS framework to 

increase the set of potential sites and hence provide opportunities for determining better 

solutions. Hybrid algorithms based on perturbation methods and RLS could then be 

considered in the future to include such a view. As the size of the discrete problem may get 

too big some form of selection and memory management need to be considered. 

Incorporating RLS within VNS2 (FNV4) and STRONGPERT-V2 

Both VNS as well as the perturbation based-heuristic can incorporate RLS as part of their 

local search. One way would be to combine both approaches namely VNS2 (FNV4) and RLS. 

We can use the RLS after a full cycle of VNS2 (FNV4) terminates.  As this hybrid realization 

may require an excessive amount of CPU, some guidance on when to call for such a scheme 

could be worth exploring. 
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6.2.2 Applying the used meta-heuristics for other p-centre related problem 

In this study, we adapted three meta-heuristics to solve the classical p-centre problem 

on the plane. Here, we suggest other types for this problem which can be solved by 

modifying the enhanced versions of the meta-heuristics. The following three related p-centre 

problems are briefly given here. 

The conditional p-centre problem 

In the unconditional p-centre problem, we need to find the location of p new facilities 

to minimise the maximum distance between a customer and its nearest facility, whereas in 

the conditional p-centre problem, there are q locations of facilities which are given (q existing 

facilities). We need to find the location of p additional facilities to minimise the maximum 

distance between a customer and its nearest facility, whether new or existing facility. This 

model is important, because in real-world emergency systems, we need to locate additional 

facilities to improve their customer service levels. The conditional p-centre problem is 

studied by Berman and Simchi-Levi (1990), Chen and Handler (1993), Berman and Drezner 

(2008) and recently by Chen and Chen (2010). 

The meta-heuristics that have been used in this study can be modified to solve this type 

of problem. For instance, we can define small areas around the given q existing facilities as 

forbidden. In other words, when we need to relocate the facilities (in VNS), adding facilities 

(in perturbation-based heuristic) and adding the injection points (in RLS), these facilities 

must not be located in these forbidden region. 

The equality in service delivery 

In the classical p-centre problem, the value of the solution is determined by the radius 

of the largest circle, while the radii of the other smaller circles may vary in size considerably. 

This model does not aim to achieve the equality in service delivery, although in some cases 

the equality in service is very important. For instance, the goals in the public sector are social 

cost minimization, equity and efficiency. The geometrical interpretation for this problem is to 

find the locations of p circles that have very similar radii to cover all the demand points, see 

Suzuki and Drezner (1996) and Ezra et al. (1994). 
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The α-neighbor p-centre problem 

The possibility of providing service to the customer by multiple facilities is also useful when 

customer is required to withstand service facility failures.  The importance of this model is 

increased in the areas that have the highest population density to ensure that service delivery 

to the customer is performed in a timely manner. This problem, presented by Krumke (1995) 

is a generalisation of the p-centre problem, such that every customer is assigned to α 

facilities and were the objective is to minimise the maximum distance between a customer 

and its α
th

 nearest facility. For more details, see Chen and Chen (2013) where a brief 

literature review on this problem was also given.  
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Appendices 

Appendix A: Some mathematical results  

Appendix A1: (Thales' theorem) 

Any point on the circumference with the two points on the two ends of a diameter makes right 

triangle.   

This depends on the following facts:    

 the sum of the angles in a triangle is equal to two right angles (180°),  

 the base angles of an isosceles triangle are equal.  

Let O be the centre of the circle. 

 

 

 

 

 

 

Since OA = OB = OC, OBA and OBC are isosceles triangles, and by the equality of the 

base angles of an isosceles triangle,  

OB̂C = OĈB  

and BÂO = AB̂O.  

Let α = B ÂO and β = OB̂C.  

The 3 internal angles of the ABC triangle are α, α + β and β.  

Since the sum of the angles of a triangle is equal to two right angles,  

we have   α + (α + β) + β = 180° ,  then 

2α + 2β = 180° 

or simply 

α + β = 90° 

 
Figure A1: illustrate a right-angled triangle at B 
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  Appendix A2:  

There is no intersection between two circles only.  

There can be intersection between all the three circles or there would be no intersection at all. 

Proof: 

In Figure A2 (1), at any point (x) on the perimeter of the circle  𝐿(𝑃𝑠, 𝑃𝑡), the distance from 

point (x) to point 𝑃𝑠 multiplied by weight (𝑤𝑠) is equal to the distance from point (x) to 

point 𝑃𝑡 multiplied by weight (𝑤𝑡). 

∵ ),(),( ttss PxdwPxdw         

∵ ),(),( ttss PadwPadw                                                                   

∴ ),(),( ssss PxdwPadw   

In Figure A2 (1), this can also be applied at point (b) for circle 𝐿(𝑃𝑠, 𝑃𝑢) and at point (c) for 

the circle 𝐿(𝑃𝑡, 𝑃𝑢).  

wt  d(n, Pt) = wu d(n, Pu) = ws d(n ,Ps), because this point (n) is the intersection point of all 

these three circles (optimal solution between three points). 

wt  d(m, Pt) = wu d(m, Pu) = ws d(m, Ps), because this point (m) is the intersection point of 

all these three circles (feasible solution between three points).  

a) If there is intersection between the circles (at point (n) and (m)): 

ws d(n, Ps) = wt  d(n, Pt) = wu d(n, Pu). Because the point (n) is located on the perimeters of 

the three circles at the same time (all the three circles intersect at the point (n)). This can be 

also applied at point (m). 

From circle L(Ps, Pt), we conclude that ws d(n, Ps) = wt d(n, Pt)→(1) 

And from circle L(Ps, Pu), we conclude that ws d(n, Ps) = wu d(n, Pu)→(2) 

From (1) and (2) we conclude that wt  d(n,  Pt) = wu  d(n,  Pu), and this relationship is 

determined by the third circle L(Pt, Pu). 

 

 

(Feasible solution between two points) 

(Optimal solution between two points) 
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b) If there is no intersection between the circles: 

However, if there is no intersection between the circles (there is no point located on the 

perimeters of the two circles at the same time). This means that any point (x) is located on 

the perimeter of the first circle L(Pt, Pu) or on the second circle L(Ps, Pu) will lead to: 

ws d(x, Ps) ≠ wt  d(x, Pt) and ws d(x, Ps) ≠ wu d(x, Pu), which lead to wt  d(x, Pt) ≠       

wu d(x, Pu) 

From the above we can conclude that all these three circles are meeting at some point 

or do not meet at all, namely, that cannot be there a cross between only two circles. 

 

 

 

 

 

 

Figure A2 (1): Case of an intersection between circle 
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Appendix A3: 

Situation of a circle with other circles 

Generally, the situation of a circle with other circle can be divided into five cases. In 

order to be able to clarify those cases, we use the following notation:  

 
the radius of circle (a)

 

the radius of circle (b)
   

the centre of circle (a) 

the centre of circle (b)
  

d = the distance between the centre of the circle (a) and centre of the circle (b). 

 1) if d > ra + rb the circle (a) ∩ circle (b) = ∅  (there is no intersection between d > circle (a) 

and circle (b)). 

 

 

2)  if d = ra + rb  the circle (a) ∩ circle (b) ={m}  (there is one intersection in m), the circle (a)  

touches the outside of the circle (b) but does not cross it. 

 

 

 

3)  if d = ra - rb  the circle (a) ∩ circle (b) ={m}    (there is one intersection which is in  m), 

the circle (b)  touches the inside of the circle (a) but does not cross it. 

 

 

 

 

ar

br

ax

bx
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4)  if d < ra - rb   the circle (a) ∩ circle (b) = ∅   (there is no intersection), the circle (b) is 

located inside the circle (a). 

 

 

 

5)  if ra - rb < d< ra + rb 

 where ra  ≥  rb 

 the circle (a) ∩ circle (b) ={m, n}  (there is two intersections which are m and n). 

 

 

 

 

Appendix A4: 

 If two circles are crossed, the straight line that connecting between the centre of the 

first circle and the centre of the second circle is perpendicular to the chord (the straight line 

that connecting between the intersection points of the two circles), and halves it. 

We use this symbol ( ) to indicate congruence. 
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Figure A5: intersections between circles 
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a) The Line segment that connecting between centres of the circles is perpendicular to the 

chord. 

We know that if the sides of the triangle are equal to the sides of the other triangle they would 

be congruent. In Figure 5, the triangle acb and the triangle adb would be congruent. Because:  

1) Line segment ab is one of the sides of the triangle acb and the triangle adb at the same 

time. 

2) Line segment ac  is  to line segment ad  (they are the radius of the first circle).  → (1). 

3) Line segment bc  is ≅to line segment bd  (they are the radius of the second circle). 

 The triangles acb and adb would be congruent. 

Hence we conclude that the angle cab ≅ dab → (2). 

 The triangle acb is an isosceles triangle (two sides are the same length) → (from (1)). 

The line segment ae  halves the angle cad  → (from (2)). 

Therefore, from (1), (2) and characteristic of an isosceles triangle, we conclude that the line 

segment ae  is perpendicular to cd . 

b) The straight line that joins centres of the circles halve the chord. 

We know that if the two sides of the triangle and the angle (which is between them) are 

equal to two sides and angle of the other triangle they would be congruent. Therefore, the 

triangle ace and the triangle aed would be congruent. Because:   

4) Line segment ae  is one of the sides of the triangle cae and the triangle dae at the same 

time. 

5) Line segment ac  is ≅ to line segment ad  (from (1)). 

6) Angle cae is ≅ to angle dae (from (2)). 

 The triangles cae and dae would be congruent. 

 Line segment ce  is ≅ to line segment de . 

Hence we conclude that the line segment ab  halves the line segment cd . 

 

c) Proof for  
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Appendix B: Results of the p-centre  

Appendix B1: Tables for the unweighted case  

n=500 

p=3 

The Original algorithm (50 iteration) V4 

Z CPU Time Number  best  Z 
Total  

iteration 
Number 

 best 

1 47.566 1.01 1 47.566 100 2 

2 48.797 1.34 1 48.797 67 1 

3 48.169 1.13 3 48.169 93 6 

4 47.877 1.66 11 47.877 89 18 

5 46.632 1.19 12 46.632 98 19 

6 46.971 1.14 2 46.971 97 2 

7 45.621 1.44 6 45.621 91 10 

8 48.283 1.34 2 48.283 77 4 

9 47.416 1.08 2 47.416 84 3 

10 48.665 1.11 3 48.665 90 3 

Average 47.600 1.24 4.30 47.600 88.60 6.80 

Table B1 (1): The solution for the unweighted case when n= 500 and p=3 
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n=500 

p=5 

The Original algorithm (50 iteration) V4 

Z CPU Time Number  best  Z 
Total  

iteration 
Number 

 best  

1 30.071 1.51 1 30.071 91 1 

2 30 1.59 1 30 93 3 

3 30.088 2.04 1 30.088 93 2 

4 30.364 3.18 3 30.364 98 5 

5 29.778 1.90 1 29.778 90 2 

6 29.567 1.90 1 29.567 99 1 

7 30.177 1.51 0 29.925 97 1 

8 30.225 1.74 1 30.225 92 1 

9 30.058 1.88 1 30.058 85 1 

10 29.981 1.43 1 29.981 90 1 

Average 30.031 1.87 1.10 30.006 92.80 1.80 

Table B1 (2): The solution for the unweighted case when n= 500 and p=5   

n=500 

p=10 

The Original algorithm (50 iteration) V4 

Z CPU Time Number  best  Z 
Total  

iteration 
Number 

 best  
1 21 3.23 0 20.059 81 1 

2 20.797 3.47 0 20.607 83 1 

3 21.006 4.53 1 20.555 87 1 

4 21.030 2.38 1 20.402 85 1 

5 20.749 3.40 1 20.749 85 1 

6 20.887 3.23 0 20.881 88 1 

7 20.452 2.25 1 20.452 88 1 

8 21.360 4.31 0 20.555 91 1 

9 20.590 2.29 0 20.346 90 1 

10 20.524 3.18 1 20.524 87 1 

Average 20.839 3.23 0.50 20.513 86.50 1 

Table B1 (3): The solution for the unweighted case when n= 500 and p=10  

n=500 

p=15 

The Original algorithm (50 iteration) V4 

Z CPU Time Number best  Z 
Total  

iteration 

Number 

 best  

1 17.103 4.04 0 17.054 61 1 

2 17.263 3.97 1 17.263 57 1 

3 17.529 4.10 0 17.095 62 1 

4 17.443 3.91 1 17.443 60 1 

5 17.204 4.13 1 17.204 63 1 

6 17.321 4.07 1 17.321 64 1 

7 17.335 4 1 17.335 62 1 

8 16.819 4.25 1 16.819 61 1 

9 17.616 4.04 0 17.267 63 1 

10 17.069 4.11 1 17.069 61 1 

Average 17.270 4.06 0.70 17.187 61.40 1 

Table B1 (4): The solution for the unweighted case when n= 500 and p=15 
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n=500 

p=20 

The Original algorithm (50 iteration) V4 

Z CPU Time Number  best  Z 
Total  

iteration 

Number 

 best  

1 14.534 5.17 1 14.534 62 1 

2 15 4.77 0 14.976 61 1 

3 14.857 5.11 1 14.857 61 1 

4 14.705 4.71 1 14.705 62 1 

5 15.008 4.87 1 15.008 59 1 

6 14.385 4.89 1 14.385 57 1 

7 14.840 5.17 1 14.840 64 1 

8 14.889 4.69 1 14.889 62 1 

9 15.008 5.96 0 14.835 60 1 

10 15.182 4.81 0 14.935 60 1 

Average 14.841 5.02 0.70 14.796 60.80 1 

Table B1 (5): The solution for the unweighted case when n= 500 and p=20 

Appendix B2: Tables for the weighted case 

n=500 

p=3 

The Original algorithm (50 iteration) W4 

Z CPU Time Number  best  Z 
Total  

iteration 

Number 

 best  

1 378.430 1.26 2 378.430 93 3 

2 383.259 1.25 2 383.259 92 4 

3 417.272 1.12 9 417.272 85 18 

4 406.263 0.98 4 406.263 104 8 

5 384.066 1.25 4 384.066 89 6 

6 432.753 1.20 0 429.941 88 2 

7 404.780 1.50 12 404.780 71 22 

8 388.488 1.28 3 388.488 103 9 

9 430.844 1.09 3 430.844 94 9 

10 436.021 1.17 0 434.626 89 1 

Average 406.218 1.21 3.90 405.797 90.80 8.20 

Table B2 (1): The solution for the weighted case when n= 500 and p=3  
 

 

n=500 

p=5 

The Original algorithm (50 iteration) W4 

Z CPU Time Number  best  Z 
Total  

iteration 
Number 

 best  

1 262.450 2.06 1 262.450 91 1 

2 253.982 1.90 2 253.982 89 2 

3 255.964 1.81 1 255.964 84 1 

4 257.519 1.61 2 257.519 85 2 

5 242.913 2.14 1 242.912 82 2 

6 255.997 1.92 2 255.997 77 2 

7 270.636 1.67 2 270.636 87 3 

8 253.147 1.90 2 253.147 82 3 

9 265.047 1.94 2 265.047 89 3 

10 270.185 1.84 4 270.185 89 8 

Average 258.784 1.88 1.90 258.784 85.50 2.70 

Table B2 (2): The solution for the weighted case when n= 500 and p=5 
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n=500 

p=10 

The Original algorithm (50 iteration) W4 

Z CPU Time Number  best Z 
Total  

iteration 

Number 

 best  

1 178.401 3.34 0 176.776 78 1 

2 174.642 3.04 1 174.642 77 1 

3 184.247 2.81 1 184.247 76 1 

4 177.475 2.65 1 177.475 83 1 

5 170.282 2.90 1 170.282 83 2 

6 180.056 2.96 0 173.490 81 1 

7 187.300 2.48 0 186.395 78 1 

8 176.967 2.81 1 176.967 79 1 

9 182.002 2.79 1 182.002 88 1 

10 178.437 2.54 1 178.437 80 1 

Average 178.981 2.83 0.70 178.071 80.30 1.10 

Table B2 (3): The solution for the weighted case when n= 500 and p=10 

n=500 

p=15 

The Original algorithm (50 iteration) W4 

Z CPU Time Number  best Z 
Total  

iteration 

Number 

 best  

1 140.978 3.34 1 140.978 65 1 

2 148.664 3.28 0 140.151 67 1 

3 141.226 3.10 1 141.226 67 1 

4 149.071 3.09 1 149.071 73 2 

5 139.717 2.96 0 136.713 72 1 

6 148.664 3.12 1 148.664 68 1 

7 145.922 3.06 1 145.922 69 1 

8 147.960 3.32 1 147.960 68 1 

9 147.902 3.20 1 147.902 67 2 
10 150.579 2.96 1 150.579 70 1 

 Average 146.068 3.14 0.80 144.917 68.60 1.20 

Table B2 (4): The solution for the weighted case when n= 500 and p=15 

n=500 

p=20 

The Original algorithm (50 iteration) W4 

Z CPU Time Number  best  Z 
Total  

iteration 
Number 

 best  

1 128.871 3.68 0 121.147 64 1 

2 122.983 3.28 1 122.983 63 1 

3 127.269 3.67 1 127.269 63 2 

4 133.216 3.78 1 133.216 60 1 

5 116.464 3.43 1 116.464 63 1 

6 124.482 3.46 0 119.552 67 1 

7 123.568 3.50 1 123.568 65 1 

8 121.330 3.82 1 121.330 62 1 

9 135.477 3.54 0 128.252 67 1 

10 126.402 3.73 1 126.402 62 1 

Average 126.006 3.59 0.70 124.018 63.60 1.10 

Table B2 (5): The solution for the weighted case when n= 500 and p=20 
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Appendix C: Results for the Multi-Start 

  

Appendix C1:  

Table C1:  Best iteration number for the Multi-Start 

 

 

 

 

 

 

 

 

Appendix C2: 

Table C2: CPU time of the Multi-Start algorithm (for p=10 to 100 in increment of 10), 

Deviation (%) of CPU time for VNS2 (FNV4) (with and without learning) and VNS (CNV3) 

 

 

 

 

 

 

 

 

 

 

n          

p 
439 575 783 1002 1323 

10 2647 6477 7579 501 7299 

20 8579 105 2235 9315 5110 

30 214 1254 987 6462 3964 

40 8122 9218 9572 8270 3511 

50 2321 6629 3534 8775 2126 

60 6560 9600 6718 1555 5260 

70 321 4536 2210 7803 4928 

80 286 3859 5401 3149 3724 

90 6803 2341 4386 5964 3724 

100 7265 1674 5226 102 4512 

Average 4311.80 4569.30  4784.80 5189.60 4415.80 

Max 8579 9600 9572 9315 7299 



 

 

195 

 

n  p  

Total CPU 

time (10,000 

iterations) 

Deviation (%) 

VNS 

(CNV3) 

VNS2 (FNV4) Chen and Chen's results (Continuous Solutions) 

No Learning With Learning Improved relaxation (k=7) Binary relaxation (k=6) 

 439  

  

10 435.06 -97.12 -97.90 -98.71 -93.48 -99.39 

20 751.33 -98.93 -98.79 -95.89 -96.21 -99.44 

30 1018.99 -98.57 -98.06 -98.17 -86.74 -99.18 

40 1171.13 -96.81 -97.71 -98.52 -83.34 -97.07 

50 1730.06 -90.18 -18.80 -77.69 -86.22 -97.34 

60 1984.20 -93.79 -85.65 -65.82 -88.13 -99.12 

70 2087.36 -98.26 -43.11 -29.74 -89.53 -99.23 

80 1943.06 -66.12 -60.36 -67.57 -87.83 -99.07 

90 1988.14 -55.76 -52.08 -58.32 -89.66 -98.83 

100 1866.30 -21.71 -79.65 -56.01 -88.18 -98.90 

Average 1497.56 -81.73 -73.21 -74.64 -88.93 -98.76 

 575  

  

10 541.70 -97.42 -83.74 -59.64  N/A  N/A 

20 943.64 -76.58 -95.72 -88.07  N/A  N/A 

30 1190.15 -79.64 -54.51 -0.302  N/A  N/A 

40 1436.05 -60.13 -55.56 -76.23  N/A  N/A 

50 1766.35 -21.71 -75.04 -49.31  N/A  N/A 

60 1789.30 -89.54 -20.20 -49.45  N/A  N/A 

70 2143.63 -33.05 -24.16 -8.64  N/A  N/A 

80 2167.66 -14.64 -48.47 -4.31  N/A  N/A 

90 2307.93 -40.44 -16.08 -26.76  N/A  N/A 

100 2531.67 -45.85 -1.71 -6.35  N/A  N/A 

Average 1681.81 -55.90 -47.52 -36.91  N/A N/A 

 783  

 

10 909.64 -96.28 -54.97 -98.76  N/A  N/A 

20 1555.44 -53.55 -86.95 -96.41  N/A  N/A 

30 2055.59 -75 -87.70 -44.81  N/A  N/A 

40 2403.09 -39.61 -21.90 -22.59  N/A  N/A 

50 2514.47 -76.16 -20.60 -71.57  N/A  N/A 

60 2842.81 -5.07 -36.35 -10.40  N/A  N/A 

70 3154.78 -6.07 -5.27 -49.62  N/A  N/A 

80 4466.13 -2.57 -25.35 -36.96  N/A  N/A 

90 3646.99 -7.75 -56.64 -20.81  N/A  N/A 

100 4075.51 -36.41 -0.82 -36.49  N/A  N/A 

Average 2762.45 -39.85 -39.66 -48.84  N/A N/A 

1002  

 

10 947.82 -97.50 -96.55 -95.41  N/A  N/A 

20 1627.17 -95.08 -37.01 -89.16  N/A  N/A 

30 2562.06 -65.53 -93.91 -94.75  N/A  N/A 

40 2959.21 -71.90 -91.43 -69.57  N/A  N/A 

50 3682.88 -27.86 -73.94 -8.02  N/A  N/A 

60 4520.70 -35.30 -22.88 -54.82  N/A  N/A 

70 6640.19 -1.34 -12.72 -32  N/A  N/A 

80 7026.19 -9.43 -37.66 -73.85  N/A  N/A 

90 6883.15 -19.41 -43.27 -3.09  N/A  N/A 

100 7131.51 -30.99 -83.40 -59.14  N/A  N/A 

Average 4398.09 -45.43 -59.28 -57.98  N/A N/A 

1323  

 

10 1584.92 -97.24 -92.38 -93.71  N/A  N/A 

20 2439.18 -79.21 -54.79 -83.56  N/A  N/A 

30 3454.57 -57.81 -64.61 -4.88  N/A  N/A 

40 4093.15 -38 -52.77 -43.21  N/A  N/A 

50 5677 -74.06 -8.43 -38.76  N/A  N/A 

60 6527.83 -30.60 -40.33 -23.18  N/A  N/A 

70 7515.28 -2.27 -12.72 -29.97  N/A  N/A 

80 7905.08 -37.57 -2.68 -7.10  N/A  N/A 

90 8417.76 -18.16 -4.46 -70.28  N/A  N/A 

100 9015.06 -72.97 -3.49 -89.70  N/A  N/A 

Average 5662.98 -50.79 -33.67 -48.44  N/A N/A 

Overall  Average 3200.58 -54.74 -50.67 -53.36  N/A N/A 

k:is the best recorded value in Chen and Chen (2009). 
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Appendix D: Results with version β in forbidden regions  

The following Table shows the results of Enh 2 with forbidden regions for the three selection 

rules (a, b, c), when 𝛽=0.1. 

 

Table D : Effect of forbidden region on the three selection rules (a, b, c) of Enh2 with 𝛽=0.1 

n = 439   

 TSP-Lib The 

optimal  

solution Z 

Selection (a)  Selection (b)  Selection (c)  

p 

Deviation 

% 

(Z) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

Deviation 

% 

(Z) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

Deviation 

% 

(Z) 

# 

Switch-

es 

#   

Cplex 

Calls 

CPU 

Time 

(sec) 

10 1716.5099 5.95 4 53 13.53 5.95 4 54 14.34 5.95 5 65 17.68 

20 1029.7148 0 12 142 29.35 0 9 105 28.06 0 12 135 35.00 

30 739.19297 6.48 9 102 22.43 6.75 11 107 26.32 6.48 10 108 29.56 

40 580.00539 7.37 12 108 35.47 7.82 14 135 40.30 7.37 16 144 47.71 

50 468.54162 12.18 18 167 40.33 8.04 21 184 56.38 10 25 224 55.36 

60 400.19527 9.37 23 195 52.16 10.60 24 219 53.59 10.19 19 166 44.16 

70 357.94553 11.37 35 292 103.22 9.71 31 273 83.55 9.38 43 339 115.63 

80 312.5 18.93 20 167 54.01 11.42 35 287 90.92 18.93 21 174 55.98 

90 280.90256 8.64 36 281 111.82 11.25 36 304 117.56 8.64 44 353 117.20 

100 256.68019 9.12 36 290 118.57 8.89 26 198 79.11 8.89 32 260 90.66 

 Average 614.21882 8.94 20.5 179.7 58.09 8.04 21.1 186.6 59.01 8.58 22.7 196.8 60.89 
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Appendix E: Contributions to the Research  

The main research contributions are highlighted. These include presentations at 

international conferences in Operational Research, as well as the papers that are published, 

under revision or in preparation. 

Journals 

1- Elshaikh A., Salhi S., & Nagy, G. (2015). The continuous p-centre problem: An 

investigation into variable neighbourhood search with memory. European Journal of 

Operational Research, 241: 606–621. This is mainly based on Chapters 2 and 3. 

 

2- Elshaikh A., Salhi S., Brimberg J., Mladenović N., Nagy, G. & Callaghan, B., (2014). 

Adaptive Perturbation-Based Heuristics: An Application for the Continuous p-centre 

Problem. Computers & Operations Research, (revision submitted). This is mainly 

based on Chapter 4. 

 

3- Elshaikh A., Salhi S., & Brimberg J., & Mladenović N. (2014). Reformulation Local 

Search Methodology for the Continuous p-centre Problem, (in preparation). This is 

based on Chapter 5. 

Conferences 

1- Salhi S., & Brimberg J., Mladenović N., & Elshaikh A.  Variable neighbourhood 

search for the Continuous p-centre problem. MIC2011, Udine, Italy, 25-28 Jul 2011. 

This research is from Chapter 3. 

 

2- Elshaikh A., Salhi S., & Nagy, G. Variable Neighbourhood Search (VNS) Based 

Approaches for Continuous p-entre location problems. XXVI EURO-INFORMS, 

Rome, 1-4 July 2013. This is mainly based on Chapters 2 and 3. 

 

3- Elshaikh A., Salhi S. & Nagy, G. A Perturbation-based heuristic with learning for 

solving p-centre location problem. 20
th

 conference of the international federation of 

operational research societies, Barcelona, 13-18 July 2014. This work is from  

Chapter 4. 


