
Johnson, Colin G. (1999) Exploring the sound-space of synthesis algorithms 
using interactive genetic algorithms.  In: Patrizio, A. and Wiggins, G.A. 
and Pain, Helen, eds. Proceedings of the AISB '99 Symposium on Musical 
Creativity. Society for the Study of Artificial Intelligence and Simulation 
of Behaviour, Brighton, UK, pp. 20-27. ISBN 1-902956-00-1. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21844/ The University of Kent's Academic Repository KAR 

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/21844/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Exploring the sound-space of synthesis algorithms using
interactive genetic algorithms.

Colin G. Johnson.
Department of Computer Science,

University of Exeter, The Old Library,
Prince of Wales Road, Exeter, EX4 4PT.
Email : C.G.Johnson@ex.ac.uk

Abstract

Exploring the sounds available from a synthesis algorithm is a complicated process, requiring the user either to spend
much time gaining heuristic experience with the algorithm or requiring them to have a deep knowledge of the underlying
synthesis algorithms. In this paper we describe a computer system which facilitates a more exploratory approach to
sound design, allowing the user to work at the level of the sounds themselves. In this system the synthesis parameters are
managed by a genetic algorithm, which is directed by the users’ judgements about the sounds in the system. We describe
the development of a prototype version of this system, concentrating on an interface to theFOF granular synthesis
algorithm fromCSound.

1 Introduction

Most sound synthesis algorithms are complex, and typ-
ically have correspondingly complex interfaces, requir-
ing the specification of many parameters to achieve a de-
sired sound. To produce a sound using such an algo-
rithm typically requires one of two processes to be car-
ried out. Either the user must understand the technical
details of sound production (as detailed in e.g. (Wishart,
1994, 1996)) or they must gain sufficient heuristic experi-
ence with the algorithm by studying existing applications
and experimenting with modifications to the parameters.
In this paper we would like to present a new type of in-
terface for sound synthesis algorithms, which facilitates
an exploratory approach to the sounds that are able to be
produced by the algorithm. This approach is based on
interactive genetic algorithms. In sections 2 and 3 we re-
view the idea of interactive genetic algorithms and some
applications thereof, then in section 4 we describe a sim-
ple implementation of the idea. Sections 5 and 6 contain
a discussion of the system and a detailed description of
ongoing work.

One of the advantages of such a system is that it fa-
cilitates the exploration of the timbral characteristics of
a synthesis algorithm. It is easy to explore the space of
all melodies by picking out patterns on a guitar or pi-
ano, and rhythmic exploration is literally at our finger-
tips. The idea of exploring timbral and spectral quali-
ties of sound is, however, typically restricted to choosing
from a discrete set if instrumental colours, a restriction
bemoaned by Trevor Wishart in his recent bookAudible
Design(Wishart, 1994) :

“The spectral characteristics of sound have,
for so long, been inaccessible to the com-
poser that we have become accustomed to
lumping together all aspect of the spectral
structure under the catch all term “timbre”
and regarding it as an elementary, if unquan-
tifiable, property of sounds. Most musicians
with a traditional background almost equate
“timbre” with instrument type . . . ”

It is hoped that the development of systems such as
those described in this paper will provide powerful tools
for the exploration of such characteristics of sound. This
leads the user towards the production of genuinelynew
sounds which are not the product either of analogies with
conventional instruments, nor with the facile exploitation
of obvious properties of the algorithms used.

2 Interactive genetic algorithms

Genetic algorithms (see (Goldberg, 1989; Mitchell, 1996)
for comprehensive surveys) are a computing methodology
inspired by evolutionary biology. Their origins lie in find-
ing good solutions to complex engineering design prob-
lems, where it is possible to decide how good a particular
potential solution is, but where there is little explicit infor-
mation available from that solution as to how to improve
the solution. Instead of trying to make improvements on
a single design, a population of solutions is maintained,
and an iterative process of choosing the best solutions,
then creating a new population of (better) solutions by
combining aspects of the good solutions and mutating ex-



isting good solutions. The underlying representation of
these solutions is as bit-strings, which encode a list of pa-
rameters defining a solutions. Here is some pseudocode.

BEGIN
Create a random set of
initial solutions
LOOP :

Choose a subset of good solutions
according to some
‘‘fitness measure’’.
Perform recombination on randomly
chosen pairs of solutions.

Perform mutation on randomly
chosen solutions.

UNTIL (population is stable)
END

In traditionalapplications of genetic algorithms choice
of solutions is carried out by a fixedfitness function, which
measures how good a solution is at solving a particular
problem. However in the work below we will use the
idea of interactivegenetic algorithms, where the fitness
measure is given by a human user interacting with the
algorithm. In traditional genetic algorithms the fitness
measure is a given by a fixed function, for example in
an engineering design problem the fitness of a solution is
a measure of how successful that particular design is. It
is assumed that a good design will be made up of good
components, and thus the probability of a particular de-
sign being used as the “parent” of a design in the next
generation depends upon its fitness. In an interactive ge-
netic algorithm a number of “solutions” are presented to
the user of the system, who then assigns fitness values or
rankings to the various solutions based either on aesthetic
judgements or on the subjective sense of how close the
solution is to a desired ideal solution.

3 Review

The idea of “evolutionary interfaces” is not new. The first
implementation of these ideas is due to Dawkins (Dawkins,
1989, 1990), who used created the “biomorphs” system
to explore some ideas in evolutionary theory. This sys-
tem consists of simple two dimensional bitmap pictures,
which are initially generated by uniform random selection
from the set of all such pictures. The user then chooses
which pictures they find most aesthetically pleasing, or
which are closest to some ideal picture that they are look-
ing for. The system then takes each picture and assigns
them a weight according to the score/ranking given to
them by the user. The next generation of pictures to be
presented to the user consists of new pictures which have
been created from the originals by choosing pairs of pic-
tures and combining them together by choosing regions
from each of the two “parent” pictures at random.

Initially this work was designed as a tool for illus-
trating and exploring theories in evolutionary biology, but

Dawkins began to regard it as an artistic tool. A similar
idea was being explored at around the same time by Todd
and Latham (Todd and Latham, 1992), who used sophis-
ticated computer-aided design systems combined with an
evolutionary interface to create abstract pictures, includ-
ing both still pictures and animations. Other similar work
is described in Sims (1991). A more down-to-earth ap-
plication of similar techniques is described in Caldwell
and Johnston (1991), who have created an elegant system
which allows witnesses to a crime to explore the space of
possible faces as an aid to the identification of suspects.

A number of researchers have made use of the idea of
combining genetic algorithms as a creative tool in music.
A number of projects (Horner and Goldberg, 1991; Nel-
son, 1993, 1995; Putnam, 1994) have explored the use of
evolutionary interfaces as a way of exploring the space of
melodies. A more sophisticated implmentation of this is
the work in Biles (1994, 1995); Biles et al. (1996); Biles
(1998), who has created a system calledGenJamwhich
uses similar techniques to generate jazz solos, with the
fitness function being supplied by a trainer or (more in-
terestingly) by audience input. Two other projects have
used genetic algorithms for musical purposes. Horowitz
(1994) describes the creation of a tool to facilitate the evo-
lution of rhythmic patterns and Takala et al. (1993) have
looked into matching musical ideas to animation. How-
ever none of these studies have applied these techniques
to providing a better interface to the synthesis of sounds
themselves, the sounds being generated using standard
synthesis or sampling techniques.

4 Some experiments

In order to experiment with the idea of an evolutionary
interface for the generation of individual sounds we have
implemented a simple system based on the well-known
(and freely available)CSoundsound synthesis system (Ver-
coe, 1992). ACSoundprogram consists of two files. The
first is theorchestrafile which specifies a number of vir-
tual instruments which are created using various synthe-
sis and sound processing algorithms either drawn from
the large number included in the system or written by the
user using theC programming language. The second file
is the score file which initiates these virtual instruments
by specifying when they should play and what parame-
ters they should use to create that particular sound-event.

We have been investigating a number of the algorithms
available in theCSoundlanguage, concentrating on those
where many parameters are required to specify a particu-
lar sound. Algorithms which seem particularly appropri-
ate for this method are theFOF granular synthesis algo-
rithm and the Karplus–Strong plucked sound algorithm,
implemented inCSoundaspluck.



4.1 Implementation

For the purposes of this paper we shall describe the im-
plmentation of an interface to theFOF granular/formant
synthesis algorithm (Clarke, 1992). Granular synthesis
(Roads, 1978) is a technique for synthesizing sounds which
is based on the idea of creating a complex sound by cre-
ating a random cloud of tiny sounds within given param-
eter ranges (see figure 1). In this case the sounds con-
sist of thousands of short sinewave bursts, and we can ad-
just many parameters (e.g. fundamental frequency, pitch
range, length of grains) to change the characteristics of
the overall emergent sound.

Pitch

Time
A grain-stream in timeA single sonic grain

Figure 1: Granular synthesis.

To specify a sound-generation process usingFOF we
use the following command in theCSoundprogramming
language,

ar fof xamp, xfund, xform, koct, kband,
kris, kdur, kdec, iolaps, ifna, ifnb, itotdur
[, iphs] [, ifmode]

where each of the italicised expressions is a parame-
ter, for examplexfundspecifies the fundamental frequency
around which the grains are generated (details of all the
parameters can be found in (Vercoe, 1992; Clarke, 1992)).
To add to the complexity some of these parameters can
take values which are non-constant during a sound-event,
so for example the fundamental frequency may descend,
ascend, leap about or whatever to achieve a particular ef-
fect. Such events are achieved by setting the parameter
value equal to a time-varying curve or stochastic process
instead of simply specifying a fixed value. In our first
implementation of the algorithm, however, all of the pa-
rameters are encoded as constants.

Each sound is encoded as a112(= 16 � 7) bit bi-
nary string, which is turned into a sound via three stages.
In the first stage the binary string is split into 7 16-bit
substrings, and these are then converted into 7 integersn0; : : : ; n6. These numbers are then scaled in the follow-
ing way, to provide parameter ranges which produce sen-
sible results from theFOF algorithm. These scalings were
created through empirical experience with the algorithm.xamp = n02:5 + 5000xfund = n1=70 + 200

xform = n2=35 + 200koct = int(n3=9000)kband = int(n4=2000)kdev = 100=n5kdec = 100=n6
Once the string has been converted into a set of pa-

rameters these parameters are strung together to create an
FOF command.

ar fof xamp, xfund, xform, koct, kband,
kris, kdur, kdec, 5, 1, 2, p3

This command is then embedded into a standard or-
chestra file, a modified version of the example file given
in (Clarke, 1992).

The system begins by generating an initial popula-
tion of 9 sounds, chosen by randomly generating 112-
bit binary strings with a uniform probability distribution.
These sounds form the initial population. We then com-
mence a loop. In each round of the loop orchestra files
corresponding to those sounds currently in the popula-
tion are created, and the sounds are then played using a
standard score file which plays each sound for one sec-
ond, The user then assigns a numerical ratingrs, wheres = 1; : : : ; 9 to each sound, which measures how close
the sound is to the desired sound, or how aesthetically
pleasing the sound is. The ratings are then added to give
a totalt, and each sound-string is assigned a probabilityps = rst for eachs = 1; : : : ; 9.

These probabilities are then used to choose pairs of
“parents” for the next generation. For each member of
the new population two “parent” stringsP1;P2 are cho-
sen, with probabilityps of choosing sounds (note thatP9s=1 ps = 1). This is (Goldberg, 1989)roulette-wheel
selection(see figure 2). Then a random number in the
range0; : : : ; 112 is chosen, and the parent strings are sliced
at that distance along the string, the beginning ofP1 be-
ing attached to the end ofP2 and vice versa. These new
strings then become member of the new population. The
process is repeated until a new population is created (an
alternative (Syswerda, 1989, 1991) would be to replace
one member of the population at a time, i.e. in this ap-
plication replacing the least desired sound with a new
sound). The idea behind this recombination procedures
is that it facilitates desired parameter values from two dif-
ferent sounds being brought together.

In the final stage of the loop each bit of the string rep-
resenting each sound in the population is mutated (flipped
from 1 to 0 or vice versa) with a probability of 0.1 per bit.
This facilitates “local” exploration of the sound-space, as
a small number of bit-flips will change the parameters
only slightly. The mutation probability was chosen by
empirical experience with the system, and is much higher
than the typical value found in non-interactive genetic al-
gorithm systems. A variant on this mutation scheme is
discussed below.



37

8

Total score = 100

Sound 1

...

...
Sound 3 

Sound 2

27

10
18

Figure 2: Roulette wheel selection based on scores allo-
cated to the various sounds heard by the user. A sector of
the wheel is chosen at random, the probabilityof selection
being weighted by the score allocated to that sound. The
sound corresponding to that sector is then used as one of
the parents for the new sound.

As a summary, here is a pseudocode description of the
algorithm.

BEGIN
Create a random set of initial sounds
LOOP :

Decode the solutions, and write
a CSound orchestra file defining
the instruments.

Play each of the 9 sounds using
a system call to CSound and a
standard score file.

Ask the user to assign scores to
the current sounds in the
population.

Choose pairs of sounds for
recombination using the
roulette-wheel selection.

Perform mutation on randomly chosen
solutions.

UNTIL (a desired sound is found)
Store the orchestra file which
generated the sound.
END

This system has been implemented inJava, using sys-
tem calls and file dumps to interact withCSound. When
a solution-string is decoded the program writes an appro-
priate orchestra file. Here is a code-fragment :

String tempString = new String();
String fileName = new String();

fileName = "sound"+whichSound+".orc";
DataOutputStream orcFile = new
DataOutputStream(new

FileOutputStream(fileName));

tempString =
"sr = 22050\nkr = 441\nksmps = 50\n\n";
tempString += "instr 1\n";
tempString += "a1 fof ";
tempString +=
currentSolutions[whichSound]
.parameterList();

tempString += "\n out a1 \n endin\n";

orcFile.writeBytes(tempString);

TheCSoundprogram itself is then called :

String tempString = new String();
tempString = "csound -v -o

devaudio sound";
tempString += whichSound;
tempString += ".orc mainScore.sco";
Process p;
p = Runtime.getRuntime()

.exec(tempString);
p.waitFor();

Regrettably the use of theexec command (which dumps
a string onto the command line) interferes with the platform-
independence of the program, as different kinds of com-
puter require theCSoundprogram to be called in different
ways. This command is used to callCSoundand play a
one-second “note” using the orchestra file that has been
written.

4.2 Interface

The interface for the system is illustrated in figure 3. At
any one time the user is able to play any one of 9 sounds
by pressing the buttons along the top of the window, and
to rate these sounds by sliders situated below the button.

Figure 3: Interface for the evolutionary synthesizer.



An evolvebutton is at the bottomof the window, which
causes the genetic algorithmto act on the sounds using the
current fitness values as set by the sliders. After this has
happened the sliders are reset to zero. There is an implicit
fitness scalingprocess going on here. In traditional ge-
netic algorithms fitness scaling Goldberg (1989) is a pro-
cess where the mapping between fitness values and prob-
ability of being chosen is nonlinear, in a way that means
that small difference in fitness values close to “the opti-
mum” are weighted more that similar small differences
far away from this optimum. The idea is that as the so-
lutions become more fit then the overall fitness spectrum
of the population decreases, making these small differ-
ences more important. This effect happens automatically
here. A user searching for a particular sound will at first
rate any sound that sounds vaguely like the desired one
highly. However after a few rounds, when all the sounds
are within a neighbourhood of the desired sound, the user
make much finer judgements as to which sounds are really
close to the desired one.

Figure 4 illustrates some extensions which we are cur-
rently working on to improve the flexibility of the inter-
face. One aspect of this is allowing more careful oper-
ations on the individual sounds. The four buttons in the
lower left-hand corner of the window facilitate this. If
a sound is particularly interesting, then we can apply a
mutation operator to just that sound in order to explore
sounds that are close to it in parameter space. If a sound
doesn’t fit in with the currently explored sound at all, or
we would like to introduce some completely new mate-
rial, then we can choose to randomize a particular sound.
Another facility is to store sounds that are of interest, and
then reinclude these sounds at a later time. The idea is
that particularly interesting sounds can be dragged into
the “sound storage” box in the middle left of the inter-
face, and then reintroduced into the population at a later
time. Applications of this idea are discussed in section 5
below.

An important aspect of human computer interaction
is the idea that a computer system should allow the user
to make use of their increased knowledge about the sys-
tem as they use it more frequently (Preece et al., 1994).
In this case, as the user becomes more experienced with
and knowledgeable about a particular synthesis algorithm
they may gain some feel for how the various parameters
affect the sound. Such knowledge can be exploited by
adjusting the controls to the bottom right of the window,
which affect not the absolute values of those parameters
but the amount the algorithm exploresthose regions of pa-
rameter space, i.e. the extent to which corresponding re-
gions of the genome are mutated. There is also a slider to
adjust the overall exploration rate, which adjusts the rate
of mutation and recombination within the population.

4.3 Evaluation

It had been hoped before commencing the experiments
with this technique that two features would be observed.
Firstly that the initial random process would generate a
population that was sufficiently heterogeneous to give the
user a basis for making the ratings. Even with the naive
algorithm used above, which chooses sounds at random
with only crude restrictions on the parameter space, a
wide variety of sounds is produced, ranging from contin-
uous sounds of various degrees of “smoothness” through
to short percussive sounds.

The second feature that was hoped for was that nav-
igation through the sound-space would be practical and
easy. Again this has turned out well. If the user chooses
a particular type of sound from the initial population then
it is simple to converge to sounds having generally sim-
ilar characteristics within three or four iterations of the
algorithm, and a few more iterations allow a more refined
exploration of that particular region of sound space. It is
also easy to explore the general capabilities of the synthe-
sis algorithm—after a few sessions with the system the
user will have built up a good general feel for the types of
sounds thatFOF can generate, which is otherwise a long
process.

At present we are working on a more formal evalua-
tion of this system, which will compare these interfaces
with other ways of interacting withCSound. It is im-
portant that this evaluation includes feedback from users
who are both experienced and not experienced with the
CSoundsystem, as the system is designed to be both a
tool capable of being used by experienced electroacous-
tic musicians, as well as a tool for beginners who want to
learn about the scope of the synthesis algorithms available
in CSound.

5 Discussion and ongoing work

Some of our ongoing work is concerned with extending
the range of synthesis algorithms that can be explored us-
ing this kind of methodology, and in extending and evalu-

Sound 7 Sound 8

Sound storage

Replace a chosen sound 

The Evolutionary Synthesizer (extended interface)

Evolve

Exit

Mutate a chosen sound 

Sound 6

Randomize all sounds Randomzize one sound

Sound 1 Sound 2 Sound 5Sound 4Sound 3 Sound 9

Parameters :

Amplitude
Formant frequency

Speed of exploration 

Fundamental frequency

Formant bandwidth

Figure 4: Extending the interface.



ating the different ways of interacting with the population
of sounds as discussed above. In this section we will dis-
cuss some further extensions to this work.

One idea discussed above was the addition of a facil-
ity to allow the user to store certain sounds and put them
into the population at appropriate times to guide the evo-
lution of a population in a particular direction. The aim
here is to be able to design sounds by analogy. A sim-
ilar aim has been described by Eduardo Reck Miranda
(Miranda, 1995a) in the context of creating an inductive
learning system for sound synthesis:

“Producing a desired sound on a musi-
cal instrument, a clarinet for example, fun-
damentally depends on sub-cognitive physi-
cal skills . . . If we ask out clarinettist to play
a melancholy sound she would have no diffi-
culty imagining a suitable sound and produc-
ing one that satisfies our request. If instead
our clarinettist turns to computer sound syn-
thesis, this lack of an explicit understanding
of how imagined sounds are produced and
described presents significant problems.”

The idea is that we may come across sounds that are “melan-
choly” in character as part of our explorations. We can
save the algorithms that create these sounds. Then if we
would like to add some “melancholy” aspects to a com-
pletely different sound we can reintroduce the original
sounds into the population, and hope that the melancholy
nature of the original melancholy sounds is generated by
a similar process to the process that we would like to use
to create melancholy variants on the new sounds.

It is interesting to speculate on whether this would
work. How are such qualities contained within a sound?
Perhaps different regions of the parameter space contain
the same “quality” but the underlying process creating
this quality is different—it is only at the perceptual level
that we fuse these concepts. Indeed it may be possible to
use such a tool as this to explore the connections between
perception of qualities of sounds and their realization in
terms of a particular algorithm, by letting a user explore
a system for sounds with a particular subjective quality
such as melancholy and seeing where these sounds lie in
the parameter space of the algorithm.

Biologically we can think of this as being similar to
“convergent evolution”, where the same phenotypic qual-
ity emerges through different evolutionary paths (Cronin,
1993; Sigmund, 1993). There is also some common ground
with the subsymbolicapproach to artificial intelligence
(Brooks, 1991a,b; Partridge, 1991).

One alternative pathway to creating such effects might
be to learn (e.g. statistically, by carrying out some kind of
mathematical analysis or by using neural networks) the
qualitative features of the route taken through evolution-
ary space to get to a particular sound. This information
could then be reused to guide explorations in new re-
gions of sound-space, if the initial exploratory strategy

had proven particularly effective. This fits into a broad
program of using the information gained as a genetic al-
gorithm progresses to inform future runs of the algorithm.

A more immediately practical use for this type of al-
gorithm would be finding parameters for a particular syn-
thesis algorithmwhich match a particular real-world sound
sample. It is impractical to store all of the possible real-
instrument sounds as samples within a sound generator,
so there is a need to compress the information down by
synthesizing some (as in “sample and synthesis” algo-
rithms) or all of the sound. In programming a synthesizer
to play sounds which sound like an acoustic instrument
we take a synthesis algorithm (such as the Karplus-Strong
algorithm for generating plucked and drum-like sounds
(Karplus and Strong, 1983; Jaffe and Smith, 1983)) and
find parameter settings which match the desired acous-
tic effect as closely as possible. This is clearly time-
consuming to carry out manually. It should be possible to
simplify this process by using a (non-interactive) genetic
algorithm which rates sounds according to their similarity
to a given sound-sample, using measures such as the am-
plitude profile of the sound and the spectral characteristics
as fitness measures.

Other possibilities involve using this kind of system
as a compositional tool. The idea of sounds transform-
ing into one another is a well-used compositional tech-
nique in electroacoustic music. Some ideas about how
to achieve these transformations have been described in
Wishart (1994), and the technique has been used by com-
posers including Wishart, Kaija Saariaho and Jonathan
Harvey. A particularly elegant example of this occurs in
Harvey’sMortuos Plango, Vivos Vocowhere sounds such
as voice and oboe, or bell and voice, are merged into one
another by spectrally decomposing the sounds and then
interpolating between the sounds by changing the amount
of the spectral components of each sound used in creating
the new sound.

A similar idea may be achieved using the ideas above.
We can seed an initial population with two very different
sounds produceable by a given algorithm, and then find
intermediate sounds for use in a composition by the evo-
lutionary process. Alternatively the composer could start
with a very focused sound world, and work outwards us-
ing the sounds generated via evolutionary exploration to-
wards sonic diversity as a sonic event develops, or exploit
the reverse process of beginning with a complex sound
space and working inwards towards a single kind of sound.

We have also begun to experiment with the different
synthesis algorithms found in theCSoundsystem.CSound
offers a wide variety of synthesis algorithms, and this evo-
lutionary exploration methodology offers a universal in-
terface to allow the composer to explore the capabilities
of any of the algorithms found in the system.

In order to achieve richer harmonic structures we can
layer the results of several synthesized sounds. This is
used, for example, to create vocal-type effects using granular-
style synthesis such asFOF (Vercoe, 1992). In order to



achieve this effect we have been experimenting with differing-
length encodings (akin to “messy genetic algorithms” (Gold-
berg et al., 1989, 1990)), where an additional genetic op-
erator of duplication is included in the algorithm. A pop-
ulation is created consisting of single sounds, and from
time to time the genome adds another length onto the
end, representing an additional sound which is layered on
the first sound. We are also experimenting with sound
processingwhere we take a sound (either a sound co-
evolved with the the processing by the above interface
or a sampled sound brought into the system) and apply
an amplitude envelope or spectral transformation. Again
these sound processing algorithms are frequently complex
multi-parameter systems and thus suited to the evolution-
ary interface described above.

These ideas lead onto a unifying idea of using age-
netic programmingmethodology for sound synthesis (Koza,
1992). In genetic programming a whole sequence of pro-
cedures are encoded into a string by a more complex ver-
sion of the procedure described above, and manipulated in
a similar way. This allows the system to simultaneously
evolve the parameters of the individual program compo-
nents and the number and type of components used in the
algorithm. We are looking at how we can use this genetic
programming approach to evolve complex instruments,
which could incorporate modules which carry out enve-
lope generation, randomness generators, sound synthesis
algorithms and sound processing algorithms.

6 Coda

In this paper we have described a new style of interface
for complex sound synthesis algorithms. Another com-
putational technique, genetic algorithms, has been shown
to be applicable to sound synthesis, much as cellular au-
tomata (Miranda, 1995b) and fractals (Waschka II and
Kurepa, 1989) have been applied in the past. It is exciting
to witness this fecund crossover between developments in
computing and mathematics, and their application to the
provision of practical tools for creative artists.

In particular it is interesting to use these computa-
tional techniques to provide interfaces to creative systems
in a way that provides access at the level of a usable artis-
tic tool. This has been emphasized in the recent article
Miranda (1995a) :

“Modern computer technology enables the
production of a virtually limitless variety of
sounds by providing substantial access tot he
parameter settings of synthesis algorithms. How-
ever, the production of sounds by means of
a synthesis algorithm is accomplished in a
very old-fashioned way: by inputtingstreams
of numerical values for each single desired
sound. Furthermore, these numerical values
are usually worked out manually. The imag-
ination of the composer in this case easily

becomes vulnerable to time consuming, non-
musical tasks.

We believe that the power of the com-
puter could also (a) provide the composer with
better ways of expressing his or her requests
to a synthesis algorithm and (b) provide ap-
propriate aid for the exploration of sonic ideas.”

In this paper we have described the beginnings of one
such system, liberating the composer from technical con-
straints, and instead allowing structured yet exploratory
access to the complexity of modern synthesis algorithms.

Notes

Copies of the programs described in this paper are avail-
able from the author on request.

References

Richard K. Belew and Lashon B. Booker, editors.Pro-
ceedings of the Fourth InternationalConference on Ge-
netic Algorithms. Morgan Kaufmann, 1991.

John A. Biles. GenJam: A genetic algorithm for generat-
ing jazz solos. InProceedings of the 1994 International
Computer Music Conference, 1994.

John A. Biles. GenJam Populi: Training an IGA via
audience-mediated performance. InProccedings of the
1995 International Computer Music Conference, 1995.

John A. Biles. Interactive GenJam: Integrating real-time
performance with a genetic algorithm. InProceedings
of the 1998 International Computer Music Conference,
1998.

John A. Biles, Peter G. Anderson, and Laura W. Loggi.
Neural network fitness functions for an IGA. InPro-
ceedings of the International ICSC Symposium on In-
telligent Industrial Automation (ISA’96) and Soft Com-
puting (SOCO’96), March 26–28, Reading, UK, pages
B39–B44. ICSC Academic Press, 1996.

Rodney A. Brooks. Intelligence without reason. Tech-
nical Report (A.I. Memo No. 1293), Massachusetts In-
stitute of Technology Artifical Intelligence Laboratory,
April 1991a.

Rodney A. Brooks. Intelligence without representation.
Artificial Intelligence, 47:139–159, 1991b.

Craig Caldwell and Victor S. Johnston. Tracking a crim-
inal suspect through “face-space” with a genetic algo-
rithm. In Belew and Booker (1991).

J.M. Clarke. An FOF synthesis tutorial. Appendix 4 of
the CSound manual, 1992.



Helena Cronin. The Ant and the Peacock. Cambridge
University Press, 1993.

Richard Dawkins. The evolution of evolvability. In Lang-
ton (1989), pages 201–220.

Richard Dawkins.The Blind Watchmaker. Penguin, 1990.

David E. Goldberg.Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley,
1989.

D.E. Goldberg, K. Deb, and B. Korb. Messy genetic al-
gorithms revisited : Studies in mixed size and scale.
Complex Systems, 4:414–444, 1990.

D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algo-
rithms : Motivation,analysis, and first results.Complex
Systems, 3:493–530, 1989.

Andrew Horner and David E. Goldberg. Genetic al-
gorithms and computer-aided music composition. In
Belew and Booker (1991).

Damon Horowitz. Generating rhythms with genetic algo-
rithms. InProceedings of the 1994 International Com-
puter Music Conference, 1994.

David Jaffe and Julius Smith. Extensions of the Karplus-
Strong plucked-string algorithm. Computer Music
Journal, 7(2), 1983.

Kevin Karplus and Alex Strong. Digital synthesis of
plucked-string and drum timbres.Computer Music
Journal, 7(2), 1983.

John R. Koza.Genetic Programming : one the program-
ming of computers by means of natural selection. Se-
ries in Complex Adaptive Systems. MIT Press, 1992.

Christopher G. Langton, editor.Artificial Life. Addison-
Wesley, 1989.

Eduardo Reck Miranda. An artificial intelligence ap-
proach to sound design.Computer Music Journal, 19
(2):59–75, 1995a.

Eduardo Reck Miranda. Granular synthesis of sounds by
means of a cellular automaton.Leonardo, 28(4):297–
300, 1995b.

Melanie Mitchell. An Introduction to Genetic Algo-
rithms. Series in Complex Adaptive Systems. Bradford
Books/MIT Press, 1996.

Gary Lee Nelson. Sonomorphs: An application of genetic
algorithms to the growth and development of musical
organisms. InProceedings of the Fourth Biennial Art
and Technology Symposium, pages 155–169. Connecti-
cut College, March 1993.

Gary Lee Nelson. Further adventures of the Sonomorphs.
Conservatory of Music Report, Oberlin College, 1995.

Derek Partridge.A New Guide to Artificial Intelligence.
Ablex, 1991.

Jenny Preece, Yvonne Rogers, Helen Sharp, David
Benyon, Simon Holland, and Tom Carey.Human–
Computer Interaction. Addison-Wesley, 1994.

Jeffery B. Putnam. Genetic programming of music. Re-
port, New Mexico Institute of Mining and Technology,
1994.

Gregory J.E. Rawlins, editor.Foundations of Genetic Al-
gorithms. Morgan Kauffmann, 1991.

Curtis Roads. Granular synthesis of sounds.Computer
Music Journal, 2(2):61–68, 1978.

J.D. Schaffer, editor. Proceedings of the Third Inter-
national Conference on Genetic Algorithms. Morgan
Kauffmann, 1989.

Karl Sigmund.Games of Life. Oxford University Press,
1993.

Karl Sims. Artifical evolution for computer graphics.
Computer Graphics, 25(4):319–328, 1991.

Gilbert Syswerda. Uniform crossover in genetic algo-
rithms. In Schaffer (1989).

Gilbert Syswerda. A study of reproduction in generational
and steady-state genetic algorithms. In Rawlins (1991).

T. Takala, J. Hahn, L. Gritz, J. Geigel, and J.W. Lee. Us-
ing physically-based models and genetic algorithms for
functional composition of sound signals, synchronized
to animated motion. InProceedings of the 1993 Inter-
national Computer Music Conference, 1993.

Stephen Todd and William Latham.Evolutionary Art and
Computers. Springer, 1992.

Barry Vercoe. CSound manual. Manual distributed freely
with CSound software, 1992.

Rodney Waschka II and Alexandra Kurepa. Using frac-
tals in timbre construction: an exploratory study. In
Proceedings of the 1989 International Computer Mu-
sic Conference, 1989.

Trevor Wishart.Audible Design. Orpheus the Pantomime,
1994.

Trevor Wishart.On Sonic Art. Harwood Academic Pub-
lishers, 1996. second edition, revised by Simon Em-
merson.


