University of

"1l Kent Academic Repository

Wood, David C. and Moores, James (1999) User-defined data types and
operators in occam. In: Cook, Barry M., ed. Proceedings of WoTUG-22:
Architectures, Languages and Techniques for Concurrent Systems. Concurrent
Systems Engineering . I0S Press, Amsterdam, Netherlands, pp. 121-146.

ISBN 90-5199-480-X.

Downloaded from
https://kar.kent.ac.uk/16765/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.wotug.org/paperdb/show pap.php?f=1&num=342

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/16765/
http://www.wotug.org/paperdb/show_pap.php?f=1&num=342
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Architectures, Languges and Techniques 121
B. M.Cook (Ed.)
IOS Press, 1999

User-Defined Data Types and Operators
In occam

David C. WOOD and James MOORES
Computing LaboratoryUniversity of Kent at Canterbur€T2 7NF
{D.C.Wood, jim40}@ukc.ac.uk

Abstract: This paper describes the addition of wdefined monadic and dyadic
operators tmccam* [1], together with some libraries that demonstrate their lise.
also discusses some techniques used in their implementati®Roid [2] for a
variety of target machines.

1. Introduction
Most programming languages allaiserdefined data types, and nyafAlgol-68 [3], Ada

[4]; Fortran-90 [5], etc.) also provideadilities for user-defined operators, acting on
variables of both built-in and user-defined types.

A mechanism has been providedkiRoC to enable operators to be written by aser of
occam.

The main advantage of these is computational@oance, goiding the labour of writing
expressions in terms of function call$hey havethe additional advantage of being able to
be werloaded on a range of different data typésr example, %’ already represents
addition for all the standardccam numerical types, and canwa@lso be used for user
defined types li€ omplex numbers.

In KRoC, such operators can also prde access to hardware implementing useful
operations and data types not directly representedaam.

The operators described herevédeen implemented on a range of machines, including
the SPARCI[6], DEC Alpha [7], MIPS [8], Motorola 68000 [9], and Analog DEesSHARC
[10]. Theseoperators are summarized in the appendices.

1.1. UserDefined Data Types

Userdefined data types were introducedoccam 2.1 (then calledbccam 2.5) [11], kut
operations on them were restricted to the operators inherited from the base types, or to
functions.

Standardbccam data types may be renamed:
DATA TYPE THIS IS INT:

* occam is a trademark of theGS-THOMSONMicroelectronics Group.

122 D. C.Wood and JMoores / UsetDefined Data Types and Operators

Such types inherit the operators of their base types, byt ¢aenot be mixed in
expressions.

Also, RECOR®May be defined:
DATA TYPE THAT

RECORD
INT which, what:

The elements of such records may be specified as follows:

THAT thing:

INT why, who:

SEQ
thing[which] := why
thing[what] = who

or
thing := [why, who]

Where necessaryconstants of usedefined types can be decorated to endkem
unambiguous; for example

VAL where IS [27, 42] (THAT):

Variables of such types may be passed as parameters and reBWts@TION, but this
leads to clumsy forms of expressions:

THAT x,y, z:
SEQ
z := T HAT.PROD (THAT.SUM (X, y), THAT.DIFF (X, y))

1.2. UserDefined Operators
User-defined operators provide a much more concise andment notation:

z:=x+y) " x-y)

The INMOS/SGS-THOMSONoccam 2.1 Toolset compiler has been modified to allo
userdefined operatorSuch operators are declareddikormaloccam FUNCTION, except
that the function name is replaced by a string; for example:

THAT FUNCTION "+" (VAL THAT X, V) ...

Operator functions must @ ather one or tw parameters, for monadic (prefix) and
dyadic (infix) operators, respegaty, and a single result.

Only a limited number of operator symbols can be used. The stanclzath operators
(except type coversions) can bewerloaded on ne data types. The existing operators can
also be redefined on existing type#.few rew qoerator symbols are prigled:” , ++, ==,
22,11 | $%, % %%%> <% @ @AD> <@ && &>, <&, [>, <] . All of these can be used
as both monadic and dyadic operators.

* This is normally a Very Bad Thing, but see Section 4.

D. C.Wood and JMoores / UsetDefined Data Types and Operators 123

There is no operator precedenceogtam, and associativity is treated very strictly; so,
for example,x PLUS y PLUS z islegd, butx + y + z is not (becauseverflow
might occur in some interpretations and not otheRgdefined operators inherit their
associativityand nev operators are not associagi

Some operations are still most geniently represented as functions.

2. ExampleOperators

The following examples sk a number of applications of useefined operators in
occam. Their implementation is discussed in Section 3.

2.1. Powers

An obvious operator to provide isyer, or exponentiation. Althoughmot required ery
often, it is not twial to implement diciently, so it may be worth providing in a library
Marny programming languages include it.

Powers of all sizes of integer and real operangs been defined; for example

INT FUNCTION "™ (VAL INT X, Y)
INT64 FUNCTION "™ (VALINT64 X, VALINTY) ...

(these requir& = 0), and

REAL32 FUNCTION "™ (VAL REAL32 X, VAL INT YY) ...
REAL64 FUNCTION "™ (VAL REAL64 X, VAL INTY) ...

These pwer functions are implemented by the square-and-multiply algorithm, and so are
reasonably dcient. This is especially important with operand types for which
multiplication is &pensve. For this reason, special squaring functiongehiseen preided
for those data types for which this can be done mofieiegitly than by simple
multiplication.

Powers with real exponentsveadso been provided:

REAL32 FUNCTION "™ (VAL REAL32 X, Y) ...
REAL64 FUNCTION "™ (VAL REAL64 X, Y) ...

Powers of most of the numerical data types describeaviadimplemented similarly.

2.2. Rotations

Rotations are anxample of a useful operation often provided by hardware, which is not
usually aailable from high-leel languages.

Left and right rotation operators@and @3> havebeen defined for all integer types; for
example:

INT FUNCTION "<@" (VAL INT X, N)
INT FUNCTION "@>" (VAL INT X, N)
INT64 FUNCTION "<@" (VAL INT64 X, VAL INT N) ...
INT64 FUNCTION "@>" (VAL INT64 X, VAL INT N) ...

The shift count is taken modulo the size of the operand.

Related operations might be signed shifts, shifts thatvallegdive munts, and shifts
(scaling by powers of two) applied to floating-point variables.

124 D. C.Wood and JMoores / UsetDefined Data Types and Operators

2.3. ExtendedArithmetic
Many machines hee instructions to produce double-length products from dwgle-length
operands, and to \dde double-length by single-length operands, giving single-length
guotient and remaindeperators hee keen written to represent these.

A new goerator symbol is required for multiplication, but division can\xloaded.

The following are wailable on theSPARC

INT64 FUNCTION "@" (VAL INT X, Y)
INT FUNCTION "/" (VAL INT64 X, VAL INT Y) ...
INT FUNCTION "\" (VAL INT64 X, VAL INT Y) ...

and the following in the 68000:

INT FUNCTION "@" (VAL INT16 X, Y) ...
INT16 FUNCTION "/* (VAL INT X, VALINT16Y) ...
INT16 FUNCTION "\" (VAL INT X, VALINT16Y) ...

In each case, tyecorrespond closely to the hardware instructions.

The MIPS ‘doublevord multiply’ instructions gre an INT128 (82.6) product from
INT64 operands. Thigs also easy on tHeEC Alpha. Thecompiler library multiplication
function for INT64 (INT64MUL%CHKgenerates a 128-bit result internally (and hence
INT128 multiplication produces aiiNT256 !).

Similar floating-point instructionstsmuld and fdmulg , are defined in theSPARC
architecture, though probably not implemented in hardware, giving:

REAL64 FUNCTION "@" (VAL REAL32 X, Y) ...
REAL128 FUNCTION "@" (VAL REAL64 X, Y) ...

These could be used, for example, in an wpreduct operator between arrays, in situations
where cancellation must be minimized:

REAL64 FUNCTION "@" (VAL [JREAL32 X, Y)
REALG64 Result:

VALOF
SEQ
ASSERT ((SIZE X) = (SIZE Y))
Result := 0.0

SEQi=0FOR SIZE X
Result := Result + (X[i] @ YI[i])
RESULT Result

(Note that operators caneagen arrays as parameters, though not as results.)

Quotient and remainder are often required togethred much of the computation is
common to both, so the following is provided on $RARC

INT, INT FUNCTION INT64DIVREM32 (VAL INT64 X, VAL INTY) ...
which is essentially the samela®NGDIV, and the following on the 68000

INT16, INT16 FUNCTION INT32DIVREM16
(VAL INT X, VAL INT16Y) ...

D. C.Wood and JMoores / UsetDefined Data Types and Operators 125

2.4. ComplexNumbers

Several nev numerical types ha keen defined.Most of the operators provided for them
are redefinitions of the familiar arithmetic operations.

Complex numbers are very important in scientific computing, and are provided as
standard types in Fortran [12], Algol-68, etc.

The data types are declaredbasam 2.1 RECORE

DATA TYPE COMPLEX32
RECORD
REAL32 real, imag:

and

DATA TYPE COMPLEX64
RECORD
REALG64 real, imag:

A COMPLEX128ype is defined similarly (§2.8).

Operators or functions for constructing compfeimbers from reals, and selecting the
real and and imaginary parts of compheimbers, are not required:

REAL6G4 X, y:
COMPLEX64 z:
SEQ

z =[xVl

x y := z[real], z[imag]

All the meaningful standardbccam operators are pwided. (This includes the
comparisons=’ and ‘<>’, although thg a numerically dubious. Other comparisons are, of
course, meaningless, and it is difficult to think of an interpretation\ for Powers (with
integer exponents) are also implemented, and coneplgugate is represented ky.

The predefined dyadic operatorsoiccam (with the exception of shifts) require that both
operands should be of the same typtawever, the the *’ and /' operators hae keen
oveloaded for the follwing useful combinations of operands of compatible sizes:
COMPLEX*REAIREAL*COMPLEXand COMPLEX/REAL

Some operations, such as absolute value and square root, are defined as functions, rather
than operators.

There are functions that return the compsguare root of a (possibly gdive) real
argument, and functions are provided for squaring coxplenbers, as this can be done
more eficiently than by simply multiplying them by themselves, which is significant in the
power operator (§2.1).

126 D. C.Wood and JMoores / UsetDefined Data Types and Operators

The following constants are defined:

VAL COMPLEX32 Zero.COMPLEX32 IS [0.0, 0.0]:
VAL COMPLEX32 One.COMPLEX32 IS [1.0, 0.0]:
VAL COMPLEX32 I.COMPLEX32 IS [0.0, 1.0]:

VAL COMPLEX64 Zero.COMPLEX64 IS [0.0, 0.0]:
VAL COMPLEX64 One.COMPLEX64 IS [1.0, 0.0]:
VAL COMPLEX64 I.COMPLEX®64 IS [0.0, 1.0]:

The obvious methods for some operations (division, absolute value, and square root) are
liable to averflow and cancellation. The algorithms used attempttmcathese errors.

2.5. \kctors
Vectors of the fornxi +yj + Zk, as sed in mechanics, can be defined similarly:

DATA TYPE VECTORS32 IS [3]REAL32:

All the obvious operators are defined. The vector (ptterss’) product is represented by
“*’ and the scalar (inngrdot’) product byTIMES (‘. ' is not allowed as an operator).

Quaternions are very similar.

2.6. 1 NT128
This type is defined as

DATA TYPE INT128 IS [4]INT:

All the standardccam operators are provided.

INT128 constants cannot be written directSufficiently small \alues can be ceosarted
from INT s a INT64 s, and the functionBECTOINT128andHEXTOINT128 can be used
to corvert from strings of digits.

The following predefined constants are included:
VAL INT128 MinusOne.INT128 IS [-1, -1, -1, -1]:

VAL INT128 Zero.INT128 1S [O, 0, 0, O
VAL INT128 One.INT1281S [1, 0, 0, O
VAL INT128 Two.INT128 IS [2, 0, 0, O
VAL INT128 Ten.INT128 IS [10, 0, 0, O
VAL INT128 MostNeg.INT128 IS [0, 0, 0, MOSTNEG INT]:

VAL INT128 MostPos.INT128 IS [-1, -1, -1, MOSTPOS INT]:

Ten.INT128 is useful internally for corersions to and from decimal.

2.7. Multiple-Length Integers
These are a further extension of integer arithmetic ypeedefined length.

The parameters of operators can be open arraysriays returned as results must be of
constant size.So the size of the numbers (iNTs) must be set before compiling the
package; for example:

VAL INT LONG.Size IS 1000:

D. C.Wood and JMoores / UsetDefined Data Types and Operators 127

Then the type can be declared:
DATA TYPE LONG IS [LONG.Size]INT:

All the normal operators are definedlultiplication and division are werloaded for
LONG*INT andLONG/INT *.

The LONGfactorial of anINT is represented by a prefiX *’* operator; for gample,
111000

As with INT128 s, small constants can be werted fromINT s of various sizes, and
numbers of apsize translated from strings of digitSlIOSTPOSLONEBHdMOSTNEGLONG
are provided as functions.

Scaled long integers can be used to implement multiple-length real numbexsinqple
eto 1000 digits is easy.
This implementation is acceptable only for numbersaofyf moderate size, since time is

wasted handling leading zerogor serious work, a record including a length field should
be used, as wWitBTRINGs (8§ 2.16).

2.8. REAL128

These hee keen implemented for t@PARCand theMIPS, using system softare proided
on these machines. The formats are not the sam&prtReCis a natural @ension ofiEEE
floating-point arithmetic [13]; th®IPSis not.

They are typically tens to hundreds of times slower tR&EAL6G4s.
TheDEC Alpha also supports (softwarBEAL128s.
The type is declared as

DATA TYPE REAL128 IS [2]REAL64:

which should ensure the appropriate alignmérte two dements would not normally be
accessed separately.

As with INT128 , representing constants isfditilt. Several are supplied, including, in
SPARCformat:

VAL REAL128 Zero.REAL128 RETYPES [0, 0, 0, 0]:

VAL REAL128 Half.REAL128 RETYPES [#3FFE0000, 0, 0, 0]:
VAL REAL128 One.REAL128 RETYPES [#3FFF0000, 0, 0, O]
VAL REAL128 Two.REAL128 RETYPES [#40000000, 0, 0, O]:
VAL REAL128 Ten.REAL128 RETYPES [#40024000, 0, 0, 0]:

VAL REAL128 Pi.REAL128 RETYPES [#4000921F, #B54442D1,
#8469898C, #C51701B8]:

VAL REAL128 E.REAL128 RETYPES [#40005BF0, #A8B14576,
#95355FB8, #AC404E7A]:

* A ctually, LONG/LONGES difficult, and not yet implemented.

128 D. C.Wood and JMoores / UsetDefined Data Types and Operators

In MIPS format, these are:

VAL REAL128 Zero.REAL128 RETYPES [0, 0, 0, O]

VAL REAL128 Half.REAL128 RETYPES [#3FE00000, 0, 0, O]:
VAL REAL128 One.REAL128 RETYPES [#3FF00000, 0, 0, O]:
VAL REAL128 Two.REAL128 RETYPES [#40000000, 0, 0, O]:
VAL REAL128 Ten.REAL128 RETYPES [#40240000, 0, 0, 0]

VAL REAL128 Pi.REAL128 RETYPES [#400921FB, #54442D18,
#3CA1A626, #33145C07]:

VAL REAL128 E.REAL128 RETYPES [#4005BFO0A, #8B145769,
#3CA4D57E, #E2B1013A]:

Note that the following more natural form could be used onBEAL64s ae in natve
format:

VAL REAL128 Zero.REAL128 IS [0.0, 0.0]:
VAL REAL128 Half.REAL128 IS [0.5, 0.0]:
VAL REAL128 One.REAL128 1S [1.0, 0.0]:
VAL REAL128 Two.REAL128 IS [2.0, 0.0]:

With these operations, it is easy to def@@MPLEX128

2.9. REAL8O

A similar example allows the use t#EE double &tendedprecision, on those machines
that support it, such as the 68881.

DATA TYPE REALS8O IS [3]INT:

This allocates 96 bits, as required for this type in memory by the 68881.
The Intel 80386 family uses a similar 80-bit floating-point format [14].

2.10. REAL16
TheSHARChas a 16-bit floating-point format. This is declared as

DATA TYPE REAL16
RECORD
INT16 reall6:

Simply usingINT16 would allov REAL16 to inherit may inappropriate operators, such
asPLUS

The basic arithmetic and comparison operators are implemented.

2.11. Unsignedntegers
Checked arithmetic operators can be defined on unsigned integers of all sizes.

The unchecked arithmetic operatoP. S MINUS and TIMES) are inherited from the
signed types.

SignedINT8 s could be provided similarlyBYTEs ae already unsigned).

D. C.Wood and JMoores / UsetDefined Data Types and Operators 129

2.12. RationalNumbers
These are currently implemented as paird\Ndi64 s:

DATA TYPE RAT64

RECORD
INT64 num: -- signed
INT64 den: -- always positive

To avoid overflow in intermediate values, theshould perhaps usiNT128 s internally
(8 2.6),and the denominator should be unsigned (§2.11).

All the obvious operators are pided. Reciprocais represented byT. Thisis a trivial
operation for rational numbers, and is used internally tovelerrision from multiplication.
The operatoiX % Yis used to create the rationalwe X/Y reduced to its lowest termgt
is overloaded for operands of \s®al combinations of types. It is necessary because
[X)Y] may not be a valid rational number; for examgleg (-4) is[-12]

Some constants are provided:

VAL RAT64 Zero.RAT64 IS [0, 1]:

VAL RAT64 One.RAT64 IS [1, 1]

VAL RAT64 MinusOne.RAT64 IS [-1, 1]

VAL RAT64 Infinity.RAT64 IS [1, O]: -- not used

Continued fractions are used to ger from REALG64s to mationals.

2.13. Fixed-®int Numbers

These hee alvantages wer floating-point numbers in some numerical applications (for
example, thg are not subject to cancellation errors). The data type might be declared as

DATA TYPE FIX64 IS INT64:

The number of bits in the integer and fractional parts can be defined with
VAL INT FIX64.Scale IS 32: -- scale shift

Most operations, such as addition and subtraction, are inheritedNed .

2.14. Matrices

Operators on matrices can be defined, provided that all the matricgsaneaprogram are
the same sizeln general, this is a sere restriction, but might be tolerable in some
applications, such as the transformation matrices in a graphical system.

VAL INT MATRIX.Size IS 4:

DATA TYPE VECTOR IS [MATRIX.Size]REAL64:
DATA TYPE MATRIX IS [MATRIX.Size]VECTOR:

All the obvious operations ar@alable, including all the meaningfulerloadings of *’
on combinations of variables of tyfREAL64, VECTOR and MATRIX Transpose is
represented by@, and irverse by 7.

130 D. C.Wood and JMoores / UsetDefined Data Types and Operators

2.15. Sets

A SET data type, as in Pascal [15], can be implemented as &gackay of bits.Set
operations then reduce to Boolean operations on such arrays (which may be a useful type in
their own right.)

Unfortunately as wth multiple-length integers, the size of a set must be fixed at compile
time. A reasonable value is 256 elements, giving a séYfEs, represented by eight
INT s (or 16 on a 16-bit machine):

VAL INT SET.Bits IS 256: -- 2°BitsPerByte
VAL INT SET.Words IS 8: -- SET.Bits/BitsPerWord

DATA TYPE SET IS [SET.Words]INT:

All the usual set operations are provided:

intersection SET * SET SET A SET
union SET + SET SET V SET
difference SET - SET

symmetric difference] SET / SET SET >< SET
contained by SET <= SET

inclusion BYTE <= SET

contains SET >= SET

includes SET >= BYTE

(strict) superset SET > SET

(strict) subset SET < SET

inverse 0 SET

Overloading allows manuseful combinations of sets and elements.

The operator$$’ is overloaded to ma& a ®t from a single byte, an open array of bytes,
and a range of bytes.

A number of constarBETs ae defined; for xample:Empty.SET , UpperCase.SET
LowerCase.SET , Letter.SET , Digit.SET , Printing.SET

2.16. Strings

Two approaches to implementing a string typeehkeen ivestigated. Inone, most of the
work, including dynamic memory allocation, is donednand theoccam data type is just
anINT (or whateer is required to hold a pointer on the target machine). Problems with
this are that the interface witltcam arrays ofBYTEs is omplicated, particularly on big-
endian machines, and assigning string variables introduces aliasing.

The second method works entirelyaocam, and is therefore much cleanddoweva, it
suffers from the restriction that all strings inyaone program must ka the same
maximum length. Here, the type definition is

DATA TYPE STRING
RECORD
INT length:
[STRING.Max]BYTE string:

wherelength represents the current length of the string, and the corSt&ING.Max

D. C.Wood and JMoores / UsetDefined Data Types and Operators 131

must be defined before the package is compiled.
Alternatiely, a fixed definition could be used:

DATA TYPE STRING
RECORD
BYTE length:
[256]BYTE string:

Operators on strings include all the comparisons, and

STRING FUNCTION "+" (VAL STRING S, T) ...

STRING FUNCTION "[>" (VAL STRING S, VAL INT N) ...
STRING FUNCTION "<]" (VAL STRING S, VAL INT N) ...
STRING FUNCTION "**" (VAL STRING S, VAL INT N) ...

INT FUNCTION "/" (VAL STRING S, T) ...

STRING FUNCTION "\" (VAL STRING S, VAL RANGE R) ...

These represent, respeely, concatenation, head, tail, repetition, searching for one string
in another (returning the indef the start of the substring if found, or -1 otherwise), and
substring. RANGEHs a special type:

DATA TYPE RANGE
RECORD
INT start, length:

which, in effect, allows the substring operator teehtaree operands.

The operator$$’ is overloaded to generate @TRING from an array oBYTEs or a
singleBYTE, and to copy a STRINGefficiently, ignoring the unused elements.

Most of the operators can beedoaded for arrays dBYTEs, and singl8YTEs, instead
of STRINGs.

The constanNull.STRING is defined.

2.17. OtherExamples

It could be argued thakIMEs, as returned bgccam TIMERSs, should constitute a type
distinct from INTs. Sumsor differences ofTIMEs ae themselgs TIMES, as are the
products or quotients dfIMEs and INT s. Hawever, the quotient of tw TIMESs is a1 INT

and the product is an erroffhis would be a step in the direction of treating types as
physical dimensions, which is a difficult subject.

On big-endian machines, wetypes could be defined for 64-bit integers and reals in
natve format. Ifthe operators were translated in line3(&.9), this might be morefefient
than reformatting.

The comparison operators can be defined for open arrayg tyfjsm

An ‘equivalence’ operator is occasionally usefut.is defined for all integer data types;
for example

INT INLINE FUNCTION "==" (VAL INT X, Y) IS OX ><Y):

132 D. C.Wood and JMoores / UsetDefined Data Types and Operators

A proper ‘modulo’ operator'%, could be defined, that belal sensibly for ngative
operands; so, for example,

index := (index - 1) % size

would have the obviously desired fefct. (Thereshould also be a correspondingisiion
operator Ada has tw operatorsyem andmod, but only rem is consistent with the single
division operataqr/ ’.)

Other data types supported by various machines could be accessedctram; for
example, IEEE single etendedprecision on some tgets, andREAL40 and saturating
arithmetic on th&SHARC.

Several modern machines & ‘SIMD’ i nstructions, such as the PentimviX [16] and
SRARC VIS. Mary of these operators would simplyaload the standard one&oftware
implementations would provide portability.

3. Implementation

The Kent Retagetableoccam Compiler, KRoC, uses a modified version of thEMOS/
SGS-THOMSONoccam 2.1 Toolset compiler, occ21 , to generate transputer assembly
language output [17]. This is translated by getidependent translatactran , into the
assembly language of the target machine. The resulting code is assembled, and linked with
a kernel and run-time libraries.

Implementing n& operators imolves additions tmcc21 to handle the syntax, and the
provision of user-defined libraries to implement the operators.

3.1. Compiler Modifications
The front end of the compiler has been modified toverdroperator definitions [18], such
as
INT FUNCTION "%" (VAL INT X, Y) ...
into normalFUNCTION, such as
INT FUNCTION udo.PER.INT.INT (VAL INT X, Y) ...

Then expressions kkx%y are comerted to function calls li& udo.PER.INT.INT
(xy)

The names of these usidzfined operator functions depend on the types of their operands,
so the same operators can berlmaded for ap combination of operator typeslhey do
not, havever, depend on the types of their results; so, fareple, the same square-root
operator acting on a realgament could not be used to return a real or coxmpdsult
depending on the context.

These names arevigible to the userexcept in error messages and warnings from the
compiler.

3.2. Writing Libraries

The example libraries described abohave been implemented in aaxiety of ways,
considered bele.

D. C.Wood and JMoores / UsetDefined Data Types and Operators 133

3.2.1. Precompiledbccam

The simplest method is to write the functionsostam. This has been done for most of
the SETandRAT64 operators, and some of those for compéthmetic. For example

SET FUNCTION "+" (VAL SET S, T) -- union
SET Result:
VALOF
SEQ i =0 FOR SET.Words
Result[i] := S[i] V T[i]
RESULT Result

Such functions can be precompiled into libraries.

3.2.2. 1 NLI NE occam

For simple operatorsINLINE functions can be used, either as self-contaixpdessions,
for example

COMPLEX32 INLINE FUNCTION "+" (VAL COMPLEX32 x, y) IS
[X[real] + y[real], x[imag] + y[imag]]:

or by using expressionsviolving precompiled operators:
RAT64 INLINE FUNCTION "/" (VAL RAT64 p, q) ISp * ([@Q):

Fadlowing the transputer instruction set, for most of the user-defined types described here
only the >’ and ‘=" comparisons are defined in full, the others beingvadifrom them; for
example

BOOL INLINE FUNCTION "<>" (VAL INT128 X, Y) IS NOT (X = Y):
BOOL INLINE FUNCTION "<" (VAL INT128 X, Y) IS (Y > X):
BOOL INLINE FUNCTION "<=" (VAL INT128 X, Y) IS NOT (X > Y):
BOOL INLINE FUNCTION ">=" (VAL INT128 X, Y) IS NOT (Y > X):

3.2.3. Standardoccam Libraries

Some operations may correspond to functions alreaallable from standard librarieg-or
example, the function®ROTATELEFTand ROTATERIGHTare defined in theccam
maths function library [19], though their effect is undefined if the shift count is out of
range. Hencéhe following could be used:

INT INLINE FUNCTION "@>" (VAL INT X, N) IS

ROTATERIGHT (X, N /\ 31):
INT INLINE FUNCTION "<@" (VAL INT X, N) IS

ROTATELEFT (X, N A 3 1):

There are no such library functions for other data types.

For integers, the ‘extended arithmetic’ operators (82.3) are essentiallimille and
Idiv instructions of the transputer [20], and so can be defined portably using the
LONGPROBNALONGDIVfunctions from theccam multiple-length arithmetic library.

The shift operatorss< and>>, can be w@erloaded for floating-point operands using the
functionsSCALEBandDSCALEBrom the floating-point function library.

134 D. C.Wood and JMoores / UsetDefined Data Types and Operators

Pawvers with real gponents are difficult to compute accurateljhe occam elementary
function libraries provide the following:

REAL32 INLINE FUNCTION "™ (VAL REAL32 X, Y) IS POWER(X, Y):
REALG64 INLINE FUNCTION "™ (VAL REAL64 X, Y) IS DPOWER(X, Y):

Alternatively, the C pow function could be used (§ 3.2.6).

For complex numbers, the elementary transcendental functi@$P(LOG etc.) can
easily be written similarly; for example

COMPLEX32 INLINE FUNCTION COMPLEX32EXP (COMPLEX32 2) IS
EXP(Z[real]) * [COS(Z[imag]), SIN(Z[imag])] (COMPLEX32):

3.2.4. Modifiedoccam Libraries

Sometimes a standard library can be modified to supportvatype. For example, the
INT64 functions for 16-bit transputers were gerted into aINT128 library for 32-bit

machines by a fe systematic edits, replacing4 by 128, 32 by 64, and 16 by 32, as

necessaryA few constants were also changed irviolis ways, and most of tiRETYPES
declarations were simply deleted.

A typical operator is

INT128 FUNCTION "+" (VAL INT128 X, Y)
INT128 Result:
VALOF
INT Carry:
SEQ
Carry, Result[0] := LONGSUM (X][0], Y[O], 0)
Carry, Result[1] := LONGSUM (X[1], Y[1], Carry)
Carry, Result[2] := LONGSUM (X[2], Y[2], Carry)
Result[3] := LONGADD (X[3], Y[3], Carry)
RESULT Result

Most of these functions are easy tdemd to arbitrary-length numbers, giving th®@NG
library. For example

LONG FUNCTION "+" (VAL LONG X, Y)
LONG Result:
VALOF
VAL INT Top IS LONG.Size - 1:
INT Carry:
SEQ
Carry :=0
SEQi=0FOR Top
Carry, Result[i] := LONGSUM (X[i], Y[i], Carry)
Result[Top] := LONGADD (X[Top], Y[Top], Carry)
RESULT Result

D. C.Wood and JMoores / UsetDefined Data Types and Operators 135

On some machines with special hardware it might be worth implementing these functions
in assembly language. The 68000 has such hardware, though it is designed for big-endian
representation.

Binary coded decimal might be a #enient alternatie @gain on the 68000).
A portable, though less efficielREAL128 library could be produced in the same way.

3.2.5. Transputer Assembly Langge

A few qperators may be more a@miently written in transputer assembly language, using
ASMsections ibccam, but most are alreadyvailable as library functions. Because of the
way KRoC works, this would be portable.

3.2.6. C and Tapet Libraries

KRoC provides a simple method of calling from occam [21]. This gives a @nvenient
mechanism for accessing library functions on the target machine, as well as for writing
functions that may be difult to express iroccam. The MIPS version of theREAL128

library was written in this ay. The appropriatevIPS data type is represented mng

double in C, and consists of tew separately normalizeREALG64s, so in this case the type
defined abee (8§ 2.8) is an accurate description.

Operators are declared as exte@dlinctions; for example:

#PRAGMA EXTERNAL "PROC C.REAL128ADD *
* (REAL128 X, VAL REAL128Y, Z) =0"

REAL128 INLINE FUNCTION "+" (VAL REAL128 Y, Z)
REAL128 X:
VALOF
C.REAL128ADD (X, Y, Z)
RESULT X

C.REAL128ADDis theoccam name of theC function REAL128ADD
void _REAL128ADD (int w[3])
{ * REAL128(w[0]) = VAL_REAL128(wW[1]) + VAL_REAL128(w[2));
}

REAL128 andVAL_REAL128 are additions to the standak&oC package of macros for
interfacing toC.

3.2.7. Fortran

Since the interface betweéhand Fortran is normally well defined (though not necessarily
portable), the same method could be used to access library functions writteriram.F
Examples ar€ OMPLEX32which isCOMPLEX standard Fortran, arREAL128, which,
asREAL*16, is a @mmon extension.

3.2.8. Target Assembly Languge

Other functions may not be easy to express in standard hwgHdaguages. Ithis case,
the assembly language of thegir machine may be used, though this is, of course, not
portable.

136 D. C.Wood and JMoores / UsetDefined Data Types and Operators

A 128-bit floating-point data type is defined in thBiRARCarchitecture, with instructions
such adaddq , though it is rarelyif ever, implemented in hardave. Therecommended
way of using it is through some library routines, called from assembly language.

Operators to use these routines can be defined awdollBirst,an external function is
declared; for example:

#PRAGMA EXTERNAL "REAL128 FUNCTION REAL128ADD *
* (VAL REAL128 X, Y) =0"

and a user-defined operator to call it:

REAL128 INLINE FUNCTION "+" (VAL REAL128 X, Y) IS
REAL128ADD (X, Y):
Functions likk REAL128ADDare implemented iSPARCassembly language as calls to
the quadruple-precision library routines, likeQ add:

.global $REAL128ADD

$REAL128ADD:
Id [%13+8],%00 I - > X
Id [%13+12],%01 I ->Y
Id [%013+4],%02 I - > result
call __Q_add I result:=X+Y
st %02,[%sp+64] I* hidden parameter
unimp 16 I magic
Id [%013],%07 I 0 ccam return
retl
inc 16,%I3 I*

REAL128 elementary transcendental functions could be obtained from dhteaf
library.

The IEEE double atendedfloating-point format is pndded by some processors and co-
processors in the 68000 famignd also by some Intel machindsor example

REALSO INLINE FUNCTION "+" (VAL REALS80 X, Y) IS
REALSOADD (X, Y):

The function is implemented as

.REALSOADD:
fmove.x ([8,a6]),fp0
fadd.x ([12,a6]),fp0
fmove.x fp0,([4,a6])
! movea.l (a6),a0
lea 16(a6),a6
jmp (a0)

X

Y

$ formalresultO
0 ccam return

D. C.Wood and JMoores / UsetDefined Data Types and Operators 137

On most machines, rotations are most easily implemented in assembly language.
The functions are first declared as external; then the operators are defined as calls to these
functions:

INT INLINE FUNCTION "<@" (VAL INT X, N) IS
INT32LROTATE (N, X):

INT INLINE FUNCTION "@>" (VAL INT X, N) IS
INT32RROTATE (N, X):

The reversal of the operands is useful for optimization (8 3.2.9).
The code is written in the target assembly language; for example, fBiPAIRC

.global $INT32LROTATE
$INT32LROTATE:

Id [%013+4],%I12 I N
Id [%013+8],%I0 I X
sl %I10,%I12,%I1 ! X << N (modulo 32)
neg %I12,%I2
srl %I10,%I2,%I0 ! X >> (32-N)
or %I10,%I1,%I0
! | d [%I3],%07 ! occam return
retl
inc 16,%I3 I*

or for the 68000:
ANT32LROTATE:

move.b 7(a6),d2 I'N

move.l 8(a6),d3 D

and.b #31,d2 2

rol.l d2,d3 I X <@ N
|

! move.l (a6),a0 0 ccam return
lea 16(a0),a0
jmp (a0)

Operators for unsigned arithmetic can usually be implemented by compiling the
corresponding functions for signed numbers, and then editing the assembly language to
change the check foverflow to a dheck for carry For example, on th8PARG unsigned
addition is

addcc %I0,%I1,%I0
tlu 17 '+ OVERFLOW

3.2.9. In-Line Tage Assembly Languge

All these techniques (except fiINLINE occam) carry the @erhead of function callsFor

some of the applications considered here, this is undesirablevoid it, a modification

has been made tctran , the program used WRoC to translate from transputer togat
assembly language. Essentially the same mechanism that is used to look up transputer
assembly-language instructions is reused with a predefined table of function ridrees.

138 D. C.Wood and JMoores / UsetDefined Data Types and Operators

calls are then replaced by in-line code. This also enables simple optimizations to be
performed when one operand is a constant.

The following example shows what can be done with rotation operations on the 68000.

The statemeny : = x < @ 4 compiles to a call of an external function, which may be
written inoccam or assembly language, as a&o

Idc 42

call LO -- Call INT32LROTATE

On the 68000, this normally translates to

moveq #42,d2

lea LX7(pc),a0

subg.w #4,a6

move.l a0,d0

movem.| d0/d2/d3,-(a6)

bra INT32LROTATE
LX7:

With the in-lining option, this reduces to

moveq #42,d2
and.b #31,d2
rorl d2,d3

Here INT32LROTATE is treated as a dummy function name; ifeef it represents an
extension to the transputer instruction set, adidan translates it accordingly.

With constant optimization, this produces the optimal code

swap d3
rorl #6,d3

Pavers are most commonly used with small constapbeents. Unrollinghe square-
and-multiply loop into a sequence of multiplication instructions is a significant
optimization. r example, on thBPARC x"10 generates

fmuld %f0,%f0,%f0
fmuld %f0,%f0,%f6
fmuld %f6,%f6,%f6
fmuld %f0,%f6,%f0

The SHARC supports itiREAL16 data type with tw instructionsfpack andfunpack
for corverting between 16- and 32-bit formatélence most operations on this type are
trivial, though fewer steps are needed in the iterations Yisialhn and square roottor
example:

f12 = funpack r9; I- Call REAL16DIV
f4 = funpack r5, f8 = m1; I+ 2.0

fO = recips f4; I+ approx. 1/den
f12 = fO * f12; I+ refine

f4 =0 * f4, fO = f8 - f12;

f6 = fO * f4; I+ num * 1/den

r5 = fpack f6;

D. C.Wood and JMoores / UsetDefined Data Types and Operators 139

4. Application to Standard Operators

Some hiilt-in operators on the standard data types, particul&alfylé and INT64 for

which the transputer hardware has limited support, are implemented as calls to ‘compiler
library functions’. These are written otcam, and must be linked with gnprogram that

uses the operators concerned.

Such functions can, of course, bevréten in the assembly language of thegédr
machine, but the can also be treatedxactly as described abe This is particularly
advantageous folNT16 s on nachines that support 16-bit arithmetic in haadey such as
the 68000, and fdNT64 s on 6-bit machines, lig the MIPS and theDEC Alpha.

For example, on the 68000NT16 division is:

ext.| d2 I- Call INT16DIV%CHK
divs.w d3,d2
trapv I+ OVERFLOW

move.w d2,d3
and on the AlphadNT64 multiplication is:

ldq $2,($2) #- Call INT64MUL%CHK
Idq $1,(%1)

mulqv $2,$1,$2

stq $2,($3)

Other standard operators may compile into long sequences of transputer instructions,
which are quite inappropriate on machines that could do them dirégityexample, on
64-bit machines, vwn 32-bit operations may sometimes incur artr& cost, so
implementing 64-bit arithmetic as a sequence of 32-bit operatioiftsup from 64-bit
instructions is embarrassingly inefficient.

A solution to this is to redefine such operations as user-defined operators, using dummy
functions that are thenxpanded in line byoctran (taking care to preseevtheir
semantics!). Theesulting code can be close to optimal; on MBS, INT64 division is
more than four times faster.

For INT64 s, the endianism of the gt is important, and reformatting on a big-endian
machine may neutralize the ahtage of using nat &4-bit arithmetic for some operations,
so on theMIPS only multiplication and diision are handled in thisay, but on theDEC
Alpha, which is little-endian, the admtage is considerablé& modification to the compiler
ensures 64-bit alignment.

INT64 s ae passed to and from functions by reference, so the resulting code accesses
such variables indirectlyntroducing an additionaverhead. Buthe transputer instruction
set requires this gway for floating-point operations, so the structure of the translated code
for INT64 s and REAL64s can be quite comparabld=or complex expressions there are
some redundant stores and loads, bah @ smple peephole optimizer could rem@nost
of these.

Using these techniqueBNT16 s ae handled entirely in line on the 68000, usingveati
16-bit arithmetic, so no library is needed to support the&m.theMIPS andDEC Alpha, the
INT64 library is eliminated as well.

140 D. C.Wood and JMoores / UsetDefined Data Types and Operators

Some floating-point operators could be treated similarly; for example, the transputer has
no floating-point ‘ngae’ instruction, so-x is compiled a€).0x . Unfortunately the
most difficult cases, such as gersions betweeREAL64s and INT64 s, currently hee
be written as special functions. It is intended to modified the compilex tadvproblem.

5. Other Applications

It may be cowmenient to redefine some common functions, such as absddliie and
square root, as unary operatofdis enables the same source code to be used to implement
operations on a range of similar types, only the declarations needing to be chiaged.
example, most of the power functions could be written in this way.

Absolute value can be written as follows RIT :
INT INLINE FUNCTION "@@" (VAL INT X)

INT Result:
VALOF
IF
X<0
Result := -X
TRUE
Result .= X

RESULT Result

and similarly for all integer data type&or other types, it is either a standard function or
has been defined in the nedat library:

REAL16 INLINE FUNCTION "@@" (VAL REAL16 X) IS
REAL16ABS (X):

REAL32 INLINE FUNCTION "@@" (VAL REAL32 X) IS
ABS (X):

REAL64 INLINE FUNCTION "@@" (VAL REAL64 X) IS
DABS (X):

REAL128 INLINE FUNCTION "@@" (VAL REAL128 X)IS
REAL128ABS (X):
COMPLEX32 INLINE FUNCTION "@@" (VAL COMPLEX32 X) IS
COMPLEX32ABS (X):
COMPLEX64 INLINE FUNCTION "@@" (VAL COMPLEX64 X) IS
COMPLEX64ABS (X):
COMPLEX128 INLINE FUNCTION "@@" (VAL COMPLEX128 X) IS
COMPLEX128ABS (X):

Square root is similarlyvailable for all rel@ant data types; for example
REAL32 INLINE FUNCTION "%%" (VAL REAL32 X) IS SQRT (X):
REALG64 INLINE FUNCTION "%%" (VAL REAL64 X) IS DSQRT (X):

Since werloaded operators are identified by the types for their parameters, not of their
results, the same operator could not be used for the corsplare roots of (possibly
negaive) real arguments.

D. C.Wood and JMoores / UsetDefined Data Types and Operators 141

6. SeparateCompilation

The sizes of some types (multiple-length integers, sets, stringsnaist)be defined before
the functions implementing operations on them can be compiled, so libraries of such
operations must beINCLUDE as &xt, not#USHE as pecompiled code.

This problem can be largelywa@ded by writing the algorithms aB8ROG, using open
array parameters, which can be compiled separaiéigse can then be called by small
(possiblyINLINE) interfaceFUNCTION, usingRETYPES0 pass the actual parameters,
results, and possibly temporary workspace to the precompiROG. Hawever, this
generates less efficient code.

7. Names

A systematic naming caention has been used here, based on that for the compiler library
functions. Itmay be useful to translate these namesyaaaary possibility of clashes with
user-defined functiong=or example:

#PRAGMA TRANSLATE INT32LROTATE "INT32LROTATE%UDO"
This has been done for the functions translated in lirectran

Types names are all upper case.

Constant instances of a typevharames of the formName. TYPE, and parameters
defining a type ha rames of the forrTYPE. Nane.

8. Usage
New operators can be obtained usti§i CLUDE files; for example:

#INCLUDE "real128.inc"
This in turn consists of something like:

#INCLUDE "real128.def" -- type definition
#USE "real128.tco" -- from compiled code
#INCLUDE "real128.inl" -- INLINE definitions

The library will have been compiled frommeal128.occ , which will itself #INCLUDE
reall28.def , and possiblyreall28.inl (the dependencies between compiled and
INLINE functions can be complicated):

kroc -c reall128.occ

This will produce the fileseal128.tco andreall28.0
A user program is then compiled with a command of the form

kroc prog.occ reall28.a

wherereall28.a is a library containingeall28.0 and routines written irC or
assembly languagel28.0

There is an implementation restriction in the compiler that ‘Expression for outermost
level VAL must be constant’Since some constants of user-defined types may be defined in
terms of their operators, for example

VAL STRING Nul.STRING IS $$ ™
these packages should INCLUDH inside, not outside, the matROC

142 D. C.Wood and JMoores / UsetDefined Data Types and Operators

9. Discussion

Userdefined operators provide a useful additiorotam. They are semantically well
behaed, in that thg can hae ro dde effects, because there just a ‘syntactic sugaring’ of
FUNCTION. Soexpressions retain their referential transpayenmothing has been done
that damagesccam security.

As pointed out abae, when used as the resultsFIiINCTION (@and hence of operators),
types ivolving arrays must be of a &l size. This is a gere restriction that limits the use
of several of the data types described, and makesvadech as matrices, almost useless.

We have been considering more significant changesotcam syntax to sole this
problem [22]. Consider the case of matrix multiplicatidnis easy to write #ROChat
accepts open arrays as its parameters:

PROC MATMULT (VAL [JJREAL64 X, Y, [JJREAL64 Z)
VAL INT P IS SIZE X:
VAL INT Q IS SIZE Y[0]:
VAL INT R IS SIZE X[0]:

SEQ
ASSERT ((SIZE 2) = P) - - ¢ heck consistency
ASSERT ((SIZE Z[0]) = Q)

ASSERT ((SIZE Y) = R)

The sizes of the arrays are already passed as hidden extra parameters. Heeesmgpliga
named them by the abbreviation mechanism.

The proposed syntax makhese sizes explicitly visible, as parts of the parameters, so
that checks can be made automatically by the compitleer statically or dynamically:

PROC MATMULT (VAL [VAL INT P][VAL INT Q]REAL64 X,
VAL [QJ[VAL INT R]JREAL64 Y,
[Pl RIREAL64 Z)

Some of the dimensions are no longer open, gsddy@end on those of earlier parameters.

Structured function results are currently passed by referemicarrays must be of a éx
size. Theproposed syntax relaxes this restriction, and requires passing the size as well.
The result becomes aricit parameter; it is placed at the end to m#ile dependencies
more natural:

FUNCTION "=*" (VAL [VAL INT P][VAL INT Q]REAL64 X,
VAL [QIIVAL INT R]REAL6G4 Y) ->
[PI R]JREAL64 Z

D. C.Wood and JMoores / UsetDefined Data Types and Operators 143

References

[1] INMOS Limited. occam 2 Reference Manual; Prentice Hall, 1983SBN
0-13-629312-3.

[2] David C. Wood and Peter H. &¢h. TheKent Retagetable occam Compiler;
Proceedings of WoTUG-19:aRuallel Processing Deslopments I0S Press, 1996.
ISBN 90-5199-261-0.

[3] Van Wijngaarden et al.Revised Report on the Algorithmic Language ALGOL 68.
1974.

[4] ReferenceManual for the Ada Programming Languagkda Joint Program @Qte.
1982.

[5] [ISO/IEC. Information Technology — Programming Languages — Fortran (ISO/IEC
1539:1991(E)). ISO/IECopyright Office, Gene, 1991.

[6] SPARCInternational. TheSPARC Architecture Manual.Prentice Hall, 1992.ISBN
0-13-825001-4.

[7] RichardL. Sites. Alpha Architecture Reference ManuBligital Press, 19921SBN
1-55558-098-X / 0-13-033663-7.

[8] CharlesPrice. MIPSIV Instruction Set. MIPS Technologies, Inc., 1995.

[9] Motorola. M68000 8416-/32-Bit Microprocessors Programmer’ Reference
Manual, Fifth edition. Prentice-Hall, 1986. ISBN 0-13-541475-X.

[10] AnalogDevices. ADSP-21066HARC Users Manual, Second Edition.
[11] ConorO’Neill. occam-2.5 definition. 1994.
[12] ANSI. Programming Language FORAN. X3.9-1978. ANSINew York, 1978.

[13] ANSI/IEEE Std 754-1985.IEEE Standard for Binary Floating-Point Arithmetic.
The Institute of Electrical and Electronic Engineers, Inc, 1985.

[14] JohnH. Crawford and Patrick. Selsinger Programming the 80386. SYBEX, 1987.
ISBN 0-89588-381-3.

[15] K. Jensen and N. Wh. Pascal User Manual and Report. Springer-Verlag, 1975.

[16] Alex Peleg, Sam Wilkie, and Uri \8iser Intel MMX for Multimedia PCs.
Communications of the ACManuary 1997Vol. 40, No 1.

[17] David Wood. KRoC- An Implementors’ Guide University of Kent at Canterry.
1998.

[18] JamesMoores. UseDefined Operators imccam?2.x. Unwversity of Kent at
Canterbury 1998.

[19] INMOS. occam 2 Language Toolset Language and Libraries Reference Manual.
INMOS Limited, 1993.

[20] INMOS Limited. Thetransputer instruction set — a compiler writers’ guiékeentice
Hall, 1988. ISBN 0-13-929100-8.

[21] David Wood. KRoC- Calling C Functions fromoccam. University of Kent at
Canterbury 1998.

[22] PeterWelch. Private communication. 1999.

144 D. C.Wood and JMoores / UsetDefined Data Types and Operators

Appendices

A. Operators

The following table lists most of the operators considered in this pefmne hae keen
implemented on seral taget machines; others only on those that support the data types
concerned.

Arithmetic

BYTE

I NT16

I NT

| NT64

I NT128
LONG

UNSI GNED
REAL16
REAL32
REAL64
REAL128
COVPLEX32
COVPLEX64
COVPLEX128
RAT64
VECTOR
MATRI X
SET

STRI NG
Comparisons
I NT128
LONG

UNSI GNED
REAL16
REAL32
REAL64
REAL128
COVWPLEX32
COVPLEX64
COVPLEX128
RAT64
VECTOR
MATRI X
SET

STRI NG
Logic
BYTE

I NT16

I NT

| NT64

I NT128
LONG

UNSI GNED

Unche&ed PLUS Ml

I NT128 O
LONG O
UNSI GNED +

\ B @ g I

+ + + |
+ + + +
OooOoOod
OoooO

OOD0000000+ + 0000 + + + +
OoooO
ODooo

oo ooooo
oo & oooad

A
\Y

I:I++I:|DI:II:| v DDDDDDDDD++DDDD++++ O

OO0000D0D000+ + 04+ 00

“loDoooooooo+ +to+og Nl ooooooooo+ +toooo+ + 4+ |+
OO

~

OoOoOoo
+ + + +| O
+ + + +
+ + + +
DDDI:I@
DDDD@

O O ad O O O
O + + + +
US TIMES AFTER

g g
a d
+ +

+O0O+ + + +
+ O v 4

O

O

[}

O

O

O

+

+00Z +00+ + + +

Key.

+ Predefined imbccam or inherited
[0 New operator sometimes werloaded for seeral combinations of operand types

D. C.Wood and JMoores / UsetDefined Data Types and Operators 145

B. Functions
Many useful operations are provided as functions, rather than operators.

Result Function Parameters
COVPLEX32 COMPLEX32SQR (VAL COVPLEX32)
COVPLEX32 COMPLEX32SQRT (VAL COWPLEX32)
COVPLEX32 COMPLEX32SQRTREAL (VAL REAL32)
REAL32 COMPLEX32ABS (VAL COWPLEX32)
REAL32 COMPLEX32ABSSQ (VAL COVPLEX32)
COVPLEX64 COMPLEX64SQR (VAL COVPLEX64)
COVPLEX64 COMPLEX64SQRT (VAL COVPLEX64)
COVPLEX64 COMPLEX64SQRTREAL (VAL REAL64)
COVPLEX32 COMPLEX64ROUND (VAL COVPLEX64)
COVPLEX32 COMPLEX64TRUNC (VAL COVPLEX64)
REALG4 COMPLEX64ABS (VAL COVPLEX64)
REALG4 COMPLEX64ABSSQ (VAL COVPLEX64)
COVPLEX128 COMPLEX128SQR (VAL COVPLEX128)
COVPLEX128 COMPLEX128SQRT (VAL COVPLEX128)
COVPLEX128 COMPLEX128SQRTREAL (VAL REAL128)
COVPLEX64 COMPLEX128ROUND (VAL COVPLEX128)
COVPLEX64 COMPLEX128TRUNC (VAL COVPLEX128)
REAL128 COMPLEX128ABS (VAL COVPLEX128)
REAL128 COMPLEX128ABSSQ (VAL COWPLEX128)
REAL16 REAL16ABS (VAL REAL16)
REAL16 REAL16SQRT (VAL REAL16)
REAL128 REAL128ABS (VAL REAL128)
REAL128 REAL128SQRT (VAL REAL128)
REAL128 REAL128CEIL (VAL REAL128)
REAL128 REAL128FLOOR (VAL REAL128)
REAL128 REAL128ROUND (VAL REAL128)
REAL128 REAL128TRUNC (VAL REAL128)
REAL128 REAL128SCALE (VAL REAL128, VAL INT)
REAL128 REAL128MANTISSA (VAL REAL128)

I NT REAL128EXPONENT (VAL REAL128)
REAL128, | NT REAL128MANEXP (VAL REAL128)

I NT REAL128CEIL32 (VAL REAL128)

I NT REAL128FLOOR32 (VAL REAL128)

I NT REAL128ROUND32 (VAL REAL128)

| NT REAL128TRUNC32 (VAL REAL128)

| NT64 REAL128CEIL64 (VAL REAL128)

| NT64 REAL128FLOOR64 (VAL REAL128)

| NT64 REAL128ROUNDG64 (VAL REAL128)

| NT64 REAL128TRUNCG64 (VAL REAL128)

| NT128 REAL128CEIL128 (VAL REAL128)

| NT128 REAL128FLOOR128 (VAL REAL128)

I NT128 REAL128ROUND128 (VAL REAL128)

| NT128 REAL128TRUNC128 (VAL REAL128)

I NT128, I NT128 INT128DIVREM (VAL I NT128, VAL | NT128)
| NT128, | NT INT128DIVREM32 (VAL 1 NT128, VAL | NT)
I NT, | NT128 INT128NORM (VAL |1 NT128)
LONG, I NT LONGDIVREM32 (VAL LONG VAL INT)
I NT, LONG LONGNORM (VAL LONG

LONG LONGMOSTPOS)

LONG LONGMOSTNEG)

I NT SETMEMBERS (VAL SET)

146 D. C.Waood and JMoores / UseiDefined Data Types and Operators

C. Type Corversion Functions
For n data typesO(nz) type-comwersions are required. Not all Y&abeen written yet, hence

some of the ellipses be&lo

Complex Numbers

From To: | COVPLEX32 COVPLEX64 COVPLEX128

REAL32 REAL32TOCOMPLEX32 .

REAL64 R EAL64TOCOMPLEX64 -

REAL128 e R EAL128TOCOMPLEX128
COVPLEX32 - COMPLEX32TOCOMPLEX64 COMPLEX32TOCOMPLEX128
COVPLEX64 COMPLEX64ROUND/TRUNC - COMPLEX64TOCOMPLEX128
COWPLEX128 | COMPLEX128TOCOMPLEX32 COMPLEX128TOCOMPLEX64 -

Integer and Real Numbers

From To: | INT I NT64 INT128 LONG

I NT - I NT64 INT32TOINT128 INT32TOLONG

| NT64 I NT ROUND TRUNC - | NT64TOINT128 INT6ATOLONG

| NT128 INT128TOINT32 INT128TOINT64 - | NT128TOLONG
LONG LONGTOINT32 LONGTOINT64 LONGTOINT128 -

REAL32 I'NT ROUND/ TRUNC | NT64 ROUND/ TRUNC REAL32TOINT128 REAL32TOLONG
REAL64 I NT ROUND TRUNC | NT64 ROUND/ TRUNC ~ REAL64TOINT128 REAL64TOLONG
REAL128 | REALI28TOINT32 REAL128TOINT64 REAL128TOINT128 REAL128TOLONG
BYTE I NT I NT64 BYTETOINT128 BYTETOLONG
[]1BYTE . . DEC/HEXTOINT128 DEC/HEXTOLONG
From To: | REAL16 REAL32 REAL64 REAL128

I NT REAL32 ROUND/ TRUNC REAL64 ROUND/ TRUNC INT32TOREAL128

| NT64 REAL32 ROUND/ TRUNC REAL64 ROUND/ TRUNC INT64TOREAL128

| NT128 | NT128TOREAL32 INT128TOREAL64 INT128 TOREAL128
LONG L ONGTOREALS32 LONGTOREAL64 LONGTOREAL128
REAL16 - REAL16TOREAL32 .

REAL32 REAL32TOREAL16 - REAL64 REAL32TOREAL128
REAL64 REAL32 ROUND/ TRUNC - REAL64TOREAL128
REAL128 R EAL128TOREAL32 REAL128TOREALG64 -

BYTE REAL32 ROUND/ TRUNC REAL64 ROUND/ TRUNC BYTETOREAL128
[]1BYTE D ECTOREAL128

Rational Numbers

From To: | REAL64 RAT64
REAL64 - REAL64TORAT64
RAT64 RAT64TOREAL64 -
Unsigned Intgers
From To: UNSI GNED32 REAL32 REAL64 REAL128
UNSI GNED32 - UNS32TOREAL32 UNS32TOREAL64 UNS32TOREAL128
REAL32 REAL32TOUNS32 -
REAL64 REAL64TOUNS32 -
REAL128 REAL128TOUNS32 -
Output
From To: | Decimal Hexadecimal
| NT128 INT128TODEC INT128TOHEX
LONG LONGTODEC LONGTOHEX
REAL128 REAL128TODEC

