
Wood, David C. and Moores, James (1999) User-defined data types and
operators in occam. In: Cook, Barry M., ed. Proceedings of WoTUG-22:
Architectures, Languages and Techniques for Concurrent Systems. Concurrent
Systems Engineering . IOS Press, Amsterdam, Netherlands, pp. 121-146.
ISBN 90-5199-480-X.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/16765/ The University of Kent's Academic Repository KAR

The version of record is available from
http://www.wotug.org/paperdb/show_pap.php?f=1&num=342

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/16765/
http://www.wotug.org/paperdb/show_pap.php?f=1&num=342
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Architectures, Languages and Techniques 121
B. M.Cook (Ed.)
IOS Press, 1999

User-Defined Data Types and Operators
in occam

David C. WOOD and James MOORES
Computing Laboratory, University of Kent at Canterbury, CT2 7NF

{D.C.Wood, jm40}@ukc.ac.uk

Abstract: This paper describes the addition of user-defined monadic and dyadic
operators tooccam* [1], together with some libraries that demonstrate their use.It
also discusses some techniques used in their implementation inKRoC [2] for a
variety of target machines.

1. Intr oduction

Most programming languages allow user-defined data types, and many (Algol-68 [3], Ada
[4]; Fortran-90 [5], etc.) also provide facilities for user-defined operators, acting on
variables of both built-in and user-defined types.

A mechanism has been provided inKRoC to enable operators to be written by any user of
occam.

The main advantage of these is computational convenience, avoiding the labour of writing
expressions in terms of function calls.They hav ethe additional advantage of being able to
be overloaded on a range of different data types.For example, ‘+’ already represents
addition for all the standardoccam numerical types, and can now also be used for user-
defined types like complex numbers.

In KRoC, such operators can also provide access to hardware implementing useful
operations and data types not directly represented inoccam.

The operators described here have been implemented on a range of machines, including
theSPARC[6], DEC Alpha [7], MIPS [8], Motorola 68000 [9], and Analog DevicesSHARC
[10]. Theseoperators are summarized in the appendices.

1.1. User-Defined Data Types

User-defined data types were introduced inoccam 2.1 (then calledoccam 2.5) [11], but
operations on them were restricted to the operators inherited from the base types, or to
functions.

Standardoccam data types may be renamed:

DATA TYPE THIS IS INT:

* occam is a trademark of theSGS-THOMSONMicroelectronics Group.

122 D. C.Wood and J. Moores / User-Defined Data Types and Operators

Such types inherit the operators of their base types, but they cannot be mixed in
expressions.

Also, RECORDs may be defined:

DATA TYPE THAT
RECORD

INT which, what:
:

The elements of such records may be specified as follows:

THAT thing:
INT why, who:
SEQ

thing[which] := why
thing[what] := who

or

thing := [why, who]

Where necessary, constants of user-defined types can be decorated to make them
unambiguous; for example

VAL where IS [27, 42] (THAT):

Variables of such types may be passed as parameters and results ofFUNCTIONs, but this
leads to clumsy forms of expressions:

THAT x, y, z:
SEQ

z := T HAT.PROD (THAT.SUM (x, y), THAT.DIFF (x, y))

1.2. User-Defined Operators

User-defined operators provide a much more concise and convenient notation:

z := (x + y) * (x - y)

The INMOS / SGS-THOMSONoccam 2.1 Toolset compiler has been modified to allow
user-defined operator. Such operators are declared like normaloccam FUNCTIONs, except
that the function name is replaced by a string; for example:

THAT FUNCTION "+" (VAL THAT x, y) ...

Operator functions must have either one or two parameters, for monadic (prefix) and
dyadic (infix) operators, respectively, and a single result.

Only a limited number of operator symbols can be used. The standardoccam operators
(except type conversions) can be overloaded on new data types. The existing operators can
also be redefined on existing types*.A few new operator symbols are provided:ˆ , ++, ==,
?? , !! , $$, %, %%, %>, <%, @, @@, @>, <@, &&, &>, <&, [> , <] . All of these can be used
as both monadic and dyadic operators.

* This is normally a Very Bad Thing, but see Section 4.

D. C.Wood and J. Moores / User-Defined Data Types and Operators 123

There is no operator precedence inoccam, and associativity is treated very strictly; so,
for example,x PLUS y PLUS z is legal, but x + y + z is not (because overflow
might occur in some interpretations and not others).Redefined operators inherit their
associativity, and new operators are not associative.

Some operations are still most conveniently represented as functions.

2. ExampleOperators

The following examples show a number of applications of user-defined operators in
occam. Their implementation is discussed in Section 3.

2.1. Powers

An obvious operator to provide is power, or exponentiation. Althoughnot required very
often, it is not trivial to implement efficiently, so it may be worth providing in a library.
Many programming languages include it.

Powers of all sizes of integer and real operands have been defined; for example

INT FUNCTION "ˆ" (VAL INT X, Y) ...
INT64 FUNCTION "ˆ" (VAL INT64 X, VAL INT Y) ...

(these requireY ≥ 0), and

REAL32 FUNCTION "ˆ" (VAL REAL32 X, VAL INT Y) ...
REAL64 FUNCTION "ˆ" (VAL REAL64 X, VAL INT Y) ...

These power functions are implemented by the square-and-multiply algorithm, and so are
reasonably efficient. This is especially important with operand types for which
multiplication is expensive. For this reason, special squaring functions have been provided
for those data types for which this can be done more efficiently than by simple
multiplication.

Powers with real exponents have also been provided:

REAL32 FUNCTION "ˆ" (VAL REAL32 X, Y) ...
REAL64 FUNCTION "ˆ" (VAL REAL64 X, Y) ...

Powers of most of the numerical data types described below are implemented similarly.

2.2. Rotations

Rotations are an example of a useful operation often provided by hardware, which is not
usually available from high-level languages.

Left and right rotation operators,<@and@>, hav ebeen defined for all integer types; for
example:

INT FUNCTION "<@" (VAL INT X, N) ...
INT FUNCTION "@>" (VAL INT X, N) ...
INT64 FUNCTION "<@" (VAL INT64 X, VAL INT N) ...
INT64 FUNCTION "@>" (VAL INT64 X, VAL INT N) ...

The shift count is taken modulo the size of the operand.

Related operations might be signed shifts, shifts that allow neg ative counts, and shifts
(scaling by powers of two) applied to floating-point variables.

124 D. C.Wood and J. Moores / User-Defined Data Types and Operators

2.3. ExtendedArithmetic

Many machines have instructions to produce double-length products from two single-length
operands, and to divide double-length by single-length operands, giving single-length
quotient and remainder. Operators have been written to represent these.

A new operator symbol is required for multiplication, but division can be overloaded.

The following are available on theSPARC:

INT64 FUNCTION "@" (VAL INT X, Y) ...
INT FUNCTION "/" (VAL INT64 X, VAL INT Y) ...
INT FUNCTION "\" (VAL INT64 X, VAL INT Y) ...

and the following in the 68000:

INT FUNCTION "@" (VAL INT16 X, Y) ...
INT16 FUNCTION "/" (VAL INT X, VAL INT16 Y) ...
INT16 FUNCTION "\" (VAL INT X, VAL INT16 Y) ...

In each case, they correspond closely to the hardware instructions.

The MIPS ‘doubleword multiply’ instructions give an INT128 (§ 2.6) product from
INT64 operands. Thisis also easy on theDEC Alpha. Thecompiler library multiplication
function for INT64 (INT64MUL%CHK) generates a 128-bit result internally (and hence
INT128 multiplication produces anINT256 !).

Similar floating-point instructions,fsmuld and fdmulq , are defined in theSPARC
architecture, though probably not implemented in hardware, giving:

REAL64 FUNCTION "@" (VAL REAL32 X, Y) ...
REAL128 FUNCTION "@" (VAL REAL64 X, Y) ...

These could be used, for example, in an inner-product operator between arrays, in situations
where cancellation must be minimized:

REAL64 FUNCTION "@" (VAL []REAL32 X, Y)
REAL64 Result:
VALOF

SEQ
ASSERT ((SIZE X) = (SIZE Y))
Result := 0.0
SEQ i = 0 FOR SIZE X

Result := Result + (X[i] @ Y[i])
RESULT Result

:

(Note that operators can have open arrays as parameters, though not as results.)

Quotient and remainder are often required together, and much of the computation is
common to both, so the following is provided on theSPARC

INT, INT FUNCTION INT64DIVREM32 (VAL INT64 X, VAL INT Y) ...

which is essentially the same asLONGDIV, and the following on the 68000

INT16, INT16 FUNCTION INT32DIVREM16
(VAL INT X, VAL INT16 Y) ...

D. C.Wood and J. Moores / User-Defined Data Types and Operators 125

2.4. ComplexNumbers

Several new numerical types have been defined.Most of the operators provided for them
are redefinitions of the familiar arithmetic operations.

Complex numbers are very important in scientific computing, and are provided as
standard types in Fortran [12], Algol-68, etc.

The data types are declared asoccam 2.1RECORDs:

DATA TYPE COMPLEX32
RECORD

REAL32 real, imag:
:

and

DATA TYPE COMPLEX64
RECORD

REAL64 real, imag:
:

A COMPLEX128type is defined similarly (§ 2.8).

Operators or functions for constructing complex numbers from reals, and selecting the
real and and imaginary parts of complex numbers, are not required:

REAL64 x, y:
COMPLEX64 z:
SEQ

z := [x, y]
...
x, y := z[real], z[imag]

All the meaningful standardoccam operators are provided. (This includes the
comparisons ‘=’ and ‘<>’, although they a numerically dubious. Other comparisons are, of
course, meaningless, and it is difficult to think of an interpretation for ‘\ ’.) Powers (with
integer exponents) are also implemented, and complex conjugate is represented by ‘∼ ’.

The predefined dyadic operators inoccam (with the exception of shifts) require that both
operands should be of the same type.However, the the ‘* ’ and ‘/ ’ operators have been
overloaded for the following useful combinations of operands of compatible sizes:
COMPLEX*REAL, REAL*COMPLEX, andCOMPLEX/REAL.

Some operations, such as absolute value and square root, are defined as functions, rather
than operators.

There are functions that return the complex square root of a (possibly negative) real
argument, and functions are provided for squaring complex numbers, as this can be done
more efficiently than by simply multiplying them by themselves, which is significant in the
power operator (§ 2.1).

126 D. C.Wood and J. Moores / User-Defined Data Types and Operators

The following constants are defined:

VAL COMPLEX32 Zero.COMPLEX32 IS [0.0, 0.0]:
VAL COMPLEX32 One.COMPLEX32 IS [1.0, 0.0]:
VAL COMPLEX32 I.COMPLEX32 IS [0.0, 1.0]:

VAL COMPLEX64 Zero.COMPLEX64 IS [0.0, 0.0]:
VAL COMPLEX64 One.COMPLEX64 IS [1.0, 0.0]:
VAL COMPLEX64 I.COMPLEX64 IS [0.0, 1.0]:

The obvious methods for some operations (division, absolute value, and square root) are
liable to overflow and cancellation. The algorithms used attempt to avoid these errors.

2.5. Vectors

Vectors of the formxi + yj + zk, as used in mechanics, can be defined similarly:

DATA TYPE VECTOR32 IS [3]REAL32:

All the obvious operators are defined. The vector (outer, ‘cross’) product is represented by
‘* ’, and the scalar (inner, ‘dot’) product byTIMES (‘ . ’ is not allowed as an operator).

Quaternions are very similar.

2.6. INT128

This type is defined as

DATA TYPE INT128 IS [4]INT:

All the standardoccam operators are provided.

INT128 constants cannot be written directly. Sufficiently small values can be converted
from INT s or INT64 s, and the functionsDECTOINT128andHEXTOINT128can be used
to convert from strings of digits.

The following predefined constants are included:

VAL INT128 MinusOne.INT128 IS [-1, -1, -1, -1]:
VAL INT128 Zero.INT128 IS [0, 0, 0, 0]:
VAL INT128 One.INT128 IS [1, 0, 0, 0]:
VAL INT128 Two.INT128 IS [2, 0, 0, 0]:
VAL INT128 Ten.INT128 IS [10, 0, 0, 0]:
VAL INT128 MostNeg.INT128 IS [0, 0, 0, MOSTNEG INT]:
VAL INT128 MostPos.INT128 IS [-1, -1, -1, MOSTPOS INT]:

Ten.INT128 is useful internally for conversions to and from decimal.

2.7. Multiple-Length Integers

These are a further extension of integer arithmetic to any predefined length.

The parameters of operators can be open arrays, but arrays returned as results must be of
constant size.So the size of the numbers (inINT s) must be set before compiling the
package; for example:

VAL INT LONG.Size IS 1000:

D. C.Wood and J. Moores / User-Defined Data Types and Operators 127

Then the type can be declared:

DATA TYPE LONG IS [LONG.Size]INT:

All the normal operators are defined.Multiplication and division are overloaded for
LONG*INT andLONG/INT *.

The LONGfactorial of anINT is represented by a prefix ‘!! ’ operator; for example,
!! 1000 .

As with INT128 s, small constants can be converted from INT s of various sizes, and
numbers of any size translated from strings of digits.MOSTPOSLONGandMOSTNEGLONG
are provided as functions.

Scaled long integers can be used to implement multiple-length real numbers; for example,
e to 1000 digits is easy.

This implementation is acceptable only for numbers of fairly moderate size, since time is
wasted handling leading zeros.For serious work, a record including a length field should
be used, as withSTRINGs (§ 2.16).

2.8. REAL128

These have been implemented for theSPARCand theMIPS, using system software provided
on these machines. The formats are not the same: theSPARCis a natural extension ofIEEE
floating-point arithmetic [13]; theMIPS is not.

They are typically tens to hundreds of times slower thanREAL64s.

TheDEC Alpha also supports (software)REAL128s.

The type is declared as

DATA TYPE REAL128 IS [2]REAL64:

which should ensure the appropriate alignment.The two elements would not normally be
accessed separately.

As with INT128 , representing constants is difficult. Several are supplied, including, in
SPARCformat:

VAL REAL128 Zero.REAL128 RETYPES [0, 0, 0, 0]:
VAL REAL128 Half.REAL128 RETYPES [#3FFE0000, 0, 0, 0]:
VAL REAL128 One.REAL128 RETYPES [#3FFF0000, 0, 0, 0]:
VAL REAL128 Two.REAL128 RETYPES [#40000000, 0, 0, 0]:
VAL REAL128 Ten.REAL128 RETYPES [#40024000, 0, 0, 0]:

VAL REAL128 Pi.REAL128 RETYPES [#4000921F, #B54442D1,
#8469898C, #C51701B8]:

VAL REAL128 E.REAL128 RETYPES [#40005BF0, #A8B14576,
#95355FB8, #AC404E7A]:

* A ctually,LONG/LONGis difficult, and not yet implemented.

128 D. C.Wood and J. Moores / User-Defined Data Types and Operators

In MIPS format, these are:

VAL REAL128 Zero.REAL128 RETYPES [0, 0, 0, 0]:
VAL REAL128 Half.REAL128 RETYPES [#3FE00000, 0, 0, 0]:
VAL REAL128 One.REAL128 RETYPES [#3FF00000, 0, 0, 0]:
VAL REAL128 Two.REAL128 RETYPES [#40000000, 0, 0, 0]:
VAL REAL128 Ten.REAL128 RETYPES [#40240000, 0, 0, 0]:

VAL REAL128 Pi.REAL128 RETYPES [#400921FB, #54442D18,
#3CA1A626, #33145C07]:

VAL REAL128 E.REAL128 RETYPES [#4005BF0A, #8B145769,
#3CA4D57E, #E2B1013A]:

Note that the following more natural form could be used only ifREAL64s are in native
format:

VAL REAL128 Zero.REAL128 IS [0.0, 0.0]:
VAL REAL128 Half.REAL128 IS [0.5, 0.0]:
VAL REAL128 One.REAL128 IS [1.0, 0.0]:
VAL REAL128 Two.REAL128 IS [2.0, 0.0]:

With these operations, it is easy to defineCOMPLEX128.

2.9. REAL80

A similar example allows the use ofIEEE double extendedprecision, on those machines
that support it, such as the 68881.

DATA TYPE REAL80 IS [3]INT:

This allocates 96 bits, as required for this type in memory by the 68881.

The Intel 80386 family uses a similar 80-bit floating-point format [14].

2.10. REAL16

TheSHARChas a 16-bit floating-point format. This is declared as

DATA TYPE REAL16
RECORD

INT16 real16:
:

Simply usingINT16 would allow REAL16 to inherit many inappropriate operators, such
asPLUS.

The basic arithmetic and comparison operators are implemented.

2.11. UnsignedIntegers

Checked arithmetic operators can be defined on unsigned integers of all sizes.

The unchecked arithmetic operators (PLUS, MINUS, and TIMES) are inherited from the
signed types.

SignedINT8 s could be provided similarly (BYTEs are already unsigned).

D. C.Wood and J. Moores / User-Defined Data Types and Operators 129

2.12. RationalNumbers

These are currently implemented as pairs ofINT64 s:

DATA TYPE RAT64
RECORD

INT64 num: -- signed
INT64 den: -- always positive

:

To avoid overflow in intermediate values, they should perhaps useINT128 s internally
(§ 2.6),and the denominator should be unsigned (§ 2.11).

All the obvious operators are provided. Reciprocalis represented by ‘∼ ’. This is a trivial
operation for rational numbers, and is used internally to derive division from multiplication.
The operatorX % Yis used to create the rational valueX / Y reduced to its lowest terms.It
is overloaded for operands of several combinations of types. It is necessary because
[X, Y] may not be a valid rational number; for example,2 % (-4) is [-1, 2] .

Some constants are provided:

VAL RAT64 Zero.RAT64 IS [0, 1]:
VAL RAT64 One.RAT64 IS [1, 1]:
VAL RAT64 MinusOne.RAT64 IS [-1, 1]:
VAL RAT64 Infinity.RAT64 IS [1, 0]: -- not used

Continued fractions are used to convert from REAL64s to rationals.

2.13. Fixed-Point Numbers

These have advantages over floating-point numbers in some numerical applications (for
example, they are not subject to cancellation errors). The data type might be declared as

DATA TYPE FIX64 IS INT64:

The number of bits in the integer and fractional parts can be defined with

VAL INT FIX64.Scale IS 32: -- scale shift

Most operations, such as addition and subtraction, are inherited fromINT64 .

2.14. Matrices

Operators on matrices can be defined, provided that all the matrices in any one program are
the same size.In general, this is a severe restriction, but might be tolerable in some
applications, such as the transformation matrices in a graphical system.

VAL INT MATRIX.Size IS 4:

DATA TYPE VECTOR IS [MATRIX.Size]REAL64:
DATA TYPE MATRIX IS [MATRIX.Size]VECTOR:

All the obvious operations are available, including all the meaningful overloadings of ‘* ’
on combinations of variables of typeREAL64, VECTOR, and MATRIX. Transpose is
represented by ‘@’, and inverse by ‘∼ ’.

130 D. C.Wood and J. Moores / User-Defined Data Types and Operators

2.15. Sets

A SET data type, as in Pascal [15], can be implemented as a packed array of bits.Set
operations then reduce to Boolean operations on such arrays (which may be a useful type in
their own right.)

Unfortunately, as with multiple-length integers, the size of a set must be fixed at compile
time. A reasonable value is 256 elements, giving a set ofBYTEs, represented by eight
INT s (or 16 on a 16-bit machine):

VAL INT SET.Bits IS 256: -- 2ˆBitsPerByte
VAL INT SET.Words IS 8: -- SET.Bits/BitsPerWord

DATA TYPE SET IS [SET.Words]INT:

All the usual set operations are provided:

intersection SET * SET SET /\ SET
union SET + SET SET \/ SET
difference SET - SET
symmetric difference SET / SET SET >< SET
contained by SET <= SET
inclusion BYTE <= SET
contains SET >= SET
includes SET >= BYTE
(strict) superset SET > SET
(strict) subset SET < SET
inverse ∼ SET

Overloading allows many useful combinations of sets and elements.

The operator ‘$$ ’ is overloaded to make a set from a single byte, an open array of bytes,
and a range of bytes.

A number of constantSETs are defined; for example:Empty.SET , UpperCase.SET ,
LowerCase.SET , Letter.SET , Digit.SET , Printing.SET .

2.16. Strings

Tw o approaches to implementing a string type have been investigated. Inone, most of the
work, including dynamic memory allocation, is done inC, and theoccam data type is just
an INT (or whatever is required to hold a pointer on the target machine). Problems with
this are that the interface withoccam arrays ofBYTEs is complicated, particularly on big-
endian machines, and assigning string variables introduces aliasing.

The second method works entirely inoccam, and is therefore much cleaner. Howev er, it
suffers from the restriction that all strings in any one program must have the same
maximum length. Here, the type definition is

DATA TYPE STRING
RECORD

INT length:
[STRING.Max]BYTE string:

:

wherelength represents the current length of the string, and the constantSTRING.Max

D. C.Wood and J. Moores / User-Defined Data Types and Operators 131

must be defined before the package is compiled.

Alternatively, a fixed definition could be used:

DATA TYPE STRING
RECORD

BYTE length:
[256]BYTE string:

:

Operators on strings include all the comparisons, and

STRING FUNCTION "+" (VAL STRING S, T) ...
STRING FUNCTION "[>" (VAL STRING S, VAL INT N) ...
STRING FUNCTION "<]" (VAL STRING S, VAL INT N) ...
STRING FUNCTION "**" (VAL STRING S, VAL INT N) ...
INT FUNCTION "/" (VAL STRING S, T) ...
STRING FUNCTION "\" (VAL STRING S, VAL RANGE R) ...

These represent, respectively, concatenation, head, tail, repetition, searching for one string
in another (returning the index of the start of the substring if found, or −1 otherwise), and
substring.RANGEis a special type:

DATA TYPE RANGE
RECORD

INT start, length:
:

which, in effect, allows the substring operator to have three operands.

The operator ‘$$ ’ is overloaded to generate aSTRING from an array ofBYTEs or a
singleBYTE, and to copy aSTRINGefficiently, ignoring the unused elements.

Most of the operators can be overloaded for arrays ofBYTEs, and singleBYTEs, instead
of STRINGs.

The constantNull.STRING is defined.

2.17. OtherExamples

It could be argued thatTIMEs, as returned byoccam TIMERs, should constitute a type
distinct from INT s. Sumsor differences ofTIMEs are themselves TIMEs, as are the
products or quotients ofTIMEs and INT s. However, the quotient of two TIMEs is an INT ,
and the product is an error. This would be a step in the direction of treating types as
physical dimensions, which is a difficult subject.

On big-endian machines, new types could be defined for 64-bit integers and reals in
native format. If the operators were translated in line (§3.2.9), this might be more efficient
than reformatting.

The comparison operators can be defined for open arrays of any type.

An ‘equivalence’ operator is occasionally useful.It is defined for all integer data types;
for example

INT INLINE FUNCTION "==" (VAL INT X, Y) IS ∼ (X >< Y):

132 D. C.Wood and J. Moores / User-Defined Data Types and Operators

A proper ‘modulo’ operator, ‘%’, could be defined, that behaved sensibly for negative
operands; so, for example,

index := (index - 1) % size

would have the obviously desired effect. (Thereshould also be a corresponding division
operator. Ada has two operators,rem andmod, but only rem is consistent with the single
division operator, ‘/ ’.)

Other data types supported by various machines could be accessed fromoccam; for
example, IEEE single extendedprecision on some targets, andREAL40 and saturating
arithmetic on theSHARC.

Several modern machines have ‘SIMD’ i nstructions, such as the PentiumMMX [16] and
SPARC VIS. Many of these operators would simply overload the standard ones.Software
implementations would provide portability.

3. Implementation

The Kent Retargetableoccam Compiler,KRoC, uses a modified version of theINMOS /
SGS-THOMSONoccam 2.1 Toolset compiler, occ21 , to generate transputer assembly
language output [17]. This is translated by a target-dependent translator, octran , into the
assembly language of the target machine. The resulting code is assembled, and linked with
a kernel and run-time libraries.

Implementing new operators involves additions toocc21 to handle the syntax, and the
provision of user-defined libraries to implement the operators.

3.1. CompilerModifications

The front end of the compiler has been modified to convert operator definitions [18], such
as

INT FUNCTION "%" (VAL INT X, Y) ...

into normalFUNCTIONs, such as

INT FUNCTION udo.PER.INT.INT (VAL INT X, Y) ...

Then expressions like x % y are converted to function calls like udo.PER.INT.INT
(x, y) .

The names of these user-defined operator functions depend on the types of their operands,
so the same operators can be overloaded for any combination of operator types.They do
not, however, depend on the types of their results; so, for example, the same square-root
operator acting on a real argument could not be used to return a real or complex result
depending on the context.

These names are invisible to the user, except in error messages and warnings from the
compiler.

3.2. Writing Libraries

The example libraries described above hav e been implemented in a variety of ways,
considered below.

D. C.Wood and J. Moores / User-Defined Data Types and Operators 133

3.2.1. Precompiledoccam

The simplest method is to write the functions inoccam. This has been done for most of
theSETandRAT64operators, and some of those for complex arithmetic. For example

SET FUNCTION "+" (VAL SET S, T) -- union
SET Result:
VALOF

SEQ i = 0 FOR SET.Words
Result[i] := S[i] \/ T[i]

RESULT Result
:

Such functions can be precompiled into libraries.

3.2.2. INLINE occam

For simple operators,INLINE functions can be used, either as self-contained expressions,
for example

COMPLEX32 INLINE FUNCTION "+" (VAL COMPLEX32 x, y) IS
[x[real] + y[real], x[imag] + y[imag]]:

or by using expressions involving precompiled operators:

RAT64 INLINE FUNCTION "/" (VAL RAT64 p, q) IS p * (∼ q):

Following the transputer instruction set, for most of the user-defined types described here
only the ‘>’ and ‘=’ comparisons are defined in full, the others being derived from them; for
example

BOOL INLINE FUNCTION "<>" (VAL INT128 X, Y) IS NOT (X = Y):
BOOL INLINE FUNCTION "<" (VAL INT128 X, Y) IS (Y > X):
BOOL INLINE FUNCTION "<=" (VAL INT128 X, Y) IS NOT (X > Y):
BOOL INLINE FUNCTION ">=" (VAL INT128 X, Y) IS NOT (Y > X):

3.2.3. Standardoccam Libraries

Some operations may correspond to functions already available from standard libraries.For
example, the functionsROTATELEFTand ROTATERIGHTare defined in theoccam
maths function library [19], though their effect is undefined if the shift count is out of
range. Hencethe following could be used:

INT INLINE FUNCTION "@>" (VAL INT X, N) IS
ROTATERIGHT (X, N /\ 31):

INT INLINE FUNCTION "<@" (VAL INT X, N) IS
ROTATELEFT (X, N /\ 3 1):

There are no such library functions for other data types.

For integers, the ‘extended arithmetic’ operators (§ 2.3) are essentially thelmul and
ldiv instructions of the transputer [20], and so can be defined portably using the
LONGPRODandLONGDIVfunctions from theoccam multiple-length arithmetic library.

The shift operators,<< and>>, can be overloaded for floating-point operands using the
functionsSCALEBandDSCALEBfrom the floating-point function library.

134 D. C.Wood and J. Moores / User-Defined Data Types and Operators

Powers with real exponents are difficult to compute accurately. The occam elementary
function libraries provide the following:

REAL32 INLINE FUNCTION "ˆ" (VAL REAL32 X, Y) IS POWER(X, Y):
REAL64 INLINE FUNCTION "ˆ" (VAL REAL64 X, Y) IS DPOWER(X, Y):

Alternatively, theC pow function could be used (§ 3.2.6).

For complex numbers, the elementary transcendental functions (EXP, LOG, etc.) can
easily be written similarly; for example

COMPLEX32 INLINE FUNCTION COMPLEX32EXP (COMPLEX32 Z) IS
EXP(Z[real]) * [COS(Z[imag]), SIN(Z[imag])] (COMPLEX32):

3.2.4. Modifiedoccam Libraries

Sometimes a standard library can be modified to support a new type. For example, the
INT64 functions for 16-bit transputers were converted into aINT128 library for 32-bit
machines by a few systematic edits, replacing64 by 128 , 32 by 64 , and 16 by 32 , as
necessary. A few constants were also changed in obvious ways, and most of theRETYPES
declarations were simply deleted.

A typical operator is

INT128 FUNCTION "+" (VAL INT128 X, Y)
INT128 Result:
VALOF

INT Carry:
SEQ

Carry, Result[0] := LONGSUM (X[0], Y[0], 0)
Carry, Result[1] := LONGSUM (X[1], Y[1], Carry)
Carry, Result[2] := LONGSUM (X[2], Y[2], Carry)
Result[3] := LONGADD (X[3], Y[3], Carry)

RESULT Result
:

Most of these functions are easy to extend to arbitrary-length numbers, giving theLONG
library. For example

LONG FUNCTION "+" (VAL LONG X, Y)
LONG Result:
VALOF

VAL INT Top IS LONG.Size - 1:
INT Carry:
SEQ

Carry := 0
SEQ i = 0 FOR Top

Carry, Result[i] := LONGSUM (X[i], Y[i], Carry)
Result[Top] := LONGADD (X[Top], Y[Top], Carry)

RESULT Result
:

D. C.Wood and J. Moores / User-Defined Data Types and Operators 135

On some machines with special hardware it might be worth implementing these functions
in assembly language. The 68000 has such hardware, though it is designed for big-endian
representation.

Binary coded decimal might be a convenient alternative (again on the 68000).

A portable, though less efficient,REAL128 library could be produced in the same way.

3.2.5. Tr ansputer Assembly Language

A few operators may be more conveniently written in transputer assembly language, using
ASMsections inoccam, but most are already available as library functions. Because of the
way KRoC works, this would be portable.

3.2.6. C and Target Libraries

KRoC provides a simple method of callingC from occam [21]. This gives a convenient
mechanism for accessing library functions on the target machine, as well as for writing
functions that may be difficult to express inoccam. The MIPS version of theREAL128
library was written in this way. The appropriateMIPS data type is represented bylong
double in C, and consists of two separately normalizedREAL64s, so in this case the type
defined above (§ 2.8) is an accurate description.

Operators are declared as externalC functions; for example:

#PRAGMA EXTERNAL "PROC C.REAL128ADD *
* (REAL128 X, VAL REAL128 Y, Z) = 0"

REAL128 INLINE FUNCTION "+" (VAL REAL128 Y, Z)
REAL128 X:
VALOF

C.REAL128ADD (X, Y, Z)
RESULT X

:

C.REAL128ADDis theoccam name of theC function_REAL128ADD:

void _REAL128ADD (int w[3])
{ * REAL128(w[0]) = VAL_REAL128(w[1]) + VAL_REAL128(w[2]);
}

REAL128 andVAL_REAL128 are additions to the standardKRoC package of macros for
interfacing toC.

3.2.7. Fortran

Since the interface betweenC and Fortran is normally well defined (though not necessarily
portable), the same method could be used to access library functions written in Fortran.
Examples areCOMPLEX32, which isCOMPLEXin standard Fortran, andREAL128, which,
asREAL*16 , is a common extension.

3.2.8. Targ et Assembly Language

Other functions may not be easy to express in standard high-level languages. Inthis case,
the assembly language of the target machine may be used, though this is, of course, not
portable.

136 D. C.Wood and J. Moores / User-Defined Data Types and Operators

A 128-bit floating-point data type is defined in theSPARCarchitecture, with instructions
such asfaddq , though it is rarely, if ever, implemented in hardware. Therecommended
way of using it is through some library routines, called from assembly language.

Operators to use these routines can be defined as follows. First,an external function is
declared; for example:

#PRAGMA EXTERNAL "REAL128 FUNCTION REAL128ADD *
* (VAL REAL128 X, Y) = 0"

and a user-defined operator to call it:

REAL128 INLINE FUNCTION "+" (VAL REAL128 X, Y) IS
REAL128ADD (X, Y):

Functions like REAL128ADDare implemented inSPARCassembly language as calls to
the quadruple-precision library routines, like__Q_add :

.global $REAL128ADD
$REAL128ADD:

ld [%l3+8],%o0 ! - > X
ld [%l3+12],%o1 ! - > Y
ld [%l3+4],%o2 ! - > r esult
call __Q_add ! r esult := X + Y
st %o2,[%sp+64] !* hidden parameter
unimp 16 ! magic
ld [%l3],%o7 ! o ccam return
retl
inc 16,%l3 !*

! - -----------------------

REAL128 elementary transcendental functions could be obtained from the Fortran
library.

The IEEE double extendedfloating-point format is provided by some processors and co-
processors in the 68000 family, and also by some Intel machines.For example

REAL80 INLINE FUNCTION "+" (VAL REAL80 X, Y) IS
REAL80ADD (X, Y):

The function is implemented as

.REAL80ADD:
fmove.x ([8,a6]),fp0 ! X
fadd.x ([12,a6]),fp0 ! Y
fmove.x fp0,([4,a6]) ! $ formalresult0

! movea.l (a6),a0 ! o ccam return
lea 16(a6),a6
jmp (a0)

! - -----------------------

D. C.Wood and J. Moores / User-Defined Data Types and Operators 137

On most machines, rotations are most easily implemented in assembly language.

The functions are first declared as external; then the operators are defined as calls to these
functions:

INT INLINE FUNCTION "<@" (VAL INT X, N) IS
INT32LROTATE (N, X):

INT INLINE FUNCTION "@>" (VAL INT X, N) IS
INT32RROTATE (N, X):

The reversal of the operands is useful for optimization (§ 3.2.9).

The code is written in the target assembly language; for example, for theSPARC:

.global $INT32LROTATE
$INT32LROTATE:

ld [%l3+4],%l2 ! N
ld [%l3+8],%l0 ! X
sll %l0,%l2,%l1 ! X << N (modulo 32)
neg %l2,%l2
srl %l0,%l2,%l0 ! X >> (32 - N)
or %l0,%l1,%l0

! l d [%l3],%o7 ! occam return
retl
inc 16,%l3 !*

! - -----------------------

or for the 68000:

.INT32LROTATE:
move.b 7(a6),d2 ! N
move.l 8(a6),d3 ! X
and.b #31,d2 ! ?
rol.l d2,d3 ! X <@ N

! move.l (a6),a0 ! o ccam return
lea 16(a0),a0
jmp (a0)

! - -----------------------

Operators for unsigned arithmetic can usually be implemented by compiling the
corresponding functions for signed numbers, and then editing the assembly language to
change the check for overflow to a check for carry. For example, on theSPARC, unsigned
addition is

addcc %l0,%l1,%l0
tlu 17 !+ OVERFLOW

3.2.9. In-Line Target Assembly Language

All these techniques (except forINLINE occam) carry the overhead of function calls.For
some of the applications considered here, this is undesirable.To avoid it, a modification
has been made tooctran , the program used byKRoC to translate from transputer to target
assembly language. Essentially the same mechanism that is used to look up transputer
assembly-language instructions is reused with a predefined table of function names.The

138 D. C.Wood and J. Moores / User-Defined Data Types and Operators

calls are then replaced by in-line code. This also enables simple optimizations to be
performed when one operand is a constant.

The following example shows what can be done with rotation operations on the 68000.
The statementy : = x < @ 42 compiles to a call of an external function, which may be
written inoccam or assembly language, as above:

ldc 42
call L0 -- Call INT32LROTATE

On the 68000, this normally translates to

moveq #42,d2
lea LX7(pc),a0
subq.w #4,a6
move.l a0,d0
movem.l d0/d2/d3,-(a6)
bra .INT32LROTATE

LX7:

With the in-lining option, this reduces to

moveq #42,d2
and.b #31,d2
ror.l d2,d3

Here INT32LROTATE is treated as a dummy function name; in effect, it represents an
extension to the transputer instruction set, andoctran translates it accordingly.

With constant optimization, this produces the optimal code

swap d3
ror.l #6,d3

Powers are most commonly used with small constant exponents. Unrollingthe square-
and-multiply loop into a sequence of multiplication instructions is a significant
optimization. For example, on theSPARC, xˆ10 generates

fmuld %f0,%f0,%f0
fmuld %f0,%f0,%f6
fmuld %f6,%f6,%f6
fmuld %f0,%f6,%f0

TheSHARCsupports itsREAL16data type with two instructions,fpack andfunpack ,
for converting between 16- and 32-bit formats.Hence most operations on this type are
trivial, though fewer steps are needed in the iterations for division and square root.For
example:

f12 = funpack r9; !- Call REAL16DIV
f4 = funpack r5, f8 = m1; !+ 2.0
f0 = recips f4; !+ approx. 1/den
f12 = f0 * f12; !+ refine
f4 = f0 * f4, f0 = f8 - f12;
f6 = f0 * f4; !+ num * 1/den
r5 = fpack f6;

D. C.Wood and J. Moores / User-Defined Data Types and Operators 139

4. Application to Standard Operators

Some built-in operators on the standard data types, particularlyINT16 and INT64 for
which the transputer hardware has limited support, are implemented as calls to ‘compiler
library functions’. These are written inoccam, and must be linked with any program that
uses the operators concerned.

Such functions can, of course, be rewritten in the assembly language of the target
machine, but they can also be treated exactly as described above. This is particularly
advantageous forINT16 s on machines that support 16-bit arithmetic in hardware, such as
the 68000, and forINT64 s on 64-bit machines, like theMIPS and theDEC Alpha.

For example, on the 68000,INT16 division is:

ext.l d2 !- Call INT16DIV%CHK
divs.w d3,d2
trapv !+ OVERFLOW
move.w d2,d3

and on the Alpha,INT64 multiplication is:

ldq $2,($2) #- Call INT64MUL%CHK
ldq $1,($1)
mulqv $2,$1,$2
stq $2,($3)

Other standard operators may compile into long sequences of transputer instructions,
which are quite inappropriate on machines that could do them directly. For example, on
64-bit machines, even 32-bit operations may sometimes incur an extra cost, so
implementing 64-bit arithmetic as a sequence of 32-bit operations built up from 64-bit
instructions is embarrassingly inefficient.

A solution to this is to redefine such operations as user-defined operators, using dummy
functions that are then expanded in line byoctran (taking care to preserve their
semantics!). Theresulting code can be close to optimal; on theMIPS, INT64 division is
more than four times faster.

For INT64 s, the endianism of the target is important, and reformatting on a big-endian
machine may neutralize the advantage of using native 64-bit arithmetic for some operations,
so on theMIPS only multiplication and division are handled in this way, but on theDEC
Alpha, which is little-endian, the advantage is considerable.A modification to the compiler
ensures 64-bit alignment.

INT64 s are passed to and from functions by reference, so the resulting code accesses
such variables indirectly, introducing an additional overhead. Butthe transputer instruction
set requires this anyway for floating-point operations, so the structure of the translated code
for INT64 s and REAL64s can be quite comparable.For complex expressions there are
some redundant stores and loads, but even a simple peephole optimizer could remove most
of these.

Using these techniques,INT16 s are handled entirely in line on the 68000, using native
16-bit arithmetic, so no library is needed to support them.On theMIPS andDEC Alpha, the
INT64 library is eliminated as well.

140 D. C.Wood and J. Moores / User-Defined Data Types and Operators

Some floating-point operators could be treated similarly; for example, the transputer has
no floating-point ‘negate’ instruction, so-x is compiled as0.0 - x . Unfortunately, the
most difficult cases, such as conversions betweenREAL64s and INT64 s, currently have to
be written as special functions. It is intended to modified the compiler solve this problem.

5. Other Applications

It may be convenient to redefine some common functions, such as absolute value and
square root, as unary operators.This enables the same source code to be used to implement
operations on a range of similar types, only the declarations needing to be changed.For
example, most of the power functions could be written in this way.

Absolute value can be written as follows forINT :

INT INLINE FUNCTION "@@" (VAL INT X)
INT Result:
VALOF

IF
X < 0

Result := -X
TRUE

Result := X
RESULT Result

:

and similarly for all integer data types.For other types, it is either a standard function or
has been defined in the relevant library:

REAL16 INLINE FUNCTION "@@" (VAL REAL16 X) IS
REAL16ABS (X):

REAL32 INLINE FUNCTION "@@" (VAL REAL32 X) IS
ABS (X):

REAL64 INLINE FUNCTION "@@" (VAL REAL64 X) IS
DABS (X):

REAL128 INLINE FUNCTION "@@" (VAL REAL128 X) IS
REAL128ABS (X):

COMPLEX32 INLINE FUNCTION "@@" (VAL COMPLEX32 X) IS
COMPLEX32ABS (X):

COMPLEX64 INLINE FUNCTION "@@" (VAL COMPLEX64 X) IS
COMPLEX64ABS (X):

COMPLEX128 INLINE FUNCTION "@@" (VAL COMPLEX128 X) IS
COMPLEX128ABS (X):

Square root is similarly available for all relevant data types; for example

REAL32 INLINE FUNCTION "%%" (VAL REAL32 X) IS SQRT (X):
REAL64 INLINE FUNCTION "%%" (VAL REAL64 X) IS DSQRT (X):

Since overloaded operators are identified by the types for their parameters, not of their
results, the same operator could not be used for the complex square roots of (possibly
negative) real arguments.

D. C.Wood and J. Moores / User-Defined Data Types and Operators 141

6. SeparateCompilation

The sizes of some types (multiple-length integers, sets, strings, etc.)must be defined before
the functions implementing operations on them can be compiled, so libraries of such
operations must be#INCLUDEd as text, not#USEd as precompiled code.

This problem can be largely avoided by writing the algorithms asPROCs, using open
array parameters, which can be compiled separately. These can then be called by small
(possiblyINLINE) interfaceFUNCTIONs, usingRETYPESto pass the actual parameters,
results, and possibly temporary workspace to the precompiledPROCs. However, this
generates less efficient code.

7. Names

A systematic naming convention has been used here, based on that for the compiler library
functions. Itmay be useful to translate these names, to avoid any possibility of clashes with
user-defined functions.For example:

#PRAGMA TRANSLATE INT32LROTATE "INT32LROTATE%UDO"

This has been done for the functions translated in line byoctran .

Types names are all upper case.

Constant instances of a type have names of the formName.TYPE, and parameters
defining a type have names of the formTYPE.Name.

8. Usage

New operators can be obtained using#INCLUDEfiles; for example:

#INCLUDE "real128.inc"

This in turn consists of something like:

#INCLUDE "real128.def" -- type definition
#USE "real128.tco" -- from compiled code
#INCLUDE "real128.inl" -- INLINE definitions

The library will have been compiled fromreal128.occ , which will itself #INCLUDE
real128.def , and possiblyreal128.inl (the dependencies between compiled and
INLINE functions can be complicated):

kroc -c real128.occ

This will produce the filesreal128.tco andreal128.o .

A user program is then compiled with a command of the form

kroc prog.occ real128.a

where real128.a is a library containingreal128.o and routines written inC or
assembly language,r128.o .

There is an implementation restriction in the compiler that ‘Expression for outermost
level VAL must be constant’.Since some constants of user-defined types may be defined in
terms of their operators, for example

VAL STRING Null.STRING IS $$ "":

these packages should beINCLUDEd inside, not outside, the mainPROC.

142 D. C.Wood and J. Moores / User-Defined Data Types and Operators

9. Discussion

User-defined operators provide a useful addition tooccam. They are semantically well
behaved, in that they can have no side effects, because they are just a ‘syntactic sugaring’ of
FUNCTIONs. Soexpressions retain their referential transparency − nothing has been done
that damagesoccam security.

As pointed out above, when used as the results ofFUNCTIONs (and hence of operators),
types involving arrays must be of a fixed size. This is a severe restriction that limits the use
of several of the data types described, and makes a few, such as matrices, almost useless.

We hav e been considering more significant changes tooccam syntax to solve this
problem [22]. Consider the case of matrix multiplication.It is easy to write aPROCthat
accepts open arrays as its parameters:

PROC MATMULT (VAL [][]REAL64 X, Y, [][]REAL64 Z)
VAL INT P IS SIZE X:
VAL INT Q IS SIZE Y[0]:
VAL INT R IS SIZE X[0]:
SEQ

ASSERT ((SIZE Z) = P) - - c heck consistency
ASSERT ((SIZE Z[0]) = Q)
ASSERT ((SIZE Y) = R)
...

:

The sizes of the arrays are already passed as hidden extra parameters. Here we have simply
named them by the abbreviation mechanism.

The proposed syntax make these sizes explicitly visible, as parts of the parameters, so
that checks can be made automatically by the compiler, either statically or dynamically:

PROC MATMULT (VAL [VAL INT P][VAL INT Q]REAL64 X,
VAL [Q][VAL INT R]REAL64 Y,

[P][R]REAL64 Z)
...

:

Some of the dimensions are no longer open, as they depend on those of earlier parameters.

Structured function results are currently passed by reference, but arrays must be of a fixed
size. Theproposed syntax relaxes this restriction, and requires passing the size as well.
The result becomes an explicit parameter; it is placed at the end to make the dependencies
more natural:

FUNCTION "**" (VAL [VAL INT P][VAL INT Q]REAL64 X,
VAL [Q][VAL INT R]REAL64 Y) ->

[P][R]REAL64 Z
...

:

D. C.Wood and J. Moores / User-Defined Data Types and Operators 143

References

[1] INMOS Limited. occam 2 Reference Manual; Prentice Hall, 1988.ISBN
0−13−629312−3.

[2] David C. Wood and Peter H. Welch. TheKent Retargetableoccam Compiler;
Proceedings of WoTUG-19: Parallel Processing Developments; IOS Press, 1996.
ISBN 90−5199−261−0.

[3] Van Wijngaarden et al.Revised Report on the Algorithmic Language ALGOL 68.
1974.

[4] ReferenceManual for the Ada Programming Language.Ada Joint Program Office.
1982.

[5] ISO/IEC. Information Technology − Programming Languages − Fortran (ISO/IEC
1539:1991(E)). ISO/IECCopyright Office, Geneva, 1991.

[6] SPARC International. TheSPARCArchitecture Manual.Prentice Hall, 1992.ISBN
0−13−825001−4.

[7] RichardL. Sites. Alpha Architecture Reference Manual.Digital Press, 1992.ISBN
1−55558−098−X / 0−13−033663−7.

[8] CharlesPrice. MIPSIV Instruction Set. MIPS Technologies, Inc., 1995.

[9] Motorola. M68000 8-/ 16- / 32-Bit Microprocessors Programmer’s Reference
Manual, Fifth edition. Prentice-Hall, 1986. ISBN 0−13−541475−X.

[10] AnalogDevices. ADSP-2106xSHARC User’s Manual, Second Edition.

[11] ConorO’Neill. occam-2.5 definition. 1994.

[12] ANSI. Programming Language FORTRAN. X3.9-1978. ANSI,New York, 1978.

[13] ANSI / IEEE Std 754-1985.IEEE Standard for Binary Floating-Point Arithmetic.
The Institute of Electrical and Electronic Engineers, Inc, 1985.

[14] JohnH. Crawford and Patrick P. Gelsinger. Programming the 80386. SYBEX, 1987.
ISBN 0−89588−381−3.

[15] K. Jensen and N. Wirth. Pascal User Manual and Report. Springer-Verlag, 1975.

[16] Alex Peleg, Sam Wilkie, and Uri Weiser. Intel MMX for Multimedia PCs.
Communications of the ACM, January 1997/ Vol. 40, No 1.

[17] David Wood. KRoC− An Implementors’ Guide.University of Kent at Canterbury.
1998.

[18] JamesMoores. User-Defined Operators inoccam 2.x. University of Kent at
Canterbury. 1998.

[19] INMOS. occam 2 Language Toolset Language and Libraries Reference Manual.
INMOS Limited, 1993.

[20] INMOS Limited. Thetransputer instruction set − a compiler writers’ guide.Prentice
Hall, 1988. ISBN 0−13−929100−8.

[21] David Wood. KRoC− Calling C Functions fromoccam. University of Kent at
Canterbury. 1998.

[22] PeterWelch. Private communication. 1999.

144 D. C.Wood and J. Moores / User-Defined Data Types and Operators

Appendices

A. Operators

The following table lists most of the operators considered in this paper. Some have been
implemented on several target machines; others only on those that support the data types
concerned.

Arithmetic + − ∗ / \ ˆ @ ∼ !!

BYTE + + + + + ∗
INT16 + + + + + ∗ ∗
INT + + + + + ∗ ∗
INT64 + + + + + ∗ ∗ ∗
INT128 ∗ ∗ ∗ ∗ ∗ ∗ ∗
LONG ∗ ∗ ∗ ∗ ∗ ∗ ∗
UNSIGNED ∗ ∗ ∗ ∗ ∗ +
REAL16 ∗ ∗ ∗ ∗ ∗ ∗
REAL32 + + + + + ∗ ∗
REAL64 + + + + + ∗ ∗
REAL128 ∗ ∗ ∗ ∗ ∗ ∗
COMPLEX32 ∗ ∗ ∗ ∗ ∗ ∗
COMPLEX64 ∗ ∗ ∗ ∗ ∗ ∗
COMPLEX128 ∗ ∗ ∗ ∗ ∗ ∗
RAT64 ∗ ∗ ∗ ∗ ∗
VECTOR ∗ ∗ ∗
MATRIX ∗ ∗ ∗ ∗ ∗ ∗
SET ∗ ∗ ∗ ∗ ∗
STRING ∗ ∗ ∗ ∗ ∗ ∗ ∗
Comparisons = <> > >= < <=

INT128 ∗ ∗ ∗ ∗ ∗ ∗
LONG ∗ ∗ ∗ ∗ ∗ ∗
UNSIGNED + + ∗ ∗ ∗ ∗
REAL16 ∗ ∗ ∗ ∗ ∗ ∗
REAL32 + + + + + +
REAL64 + + + + + +
REAL128 ∗ ∗ ∗ ∗ ∗ ∗
COMPLEX32 ∗ ∗
COMPLEX64 ∗ ∗
COMPLEX128 ∗ ∗
RAT64 ∗ ∗ ∗ ∗ ∗ ∗
VECTOR ∗ ∗
MATRIX ∗ ∗
SET ∗ ∗ ∗ ∗ ∗ ∗
STRING ∗ ∗ ∗ ∗ ∗ ∗
Logic /\ \/ >< == ∼ << >> <@ @>

BYTE + + + ∗ + + + ∗ ∗
INT16 + + + ∗ + + + ∗ ∗
INT + + + ∗ + + + ∗ ∗
INT64 + + + ∗ + + + ∗ ∗
INT128 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
LONG ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
UNSIGNED + + + ∗ + + + + +
Unchecked PLUS MINUS TIMES AFTER

INT128 ∗ ∗ ∗ ∗
LONG ∗ ∗ ∗ ∗
UNSIGNED + + + +

Ke y:

+ Predefined inoccam or inherited
∗ New operator, sometimes overloaded for several combinations of operand types

D. C.Wood and J. Moores / User-Defined Data Types and Operators 145

B. Functions

Many useful operations are provided as functions, rather than operators.

Result Function Parameters
COMPLEX32 COMPLEX32SQR (VAL COMPLEX32)
COMPLEX32 COMPLEX32SQRT (VAL COMPLEX32)
COMPLEX32 COMPLEX32SQRTREAL (VAL REAL32)
REAL32 COMPLEX32ABS (VAL COMPLEX32)
REAL32 COMPLEX32ABSSQ (VAL COMPLEX32)

COMPLEX64 COMPLEX64SQR (VAL COMPLEX64)
COMPLEX64 COMPLEX64SQRT (VAL COMPLEX64)
COMPLEX64 COMPLEX64SQRTREAL (VAL REAL64)
COMPLEX32 COMPLEX64ROUND (VAL COMPLEX64)
COMPLEX32 COMPLEX64TRUNC (VAL COMPLEX64)
REAL64 COMPLEX64ABS (VAL COMPLEX64)
REAL64 COMPLEX64ABSSQ (VAL COMPLEX64)

COMPLEX128 COMPLEX128SQR (VAL COMPLEX128)
COMPLEX128 COMPLEX128SQRT (VAL COMPLEX128)
COMPLEX128 COMPLEX128SQRTREAL (VAL REAL128)
COMPLEX64 COMPLEX128ROUND (VAL COMPLEX128)
COMPLEX64 COMPLEX128TRUNC (VAL COMPLEX128)
REAL128 COMPLEX128ABS (VAL COMPLEX128)
REAL128 COMPLEX128ABSSQ (VAL COMPLEX128)

REAL16 REAL16ABS (VAL REAL16)
REAL16 REAL16SQRT (VAL REAL16)

REAL128 REAL128ABS (VAL REAL128)
REAL128 REAL128SQRT (VAL REAL128)
REAL128 REAL128CEIL (VAL REAL128)
REAL128 REAL128FLOOR (VAL REAL128)
REAL128 REAL128ROUND (VAL REAL128)
REAL128 REAL128TRUNC (VAL REAL128)
REAL128 REAL128SCALE (VAL REAL128, VAL INT)
REAL128 REAL128MANTISSA (VAL REAL128)
INT REAL128EXPONENT (VAL REAL128)
REAL128, INT REAL128MANEXP (VAL REAL128)
INT REAL128CEIL32 (VAL REAL128)
INT REAL128FLOOR32 (VAL REAL128)
INT REAL128ROUND32 (VAL REAL128)
INT REAL128TRUNC32 (VAL REAL128)
INT64 REAL128CEIL64 (VAL REAL128)
INT64 REAL128FLOOR64 (VAL REAL128)
INT64 REAL128ROUND64 (VAL REAL128)
INT64 REAL128TRUNC64 (VAL REAL128)
INT128 REAL128CEIL128 (VAL REAL128)
INT128 REAL128FLOOR128 (VAL REAL128)
INT128 REAL128ROUND128 (VAL REAL128)
INT128 REAL128TRUNC128 (VAL REAL128)

INT128, INT128 INT128DIVREM (VAL INT128, VAL INT128)
INT128, INT INT128DIVREM32 (VAL INT128, VAL INT)
INT, INT128 INT128NORM (VAL INT128)

LONG, INT LONGDIVREM32 (VAL LONG, VAL INT)
INT, LONG LONGNORM (VAL LONG)
LONG LONGMOSTPOS ()
LONG LONGMOSTNEG ()

INT SETMEMBERS (VAL SET)

146 D. C.Wood and J. Moores / User-Defined Data Types and Operators

C. Type Conversion Functions

For n data types,O(n2) type-conversions are required. Not all have been written yet, hence
some of the ellipses below.

Complex Numbers

Fr om To: COMPLEX32 COMPLEX64 COMPLEX128

REAL32 REAL32TOCOMPLEX32
REAL64 . . . R EAL64TOCOMPLEX64 .. .
REAL128 R EAL128TOCOMPLEX128

COMPLEX32 − COMPLEX32TOCOMPLEX64 COMPLEX32TOCOMPLEX128
COMPLEX64 COMPLEX64ROUND/TRUNC − COMPLEX64TOCOMPLEX128
COMPLEX128 COMPLEX128TOCOMPLEX32 COMPLEX128TOCOMPLEX64 −

Integer and Real Numbers

Fr om To: INT INT64 INT128 LONG

INT − INT64 INT32TOINT128 INT32TOLONG
INT64 INT ROUND/TRUNC − I NT64TOINT128 INT64TOLONG
INT128 INT128TOINT32 INT128TOINT64 − I NT128TOLONG
LONG LONGTOINT32 LONGTOINT64 LONGTOINT128 −

REAL32 INT ROUND/TRUNC INT64 ROUND/TRUNC REAL32TOINT128 REAL32TOLONG
REAL64 INT ROUND/TRUNC INT64 ROUND/TRUNC REAL64TOINT128 REAL64TOLONG
REAL128 REAL128TOINT32 REAL128TOINT64 REAL128TOINT128 REAL128TOLONG

BYTE INT INT64 BYTETOINT128 BYTETOLONG
[]BYTE DEC/HEXTOINT128 DEC/HEXTOLONG

Fr om To: REAL16 REAL32 REAL64 REAL128

INT . . . REAL32 ROUND/TRUNC REAL64 ROUND/TRUNC INT32TOREAL128
INT64 . . . REAL32 ROUND/TRUNC REAL64 ROUND/TRUNC INT64TOREAL128
INT128 . . . I NT128TOREAL32 INT128TOREAL64 INT128TOREAL128
LONG . . . L ONGTOREAL32 LONGTOREAL64 LONGTOREAL128

REAL16 − REAL16TOREAL32
REAL32 REAL32TOREAL16 − REAL64 REAL32TOREAL128
REAL64 . . . REAL32 ROUND/TRUNC − REAL64TOREAL128
REAL128 . . . R EAL128TOREAL32 REAL128TOREAL64 −

BYTE . . . REAL32 ROUND/TRUNC REAL64 ROUND/TRUNC BYTETOREAL128
[]BYTE D ECTOREAL128

Rational Numbers

Fr om To: REAL64 RAT64

REAL64 − REAL64TORAT64
RAT64 RAT64TOREAL64 −

Unsigned Integers

Fr om To: UNSIGNED32 REAL32 REAL64 REAL128

UNSIGNED32 − UNS32TOREAL32 UNS32TOREAL64 UNS32TOREAL128
REAL32 REAL32TOUNS32 −
REAL64 REAL64TOUNS32 . . . − . . .
REAL128 REAL128TOUNS32 −

Output

Fr om To: Decimal Hexadecimal

INT128 INT128TODEC INT128TOHEX
LONG LONGTODEC LONGTOHEX
REAL128 REAL128TODEC . . .

