University of

"1l Kent Academic Repository

Sulzmann, Martin and Wang, Meng (2004) A Systematic Translation of Guarded
Recursive Data Types to Existential Types. Technical report. National University
of Singapore (Unpublished)

Downloaded from
https://kar.kent.ac.uk/47487/ The University of Kent's Academic Repository KAR

The version of record is available from
http://citeseerx.ist.psu.edu/viewdoc/download?do0i=10.1.1.110.6230&rep=repl&type=pdf

This document version
Draft Version

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/47487/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.6230&rep=rep1&type=pdf
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Systematic Translation of Guarded Recursive Data Types
to Existential Types

Martin Sulzmann
School of Computing, National University of
Singapore
S16 Level 5, 3 Science Drive 2, Singapore
117543

sulzmann@comp.nus.edu.sg

ABSTRACT

Guarded recursive data types (GRDT) are a new language
feature which allows to type check the different branches
of case expressions under different type assumptions. We
show that GRDT can be translated to type classes with ex-
istential types (TCET). The translation to TCET might be
problematic in the sense that common implementations such
as the Glasgow Haskell Compiler (GHC) fail to accept the
translated program. We establish some sufficient conditions
under which we can provide for a refined translation from
TCET to existential types (ET) based on a novel proof term
construction method. The resulting ET program is accepted
by GHC. The sufficient conditions are met by all GRDT ex-
amples we have found in the literature. Our work can be
seen as the first formal investigation to relate the concepts
of guarded recursive data types and (type classes with) ex-
istential types.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-

tions Applicative (functional) languages; D.3.3 [Programming

Languages]: Language Constructs and Features Polymor-
phism, Constraints; F.3.3 [Logics and Meanings of Pro-
grams]|: Studies of Program Constructs— Type structure

General Terms
Languages, Theory

Keywords
Type systems, type-directed translation, proof-term con-
struction, constraint solving.

1. INTRODUCTION
Guarded recursive data types (GRDT) [28] introduced by
Xi, Chen and Chen are a new language feature which allows

Meng Wang
School of Computing, National University of
Singapore
S16 Level 5, 3 Science Drive 2, Singapore
117543

wangmeng@comp.nus.edu.sg

to type check more programs. The basic idea is to use differ-
ent type assumptions for each branch of a case expression.
E.g., consider the following (toy) GRDT program. We will
use Haskell-style syntax [8] throughout the paper.

Example 1 We introduce a GRDT Erk a where a may
be refined depending on the constructor. Function f takes
advantage of the temporary equality assumptions enabled
by pattern matching.

data Erk a = (a=Int) => I a
| forall b.(a=[b]) =>L a
f :: Erk a -> a
f (I x) =x+1
f (L x) = tail x

In detail, the data type definition introduces two construc-
tors belonging to data type Erk a. The novelty of GRDT is
that in case of constructor I we refine the type to Erk Int.
We present type refinement in terms of equations. In case
of L we refine the type to Erk [b] for some b. Note that
GRDT imply existential types [14]. Constructor L has type
Va,b.(a = [b]) = a — Erk a. Therefore, all variables not ap-
pearing in the result type are bound by the forall keyword.
Note that some presentations [4] write I a with (a=Int)
instead of (a=Int) => I a. The important point is that
when pattern matching over values we can make use of these
additional type assumptions. Consider the function defini-
tion where in the first clause we temporarily add a = Int to
our assumptions (assuming that x has type a). Thus, we can
verify that the x+1 has type a. A similar observation applies
to the second clause. Hence, function f is type correct. O

GRDT have been recognized as a very useful language fea-
ture, .e.g. consider [20, 17, 18]. Hence, it is desirable to
extend existing languages with GRDT. In fact, a number of
authors [1, 2, 3, 27] have recognized that GRDT-style be-
havior can be expressed in terms of some existing language
features already available in Haskell. All of these encodings
share the same idea and represent type equalities by Haskell
terms.

Example 2 Here is an encoding of Example 1 in terms of
existential types [14]. We introduce a special data type E a b
to represent equality assumption among types. E.g., we rep-
resent a = Int by E a Int where the associated value E

(g,h) implies functions g and h to convert a’s to and from
Int’s.

data E a b = E (a->b,b—>a)

data Erk_H’ a = I_H’ a (E a Int)

| forall b. L_H’ a (E a [bl)
f_ H’ :: Erk_H’ a -> a
f_H (I_H’ x (E (g,h))) =h ((+) (g x) 1)

f_H> (L_H’ x (E (g,h))) = h (tail (g x))

Note that we use function notation for addition. Opera-
tionally, the conversion functions are assumed to represent
the identity. Hence, the above program is equivalent to Ex-
ample 1. The above program makes only use of existential
types and is therefore accepted by GHC [6]. However, the
programmer has to do now more work when defining the
function body. In the first clause, we turn x into a value of
type Int by making use the explicitly provided conversion
function g of type a — Int. Then, we apply (+) which is
assumed to have type Int — Int — Int. Finally, we apply
h to obtain a value of type a such that the type annotation
is matched. O

Clearly, such a style of programming is rather tedious and
should be best performed by an automatic tool. To the best
of our knowledge, we are the first to propose a systematic
translation method from GRDT to ET (existential types) by
means of a source-to-source translation. We see our work as
a more principled answer to the many examples we have seen
so far in the literature [1, 2, 3, 16, 27]. The essential task
is to construct proof terms for type equalities out of logical
statements of the form C D t; = t» where C consists of a set
of type equations and D denotes Boolean implication. One
of our main technical contribution is a decidable proof term
construction method for (directed) type equalities. Under
the assumption that type assumptions are decomposable we
achieve a translation from GRDT to existential types (ET)
which is accepted by GHC. In our experience, the decom-
posable assumption is satisfied by all GRDT examples we
have seen in the literature.

We continue in Section 2 where we introduce some basic no-
tations. In Section 3 we define the set of well-typed GRDT
programs. Section 4 provides for an (intermediate) trans-
lation from GRDT to type classes with existential types
(TCET). Section 5 provides for a translation scheme from
GRDT to ET based on a proof system for type equalities.
The translation scheme is complete if types are decompos-
able. In Section 6 we show that the proof system is de-
cidable. In Section 7 we show how to combine our proof
term construction method with a novel inference method.
Related work is discussed in Section 8. We conclude in Sec-
tion 9. Due to space limitations proofs for all results stated
have been moved to the Appendix.

2. PRELIMINARIES

We write 6 to denote a sequence of objects o1,...,0,. We
write fu(o) to denote the set of free variables in some object
o.

We assume that the reader is familiar with the concepts of
substitution, unifiers, most general unifiers (m.g.u.) etc [12].
E.g., [t/a] denotes the substitution which has the effect of

replacing each occurrence of a by ¢t. Often, we abbreviate
[t1/ar, ..., tn/an] by [t/a].

We make use of constraints C consisting of conjunction of
primitive constraints such as ¢1 = #2 describing equality
among t; and t2. We often treat constraints as sets, there-
fore, we use “” as a short-hand for Boolean conjunction.

We also assume basic familiarity with first-order logic. We
write = to denote the model-theoretic entailment relation,
D to denote Boolean implication and <+ to denote Boolean
equivalence. We let 3w F' denote the formula 3a; ...Ja, F
where {a1,...,a,} = fo(F) — W. We refer to [21] for de-
tails.

3. GUARDED RECURSIVE DATA TYPES

In this section, we define the set of well-typed GRDT pro-
grams. Note that there exist several variations of GRDT
such as Cheney’s and Hinze’s first-class phantom types [4],
Peyton-Jones’s, Washburn’s and Weirich’s generalized alge-
braic data types [10] and equality-qualified types by Sheard
and Pasalic [19]. Our formulation is closest to the system
described by Simonet and Pottier [22].

First, we define the set of expressions and types.

Expressions e = K|xz|Ave|ee]caseeof [pi—
Patterns p == z|(pp | Kp

Types t o= al|lt—ot|Tt

Type Schemes o == t|Va.C =t

For simplicity, we leave out let-definitions and type anno-
tations but may make use of them in examples. Note that
pattern matching syntax used in examples can be straight-
forwardly expressed in terms of case expressions.

GRDT definitions in example programs such as

data Erk a = (a=Int) => I a | forall b.(a=[b]) => L

imply constructors I : Va.a = Int = a — Erk a and
L :Va,b.a = [b] = a — Erk a. We prohibit “invalid” defini-
tions such as data Unsat a = (a=(a,Int)) => U a which
yields a constructor with an unsatisfiable set of equations.
We assume that booleans, integers, pairs and lists are pre-
defined.

The typing rules describing well-typing of GRDT expres-
sions are in Figure 1. We introduce judgments C,T" ¢ e : ¢
to denote that expression e has type ¢ under constraint C
and environment I'. We assume that C consists of conjunc-
tion of equations. A judgment is valid if we find a derivation
w.r.t. the typing rules. Note that in I' we record the types
of lambda-bound variables and primitive functions such as
head : Va.[a] — a, tail : Va.la] — [a] etc. Rules (Abs),
(App) and (Var-x) are standard. Rule (K) seems some-
what redundant and could be modeled by rules (App) and
(Var-x) assuming that constructors are recorded in T'jpi;.
Our intention is that constructors are always fully applied.
Rule (Case) deals with case expression. Nothing unusual
so far. Next, we consider the GRDT specific rules. In rule
(Eq) we are able to change the type of an expression. Note
that the side condition C' D ¢; = t holds iff (1) C does
not have a unifier, or (2) for any unifier ¢ of C we have

eilicr

C,T % ey:ty
C,TF% ety >t (Abs)

C,F.$2t1 |—G 6:t2
C.,T FC Xze:t1 — to

C,THC e:t
(Eq) CoOt=t (App)
CTHE et
: Va. T
(Var-x) (z:Vat) € (Case)

C,F |—G el 62:t

C,FI—Ge:h C,FI—Gp,-—>ei:t1—>t2 fori el

C,T +Y z:[t/a)t

K:Va,bD=t—Ta
C,T FY e:[t/a,t'/b]t

C, T |—G case e of [p, — ei]iel 2

p:ti FEVbO.(DIT,)
bN fo(C,T,tz) =0
CAD,I’UT, FC ety

(P-Var) z:t % (Truel {z :t})

() C > [F/a, i Jb)D (Pat)
CTHFY Ke:Tt
P1 Ztl "G Vb:l(Dl I Fpl)
(P-Pair) pa i ta FE by (Do 1T,,)

c.r I—Gp—>e:t1—>t2

K:Va,bD=t—-Ta
(P-K) bna=0 p:[t/a)t ¢ Vo (D' IT,)

(pl,pg) : (tl,tz) "G Vbil,biz.(Dl /\D2 |Fp1 Ul"pl)

Kp:TtFC VY, b.(D Aft/a]DIT,)

Figure 1: GRDT Typing Rules

that ¢(t1) = ¢(t2) holds. In rule (Pat) we make use of an
auxiliary judgment p : ¢ + Vb.(D | T'p) which establishes
a relation among pattern p of type ¢t and the binding T,
of variables in p. Variables b refer to all “existential” vari-
ables. Logically, these variables must be considered as uni-
versally quantified. Hence, we write Vb. The side condition
bN fv(C,T,t:) = P prevents existential variables from es-
caping. In rule (P-Pair), we assume that there are no name
clashes between variables b and bs. Constraint D arises
from constructor uses in p. The other rules are standard.

Let’s consider the first clause of £ in Example 1 again. Ac-
cording to rule (Pat), the pattern I x provides the additional
type assumption a = Int which is used in typing of the body
x+1. Note that because of this additional assumption, rule
(Eq) is able to turn the type of x from a to Int. Thus, the
expression x+1 is well typed. Similarly, rule (Eq) also turns
the type of x+1 to a. Hence, the annotation given to f is
correct. Rule (Eq) has some other surprising consequences.

Example 3 Consider the following variation of Example 1

data Erk a = (a=Int) => I a
g :: Erk Bool -> b
g (I x)=x+"’a’

We make use of Bool = Int which is equivalent to False to
type the body of the clause. Hence, we can derive anything.
Hence, g has type Erk Bool — b for any b. Note that we
only temporarily make use of False. The constraint in the
final judgment is satisfiable. m|

As already observed by Cheney and Hinze [4] such meaning-
less programs can always be replaced by “undefined”. Note
that we never ever construct a value of type Erk Bool.
Hence, w.l.o.g. we slightly restrict the set of typable pro-
grams and replace logical by constructive entailment. Ef-
fectively, we rule out GRDT programs where False occurs

in (intermediate) typing judgments. The definition of con-
structive entailment among type equality is as follows:

t=t e€C CFcti=tys CF=cty=ts
CFet=t C F=c t,=t3

C F=c t1 =to C k= tiZt;

C F7¢ t3 =14 fori=1,...,n

CFct) =5t3=to >4 C ke Tt1...tn=Tt’1...t’n

We obtain the constructive GRDT system F% by replacing
(Eq) with the following rule.

C,TFG et CFHt=t

Eq,
(Hae) CTFo it

Note that Example 3 is not typable anymore in the con-
structive system.

4. TRANSLATING GRDT TO TCET

The main result of this section is that GRDT can be en-
coded by type classes with existential types (TCET). This
will form an important intermediate step in our translation
to ET. For this purpose, we introduce a type class Ct a b to
convert a term of type a into a term of type b. In essence, we
model directed equality. The following instance declarations
implement this idea.

class Ct a b where cast :: a->b
instance Ct a a where cast x = x -- (Id)
instance (Ct bl al, Ct a2 b2) => Ct (al->a2) (bl1->b2)
where cast f x = cast (f (cast x)) -- (Arrow)
instance (Ct al a2, Ct a2 a3) => Ct al a3
where cast al = cast (cast al) -- (Trans)

Operationally, the conversion functions performs the iden-
tity operation for all monomorphic instances derivable w.r.t. the
above rules.

We translate GRDT programs to TCET by replacing each
equation t; = t2 in a data type definition by Ct ¢1 t2 and
Ct t2 t1 Additionally, we apply cast to all sub-expressions.

Example 4 Here is the translation of Example 1.

data Erk_H a = (Ct a Int, Ct Int a) => I_H a

| forall b.(Ct a [b], Ct [b] a) => L_H a

f_ H :: Erk Ha ->a f_H (I_H x) =
cast ((cast ((cast (+)) (cast x))) (cast 1))
f_ H (L_H x) = cast ((cast tail) (cast x))

When typing the second clause we temporarily make use of
Ct a [b] and Ct [b] a. Thus, cast x can be given type [b].
We make use of instance (Id) to show that cast tail has
type [b] — [b]. Hence, (cast tail) (cast x) has type [b].
Hence, cast ((cast tail) (cast x)) can be given type a.
A similar reasoning applies to the first clause where we make
use of instance (Arrow). Hence, function £_H is type correct.
O

The connection between GRDT and TCET becomes obvious
when considering their underlying formal systems. A formal
description of TCET covering the single-parameter case is
given by Laufer [13]. In our own work [23], we recently
formalized the general case including multi-parameter type
classes which we will make use of in the following.

Briefly, in the TCET system we find now type (multi-paramter)

class constraints T'C t;...t,, instead of equality constraints
t1 = t2. For simplicity, we assume that instance declara-
tions are preprocessed and the relations they describe are
translated to logic formulae. We commonly denote these
logic formulae by P, and refer to P, as the program theory.
E.g., the instance declarations from above can be described
by the following first-order formulae.

Va.(Ct a a < True)

V(Ll,az,bl,bg.(ct ({1,1 — (12) (bl — bg) ~ Ct bl a; N\ Ct a2 bg)

V(I,l,(lg.(ct a; agz < 3(12.(Ct ay az N\ Ct a2 (13)

where <> denotes Boolean equivalence. We refer the inter-
ested reader to [24] for more details on the translation of
instances to logic formulae.

For each class declaration class TC al...an where m::t
we assume a new primitive m : Va.T'C a = t. For simplic-
ity, we restrict ourselves to monomorphic methods. That
is, we require that fu(t) C a. Note that the restriction to
monomorphic methods is sufficient for the purpose of trans-
lating GRDT to TCET.

The typing rules for TCET are almost the same as those for
GRDT in Figure 1. We adopt rules (App), (Abs), (Var-x),
(Case), (Pat), (P-Var), (P-Pair) and (P-K) from Figure 1.
However, we drop rule (Eq). Furthermore, we adjust rule
(K) and introduce a new rule (M) to take care of class meth-
ods.

K:Va,bD=t—>Ta
(K) C,T +" e:[t/at P, =C D [t/a,t'/b]D
CTHF Ke:Tt

m:Va.TCa=t fu(t)Ca P,ECDOTCt
C,T F" m: [t/a]t

(M)

Note that entailment is now defined w.r.t. the program the-
ory. The side condition P, = C D [t/a,t'/b]D denotes that
any model satisfying P, and C also satisfies [t/a,t'/b]D.

To distinguish the two systems we write C,T" 7 e : ¢ to
denote that expression e has type ¢ under constraint C and
environment I' in the TCET system. In case of True,I' F7
e : t we sometimes write I' FT e : ¢ for short.

We are in the position to define the formal translation from
GRDT to TCET. In order to model the constructive en-
tailment relation F~¢ among equalities we need to impose
some conditions on the program theory.

Definition 1 (Full and Faithful) We say that the program
theory P, is full and faithful w.r.t. constructive equality iff

(1) for each n-ary type constructor T there is some appro-

priate instance such that

Py | (Ct (T a1...an) (T by.bn) ACt (T by.bn) (T a...an)) D

(Ct ai bl A Ct bl ai A Ct An bn A Ct bn (ln)

and (2) all monomorphic cast instances are equivalent to the
identity. FEquality among expressions is defined in terms of
a standard denotational semantics, e.g., consider [15].

To turn GRDT typable expressions into TCET typable ex-
pressions, we perform a syntactic transformation by apply-
ing the cast function to each (sub-)expression. We write
ele'] to denote a occurrence of €' in e.

Definition 2 (Fully Casted) Let e be an GRDT ezpres-
sion. We construct a fully casted exzpression e’ out of e by
applying cast on every subezpression of e. A single trans-
formation step is defined as e[e1] ~ e[cast e1] where ey is
syntactically different from cast es for some expression es.

The transformation of GRDT constructors is simple. Each
GRDT constructor

K :VYa,b.(ti =t),...th=t,)=>t—>Ta
implies a TCET constructor
K' :Va,b.(Cttit),Cttyty,..,Ctt,t,, Ctt, t,) =t —>Ta

We can state the following formal connection between GRDT
and TCET.

Theorem 1 (GRDT to TCET) Lete be a GRDT ezpres-
sion and e’ be its fully casted version. For each GRDT con-
structor K we introduce its TCET equivalent K'. Let P, a
full and faithful program theory representing all GRDT type
constructors mentioned in e. Then, we have that True, T F%¢
et iff True,I' FT ¢ :t.

A proof can be found in Appendix B.1.

As already pointed out the restriction to the F% system is
not onerous. Note that in order to directly translate Ex-
ample 3 the program theory would need to be strength-
ened by including additional “improvement” rules such as
P, = Ct Bool Int D False, P, |= Ct Int Bool D False etc.

The above result is constructive in the sense that we can
type check the resulting TCET program if the entire GRDT

typing derivation (including C F=¢ t; = t derivations) is
available. We can also give a meaning to translated TCET
program based on the scheme presented in [24]. However,
GHC fails to accept the TCET program because instance
declarations are potentially “non-terminating”. ' E.g., con-
sider instance (Trans) from above. When performing con-
text reduction we need to guess the intermediate type when
applying instance (Trans). Hence, context-reduction may or
may not terminate. Hence, the check whether C D Ct ¢ t»
holds where C'is a set of Ct assumptions may not terminate.
On the other hand, C' D t; =t is decidable assuming that
C'’ is derived from C hy turning each Ct t ¢ into an equa-
tion t = #. We conclude that we further need to refine
our transformation method for GRDT. The translation to
TCET represents an important intermediate step to achieve
a translation to ET which is finally accepted by GHC.

5. TRANSLATING GRDT TO ET

The result from the previous section allows us to assume
that GRDT programs have been translated to TCET by
fully casting expressions and transforming GRDT construc-
tors into TCET constructors. Hence, it is sufficient to con-
sider the translation from TCET to ET. We establish some
sufficient conditions under which we achieve a type-directed
translation translation scheme from TCET to ET based on
a proof system to construct terms connected to type class
constraints Ct ¢ t'.

We start off by describing our proof system. We assume that
constraints such as f : Ct a b carry now a proof term f rep-
resenting “evidence” for Ct a b. We silently drop f in case
proof terms do not matter. We introduce judgments of the
form f: Ct a b < F to denote that f is the proof term cor-
responding to Ct a b under the assumption F where F refers
to a (possibly existentially quantified) conjunction of type
class constraints. The rules describing the valid judgments
are in Figure 2. Note that we write the actual definition of
f as part of the premise. Rules (Id), (Var) and (Trans) are
straightforward. Rules (Arrow) and (Pair) deal with func-
tion and pair types. We assume that the proof rules will be
extended accordingly for user-defined types. Rule (o) allows
for the structural composition of proof terms. Rules (VE)
and (JE) deal with universal and existential quantifiers. In
essence, we make the construction rules represented by Ct
instance declarations explicit.

Example 5 We give the derivation tree for f : Ct a (Int, Bool)

< g1:Cta (bc)gs: CtbInt,gs:Ctc Bool in Figure 2.
For convenience, we combine rule (VE) with rules (Id), (Var),
(Arrow). We conclude that

f x = let g4 (x,y) = (g2 x,g3 ¥)
in g4 (g1 %)

A simple observation of our proof rules shows that the proof
system is sound w.r.t. the logical reading of instances decla-
rations.

'Indeed, GHC will only accept instance (Trans) once we
turn on the “undecidable instances” option.

2This is the process of resolving type classes w.r.t. a given
set of class and instance declarations.

Lemma 1 (Soundness) Let P, be the program theory. Let
C={fi:Ctai br,...fn:Ct ap by} such f:Ctabe C
1s valid. Then, P, =C D Ct a b.

We can also state that proof terms are well-typed.

Definition 3 Let C = {f1 : Ct a1 b1,...,fn : Ct an bn}.
We construct an environment I' out of C, written as C ~ T,
by mapping each g: Ctabe C tog:a —>bel.

Lemma 2 (Well-Typed) Let C = {f1 : Ct a1 b1,..., fn :
Ct an bn} and T such that C ~ T and f: Ct a b+ C is
valid. Then T + f:a —b.

Proofs can be found in Appendix B.2. Note that the proof
term f is equivalent to the identity assuming fi,...,fn are
equivalent to the identity as well.

As presented, our proof term construction rules in Figure 2
are still non-terminating (see rule (Trans)). In the upcoming
Section 6, we give a decidable procedure to compute f :
Ctab<+ C given Ctaband C.

We are in the position to systematically translate TCET to
ET. Each TCET constructor K : ¢ is turned into a ET con-
structor K' : o', written (K :) ~ (K’ : ¢'). We have that
(K :Va,b.D=t—Ta)~ (K :Va,bt > Eti th - ... >

Et,t, — Ta)where D = {Ctt, ty,Ctth tr,...,Ctt,t,, Ctt, t,}.

Silently, we assume a fixed order among Ct constraints.
Note that the type constructor F is defined in Example 2.

For the translation of expressions we introduce judgments
of the form C,T' FT e : t ~» ¢ where C holds Ct as-
sumptions, e is a TCET expression and e’ is a ET expres-
sion. The translation rules can be found in Figure 3. Our
main tasks are to resolve cast functions (see rule (Reduce))
based on our proof system and to explicitly insert proof
terms in constructors (see rule (P-K)). In rule (K), we
define P, = C D (g,h) : [t/a]D iff g; : Ct t; t; < C
and h; : Ct t; t; < C for i = 1,..,n where [t/a]D =
{Ct t, t},Ct t| t1,...,Ct t, t,,,Ct t,, t,}. Note that P, |=

C D (g,h) : [t/a]D implies that P, = C D [t/a]D (see
Lemma 1). As will see the other direction (which is crucial
for completeness) does not hold necessarily.

We can state soundness of our translation scheme given that
the TCET program is typable. Note that the ET system is
a special instance of TCET. We write I' F” ¢ : t to denote
a judgment in the ET system.

Theorem 2 (TCET to ET Soundness) Let True, I 7
e:t and True,T FT e:t~e'. Then T F¥ ¢ :t.

We also find that e and e’ are equivalent assuming the pro-
gram theory and proof system is full and faithful.

In combination with Theorem 1 we obtain a systematic
translation from GRDT to ET. We do rely on full type in-
formation for the GRDT program such that our proof term
construction method is able to insert the appropriate evi-
dence values.

Proof Term Construction Rules:

(Id) Va.dz.x:Ctaa <+ True

(Var) Va,b.f:Ctab<+ f:Ctab

(Trans)

Vai,as.f : Ct a1 ag <> Jaz.f1 : Ct a1 a2, fo: Ct az a3

f=2Xg.Az.f> (g (f1 z))

(Arrow)

V(J,l,(lz,bl,bg.f : Ct ({1,1 — {1,2) (bl — bg) L4 f1 . Ct bl (11,f2 . Ct a2 bz

f=Xz,y).(fr . f2 y)
(Pair) C = {f] Ot a1 b],f2 : Ct as b2}

Val,ag,bl,bz.f : Ct ((11,(1,2) (bl,bg) ~ C

f:Ctabe fizer,.., fnicn

fi:ci<—>F,- F‘:Fl fori:l,...,n

() f.Ctabo F
Vfl.f Ctti ta & F ¢ = [[/fl] f e+ da. F
VE j£) ———
B e s eem P oo yar
Example:
f=2Xz.94 (91 7)

(Trans) f:Cta (Int,Bool) <> g1 : Ct a (b,c),ga : Ct (b,c) (Int, Bool)

(o) (Var) g1:Cta (b,c) g94(z,y) = (g2 ©,93 y)

g1:Cta (bc)

g4 : Ct (b, c) (Int, Bool) <
g2 : Ct b Int, g3 : Ct ¢ Bool

f:Cta (Int,Bool) <> g1 : Ct a (b,c),g2 : Ct b Int,gs : Ct ¢ Bool

Figure 2: Proof Term Construction Rules and Example

Note that we do not obtain completeness in general. The
problem is that proof terms are not “decomposable” in gen-
eral. This has already been observed by Chen, Zhu and
Xi [2].

Example 6 Consider

data Foo a = K
instance Ct a b => Ct (Foo a) (Foo b) where cast K = K

We have that P, |= g : Ct (Foo a) (Foob) D h:Ctab
but h : Ct a b < g : Ct (Foo a) (Foo b) does not exist.
Hence, our translation scheme gets possibly stuck in rules
(K) and (Reduce). Note that the instance declaration im-
plies that Ct (Foo a) (Foo b) iff Ct a b. The instance context
seems somewhat redundant but necessary to ensure that the
program theory models fully and faithfully the entailment
relation F7°. Clearly, we can build g on type Foo a -> Foo
b given h on type a->b whereas for the other direction we
would need to decompose proof terms which is not possible
here. |

The above is not surprising. Similar situations arise for sim-
ple type class programs. E.g., we cannot decompose Eq [a]
into Eq a for any a. All what we can do is to identify some
sufficient conditions which allow us to extend the rules in
Figure 2 faithfully.

Definition 4 (Decomposable Types) Let T be a n-ary
type constructor. We say that T 1s decomposable at po-
sition © where ¢ € {1,....,n} iff a proof term construction
rule fi :+ Ct a; bi < g : Ct (T air...an) (T b1...by),h :
Ct (T by...bn) (T ay...an) exists such that (1) f; is well-typed
under {g: T ay...an = T b1...bn,h:T b1..bp, = T ai...an}
and (2) fi is equivalent to the identity if g and h are equiv-
alent to the identity.

We say that T s decomposable iff T is decomposable at all
positions.

We find that pairs are decomposable.

Example 7 We make use of L : Va.a. Consider

g1 = Az-fst (f (z,1))
g1 :Ctar by < f:Ct (a1,a2) (b1,b2)

(Pairl])

g2 = Az.snd (f (L,z))
g2 : Ct as by < f:Ct (a1,a2) (b1,b2)

(Pair2))

However, function types seem only to be decomposable in
their co-variant position under a non-strict semantics.

CF"T ot !
CTla: t1 F" e:to~se) ex 1 ta ~ ey

(Abs) T ; (App) CTF ety st~ve)
C.T'F dxe:t to ~ AT
) r.e:tr — 12 x.e C,FI—T61@2;tMe{26’1
(Var—x) ($ i Va.t) er (Reduce) D C C f :Cttyta o D

C,T 'z [t/a)t ~ « C,T +" cast:t1 = ta~ f
CTHT e:ti~ ¢

(Case) CTFT pi—eiits >to~spi—>el foriel

C,T +7 case e of [p; = eilics : ta ~> case €' of [p; = el]icr

p:t1 = VB(DIFP Ip’) an’l)(C,F,tg) :@
(Pat) CAD,TUT, F' ety e
a,r l_Tp—)e:tl—)tZMp’_)e’

(K :Va,b.Ct t, t,,Ct t\ t1....Ct tn t,,Ct t) t, =t — T a)
(K' :Va,bt = Eti t) = .. Etyt) =T a)
(K) C,T " e:[t/a]t ~ ¢
P, |=C > (g,h): [t/a)(Ct t: t\,Ct t, t1...,Ct t, t,,,Ct t,, t,)
CTHF' Ke: Tt~ K' € E (g1,h1)...E (gn, hn)

(P-Var) z:t+F (Truel{z:t}1xz)

P :t1 [Vb}(D] |Fp] Ip’l) p2: tz I VEQ.(DQ I Fp2 Ip’z)
(p1,p2) = (t1,t2) = Vb1, bo.(Dy A Do 1Ty, UT,, | (p1, ph))

(P-Pair)

(K :Va,b.Ctt t),Ctt) t1..,Ct t, t,,Ct t, t, =t — T a)
(K':Va,bt = E t1) — .E to t, > T a)
(P-K) bna=0 p:[t/alt - vo.(D'IT,1p") g1,h1,....gn,hn fresh
D" ={D" g1 :Ctti t1,h1 : Ct ty t1...,gn : Ct t,, t,, hy : Ct), t,}
p: TtV b.(D"IT, K p' E (g1,h1)...E (gn, hn))

Figure 3: Type-Directed Translation

Example 8 g = Ax.projectr (f (injectr x))
(EitherR)) g :Ct a2 bs < f: Ct (Either a1 a2)
(Arrowl) g9 =Xe.(f (\y.2)) L (Either b1 b2)

gZCt(Iz bg(—)flct ({1,1—)(1,2) (bl—)bg)

where

Note that g is the identity under a non-strict semantics.
However, it seems that h : Ct by a1 & f : Ct (a1 —

. inject_L x = Left x
a2) (b1 — b2) does not exist. O J

project_L (left x) = x
inject_R x = Right x

Example 9 The FEither data type is decomposable: project_R (Right x) = x

) . Note that the decomposition conditions (Definition 4) are
data Either a b = Left a | Right b satisfied. Consider the (EitherL|) case. Expressions are
well-typed. Assume f is the identity. Then, f (injectr)
must yield L z. Hence, application of projectr is safe.
Hence, g is the identity. A similar reasoning applies (EitherRJ).
O

The construction rules are as follow:

g = Ax.projecty, (f (injectr x))
(EitherL]) g:Ct a1 b1 < f: Ct (Either a1 a2)

(Either by b2) Decomposable types ensure that our proof term construction
system is not only sound but also complete.

Lemma 3 (Decomposition) Let P, be a full and faith-
ful program theory, Ct t1 t2 a constraint and C = {f1 :
Ct a1 by, ..., fn : Ct ay bp} such that P, = C D Ct t1 t2 and
all types appearing in constraints are decomposable. Then,
f:Ctty ta < C for some proof term f.

The proof is straightforward and proceeds by induction over
P,[=C D Ctt to

We are able to state completeness of our translation from
TCET to ET given that the types appearing in assumption
constraints are decomposable. By assumption constraints
we refer to constraints D in rule (Pat).

Theorem 3 (TCET to ET Completeness) Let T'rue, [’
FT e :t and all types appearing in assumption constraints in
intermediate derivations are decomposable. Then True,I' F7
e:t~se for somee.

6. DECIDABLE PROOFTERM CONSTRUC-
TION METHOD

We introduce a method to decide f : Ct t1 t2 < C (see
Figure 2). That is, given C and Ct t; 2 construct a deriva-
tion for some f. The main challenge is to find a decidable
representation for rule (Trans). In the above statement, C'
contains the set of Ct assumptions whereas Ct t; ta refers to
a use site (see rule (Reduce) in Figure 3). In order to distin-
guish between Ct uses and assumptions we write CtM t; t2
to refer to a use of Ct. Our task is to construct CtM uses
out of a given set of Ct assumptions. Note that Ct con-
straints can be viewed as directed edges. Hence, the suc-
cessful construction of a CtM use is equivalent to finding a
path in the graph of Ct edges. However, we do not rely our
method on graph algorithms. We would like our method
to work even under some additional side conditions such as
CtM t1 ta,CtM t3 ta,to = t4 — a. That is, construct
CtM t;, to and CtM t3 t4 out of some assumption set C' un-
der the side condition that t» = t4 — a for some a. There-
fore, we view proof term construction as constraint solving
where we rewrite constraint stores until all CtMs have been
resolved.

The formal development is as follows. We assume that CtM
uses are attached to “locations”. The ideais thati: CtM a b
refers to some program text cast; where cast is used at
type a — b and i refers to the location (e.g., position in the
abstract syntax tree). As before, we write f : Ct a b to refer
to the proof term f associated to a C't a b assumption.

We employ Constraint Handling Rules (CHRs) [5] to con-
struct CtM uses out of C't assumptions. CHRs are a rule-
based language for specifying transformations among con-
straints. A CHR simplification rule (R) ¢ <= d states that
if we find a constraint matching the lhs of a rule we replace
this constraint by the rhs. We assume that ¢;s refer to type
class constraints and d;s refer to either type class constraints
or equations. Formally, we write C »—»g C — ¢, ¢(d) where
¢ € C such that ¢(¢) = & for some substitution ¢. Silently,
we assume the variables in CHRs are renamed before rule
application.

A CHR propagation rule (R) ¢ <= d states that if we find a
constraint matching the lhs of a rule we add the rhs to the
store. Formally, we write C »—g C, ¢(d) where ¢ € C such

that ¢(c) = ¢. CHRs also have a logical reading which is
not relevant here.

The CHR-based representation of the proof term construc-
tion rules can be found in Figure 4. Note that each CHR
simplification rule also introduces a transformation rule among
expressions written e ~» e'. We write C —* D’ to denote an
n number of application of CHRs starting with the initial
store C yielding store D'. We write e ~* ¢’ to denote a
reduction sequence among expressions.

Proof rules (Arrow) and (Pair) from Figure 2 can be straight-
forwardly encoded in terms of CHRs. Note that rule (Trans)
from Figure 2 has been split into rules (Transl) and (Id).
Our idea is to incrementally build CtM uses out of Ct as-
sumptions. A naive CHR-translation of transitivity such as

(Trans) i:CtM a' b < j:CtM a' bk:CtM b/

castm; ~ castmg o castm;

leads to problems because we need to guess b. In CHR
terminology, the above CHR is not range-restricted. We say
a CHR is range-restricted iff grounding the lhs grounds the
rhs. Note that there is no rule (Var). The same effect can
be achieved by rule (Transl) in combination with rule (Id).

Example 10 Here is a sample derivation. We underline
constraints involved in rule applications and silently perform
equivalence transformations, replacing equals by equals. For
brevity, we leave out castm transformations.

91 :Cta (b,c),g2: Ct b Int,gs : Ct ¢ Bool,
1: CtM a (Int, Bool)

—Transt 91 : Cta (b,c), g2 : Ct b Int, g3 : Ct ¢ Bool,
j: CtM (b, c) (Int, Bool)

— Pair g1:Cta (b,c),g2: CtbInt,gz:Ctc Bool,
k:CtM b Int,l: CtM ¢ Bool

—Transt 91 : Ct a (byc),g2 : Ct b Int, g3 : Ct ¢ Bool,
m : CtM Int Int,l : CtM ¢ Bool

—Transt 91 : Ct a (byc),g2 : Ct b Int, g3 : Ct ¢ Bool,
m : CtM Int Int,n : CtM Bool Bool

—74 91 :Cta (byc),g2: Ct b Int,gs : Ct ¢ Bool

In the above derivation, ™ represents n step derivation.
O

There is also another set of rules which exclusively manip-
ulates Ct assumptions. In rule (Trans|) we make use of a
CHR propagation rule to build the closure of all available
Ct assumptions. Note that we silently avoid to apply propa-
gation rules twice on the same constraints (to avoid infinite
propagation). Note that for each “decomposition” rule we
introduce a propagation rule. The CHR representation of
the rules from Example 7 and 8 can be found in Figure 4.

It should be clear now that simplification rules incrementally
resolve CtM uses whereas propagation rules build the clo-
sure of all available Ct assumptions. The following example
stresses the importance of propagation rules.

CtM Simplification Rules:

(1d) i:CtMab
castm;
(Transl) g:Ctabyi.CtMat
castm;
(AI‘I‘OW) i: CtM (a1 — az) (b1 — bz)
castm;
(Pair) i CfM ((1,1,(12) (bl,bz)
castm;

Ct Propagation Rules:

(Transl) g:Ctabh:Ctbc
(Palrll) f . Ct ({1,1,(12) (bl, bg)
(Pa1r2l) f . Ct ({1,1,(12) (bl, bg)
(AI‘I‘OWl) f :Ct (a1 — az) (b] — bz)

a=1»b

Ar.x
g:Ctaba=a,j:CtMbl
castmj o g

i1 ZCtM b] a1,i2 : CtM as b2
Ag.Az.castm;, (g (castm;, z))
1;1 : CfM ai bl,iz . CtM as bz

=5
A
<~
A
=2
A
<~
~ Mz,y).((castm;, z),(castmi, y))

hog:Ctac
(Az.fst (f (z,1))): Ctay b
(Az.snd (f (L,x))): Ctaz by

=
=
=
= (Az.(f (A\y.x)) L):Ct as by

Figure 4: CHR-based Proof Term Construction

Example 11 Consider

g:Ct(b—>c)a,h:Cta(b—d),i:CtM cd
g:Ct (b—c)a,h:Cta(b—d),
(hog): Ct (b—=¢) (b—d),i:CtM ¢ d
g:Ct(b—>c)a,h:Cta(b—d),
(hog):Ct (b—c) (b—d),

(Az.((hog) (A\y.x)) L):Ctcd,i:CtM cd
g:Ct (b—c)a,h:Cta (b—d),

—Transl

— Arrowl

(hog):Ct (b—c) (b— d),

(Az.((hog) (Ay.z)) L): Ctcd

Note that we can only apply (Arrow]) after we have applied
(Transl). O

Another important observation is that CHRs are “indeter-
ministic”.

Example 12 Recall Example 10.
alternative derivation.

g1:Ct a (b,c),g2:CtbInt,gs: Ct c Bool,
i : CtM a (Int, Bool)

—* g1:Cta (bc),g2:Ct b Int,gs: Ctc Bool,
b= Int,c = Bool

We find the following

Note that the final stores differ.
confluent.

Indeed, CHRs are non-
O

We say a set of CHRs is confluent iff any sequence of deriva-
tion steps on the same initial store leads to the same (log-
ically equivalent) final store. In Figure 4 rules (Id) and
(Transl) overlap and therefore we might discover derivations
with same initial store but different final stores.

However, we rule out derivations which yield “bad” final
stores. Let C = {f1 : Ct a1 bi,....,fn : Ct a, by} and
i: CtM a b,C ~—* D'. We say that the CHR derivation
is good iff C and D' are logically equivalent, i.e., = C «
Afv(D') — fv(C).D'. That is, we rule out derivations yielding
stores with unresolved CtM uses, False and further instan-
tiated C't assumptions. Note that the derivation in Exam-
ple 12 is bad because the Ct assumptions have been further
instantiated in the final store.

We can state that our CHR-based method in Figure 4 is
sound w.r.t. the system described in Figure 2. That is, each
good derivation implies a valid proof. We can also guarantee
to find a good derivation if a proof exists. Furthermore, any
good derivation yields equivalent expressions.

Lemma 4 (Sound CHR Construction) Let C = {fi :
Ctay bi,...fn :Cta, b,} and i : CtM a b,C —* D' and
castm; ~" e such that the CHR derivation is good. Then,
f:Ctab<+ C such that f and e are equivalent.

Lemma 5 (Complete CHR Construction) LetC = {fi :
Ct ay b1, ..., fn : Ct an by} such that f : Ct a b < C. Then,
i:CtM a b,C —" C such that castm; ~" ¢ and f and e
are equivalent.

Lemma 6 (Sound Term Construction) Let C = {f; :
Ct a1 bi,...,; fn : Ct an bp}, i : CtM a b,C —" D;i and
castm; ~" e; andi: CtM a b,C —" Dy and castm; ~" es
such that both CHR derivations are good. Then, e1 and e2
are equivalent.

Proofs can be found in Appendix B.5

Note that in order to find a good derivation we might need
to back track. See Examples 12 and 10. To obtain a de-
cidable proof method we yet need to rule out certain CHR
derivations. E.g., consider

g:Ctabh:Ctba,i:CtM abd
g:Ctabh:Ctba,j:CtMbb
g:Ctabh:Ctba,k:CtM ab

—Transl

—Transl

Fortunately, we are able to rule out such non-terminating
derivations by imposing stronger restrictions on good deriva-
tions. The crucial point is that we disallow “cyclic” Ct as-
sumptions of the form g : Ct a (a,b). Such assumptions
must result from invalid GRDT definitions which we gener-
ally rule out.

Lemma 7 We can impose a complete termination condi-
tion on good derivations.

Details are in Appendix B.6.

We conclude that we obtain a decidable CHR-based proof
term construction method. Our method is exponential in
the worst-case. However, we believe that such cases will
rarely appear in practice. An advantage of our method is
that we can perform proof term construction under side con-
ditions. This feature allows us to integrate our method with
a general solving method for constructing typing derivations.
Details are discussed in the next section.

7. COMBING PROOF TERM CONSTRUC-
TION AND BUILDING TYPING DERIVA-
TIONS

Our current translation method assumes full type annota-
tions for the GRDT program. Type inference for GRDT is
a challenging problem. However, it is mostly sufficient to
provide annotations for function definitions only and omit
type annotations for sub-expressions. In [23], we introduced
a general type inference method for type classes with ex-
istential types. The idea is to generate “implication” con-
straints out of the program text. Solving of these constraints
allows us to construct a typing derivation. The solving pro-
cedure for implication constraints is phrased as an extension
to CHR solving. Hence, we can easily combine the inference
method introduced in [23] with our CHR-based proof term
construction method. Due to space limitations, we explain
the approach by example only.

Consider the following TCET program from Example 4. For
simplicity, we only consider one clause.

data Erk H a = forall b.(Ct a [b], Ct [b] a) => LH a
fH :: ErkHa->a
fH (LH x) = cast ((cast tail) (cast x))

In a first step, we translate data types and patterns accord-
ing to Figure 3 and replace all occurrences of cast in the
program text by castm where each castm occurrences are
attached to distinct locations.

data Erk H’ a = forall b.L_H’ a (E a [b])
fH :: ErkH’ a->a

fH (LLH” x (E (g,h))) = castm; ((castmy tail) (castm3 x))

According to [23], we generate the following “implication”
constraint out of the above program text.

t=FErka— a,a= Ski,b= Sk a,

(9:Ctab,h:CtblaDd (1:CtM ay bi,b1 = a,
2:CtM a2 ba, a2 =

3: CtM as b3,a3 = a,

by = bz — (11))

(1)
Annotation f_H: :Erk H a->a implies f H::Va.Erk_H a — a.
Hence, we substitute a by the skolem constructor Ski. Simi-
larly, we substitute b by Ska t. Each castm; expression gives
rise to 2 : CtM a b where castm; :: a — b. To each Ct as-
sumption we attach proof terms (see rule (P-K)). We make
use of the TCET representation of GRDT but connect the
constraints to ET proof terms. The interesting bit is the

[a2] — [az],

10

use of Boolean implication D to state that under the Ct as-
sumptions we can derive the CtM uses.

The constraint in (1) represents all possible typing deriva-
tions. We simply solve this constraint by applying CHRs
defined in Figure 4 until all CtM uses have been resolved.
Thus, all locations in the function body referring to proof
terms are defined in terms of proof terms attached to Ct
assumptions. In general, we solve Co, (D D C) by running
Co,D —* D' and Cy,D,C —* C' and check that D’ and
C’ are logically equivalent (modulo variables in the initial
store). We refer the interested reader to [23] for more details.

For the above constraint (1) we proceed as follows. We find
that ¢t = Erk a = a,a = Ski,b = Sks a,g : Ct a [b],h :
Ct [b] a (2) is immediately final.Consider,

t=FErka— a,a=Ski,b=Skxa,g:Cta b,
h:Ct[b] a,1:CtM a1 b1,b1 = a,
2: CtM a2 ba, a2 = [a}] — [a}],
3:CtM a3 b3z,a3 = a,bs = bz — a1
fH (L x (E (g,h)) =
castm; ((castmg tail) (castmg x))

P t=FErka— a,a=Ski,b=Sks a,g:Cta [b],
h:Ct [b] a,b1 = a,a2 = [ah] — [ab], a3 = a,
by = b3 > a1,1:CtM a1 a,
2: CtM ([a}y] — [a}]) (b3 — a1),3 : CtM a b3
~ fH (LH x (E (g,h)) =

castm; ((castmg tail) (castmg x))

t=FErka— a,a=Ski,b= Sk a,g:Cta b],
h:Ct[b] a,b1 = a,a2 = [a}] — [a}],
az = a,ba = bz > a1,1: CtM a; a,
2: CtM ([ah] — [a}]) (bs — a1),4 : CtM [b] b3
fH (LH x (E (g,h))) =

let castmg = castmgog

in castm; ((castmo tail) (castmg x))

~—~Transl

t=FErka— a,a=Ski,b=Sk>a,g:Cta b],
h:Ct[b] a,b1 = a,a2 = [a}] — [a}],

az = a,by = bz = a1,a1 = [b],

5:CtM a a,2: CtM ([a}] — [a}]) (b3 — [b]),
T CIM 6 b3

~—~Transl

~ fH (LH x (E (g,h))) =
let castmg = castmyog
castm; = castmsoh
in castm; ((castms tail) (castmg x))
—rd* t=FErka— a,a=Ski,b= Sk a,g:Cta [b],
h:Ct b a, (3)
b1 = a,as = [ay] — [ah],a3 = a,br = b3 — ay,
a1 = [B], ([ah] — [ah]) = (b5 — [b]), [b] = bs
~ fH® (LH x (E (g,h))) =
let castmg = castmyog
castm; = castmzoh
castmy x = X
castmg x = X
castms x = X
in castm; ((castms tail) (castmg x))

Note that we simultaneously transform constraints and pro-
gram text. Constraints involved in rule applications are un-
derlined. Silently, we extend e’ ~ €' to e[e'] ~ ele’] where
e[] denotes an expression with a hole. For clarity, we use let
definitions instead of textually replacing expressions. Note

that final constraints (2) and (3) are logically equivalent.

Hence, the translation is successful. Note that the final pro-
gram text for the second derivation can be simplified to the
second clause in Example 2. We note that several other
derivations are possible. E.g., consider the following where
we apply rule (Id) instead of (Transl).

t=Erka— a,a=Ski,b=Sky a,g:Cta b,
h:Ct [b] a,l:CtM al b],b1 = a,

2: CtM as be,as = [ab] — [ab],

3:CtM as b3,a3=a,b2 =bs = a1

> t=Erka— a,a=Ski,b=Sky a,g:Cta b,
h:Ct [b] a,b1 = a,a> = [ay] — [ab],as = a,
b2=b3—>a1,1:CtMa1 a,

2: CtM ([ab] — [a5]) (b3 = a1),3: CtM a by

—14 t=Erka— a,a=Ski,b=Sksa,g:Cta [b],
h:Ct[b] a,bi = a,as = [ab] — [ab],
az =a,by = bz > a1,a="bs3,1: CtM a; a,

2: CtM ([ab] — [a4]) (@ = a1)

—14 t=Erka— a,a=Ski,b=Sksa,g:Cta b,
h:Ct [b] a,b1 = a,as = [ah] — [ab],a3 = a,
by = bz — ai,a = b, ([ay] = [ab]) = (a = a1)
1:CtM a;y a

“ False

Note that skolem variable Sk is unified with [a%] which
immediately yields failure. That is, we obtain a “bad” final
store (see Appendix B.6 for details). However, there might
be other derivations which yield “good” final stores. Each
of them corresponds to a valid solution and all of them are
equivalent (see Lemma 6). The following is another possible
translation of Example 2.

fH (LH x (E (g,h))) =
let castmy g x = castms (g (castmg x))
castmg = g
castmy = h
castm; x = x
castmg x = x

in castm; ((castmy tail) (castmg x))

8. RELATED WORK

Our systematic translation method is inspired by the work
by Baars and Swierstra [1], Chen, Zhu and Xi [2], Hinze
and Cheney [3]. These works showed by example how to ex-
press GRDT-style behavior by representing type equalities
by Haskell terms and insert appropriate conversion func-
tions into the program text. We note that none of these
works considers a systematic translation scheme.

Note that in [1, 3, 16] equality is represented in terms of the
following definition.

newtype EQ a b = EQ (forall f. f a->f b)

The above encodes Leibnitz’ law which states that if a and
b are equivalent then we may substitute one for the other in
any context. By construction this ensures that the only in-
habitant of EQ a b is the identity (excluding non-terminating
functions which might break this property). Our represen-
tation of equality makes it necessary to postulate that all
values attached to monomorphic instances of E t t repre-
sent the identity to ensure preservation of the semantics of
programs (see Definition 1). On the other hand, the EQ rep-
resentation faces problems when trying to manipulate proof

11

terms. E.g., there are situations where we need to “decom-
pose” a value of type E§ (a,b) (c,d) into a value of type
EQ a c which is impossible based on the above definition.
Example 6 shows that our representation of type equality
shares the same problem. However, we believe that our rep-
resentation is more likely to be decomposable.

Weirich [27] also considered a type class encoding based on
single-parameter type classes. Our use of multi-parameter
type classes in combination with extential types appears to
be novel and more natural to mimic GRDT-style behavior.

Kiselyov [11] suggests an alternative type class encoding of
GRDT. The gist of his idea is to turn each (value) pattern
clause into an (type class) instance declaration. We believe
that in addition to the already “problematic” instance dec-
laration for transitivity such an encoding scheme may create
further potentially non-terminating instances. We are not
aware of any formal results which match the results stated
in this paper.

Pottier and Gauthier [17] give a type-preserving defunction-
alization of polymorphic programs to System F extended
with GRDT. Their formal results (proofs of Lemmas 4.1 and
4.2 in [17]) let us conjecture that resulting GRDT programs
can be translated to ET based on our translation method.

Our proof term construction method can be seen as a refined
version of the type-directed evidence-translation scheme [7]
for Haskell. We could achieve a decidable construction for
a seemingly non-terminating set of instances. There are
some connections to methods for finding paths in graphs and
“ask” constraints which appear in the context of constraint-
logic programming [9]. We yet need to work out the exact
details.

9. CONCLUSION

The primary goal of our work was to concisely study and re-
late the concepts of guarded recursive data types (GRDT),
existential types (ET) and type classes (TCET). We could
achieve this goal by giving for the first time a systematic
translation method from GRDT to ET (Section 5) based on
an intermediate translation to TCET (Section 4). For the
translation method to be complete we require that types
appearing in assumption constraints must be decomposable
(Definition 4). We also assume full GRDT type informa-
tion but are able to construct ET expressions automati-
cally based on a novel CHR-based proof term construction
method (Section 6). We can even combine our method
with an independently developed type inference scheme for
GRDT (Section 7). Hence, we obtain a fully automatic tool
to translate GRDT to ET where the final program is ac-
cepted by GHC. In our experience, the decomposition con-
dition which is crucial for translation is met by all GRDT
examples found in the literature. A comprehensive list of
examples can be found under ?

http://www.comp.nus.edu.sg/ wangmeng/trans-grdt

An issue we yet need to investigate is how expensive proof
term manipulations are in practice. Note that conversion
functions represent the identity, however, we may have to

#Examples are also part of the technical report version [25].

repeatedly apply such functions to elements of lists etc. A
“smart” compiler may be able to avoid such redundant com-
putations (either statically or dynamically). In this context,
we would like to mention that GRDT have been recently
added to Haskell. Implementations are available in the lat-
est release of GHC [6] and Chameleon [26] (experimental
version of Haskell). In case of GHC, the Core back-end has
been extended with GRDT as a primitive feature. Clearly,
we expect “native” GRDT code to run faster than “source-
to-source translated” GRDT code. However, the advantage
of our work is that we could identify a large class of GRDT
programs which can be implemented by a source-to-source
translation. Thus, our work offers a light-weight approach
to write GRDT-style programs based on some existing lan-
guage features.

Our proof term construction method is of independent in-
terest and my prove to be useful to advance the state of art
in type-directed translations for languages such as Haskell.
This is another interesting avenue which we plan to explore
in the future.

Acknowledgements

We thank Gregory Duck, Simon Peyton-Jones and Jeremy
Wazny for their comments. In particular, we would like to
thank James Cheney and Oleg Kiselyov for fruitful discus-
sions.

10. REFERENCES
[1] A.I. Baars and S. D. Swierstra. Typing dynamic
typing. In Proc. of ICF’02, pages 157-166. ACM
Press, 2002.

[2] C. Chen, D. Zhu, and H. Xi. Implementing cut
elimination: A case study of simulating dependent
types in Haskell. In Proc. of PADL’04, volume 3057 of
LNCS, pages 239 254. Springer-Verlag, 2004.

[3] J. Cheney and R. Hinze. A lightweight
implementation of generics and dynamics. In Proc. of

Haskell Workshop’02, pages 90 104. ACM Press, 2002.

[4] J. Cheney and R. Hinze. First-class phantom types.
Technical Report CUCIS TR2003-1901, Cornell
University, 2003.

[5] T. Frihwirth. Constraint handling rules. In Constraint
Programming: Basics and Trends, LNCS.
Springer-Verlag, 1995.

[6] Glasgow haskell compiler home page.
http://www.haskell.org/ghc/.

[7] C. V. Hall, K. Hammond, S. Peyton Jones, and
P. Wadler. Type classes in Haskell. In ESOP’9/,
volume 788 of LNCS, pages 241-256. Springer-Verlag,
April 1994.

[8] Haskell 98 language report.

http://research.microsoft.com/Users/simonpj/haskell98-

revised/haskell98-report-html/.

[9] Joxan Jaffar and Michael Maher. Constraint logic
programming: A survey. Journal of Logic

Programming, 19(20):503 581, 1994.

[10] S. Peyton Jones, G. Washburn, and S. Weirich.
Wobbly types: type inference for generalised algebraic
data types, 2004. Submitted to POPL’05.

[11] O. Kiselyov. Typed lambda-expressions without gadts.
http://www.haskell.org//pipermail /haskell-cafe/2005-
January/008212.html, 2005. Haskell-Cafe Mailing
List.

[12] J. Lassez, M. Maher, and K. Marriott. Unification
revisited. In Foundations of Deductive Databases and
Logic Programming. Morgan Kauffman, 1987.

[13] K. Laufer. Type classes with existential types. Journal
of Functional Programming, 6(3):485 517, 1996.

[14] K. Laufer and M. Odersky. An extension of ML with
first-class abstract types. In ACM SIGPLAN
Workshop on ML and its Applications, pages 78-91,
1992.

[15] D. MacQueen, G. Plotkin, and R. Sethi. An ideal
model for recursive polymorphic types. Information
and Control, 71:95-130, 1986.

[16] E. Pasalic. The Role of Type Equality in
Meta-Programming. PhD thesis, Oregon Health &
Science University, OGI School of Science &
Engineering, September 2004.

[17] F. Pottier and N. Gauthier. Polymorphic typed
defunctionalization. In Proc. of POPL’0/, pages
89-98. ACM Press, January 2004.

[18] Franois Pottier and Yann Rgis-Gianas. Towards
efficient, typed LR parsers. Draft paper, September
2004.

[19] T. Sheard and E. Pasalic. Meta-programming with
built-in type equality. In Fourth International
Workshop on Logical Frameworks and
Meta-Languages, 2004.

[20] Tim Sheard. Languages of the future. SIGPLAN Not.,
39(10):116-119, 2004.

[21] J.R. Shoenfield. Mathematical Logic. Addison-Wesley,
1967.

[22] V. Simonet and F. Pottier. Constraint-based type
inference with guarded algebraic data types.
Submitted to ACM Transactions on Programming
Languages and Systems, June 2004.

[23] P. J. Stuckey and M. Sulzmann. A unifying inference
framework for Hindley/Milner with extensions.
http://www.comp.nus.edu.sg/” sulzmann, 2004.

[24] P.J. Stuckey and M. Sulzmann. A theory of
overloading. ACM Transactions on Programming
Languages and Systems, 2004. To appear.

[25] M. Sulzmann and M. Wang. A systematic translation
of guarded recursive data types to existential types.
Technical Report TR22/04, The National University
of Singapore, 2004.

[26] M. Sulzmann and J. Wazny. Chameleon.
http://www.comp.nus.edu.sg/” sulzmann/chameleon.

[27] S. Weirich. Type-safe cast: (functional pearl). In Proc.
of ICFP’00, pages 58 67. ACM Press, 2000.

[28] H. Xi, C. Chen, and G. Chen. Guarded recursive
datatype constructors. In Proc. of POPL’03, pages
224-235. ACM Press, 2003.

APPENDIX
A. SEMANTICS OF EXPRESSIONS

We follow the ideal semantics of MacQueen, Plotkin and
Sethi [15]. The meaning of a term is a value in the CPO V,
where V contains all continuous functions from V to V and
an error element W, usually pronounced “wrong”. Depend-
ing on the concrete type system used, V might contain other
elements as well. We assume that the values of additional
type constructors are representable in the CPO V. Then V
is the least solution of the equation

V=W, +V->YV.

The meaning function on terms is as follows:

[z]n = n(x)
[Mueln = Mv.[e]nu :=v]
[ee'ln = if[elne V=V A[ln#W
then ([eln) ([e'Tn)
else W
[letz =eine']n = if[e]n#W
then [¢/Tnfx := [¢]n]
else W

Note that the above semantics is call-by value.

B. PROOFS
B.1 Proof of Theorem 1 (GRDT to TCET)

First, we introduce a auxilliary definition and lemma to es-
tablish a connection between constructive type equality en-
tailment and entailment among type classes.

Definition 5 Let C be a set of term equality constraints
and C' be a set of type class constraints. We say that C
is equivalent to C', written as C ~ C', iff (Vt t't = t' €
Ciff(Cttt e C"ANCtt t e (C')).We call C' the “Ct”
equivalent of C; and C the “Eq” equivalent of C'.

Lemma 8 Let P, be a full and faithful type class theory. Let
C be a set of equality constraints and C' its “Ct” equivalent.
We have C F=° t1 =t iff P, = C' D (Ct t1 t2,Ct ts t1).

PRrROOF. The proofis done in two directions. (Direction =
): We proof by induction on derivations.
o Case:
t=t'eC
Crr-t=t
Because we have t = t' € C, we know Ct t t' € C' and
Ctt'teC' Thus P, EC' D (Cttt Ctt't).
o Case:

CFEti =ty CFcty=1t3
C = tq =13

By induction, we have

P,=C" D (Ctty ts,Ct ty t1,Ct to t3,Ct ts t2)

13

By the type class instance
Va1,a3.(Ct a; as & 302.(Ct a1 a2 N\ Ct a> a3))

We conclude

Pp ': c’ D) (Ct t1 tz,Ct to tl,Ct to t3,Ct ts t2)
D (Ct t1 t3,0t ts t1)

Other cases are similar.

(Direction <):

o Case: Suppose the type class instance
Va.(Ct a a > True)

is applied. Then we have
P,=True>Cttt

We also have

True F=° t =t

o Case: Suppose the type class instance
Vai,as.(Ct a1 as ¢ Jaz.(Ct a1 a2 A Ct az a3))
is applied. Then we have
P, =3ty (Ct ti ts ACt ts t3) D Ct ty ts
Easily, we also obtain

t1 =to ANty =t3 F7¢ t1 =t3

O

Other cases are similar.

The next lemma follows immediately from the rule (M).

Lemma 9 C,I' F7 cast:t =t iff B, ECDCttt

We obtain Theorem 1 as a special instance from the follow-
ing lemma.

Lemma 10 Let e be a GRDT expression and e’ be its fully
casted version. Let P, a full and faithful program theory
representing all GRDT type constructors mentioned in e.
Silently, we transform the GRDT constructors mentioned
in e to TCET constructors. We have that C,I' F% et iff
C',T FT ¢ .t where C' is the “Ct” equivalent of C.

PROOF. The proof is done in two directions.
(Direction =-):We proof by induction on derivation.

o Case (Eq):

CTHCG e:t CrH < t=t
C,I G e ¢

By the induction hypothesis, we have
c,TE" et (1)

Also by Lemma 8 and C =< ¢t =t' we have
P,=C S (CtEt,Ctt' t) (2)
From (1) and (2), we conclude that
C' T+ (cast e') : t'
(cast €'"). Thus we obtain

W.lo.g. We can assume e’ =

C',T FT ((cast o cast) ") : '

We assume C', T +7 ¢ : ¢"’. In the above case, the first cast
is of type t — t' and the second ¢ — t. Thus by Lemma 9,
we know that Ct ¢t ¢ and Ct ' t can be derived from the
context. By the (Tramns) type class instance, we can derive
Ct t" t'. Then by Lemma 9, we know there exists a cast of
typet’ — t'. After replacing the cast composition castocast
in the above judgement by the new cast, we obtain

C', T +7 (cast ") : t'
This is equivalent to

C' . TH ¢t

o Case (App):

C,F l_GC ep it >t C,l" "Gc eo :ta
C,F |—GC e1 eo: t

By the induction hypothesis, we have
c',r T el ity >t C'\ T T ey to
By application of rule (App), we obtain
C'\TFT (ehebh):t (1)
Note that we always have C "¢ ¢t = ¢t. Thus we conclude

C',T " (cast (¢} eb)) : t

Other cases are similar.

(Direction <): We proceed by structural induction. We
denote by [e'] the “erasure” of expression €', i.e. we erase
all cast occurrences from e'. W.l.o.g. We can assume e’ =
(cast e").

C' T FT cast:t -t C' T F" e :t
C'.T FT (caste):t

Because e” = z, then [¢"] = €". Therefore, we have
C,T FC ["]:t (1)
By C',T +7 cast :t — t' and Lemma 9, we obtain
P,=C S (Cttt,Ctt' t)
Together with Lemma 8, we have
Cret=t (2)
By (1), (2) and rule (Eq), we conclude
C,T FC [¢"]:t
Because [cast €''] = [¢"], then we have

C,T FY% [cast €] : 1

14

This is equivalent to

C,T' 1 [e'] : ¢

o eII — A,’I:.e”l

C'\Tua:t FT e 1ty
C'\T+T et

C',T 7 (cast ") : t'

C'\ T +T cast:t —t'

In the above derivation t = t; — to.
hypothesis, we have

C,T.x:t F% [e"] : ta

By the induction

By applying the (Abs) rule, we obtain
C.T F9 [e"]:t (1)
By C',T +7 cast :t — t' and Lemma 9, we obtain
P,=C' D (Cttt Ctt't)
Together with Lemma 8, we have
Cr=t=t (2
By (1), (2) and rule (Eq), we conclude
C,T % [e"] : ¢
Because [cast €''] = [e”], then we have
C,T F% [cast "] : t'
This is equivalent to

C, T ¢ [e'] : ¢

o 6II — (ellll 6{2”)

C' T FT el ity >t

C' T FT " :ty

Irl_T . !
c', Ct:t—t NS

T T (Cte):
By the induction hypothesis, we have

C,T F% [e)'] 1 ta = ¢
C,T F% [e5'] : £
By applying the (App) rule, we obtain
O,F K [le"] [5'1]: ¢ (1)
By C',T FT cast:t — t' and Lemma 9, we obtain
P,EC'D(Cttt . Ctt't)
Together with Lemma 8, we have
Cret=t
By (1) and (2), we conclude
C,T K% ["]: ¢

(2)

Because [cast €''] = [e”], then we have
C,T FY% [cast "] : 1
This is equivalent to
C,T +C [:t

Other cases are similar. [

B.2 Proof of Lemma 2 (Well-Typed)

Our assumptions are: Let C = {fi : Ct a1 bi,..., fn :
Ct an bp} and T such that C ~ T and f: Cta b < C
is valid. Then ' + f:a — b.

PRrROOF. The proof proceeds by induction over the proof
term construction derivation. W.l.o.g we combine rule (V E)
with rules (Id),(Var),(Arrow) et. We also combine (3 E)
with (Trans).

o Case(1d):

Ar.x:Ctaa+ True

We know that I' = (). Thus we conclude ' F A\z.xz : a — a.

o Case (Var):

f:Ctabe f:Ctabd

We know that I' = {f : @ — b}. Thus we conclude I' F f :
a—b.

o Case (Trans):

f=XgAr.f2 (9 (f1 7))
f:Ctaias < fi:Ctaras, fo:

Ct a as

We know that I' = {f1 : a1 — a2, f2 : a2 — as}. Thus by
typing derivation we can easily conclude I' F f : a1 — as.

o Case (Arrow): Similar to (Trans).

o Case (o):

f:Ctabe fiie,..,fnicn fitci & F
Fi=F fori=1,..,n
f:Ctabe F

By induction, we have [J] T'; F f: a — b. Because |J] I's C
I derived from F' |= F;, then we conclude '+ f:a — b.

O

B.3 Proof of Theorem 2 (TCET to ET Sound-
ness)

Theorem 2 follows directly from the following more general
lemma.

Lemma 11 Let C,;T F" e:t, O T F" et~ € and T
such that C ~»T'. Then TUT' F¥ ¢ :¢.

PRrROOF. The proof proceeds by induction on derivations.

15

o Case (K):

(K :Va,b.Ct t1 t,,Ct th t1...,Ct tn th,Ct th t, =t — T a)

el
(K':Va,bt - Eti t, = .. > Et,t, > Ta)
C,T " e:[t/a]t ~ ¢

P, =CD>(g,h):[t/a](Ct t: t1,Ct ty t1...,Ct t, t,,,Ct t,, t,,)

CIHF Ke: Tt~ K' ¢ E (g1,h1)...(gn, hn)

By the induction hypothesis, we have
rur’ FF ¢ tjae (1)

Also we have

K :Va,bt s Etith > .. > Et,t, >Ta (2
Note that here we assume an ordering among the constraints.
P, =C D (g,h) : [t/a](Ctt: ty,Ctt) t1...,Ctt,t,, Ctt, t,)
implies

gi:Cttit; <> Candh;:Ctt;t; < C

W.lo.g we can assume g;,h; ¢ . Hence by Lemma 2, we
have

PUT F? g, i ti > thand DUT 7 by ot =t
wherei=1...n

Thus we can obtain that
PUr’ +2 E (gi,hi): Et; t; wherei=1...n
From (1),(2),(3) and rule (K), we conclude
Tur’ F2 K' e E (gi,h)...(gn, hn) T T

3)

o Case (Reduce):

DQC’ fZCttltz(—)D
c.r T cast 1 t1 =ty ~ f

Given D CC f:Cttitr <> D, Wlo.g. we assume f ¢ I
Thus we conclude by Lemma 2

TUT F? fiti =t

o Case (Pat):

p:ti F VE.(DIFPIPI) Bﬂfv(C,F,h):(b
CADTUTL, FT e ityns e
CTHF poeiti sta~ap — ¢

By the induction hypothesis, we have
TUT,UTcUTp, FT ¢ ity

where C ~ I'c and D ~ I'p. ~
Also by Lemma 12 (see below), we have p' - Vb.(I', UTp).
Thus we conclude

T'uTe |—E p'—)e':t1%t2

o Other cases are standard. [

Lemma 12 Givenp:t, F Vb.(DIT, 1p') then p' - Vb.T,U
T’ where D~ T".

ProOOF. Standard by induction on derivation. [

B.4 Proof of Theorem 3 (TCET to ET Com-
pleteness)

Theorem 3 follows directly from the following lemma.

Lemma 13 Let C,T 7 e : t and all types appearing in
assumption constraints in intermediate derivations are de-
composable. The C,T FT e:t~s e for some e'.

Proo¥r. The proof is done by construction of e’.
o Case (Reduce):
Note that cast is a class method of type V¢, t'.Ct tt' =t —
t'. Since we have C,I' FT cast : t; — to, by rule (M), we
can derive P, - C D Ct t1 to.
Given all the types are decomposable, by Lemma 3, we know
f:Ctty ty < C for some f if P, - C D Ct ty ta. Thus the
rule (Reduce) always produces a f.

o Case:
Other rules are standard. [J

B.5 Proofs of Lemmas 4,5 and 6

B.5.1 Proof of Lemma 4 (Sound CHR Construction)

Our assumptions are: Let C = {fi : Ct a1 bi,..., fn :
Ctanbn}andi:CtM a b, C —" D' and castm; ~* e such
that the CHR derivation is good. Then, f : Ct a b & C
such that f and e are equivalent.

PrOOF. The proof is done through induction on the CHR
derivation. W.l.o.g we combine rule (V E) with rules (Id),
(Var), (Arrow) and (Pair). We also combine (3 E) with
(Trans).

o Suppose the rule applied is (Id):

1:CtM ab,C — a=0b0C—*D
castm; ~ Az.x

Note that the above derivation unifies a and b. Thus we
have

Azr.z : Ct a a < True.
o Suppose the rule applied is (Transl):
i:CtM ab,C — ay=a,j: CtM b, b,C—"* D’
castm; ~» castmjog

Note that the above derivation unifies a and ay. Thus we
have

f=castmjog
f:Ctabe g:Ctabg,castm;: Ctby b
f:Ctabe D

(Trans)

(°)

where g : Ct a by C C. Also by induction, we know
j: Ctbyg b+ D' for some D' C C. Take D as D', we
have D C C.

o Suppose the rule applied is (Arrow):

i: CtM ((11 — (12) (bl — bz),c — 1;1 :CtM bl ai,

1;2 : CfM a2 bz,c — D,

castm; ~» Ag.Az.

castm;, (g (castm;, z))

16

Also we have

f = Xg.Ax.castm;,(g (castm;, x))
(Trans) f: Ct (a1 — a2) (b1 = b2) < castm;, : Ct by a1,
castm;, : Ct a2 by

(°)

f : Ct (a1 —>a2) (b] —)b2) D

Also by induction, we know j : Ct b1 a1 < D’ and j :
Ct as by < D"for some D' C C and D" C C. Take D as
D' uD", wehave D C C.

o (Pair) is similar to (Arrow). [

B.5.2 Proof of Lemma 5 (Complete CHR Construc-

tion)
Our assumptions are: Let C = {fi : Ct a1 bi,..., fn :
Ctan by} suchthat f: Ctab <> C. Then,i: CtMab,C —"
C such that castm; ~™ e and f and e are equivalent.

ProoF. W.lLo.g we combine rule (V E) with rules (Id),
(Var), (Arrow) and (Pair). We also combine (3 E) with
(Trans).

o Case (Id).

Ar.x:Ctaa<+ True

Then we have

1:CtM a a,C —1q4 a=a,C

castm; ~ Az.x
o Case (Var).
f:Ctabe f:Ctabd
Then we have, given f: Ctabe C
i:CtM a b,C —rranst j:CtM bb,C »—>1q C

castm; ~ castm; o f ~ Ar.zof

o Case (Trans).

f=Xx.fo (fi)

(Trans)
f:Ctaias e f1:Ctaraz, fo:Ctazas

We have

i:CtM a1 as, fi : Ct a1 a2, fa: Ct az a3
castm;

Transl 7 Ot az as, f] Ot ai az, fz :Ct as as
~ castmj o fi

—Trans1 k:CtM a3z as, f1 : Ct a1 a2, f2: Ct az a3

~ castmg o fo o fi
—1d f2 o f1 : Ct ay az,fQ : Ct as as
~> Az.xz o fr o fi

o Case (Arrow).

f=2Xg.xz.f> (g (f1 z))
(AI‘I‘OW) V(Ll,az,bl,bg.f :Ct ({1,1 — (12) (bl — bg)
s f1 : Ct by a1,f2 :Ct az by

By induction,

C,i] :CtM b1 al — Dl
castm;, ~*fi
C,iz . CtM a2 bz [D2
castm;, ~* s
Therefore
1. CtM ({1,1 — (12) (bl — bg),fl : Ct bl ai,
fg : Ct as bz
castm;
 Arrow Z'1 CtM bl (1/1,7:2 :CtM as befl . Ct bl ar,
f2 : Ct a bg
~ Ag-Az.castm;, (g (castmi, x))

>_):/ar f1 : Ct b a],fQZCt a2 ba
~" Ag-Az.fa (g (fr 2))

o (Pair) is similar to (Arrow).

O

B.5.3 Proof of Lemma 6 (Sound Term Construction)

Our assumptions are: Let C = {fi : Ct a1 b1, ..., fn :
Ct an bn}, i : CtM a b,C —~" D; and castm; ~" e1 and
i: CtM a b,C —" Dy and castm; ~" e2 such that both
CHR derivations are good. Then, e; and es are equivalent.

Proor. Let f : Ct a b +» C, from Lemma 4, we know
that e; is equivalent to f and e» is equivalent to f. Thus we
conclude that ey is equivalent to e2. [

B.6 Termination of CHRs

We impose a termination condition on derivations. We show
that this condition does not rule out any good derivations
which are vital. The basic idea is to attach each constraint
with a distinct justification. Justifications .J refer to sets of
numbers. Each Ct constraints carries a distinct, singleton
justifications sets. Each CtM constraints carries initially a
singleton justification set referring to its location. We write
j as a short-hand for the singleton set {j}. We need to
maintain justifications during CHR. applications.

Consider rule instance (Transl) g : Ctab,i: CtM o' b <~
g:Ctaba=ada,j: CtMblb and store C such that
(g:Ctab);,(i:CtM a' b'); € C Then C s=rrans1 C — (i :
CtM a' V)y,a=4a',(j: CtM b b')30s. We say that the
termination condition is violated iff j € J.

Consider rule instance (Arrow) i : CtM (a1 — az) (by —
bz) <= 41 : CtM b (Ll,iz : CtM as by such that (Z :
CtM (a1 — a2) (b1 — bQ))J e C. Then, C = Arrow C —
(i : CtM (a1 — a2) (b] — bQ))J,(i1 : CtM b] (h)J,(iz :
CtM a2 b2)s. The justified CHR semantics for rule (Pair)
is similar.

Silently, we assume that all propagation rules have been ex-
haustively applied such that all Ct constraints are attached
with a unique number. Note that we could encounter “dupli-
cates” such as (g1 : Ctab);, and (g2 : Ct ab);,. However, g
and g, are equivalent. Hence, we may keep both constraints.

17

We impose an order among derivations. Let C = {fi :
Ct ar bi,...,fn : Ct an bp}, i : CtM a b,C " D; and
castm; ~" e1 and i : CtM a b,C —" D and castm; ~™ e
such that both CHR derivations are good. We say that
i:CtM a b,C »" D, is shorter than i : CtM a b,C "
D> iff the size of e; is shorter than the size of es where
the size function returns the number of nodes in the syntax
tree of an expression. In case of initial stores with multiple
CtMs we compare the sum of the individual sizes of resulting
expressions.

Lemma 14 Leti: CtM t t,C " D be a good derivation.
Then, castm; ~" e where e is equivalent to the identity.

Lemma 15 Any good derivation which violates the termi-
nation condition can be shortened.

PRrROOF. We assume a good derivation which violates the
termination condition where we consider the “earliest” vio-
lation in the derivation.

C
— Ci,(g:Cttyt2),,(1: CtM t t/Q)Ll
—7ranst C1,(g9: Ct t1 ta)1,, (j : CtM t2 t5) 1,301,
to=t (1)
b d Cz, (g : Ct t1 t2)11,(k : CtM t/{ tg)L2
—Transt C2,(g: Ct t1 ta),, (n: CtM to t5)1,,
t =t}
— D

W .lo.g., in the derivation steps between (1) and (2) we only
apply CHRs on (j : CtM ta t)(, ur, or its successors,
i.e. those resulting from (Transl) and (Arrow) rules.

First, we show that only (Transl) or (Id) rules could have
been applied on (j : CtM &2 t5),3ur, or its successors.
Assume the contrary, that is some (Pair) (or a similar type-
constructor) rule has been applied on (5 : CtM t, té){h}uLl.
Then,

w (g1 Ct t1 t2)1,, t2 = (ts3,t4),t5 = (t5,t6),

(§: CtM t2 t5) 11 3uL,

vy (g Ct t1 t2)y, ta = (t3,t4),th = (t5,t6),
(j1: CtM ts t5) i yur, (2 : CtM ta te) o,

However, then we obtain a cycle among types. E.g., assume
that (ji : CtM ts t5)(, ur, equals (k: CtM &7 ¢5).,. We
find that ¢, = t},t2 = (t3,t4),tf2’ = (ts,ta),t’f = t3,t1 =t
which implies (g : Ct t1 (¢1,¢4));,. Thus, we obtain a con-
tradiction. Note that by assumption the type equations re-
sulting from Ct constraints (Ct a b yields a = b) must be
satisfiable. Otherwise, the GRDT definition is invalid.

> Pair

Hence, we only find (Transl) or (Id) applications in between
(1) and (2). Effectively, we generate a cast function to con-
vert £1 into some b which then we convert back into ;. How-
ever, any such transformation yields a cast function which
is equivalent to the identity. See Lemma 14. Hence, the
steps between (1) and (2) are redundant. Hence, we obtain
a shorter derivation. [

Lemma 16 CHRs are terminating under the termination
condition.

I1 €L1

li € Ly (2)

ProoFr. Follows immediately. Note that we disallow Ct
assumptions of the form g : Ct a (a,b). Hence, any non-
terminating derivation must violate the termination condi-
tion. [

18

