
Sulzmann, Martin and Wang, Meng (2004) A Systematic Translation of Guarded
Recursive Data Types to Existential Types. Technical report. National University
of Singapore (Unpublished)

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/47487/ The University of Kent's Academic Repository KAR

The version of record is available from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.6230&rep=rep1&type=pdf

This document version
Draft Version

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/47487/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.6230&rep=rep1&type=pdf
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Systematic Translation of Guarded Recursive Data Types
to Existential Types

Martin Sulzmann
School of Computing, National University of

Singapore
S16 Level 5, 3 Science Drive 2, Singapore

117543
sulzmann@comp.nus.edu.sg

Meng Wang
School of Computing, National University of

Singapore
S16 Level 5, 3 Science Drive 2, Singapore

117543
wangmeng@comp.nus.edu.sg

ABSTRACTGuarded re
ursive data types (GRDT) are a new languagefeature whi
h allows to type
he
k the di�erent bran
hesof
ase expressions under di�erent type assumptions. Weshow that GRDT
an be translated to type
lasses with ex-istential types (TCET). The translation to TCET might beproblemati
 in the sense that
ommon implementations su
has the Glasgow Haskell Compiler (GHC) fail to a

ept thetranslated program. We establish some suÆ
ient
onditionsunder whi
h we
an provide for a re�ned translation fromTCET to existential types (ET) based on a novel proof term
onstru
tion method. The resulting ET program is a

eptedby GHC. The suÆ
ient
onditions are met by all GRDT ex-amples we have found in the literature. Our work
an beseen as the �rst formal investigation to relate the
on
eptsof guarded re
ursive data types and (type
lasses with) ex-istential types.
Categories and Subject DescriptorsD.3.2 [Programming Languages℄: Language Classi�
a-tions|Appli
ative (fun
tional) languages; D.3.3 [ProgrammingLanguages℄: Language Constru
ts and Features|Polymor-phism,Constraints; F.3.3 [Logi
s and Meanings of Pro-grams℄: Studies of Program Constru
ts|Type stru
ture
General TermsLanguages, Theory
KeywordsType systems, type-dire
ted translation, proof-term
on-stru
tion,
onstraint solving.
1. INTRODUCTIONGuarded re
ursive data types (GRDT) [28℄ introdu
ed byXi, Chen and Chen are a new language feature whi
h allows

to type
he
k more programs. The basi
 idea is to use di�er-ent type assumptions for ea
h bran
h of a
ase expression.E.g.,
onsider the following (toy) GRDT program. We willuse Haskell-style syntax [8℄ throughout the paper.Example 1 We introdu
e a GRDT Erk a where a maybe re�ned depending on the
onstru
tor. Fun
tion f takesadvantage of the temporary equality assumptions enabledby pattern mat
hing.data Erk a = (a=Int) => I a| forall b.(a=[b℄) => L af :: Erk a -> af (I x) = x + 1f (L x) = tail xIn detail, the data type de�nition introdu
es two
onstru
-tors belonging to data type Erk a. The novelty of GRDT isthat in
ase of
onstru
tor I we re�ne the type to Erk Int.We present type re�nement in terms of equations. In
aseof L we re�ne the type to Erk [b℄ for some b. Note thatGRDT imply existential types [14℄. Constru
tor L has type8a; b:(a = [b℄)) a! Erk a. Therefore, all variables not ap-pearing in the result type are bound by the forall keyword.Note that some presentations [4℄ write I a with (a=Int)instead of (a=Int) => I a. The important point is thatwhen pattern mat
hing over values we
an make use of theseadditional type assumptions. Consider the fun
tion de�ni-tion where in the �rst
lause we temporarily add a = Int toour assumptions (assuming that x has type a). Thus, we
anverify that the x+1 has type a. A similar observation appliesto the se
ond
lause. Hen
e, fun
tion f is type
orre
t. 2GRDT have been re
ognized as a very useful language fea-ture, .e.g.
onsider [20, 17, 18℄. Hen
e, it is desirable toextend existing languages with GRDT. In fa
t, a number ofauthors [1, 2, 3, 27℄ have re
ognized that GRDT-style be-havior
an be expressed in terms of some existing languagefeatures already available in Haskell. All of these en
odingsshare the same idea and represent type equalities by Haskellterms.Example 2 Here is an en
oding of Example 1 in terms ofexistential types [14℄. We introdu
e a spe
ial data typeE a bto represent equality assumption among types. E.g., we rep-resent a = Int by E a Int where the asso
iated value E1

(g,h) implies fun
tions g and h to
onvert a's to and fromInt's.data E a b = E (a->b,b->a)data Erk_H' a = I_H' a (E a Int)| forall b. L_H' a (E a [b℄)f_H' :: Erk_H' a -> af_H' (I_H' x (E (g,h))) = h ((+) (g x) 1)f_H' (L_H' x (E (g,h))) = h (tail (g x))Note that we use fun
tion notation for addition. Opera-tionally, the
onversion fun
tions are assumed to representthe identity. Hen
e, the above program is equivalent to Ex-ample 1. The above program makes only use of existentialtypes and is therefore a

epted by GHC [6℄. However, theprogrammer has to do now more work when de�ning thefun
tion body. In the �rst
lause, we turn x into a value oftype Int by making use the expli
itly provided
onversionfun
tion g of type a ! Int. Then, we apply (+) whi
h isassumed to have type Int ! Int ! Int. Finally, we applyh to obtain a value of type a su
h that the type annotationis mat
hed. 2Clearly, su
h a style of programming is rather tedious andshould be best performed by an automati
 tool. To the bestof our knowledge, we are the �rst to propose a systemati
translation method from GRDT to ET (existential types) bymeans of a sour
e-to-sour
e translation. We see our work asa more prin
ipled answer to the many examples we have seenso far in the literature [1, 2, 3, 16, 27℄. The essential taskis to
onstru
t proof terms for type equalities out of logi
alstatements of the form C � t1 = t2 where C
onsists of a setof type equations and � denotes Boolean impli
ation. Oneof our main te
hni
al
ontribution is a de
idable proof term
onstru
tion method for (dire
ted) type equalities. Underthe assumption that type assumptions are de
omposable wea
hieve a translation from GRDT to existential types (ET)whi
h is a

epted by GHC. In our experien
e, the de
om-posable assumption is satis�ed by all GRDT examples wehave seen in the literature.We
ontinue in Se
tion 2 where we introdu
e some basi
 no-tations. In Se
tion 3 we de�ne the set of well-typed GRDTprograms. Se
tion 4 provides for an (intermediate) trans-lation from GRDT to type
lasses with existential types(TCET). Se
tion 5 provides for a translation s
heme fromGRDT to ET based on a proof system for type equalities.The translation s
heme is
omplete if types are de
ompos-able. In Se
tion 6 we show that the proof system is de-
idable. In Se
tion 7 we show how to
ombine our proofterm
onstru
tion method with a novel inferen
e method.Related work is dis
ussed in Se
tion 8. We
on
lude in Se
-tion 9. Due to spa
e limitations proofs for all results statedhave been moved to the Appendix.
2. PRELIMINARIESWe write �o to denote a sequen
e of obje
ts o1; :::; on. Wewrite fv(o) to denote the set of free variables in some obje
to.We assume that the reader is familiar with the
on
epts ofsubstitution, uni�ers, most general uni�ers (m.g.u.) et
 [12℄.E.g., [t=a℄ denotes the substitution whi
h has the e�e
t of

repla
ing ea
h o

urren
e of a by t. Often, we abbreviate[t1=a1; :::; tn=an℄ by [�t=�a℄.We make use of
onstraints C
onsisting of
onjun
tion ofprimitive
onstraints su
h as t1 = t2 des
ribing equalityamong t1 and t2. We often treat
onstraints as sets, there-fore, we use \," as a short-hand for Boolean
onjun
tion.We also assume basi
 familiarity with �rst-order logi
. Wewrite j= to denote the model-theoreti
 entailment relation,� to denote Boolean impli
ation and $ to denote Booleanequivalen
e. We let �9WF denote the formula 9�1 : : : 9�nFwhere f�1; : : : ; �ng = fv(F) �W . We refer to [21℄ for de-tails.
3. GUARDED RECURSIVE DATA TYPESIn this se
tion, we de�ne the set of well-typed GRDT pro-grams. Note that there exist several variations of GRDTsu
h as Cheney's and Hinze's �rst-
lass phantom types [4℄,Peyton-Jones's, Washburn's and Weiri
h's generalized alge-brai
 data types [10℄ and equality-quali�ed types by Sheardand Pasali
 [19℄. Our formulation is
losest to the systemdes
ribed by Simonet and Pottier [22℄.First, we de�ne the set of expressions and types.Expressions e ::= K j x j �x:e j e e j
ase e of [pi ! ei℄i2IPatterns p ::= x j (p; p) j K pTypes t ::= a j t! t j T �tType S
hemes � ::= t j 8��:C) tFor simpli
ity, we leave out let-de�nitions and type anno-tations but may make use of them in examples. Note thatpattern mat
hing syntax used in examples
an be straight-forwardly expressed in terms of
ase expressions.GRDT de�nitions in example programs su
h asdata Erk a = (a=Int) => I a | forall b.(a=[b℄) => L aimply
onstru
tors I : 8a:a = Int) a ! Erk a andL : 8a; b:a = [b℄) a! Erk a. We prohibit \invalid" de�ni-tions su
h as data Unsat a = (a=(a,Int)) => U a whi
hyields a
onstru
tor with an unsatis�able set of equations.We assume that booleans, integers, pairs and lists are pre-de�ned.The typing rules des
ribing well-typing of GRDT expres-sions are in Figure 1. We introdu
e judgments C;� `G e : tto denote that expression e has type t under
onstraint Cand environment �. We assume that C
onsists of
onjun
-tion of equations. A judgment is valid if we �nd a derivationw.r.t. the typing rules. Note that in � we re
ord the typesof lambda-bound variables and primitive fun
tions su
h ashead : 8a:[a℄ ! a, tail : 8a:[a℄ ! [a℄ et
. Rules (Abs),(App) and (Var-x) are standard. Rule (K) seems some-what redundant and
ould be modeled by rules (App) and(Var-x) assuming that
onstru
tors are re
orded in �init.Our intention is that
onstru
tors are always fully applied.Rule (Case) deals with
ase expression. Nothing unusualso far. Next, we
onsider the GRDT spe
i�
 rules. In rule(Eq) we are able to
hange the type of an expression. Notethat the side
ondition C � t1 = t2 holds i� (1) C doesnot have a uni�er, or (2) for any uni�er � of C we have2

(Eq) C;� `G e : tC � t = t0C;� `G e : t0 (App) C;� `G e2 : t2C;� `G e1 : t2 ! tC;� `G e1 e2 : t (Abs) C;�:x : t1 `G e : t2C;� `G �x:e : t1 ! t2(Var-x) (x : 8�a:t) 2 �C;� `G x : [�t=�a℄t (Case) C;� `G e : t1 C;� `G pi ! ei : t1 ! t2 for i 2 IC;� `G
ase e of [pi ! ei℄i2I : t2(K) K : 8�a;�b:D) t! T �aC;� `G e : [�t=�a; �t0=�b℄tC � [�t=�a; �t0=�b℄DC;� `G K e : T �t (Pat) p : t1 `G 8�b:(D �p)�b \ fv(C;�; t2) = ;C ^D;� [�p `G e : t2C;� `G p! e : t1 ! t2 (P-Var) x : t `G (True fx : tg)(P-Pair) p1 : t1 `G 8 �b1:(D1 �p1)p2 : t2 `G 8 �b2:(D2 �p2)(p1; p2) : (t1; t2) `G 8 �b1; �b2:(D1 ^D2 �p1 [�p1) (P-K) K : 8�a;�b:D) t! T �a�b \ �a = ; p : [�t=�a℄t `G 8�b0:(D0 �p)K p : T �t `G 8�b0;�b:(D0 ^ [�t=�a℄D �p)Figure 1: GRDT Typing Rulesthat �(t1) = �(t2) holds. In rule (Pat) we make use of anauxiliary judgment p : t ` 8�b:(D �p) whi
h establishesa relation among pattern p of type t and the binding �pof variables in p. Variables �b refer to all \existential" vari-ables. Logi
ally, these variables must be
onsidered as uni-versally quanti�ed. Hen
e, we write 8�b. The side
ondition�b \ fv(C;�; t2) = ; prevents existential variables from es-
aping. In rule (P-Pair), we assume that there are no name
lashes between variables b1 and b2. Constraint D arisesfrom
onstru
tor uses in p. The other rules are standard.Let's
onsider the �rst
lause of f in Example 1 again. A
-
ording to rule (Pat), the pattern I x provides the additionaltype assumption a = Int whi
h is used in typing of the bodyx+1. Note that be
ause of this additional assumption, rule(Eq) is able to turn the type of x from a to Int. Thus, theexpression x+1 is well typed. Similarly, rule (Eq) also turnsthe type of x+1 to a. Hen
e, the annotation given to f is
orre
t. Rule (Eq) has some other surprising
onsequen
es.Example 3 Consider the following variation of Example 1data Erk a = (a=Int) => I ag :: Erk Bool -> bg (I x) = x + 'a'We make use of Bool = Int whi
h is equivalent to False totype the body of the
lause. Hen
e, we
an derive anything.Hen
e, g has type Erk Bool ! b for any b. Note that weonly temporarily make use of False. The
onstraint in the�nal judgment is satis�able. 2As already observed by Cheney and Hinze [4℄ su
h meaning-less programs
an always be repla
ed by \unde�ned". Notethat we never ever
onstru
t a value of type Erk Bool.Hen
e, w.l.o.g. we slightly restri
t the set of typable pro-grams and repla
e logi
al by
onstru
tive entailment. Ef-fe
tively, we rule out GRDT programs where False o

urs

in (intermediate) typing judgments. The de�nition of
on-stru
tive entailment among type equality is as follows:t = t0 2 CC `=
 t = t0 C `=
 t1 = t2 C `=
 t2 = t3C `=
 t1 = t3C `=
 t1 = t2C `=
 t3 = t4C `=
 t1 ! t3 = t2 ! t4 C `=
 ti = t0ifor i = 1; :::; nC `=
 T t1:::tn = T t01:::t0nWe obtain the
onstru
tive GRDT system `G
 by repla
ing(Eq) with the following rule.(Eq
) C;� `G
 e : t C `=
 t = t0C;� `G
 e : t0Note that Example 3 is not typable anymore in the
on-stru
tive system.
4. TRANSLATING GRDT TO TCETThe main result of this se
tion is that GRDT
an be en-
oded by type
lasses with existential types (TCET). Thiswill form an important intermediate step in our translationto ET. For this purpose, we introdu
e a type
lass Ct a b to
onvert a term of type a into a term of type b. In essen
e, wemodel dire
ted equality. The following instan
e de
larationsimplement this idea.
lass Ct a b where
ast :: a->binstan
e Ct a a where
ast x = x -- (Id)instan
e (Ct b1 a1, Ct a2 b2) => Ct (a1->a2) (b1->b2)where
ast f x =
ast (f (
ast x)) -- (Arrow)instan
e (Ct a1 a2, Ct a2 a3) => Ct a1 a3where
ast a1 =
ast (
ast a1) -- (Trans)Operationally, the
onversion fun
tions performs the iden-tity operation for all monomorphi
 instan
es derivable w.r.t. theabove rules.3

We translate GRDT programs to TCET by repla
ing ea
hequation t1 = t2 in a data type de�nition by Ct t1 t2 andCt t2 t1 Additionally, we apply
ast to all sub-expressions.Example 4 Here is the translation of Example 1.data Erk_H a = (Ct a Int, Ct Int a) => I_H a| forall b.(Ct a [b℄, Ct [b℄ a) => L_H af_H :: Erk_H a -> a f_H (I_H x) =
ast ((
ast ((
ast (+)) (
ast x))) (
ast 1))f_H (L_H x) =
ast ((
ast tail) (
ast x))When typing the se
ond
lause we temporarily make use ofCt a [b℄ and Ct [b℄ a. Thus,
ast x
an be given type [b℄.We make use of instan
e (Id) to show that
ast tail hastype [b℄ ! [b℄. Hen
e, (
ast tail) (
ast x) has type [b℄.Hen
e,
ast ((
ast tail) (
ast x))
an be given type a.A similar reasoning applies to the �rst
lause where we makeuse of instan
e (Arrow). Hen
e, fun
tion f H is type
orre
t.2The
onne
tion between GRDT and TCET be
omes obviouswhen
onsidering their underlying formal systems. A formaldes
ription of TCET
overing the single-parameter
ase isgiven by L�aufer [13℄. In our own work [23℄, we re
entlyformalized the general
ase in
luding multi-parameter type
lasses whi
h we will make use of in the following.Brie
y, in the TCET system we �nd now type (multi-paramter)
lass
onstraints TC t1:::tn instead of equality
onstraintst1 = t2. For simpli
ity, we assume that instan
e de
lara-tions are prepro
essed and the relations they des
ribe aretranslated to logi
 formulae. We
ommonly denote theselogi
 formulae by Pp and refer to Pp as the program theory.E.g., the instan
e de
larations from above
an be des
ribedby the following �rst-order formulae.8a:(Ct a a$ True)8a1; a2; b1; b2:(Ct (a1 ! a2) (b1 ! b2)$ Ct b1 a1 ^ Ct a2 b2)8a1; a3:(Ct a1 a3 $ 9a2:(Ct a1 a2 ^ Ct a2 a3)where $ denotes Boolean equivalen
e. We refer the inter-ested reader to [24℄ for more details on the translation ofinstan
es to logi
 formulae.For ea
h
lass de
laration
lass TC a1...an where m::twe assume a new primitive m : 8�a:TC �a) t. For simpli
-ity, we restri
t ourselves to monomorphi
 methods. Thatis, we require that fv(t) � �a. Note that the restri
tion tomonomorphi
 methods is suÆ
ient for the purpose of trans-lating GRDT to TCET.The typing rules for TCET are almost the same as those forGRDT in Figure 1. We adopt rules (App), (Abs), (Var-x),(Case), (Pat), (P-Var), (P-Pair) and (P-K) from Figure 1.However, we drop rule (Eq). Furthermore, we adjust rule(K) and introdu
e a new rule (M) to take
are of
lass meth-ods.(K) K : 8�a;�b:D) t! T �aC;� `T e : [�t=�a℄t Pp j= C � [�t=�a; �t0=�b℄DC;� `T K e : T �t(M) m : 8�a:TC �a) t fv(t) � �a Pp j= C � TC �tC;� `T m : [�t=�a℄t

Note that entailment is now de�ned w.r.t. the program the-ory. The side
ondition Pp j= C � [�t=�a; �t0=�b℄D denotes thatany model satisfying Pp and C also satis�es [�t=�a; �t0=�b℄D.To distinguish the two systems we write C;� `T e : t todenote that expression e has type t under
onstraint C andenvironment � in the TCET system. In
ase of True;� `Te : t we sometimes write � `T e : t for short.We are in the position to de�ne the formal translation fromGRDT to TCET. In order to model the
onstru
tive en-tailment relation `=
 among equalities we need to imposesome
onditions on the program theory.De�nition 1 (Full and Faithful) We say that the programtheory Pp is full and faithful w.r.t.
onstru
tive equality i�(1) for ea
h n-ary type
onstru
tor T there is some appro-priate instan
e su
h thatPp j= (Ct (T a1:::an) (T b1:::bn) ^ Ct (T b1:::bn) (T a1:::an)) �(Ct a1 b1 ^ Ct b1 a1 ^ :::Ct an bn ^ Ct bn an)and (2) all monomorphi

ast instan
es are equivalent to theidentity. Equality among expressions is de�ned in terms ofa standard denotational semanti
s, e.g.,
onsider [15℄.To turn GRDT typable expressions into TCET typable ex-pressions, we perform a synta
ti
 transformation by apply-ing the
ast fun
tion to ea
h (sub-)expression. We writee[e0℄ to denote a o

urren
e of e0 in e.De�nition 2 (Fully Casted) Let e be an GRDT expres-sion. We
onstru
t a fully
asted expression e0 out of e byapplying
ast on every subexpression of e. A single trans-formation step is de�ned as e[e1℄ ; e[
ast e1℄ where e1 issynta
ti
ally di�erent from
ast e2 for some expression e2.The transformation of GRDT
onstru
tors is simple. Ea
hGRDT
onstru
torK : 8�a;�b:(t1 = t01; :::; tn = t0n)) t! T �aimplies a TCET
onstru
torK0 : 8�a;�b:(Ct t1 t01; Ct t01 t1; :::; Ct tn t0n; Ct t0n tn)) t! T �aWe
an state the following formal
onne
tion between GRDTand TCET.Theorem 1 (GRDT to TCET) Let e be a GRDT expres-sion and e0 be its fully
asted version. For ea
h GRDT
on-stru
tor K we introdu
e its TCET equivalent K0. Let Pp afull and faithful program theory representing all GRDT type
onstru
tors mentioned in e. Then, we have that True;� `G
e : t i� True;� `T e0 : t.A proof
an be found in Appendix B.1.As already pointed out the restri
tion to the `G
 system isnot onerous. Note that in order to dire
tly translate Ex-ample 3 the program theory would need to be strength-ened by in
luding additional \improvement" rules su
h asPp j= Ct Bool Int � False, Pp j= Ct Int Bool � False et
.The above result is
onstru
tive in the sense that we
antype
he
k the resulting TCET program if the entire GRDT4

typing derivation (in
luding C `=
 t1 = t2 derivations) isavailable. We
an also give a meaning to translated TCETprogram based on the s
heme presented in [24℄. However,GHC fails to a

ept the TCET program be
ause instan
ede
larations are potentially \non-terminating". 1 E.g.,
on-sider instan
e (Trans) from above. When performing
on-text redu
tion 2 we need to guess the intermediate type whenapplying instan
e (Trans). Hen
e,
ontext-redu
tion may ormay not terminate. Hen
e, the
he
k whether C � Ct t1 t2holds where C is a set of Ct assumptions may not terminate.On the other hand, C0 � t1 = t2 is de
idable assuming thatC0 is derived from C by turning ea
h Ct t t0 into an equa-tion t = t0. We
on
lude that we further need to re�neour transformation method for GRDT. The translation toTCET represents an important intermediate step to a
hievea translation to ET whi
h is �nally a

epted by GHC.
5. TRANSLATING GRDT TO ETThe result from the previous se
tion allows us to assumethat GRDT programs have been translated to TCET byfully
asting expressions and transforming GRDT
onstru
-tors into TCET
onstru
tors. Hen
e, it is suÆ
ient to
on-sider the translation from TCET to ET. We establish somesuÆ
ient
onditions under whi
h we a
hieve a type-dire
tedtranslation translation s
heme from TCET to ET based ona proof system to
onstru
t terms
onne
ted to type
lass
onstraints Ct t t0.We start o� by des
ribing our proof system. We assume that
onstraints su
h as f : Ct a b
arry now a proof term f rep-resenting \eviden
e" for Ct a b. We silently drop f in
aseproof terms do not matter. We introdu
e judgments of theform f : Ct a b$ F to denote that f is the proof term
or-responding to Ct a b under the assumption F where F refersto a (possibly existentially quanti�ed)
onjun
tion of type
lass
onstraints. The rules des
ribing the valid judgmentsare in Figure 2. Note that we write the a
tual de�nition off as part of the premise. Rules (Id), (Var) and (Trans) arestraightforward. Rules (Arrow) and (Pair) deal with fun
-tion and pair types. We assume that the proof rules will beextended a

ordingly for user-de�ned types. Rule (Æ) allowsfor the stru
tural
omposition of proof terms. Rules (8E)and (9E) deal with universal and existential quanti�ers. Inessen
e, we make the
onstru
tion rules represented by Ctinstan
e de
larations expli
it.Example 5 We give the derivation tree for f : Ct a (Int; Bool)$ g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool in Figure 2.For
onvenien
e, we
ombine rule (8E) with rules (Id), (Var),(Arrow). We
on
lude thatf x = let g4 (x,y) = (g2 x,g3 y)in g4 (g1 x) 2A simple observation of our proof rules shows that the proofsystem is sound w.r.t. the logi
al reading of instan
es de
la-rations.1Indeed, GHC will only a

ept instan
e (Trans) on
e weturn on the \unde
idable instan
es" option.2This is the pro
ess of resolving type
lasses w.r.t. a givenset of
lass and instan
e de
larations.

Lemma 1 (Soundness) Let Pp be the program theory. LetC = ff1 : Ct a1 b1; :::; fn : Ct an bng su
h f : Ct a b $ Cis valid. Then, Pp j= C � Ct a b.We
an also state that proof terms are well-typed.De�nition 3 Let C = ff1 : Ct a1 b1; :::; fn : Ct an bng.We
onstru
t an environment � out of C, written as C ; �,by mapping ea
h g : Ct a b 2 C to g : a! b 2 �.Lemma 2 (Well-Typed) Let C = ff1 : Ct a1 b1; :::; fn :Ct an bng and � su
h that C ; � and f : Ct a b $ C isvalid. Then � ` f : a! b.Proofs
an be found in Appendix B.2. Note that the proofterm f is equivalent to the identity assuming f1,...,fn areequivalent to the identity as well.As presented, our proof term
onstru
tion rules in Figure 2are still non-terminating (see rule (Trans)). In the up
omingSe
tion 6, we give a de
idable pro
edure to
ompute f :Ct a b$ C given Ct a b and C.We are in the position to systemati
ally translate TCET toET. Ea
h TCET
onstru
tor K : � is turned into a ET
on-stru
tor K0 : �0, written (K : �); (K0 : �0). We have that(K : 8�a;�b:D) t! T �a); (K0 : 8�a;�b:t! E t1 t01 ! ::: !E tn t0n ! T �a) whereD = fCt t1 t01; Ct t01 t1; :::; Ct tn t0n; Ct t0n tng.Silently, we assume a �xed order among Ct
onstraints.Note that the type
onstru
tor E is de�ned in Example 2.For the translation of expressions we introdu
e judgmentsof the form C;� `T e : t ; e0 where C holds Ct as-sumptions, e is a TCET expression and e0 is a ET expres-sion. The translation rules
an be found in Figure 3. Ourmain tasks are to resolve
ast fun
tions (see rule (Redu
e))based on our proof system and to expli
itly insert proofterms in
onstru
tors (see rule (P-K)). In rule (K), wede�ne Pp j= C � (g; h) : [�t=�a℄D i� gi : Ct ti t0i $ Cand hi : Ct t0i ti $ C for i = 1; ::; n where [�t=�a℄D =fCt t1 t01; Ct t01 t1; :::; Ct tn t0n; Ct t0n tng. Note that Pp j=C � (g; h) : [�t=�a℄D implies that Pp j= C � [�t=�a℄D (seeLemma 1). As will see the other dire
tion (whi
h is
ru
ialfor
ompleteness) does not hold ne
essarily.We
an state soundness of our translation s
heme given thatthe TCET program is typable. Note that the ET system isa spe
ial instan
e of TCET. We write � `E e : t to denotea judgment in the ET system.Theorem 2 (TCET to ET Soundness) Let True;� `Te : t and True;� `T e : t; e0. Then � `E e0 : t.We also �nd that e and e0 are equivalent assuming the pro-gram theory and proof system is full and faithful.In
ombination with Theorem 1 we obtain a systemati
translation from GRDT to ET. We do rely on full type in-formation for the GRDT program su
h that our proof term
onstru
tion method is able to insert the appropriate evi-den
e values.5

Proof Term Constru
tion Rules:(Id) 8a:�x:x : Ct a a$ True (Var) 8a; b:f : Ct a b$ f : Ct a b(Trans) f = �x:f2 (f1 x)8a1; a3:f : Ct a1 a3 $ 9a2:f1 : Ct a1 a2; f2 : Ct a2 a3(Arrow) f = �g:�x:f2 (g (f1 x))8a1; a2; b1; b2:f : Ct (a1 ! a2) (b1 ! b2)$ f1 : Ct b1 a1; f2 : Ct a2 b2(Pair) f = �(x; y):(f1 x; f2 y)C = ff1 : Ct a1 b1; f2 : Ct a2 b2g8a1; a2; b1; b2:f : Ct (a1; a2) (b1; b2)$ C(Æ) f : Ct a b$ f1 :
1; :::; fn :
n fi :
i $ Fi F j= Fi for i = 1; :::; nf : Ct a b$ F(8E) 8�a:f : Ct t1 t2 $ F � = [�t=�a℄f : Ct �(t1) �(t2)$ �(F) (9E) f :
$ 9a:Ff :
$ [t=a℄FExample: (Æ) (Trans) f = �x:g4 (g1 x)f : Ct a (Int;Bool)$ g1 : Ct a (b;
); g4 : Ct (b;
) (Int; Bool)(Var) g1 : Ct a (b;
)$g1 : Ct a (b;
) (Pair) g4(x; y) = (g2 x; g3 y)g4 : Ct (b;
) (Int; Bool)$g2 : Ct b Int; g3 : Ct
 Boolf : Ct a (Int; Bool)$ g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 BoolFigure 2: Proof Term Constru
tion Rules and ExampleNote that we do not obtain
ompleteness in general. Theproblem is that proof terms are not \de
omposable" in gen-eral. This has already been observed by Chen, Zhu andXi [2℄.Example 6 Considerdata Foo a = Kinstan
e Ct a b => Ct (Foo a) (Foo b) where
ast K = KWe have that Pp j= g : Ct (Foo a) (Foo b) � h : Ct a bbut h : Ct a b $ g : Ct (Foo a) (Foo b) does not exist.Hen
e, our translation s
heme gets possibly stu
k in rules(K) and (Redu
e). Note that the instan
e de
laration im-plies that Ct (Foo a) (Foo b) i� Ct a b. The instan
e
ontextseems somewhat redundant but ne
essary to ensure that theprogram theory models fully and faithfully the entailmentrelation `=
 . Clearly, we
an build g on type Foo a -> Foob given h on type a->b whereas for the other dire
tion wewould need to de
ompose proof terms whi
h is not possiblehere. 2The above is not surprising. Similar situations arise for sim-ple type
lass programs. E.g., we
annot de
ompose Eq [a℄into Eq a for any a. All what we
an do is to identify somesuÆ
ient
onditions whi
h allow us to extend the rules inFigure 2 faithfully.

De�nition 4 (De
omposable Types) Let T be a n-arytype
onstru
tor. We say that T is de
omposable at po-sition i where i 2 f1; :::; ng i� a proof term
onstru
tionrule fi : Ct ai bi $ g : Ct (T a1:::an) (T b1:::bn); h :Ct (T b1:::bn) (T a1:::an) exists su
h that (1) fi is well-typedunder fg : T a1:::an ! T b1:::bn; h : T b1:::bn ! T a1:::angand (2) fi is equivalent to the identity if g and h are equiv-alent to the identity.We say that T is de
omposable i� T is de
omposable at allpositions.We �nd that pairs are de
omposable.Example 7 We make use of ? : 8a:a. Consider(Pair1#) g1 = �x:fst (f (x;?))g1 : Ct a1 b1 $ f : Ct (a1; a2) (b1; b2)(Pair2#) g2 = �x:snd (f (?; x))g2 : Ct a2 b2 $ f : Ct (a1; a2) (b1; b2) 2However, fun
tion types seem only to be de
omposable intheir
o-variant position under a non-stri
t semanti
s.6

(Abs) C;�:x : t1 `T e : t2 ; e0C;� `T �x:e : t1 ! t2 ; �x:e0 (App) C;� `T e2 : t2 ; e02C;� `T e1 : t2 ! t; e01C;� `T e1 e2 : t; e02 e01(Var-x) (x : 8�a:t) 2 �C;� `T x : [�t=�a℄t; x (Redu
e) D � C f : Ct t1 t2 $ DC;� `T
ast : t1 ! t2 ; f(Case) C;� `T e : t1 ; e0C;� `T pi ! ei : t1 ! t2 ; p0i ! e0i for i 2 IC;� `T
ase e of [pi ! ei℄i2I : t2 ;
ase e0 of [p0i ! e0i℄i2I(Pat) p : t1 ` 8�b:(D �p p0) �b \ fv(C;�; t2) = ;C ^D;� [�p `T e : t2 ; e0C;� `T p! e : t1 ! t2 ; p0 ! e0(K) (K : 8�a;�b:Ct t1 t01; Ct t01 t1:::; Ct tn t0n; Ct t0n tn) t! T �a);(K0 : 8�a;�b:t! E t1 t01 ! :::! E tn t0n ! T �a)C;� `T e : [�t=�a℄t; e0Pp j= C � (g; h) : [�t=�a℄(Ct t1 t01; Ct t01 t1:::; Ct tn t0n; Ct t0n tn)C;� `T Ke : T �t; K0 e0 E (g1; h1):::E (gn; hn)(P-Var) x : t ` (True fx : tg x)(P-Pair) p1 : t1 ` 8 �b1:(D1 �p1 p01) p2 : t2 ` 8 �b2:(D2 �p2 p02)(p1; p2) : (t1; t2) ` 8 �b1; �b2:(D1 ^D2 �p1 [�p1 (p01; p02))(P-K) (K : 8�a;�b:Ct t1 t01; Ct t01 t1:::; Ct tn t0n; Ct t0n tn) t! T �a);(K0 : 8�a;�b:t! E t1 t01 ! :::E tn t0n ! T �a)�b \ �a = ; p : [�t=�a℄t ` 8�b0:(D0 �p p0) g1,h1,...,gn,hn freshD00 = fD0; g1 : Ct t1 t01; h1 : Ct t01 t1:::; gn : Ct tn t0n; hn : Ct t0n tngK p : T �t ` 8�b0;�b:(D00 �p K0 p0 E (g1; h1):::E (gn; hn))Figure 3: Type-Dire
ted TranslationExample 8(Arrow#) g = �x:(f (�y:x)) ?g : Ct a2 b2 $ f : Ct (a1 ! a2) (b1 ! b2)Note that g is the identity under a non-stri
t semanti
s.However, it seems that h : Ct b1 a1 $ f : Ct (a1 !a2) (b1 ! b2) does not exist. 2Example 9 The Either data type is de
omposable:data Either a b = Left a | Right bThe
onstru
tion rules are as follow:(EitherL#) g = �x:proje
tL (f (inje
tL x))g : Ct a1 b1 $ f : Ct (Either a1 a2)(Either b1 b2)

(EitherR#) g = �x:proje
tR (f (inje
tR x))g : Ct a2 b2 $ f : Ct (Either a1 a2)(Either b1 b2)whereinje
t_L x = Left xproje
t_L (left x) = xinje
t_R x = Right xproje
t_R (Right x) = xNote that the de
omposition
onditions (De�nition 4) aresatis�ed. Consider the (EitherL#)
ase. Expressions arewell-typed. Assume f is the identity. Then, f (inje
tL x)must yield L x. Hen
e, appli
ation of proje
tL is safe.Hen
e, g is the identity. A similar reasoning applies (EitherR#).2De
omposable types ensure that our proof term
onstru
tionsystem is not only sound but also
omplete.7

Lemma 3 (De
omposition) Let Pp be a full and faith-ful program theory, Ct t1 t2 a
onstraint and C = ff1 :Ct a1 b1; :::; fn : Ct an bng su
h that Pp j= C � Ct t1 t2 andall types appearing in
onstraints are de
omposable. Then,f : Ct t1 t2 $ C for some proof term f .The proof is straightforward and pro
eeds by indu
tion overPp j= C � Ct t1 t2.We are able to state
ompleteness of our translation fromTCET to ET given that the types appearing in assumption
onstraints are de
omposable. By assumption
onstraintswe refer to
onstraints D in rule (Pat).Theorem 3 (TCET to ET Completeness) Let True;�`T e : t and all types appearing in assumption
onstraints inintermediate derivations are de
omposable. Then True;� `Te : t; e0 for some e0.
6. DECIDABLE PROOF TERM CONSTRUC-

TION METHODWe introdu
e a method to de
ide f : Ct t1 t2 $ C (seeFigure 2). That is, given C and Ct t1 t2
onstru
t a deriva-tion for some f . The main
hallenge is to �nd a de
idablerepresentation for rule (Trans). In the above statement, C
ontains the set of Ct assumptions whereas Ct t1 t2 refers toa use site (see rule (Redu
e) in Figure 3). In order to distin-guish between Ct uses and assumptions we write CtM t1 t2to refer to a use of Ct. Our task is to
onstru
t CtM usesout of a given set of Ct assumptions. Note that Ct
on-straints
an be viewed as dire
ted edges. Hen
e, the su
-
essful
onstru
tion of a CtM use is equivalent to �nding apath in the graph of Ct edges. However, we do not rely ourmethod on graph algorithms. We would like our methodto work even under some additional side
onditions su
h asCtM t1 t2; CtM t3 t4; t2 = t4 ! a. That is,
onstru
tCtM t1 t2 and CtM t3 t4 out of some assumption set C un-der the side
ondition that t2 = t4 ! a for some a. There-fore, we view proof term
onstru
tion as
onstraint solvingwhere we rewrite
onstraint stores until all CtMs have beenresolved.The formal development is as follows. We assume that CtMuses are atta
hed to \lo
ations". The idea is that i : CtM a brefers to some program text
asti where
ast is used attype a! b and i refers to the lo
ation (e.g., position in theabstra
t syntax tree). As before, we write f : Ct a b to referto the proof term f asso
iated to a Ct a b assumption.We employ Constraint Handling Rules (CHRs) [5℄ to
on-stru
t CtM uses out of Ct assumptions. CHRs are a rule-based language for spe
ifying transformations among
on-straints. A CHR simpli�
ation rule (R) �
() �d states thatif we �nd a
onstraint mat
hing the lhs of a rule we repla
ethis
onstraint by the rhs. We assume that
is refer to type
lass
onstraints and dis refer to either type
lass
onstraintsor equations. Formally, we write C �R C � �
0; �(�d) where�
 2 C su
h that �(�
) = �
0 for some substitution �. Silently,we assume the variables in CHRs are renamed before ruleappli
ation.A CHR propagation rule (R) �
() �d states that if we �nd a
onstraint mat
hing the lhs of a rule we add the rhs to thestore. Formally, we write C �R C; �(�d) where �
 2 C su
h

that �(�
) = �
0. CHRs also have a logi
al reading whi
h isnot relevant here.The CHR-based representation of the proof term
onstru
-tion rules
an be found in Figure 4. Note that ea
h CHRsimpli�
ation rule also introdu
es a transformation rule amongexpressions written e; e0. We write C �� D0 to denote ann number of appli
ation of CHRs starting with the initialstore C yielding store D0. We write e ;� e0 to denote aredu
tion sequen
e among expressions.Proof rules (Arrow) and (Pair) from Figure 2
an be straight-forwardly en
oded in terms of CHRs. Note that rule (Trans)from Figure 2 has been split into rules (Trans1) and (Id).Our idea is to in
rementally build CtM uses out of Ct as-sumptions. A naive CHR-translation of transitivity su
h as(Trans) i : CtM a0 b0 () j : CtM a0 b; k : CtM b b0
astmi ;
astmk Æ
astmjleads to problems be
ause we need to guess b. In CHRterminology, the above CHR is not range-restri
ted. We saya CHR is range-restri
ted i� grounding the lhs grounds therhs. Note that there is no rule (Var). The same e�e
t
anbe a
hieved by rule (Trans1) in
ombination with rule (Id).Example 10 Here is a sample derivation. We underline
onstraints involved in rule appli
ations and silently performequivalen
e transformations, repla
ing equals by equals. Forbrevity, we leave out
astm transformations.g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool;i : CtM a (Int; Bool)�Trans1 g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool;j : CtM (b;
) (Int; Bool)�Pair g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool;k : CtM b Int; l : CtM
 Bool�Trans1 g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool;m : CtM Int Int; l : CtM
 Bool�Trans1 g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool;m : CtM Int Int; n : CtM Bool Bool��Id g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 BoolIn the above derivation, �� represents n step derivation.2There is also another set of rules whi
h ex
lusively manip-ulates Ct assumptions. In rule (Trans#) we make use of aCHR propagation rule to build the
losure of all availableCt assumptions. Note that we silently avoid to apply propa-gation rules twi
e on the same
onstraints (to avoid in�nitepropagation). Note that for ea
h \de
omposition" rule weintrodu
e a propagation rule. The CHR representation ofthe rules from Example 7 and 8
an be found in Figure 4.It should be
lear now that simpli�
ation rules in
rementallyresolve CtM uses whereas propagation rules build the
lo-sure of all available Ct assumptions. The following examplestresses the importan
e of propagation rules.8

CtM Simpli�
ation Rules:(Id) i : CtM a b () a = b
astmi ; �x:x(Trans1) g : Ct a b; i : CtM a0 b0 () g : Ct a b; a = a0; j : CtM b b0
astmi ;
astmj Æ g(Arrow) i : CtM (a1 ! a2) (b1 ! b2) () i1 : CtM b1 a1; i2 : CtM a2 b2
astmi ; �g:�x:
astmi2 (g (
astmi1 x))(Pair) i : CtM (a1; a2) (b1; b2) () i1 : CtM a1 b1; i2 : CtM a2 b2
astmi ; �(x; y):((
astmi1 x); (
astmi2 y))Ct Propagation Rules: (Trans#) g : Ct a b; h : Ct b
 =) h Æ g : Ct a
(Pair1#) f : Ct (a1; a2) (b1; b2) =) (�x:fst (f (x;?))) : Ct a1 b1(Pair2#) f : Ct (a1; a2) (b1; b2) =) (�x:snd (f (?; x))) : Ct a2 b2(Arrow#) f : Ct (a1 ! a2) (b1 ! b2) =) (�x:(f (�y:x)) ?) : Ct a2 b2Figure 4: CHR-based Proof Term Constru
tionExample 11 Considerg : Ct (b!
) a; h : Ct a (b! d); i : CtM
 d�Trans# g : Ct (b!
) a; h : Ct a (b! d);(h Æ g) : Ct (b!
) (b! d); i : CtM
 d�Arrow# g : Ct (b!
) a; h : Ct a (b! d);(h Æ g) : Ct (b!
) (b! d);(�x:((h Æ g) (�y:x)) ?) : Ct
 d; i : CtM
 d�� g : Ct (b!
) a; h : Ct a (b! d);(h Æ g) : Ct (b!
) (b! d);(�x:((h Æ g) (�y:x)) ?) : Ct
 dNote that we
an only apply (Arrow#) after we have applied(Trans#). 2Another important observation is that CHRs are \indeter-ministi
".Example 12 Re
all Example 10. We �nd the followingalternative derivation.g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool;i : CtM a (Int; Bool)�� g1 : Ct a (b;
); g2 : Ct b Int; g3 : Ct
 Bool;b = Int;
 = BoolNote that the �nal stores di�er. Indeed, CHRs are non-
on
uent. 2We say a set of CHRs is
on
uent i� any sequen
e of deriva-tion steps on the same initial store leads to the same (log-i
ally equivalent) �nal store. In Figure 4 rules (Id) and(Trans1) overlap and therefore we might dis
over derivationswith same initial store but di�erent �nal stores.However, we rule out derivations whi
h yield \bad" �nalstores. Let C = ff1 : Ct a1 b1; :::; fn : Ct an bng andi : CtM a b; C �� D0. We say that the CHR derivationis good i� C and D0 are logi
ally equivalent, i.e., j= C $9fv(D0)� fv(C):D0. That is, we rule out derivations yieldingstores with unresolved CtM uses, False and further instan-tiated Ct assumptions. Note that the derivation in Exam-ple 12 is bad be
ause the Ct assumptions have been furtherinstantiated in the �nal store.

We
an state that our CHR-based method in Figure 4 issound w.r.t. the system des
ribed in Figure 2. That is, ea
hgood derivation implies a valid proof. We
an also guaranteeto �nd a good derivation if a proof exists. Furthermore, anygood derivation yields equivalent expressions.Lemma 4 (Sound CHR Constru
tion) Let C = ff1 :Ct a1 b1; :::; fn : Ct an bng and i : CtM a b; C �� D0 and
astmi ;� e su
h that the CHR derivation is good. Then,f : Ct a b$ C su
h that f and e are equivalent.Lemma 5 (Complete CHR Constru
tion) Let C = ff1 :Ct a1 b1; :::; fn : Ct an bng su
h that f : Ct a b$ C. Then,i : CtM a b; C �� C su
h that
astmi ;� e and f and eare equivalent.Lemma 6 (Sound Term Constru
tion) Let C = ff1 :Ct a1 b1; :::; fn : Ct an bng, i : CtM a b; C �� D1 and
astmi ;� e1 and i : CtM a b; C �� D2 and
astmi ;� e2su
h that both CHR derivations are good. Then, e1 and e2are equivalent.Proofs
an be found in Appendix B.5Note that in order to �nd a good derivation we might needto ba
k tra
k. See Examples 12 and 10. To obtain a de-
idable proof method we yet need to rule out
ertain CHRderivations. E.g.,
onsiderg : Ct a b; h : Ct b a; i : CtM a b�Trans1 g : Ct a b; h : Ct b a; j : CtM b b�Trans1 g : Ct a b; h : Ct b a; k : CtM a b:::Fortunately, we are able to rule out su
h non-terminatingderivations by imposing stronger restri
tions on good deriva-tions. The
ru
ial point is that we disallow \
y
li
" Ct as-sumptions of the form g : Ct a (a; b). Su
h assumptionsmust result from invalid GRDT de�nitions whi
h we gener-ally rule out.Lemma 7 We
an impose a
omplete termination
ondi-tion on good derivations.9

Details are in Appendix B.6.We
on
lude that we obtain a de
idable CHR-based proofterm
onstru
tion method. Our method is exponential inthe worst-
ase. However, we believe that su
h
ases willrarely appear in pra
ti
e. An advantage of our method isthat we
an perform proof term
onstru
tion under side
on-ditions. This feature allows us to integrate our method witha general solving method for
onstru
ting typing derivations.Details are dis
ussed in the next se
tion.
7. COMBING PROOF TERM CONSTRUC-

TION AND BUILDING TYPING DERIVA-
TIONSOur
urrent translation method assumes full type annota-tions for the GRDT program. Type inferen
e for GRDT isa
hallenging problem. However, it is mostly suÆ
ient toprovide annotations for fun
tion de�nitions only and omittype annotations for sub-expressions. In [23℄, we introdu
eda general type inferen
e method for type
lasses with ex-istential types. The idea is to generate \impli
ation"
on-straints out of the program text. Solving of these
onstraintsallows us to
onstru
t a typing derivation. The solving pro-
edure for impli
ation
onstraints is phrased as an extensionto CHR solving. Hen
e, we
an easily
ombine the inferen
emethod introdu
ed in [23℄ with our CHR-based proof term
onstru
tion method. Due to spa
e limitations, we explainthe approa
h by example only.Consider the following TCET program from Example 4. Forsimpli
ity, we only
onsider one
lause.data Erk H a = forall b.(Ct a [b℄, Ct [b℄ a) => L H af H :: Erk H a -> af H (L H x) =
ast ((
ast tail) (
ast x))In a �rst step, we translate data types and patterns a

ord-ing to Figure 3 and repla
e all o

urren
es of
ast in theprogram text by
astm where ea
h
astm o

urren
es areatta
hed to distin
t lo
ations.data Erk H' a = forall b.L H' a (E a [b℄)f H :: Erk H' a -> af H (L H' x (E (g,h))) =
astm1 ((
astm2 tail) (
astm3 x))A

ording to [23℄, we generate the following \impli
ation"
onstraint out of the above program text.t = Erk a! a; a = Sk1; b = Sk2 a;(g : Ct a [b℄; h : Ct [b℄ a � (1 : CtM a1 b1; b1 = a;2 : CtM a2 b2; a2 = [a02℄! [a02℄;3 : CtM a3 b3; a3 = a;b2 = b3 ! a1)) (1)Annotation f H::Erk H a->a implies f H::8a:Erk H a! a.Hen
e, we substitute a by the skolem
onstru
tor Sk1. Simi-larly, we substitute b by Sk2 t. Ea
h
astmi expression givesrise to i : CtM a b where
astmi :: a ! b. To ea
h Ct as-sumption we atta
h proof terms (see rule (P-K)). We makeuse of the TCET representation of GRDT but
onne
t the
onstraints to ET proof terms. The interesting bit is the

use of Boolean impli
ation � to state that under the Ct as-sumptions we
an derive the CtM uses.The
onstraint in (1) represents all possible typing deriva-tions. We simply solve this
onstraint by applying CHRsde�ned in Figure 4 until all CtM uses have been resolved.Thus, all lo
ations in the fun
tion body referring to proofterms are de�ned in terms of proof terms atta
hed to Ctassumptions. In general, we solve C0; (D � C) by runningC0; D �� D0 and C0; D; C �� C0 and
he
k that D0 andC0 are logi
ally equivalent (modulo variables in the initialstore). We refer the interested reader to [23℄ for more details.For the above
onstraint (1) we pro
eed as follows. We �ndthat t = Erk a ! a; a = Sk1; b = Sk2 a; g : Ct a [b℄; h :Ct [b℄ a (2) is immediately �nal.Consider,t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; 1 : CtM a1 b1; b1 = a;2 : CtM a2 b2; a2 = [a02℄! [a02℄;3 : CtM a3 b3; a3 = a; b2 = b3 ! a1f H' (L H' x (E (g,h))) =
astm1 ((
astm2 tail) (
astm3 x))$ t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; b1 = a; a2 = [a02℄! [a02℄; a3 = a;b2 = b3 ! a1; 1 : CtM a1 a;2 : CtM ([a02℄! [a02℄) (b3 ! a1); 3 : CtM a b3; f H (L H x (E (g,h))) =
astm1 ((
astm2 tail) (
astm3 x))�Trans1 t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; b1 = a; a2 = [a02℄! [a02℄;a3 = a; b2 = b3 ! a1; 1 : CtM a1 a;2 : CtM ([a02℄! [a02℄) (b3 ! a1); 4 : CtM [b℄ b3; f H' (L H' x (E (g,h))) =let
astm3 =
astm4 Æ gin
astm1 ((
astm2 tail) (
astm3 x))�Trans1 t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; b1 = a; a2 = [a02℄! [a02℄;a3 = a; b2 = b3 ! a1; a1 = [b℄;5 : CtM a a; 2 : CtM ([a02℄! [a02℄) (b3 ! [b℄);4 : CtM [b℄ b3; f H' (L H' x (E (g,h))) =let
astm3 =
astm4 Æ g
astm1 =
astm5 Æ hin
astm1 ((
astm2 tail) (
astm3 x))�Id� t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; (3)b1 = a; a2 = [a02℄! [a02℄; a3 = a; b2 = b3 ! a1;a1 = [b℄; ([a02℄! [a02℄) = (b3 ! [b℄); [b℄ = b3; f H' (L H' x (E (g,h))) =let
astm3 =
astm4 Æ g
astm1 =
astm5 Æ h
astm2 x = x
astm4 x = x
astm5 x = xin
astm1 ((
astm2 tail) (
astm3 x))Note that we simultaneously transform
onstraints and pro-gram text. Constraints involved in rule appli
ations are un-derlined. Silently, we extend e0 ; e00 to e[e0℄; e[e00℄ wheree[�℄ denotes an expression with a hole. For
larity, we use letde�nitions instead of textually repla
ing expressions. Notethat �nal
onstraints (2) and (3) are logi
ally equivalent.10

Hen
e, the translation is su

essful. Note that the �nal pro-gram text for the se
ond derivation
an be simpli�ed to these
ond
lause in Example 2. We note that several otherderivations are possible. E.g.,
onsider the following wherewe apply rule (Id) instead of (Trans1).t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; 1 : CtM a1 b1; b1 = a;2 : CtM a2 b2; a2 = [a02℄! [a02℄;3 : CtM a3 b3; a3 = a; b2 = b3 ! a1$ t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; b1 = a; a2 = [a02℄! [a02℄; a3 = a;b2 = b3 ! a1; 1 : CtM a1 a;2 : CtM ([a02℄! [a02℄) (b3 ! a1); 3 : CtM a b3�Id t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; b1 = a; a2 = [a02℄! [a02℄;a3 = a; b2 = b3 ! a1; a = b3; 1 : CtM a1 a;2 : CtM ([a02℄! [a02℄) (a! a1)�Id t = Erk a! a; a = Sk1; b = Sk2 a; g : Ct a [b℄;h : Ct [b℄ a; b1 = a; a2 = [a02℄! [a02℄; a3 = a;b2 = b3 ! a1; a = b3; ([a02℄! [a02℄) = (a! a1)1 : CtM a1 a$ FalseNote that skolem variable Sk1 is uni�ed with [a02℄ whi
himmediately yields failure. That is, we obtain a \bad" �nalstore (see Appendix B.6 for details). However, there mightbe other derivations whi
h yield \good" �nal stores. Ea
hof them
orresponds to a valid solution and all of them areequivalent (see Lemma 6). The following is another possibletranslation of Example 2.f H' (L H' x (E (g,h))) =let
astm2 g x =
astm5 (g (
astm4 x))
astm4 = g
astm5 = h
astm1 x = x
astm3 x = xin
astm1 ((
astm2 tail) (
astm3 x))
8. RELATED WORKOur systemati
 translation method is inspired by the workby Baars and Swierstra [1℄, Chen, Zhu and Xi [2℄, Hinzeand Cheney [3℄. These works showed by example how to ex-press GRDT-style behavior by representing type equalitiesby Haskell terms and insert appropriate
onversion fun
-tions into the program text. We note that none of theseworks
onsiders a systemati
 translation s
heme.Note that in [1, 3, 16℄ equality is represented in terms of thefollowing de�nition.newtype EQ a b = EQ (forall f. f a->f b)The above en
odes Leibnitz' law whi
h states that if a andb are equivalent then we may substitute one for the other inany
ontext. By
onstru
tion this ensures that the only in-habitant of EQ a b is the identity (ex
luding non-terminatingfun
tions whi
h might break this property). Our represen-tation of equality makes it ne
essary to postulate that allvalues atta
hed to monomorphi
 instan
es of E t t repre-sent the identity to ensure preservation of the semanti
s ofprograms (see De�nition 1). On the other hand, the EQ rep-resentation fa
es problems when trying to manipulate proof

terms. E.g., there are situations where we need to \de
om-pose" a value of type EQ (a,b) (
,d) into a value of typeEQ a
 whi
h is impossible based on the above de�nition.Example 6 shows that our representation of type equalityshares the same problem. However, we believe that our rep-resentation is more likely to be de
omposable.Weiri
h [27℄ also
onsidered a type
lass en
oding based onsingle-parameter type
lasses. Our use of multi-parametertype
lasses in
ombination with extential types appears tobe novel and more natural to mimi
 GRDT-style behavior.Kiselyov [11℄ suggests an alternative type
lass en
oding ofGRDT. The gist of his idea is to turn ea
h (value) pattern
lause into an (type
lass) instan
e de
laration. We believethat in addition to the already \problemati
" instan
e de
-laration for transitivity su
h an en
oding s
heme may
reatefurther potentially non-terminating instan
es. We are notaware of any formal results whi
h mat
h the results statedin this paper.Pottier and Gauthier [17℄ give a type-preserving defun
tion-alization of polymorphi
 programs to System F extendedwith GRDT. Their formal results (proofs of Lemmas 4.1 and4.2 in [17℄) let us
onje
ture that resulting GRDT programs
an be translated to ET based on our translation method.Our proof term
onstru
tion method
an be seen as a re�nedversion of the type-dire
ted eviden
e-translation s
heme [7℄for Haskell. We
ould a
hieve a de
idable
onstru
tion fora seemingly non-terminating set of instan
es. There aresome
onne
tions to methods for �nding paths in graphs and\ask"
onstraints whi
h appear in the
ontext of
onstraint-logi
 programming [9℄. We yet need to work out the exa
tdetails.
9. CONCLUSIONThe primary goal of our work was to
on
isely study and re-late the
on
epts of guarded re
ursive data types (GRDT),existential types (ET) and type
lasses (TCET). We
oulda
hieve this goal by giving for the �rst time a systemati
translation method from GRDT to ET (Se
tion 5) based onan intermediate translation to TCET (Se
tion 4). For thetranslation method to be
omplete we require that typesappearing in assumption
onstraints must be de
omposable(De�nition 4). We also assume full GRDT type informa-tion but are able to
onstru
t ET expressions automati-
ally based on a novel CHR-based proof term
onstru
tionmethod (Se
tion 6). We
an even
ombine our methodwith an independently developed type inferen
e s
heme forGRDT (Se
tion 7). Hen
e, we obtain a fully automati
 toolto translate GRDT to ET where the �nal program is a
-
epted by GHC. In our experien
e, the de
omposition
on-dition whi
h is
ru
ial for translation is met by all GRDTexamples found in the literature. A
omprehensive list ofexamples
an be found under 3http://www.
omp.nus.edu.sg/~wangmeng/trans-grdtAn issue we yet need to investigate is how expensive proofterm manipulations are in pra
ti
e. Note that
onversionfun
tions represent the identity, however, we may have to3Examples are also part of the te
hni
al report version [25℄.11

repeatedly apply su
h fun
tions to elements of lists et
. A\smart"
ompiler may be able to avoid su
h redundant
om-putations (either stati
ally or dynami
ally). In this
ontext,we would like to mention that GRDT have been re
entlyadded to Haskell. Implementations are available in the lat-est release of GHC [6℄ and Chameleon [26℄ (experimentalversion of Haskell). In
ase of GHC, the Core ba
k-end hasbeen extended with GRDT as a primitive feature. Clearly,we expe
t \native" GRDT
ode to run faster than \sour
e-to-sour
e translated" GRDT
ode. However, the advantageof our work is that we
ould identify a large
lass of GRDTprograms whi
h
an be implemented by a sour
e-to-sour
etranslation. Thus, our work o�ers a light-weight approa
hto write GRDT-style programs based on some existing lan-guage features.Our proof term
onstru
tion method is of independent in-terest and my prove to be useful to advan
e the state of artin type-dire
ted translations for languages su
h as Haskell.This is another interesting avenue whi
h we plan to explorein the future.
AcknowledgementsWe thank Gregory Du
k, Simon Peyton-Jones and JeremyWazny for their
omments. In parti
ular, we would like tothank James Cheney and Oleg Kiselyov for fruitful dis
us-sions.
10. REFERENCES[1℄ A. I. Baars and S. D. Swierstra. Typing dynami
typing. In Pro
. of ICF'02, pages 157{166. ACMPress, 2002.[2℄ C. Chen, D. Zhu, and H. Xi. Implementing
utelimination: A
ase study of simulating dependenttypes in Haskell. In Pro
. of PADL'04, volume 3057 ofLNCS, pages 239{254. Springer-Verlag, 2004.[3℄ J. Cheney and R. Hinze. A lightweightimplementation of generi
s and dynami
s. In Pro
. ofHaskell Workshop'02, pages 90{104. ACM Press, 2002.[4℄ J. Cheney and R. Hinze. First-
lass phantom types.Te
hni
al Report CUCIS TR2003-1901, CornellUniversity, 2003.[5℄ T. Fr�uhwirth. Constraint handling rules. In ConstraintProgramming: Basi
s and Trends, LNCS.Springer-Verlag, 1995.[6℄ Glasgow haskell
ompiler home page.http://www.haskell.org/gh
/.[7℄ C. V. Hall, K. Hammond, S. Peyton Jones, andP. Wadler. Type
lasses in Haskell. In ESOP'94,volume 788 of LNCS, pages 241{256. Springer-Verlag,April 1994.[8℄ Haskell 98 language report.http://resear
h.mi
rosoft.
om/Users/simonpj/haskell98-revised/haskell98-report-html/.[9℄ Joxan Ja�ar and Mi
hael Maher. Constraint logi
programming: A survey. Journal of Logi
Programming, 19(20):503{581, 1994.[10℄ S. Peyton Jones, G. Washburn, and S. Weiri
h.Wobbly types: type inferen
e for generalised algebrai
data types, 2004. Submitted to POPL'05.

[11℄ O. Kiselyov. Typed lambda-expressions without gadts.http://www.haskell.org//pipermail/haskell-
afe/2005-January/008212.html, 2005. Haskell-Cafe MailingList.[12℄ J. Lassez, M. Maher, and K. Marriott. Uni�
ationrevisited. In Foundations of Dedu
tive Databases andLogi
 Programming. Morgan Kau�man, 1987.[13℄ K. L�aufer. Type
lasses with existential types. Journalof Fun
tional Programming, 6(3):485{517, 1996.[14℄ K. L�aufer and M. Odersky. An extension of ML with�rst-
lass abstra
t types. In ACM SIGPLANWorkshop on ML and its Appli
ations, pages 78{91,1992.[15℄ D. Ma
Queen, G. Plotkin, and R. Sethi. An idealmodel for re
ursive polymorphi
 types. Informationand Control, 71:95{130, 1986.[16℄ E. Pasali
. The Role of Type Equality inMeta-Programming. PhD thesis, Oregon Health &S
ien
e University, OGI S
hool of S
ien
e &Engineering, September 2004.[17℄ F. Pottier and N. Gauthier. Polymorphi
 typeddefun
tionalization. In Pro
. of POPL'04, pages89{98. ACM Press, January 2004.[18℄ Franois Pottier and Yann Rgis-Gianas. TowardseÆ
ient, typed LR parsers. Draft paper, September2004.[19℄ T. Sheard and E. Pasali
. Meta-programming withbuilt-in type equality. In Fourth InternationalWorkshop on Logi
al Frameworks andMeta-Languages, 2004.[20℄ Tim Sheard. Languages of the future. SIGPLAN Not.,39(10):116{119, 2004.[21℄ J.R. Shoen�eld. Mathemati
al Logi
. Addison-Wesley,1967.[22℄ V. Simonet and F. Pottier. Constraint-based typeinferen
e with guarded algebrai
 data types.Submitted to ACM Transa
tions on ProgrammingLanguages and Systems, June 2004.[23℄ P. J. Stu
key and M. Sulzmann. A unifying inferen
eframework for Hindley/Milner with extensions.http://www.
omp.nus.edu.sg/~ sulzmann, 2004.[24℄ P.J. Stu
key and M. Sulzmann. A theory ofoverloading. ACM Transa
tions on ProgrammingLanguages and Systems, 2004. To appear.[25℄ M. Sulzmann and M. Wang. A systemati
 translationof guarded re
ursive data types to existential types.Te
hni
al Report TR22/04, The National Universityof Singapore, 2004.[26℄ M. Sulzmann and J. Wazny. Chameleon.http://www.
omp.nus.edu.sg/~ sulzmann/
hameleon.[27℄ S. Weiri
h. Type-safe
ast: (fun
tional pearl). In Pro
.of ICFP'00, pages 58{67. ACM Press, 2000.[28℄ H. Xi, C. Chen, and G. Chen. Guarded re
ursivedatatype
onstru
tors. In Pro
. of POPL'03, pages224{235. ACM Press, 2003.12

APPENDIX
A. SEMANTICS OF EXPRESSIONSWe follow the ideal semanti
s of Ma
Queen, Plotkin andSethi [15℄. The meaning of a term is a value in the CPO V,where V
ontains all
ontinuous fun
tions from V to V andan error elementW, usually pronoun
ed \wrong". Depend-ing on the
on
rete type system used, V might
ontain otherelements as well. We assume that the values of additionaltype
onstru
tors are representable in the CPO V. Then Vis the least solution of the equationV = W? + V ! V:The meaning fun
tion on terms is as follows:[[x℄℄� = �(x)[[�u:e℄℄� = �v:[[e℄℄�[u := v℄[[e e0℄℄� = if [[e℄℄� 2 V ! V ^ [[e0℄℄� 6=Wthen ([[e℄℄�) ([[e0℄℄�)elseW[[letx = e in e0℄℄� = if [[e℄℄� 6=Wthen [[e0℄℄�[x := [[e℄℄�℄elseWNote that the above semanti
s is
all{by value.
B. PROOFS
B.1 Proof of Theorem 1 (GRDT to TCET)First, we introdu
e a auxilliary de�nition and lemma to es-tablish a
onne
tion between
onstru
tive type equality en-tailment and entailment among type
lasses.De�nition 5 Let C be a set of term equality
onstraintsand C0 be a set of type
lass
onstraints. We say that Cis equivalent to C0, written as C � C0, i� (8t t0:t = t0 2C i� (Ct t t0 2 C0 ^ Ct t0 t 2 C0)).We
all C0 the \Ct"equivalent of C; and C the \Eq" equivalent of C0.Lemma 8 Let Pp be a full and faithful type
lass theory. LetC be a set of equality
onstraints and C0 its \Ct" equivalent.We have C `=
 t1 = t2 i� Pp j= C0 � (Ct t1 t2; Ct t2 t1).Proof. The proof is done in two dire
tions. (Dire
tion)): We proof by indu
tion on derivations.Æ Case: t = t0 2 CC `=
 t = t0Be
ause we have t = t0 2 C, we know Ct t t0 2 C0 andCt t0 t 2 C0. Thus Pp j= C0 � (Ct t t0; Ct t0 t).Æ Case: C `=
 t1 = t2 C `=
 t2 = t3C `=
 t1 = t3By indu
tion, we havePp j= C0 � (Ct t1 t2; Ct t2 t1; Ct t2 t3; Ct t3 t2)

By the type
lass instan
e8a1; a3:(Ct a1 a3 $ 9a2:(Ct a1 a2 ^ Ct a2 a3))We
on
ludePp j= C0 � (Ct t1 t2; Ct t2 t1; Ct t2 t3; Ct t3 t2)� (Ct t1 t3; Ct t3 t1)Other
ases are similar.(Dire
tion ():Æ Case: Suppose the type
lass instan
e8a:(Ct a a$ True)is applied. Then we havePp j= True � Ct t tWe also have True `=
 t = tÆ Case: Suppose the type
lass instan
e8a1; a3:(Ct a1 a3 $ 9a2:(Ct a1 a2 ^ Ct a2 a3))is applied. Then we havePp j= 9t2:(Ct t1 t2 ^ Ct t2 t3) � Ct t1 t3Easily, we also obtaint1 = t2 ^ t2 = t3 `=
 t1 = t3Other
ases are similar.The next lemma follows immediately from the rule (M).Lemma 9 C;� `T
ast : t! t0 i� Pp j= C � Ct t t0We obtain Theorem 1 as a spe
ial instan
e from the follow-ing lemma.Lemma 10 Let e be a GRDT expression and e0 be its fully
asted version. Let Pp a full and faithful program theoryrepresenting all GRDT type
onstru
tors mentioned in e.Silently, we transform the GRDT
onstru
tors mentionedin e to TCET
onstru
tors. We have that C;� `G
 e : t i�C0;� `T e0 : t where C0 is the \Ct" equivalent of C.Proof. The proof is done in two dire
tions.(Dire
tion)):We proof by indu
tion on derivation.Æ Case (Eq): C;� `G
 e : t C `=
 t = t0C;� `G
 e : t0By the indu
tion hypothesis, we haveC0;� `T e0 : t (1)13

Also by Lemma 8 and C `=
 t = t0 we havePp j= C0 � (Ct t t0; Ct t0 t) (2)From (1) and (2), we
on
lude thatC0;� `T (
ast e0) : t0W.l.o.g. We
an assume e0 � (
ast e00). Thus we obtainC0;� `T ((
ast Æ
ast) e00) : t0We assume C0;� `T e00 : t00. In the above
ase, the �rst
astis of type t! t0 and the se
ond t00 ! t. Thus by Lemma 9,we know that Ct t t0 and Ct t00 t
an be derived from the
ontext. By the (Trans) type
lass instan
e, we
an deriveCt t00 t0. Then by Lemma 9, we know there exists a
ast oftype t00 ! t0. After repla
ing the
ast
omposition
astÆ
astin the above judgement by the new
ast, we obtainC0;� `T (
ast e00) : t0This is equivalent to C0;� `T e0 : t0Æ Case (App):C;� `G
 e1 : t2 ! t C;� `G
 e2 : t2C;� `G
 e1 e2 : tBy the indu
tion hypothesis, we haveC0;� `T e01 : t2 ! t C0;� `T e02 : t2By appli
ation of rule (App), we obtainC0;� `T (e01 e02) : t (1)Note that we always have C `=
 t = t. Thus we
on
ludeC0;� `T (
ast (e01 e02)) : tOther
ases are similar.(Dire
tion (): We pro
eed by stru
tural indu
tion. Wedenote by [[e0℄℄ the \erasure" of expression e0, i.e. we eraseall
ast o

urren
es from e0. W.l.o.g. We
an assume e0 �(
ast e00).Æ e00 = x C0;� `T
ast : t! t0 C0;� `T e00 : tC0;� `T (
ast e00) : t0Be
ause e00 = x, then [[e00℄℄ = e00. Therefore, we haveC;� `G
 [[e00℄℄ : t (1)By C0;� `T
ast : t! t0 and Lemma 9, we obtainPp j= C0 � (Ct t t0; Ct t0 t)Together with Lemma 8, we haveC `=
 t = t0 (2)By (1), (2) and rule (Eq), we
on
ludeC;� `G
 [[e00℄℄ : t0Be
ause [[
ast e00℄℄ = [[e00℄℄, then we haveC;� `G
 [[
ast e00℄℄ : t0

This is equivalent to C;� `G
 [[e0℄℄ : t0Æ e00 = �x:e000C0;� `T
ast : t! t0 C0;�:x : t1 `T e000 : t2C0;� `T e00 : tC0;� `T (
ast e00) : t0In the above derivation t = t1 ! t2. By the indu
tionhypothesis, we haveC;�:x : t1 `G
 [[e000℄℄ : t2By applying the (Abs) rule, we obtainC;� `G
 [[e00℄℄ : t (1)By C0;� `T
ast : t! t0 and Lemma 9, we obtainPp j= C0 � (Ct t t0; Ct t0 t)Together with Lemma 8, we haveC `=
 t = t0 (2)By (1), (2) and rule (Eq), we
on
ludeC;� `G
 [[e00℄℄ : t0Be
ause [[
ast e00℄℄ = [[e00℄℄, then we haveC;� `G
 [[
ast e00℄℄ : t0This is equivalent to C;� `G
 [[e0℄℄ : t0Æ e00 = (e0001 e0002)C0;� `T Ct : t! t0 C0;� `T e0001 : t2 ! t C0;� `T e000 : t2C0;� `T e00 : tC0;� `T (Ct e00) : t0By the indu
tion hypothesis, we haveC;� `G
 [[e0001 ℄℄ : t2 ! tC;� `G
 [[e0002 ℄℄ : t2By applying the (App) rule, we obtainC;� `G
 [[[[e0001 ℄℄ [[e0002 ℄℄℄℄ : t (1)By C0;� `T
ast : t! t0 and Lemma 9, we obtainPp j= C0 � (Ct t t0; Ct t0 t)Together with Lemma 8, we haveC `=
 t = t0 (2)By (1) and (2), we
on
ludeC;� `G
 [[e00℄℄ : t0Be
ause [[
ast e00℄℄ = [[e00℄℄, then we haveC;� `G
 [[
ast e00℄℄ : t0This is equivalent to C;� `G
 [[e0℄℄ : t0Other
ases are similar.14

B.2 Proof of Lemma 2 (Well-Typed)Our assumptions are: Let C = ff1 : Ct a1 b1; :::; fn :Ct an bng and � su
h that C ; � and f : Ct a b $ Cis valid. Then � ` f : a! b.Proof. The proof pro
eeds by indu
tion over the proofterm
onstru
tion derivation. W.l.o.g we
ombine rule (8 E)with rules (Id),(Var),(Arrow) et. We also
ombine (9 E)with (Trans).Æ Case(Id): �x:x : Ct a a$ TrueWe know that � = ;. Thus we
on
lude � ` �x:x : a! a.Æ Case (Var): f : Ct a b$ f : Ct a bWe know that � = ff : a ! bg. Thus we
on
lude � ` f :a! b.Æ Case (Trans): f = �g:�x:f2 (g (f1 x))f : Ct a1 a3 $ f1 : Ct a1 a2; f2 : Ct a2 a3We know that � = ff1 : a1 ! a2; f2 : a2 ! a3g. Thus bytyping derivation we
an easily
on
lude � ` f : a1 ! a3.Æ Case (Arrow): Similar to (Trans).Æ Case (Æ):f : Ct a b$ f1 :
1; :::; fn :
n fi :
i $ FiF j= Fi for i = 1; :::; nf : Ct a b$ FBy indu
tion, we have Sn1 �i ` f : a! b. Be
ause Sn1 �i �� derived from F j= Fi, then we
on
lude � ` f : a! b.
B.3 Proof of Theorem 2 (TCET to ET Sound-

ness)Theorem 2 follows dire
tly from the following more generallemma.Lemma 11 Let C;� `T e : t, C;� `T e : t ; e0 and �0su
h that C ; �0. Then � [�0 `E e0 : t.Proof. The proof pro
eeds by indu
tion on derivations.

Æ Case (K):(K : 8�a;�b:Ct t1 t01; Ct t01 t1:::; Ct tn t0n; Ct t0n tn) t! T �a);(K0 : 8�a;�b:t! E t1 t01 ! :::! E tn t0n ! T �a)C;� `T e : [�t=�a℄t; e0Pp j= C � (g; h) : [�t=�a℄(Ct t1 t01; Ct t01 t1:::; Ct tn t0n; Ct t0n tn)C;� `T Ke : T �t; K0 e0 E (g1; h1):::(gn; hn)By the indu
tion hypothesis, we have� [�0 `E e0 : [�t=�a℄t (1)Also we haveK0 : 8�a;�b:t! E t1 t01 ! :::! E tn t0n ! T �a (2)Note that here we assume an ordering among the
onstraints.Pp j= C � (g; h) : [�t=�a℄(Ct t1 t01; Ct t01 t1:::; Ct tn t0n; Ct t0n tn)implies gi : Ct ti t0i $ C and hi : Ct t0i ti $ CW.l.o.g we
an assume gi; hi =2 �. Hen
e by Lemma 2, wehave � [�0 `E gi : ti ! t0i and � [�0 `E hi : t0i ! tiwhere i = 1 : : : nThus we
an obtain that� [�0 `E E (gi; hi) : E ti t0i where i = 1 : : : n (3)From (1),(2),(3) and rule (K), we
on
lude� [�0 `E K0 e0 E (g1; h1):::(gn; hn) : T �tÆ Case (Redu
e):D � C f : Ct t1 t2 $ DC;� `T
ast : t1 ! t2 ; fGiven D � C f : Ct t1 t2 $ D, W.l.o.g. we assume f =2 �.Thus we
on
lude by Lemma 2� [�0 `E f : t1 ! t2Æ Case (Pat):p : t1 ` 8�b:(D �p p0) �b \ fv(C;�; t2) = ;C ^D;� [�p `T e : t2 ; e0C;� `T p! e : t1 ! t2 ; p0 ! e0By the indu
tion hypothesis, we have� [�p [�C [�D `T e0 : t2where C ; �C and D ; �D.Also by Lemma 12 (see below), we have p0 ` 8�b:(�p [�D).Thus we
on
lude� [�C `E p0 ! e0 : t1 ! t2Æ Other
ases are standard.Lemma 12 Given p : t1 ` 8�b:(D �p p0) then p0 ` 8�b:�p[�0 where D; �0.Proof. Standard by indu
tion on derivation.15

B.4 Proof of Theorem 3 (TCET to ET Com-
pleteness)Theorem 3 follows dire
tly from the following lemma.Lemma 13 Let C;� `T e : t and all types appearing inassumption
onstraints in intermediate derivations are de-
omposable. The C;� `T e : t; e0 for some e0.Proof. The proof is done by
onstru
tion of e0.Æ Case (Redu
e):Note that
ast is a
lass method of type 8t; t0:Ct t t0) t!t0. Sin
e we have C;� `T
ast : t1 ! t2, by rule (M), we
an derive Pp ` C � Ct t1 t2.Given all the types are de
omposable, by Lemma 3, we knowf : Ct t1 t2 $ C for some f if Pp ` C � Ct t1 t2. Thus therule (Redu
e) always produ
es a f .Æ Case:Other rules are standard.

B.5 Proofs of Lemmas 4, 5 and 6

B.5.1 Proof of Lemma 4 (Sound CHR Construction)Our assumptions are: Let C = ff1 : Ct a1 b1; :::; fn :Ct an bng and i : CtM a b; C �� D0 and
astmi ;� e su
hthat the CHR derivation is good. Then, f : Ct a b $ Csu
h that f and e are equivalent.Proof. The proof is done through indu
tion on the CHRderivation. W.l.o.g we
ombine rule (8 E) with rules (Id),(Var), (Arrow) and (Pair). We also
ombine (9 E) with(Trans).Æ Suppose the rule applied is (Id):i : CtM a b; C � a = b; C �� D0
astmi ; �x:xNote that the above derivation uni�es a and b. Thus wehave �x:x : Ct a a$ True:Æ Suppose the rule applied is (Trans1):i : CtM a b; C � ag = a; j : CtM bg b; C �� D0
astmi ;
astmj Æ gNote that the above derivation uni�es a and ag. Thus wehave(Æ) (Trans) f =
astmj Æ gf : Ct a b$ g : Ct a bg;
astmj : Ct bg bf : Ct a b$ Dwhere g : Ct a bg � C. Also by indu
tion, we knowj : Ct bg b $ D0 for some D0 � C. Take D as D0, wehave D � C.Æ Suppose the rule applied is (Arrow):i : CtM (a1 ! a2) (b1 ! b2); C � i1 : CtM b1 a1;i2 : CtM a2 b2; C �� D0
astmi ; �g:�x:
astmi2(g (
astmi1 x))

Also we have(Æ) (Trans) f = �g:�x:
astmi2(g (
astmi1 x))f : Ct (a1 ! a2) (b1 ! b2)$
astmi1 : Ct b1 a1;
astmi2 : Ct a2 b2f : Ct (a1 ! a2) (b1 ! b2)$ DAlso by indu
tion, we know j : Ct b1 a1 $ D0 and j :Ct a2 b2 $ D00for some D0 � C and D00 � C. Take D asD0 [D00, we have D � C.Æ (Pair) is similar to (Arrow).
B.5.2 Proof of Lemma 5 (Complete CHR Construc-

tion)Our assumptions are: Let C = ff1 : Ct a1 b1; :::; fn :Ct an bng su
h that f : Ct a b$ C. Then, i : CtM a b; C ��C su
h that
astmi ;� e and f and e are equivalent.Proof. W.l.o.g we
ombine rule (8 E) with rules (Id),(Var), (Arrow) and (Pair). We also
ombine (9 E) with(Trans).Æ Case (Id). �x:x : Ct a a$ TrueThen we havei : CtM a a;C �Id a = a; C
astmi ; �x:xÆ Case (Var). f : Ct a b$ f : Ct a bThen we have, given f : Ct a b 2 Ci : CtM a b; C �Trans1 j : CtM b b; C �Id C
astmi ;
astmi Æ f ; �x:x Æ fÆ Case (Trans).(Trans) f = �x:f2 (f1 x)f : Ct a1 a3 $ f1 : Ct a1 a2; f2 : Ct a2 a3We have i : CtM a1 a3; f1 : Ct a1 a2; f2 : Ct a2 a3
astmi�Trans1 j : Ct a2 a3; f1 : Ct a1 a2; f2 : Ct a2 a3;
astmj Æ f1�Trans1 k : CtM a3 a3; f1 : Ct a1 a2; f2 : Ct a2 a3;
astmk Æ f2 Æ f1�Id f2 Æ f1 : Ct a1 a2; f2 : Ct a2 a3; �x:x Æ f2 Æ f1Æ Case (Arrow).(Arrow) f = �g:�x:f2 (g (f1 x))8a1; a2; b1; b2:f : Ct (a1 ! a2) (b1 ! b2)$ f1 : Ct b1 a1; f2 : Ct a2 b216

By indu
tion, C; i1 : CtM b1 a1 �� D1
astmi1 ;� f1C; i2 : CtM a2 b3 �� D2
astmi2 ;� f2Therefore i : CtM (a1 ! a2) (b1 ! b2); f1 : Ct b1 a1;f2 : Ct a2 b2
astmi�Arrow i1 : CtM b1 a1; i2 : CtM a2 b2; f1 : Ct b1 a1;f2 : Ct a2 b2; �g:�x:
astmi2 (g (
astmi1 x))��V ar f1 : Ct b1 a1; f2 : Ct a2 b2;� �g:�x:f2 (g (f1 x))Æ (Pair) is similar to (Arrow).
B.5.3 Proof of Lemma 6 (Sound Term Construction)Our assumptions are: Let C = ff1 : Ct a1 b1; :::; fn :Ct an bng, i : CtM a b; C �� D1 and
astmi ;� e1 andi : CtM a b; C �� D2 and
astmi ;� e2 su
h that bothCHR derivations are good. Then, e1 and e2 are equivalent.Proof. Let f : Ct a b $ C, from Lemma 4, we knowthat e1 is equivalent to f and e2 is equivalent to f . Thus we
on
lude that e1 is equivalent to e2.
B.6 Termination of CHRsWe impose a termination
ondition on derivations. We showthat this
ondition does not rule out any good derivationswhi
h are vital. The basi
 idea is to atta
h ea
h
onstraintwith a distin
t justi�
ation. Justi�
ations J refer to sets ofnumbers. Ea
h Ct
onstraints
arries a distin
t, singletonjusti�
ations sets. Ea
h CtM
onstraints
arries initially asingleton justi�
ation set referring to its lo
ation. We writej as a short-hand for the singleton set fjg. We need tomaintain justi�
ations during CHR appli
ations.Consider rule instan
e (Trans1) g : Ct a b; i : CtM a0 b0 ()g : Ct a b; a = a0; j : CtM b b0 and store C su
h that(g : Ct a b)j ; (i : CtM a0 b0)J 2 C Then C �Trans1 C � (i :CtM a0 b0)J ; a = a0; (j : CtM b b0)fjg[J . We say that thetermination
ondition is violated i� j 2 J .Consider rule instan
e (Arrow) i : CtM (a1 ! a2) (b1 !b2) () i1 : CtM b1 a1; i2 : CtM a2 b2 su
h that (i :CtM (a1 ! a2) (b1 ! b2))J 2 C. Then, C �Arrow C �(i : CtM (a1 ! a2) (b1 ! b2))J ; (i1 : CtM b1 a1)J ; (i2 :CtM a2 b2)J . The justi�ed CHR semanti
s for rule (Pair)is similar.Silently, we assume that all propagation rules have been ex-haustively applied su
h that all Ct
onstraints are atta
hedwith a unique number. Note that we
ould en
ounter \dupli-
ates" su
h as (g1 : Ct a b)j1 and (g2 : Ct a b)j2 . However, g1and g2 are equivalent. Hen
e, we may keep both
onstraints.

We impose an order among derivations. Let C = ff1 :Ct a1 b1; :::; fn : Ct an bng, i : CtM a b; C �� D1 and
astmi ;� e1 and i : CtM a b; C �� D2 and
astmi ;� e2su
h that both CHR derivations are good. We say thati : CtM a b; C �� D1 is shorter than i : CtM a b; C ��D2 i� the size of e1 is shorter than the size of e2 wherethe size fun
tion returns the number of nodes in the syntaxtree of an expression. In
ase of initial stores with multipleCtMs we
ompare the sum of the individual sizes of resultingexpressions.Lemma 14 Let i : CtM t t;C �� D be a good derivation.Then,
astmi ;� e where e is equivalent to the identity.Lemma 15 Any good derivation whi
h violates the termi-nation
ondition
an be shortened.Proof. We assume a good derivation whi
h violates thetermination
ondition where we
onsider the \earliest" vio-lation in the derivation.C� :::� C1; (g : Ct t1 t2)l1 ; (i : CtM t01 t02)L1 l1 62 L1�Trans1 C1; (g : Ct t1 t2)l1 ; (j : CtM t2 t02)fl1g[L1 ;t1 = t01 (1)� :::� C2; (g : Ct t1 t2)l1 ; (k : CtM t001 t002)L2 l1 2 L2 (2)�Trans1 C2; (g : Ct t1 t2)l1 ; (n : CtM t2 t002)L2 ;t1 = t001� :::� DW.l.o.g., in the derivation steps between (1) and (2) we onlyapply CHRs on (j : CtM t2 t02)fl1g[L1 or its su

essors,i.e. those resulting from (Trans1) and (Arrow) rules.First, we show that only (Trans1) or (Id) rules
ould havebeen applied on (j : CtM t2 t02)fl1g[L1 or its su

essors.Assume the
ontrary, that is some (Pair) (or a similar type-
onstru
tor) rule has been applied on (j : CtM t2 t02)fl1g[L1 .Then, :::; (g : Ct t1 t2)l1 ; t2 = (t3; t4); t02 = (t5; t6);(j : CtM t2 t02)fl1g[L1�Pair :::; (g : Ct t1 t2)l1 ; t2 = (t3; t4); t02 = (t5; t6);(j1 : CtM t3 t5)fl1g[L1 ; (j2 : CtM t4 t6)fl1g[L1However, then we obtain a
y
le among types. E.g., assumethat (j1 : CtM t3 t5)fl1g[L1 equals (k : CtM t001 t002)L2 . We�nd that t1 = t01; t2 = (t3; t4); t002 = (t5; t6); t001 = t3; t1 = t001whi
h implies (g : Ct t1 (t1; t4))l1 . Thus, we obtain a
on-tradi
tion. Note that by assumption the type equations re-sulting from Ct
onstraints (Ct a b yields a = b) must besatis�able. Otherwise, the GRDT de�nition is invalid.Hen
e, we only �nd (Trans1) or (Id) appli
ations in between(1) and (2). E�e
tively, we generate a
ast fun
tion to
on-vert t1 into some b whi
h then we
onvert ba
k into t1. How-ever, any su
h transformation yields a
ast fun
tion whi
his equivalent to the identity. See Lemma 14. Hen
e, thesteps between (1) and (2) are redundant. Hen
e, we obtaina shorter derivation.Lemma 16 CHRs are terminating under the termination
ondition.17

Proof. Follows immediately. Note that we disallow Ctassumptions of the form g : Ct a (a; b). Hen
e, any non-terminating derivation must violate the termination
ondi-tion.

18

