
Steen, Maarten and Derrick, John (1999) Applying the UML to the ODP Enterprise
Viewpoint. Technical report. University of Kent at Canterbury

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21827/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical Report 8-99

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21827/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Applying the UML to the ODP Enterprise ViewpointM.W.A. Steen and J. DerrickComputing Laboratory, University of Kent at Canterbury, UKfM.W.A.Steen,J.Derrickg@ukc.ac.ukJuly 8, 1999AbstractNow that the Reference Model for Open Distributed Processing (rm-odp) has stabilised,attention is shifting towards the de�nition of speci�c notations for the odp viewpoints. Theobjective of this paper is twofold. Firstly, we analyse the current de�nition of the odpenterprise viewpoint language. Using the uml, a meta-model of the core concepts and theirrelationships is constructed. Secondly, we investigate to what extent the uml can be used forenterprise viewpoint speci�cation by means of a small case study. We conclude by discussingthe main open issues with regard to enterprise viewpoint speci�cation.Keywords: rm-odp, open distributed processing, distributed systems, enterprise viewpoint lan-guage, enterprise modelling, communities, roles, enterprise behaviour, uml.1 IntroductionMore than ever organisations depend on complex distributed systems to support their business.The purpose of these systems is to improve the quality, reduce the cost, or increase the timelinessof the business processes they support. In order to meet these goals, it is important that the way inwhich the business processes are organised are taken into consideration when designing distributedsystems. The enterprise viewpoint of the Reference Model for Open Distributed Processing (rm-odp) addresses this issue by providing a language for modelling distributed object systems from theperspective of the enterprise. More speci�cally, the enterprise viewpoint deals with the purpose,scope and policies for a system and its environment.The rm-odp de�nes a holistic framework for the speci�cation of distributed systems. In orderto deal with all aspects and complexities of such systems, the reference model de�nes �ve di�erentabstractions (referred to as viewpoints) from which distributed systems may be modelled. Foreach viewpoint, it provides a viewpoint language that de�nes concepts and structuring rules forspecifying odp systems from the corresponding viewpoint.Of the �ve odp viewpoints, the enterprise viewpoint is currently the least well de�ned. Ini-tial e�orts of the standardisation community concentrated on the computational and engineeringaspects of open distributed processing. Nevertheless, there is growing awareness that enterprisespeci�cation has an important role in the development of open distributed systems and in theirintegration into the enterprise which they serve. In recognition of this trend, the enterprise view-point language is currently undergoing extension and re�nement within the iso in order for theenterprise viewpoint to meet these requirements. In this paper, we analyse the current de�nitionof the odp enterprise viewpoint language. To this end, we construct a meta-model of the coreconcepts and their relationships using the Uni�ed Modelling Language (uml) [2, 6].It is important to note, at this point, that the rm-odp is not prescriptive about the use of anyparticular notation for the viewpoints. The viewpoint languages, de�ned in the reference model,are abstract languages in the sense that they de�ne what concepts should be supported, not howthese concepts should be represented. Currently, the uml is emerging as a de facto standard for1

CommunityObjective EnterpriseObject1 *1..*
fulfils_role_inFigure 1: The community conceptobject-oriented modelling. A second objective of this paper, therefore, is to investigate to whatextent the uml can be used as a concrete notation for enterprise viewpoint speci�cation.The rest of this paper is organised as follows. In section 2, we analyse the current de�nitionof the odp enterprise viewpoint language. The result of this analysis is a meta-model of theenterprise language in the uml, which can be seen as the abstract syntax for a concrete enterprisespeci�cation language. In section 3, we then discuss how to represent a substantial subset of theenterprise concepts in the uml. We wind up, in section 4, by summarising our �ndings.2 The Enterprise Viewpoint LanguageIn the rm-odp, the enterprise viewpoint is de�ned as \a viewpoint on an odp system and itsenvironment that focuses on the purpose, scope and policies for that system" [4]. The enterpriseviewpoint language provides the concepts and structuring rules for the speci�cation of an odpsystem from the enterprise viewpoint. The odp enterprise language is an abstract language in thesense that it does not prescribe the use of any particular notation. The iso is currently in theprocess of re�ning and extending the enterprise viewpoint language. In this section, we analysethe current de�nition of the enterprise language by constructing a meta-model for the language.The meta-model is represented in the uml. The enterprise language makes use of various conceptsde�ned in part 2 (Foundations) of the rm-odp [3]. In so far necessary, we will include theseconcepts in the meta-model.2.1 CommunitiesCentral to the enterprise viewpoint is the concept of a community. From a business modellingperspective, on the one hand, a community may be viewed as the participants (both people andsystems) in a business process. From a system modelling perspective, on the other hand, we canview a community as a system and its environment. The former perspective may be relevant foranalysis of the enterprise before a system has been developed and deployed, or for purposes ofbusiness process re-engineering (bpr). The latter perspective is useful for identifying the scope ofa system.In the reference model, a community is de�ned as \a con�guration of [enterprise] objects thatis formed to meet an objective." The objects in an enterprise model are (abstractions of) thepeople, systems and other entities that have a role in achieving the community's objective. Anenterprise object may itself be re�ned as a community at a more concrete level of detail. Dually,a community may be expressed as a composite object appearing at a more abstract level of detail.These structuring rules for communities are captured in the uml diagram in �gure 1. Notethat the enterprise language allows communities to have no associated enterprise objects, whichdoes not make much sense. Perhaps a minimum cardinality of one or two should be imposed.Also note that the enterprise objects are not related to communities by containment. Instead anassociation (ful�ls role in) is used to model the fact that enterprise objects may exist outside aparticular community. However, enterprise objects taking part in a community, i.e., ful�lling rolesin that community, are bound by an implicit or explicit agreement to work together towards theobjective of that community. This may mean that these objects have to constrain their potentialbehaviour to satisfy the ruling policy of the community.2

Objective

EnterpriseContract

EnterpriseRole

RoleRelationshipEnterprisePolicy

CommunityTemplate

1

1

specifies
*

2..*

* *

1..*

Figure 2: The community contract2.2 Speci�cation of communitiesCommunities are speci�ed by means of a contract or community template, which identi�es thedi�erent roles that objects may play in the community and a policy that governs the behaviour ofthese objects while ful�lling roles in the community.There is a subtle distinction between an enterprise model and an enterprise speci�cation. Amodel is a description of an existing situation | a real enterprise | and will describe the speci�cobjects making up the community and their actual behaviour. A speci�cation is a more abstractdescription of a desirable or future situation. It speci�es how an enterprise should be organisedand how it should ideally behave. If a speci�c model is consistent with a speci�cation, then wesay that the model satis�es or conforms to the speci�cation. For a particular speci�cation, theremay be many ways of implementing it, resulting in di�erent models.One possible way of interpreting the structuring rules for community speci�cations in the draftenterprise viewpoint language document [5], is depicted in �gure 2. The community contractis a template specifying the structure and potential behaviour of a community by de�ning thecommunity's roles and their associations. A role is an \identi�er for a behaviour" [3, Clause 9.14].Role relationships de�ne the associations that may exists between roles and determine the waysin which roles can interact. This concept is currently not de�ned in the enterprise language! Inaddition to the structure, a contract speci�es the objective and the policies of the community. Inthe remainder of this section, the identi�ed enterprise concepts are further re�ned.2.2.1 Enterprise rolesThere are four sub-classi�cations of roles that are of interest to enterprise speci�cations: actorroles and artefact roles, and principal roles and non-principal roles. It is not made explicit thatthese classi�cations are pair-wise mutually exclusive and total. Thus, all roles can be classi�ed asnon-principal actor, non-principal artefact, principal actor, or principal artefact. This classi�cationis depicted in �gure 3.An actor role is de�ned as \a role with signi�cant behaviour in that it initiates at least oneinteraction." An artefact role is de�ned as \a role for objects that are referenced by some commu-nity behaviour, and initiate no interaction in this community." An enterprise object ful�lling an
EnterpriseRole

principality

ActorRole ArtefactRole PrincipalRole NonPrincipalRole

{or}{or}Figure 3: Enterprise roles3

Community EnterpriseObject

EnterpriseContract EnterpriseRole

1.. fulfils_role_in

1

1

instantiates

*

1..*

fulfils

1..*

Figure 4: Instantiation of communitiesactor role participates in the actions of that role, whereas an enterprise object ful�lling an artefactrole only appears in an enterprise speci�cation because it is referred to in some action of an actor.In a library community, for example, a borrower is an actor, whereas a book is an artefact (alsosee section 3.2).By agreeing to ful�l a principal role, an enterprise object undertakes the obligations of thatprincipal role and agrees to internally constrain its behaviour accordingly. Enterprise objectsful�lling non-principal roles are not agreeing to undertake obligations.2.2.2 Relationships between rolesThe concept of role relationship is not explicitly de�ned in the current version of the enterpriseviewpoint language [5]. The following therefore represents our own interpretation of this concept.There are at least two di�erent ways in which roles can be related. Firstly, roles can be relatedbecause they interact. In a library community, for example, the role of borrower and the role ofloans desk assistant are related because they share the actions of borrowing and returning items.These relationships can usually be left implicit. However, there are other relationships betweenroles that should be made explicit for modelling purposes. For example, when a borrower borrowsa book, a conceptual relationship (a loan) is established between that borrower and that book(also see section 3.2).2.2.3 InstantiationCommunities are created by instantiating the corresponding contract. Instantiation of a contractinvolves the assignment of enterprise objects to roles. In general, an object may ful�l manyroles, in any number of communities. For example, university sta� may ful�l a teacher role inan educational community and also ful�l a borrower role with respect to the university library.Alternatively, a single role could be ful�lled by more than one enterprise object | a library hasmany borrowers, a company may have more than one network administrator, etc.The relationships between the speci�cation concepts of community template and role, on theone hand, and their instantiations, i.e., communities and enterprise objects, on the other hand, isdepicted in �gure 4.
EnterpriseObject EnterpriseRole

realisation

RoleRealiser

* 1..*fulfils

1..*Figure 5: Role realisation4

Note that the ful�ls role in association between enterprise objects and communities is re�nedby this diagram to the enterprise object ful�lling a role which is contained in the communitytemplate of the contract that is instantiated by the community.In �gure 5, the ful�ls association between enterprise objects and roles is further re�ned tothe enterprise object containing a bit of behaviour, for each role that it ful�ls, that realises orimplements the role. We call this bit of behaviour the role realiser.2.3 Enterprise behaviourRoles are used to identify the behaviour of enterprise objects in the community. To this end,actions are associated with roles. In fact, all [enterprise] actions are identi�ed by at least oneactor role (the initiator). Since behaviour is de�ned to be \a collection of actions with a set ofconstraints on when they may occur," a role de�nition should also specify these constraints. Thus,a role speci�es the behaviour that an object ful�lling that role may exhibit. Note that the conceptof behavioural constraint is not de�ned in the rm-odp! The reason for this is that the type ofconstraints that may be speci�ed depends very much on the speci�cation language that is beingused. In a speci�cation language like lotos [1], for example, constraints on behaviour are speci�edin terms of a temporal ordering of actions, which can then be composed with a synchronisationoperator. In a model-based speci�cation language, such as Z [7], on the other hand, behaviour isconstrained, amongst others, through invariants on a state space.Figure 6 depicts our interpretation of the clauses pertaining to role behaviour. An enterpriserole de�nes some enterprise behaviour, which consists of a set of enterprise actions and a setof constraints on these actions, with each constraint relating to at least one enterprise action.At least one enterprise role participates in each enterprise action. In addition, each enterpriseaction is initiated by precisely one actor role. Actions that involve more than one role are calledinteractions.2.4 Enterprise policiesPolicies constrain the behaviour of enterprise objects that ful�l actor roles in communities. Thepolicy concept is closely related to that of enterprise behaviour: both represent constraints onthe behaviour of objects. They are not the same though. A speci�cation of enterprise behaviourde�nes the physically possible behaviour of roles in a community. A policy speci�cation may thenconstrain this behaviour further in order to achieve the objectives of the community. Thus, ingeneral an enterprise speci�cation will include a description of enterprise behaviour together witha policy speci�cation. Another way of viewing the di�erence is to think of policies as describingthe ideal and desirable behaviour within an enterprise, whereas the enterprise behaviour is a modelof the actual behaviour. The latter may or may not conform to the ideal expressed in the policies.Policy speci�cations, therefore, often contain prescriptions of what to do in case some rule isviolated.Policies are designed to meet the objective of the community. Policies are speci�ed by thecommunity contract. In addition, part 2 of the reference model [3, Clause 11.2.7] states that a
EnterpriseRole

EnterpriseAction

EnterpriseBehaviour

BehaviouralConstraint

ActorRole

1..*

*

participates

*

1

*

1

1..*

initiates

1.. constrainsFigure 6: Role behaviour5

Policy PolicyRule

Permission ProhibitionObligation

{or}

1..*1

Figure 7: Policy structurepolicy is \a set of rules related to a particular purpose" and that \a rule can be expressed as anobligation, a permission or a prohibition." The structure of policies is depicted in �gure 7.There are basic de�nitions of the concepts of obligation, permission, and prohibition in part2. They have their usual meaning, but pertain to behaviour only. For example, an obligation is aprescription that a particular behaviour is required. These de�nitions are clearly too restrictive forenterprise speci�cation and have to be re�ned to include the concept of agency. In the enterpriseviewpoint we are often more interested in questions such as who has the obligation to perform acertain behaviour, rather than the question which behaviour is required. In addition, we would likepolicies to be �rst-class concepts, so that we can make statements such as \X has the obligationto grant Y permission to do A." Furthermore, enterprise policies not always pertain to behaviour.A more in depth discussion of such behavioural enterprise policies and a language for policyspeci�cation can be found in a companion paper [8].Instantiation or population rules form another important class of policies. An example of sucha policy is that the role of treasurer and the role of auditor cannot be ful�lled by the same person.In section 3.5, we present an example of such an instantiation constraint.2.5 SummaryAs a summary of our analysis of the odp enterprise viewpoint language, �gure 8 depicts thecomplete meta-model. In the next section, we use this as the abstract syntax for developing aconcrete notation for enterprise speci�cation based on the uml.

CommunityObjective EnterpriseObject

CommunityTemplate

EnterpriseContract
EnterpriseRole

principality

RoleRelationship EnterpriseAction

EnterprisePolicy

ActorRole

ArtefactRole

PrincipalRole

NonPrincipalRole

EnterpriseBehaviour BehaviouralConstraint

1 *1..*
fulfils_role_in

1

1

instantiates

1

1

specifies

*

1..*

fulfils

*

2..* 1..*

*

*

*

1

*

1
1..*

*

1..*

*

1..*

Figure 8: A meta-model for the ODP enterprise viewpoint language6

3 The UML as Enterprise Viewpoint LanguageThe odp enterprise viewpoint language is an abstract language in the sense that it does notprescribe the use of any particular notation. It merely identi�es a set of concepts and a set ofstructuring rules. These have been captured in the meta-model presented above, which e�ectivelyde�nes an abstract syntax for the language. In this section, we investigate how an existing andpopular notation can be used to provide a concrete syntax for (parts of) the enterprise viewpointlanguage.The Uni�ed Modelling Language (uml) is rapidly becoming the industry standard for object-oriented modelling. It brings together a number of widely used object oriented diagrammingtechniques, such as class diagrams, use case diagrams, state charts and sequence diagrams. Thepurpose of this section is to investigate how these diagramming techniques can be used to repre-sent odp enterprise viewpoint speci�cations. Using the uml for enterprise speci�cation has theadvantage that many people are already familiar with it and can read enterprise speci�cationswithout much additional instruction.The investigation is carried out by means of a small case study in enterprise speci�cation.3.1 An example communityAs an example of an enterprise viewpoint speci�cation, we specify the enterprise of a universitylibrary. This example is loosely based on the Templeman Library of the University of Kent atCanterbury, but most of the speci�cation will apply to any library.Anyone will have some idea of what goes on in a library and there clearly is scope for distributedinformation systems to support the processes of the library. Nowadays, most libraries have oneor more automated systems in place to keep track of their collection, the outstanding loans andthe borrowers. In the following, we will consider an odp enterprise viewpoint description of sucha system and its environment.In essence, a library maintains a collection of books, periodicals, and other items, that maybe borrowed by its members. A library community comes into being with the establishment ofits collection. In the case of a university library, this may have been ordered by decree when theuniversity was founded, but a collection can also be established simply by some people gettingtogether and putting their books in a shared space. In any case, the primary objective of a librarycommunity is to share this collection amongst the members.In the uml, a community can be represented by a package (see �gure 9). The objective,speci�ed in natural language, can be attached to the community in a description �eld of thepackage.3.2 Modelling roles and their relationshipsThe roles of the library community are easily identi�ed. From the Templeman Library Regu-lations (see http://www.ukc.ac.uk/library/about.htm), for example, we can derive the followingdescriptions.
Library

<<community>>

Objective: to share a collection of
books and periodicals amongst a
group of members.Figure 9: The library community and its objective7

Book

PeriodicalACBorrower
PGBorrower

UGBorrower

Librarian
<<role>>

Borrower
<<role>>

Loan

issueDate
dueDate

*
1

*
1

Item
<<role>>

0..1

1

0..1

1

Library
<<community>> 1..*1..*

**
**

LDA
<<role>>

**

Figure 10: The library community structure� The role of Borrower may be ful�lled by academic sta�, and postgraduate and undergrad-uate students of the University, a related community. In addition, other people and librariesmay request special permission to use the Library. They can ful�l the Borrower role if suchpermission is granted.� The role of Loans Desk Assistant (LDA) may be ful�lled by any member of the Librarysta�. In this role they may issue and receive books and other items available for loan tousers.� Within the library community, the Librarian role represents the person with ultimate power.This power may be delegated: \The Librarian may delegate all or any powers under theseRegulations to such member or members of the Library sta� as may be appropriate."� The Item role is ful�lled by all books and periodicals in the library's collection.The roles of borrower and librarian are clearly actor roles: they may initiate interactions. Borrow-ers can, for example, borrow or return items, and librarians can recall items. It is less obvious thatloans desk assistants are actors or artefacts. They are involved in the borrow and return actions,but they do not initiate them. Still, we view loans desk assistant as an actor role, because it isful�lled by human-users. Item clearly is an artefact role. Items do not initiate any interactions,but are involved in most interactions between borrowers and loans desk assistants.The Loan class, also depicted in �gure 10, is an example of a conceptual relationship betweenthe borrower and item roles. Whenever a borrower borrows an item, an instance of this relationshipis established. The relationship will again be dissolved upon the return of the item. The advantageof explicitly modelling such conceptual relationships between roles is that we can attach certainattributes with the relationship. In the case of a loan, we may be interested in the issue date andthe date the item is due for return.
8

PayFine

Renew

Librarian
<<role>>

Recall

<<init>>

Borrow

Return
Borrower
<<role>>

<<init>>

<<init>>

<<init>>

<<init>>

LDA
<<role>>

Reserve

<<init>>

Item
<<role>>

Figure 11: Library Community3.3 Modelling enterprise behaviourThe objects ful�lling roles in the library community may be involved in the following enterpriseactions:� The Borrow action in which a Borrower requests to borrow a number of items. The requestwill be handled by a Loans Desk Assistant who may issue the items or deny the requestdepending on the status of the Borrower and the items.� TheReturn action in which a Borrower returns previously borrowed items to the loans desk.A Loans Desk Assistant will verify that the items are returned in time and, if necessary,collect a �ne.� The Reserve action in which a Borrower places a reservation for an item on loan to anotherBorrower.� The Renew action in which a Borrower requests to extend the loan period for an itemalready on loan to him or her. The request will be handled by a Loans Desk Assistant whoshould refuse the renewal in case the item has been reserved by another Borrower.� The Recall action in which a Borrower is informed to return an item on loan to him or her.After an item has been in the possession of any Borrower for a week, it may be recalled ifrequired by another user. In addition, the Librarian may recall an item on loan at any time.� The PayFine action in which a Borrower pays o� an certain amount of his outstanding �nesat the loans desk.The library community can now be re�ned to a use case diagram (see �gure 11) in which thelibrary roles are depicted as uml actors and the enterprise actions they are involved in as use cases.The association stereotype �init� is introduced to indicate which role initiates the interaction.9

The use case diagram in �gure 11 simply identi�es the possible enterprise actions. It doesnot de�ne the enterprise behaviour. However, we can give a simple example of how enterprisebehaviour might be speci�ed. Consider the behaviour of the borrower role. Its actual behaviourwill consist in part of borrowing books and then perhaps returning them. However, a borrowercan only return a book if it was previously borrowed by that borrower. Therefore we coulddescribe the borrower's behaviour as a causal or temporal ordering of borrow and return actions,the latter happening after the former. We could for example use an activity diagram to specifythis constraint on the borrower's behaviour. However, this would not quite capture the fact thatthis sequence of actions can be interleaved with similar actions for a di�erent loan (of a di�erentitem). The precise behaviour can be captured more precisely in lotos [1] as follows:Borrower := borrow ?item:Item; (return !item; stop jjj Borrower)This speci�es that a borrower can only return an item once she has borrowed it, and that thistemporal constraint for a particular loan is repeated for every loan, but that these loans can beinterleaved. For example, the sequenceborrow(book1) ; borrow(book2) ; return(book2) ; return(book1)is possible according to this speci�cation, assuming book1 and book2 were books that the borrowerwas entitled to borrow.The advantage of representing enterprise actions as use cases is that these may be furtherre�ned into interaction diagrams (sequence or collaboration diagrams). In the library case, it isnot clear though whether such a detailed description of community behaviour would be desiredor appropriate. One has to be careful not to be lured into a computational description of theborrowing process.3.4 Relating communitiesA complete enterprise speci�cation consists of a number of related community speci�cations. Sofar, we have considered the library community in isolation, but it is of course closely related tothe university community that it serves. In the following, we briey consider this relationship.In a university community, we �nd students, researchers, teachers, heads of department, sup-port sta�, etc. In order to relate the university community to the library community, we need atleast to identify:� the role of Academic, which is ful�lled by all research and teaching sta� of the university;and� the role of Student, which is ful�lled by all people on undergraduate or postgraduate degreecourses.These roles are ful�lled by people, who may at some point also ful�l the role of borrower in thelibrary community. This relationship, of enterprise objects (in this case: people) ful�lling roles indi�erent communities, between the university and the library community is depicted in �gure 12.3.5 Expressing policiesThe Templeman Library regulations (also see http://www.ukc.ac.uk/library/about.htm) contain alarge number of rules relating to the borrowing of material from the library. Together these de�nethe permissions, obligations and prohibitions for borrowers and the other roles in the library. Mostof these policy rules represent constraints on the behaviour of the objects ful�lling those roles.Examples are that \undergraduate borrowers are forbidden to borrow periodicals", that \academicborrowers are permitted to borrow 24 items" and that \borrowers are obliged to return the booksthey borrow." This last example nicely demonstrates the di�erence between policies and enterprisebehaviour. The enterprise behaviour given for the borrower role in section 3.3 places constraints10

University
<<community>> Library

<<community>>

Student
<<role>>

Academic
<<role>>

Person
<<object>>0..1 10..1 1

fulfils

0..1

1

0..1

1

fulfils

Borrower
<<role>>0..11 0..1

+filler

1
fulfils

Figure 12: Relating communitieson the temporal ordering of the borrow and return actions. However, no limit is placed on thenumber of items that can be borrowed at any one time. The latter constraint is a policy.Unfortunately, there does not seem to be a suitable way of expressing such behavioural policieswith the uml. The main problem is that the interaction model of the uml is based on message ex-change between objects, whereas interactions in the enterprise viewpoint are seen as bits of sharedbehaviour. As policies constrain the behaviour of roles, we could consider using the ocl [9], theObject Constraint Language, originally developed by ibm and now incorporated into the uml, inwhich constraints may be expressed as invariants, or as pre- and post-conditions. However, oclis also limited in a number of respects: it does not provide powersets, uses the same interactionmodel as the uml, and lacks a formal semantics. Finally, policy statements often involve tim-ing constraints, (e.g., an item has to be returned by its due date), for which there is currentlyno provision in the uml/ocl combination. Hence, we have developed a dedicated language forexpressing policies to complement the uml in this respect, which is described in [8].Nevertheless, there are other types of policy statement that can be expressed within the uml.We refer here to the, so called, instantiation policies, which constrain the way in which roles canbe populated. The following rule represents a typical example.� Borrowing rights are given to all academic sta�, and postgraduate and undergraduate stu-dents of the University.This means that only those people ful�lling a role in the university community (academic orstudent) may ful�l the borrower role. The (ocl) does provides us with a suitable language forexpressing such constraints. Ocl constraints always have to be interpreted within the context of auml diagram. For the above constraint, �gure 12 provides a suitable context as it already relatesthe two communities involved. The constraint may now be expressed as follows:context Borrowerinv: self :filler:student! notEmpty() orself :filler:academic! notEmpty()This constraint is an invariant imposed on the Borrower class. It requires that each Borrowerrole has to be �lled by a Person �lling either the Student role or the Academic role. Here, selfrepresents an arbitrary instance of the Borrower class. The expression self :filler returns theinstances of Person related to a particular instance of Borrower, and self :filler:student returnsthe set of instances of the Student class related to that instance of Person. The latter set is testedfor being non empty; it is either empty or contains one instance. Similary, the second line testswhether the borrower is an academic. The two parts are combined with or , so the expressionwill return true is the borrower is either a student or an academic.11

Enterprise concept UML construct StereotypeCommunity Package communityCommunity Class communityObject Class objectRole Class roleRole relationship ClassAction Use CaseTable 1: Enterprise language mappings3.6 Summary of mappingsTable 1 summarises our proposal for using the uml as a concrete notation for the odp enterpriseviewpoint. It describes the mapping from the enterprise language concepts to uml constructs and,if appropriate, the introduced stereotypes.A community can either be represented as a package or, when abstracted as an enterpriseobject, as a uml class. Enterprise objects, or actually, object templates, are represented by a classwith the�object� stereotype. An odp role is represented as a class with the�role� stereotype,not to be confused with the uml concept of role. Role relationships are also represented by a class,while enterprise actions are depicted as use cases on a use case diagram.4 ConclusionIn this paper, we have used to uml to build up a meta-model of the odp enterprise viewpointlanguage. We found that the uml is a useful instrument for such an exercise. It allowed us to depictthe relationships between the various concepts de�ned in the enterprise viewpoint language in aclear, concise and consistent manner. Moreover, the conceptual diagrams are easily communicatedbetween people with varying backgrounds. We managed to have meaningful discussions with bothuml literates who knew nothing about odp, as well as odp specialists that were not familiar withthe uml. Interestingly, the meta-model developed in this paper is consistent with a uml modelof the enterprise viewpoint drawn up at the latest editing meeting of the iso working group forodp. The two models even coincide for large parts.In the second half of the paper, we considered the use of the uml as a graphical notation forenterprise viewpoint speci�cation. In our opinion, the uml is certainly useful for depicting thestatic structure of communities, i.e., the roles and their relationships. For expressing enterprisebehaviour, it is only partly useful, because the enterprise viewpoint assumes a di�erent model ofinteraction. It is not clear yet whether the uml is suitable for expressing behavioural policies.For this reason, we have developed a dedicated policy speci�cation language in [8]. The uml, oractually the ocl, can, to a certain extent, be used for expressing, so called, instantiation policiesand the relationship between these policies and behavioural policies is an area for further work.Tool support is also an issue. There is clearly scope to develop tailored tools based on existinguml tools, providing perhaps structured editors for a number of interlinked viewpoints.References[1] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation language LOTOS. Com-puter Networks and ISDN Systems, 14:25{59, 1987.[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modelling Language: User Guide.Object Technology Series. Addison-Wesley, 1998.12

[3] ISO/IEC. Open Distributed Processing - Reference Model - Part 2: Foundations. InternationalStandard 10746-2, ITU-T Recommendation X.902, January 1995.[4] ISO/IEC. Open Distributed Processing - Reference Model - Part 3: Architecture. InternationalStandard 10746-3, ITU-T Recommendation X.903, January 1995.[5] ISO/IEC. Open Distributed Processing - Reference Model - Enterprise Viewpoint. WorkingDraft 15414, ITU-T Recommendation X.911, January 1999.[6] J. Rumbaugh, I. Jacobson, and G. Booch. The Uni�ed Modelling Language: Reference Manual.Object Technology Series. Addison-Wesley, 1999.[7] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.[8] M. W. A. Steen and J. Derrick. Formalising ODP enterprise policies. In 3rd InternationalEnterprise Distributed Object Computing Conference (EDOC '99). IEEE, September 1999.[9] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with UML.Addison-Wesley, 1998.

13

