University of

"1l Kent Academic Repository

Steen, Maarten and Derrick, John (1999) Applying the UML to the ODP Enterprise
Viewpoint. Technical report. University of Kent at Canterbury

Downloaded from
https://kar.kent.ac.uk/21827/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information
Technical Report 8-99

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21827/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Applying the UML to the ODP Enterprise Viewpoint

M.W.A. Steen and J. Derrick
Computing Laboratory, University of Kent at Canterbury, UK
{M.W.A.Steen,J.Derrick}@ukc.ac.uk

July 8, 1999

Abstract

Now that the Reference Model for Open Distributed Processing (RM-ODP) has stabilised,
attention is shifting towards the definition of specific notations for the ODP viewpoints. The
objective of this paper is twofold. Firstly, we analyse the current definition of the oppP
enterprise viewpoint language. Using the UML, a meta-model of the core concepts and their
relationships is constructed. Secondly, we investigate to what extent the UML can be used for
enterprise viewpoint specification by means of a small case study. We conclude by discussing
the main open issues with regard to enterprise viewpoint specification.

Keywords: RM-0ODP, open distributed processing, distributed systems, enterprise viewpoint lan-
guage, enterprise modelling, communities, roles, enterprise behaviour, UML.

1 Introduction

More than ever organisations depend on complex distributed systems to support their business.
The purpose of these systems is to improve the quality, reduce the cost, or increase the timeliness
of the business processes they support. In order to meet these goals, it is important that the way in
which the business processes are organised are taken into consideration when designing distributed
systems. The enterprise viewpoint of the Reference Model for Open Distributed Processing (RM-
oDP) addresses this issue by providing a language for modelling distributed object systems from the
perspective of the enterprise. More specifically, the enterprise viewpoint deals with the purpose,
scope and policies for a system and its environment.

The RM-ODP defines a holistic framework for the specification of distributed systems. In order
to deal with all aspects and complexities of such systems, the reference model defines five different
abstractions (referred to as wviewpoints) from which distributed systems may be modelled. For
each viewpoint, it provides a viewpoint language that defines concepts and structuring rules for
specifying ODP systems from the corresponding viewpoint.

Of the five ODP viewpoints, the enterprise viewpoint is currently the least well defined. Ini-
tial efforts of the standardisation community concentrated on the computational and engineering
aspects of open distributed processing. Nevertheless, there is growing awareness that enterprise
specification has an important role in the development of open distributed systems and in their
integration into the enterprise which they serve. In recognition of this trend, the enterprise view-
point language is currently undergoing extension and refinement within the 150 in order for the
enterprise viewpoint to meet these requirements. In this paper, we analyse the current definition
of the ODP enterprise viewpoint language. To this end, we construct a meta-model of the core
concepts and their relationships using the Unified Modelling Language (UML) [2, 6].

It is important to note, at this point, that the RM-ODP is not prescriptive about the use of any
particular notation for the viewpoints. The viewpoint languages, defined in the reference model,
are abstract languages in the sense that they define what concepts should be supported, not how
these concepts should be represented. Currently, the UML is emerging as a de facto standard for

*

EnterpriseObject

-« fulfils_role_in
| obieaive | 1/ Communy | 1.+T M

Figure 1: The community concept

object-oriented modelling. A second objective of this paper, therefore, is to investigate to what
extent the UML can be used as a concrete notation for enterprise viewpoint specification.

The rest of this paper is organised as follows. In section 2, we analyse the current definition
of the ODP enterprise viewpoint language. The result of this analysis is a meta-model of the
enterprise language in the UML, which can be seen as the abstract syntax for a concrete enterprise
specification language. In section 3, we then discuss how to represent a substantial subset of the
enterprise concepts in the UML. We wind up, in section 4, by summarising our findings.

2 The Enterprise Viewpoint Language

In the RM-ODP, the enterprise viewpoint is defined as “a viewpoint on an ODP system and its
environment that focuses on the purpose, scope and policies for that system” [4]. The enterprise
viewpoint language provides the concepts and structuring rules for the specification of an oDP
system from the enterprise viewpoint. The ODP enterprise language is an abstract language in the
sense that it does not prescribe the use of any particular notation. The 1SO is currently in the
process of refining and extending the enterprise viewpoint language. In this section, we analyse
the current definition of the enterprise language by constructing a meta-model for the language.
The meta-model is represented in the UML. The enterprise language makes use of various concepts
defined in part 2 (Foundations) of the RM-ODP [3]. In so far necessary, we will include these
concepts in the meta-model.

2.1 Communities

Central to the enterprise viewpoint is the concept of a community. From a business modelling
perspective, on the one hand, a community may be viewed as the participants (both people and
systems) in a business process. From a system modelling perspective, on the other hand, we can
view a community as a system and its environment. The former perspective may be relevant for
analysis of the enterprise before a system has been developed and deployed, or for purposes of
business process re-engineering (BPR). The latter perspective is useful for identifying the scope of
a system.

In the reference model, a community is defined as “a configuration of [enterprise] objects that
is formed to meet an objective.” The objects in an enterprise model are (abstractions of) the
people, systems and other entities that have a role in achieving the community’s objective. An
enterprise object may itself be refined as a community at a more concrete level of detail. Dually,
a community may be expressed as a composite object appearing at a more abstract level of detail.

These structuring rules for communities are captured in the UML diagram in figure 1. Note
that the enterprise language allows communities to have no associated enterprise objects, which
does not make much sense. Perhaps a minimum cardinality of one or two should be imposed.
Also note that the enterprise objects are not related to communities by containment. Instead an
association (fulfils_role_in) is used to model the fact that enterprise objects may exist outside a
particular community. However, enterprise objects taking part in a community, i.e., fulfilling roles
in that community, are bound by an implicit or explicit agreement to work together towards the
objective of that community. This may mean that these objects have to constrain their potential
behaviour to satisfy the ruling policy of the community.

Objective ‘ CommunityTemplate ‘ EnterpriseRole

1 1.% 2.*

-« specifies

\ 1
EnterprisePolicy | * Hﬁ EnterpriseContract ‘% *

*

RoleRelationship ‘

Figure 2: The community contract

2.2 Specification of communities

Communities are specified by means of a contract or community template, which identifies the
different roles that objects may play in the community and a policy that governs the behaviour of
these objects while fulfilling roles in the community.

There is a subtle distinction between an enterprise model and an enterprise specification. A
model is a description of an existing situation — a real enterprise — and will describe the specific
objects making up the community and their actual behaviour. A specification is a more abstract
description of a desirable or future situation. It specifies how an enterprise should be organised
and how it should ideally behave. If a specific model is consistent with a specification, then we
say that the model satisfies or conforms to the specification. For a particular specification, there
may be many ways of implementing it, resulting in different models.

One possible way of interpreting the structuring rules for community specifications in the draft
enterprise viewpoint language document [5], is depicted in figure 2. The community contract
is a template specifying the structure and potential behaviour of a community by defining the
community’s roles and their associations. A role is an “identifier for a behaviour” [3, Clause 9.14].
Role relationships define the associations that may exists between roles and determine the ways
in which roles can interact. This concept is currently not defined in the enterprise language! In
addition to the structure, a contract specifies the objective and the policies of the community. In
the remainder of this section, the identified enterprise concepts are further refined.

2.2.1 Enterprise roles

There are four sub-classifications of roles that are of interest to enterprise specifications: actor
roles and artefact roles, and principal roles and non-principal roles. It is not made explicit that
these classifications are pair-wise mutually exclusive and total. Thus, all roles can be classified as
non-principal actor, non-principal artefact, principal actor, or principal artefact. This classification
is depicted in figure 3.

An actor role is defined as “a role with significant behaviour in that it initiates at least one
interaction.” An artefact role is defined as “a role for objects that are referenced by some commu-
nity behaviour, and initiate no interaction in this community.” An enterprise object fulfilling an

‘ EnterpriseRole ‘

A A principality

{or} {or}

‘ ActorRole ‘ ‘ ArtefactRole ‘ ‘ PrincipalRole ‘ ‘NonPrincipaIRoIe

Figure 3: Enterprise roles

‘ EnterpriseContract‘ 1. EnterpriseRoIe‘

1 1.*
| |

A instantiates A fulfils
\ [
1 *

‘ Community ‘ 1..* —afulfils_role_in—— *| EnterpriseObject ‘

Figure 4: Instantiation of communities

actor role participates in the actions of that role, whereas an enterprise object fulfilling an artefact
role only appears in an enterprise specification because it is referred to in some action of an actor.
In a library community, for example, a borrower is an actor, whereas a book is an artefact (also
see section 3.2).

By agreeing to fulfil a principal role, an enterprise object undertakes the obligations of that
principal role and agrees to internally constrain its behaviour accordingly. Enterprise objects
fulfilling non-principal roles are not agreeing to undertake obligations.

2.2.2 Relationships between roles

The concept of role relationship is not explicitly defined in the current version of the enterprise
viewpoint language [5]. The following therefore represents our own interpretation of this concept.
There are at least two different ways in which roles can be related. Firstly, roles can be related
because they interact. In a library community, for example, the role of borrower and the role of
loans desk assistant are related because they share the actions of borrowing and returning items.
These relationships can usually be left implicit. However, there are other relationships between
roles that should be made explicit for modelling purposes. For example, when a borrower borrows
a book, a conceptual relationship (a loan) is established between that borrower and that book
(also see section 3.2).

2.2.3 Instantiation

Communities are created by instantiating the corresponding contract. Instantiation of a contract
involves the assignment of enterprise objects to roles. In general, an object may fulfil many
roles, in any number of communities. For example, university staff may fulfil a teacher role in
an educational community and also fulfil a borrower role with respect to the university library.
Alternatively, a single role could be fulfilled by more than one enterprise object — a library has
many borrowers, a company may have more than one network administrator, etc.

The relationships between the specification concepts of community template and role, on the
one hand, and their instantiations, i.e., communities and enterprise objects, on the other hand, is
depicted in figure 4.

- * —— fulfils» 1..*| EnterpriseRole

realisation

EnterpriseObject

1.*
RoleRealiser

Figure 5: Role realisation

Note that the fulfils_role_in association between enterprise objects and communities is refined
by this diagram to the enterprise object fulfilling a role which is contained in the community
template of the contract that is instantiated by the community.

In figure 5, the fulfils association between enterprise objects and roles is further refined to
the enterprise object containing a bit of behaviour, for each role that it fulfils, that realises or
implements the role. We call this bit of behaviour the role realiser.

2.3 Enterprise behaviour

Roles are used to identify the behaviour of enterprise objects in the community. To this end,
actions are associated with roles. In fact, all [enterprise] actions are identified by at least one
actor role (the initiator). Since behaviour is defined to be “a collection of actions with a set of
constraints on when they may occur,” a role definition should also specify these constraints. Thus,
a role specifies the behaviour that an object fulfilling that role may exhibit. Note that the concept
of behavioural constraint is not defined in the RM-ODP! The reason for this is that the type of
constraints that may be specified depends very much on the specification language that is being
used. In a specification language like LOTOS [1], for example, constraints on behaviour are specified
in terms of a temporal ordering of actions, which can then be composed with a synchronisation
operator. In a model-based specification language, such as Z [7], on the other hand, behaviour is
constrained, amongst others, through invariants on a state space.

Figure 6 depicts our interpretation of the clauses pertaining to role behaviour. An enterprise
role defines some enterprise behaviour, which consists of a set of enterprise actions and a set
of constraints on these actions, with each constraint relating to at least one enterprise action.
At least one enterprise role participates in each enterprise action. In addition, each enterprise
action is initiated by precisely one actor role. Actions that involve more than one role are called
interactions.

2.4 Enterprise policies

Policies constrain the behaviour of enterprise objects that fulfil actor roles in communities. The
policy concept is closely related to that of enterprise behaviour: both represent constraints on
the behaviour of objects. They are not the same though. A specification of enterprise behaviour
defines the physically possible behaviour of roles in a community. A policy specification may then
constrain this behaviour further in order to achieve the objectives of the community. Thus, in
general an enterprise specification will include a description of enterprise behaviour together with
a policy specification. Another way of viewing the difference is to think of policies as describing
the ideal and desirable behaviour within an enterprise, whereas the enterprise behaviour is a model
of the actual behaviour. The latter may or may not conform to the ideal expressed in the policies.
Policy specifications, therefore, often contain prescriptions of what to do in case some rule is
violated.

Policies are designed to meet the objective of the community. Policies are specified by the
community contract. In addition, part 2 of the reference model [3, Clause 11.2.7] states that a

ActorRole > EnterpriseRole >

1 1.%

1{ EnterpriseBehaviour‘

|

*

e
initiates* -« participates
1..* %

‘ EnterpriseAction { 1. — < constrains———— *| BehaviouralConstraint ‘

Figure 6: Role behaviour

Policy b 1— 1.~ PolicyRule ‘
{or}
| |
‘ Permission H Obligation H Prohibition ‘

Figure 7: Policy structure

policy is “a set of rules related to a particular purpose” and that “a rule can be expressed as an
obligation, a permission or a prohibition.” The structure of policies is depicted in figure 7.

There are basic definitions of the concepts of obligation, permission, and prohibition in part
2. They have their usual meaning, but pertain to behaviour only. For example, an obligation is a
prescription that a particular behaviour is required. These definitions are clearly too restrictive for
enterprise specification and have to be refined to include the concept of agency. In the enterprise
viewpoint we are often more interested in questions such as who has the obligation to perform a
certain behaviour, rather than the question which behaviour is required. In addition, we would like
policies to be first-class concepts, so that we can make statements such as “X has the obligation
to grant Y permission to do A.” Furthermore, enterprise policies not always pertain to behaviour.
A more in depth discussion of such behavioural enterprise policies and a language for policy
specification can be found in a companion paper [8].

Instantiation or population rules form another important class of policies. An example of such
a policy is that the role of treasurer and the role of auditor cannot be fulfilled by the same person.
In section 3.5, we present an example of such an instantiation constraint.

2.5 Summary

As a summary of our analysis of the ODP enterprise viewpoint language, figure 8 depicts the
complete meta-model. In the next section, we use this as the abstract syntax for developing a
concrete notation for enterprise specification based on the UML.

: : ~ *
! EnterpnseBehawour‘ i BehaviouralConstraint

1 T "
| ! . /
CommumtyTempIate‘ RoleRelationshi v
| RoleRetationship | EnterpriseAction
* * * 1.x
/\ S~
ActorRole

2. 1..*

i ArtefactRole
E isePoli * - .| EnterpriseRole | :|
nterprisePolicy | <> EnterpriseContract K>— 1.. |
1 : 1.x principality PrincipalRole

1 1
specifiesY 4 instantiates Ahfils
‘ ‘ \ NonPrincipalRole
1 1 .
. . < fulfils_role_in
| Obiectve | 1| Communiy | 17 Mo iceobject

Figure 8: A meta-model for the ODP enterprise viewpoint language

3 The UML as Enterprise Viewpoint Language

The ODP enterprise viewpoint language is an abstract language in the sense that it does not
prescribe the use of any particular notation. It merely identifies a set of concepts and a set of
structuring rules. These have been captured in the meta-model presented above, which effectively
defines an abstract syntax for the language. In this section, we investigate how an existing and
popular notation can be used to provide a concrete syntax for (parts of) the enterprise viewpoint
language.

The Unified Modelling Language (UML) is rapidly becoming the industry standard for object-
oriented modelling. It brings together a number of widely used object oriented diagramming
techniques, such as class diagrams, use case diagrams, state charts and sequence diagrams. The
purpose of this section is to investigate how these diagramming techniques can be used to repre-
sent ODP enterprise viewpoint specifications. Using the UML for enterprise specification has the
advantage that many people are already familiar with it and can read enterprise specifications
without much additional instruction.

The investigation is carried out by means of a small case study in enterprise specification.

3.1 An example community

As an example of an enterprise viewpoint specification, we specify the enterprise of a university
library. This example is loosely based on the Templeman Library of the University of Kent at
Canterbury, but most of the specification will apply to any library.

Anyone will have some idea of what goes on in a library and there clearly is scope for distributed
information systems to support the processes of the library. Nowadays, most libraries have one
or more automated systems in place to keep track of their collection, the outstanding loans and
the borrowers. In the following, we will consider an ODP enterprise viewpoint description of such
a system and its environment.

In essence, a library maintains a collection of books, periodicals, and other items, that may
be borrowed by its members. A library community comes into being with the establishment of
its collection. In the case of a university library, this may have been ordered by decree when the
university was founded, but a collection can also be established simply by some people getting
together and putting their books in a shared space. In any case, the primary objective of a library
community is to share this collection amongst the members.

In the UML, a community can be represented by a package (see figure 9). The objective,
specified in natural language, can be attached to the community in a description field of the
package.

3.2 Modelling roles and their relationships

The roles of the library community are easily identified. From the Templeman Library Regu-
lations (see http://www.uke.ac.uk/library/about.htm), for example, we can derive the following
descriptions.

<<community>>
Library

Objective: to share a collection of
books and periodicals amongst a
group of members.

Figure 9: The library community and its objective

<<community>> 1..*| <<role>>
Library <>—— Librarian

<<role>>
LDA

Loan
* lissueDate | 0..1
1
<<role>> dueDate <<role>>
Borrower 1) ltem
UGBorrower %
Book
PGBorrower
ACBorrower Periodical

Figure 10: The library community structure

e The role of Borrower may be fulfilled by academic staff, and postgraduate and undergrad-
uate students of the University, a related community. In addition, other people and libraries
may request special permission to use the Library. They can fulfil the Borrower role if such
permission is granted.

e The role of Loans Desk Assistant (LDA) may be fulfilled by any member of the Library
staff. In this role they may issue and receive books and other items available for loan to
users.

e Within the library community, the Librarian role represents the person with ultimate power.
This power may be delegated: “The Librarian may delegate all or any powers under these
Regulations to such member or members of the Library staff as may be appropriate.”

e The Item role is fulfilled by all books and periodicals in the library’s collection.

The roles of borrower and librarian are clearly actor roles: they may initiate interactions. Borrow-
ers can, for example, borrow or return items, and librarians can recall items. It is less obvious that
loans desk assistants are actors or artefacts. They are involved in the borrow and return actions,
but they do not initiate them. Still, we view loans desk assistant as an actor role, because it is
fulfilled by human-users. Item clearly is an artefact role. Items do not initiate any interactions,
but are involved in most interactions between borrowers and loans desk assistants.

The Loan class, also depicted in figure 10, is an example of a conceptual relationship between
the borrower and item roles. Whenever a borrower borrows an item, an instance of this relationship
is established. The relationship will again be dissolved upon the return of the item. The advantage
of explicitly modelling such conceptual relationships between roles is that we can attach certain
attributes with the relationship. In the case of a loan, we may be interested in the issue date and
the date the item is due for return.

3.3

<<role>> <<init>>_____=>
Librarian

Recall \ <<role>>

/ Item
<<init>> Borrow
OO
<<role>> | — Return
Borrower
| ——<<init>> <<role>>

\ $© - " DA
<<init>>

\ Reserve /
<<jnit>> O

Renew

D

PayFine

Figure 11: Library Community

Modelling enterprise behaviour

The objects fulfilling roles in the library community may be involved in the following enterprise
actions:

The Borrow action in which a Borrower requests to borrow a number of items. The request
will be handled by a Loans Desk Assistant who may issue the items or deny the request
depending on the status of the Borrower and the items.

The Return action in which a Borrower returns previously borrowed items to the loans desk.
A Loans Desk Assistant will verify that the items are returned in time and, if necessary,
collect a fine.

The Reserve action in which a Borrower places a reservation for an item on loan to another
Borrower.

The Renew action in which a Borrower requests to extend the loan period for an item
already on loan to him or her. The request will be handled by a Loans Desk Assistant who
should refuse the renewal in case the item has been reserved by another Borrower.

The Recall action in which a Borrower is informed to return an item on loan to him or her.
After an item has been in the possession of any Borrower for a week, it may be recalled if
required by another user. In addition, the Librarian may recall an item on loan at any time.

The PayFine action in which a Borrower pays off an certain amount of his outstanding fines
at the loans desk.

The library community can now be refined to a use case diagram (see figure 11) in which the
library roles are depicted as UML actors and the enterprise actions they are involved in as use cases.
The association stereotype <init>> is introduced to indicate which role initiates the interaction.

The use case diagram in figure 11 simply identifies the possible enterprise actions. It does
not define the enterprise behaviour. However, we can give a simple example of how enterprise
behaviour might be specified. Consider the behaviour of the borrower role. Its actual behaviour
will consist in part of borrowing books and then perhaps returning them. However, a borrower
can only return a book if it was previously borrowed by that borrower. Therefore we could
describe the borrower’s behaviour as a causal or temporal ordering of borrow and return actions,
the latter happening after the former. We could for example use an activity diagram to specify
this constraint on the borrower’s behaviour. However, this would not quite capture the fact that
this sequence of actions can be interleaved with similar actions for a different loan (of a different
item). The precise behaviour can be captured more precisely in LOTOS [1] as follows:

Borrower := borrow ?item:ltem; (return litem; stop ||| Borrower)

This specifies that a borrower can only return an item once she has borrowed it, and that this
temporal constraint for a particular loan is repeated for every loan, but that these loans can be
interleaved. For example, the sequence

borrow(book1) ; borrow(book?2) ; return(book?2) ; return(book1)

is possible according to this specification, assuming book1 and book2 were books that the borrower
was entitled to borrow.

The advantage of representing enterprise actions as use cases is that these may be further
refined into interaction diagrams (sequence or collaboration diagrams). In the library case, it is
not clear though whether such a detailed description of community behaviour would be desired
or appropriate. One has to be careful not to be lured into a computational description of the
borrowing process.

3.4 Relating communities

A complete enterprise specification consists of a number of related community specifications. So
far, we have considered the library community in isolation, but it is of course closely related to
the university community that it serves. In the following, we briefly consider this relationship.

In a university community, we find students, researchers, teachers, heads of department, sup-
port staff, etc. In order to relate the university community to the library community, we need at
least to identify:

e the role of Academic, which is fulfilled by all research and teaching staff of the university;
and

e the role of Student, which is fulfilled by all people on undergraduate or postgraduate degree
courses.

These roles are fulfilled by people, who may at some point also fulfil the role of borrower in the
library community. This relationship, of enterprise objects (in this case: people) fulfilling roles in
different communities, between the university and the library community is depicted in figure 12.

3.5 Expressing policies

The Templeman Library regulations (also see http://www.ukc.ac.uk/library/about.htm) contain a
large number of rules relating to the borrowing of material from the library. Together these define
the permissions, obligations and prohibitions for borrowers and the other roles in the library. Most
of these policy rules represent constraints on the behaviour of the objects fulfilling those roles.
Examples are that “undergraduate borrowers are forbidden to borrow periodicals”, that “academic
borrowers are permitted to borrow 24 items” and that “borrowers are obliged to return the books
they borrow.” This last example nicely demonstrates the difference between policies and enterprise
behaviour. The enterprise behaviour given for the borrower role in section 3.3 places constraints

10

<<community>>

<<community>> Library
University
] | fulfils <<role>>
<<role>> 0..1 fulfils <<0bjeCt>> 1 ,Oll Borrower
Student Person [|
+filler
1
<<role>> fulfils
Academic | 0..1

Figure 12: Relating communities

on the temporal ordering of the borrow and return actions. However, no limit is placed on the
number of items that can be borrowed at any one time. The latter constraint is a policy.

Unfortunately, there does not seem to be a suitable way of expressing such behavioural policies
with the UML. The main problem is that the interaction model of the UML is based on message ex-
change between objects, whereas interactions in the enterprise viewpoint are seen as bits of shared
behaviour. As policies constrain the behaviour of roles, we could consider using the ocL [9], the
Object Constraint Language, originally developed by 1BM and now incorporated into the UML, in
which constraints may be expressed as invariants, or as pre- and post-conditions. However, OCL
is also limited in a number of respects: it does not provide powersets, uses the same interaction
model as the UML, and lacks a formal semantics. Finally, policy statements often involve tim-
ing constraints, (e.g., an item has to be returned by its due date), for which there is currently
no provision in the UML/OCL combination. Hence, we have developed a dedicated language for
expressing policies to complement the UML in this respect, which is described in [8].

Nevertheless, there are other types of policy statement that can be expressed within the UML.
We refer here to the, so called, instantiation policies, which constrain the way in which roles can
be populated. The following rule represents a typical example.

e Borrowing rights are given to all academic staff, and postgraduate and undergraduate stu-
dents of the University.

This means that only those people fulfilling a role in the university community (academic or
student) may fulfil the borrower role. The (0CL) does provides us with a suitable language for
expressing such constraints. OCL constraints always have to be interpreted within the context of a
UML diagram. For the above constraint, figure 12 provides a suitable context as it already relates
the two communities involved. The constraint may now be expressed as follows:

context Borrower
inv: self. filler.student — notEmpty() or
self. filler.academic — notEmpty ()

This constraint is an invariant imposed on the Borrower class. It requires that each Borrower
role has to be filled by a Person filling either the Student role or the Academic role. Here, self
represents an arbitrary instance of the Borrower class. The expression self.filler returns the
instances of Person related to a particular instance of Borrower, and self. filler.student returns
the set of instances of the Student class related to that instance of Person. The latter set is tested
for being non empty; it is either empty or contains one instance. Similary, the second line tests
whether the borrower is an academic. The two parts are combined with or , so the expression
will return true is the borrower is either a student or an academic.

11

Enterprise concept | UML construct | Stereotype
Community Package community
Community Class community
Object Class object

Role Class role

Role relationship Class

Action Use Case

Table 1: Enterprise language mappings

3.6 Summary of mappings

Table 1 summarises our proposal for using the UML as a concrete notation for the ODP enterprise
viewpoint. It describes the mapping from the enterprise language concepts to UML constructs and,
if appropriate, the introduced stereotypes.

A community can either be represented as a package or, when abstracted as an enterprise
object, as a UML class. Enterprise objects, or actually, object templates, are represented by a class
with the <object>> stereotype. An ODP role is represented as a class with the <role>> stereotype,
not to be confused with the UML concept of role. Role relationships are also represented by a class,
while enterprise actions are depicted as use cases on a use case diagram.

4 Conclusion

In this paper, we have used to UML to build up a meta-model of the ODP enterprise viewpoint
language. We found that the UML is a useful instrument for such an exercise. It allowed us to depict
the relationships between the various concepts defined in the enterprise viewpoint language in a
clear, concise and consistent manner. Moreover, the conceptual diagrams are easily communicated
between people with varying backgrounds. We managed to have meaningful discussions with both
UML literates who knew nothing about 0DP, as well as ODP specialists that were not familiar with
the UML. Interestingly, the meta-model developed in this paper is consistent with a UML model
of the enterprise viewpoint drawn up at the latest editing meeting of the 1SO working group for
oDP. The two models even coincide for large parts.

In the second half of the paper, we considered the use of the UML as a graphical notation for
enterprise viewpoint specification. In our opinion, the UML is certainly useful for depicting the
static structure of communities, i.e., the roles and their relationships. For expressing enterprise
behaviour, it is only partly useful, because the enterprise viewpoint assumes a different model of
interaction. It is not clear yet whether the UML is suitable for expressing behavioural policies.
For this reason, we have developed a dedicated policy specification language in [8]. The UML, or
actually the OCL, can, to a certain extent, be used for expressing, so called, instantiation policies
and the relationship between these policies and behavioural policies is an area for further work.

Tool support is also an issue. There is clearly scope to develop tailored tools based on existing
UML tools, providing perhaps structured editors for a number of interlinked viewpoints.

References

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Com-
puter Networks and ISDN Systems, 14:25-59, 1987.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language: User Guide.
Object Technology Series. Addison-Wesley, 1998.

12

[3] ISO/IEC. Open Distributed Processing - Reference Model - Part 2: Foundations. International
Standard 10746-2, ITU-T Recommendation X.902, January 1995.

[4] ISO/IEC. Open Distributed Processing - Reference Model - Part, 3: Architecture. International
Standard 10746-3, ITU-T Recommendation X.903, January 1995.

[5] ISO/IEC. Open Distributed Processing - Reference Model - Enterprise Viewpoint. Working
Draft 15414, ITU-T Recommendation X.911, January 1999.

[6] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modelling Language: Reference Manual.
Object Technology Series. Addison-Wesley, 1999.

[7] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

[8] M. W. A. Steen and J. Derrick. Formalising ODP enterprise policies. In 3rd International
Enterprise Distributed Object Computing Conference (EDOC ’99). IEEE, September 1999.

[9] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley, 1998.

13

