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Modelling Timeouts without TimelocksHoward Bowman?Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent, CT27NF, United Kingdom. (Email: H.Bowman@ukc.ac.uk)Abstract. We address the issue of modelling a simple timeout in timedautomata. We argue that expression of the timeout in the UPPAALtimed automata model is unsatisfactory. Speci�cally, the solutions weexplore either allow timelocks or are prohibitively complex. In responsewe consider timed automata with deadlines which have the property thattimelocks cannot be created when composing automata in parallel. Weexplore a number of di�erent options for reformulating the timeout inthis framework and then we relate them.1 IntroductionA timeout is perhaps the most basic and widely arising speci�cation structure inreal-time systems. For example, they arise frequently when modelling commu-nication protocols and work on enhancing \�rst generation" speci�cation tech-niques with real-time has frequently been directly motivated by the desire tomodel timeouts in communication protocols [9].From within the canon of timed speci�cation notations, timed automata [1]are certainly one of the most important. One reason for this is that powerfulreal-time model checking techniques have been developed for timed automata,as exempli�ed by the tools, UPPAAL [2], Kronos [7] and HyTech [8].However satisfactorily modelling timeout structures proves surprisingly di�-cult in timed automata. Broadly, problems arise because it is di�cult to de�netimeout behaviour in a manner that avoids the possibility of timelocks . By wayof clari�cation:we say that a system is timelocked if it has reached a state from whichno path can be found to a time passing transition.Timelocks are highly degenerate situations because they yield a global blockageof the systems evolution. For example, if a completely independent componentis composed in parallel with a system that is timelocked, then the entire com-position will inherit the timelock. This is quite di�erent from a classic (local)deadlock, which cannot a�ect the evolution of an independent process. Thesecharacteristics of timelocks will be illustrated in section 2.? Howard Bowman is currently on leave at VERIMAG, Centre Equation, 2 rue Vignate,38610 GIERES, France and CNR-Istituto CNUCE, Via S. Maria 36, 56126 - Pisa -Italy with the support of the European Commission's TMR programme.



This paper addresses the issue of how to model timeouts without generat-ing timelocks. We illustrate how the di�culty arises in current timed automatamodels and then we consider a new timed automata model - Timed Automatawith Deadlines (TADs) [3] - which guarantee timelock free parallel compositionof automata components.We begin (in section 2) by presenting background material - we introducetimed automata, discuss the nature of timelocks and outline the timeout be-haviour that we require. These requirements have been identi�ed during practi-cal study of the speci�cation and veri�cation of a lip-synchronisation algorithm[6]. Then (in section 3) we discuss possible ways to model the timeout in timedautomata. As a typical timed automata model we choose the UPPAAL [2] nota-tion. This is one of the most important timed automata approaches. We arguethat none of the legal UPPAAL approaches are completely satisfactory. In par-ticular, avoiding the possibility of timelocks is di�cult and leads to prohibitivelycomplex solutions.In response, (in section 4) we consider how the same timeout behaviour canbe modelled in Timed Automata with Deadlines [3]. However, it turns out thatthe standard TADs approach, as presented in [3], resolves the timelock problem,but introduces a new di�culty which is related to the generation of escapetransitions. Consequently, we consider a number of di�erent TAD formulationsin section 5 which resolve these di�culties in contrasting ways. Finally, in section6 we relate these solutions and present a concluding discussion.2 Background2.1 Timed AutomataWe brie
y review some basic timed automata notation.{ A is the set of completed (or basic) actions.{ A = f a?; a! j a 2 A g is the set of uncompleted actions. These give a simpleCCS style [10] point-to-point communication which has also been adoptedin UPPAAL.{ A+ = A [ A is the set of all actions.{ We use a complementation notation over elements of A+,a = a if a 2 A (1)b? = b! (2)b! = b? (3)In addition, we let v, v0 etc, range over vectors of processes, which are written,< l1; :::; ln >, jvj denotes the length of the vector, we use a substitution notationas follows: < l1; :::; lj ; :::; ln > [l=lj ] =< l1; :::; lj�1; l; lj+1; :::; ln > and we writev[l01=l1][l02=l2]:::[l0m=lm] as v[l01=l1; l02=l2; :::; l0m=lm]. We assume the a �nite set: C



of clocks which range over R+ and CC is a set of clock constraints1. An arbitraryelement of A, the set of all timed automata, has the form:(L; l0; T; P )where,{ L is a �nite set of locations (these appear as small circles in our timedautomata diagrams, e.g. see �gure 1);{ l0 is a designated start location;{ T � L� CC � A+ � P(C)� L is a transition relation (where P(S) denotesthe powerset of S). A typical element of T would be, (l1; g; a; r; l2), wherel1; l2 2 L are automata locations; g 2 CC is a guard; a 2 A+ labels thetransition; and r 2 P(C) is a reset set. (l1; g; a; r; l2) 2 T is typically written,l1 g;a;r���! l2, stating that the automata can evolve from location l1 to l2 if the(clock) guard g holds and in the process action a will be performed and allthe clocks in r will be set to zero. When we depict timed automata, we writethe action label �rst, then the guard and then the reset set, see e.g. �gure4. Guards that are true or resets that are empty are often left blank.{ P : L ! CC is a function which associates a progress condition (oftencalled an invariant) with every location. Intuitively, an automata can onlystay in a state while its progress condition is satis�ed. Progress conditionsare shown adjacent to states in our depictions, see e.g. �gure 2.Timed automata are interpreted over time/action transition systems whichare triples, (S; s0;!), where,{ S is set of states;{ s0 is a start state;{ !� S � Lab � S is a transition relation, where Lab = A+ [ R+ . Thus,transitions can be of one of two types: action transitions, e.g. (s1; a; s2),where a 2 A+ and time passing transitions, e.g. (s1; x; s2), where x 2 R+and denotes the passage of x time units. Transitions are written:s1 a�! s2 respectively s1 x�! s2A clock valuation is a mapping from clock variables C to R+ . For a clockvaluation u and a delay d, u � d is the clock valuation such that (u � d)(x) =u(x)+d for all x 2 C. For a reset set r, we use r(u) to denote the clock valuationu0 such that u0(x) = 0 whenever x 2 r and u0(x) = u(x) otherwise. u0 is theclock valuation that assigns all clocks to the value zero.The semantics of a timed automaton A = (L; l0; T; P ) is a time/action tran-sition system, (S; s0;!), where S is the set of all pairs < l; u > such that l 2 L1 The form that such constraints can take is typically limited, however since we arenot considering veri�cation this is not an issue for us.



and u is a clock valuation, s0 =< l0; u0 > and ! is given by the followinginference rules:-l g;a;r����! l0 g(u)< l; u > a�! < l0; r(u) > 8d0 � d : P (l)(u� d0)< l; u > d�! < l0; u� d >We assume our system is described as a network of timed automata. Theseare modelled by a process vector2 denoted, jj < A1; :::; An >. If 8i(1 � i �n) : Ai = (Li; li;0; Ti; Pi) then the product automaton, which characterises thebehaviour of jj < A1; :::; An > is given by,(Lp; lp0 ; T p; P p)where Lp = f jjv j v 2 L1 � :::�Ln g, lp0 = jj < l1;0; :::; ln;0 >, T p is as de�ned bythe following two inference rules and P p(jj < l1; :::; ln >) = P1(l1) ^ :::^ Pn(ln).li gi;a?;ri�����! l0i lj gj ;a!;rj�����! l0jjjv gi ^ gj ;a;ri[rj����������!jjv[l0i=li; l0j=lj ] li g;a;r����! l0i a 2 Ajjv g;a;r����!jjv[l0i=li]where 1 � i; j � jvj, i 6= j.2.2 TimelocksWe can formulate the notion of a timelock in terms of a testing process. Con-sider, if we take our system which we denote System and compose it completelyindependently in parallel with the timed automaton, Tester, shown in �gure 1,where the zzz action is independent of all actions in the system. Then for anyx2 R+ if the composition ||<Tester(x),System> cannot perform zzz then thesystem contains a timelock at time x.This last illustration indicates why timelocks represent such degenerate sit-uations - even though the Tester is in all respects independent of the system,e.g. it could be that Tester is executed on the Moon and System is executedon Earth without any co-operation, the fact that the system cannot pass timeprevents the tester from passing time as well. Thus, time really does stop and itstops everywhere because of a degenerate piece of local behaviour.This is a much more serious fault than a classical (local) deadlock. For ex-ample, the automaton Stop, also shown in �gure 1, generates a local deadlock,however, it cannot prevent an independent process from evolving. In the sequelwe will use the term local deadlock to denote such a non-timeblocking deadlock.We consider two varieties of timelock which we illustrate by example, see�gure 2,2 Although our notation is slightly di�erent, our networks are a straightforward sim-pli�cation of those used in UPPAAL. The simpli�cations arise because we do notconsider the full functionality of UPPAAL. For example, we do not consider com-mitted locations or data variables.



Tester(y)
s0

s1

Stop

s0

zzz
t==y

Fig. 1. A tester and a (locally) deadlocked timed automata1. The �rst is System1; this is a zeno process which performs an in�nite numberof aaa actions at time zero. This system is timelocked at time zero and if wecompose it independetly in parallel with any other system, the compositesystem will not be able to pass time. We call such timelocks zeno timelocks .2. The second is the network ||<System2,System3>; this composition containsa timelock at time 2, which arises because System2 must have performed(and thus, synchronised on) action aaa by the time t reaches 2 while System3does not start o�ering aaa until t has past 2. Technically the timelock isdue to the fact that at time 2 System2 only o�ers the action transitionaaa and importantly, it does not o�er a time passing transition. Since thesynchronisation cannot be ful�lled the system cannot evolve to a point atwhich it can pass time. We call such timelocks composition timelocks .The interesting di�erence between these two varieties of timelock is thatthe �rst one locks time, but in the classical sense of untimed systems, is notdeadlocked, since actions can always be performed. However, the second reachesa state in which neither time passing or action transitions are possible. Suchcomposition timelocks are the variety we will address in this paper.2.3 A Bounded TimeoutWe describe a rather standard timeout behaviour, which we call a Bounded Time-out . The general scenario is that a Timeout process is monitoring a Componentand the timeout should expire and enter an error state if the Component doesnot o�er a particular action, which we call good, within a certain period of time.The precise functionality that we want the timeout to exhibit is3:1. Basic behaviour. Assuming Timeout is started at time t, it should generate atimeout action at a time t+D if and only if the action good has not alreadyoccured. Thus, if action timeout occurs, it must occur exactly at time t+D3 Our presentation here is similar to that in [6]
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Fig. 2. Timelock Illustrationsand if action good occurs, then it must occur at some time from t up to,but not including, t +D. Using the terminology of [11] this yields a strongtimeout. A weak timeout would, in contrast, allow a non-deterministic choicebetween the good action and the timeout at time t+D.2. Urgency of good action. We also require that if the good action is enabledbefore time t + D then it is taken urgently , i.e. as soon as good is enabledit happens. This urgency requirement is akin to the \as soon as possible"principle which has been applied in timed process algebra [12].3. Timelock Free. Finally we want our composed system to be free of timelocks,for obvious reasons.4. Simple. We also require that the solution is not \prohibitively" complex.Notice that in the �rst two of these requirements, urgency arises in two ways.Firstly, we require that timeout is urgent at time t+D and secondly, we requirethat good is urgent as soon as it is enabled. Without the former requirement thetimeout might fail to �re even though it has expired and without the latter, eventhough the good action might be able to happen it might nonetheless not occurand thus, for example, the timeout may expire even though good was possible.We also emphasize that although our work here was inspired by that in [6], itis somewhat di�erent. In particular, [6] presents a bounded timeout in a discretetime setting, thus, the �nal time at which the good action can be performed andthe time of expiry of the Timeout are at di�erent discrete time points.



3 Modelling the Bounded Timeout in UPPAALIn this section we describe the bounded timeout in UPPAAL. However, ourdiscussion is not solely relevant to this notation, and could be extrapolated totimed automata notations in general.Basic Formulation. We begin by considering the Timeout shown in �gure 3.This process realises the �rst requirement that we identi�ed for modelling thebounded timeout - good is o�ered at all times in which t<D. Then timeoutis performed when t==D, in which case the system passes into state a2 whichplays the role of an error state. Importantly, the guard (t<=D) forces the requiredurgency on the timeout action. Thus, if good has not happened earlier, timeoutmust happen when t==D. Furthermore, it is easy to see that this is indeed a strongtimeout - its behaviour is deterministic when t==D.
(t<=D)

good?
t<D

a0

a1

a2

Timeout1

timeout
t==D

Fig. 3. An UPPAAL Automaton for Timeout1However on its own, this automaton is not su�cient since nothing forcesthe good action to be taken if it can be. This was our second requirement. Forexample, consider Component1 shown in �gure 4 which will perform an internalaction tau4 at some time r<=C and then o�er the good action. The internalaction can be viewed as modelling some internal computation by Component1.The completion of which is signalled by o�ering good!. Now if we put Timeout1and Component1 in parallel then even if good could occur while t<D, it mightnot be taken. Thus, a possible trace of the system:||<Timeout1,Component1>is, (tau; x1) (timeout; x2) where, x1 < C, x1 < D and x2 = D.4 In fact, internal transitions are left unlabelled in UPPAAL, however, we abuse no-tation in order that we can refer to the transition.
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tau
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Fig. 4. UPPAAL Automata for Component1 and Component2Thus, we need some way to make good urgent. The standard approach isto enforce urgency in the component. For example, we could use Component2shown in �gure 4. This automaton will perform the internal action as before andthen it must immediately perform the good action.Now the problem with the composition:||<Timeout1,Component2>is the relative values of D and C. In particular, if C is larger than D then thissystem can time-block in the following way:-1. the timeout could �re when t==D;2. then if tau happens when r==C say, good! will become urgent, howeverit cannot be performed since Timeout1 is no longer o�ering it, causing atimelock. Component2 will not let time pass until good is performed, butgood cannot be performed because of a mis-matched synchronisation.We would argue that this is a big problem. In particular, it is not generallypossible to ensure that C is less than D since our component behaviour wouldtypically be embedded in the complex functioning of a complete system. Infact, writing C as we have done, abstracts from a likely multitude of complexityand deriving such a value from a system would typically require analysis ofmany components of the complete system, some of which might be time non-deterministic at the level of abstraction being considered.Furthermore, in some situations we might actually be interested in analysingwhat happens if the good action arrives after the timeout has �red. Consider,for example, that our timeout behaviour is being used to wait for an acknowl-edgement in a sender process. The component performing good after timeouthas �red corresponds to the acknowledgement arriving after the timeout has



expired, which is of course a possible scenario in practical analysis of communi-cation protocols.The problem with our ||<Timeout1,Component2> solution is that it does notenable us to analysis this situation, rather the system timelocks when Component2forces the good action to happen. Unfortunately, as mere mortals, we are unableto analyse systems after the end of time!
(t<=D)

good?
t<D

a0

a1

a2
timeout
t==D

good?

Timeout2

Fig. 5. An UPPAAL Automaton for Timeout2One way to avoid this timelock is to add \escape" transitions in the timeout.For example, consider the timeout behaviour encapsulated by Timeout2. Nowthe composition,||<Timeout2,Component2>cannot block time. However, this is not a satisfactory solution since ratherthan Timeout2 just evolving to a single deadlock state, a2, after performingtimeout, it could evolve to a complex behaviour; of course in practice it isalmost certain to do this. However then, escape transitions would have to bescattered throughout the complex behaviour. This would generate signi�cantspeci�cation clutter, which would be compounded if the system contained morethan one timeout.The consequences become particularly severe if the timeout is enclosed insome repetitive behaviour, e.g. see �gure 6. This is because, since no assumptionscan be made about the time at which the component will want to performthe good action, escape transitions on good will have to be added at a0, a2,b0, b1 (and actually a1 as well). Thus, �rstly, the behaviour prior to reachingthe timeout has been altered, i.e. escape transitions must be added at b0 andsecondly, it is unclear how many escape transitions need to be added to eachnode in the loop, since state a2 may be reached many times before the �rst goodescape transition is performed.Urgent Channels. UPPAAL also contains the concept of an urgent channel.The speci�er is allowed to denote a particular channel as urgent, which means



(t<=D)

good?
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timeout
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Fig. 6. Timeout2 in a repetitive contextthat as soon as synchronisation on that channel can take place, it does. However,UPPAAL restricts the use of such urgent channels. In particular, an urgenttransition can only have the guard true.Intuitively, urgent channels seem to be what we require in order to avoidenforcing urgency in the component process. In particular, they enforce urgencyin a \global" manner, rather than requiring it to be enforced in the componentprocess. However, it turns out that the restriction on guarding of urgent channelsthat UPPAAL imposes prevents derivation of a suitable solution, see [5] whichinvestigates possible solutions with urgent channels which were inspired by thesolutions presented in [6].In summary then, although we do not have a formal proof that a completelysatisfactory UPPAAL description of the timeout cannot be found, we postulatethat if it is possible, the complexity inherent in the solution would be prohibitive.4 Timed Automata with DeadlinesA more radical approach to realising a satisfactory bounded timeout is to con-sider the Timed Automata with Deadlines (TAD) framework developed by Bornotet al [3, 4]. The reason for selecting this model is that it is argued that it hasvery nice properties with regard to time progress and timelocks. In particular,the following property holds,



a state cannot be reached in which neither action or time passing tran-sitions can be performed.This property is referred to as time reactivity and since such situations (asopposed to zeno timelocks) arise through mismatched parallel compositions, itensures freedom from composition timelocks.Basic Framework. For a full introduction to TADs, we refer the interestedreader to [3, 4]; here we highlight the main principles:{ Deadlines on Transitions. Rather than placing invariants on states, deadlinesare associated with transitions. Transitions are annotated with 4-tuples:(a; g; d; r)where a is the transition label, e.g. good; g is the guard, e.g. t<=D; d is thedeadline, e.g. t==D; and r is the reset set, e.g. t:=0. a, g and r are famil-iar from standard timed automata and the deadline is new. Conceptually,the guard states when a transition is enabled, i.e. may be taken; while thedeadline states when it must be taken and taken immediately.It is also assumed that the constraint,d =) gholds, which ensures that if a transition is forced to happen it is also ableto. Clearly, if this constraint did not hold then we could obtain timelocksbecause a transition is forced to happen, but it is not enabled.Since we have deadlines on transitions there is no need for invariants onstates. Thus, they are not included in the framework.{ (Timewise) Priorities. By restricting guards and deadlines in choice con-texts, prioritised choice can be expressed. For example, if we have two tran-sitions: b1 = (a1; g1; d1; r1) and b2 = (a2; g2; d2; r2)then when placing them in a choice context we can give b2 priority over
(a2,g2,d2,r2)(a1,g1’,d1’,r1)

Fig. 7. A Prioritised Choiceb1 by restricting the guards and deadlines of b1, see �gure 7. [3] considers a



variety of priority operators, which ensure that if the higher priority actionwill eventually be enabled within a particular period of time then it takesprecedence over competing actions. These di�erent priority mechanisms areobtained by including timed temporal operators in the restricted guards anddeadlines. The extreme example of which is to enforce the following restrictedguard and deadline:g10 = g1 ^ 2:g2 and d10 = d1 ^ g10which ensures that b1 is only enabled if g1 holds and there is no point in thefuture at which g2 will hold.{ Parallel Composition with Escape Transitions. The TADs framework em-ploys a di�erent parallel composition operator to that arising in standardtimed automata. The key idea is that of an escape transition. These arethe local transitions of automata components that are combined when gen-erating a synchronisation transition. Thus, not only are synchronisationsincluded, but component transitions of the synchronisation are as well. Thetimewise priority mechanism is then used to give the synchronisation tran-sition highest priority. Intuitively, the escape transitions can only happen ifthe synchronisation transition will never be enabled. We will illustrate thisaspect of TADs shortly.{ Synchronisation Strategies. [3] also consider a number of di�erent synchro-nisation strategies, but these are not relevant to our discussion. In terms of[3] we only consider AND synchronisation.In fact, in addition to ensuring time reactivity, the TADs framework limitsthe occurrence of local deadlocks. Speci�cally, the escape transitions allow thecomponents of a parallel composition to escape a potential local deadlock byevolving locally. Associated with such avoidance of local deadlocks is the en-forcement of maximal progress5, which exactly requires that if a synchronisationis possible, it is always taken in preference to a corresponding escape transition.Basic De�nitions. We now brie
y review the de�nition of timed automatawith deadlines. Also, in order to preserve some continuity through the paper wecontinue to use the UPPAAL synchronisation notation even though it is di�erentto that used in [3].An arbitrary element of A, the set of TADs, has the form:(L; l0; T )where, L is a �nite set of locations; l0 is the start location; and{ T � L�CC�CC�A+�P(C)�L is a transition relation. A typical elementof which is, (l1; g; d; a; r; l2), where l1; l2 2 L are automata locations; g 2 CC5 Note, the term is used in a related but somewhat di�erent way in the timed processalgebra setting [12].



is a guard; d 2 CC is a deadline; a 2 A+ labels the transition; and r 2 P(C)is a reset set. (l1; g; d; a; r; l2) 2 T is typically written,l1 g;d;a;r����! l2In addition, we will use the function:�B(l) = f (b; g) j 9l0 : l g;d;b;r�����! l0 ^ b 2 B gStandard TADs. We will introduce a number of di�erent TADs approaches inthis paper. These are distinguished by their rules of parallel composition. Herewe consider the basic approach, as introduced in [3, 4], which we call standardTADs . A TADs expansion theorem for deriving the product behaviour from aparallel composition is given in [3]. Here we give an equivalent inference rulede�nition for our state vector notation:-(R1) li gi;di;a?;ri�������! l0i lj gj ;dj;a!;rj�������! l0jjjv g0;d0;a;ri[rj���������!jjv[l0i=li; l0j=lj ]jjv g0i;d0i;a?;ri�������!jjv[l0i=li]jjv g0j ;d0j ;a!;rj�������!jjv[l0j=lj ]where 1 � i; j � jvj ^ i 6= j and,g0 = gi ^ gjd0 = g0 ^ (di _ dj)g0i = gi ^ 2:(gi ^ gj)d0i = g0i ^ dig0j = gj ^ 2:(gi ^ gj)d0j = g0j ^ dj(R2) li g;d;a;r�����! l0i a 2 A) Sk2(f1::jvjg�fig) �fag(lk) = ;jjv g;d;a;r�����!jjv[l0i=li]where 1 � i � jvj. (R1) generates synchronisation and escape transitions withthe constrained guards and deadlines ensuring that synchronisation has priorityin the required manner. (R2) is the interleaving rule, which is straightforwardapart from the second condition which ensures that transitions on incompleteactions are only generated by this rule if synchronisation, and hence rule (R1),is not possible.As an illustration of these inference rules consider ||<A1,A2> where A1 andA2 are shown in �gure 8. The unreduced composition arising from directly ap-plying the inference rules is shown in �gure 9(a) (2 is denoted [] and : isdenoted �) and �gure 9(b) depicts the resulting composed TAD when guardsand deadlines have been reduced by expanding out temporal operators and ap-plying propositional logic. In addition, transitions with unful�llable guards, e.g.false, have been removed.We can observe the following:-
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Fig. 8. TADs A1 and A2
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(b)Fig. 9. Unreduced and reduced composition of A1 and A21. In �gure 9(a) the transition coming from s1t1 labelled a is the synchroni-sation transition.2. In �gure 9(a) the two transitions coming from s1t1 labelled a? and a! re-spectively, are the escape transitions. The �rst arises from automaton A1and the second from automaton A2. The guards of these escape transitionsensure that they can only �re if the synchronisation will never in the fu-ture be possible. Thus, synchronisation transitions have priority over escapetransitions.3. Figure 9(b) shows that since the synchronisation transition inherits theguards of a? from A1, no escape transition on a? is possible. If s1 t1 isentered with t>2 then the escape transition on a! can be taken, enabling A2to escape its local deadlock.Bounded Timeout in Standard TADs. Now we reformulate our boundedtimeout in standard TADs. The component that we consider is Component3 andthe timeout is Timeout4 both shown in �gure 10.
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Fig. 10. A TAD for Timeout4 and Component3So, Component3 behaves similarly to Component2 except the good! transitionis not urgent, i.e. the good transition is never forced to happen6. In the termi-nology of [3], such transitions are called lazy. In contrast, all the transitions inTimeout4 are eager [3], since their guard and deadline are the same. This impliesthat as soon as the transition can happen it will happen.Now by applying the above inference rules and removing impossible transi-tions, the composite automaton shown in �gure 11 results. The full version ofthis paper [5] presents the intermediate steps required to derive this composition.If we �rst focus on state a0 b1 then we can see that this composite behaviourgives priority to the synchronisation between good? and good! which is indicatedby the transition labelled good. Thus, while t<D this is the only transition thatcan �re (notice r==0 automatically when entering state a0b1) and furthermoreit is eager.Also, if state a0b1 is entered with t==D then timeout is urgent. Furthermore,from this state the action good! can happen (but lazily) either at time D orlater. This is the escape transition, which allows Component3 to move out ofstate b1. Remember the timelock that we obtained previously arose because thecomponent could not exit the state where it wished to perform good!7.This solution seems to ful�l our requirements - it is a strong timeout, ur-gency is enforced as required on both timeout and good and the solution istimelock free. However, there are some peculiarities with the resulting compos-ite behaviour. Consider for example, the transition from a0 b0 labelled good?.This represents the timeout performing its good escape transition. However, con-6 We prefer to enforce the urgency of good in the timeout because in some of our casestudies, e.g. [6], there are situations in which enforcing the urgency of good on thesystem side can cause problems, since nothing ensures that the timeout is ready tosynchronise on the good exactly when it is o�ered. In order to avoid this possibilitywe require the system to passively o�er its action and thus, wait until the timeoutis ready to receive it.7 Actually, the situation is not as severe here since good! is lazy.
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Fig. 11. ||<Timeout4,Component3> in standard TADsceptually it is being performed too early - before the synchronisation on good iseven o�ered. In fact, if a0 b0 is entered with t==0, which will almost certainly bethe case, then good? will almost always be selected since it is an eager transition.In response to this observation we consider alternative TADs formulations in thenext section.5 Alternative TAD FormulationsWe consider two alternative TAD formulations8. [5] actually considers a thirdformulation, but this turns out to be unsatisfactory. Both satisfy the require-ments that we identi�ed in the introduction for our bounded timeout. Thus, inparticular, they are both time reactive. However, the solutions vary in the extentto which they limit local deadlocks.5.1 Sparse Timed Automata with DeadlinesThis is a minimal TADs approach, in which we do not generate any escapetransitions. Furthermore, since escape transitions are not generated, we do nothave to enforce any priority between the synchronisation and escape transitions.8 We still call these timed automata with deadlines, because the basic principles, asconcieved by Bornot et al [3, 4], still apply, i.e. placing deadlines on transitions andusing prioritised choice.



With sparse TADs the following parallel composition rules are used:li a?;gi;di;ri�������! l0i lj a!;gj ;dj;rj�������! l0jjjv a;g0;d0;ri[rj���������!jjv[l0i=li; l0j=lj ] li a;g;d;r�����! l0i a 2 Ajjv a;g;d;r�����!jjv[l0i=li]where 1 � i; j � jvj, i 6= j, g0 = gi ^ gj and d0 = g0 ^ (di _ dj).These rules prevent uncompleted actions from arising in the composite be-haviour; they only arise in the generation of completed actions, while completedactions o�ered by components of the parallel composition can be performed in-dependently. This de�nition has the same spirit as the normal UPPAAL rulesof parallel composition. The di�erence being that here we have deadlines whichwe constrain during composition to preserve the property d ) g. It is straight-forward to see that as long as this property holds, we will have time-reactivity.Let us consider once again the behaviour,||<Timeout4,Component3>which is the network we were focussing on in the previous section. Now withour new parallel composition rules, we obtain the composite behaviour shown in�gure 12. This is an interesting and very reasonable solution. Firstly, it meets all
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Fig. 12. ||<Timeout4,Component3> in Sparse TADsthe requirements identi�ed at the start of this paper for our bounded timeout.Thus, in particular, it is time-reactive. However, it makes no e�ort to limit



local deadlocks, so communication mis-matches yield local deadlocks rather thantimelocks.5.2 TADs with Minimal Priority Escape TransitionsThe idea here is to ensure maximal progress as standard TADs do, but ratherthan just giving escape transitions lower priority than their corresponding syn-chronisation, we also give them lower priority than other completed transitions.Thus, a component can only perform an escape transition if the component willnever be able to perform a completed transition.The parallel composition rules are:(R1) li a?;gi;di;ri�������! l0i lj a!;gj ;dj ;rj�������! l0jjjv a;g0;d0;ri[rj���������!jjv[l0i=li; l0j=lj ]where, 1 � i; j � jvj, i 6= j, g0 = gi ^ gj , d0 = g0 ^ (di _ dj). and,(R2) li a;g;d;r�����! l0i a 2 Ajjv a;g;d;r�����!jjv[l0i=li] (R3) li a;g;d;r�����! l0i a 2 Ajjv a;g00;d00;r�������!jjv[l0i=li]where, 1 � i � jvj and,g00 = g ^ V(b; g0) 2 �A(li)2:g0 ^V(b; g1) 2 �A(li) Vj 2 (f1::jvjg � fig) V(b; g2) 2 �fbg(lj )2:(g1 ^ g2)d00 = d ^ g00R1 is the normal synchronisation rule; R2 de�nes interleaving of completedtransitions; and R3 de�nes interleaving of incomplete, i.e. escape, transitions. Inthis �nal rule, g00 holds when,1. g holds;2. it is not the case that an already completed transition from li could eventu-ally become enabled; and3. it is not the case that an incomplete transition (including a itself) o�ered atstate li could eventually be completed.Applying these rules to the composition:||<Timeout4,Component3>and removing impossible transitions, see [5] for a full presentation, yields thecomposition shown in �gure 13. This solution removes the excessively early es-cape transition from a0b0, but preserves all other transitions.
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Fig. 13. ||<Timeout4,Component3> in TADs with minimum priority escape transitions6 Discussion and ConclusionsWe failed to �nd a fully satisfactory UPPAAL speci�cation of a bounded timeout.In response, we presented three di�erent TADs solutions - standard TADs, sparseTADs, and TADs with minimal priority escape transitions. The latter two ofwhich are new to this paper9. All three meet all the requirements we identi�edat the start of the paper for our timeout. However, our preference is for the2nd and 3rd solutions. The 2nd is interesting because it gives a timelock freesolution but does not seek to minimise local deadlocks, while the 3rd adds escapetransitions to limit such local deadlocks.It is interesting to consider a speci�c timeout example. In the same way asearlier in the paper, we consider the implications if we view the good action asthe passing of an acknowledgment from the medium to a waiting sender process.The situation that the component wishes to perform good after the timeout has�red corresponds to the medium delivering the acknowledgment too late. Thetwo solutions handle this situation di�erently.With the sparse TADs solution, a local deadlock is generated. Conceptually,this indicates that the medium is prevented from delivering the acknowledge-ment. This is in fact the normal manner in which mis-matched communicationsare handled in untimed systems - local deadlocks result. In contrast, with TADs9 In particular, the sti� parallel composition of [13] which seem related to our sparseTADS are in fact rather di�erent since they do not ensure that deadlines implyguards when generating the product. Thus, they do not ensure time reactivity.
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