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Specifying component and context
specification using Promotion

John Derrick and Eerke Boiten
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
(Phone: + 44 1227 764000, Email: J.Derrick@Qukc.ac.uk.)

Abstract

In this paper we discuss how the specification of components may be
separated from the description of the context in which they are used.
There are a number of ways in which this might be possible and here
we show how to use the technique of promotion in Object-Z to combine
components which are specified using process algebras.

We discuss two approaches, the first is to separate out the specifica-
tion into two distinct viewpoints written in different languages. These
viewpoints are then combined by a process of translation and unifica-
tion. The second approach will be to use hybrid languages composed of
a combination of CSP and Object-Z. We also consider how to refine such
component based descriptions and consider issues of compositionality.

Keywords: Components; Viewpoints; Object-Z; LOTOS; CSP; Refinement.

1 Introduction

In this paper we discuss how the specification of components may be separated
from the description of the context in which they are used.

The specification of a large and complex system often involves multiple
instances of the same component. These components are combined together,
perhaps in a number of different contexts, in order to provide some overall
functionality. This type of component based software engineering has become
an important mechanism to support code reuse and has a useful separation of
concerns. Components have become particularly important in object oriented
and distributed systems, both in terms of coping with the migration of legacy
systems and also as a means to provide distribution independent behaviour
across a number of platforms.

For example in a distributed system, multiple copies of a particular com-
ponent might be used to provide the overall functionality or service required.
Failure recovery can then be supported by keeping multiple copies of a com-
ponent with identical state. An effective way to describe such a scenario is
to specify the components separately and then provide a description of how
they might be combined. By doing so we can support code reuse and separate
development, and also allow appropriate specification languages to be used as
and when needed. For example, one language may be used to describe the
components whilst a different one is used to describe the context in which the
components are used. There are a number of ways in which this might be



possible and in this paper we show how to use the technique of promotion in
Object-Z to combine components which are specified using a process algebra.

Object-Z [10], an object-oriented extension of Z [27], is a state based lan-
guage which encapsulates state, initialisation and a number of operations into
a class. Classes can be used as types, allowing object-instantiation to be spec-
ified. A class can thus contain objects, and its operations can be defined in
terms of operations performed on the objects themselves. When such a global
operation is defined in terms of a local operation upon an indexed component
(e.g. object), the local operation is said to be promoted [29]. In Object-Z an
operation will be promoted if we apply an operation to an object in a class, and
this use of promotion is very common in both Object-Z and Z itself (although
the mechanism needed to specify promotion is slightly more complex in Z due
to the lack of encapsulation into classes).

We discuss two approaches to separating components from contexts. The
first is separate out the specification into two distinct viewpoints (i.e. partial
specifications) written in different languages (here LOTOS [3] and Object-Z).
These viewpoints are then combined by a process of translation and unification.
If we conform to certain promotion templates the resulting unification will be
consistent (i.e. the unification has an implementation). The second approach
will be to use hybrid languages composed of a process algebra part and a
state-based part, for example, a combination of CSP [18] and Object-Z. Here
we use CSP to describe the components, and Object-Z to describe how these
components are combined. These approaches are illustrated with a specification
of a transparency mechanism in a distributed system.

We also consider how to refine such component based descriptions and con-
sider issues of compositionality.

The structure of the paper is as follows. In section 2 we introduce our exam-
ple which shows how components can be used to specify a failure transparency
mechanism for a distributed system. The subsequent section discusses how we
can structure specifications to support the description and reuse of components
separately from how they are used. In section 4 we look at the refinement of
components, and we conclude in section 5.

2 Example: failure transparencies in ODP

We use the term component to mean an isolated part of a system which can
be used in a number of different contexts to provide differing functionalities.
Because of the natural encapsulation offered by object based languages, com-
ponents can be thought of as one or more objects grouped together, however,
in this paper we will think of each component as being encapsulated into one
object*. Components have become particularly important in distributed sys-
tems, both in terms of coping with the migration of legacy systems and also
as a means to provide distribution independent behaviour across a number of

*Some authors prefer to think of a component as a class, and then the use of components
is phrased in terms of instances of components.



platforms.

To illustrate their use we consider an example of the latter. One of the
central features of modern distributed system architectures is to hide certain
aspects of actual distribution by providing a number of transparencies. The
transparencies mean that the user, or indeed another part of the same system,
is not concerned with the precise details of distribution and a seamless service
is offered. A good example in practice is the use of nfs mountings of home
directories to provide a location transparency to the user.

The Open Distributed Processing (ODP) architecture is a joint ITU/ISO
standardisation framework for constructing distributed systems in a multi-
vendor environment. ODP uses a number of viewpoints to specify a complete
system. The architecture has reached a level of maturity, and the ODP Refer-
ence Model [19] has recently progressed to become an international standard.
The reference model defines a number of transparencies, and the engineering
viewpoint is concerned in particular with the provision of various transparen-
cies needed to support distribution. For example, distribution transparencies
defined in the ODP reference model include, amongst others:

e Access transparency: which masks differences in data representation to
enable interworking.

e Location transparency: which masks the location of an object.

e Migration transparency: which masks from an object the ability of the
system to change its location.

e Replication transparency: which masks the use of replicated objects.

e Failure transparency: which masks the failure and possible recovery of
objects, and which might use replication transparency to do so.

As an example of the use of components we will consider the outline specifi-
cation of a computational object together with engineering mechanisms which
support failure transparency. To do so a single computational object is first
specified (here we just give a template) as an Object-Z class:

— CompObj

state declarations come here

—INIT
initialisation predicate comes here

put =

get

other operation definitions come here




which contains a number of operations (not fully specified): put, get, . . ..
The engineering mechanism consists of a number of Nodes, where each such
Node consists of a computational object ¢, an identifier and a boolean repre-
senting whether that node is in service. It has an operation start to bring it
into service and a put operation which performs a put on the computational
object c.

__ Node

¢ : CompObj
id : IN
[ : bool

__INIT
c.INIT N [ = false

put = c.put
start = [A() | 1']

This is a very simple example of promotion where the local put on c¢ is
promoted to a put on the Node. The failure transparency mechanism is achieved
by using a collection of nodes indexed by a function over some index set I.
Distinct nodes have distinct identifiers. There is an operation start to bring a
node into service, and an alarm when the number of nodes in service is less than
two (and therefore failure transparency might faill). The failure transparency
itself is ensured by replicating the computational operations across all nodes,
so the put operation is promoted to an operation in this class and is performed
simultaneously on all nodes in service. The replication ensures that if one node
fails then there is at least one more node containing a correct copy of the state
which can be used in its place.

__ FTransparency

f:I -+ Node
Vi,j:domf ei#j= f(i).id # f(j).id

__INIT
#domf =2AVYi:domf e f(i).INIT

put E”(z‘:domf.f(i).l) f(i).put
alarm = [report! : R | #{i : dom f | f(i).1} < 1

A report! = ‘start new node'
start = [id? : N | Vi o f(i).id = id? = f(i).start]

The use of a number of nodes indexed by f has allowed us to separate out the
global behaviour (e.g. the alarm operation) from the behaviour at each node.



This is a typical use of promotion. We have used Object-Z here, however,
the same promotion facility is available in Z (see [29, 1] for comprehensive
accounts), although because Z does not have object encapsulation, the exact
mechanism is syntactically more complex than in Object-Z.

3 Structuring Specifications

We have specified the example above entirely in Object-Z, however, it is now
well recognised that it is sometimes necessary or desirable to use different lan-
guages to specify different parts of a system. This is particularly true in a
large complex distributed system which might encompass many concerns, and
the ODP reference model acknowledges this by splitting a single specification
into a number of partial specifications called wviewpoints, and recognising that
different languages might be applicable in different viewpoints.

Viewpoints provide a basic separation of concerns, enabling different par-
ticipants to observe the system from suitable perspectives and at suitable levels
of abstraction. It is a central device for structuring and managing the com-
plexity inherent in describing systems. ODP uses five predefined viewpoints
(enterprise, information, computational, engineering and technology), but is
not prescriptive about the choice of specification language to be adopted with
particular viewpoints. However, it does advocate that the chosen languages
should be formal [5]. Because of the perspectives the viewpoints offer, these
languages will typically include behavioural techniques such as process algebras
(e.g. LOTOS, CSP etc) and state based techniques such as Z and Object-Z.

With issues such as these in mind there have been a number of proposals to
combine or integrate Z and Object-Z with process algebras [25, 12, 14, 26, 13, 22,
28, 15], and we are interested here in supporting component based specification
by using such methodologies. The key idea, as shown in the above example,
is to use promotion to separate out the component from how components are
combined and used globally. There are two possible approaches to this which
we discuss in turn.

The first approach will be to separate out the specification into two distinct
partial specifications written in different languages (here we will use LOTOS
and Object-Z). Each partial specification will be largely independent and self
contained, but can be combined by a process of translation and unification. If
we conform to certain templates the resulting unification is guaranteed to be
consistent by construction.

The second approach will be to use hybrid languages composed of a process
algebra part and a state-based part, for example, a combination of CSP and
Object-Z. Here a complete specification consists of one language being used to
combine elements described in another. The hybrids described in [25, 12] use
Object-Z to specify the components together with CSP to describe the compo-
nent interaction. Here we reuse this mechanism to enable us to use promotion
as a global way of gluing the components together. Although these hybrid
languages are clearly applicable to viewpoint architectures such as ODP, they



in fact provide a complimentary approach by describing a single specification
composed of two languages as opposed to two partial specifications.

3.1 Viewpoints and promotion

One approach to using promotion to specify components is to specify the com-
ponent in one viewpoint, with the description of how components will be used
in another viewpoint. These viewpoints are thus partial specifications of the
complete system specification. The viewpoints are linked by correspondences
which describe the relationship between the viewpoints.

One of the problems of using partial specifications in development is that
descriptions of the same or related entities can appear in different viewpoints
and must co-exist. Thus, different viewpoints can impose contradictory re-
quirements on the system under development and therefore the consistency of
specifications across the viewpoints becomes important. Two viewpoints are
said to be consistent if we can find a single implementation satisfying both view-
points (i.e. the implementation must be a refinement of both viewpoints). The
problem is complicated by the fact that we can expect viewpoint specifications
to be written in different languages.

Given one viewpoint specification written in, say, Object-Z and another
viewpoint written in LOTOS, how can we reconcile these two viewpoints for
both consistency and further development? One way to do this is by translating
the LOTOS viewpoint into an observationally equivalent Object-Z specification.
We can then check the consistency of the two viewpoints now both expressed in
Object-Z. The constructive method used for this results in a common refinement
of the two Object-Z viewpoints, whose existence demonstrates consistency of
the original viewpoints [2].

3.1.1 Specifying the viewpoints

For example, we could use ODP viewpoints to specify the failure transparency
mechanism described above. Because we have separated the description into
two partial specifications we can use different specification languages in each
of them. The computational viewpoint specifies a single computational object
COMPOBJ, and we might choose to specify this in LOTOS. The second view-
point, an engineering view, describes how a number of COMPOB.J components
are used to provide the overall failure transparency functionality.

The specification of the computational viewpoint is simply the single com-
putational object COMPOBJ given as a LOTOS process.

process
COMPOBJ[put, get] : noexit := put?z : nat; getlx; COMPOBJ[put, get]
endproc

The specification of the engineering viewpoint consists of a number of Nodes,
the overall functionality being specified in the class FTransparency as before.
However, since the CompObj class was defined in another viewpoint in order



to use it here we have to include it in this viewpoint, however, we only define
its signature and do not prescribe any behaviour. That is, this viewpoint does
not make any assumptions about a CompObj and the effect of the operations,
apart from declaring their existence!.

Our viewpoints are thus partial in the sense that the functionality of a
viewpoint might be extended by another viewpoint, but they must be complete
in the sense that they need to type check and every item (e.g., class) must
at minimum be declared even if it isn’t given any behaviour. The engineering
viewpoint is thus given by:

— CompObj
|

I
— NIT

put = [ false |
get = [ false |

other operation definitions come here

together with Node and F Transparency exactly as before. Here in CompObj the
state and initialisation really do have completely empty signature and predicate
regardless of what is contained in the computational viewpoint.

These viewpoints overlap in the parts of the system that they describe,
therefore we need to describe the relationship between the viewpoints. In sim-
ple examples such as this one, these parts will be linked implicitly by having
the same name and type in both viewpoints. However, in general we may need
more complicated descriptions for relating common aspects of the viewpoints.
The correspondence here links the two viewpoints and simply identifies the
COMPOBJ class/process with its use as a component in the engineering view-
point, and can then be documented as a relation which says that COMPOBJ
corresponds to CompObj and the two put events coincide, etc:

{(COMPOBJ, CompObj), (put, put), (get, get)}

3.1.2 Combining the viewpoints

Comparing viewpoints written in LOTOS and Object-Z requires that we bridge
a gap between completely different specification paradigms. Although both lan-
guages can be viewed as dealing with states and behaviour, the emphasis differs
between them. To support consistency checking between these two languages
we exploit a behavioural interpretation of Object-Z.

TIn fact for technical reasons we declare all operations to have no behaviour, and this is
done by specifying that they have false predicate. This allows us to construct the combined
behaviour correctly.



Object-based languages have a natural behavioural interpretation, and there
is a strong correlation between classes in object-oriented languages and pro-
cesses in concurrent systems (see for example [31, 12, 24]). We have used this
correlation as the basis of a translation between the two languages, which has
been verified by defining a common semantics for LOTOS and Object-Z.

The translation is given in [9], where it is verified against a common semantic
model of the two languages. This model is based upon the semantics for Object-
Z described in [24], which effectively defines a state transition system for each
Object-Z specification. This model is used as a common semantic basis by
embedding the standard labelled transition system semantics for LOTOS into
it in an obvious manner.

The translation of the behaviour of a LOTOS specification produces a num-
ber of Object-Z classes, each one representing a behaviour expression (e.g.
process definition) of the LOTOS specification. The heart of the translation
consists of a number of translation rules, one for each of the LOTOS operators
or terminals (i.e. occurrences of stop, exit or any process instantiations). The
translation of a process definition begins with its terminals and successively
applies the operator translation rules given in [9] until each operator/terminal
has been translated.

For example, to translate the behaviour of COMPOBJ, we apply the trans-
lation algorithm to produce an Object-Z class called COMPOBJ containing
operations schemas put and get. Inputs and outputs of the operations per-
form the value passing, and predicates in the operations ensure the temporal
ordering explicit in the process algebra specification is preserved in the implicit
behaviour of the Object-Z class. The result of the translation is a class as
follows:

__ COMPOBJ

s:IN
z: IN

__INIT
s=0

_put _get

A(s, z) A(s)

ch? : IN ch!: N

z' = ch? z = ch!
s=0As"=1) (s=1As=0)

In fact the details of the mechanics of the translation are immaterial here,
we could instantiate this approach with any translation into Object-Z.

What is interesting about the use of components illustrated in this example
is that it provides support for a change of granularity. This was the use of a
single component in the computational viewpoint, and the use of promotion in



Object-Z when we promoted the operations defined in the skeleton COMPOBJ
class to an operation in the Node class. To perform this promotion all we needed
to know was the signature of the component. The behaviour of the component
was defined in a separate viewpoint and the correspondence relation was trivial
(it just linked up names). The advantage of this style is that it automatically
guarantees the consistency of the two viewpoints, and to unify them all that is
needed is the renaming of the signatures as specified in the correspondence.

Normally to check the consistency of two Z or Object-Z partial specifica-
tions we have to construct a least refined unification of the two viewpoints, in
two phases [2]. In the first phase (“state unification”), a unified state space
(i.e., a state schema) for the two viewpoints has to be constructed. The essen-
tial components of this unified state space are the correspondences between the
types in the viewpoint state spaces. The viewpoint operations are then adapted
to operate on this unified state. At this stage we have to check that a condi-
tion called state consistency is satisfied. In the second phase, called operation
unification, pairs of adapted operations from the viewpoints which are linked
by a correspondence have to be combined into single operations on the unified
state. This also involves a consistency condition (operation consistency) which
ensures that the unified operation is a refinement of the viewpoint operations.

For non-trivial behaviour checking this overlap can be complex. The beauty
of using components and promotion is that the separation of concerns that
this enforces is precisely one that reduces the complexity of recombining by
unification and the resultant consistency checking. It even allows the viewpoints
to be further developed in parallel, an issue we discuss later in Section 4.

3.2 Hybrid languages and promotion

The previous section considered how to combine two separate specifications
written in different languages. An alternative approach to integrating different
formal methods which we consider now is to define a hybrid language which
consists of one or more differing techniques. These hybrid languages have typ-
ically used a state based technique together with a process algebra. In [13]
Fischer provides a survey of some of the available techniques for combining 7
and Object-Z with process algebras such as CCS and CSP. Examples of these
approaches include [15, 28], which both offer combinations of Z and CCS and
also combinations of Object-Z and CSP discussed in [25, 12, 14, 26].

Because the different languages used in the hybrid have different roles (e.g.
Z to define the state space, CCS to define the communication), subsets of the
languages are occasionally used. For example, there is no object instantiation
in the Object-Z part of the hybrid language defined by Smith in [25]. How
the hybrid language is used is thus defined in part by what is, and what is
not, included in the components of the hybrid. In this section we will discuss
the hybrid language defined in [25], and consider how we might use promotion
within it to combine together a number of components. To do so we will
amend the subset of Object-Z used within the hybrid, and allow components
to be specified in CSP.



3.2.1 The semantics of hybrid languages

For a hybrid language to make sense it is necessary to give it a semantic model.
For example, in [25] classes are given a failures-divergences semantics, and
this allows classes defined in the Object-Z part of the specification to be used
directly in the CSP part and hence for these two languages to be combined.

The failures-divergences semantics is the standard semantics of CSP [7, 8].
A process is modelled by the triple (A4, F, D) where A is its alphabet, F is its
failures and D is its divergences. The failures of a process are pairs (s, X)
where s is a finite sequence of events that the process may undergo and X
is a set of events the process may refuse to perform after undergoing s. The
divergences of a process are the sequences of events after which the process may
undergo an infinite sequence of internal events, i.e. livelock. Divergences also
result from unguarded recursion. The semantics is well-formed if the failures
and divergences satisfy a number of axioms [7, 8].

To define the semantics of the hybrid language, Smith models a class C' by
a process. The alphabet is taken to be the set of events of the class, and the
traces are sequences of events corresponding to sequences of operations. The
failures are derived from the historiest of a class as follows: (¢, X) is a failure if

e there exists a finite history of C' satisfying the initial state,

e the sequence of operations of the history corresponds to the sequence of
events in ¢, and

e for each event in X, there does not exist a history which extends the
original history by an operation corresponding to the event.

Divergence is not possible since Object-Z does not allow hiding of operations
nor recursive definitions of operations, therefore the divergences of a class are
empty.

This approach enables classes specified in Object-Z to be used within the
CSP part of the specification. Thus Object-Z is used to describe the individual
objects and CSP is used to describe how these are combined and interact. The
motivation for this decomposition is given as: “Object-Z provides a convenient
way of modelling complex data structures needed to define the component pro-
cesses of such systems, and CSP enables the concise specification of process
interactions” [26]. This is particularly useful when the system under discus-
sion consists of a number of distinct components viewed as processes running
concurrently.

Although, this does allow a very nice separation of concerns between object
specification and process interaction, we sometimes might wish to specify more
than just concurrent synchronisation when we combine components. Consider,
for example, the combination of components specified in the FTransparency
class. At this global level we require three operations to be specified: put, start
and alarm.

¥The history model is the semantic model of Object-Z defined in [24].



The operation alarm does not appear in any of the components and thus
is a new operation specified in terms of the data structures in the class and
the components. The operation start applies the start operation in one (and
only one) component f(i) by promoting this operation, but which component
used depends upon an input that matches the components identity. The final
operation put is a concurrent operation of puts in each of the active components.
None of these operations are simple synchronisations and we have exploited the
flexibility of promotion here in that it allows a more complex interaction to be
specified when defining global operations in terms of component ones.

3.2.2  Using promotion in a hybrid language

Can we use this flexibility with a hybrid language? Not as it stands, but what
we would like to do is to use a hybrid language where the components can be
combined with the use of promotion as in the class FTransparency. To do so we
would need a semantic model where, for example, components specified in CSP
can be used within the Object-Z part of the specification. We briefly sketch
how this might be achieved.

The existing semantic approach defined in [25] gives a failures semantics to
the hybrid language by turning the history semantics for an Object-Z class into
a failures semantics in the manner described above. One option therefore is
to simply extend this to the range of Object-Z specified now, and this consists
of allowing object instantiation in the Object-Z part of the specification. The
history semantics defined in [24] gives a meaning to object instantiation in a
class by allowing it to be used as a type. The dot notation for initialising
and promoting operations is then defined in terms of the history model. The
promotion c.put is represented semantically by the history which states that
the object ¢ undergoes an event associated with the operation put.

Therefore the history semantics is sufficient to model the complete range of
Object-Z facilities that we are now using. Since the mapping from histories to
failures works for an arbitrary history we can give a failure semantics to Object-
Z specifications when they also contain object instantiation. The complete
hybrid specification can thus be given a failure semantics and this allows us
to use the flexibility of object instantiation and to promote local operations to
global ones. Such a specification might look something like:

CompObj = put?z — get!ls — CompObj

together with Node and FTransparency exactly as before, viz



__ Node

¢ : CompObj
id : IN
[ : bool

__INIT
c.INIT N[ = false

put = c.put
start = [A() | 1']

__ FTransparency

f:I -+ Node
Vi,j:domf ei#j= f(i).id # f(j).id

__INIT
#domf =2AVi:domf e f(i).INIT

put = ;.dom fer(sy.y £(8)-put
alarm = [report! : R | #{i : dom f | f(i).1} < 1

A report! = “start new node"]
start = [id? : N | Vi o f(i).id = id? = f(i).start]

If we wished to calculate the failures of, say, the Node class, then we first
note that in the history model, ¢.INIT is identical to the schema which states
that ¢ has undergone no events, i.e. c.events = (). We can then subsequently
calculate failures of the class Node. The operation start can always be applied.
Initially a put event can occur, however, once it has done so no further put
events are possible until a get has been invoked on ¢. Since this is not available
in the class Node all further events on ¢ are refused. The failures of Node are
thus$:

{(5,) | 5 1 {start} = s}
{(s " put ™ t,X) | s | {start} = s At | {start} = t A X C {put}}

The alternative approach is not to use the failure semantics, but to use the
history semantics as the common semantic model. That is, keep the history
model of the Object-Z part of the specification and give a history interpretation
to the failures model of the CSP part of the hybrid specification. To do so one
would need to turn each failure into a history. Although we do not go into

§The notation s | A is the trace s restricted to events from the set A.



details here, it should be clear that this is feasible modulo some technicalities.
The technicalities arises because histories contain names of states etc, which do
not appear in failures. However, it would be possible to define a canonical em-
bedding of failures into histories that resolves this problemY. Having achieved
this we will have extended the history semantics to cover both Object-Z and
CSP parts of a hybrid specification, and therefore we can use CSP to define the
components and Object-Z to define the global behaviour in terms of promoted
operations.

4 Developing and refining components

A key aspect to component based software engineering is the ability not only
to specify the components separately, but also to develop them independently
of how they are used. In this section we investigate how this may be done.
By develop here we mean refine, and therefore we are interested in mech-
anisms by which we can refine components in a compositional manner. To
consider what we require, let X and Y be component specifications written
in a language with refinement relation Cp, with X Cp Y. Let C[.] and D[]
denote contexts in which a component may be used, written in a language with
refinement relation Cz. Then the requirements of separate development are:

e if X Cp YV then C[X]C, C[Y].
e if C Cz D then C[X]Cz D[X].

That is, if the refinement of components produces a refinement of the global
specification; and if we refine how a component is used then the complete system
is refined. The second of these is an issue of compositionality within a single
language and using a single refinement relation. However, the first of these
asserts a relation between differing notions of refinement. To answer this in our
context of integrating particular formal languages, we will need to use results
which compare refinement relations in Object-Z with those in a process algebra.

Refinement in Object-Z and CSP

Refinement between Object-Z classes is defined in terms of simulations. It is
well known that any valid refinement between state-based specifications (e.g.
those written in Z and Object-Z) can be verified as a sequence of upward and
downward simulations [11]. In Object-Z these take the following form [26]:

Definition 1 Downward simulation

An Object-Z class C is a downward simulation of the class A if there is a
retrieve relation Abs such that every abstract operation AOp is recast into a
concrete operation COp and the following hold.

TThe translation between LOTOS and Object-Z discussed above effectively uses this type
of canonical embedding to define appropriate input and output parameters in the Object-Z
operations.



DS.1 V Astate; Cstate @ Abs = (pre AOp <= pre COp)
DS.2 V Astate; Cstate; Cstate’ @ Abs A COp —> 3 Astate’ o Abs’ AN AOp

DS.3 V Cinit ¢ 3 Ainit e Abs

Definition 2 Upward simulation

An Object-Z class C is an upward simulation of the class A if there is a retrieve
relation Abs such that every abstract operation AOp is recast into a concrete
operation COp and the following hold.

US.1 V Cstate e 3 Astate @ Abs A pre AOp = pre COp
US.2 V Astate'; Cstate; Cstate’ @ COp A\ Abs' =—> 3 Astate o Abs A AOp

US.3 V Astate; Cinit @ Abs = Ainit

We write A £, C if the Object-Z class C' is a refinement of the class A.

Refinement in process algebras is often defined in terms of failures and
divergences [8], where we write P Cpp @ if

failures Q C failures P and divergences @Q C divergences P

This is the standard notion of refinement in CSP and is closely related to
the reduction refinement relation (red) in LOTOS [6]. In fact if we restrict
ourselves to divergence free processes then red and Cpp coincide, so for the
sake of uniformity in the following discussion we will consider all specifications
to be free of divergence (Object-Z specifications are divergence free anyway
since there are no internal operations nor any operation hiding).

In order to answer the compositionality issues raised above for our use of
components we use the result that simulations are sound and jointly complete
with respect to CSP (i.e. failures-divergences) refinement. That is any CSP
refinement can be verified as a sequence of upward and downward simulations,
and that any simulation induces a CSP refinement. This result has been proved
for the simulation rules used in Z [16, 30], and also for the Object-Z simulation
rules (see [20] and the discussion in [26]).

Refining components

The questions of compositionality of components upon refinement is a general
problem in the use of hybrid languages, and is discussed in [13, 23]. Clearly,
answers to such questions depend on how the components are used within a
context C[.]. [26, 13] give positive answers for the hybrids consisting of Object-
Z and CSP where Object-Z classes are used within a CSP specification, i.e., if
X and Y are Object-Z classes, and C[.] is the CSP part of the specification
which describes the component interaction, then:

e if X C; Y then C[X] Crp C[Y]



However, even in a single language such compositionality properties do not
always hold. For example, consider LOTOS with the reduction refinement rela-
tion. Then the process i; a; stop is a reduction of a; stop. However, if we place
these two processes in the context of a choice we find that b; stop[]i; a; stop is
not a reduction of b; stop[]a; stop. Thus even with a single refinement relation
we have lost compositionality by placing components in a particular context
(the problem here is the initial internal action 7).

However, our contexts and components have a particular form, namely that
our components are objects and the context is their use within a promotion.
Formally, a context in Object-Z is an incomplete class schema, with all the
occurrences of a class, used in declaring objects in the context, elided [24]. For
example, we have the following Node/.] context:

—Nodel.]

c:
id : IN
[ : bool

__INIT
c.INIT N1 = false

put = c.put
start = [A(1) | 1']

where [J represents the elided class. Node[CompObj] is thus the class Node
specified above.

In this scenario we can exploit relevant results about refinements of pro-
motions. A promotion is said to be free if the global context does not make
constraints upon the component variables in the local state [29]. [21] contains
a detailed discussion about the conditions necessary for promotion to factor
through downward simulations. In particular, it is known that in Z the free
promotion of a refinement is a refinement of a free promotion [21, 29]. This
is in the context of Z, however, it is also easily shown to hold for Object-Z
where the local states are classes X and Y and a context C[X] contains an
object of type X and promotes its operations. Essentially the structure of the
encapsulation into classes ensures that our promotions will be free, for example
Node/.] contains no state predicates restricting or even refering to ¢, and we
have the following result.



Theorem 1 Let Object-Z class C be a downward simulation of the class A
with operations COp; and AOp; respectively. Let the context ®(D) be defined

by
__&(D)

fD:I—'—>D

__INIT
Vi:domfp e fp(i).INIT

Op: = [i? : 1 | i? € domf] e fp(i?).DOp;

Then ®(C) is a downward simulation of ®(A).

Proof

Because C' is a downward simulation of the class A, there exists a retrieve
relation Ret which can be used to verify that refinement. To prove that ®(C)
is a downward simulation of ®(A) one needs to define a retrieve relation between
these two classes in terms of Ret. Suppose that Ret is defined by

__ Ret
A.STATE
C.STATE

pred

where A.STATE is the state space of the class A. We then define the promotion
retrieve relation by

___PromRet
fA:I—'—>A
fc I+ C

dom f4 = dom f¢&
Vi:domfs @ I Ret ¢ QA.STATE = fa(i) A OC.STATE = [ (i)

The conditions necessary for a downward simulation between ®(C) and ®(A4)
easily follow. a

The specification of the operation Op; can be more complex than that given
above in ®(D), as long as the encapsulation of the components is preserved (as
they are in our examples above). That is, we require the promotion to be free.
With this in place we can state the following result.



Theorem 2 Let X and Y be process definitions in LOTOS or CSP. Let C|.]
be a context where all occurrences of a class have been elided. Let C[X]be
interpreted as a hybrid specification (CSP plus Object-Z). Then if X Cpp Y
we have C[X]Cz C[Y].

Proof

Because simulations are sound and jointly complete with respect to failures-
divergences refinement, if X Cpp Y then there exist simulations to verify this
refinement. Because the promotion of an Object-Z refinement is a refinement
of a promotion we then have C[X] C; C[Y]. O

This result also holds when we consider the unification of two viewpoints
written in the style discussed above using LOTOS and Object-Z. Because of
the templates we used there, the unification process will result in the complete
specification C[X], and refinements can be undertaken incrementally.

The second requirement on compositionality, namely that C[X] Cz D[X]
whenever C Cz D is trivially satisfied by the definition of refinement between
classes.

The consequence of these results is that using our particular form of com-
ponent composition with promotion, we can refine the components separately
and still be left with a valid overall development.

Example 1 Refining the CompObj component.

We can refine the component
CompObj = put?x — getlz — CompObj

to an implementation CompQObj2 using separate sender and receiver pro-
cesses which communication via a channel mid and an acknowledgement chan-
nel ack:

send = put?r — midlz — ack — send
rec = mid?x — get!ls — ack — rec
CompObj2 = (send || rec) \ {mid, ack}

The failure transparency mechanism which uses CompObj2 in place of Com-
pObj is then a refinement of the original failure transparency mechanism.

5 Conclusions

In this paper we have considered how to use components with Object-Z classes
by promoting the component operations. We looked at how we could use view-
points combined together by a process of translation and unification, and also
looked at how we might use a hybrid language composed of Object-Z and CSP.

These two approaches could in fact be extended to other languages, all
that is necessary is to provide a translation at either the syntactic or semantic



level to allow components to be used within an Object-Z specification. In the
first approach using viewpoints and partial specifications we utilised a syntac-
tic translation between LOTOS and Object-Z that allowed us to use LOTOS
processes in the Object-Z classes. In the second approach there was also a
translation, but it was at the semantic level, i.e., we translated the history se-
mantic model into a failures semantics (or in fact we could also go the other way
round). This semantic translation allows us to build a hybrid language con-
taining parts of both CSP and Object-Z. By including object instantiation in
this hybrid we could use promotion of operations to allow reuse of components
specified in CSP within Object-Z.

The nice interplay between failures-divergences refinement and state-based
simulations together with the refinement properties of promotion means that
we can develop components and contexts separately.

However, one issue we have not considered here is the use of more general
components. We have restricted ourselves to considering a component to be
encapsulated within a single object. Whilst this clearly is of some use, further
research should look at components composed of more than one object.
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