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Specifying component and contextspeci�cation using PromotionJohn Derrick and Eerke BoitenComputing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.(Phone: + 44 1227 764000, Email: J.Derrick@ukc.ac.uk.)AbstractIn this paper we discuss how the speci�cation of components may beseparated from the description of the context in which they are used.There are a number of ways in which this might be possible and herewe show how to use the technique of promotion in Object-Z to combinecomponents which are speci�ed using process algebras.We discuss two approaches, the �rst is to separate out the speci�ca-tion into two distinct viewpoints written in di�erent languages. Theseviewpoints are then combined by a process of translation and uni�ca-tion. The second approach will be to use hybrid languages composed ofa combination of CSP and Object-Z. We also consider how to re�ne suchcomponent based descriptions and consider issues of compositionality.Keywords: Components; Viewpoints; Object-Z; LOTOS; CSP; Re�nement.1 IntroductionIn this paper we discuss how the speci�cation of components may be separatedfrom the description of the context in which they are used.The speci�cation of a large and complex system often involves multipleinstances of the same component. These components are combined together,perhaps in a number of di�erent contexts, in order to provide some overallfunctionality. This type of component based software engineering has becomean important mechanism to support code reuse and has a useful separation ofconcerns. Components have become particularly important in object orientedand distributed systems, both in terms of coping with the migration of legacysystems and also as a means to provide distribution independent behaviouracross a number of platforms.For example in a distributed system, multiple copies of a particular com-ponent might be used to provide the overall functionality or service required.Failure recovery can then be supported by keeping multiple copies of a com-ponent with identical state. An e�ective way to describe such a scenario isto specify the components separately and then provide a description of howthey might be combined. By doing so we can support code reuse and separatedevelopment, and also allow appropriate speci�cation languages to be used asand when needed. For example, one language may be used to describe thecomponents whilst a di�erent one is used to describe the context in which thecomponents are used. There are a number of ways in which this might be



possible and in this paper we show how to use the technique of promotion inObject-Z to combine components which are speci�ed using a process algebra.Object-Z [10], an object-oriented extension of Z [27], is a state based lan-guage which encapsulates state, initialisation and a number of operations intoa class. Classes can be used as types, allowing object-instantiation to be spec-i�ed. A class can thus contain objects, and its operations can be de�ned interms of operations performed on the objects themselves. When such a globaloperation is de�ned in terms of a local operation upon an indexed component(e.g. object), the local operation is said to be promoted [29]. In Object-Z anoperation will be promoted if we apply an operation to an object in a class, andthis use of promotion is very common in both Object-Z and Z itself (althoughthe mechanism needed to specify promotion is slightly more complex in Z dueto the lack of encapsulation into classes).We discuss two approaches to separating components from contexts. The�rst is separate out the speci�cation into two distinct viewpoints (i.e. partialspeci�cations) written in di�erent languages (here LOTOS [3] and Object-Z).These viewpoints are then combined by a process of translation and uni�cation.If we conform to certain promotion templates the resulting uni�cation will beconsistent (i.e. the uni�cation has an implementation). The second approachwill be to use hybrid languages composed of a process algebra part and astate-based part, for example, a combination of CSP [18] and Object-Z. Herewe use CSP to describe the components, and Object-Z to describe how thesecomponents are combined. These approaches are illustrated with a speci�cationof a transparency mechanism in a distributed system.We also consider how to re�ne such component based descriptions and con-sider issues of compositionality.The structure of the paper is as follows. In section 2 we introduce our exam-ple which shows how components can be used to specify a failure transparencymechanism for a distributed system. The subsequent section discusses how wecan structure speci�cations to support the description and reuse of componentsseparately from how they are used. In section 4 we look at the re�nement ofcomponents, and we conclude in section 5.2 Example: failure transparencies in ODPWe use the term component to mean an isolated part of a system which canbe used in a number of di�erent contexts to provide di�ering functionalities.Because of the natural encapsulation o�ered by object based languages, com-ponents can be thought of as one or more objects grouped together, however,in this paper we will think of each component as being encapsulated into oneobject�. Components have become particularly important in distributed sys-tems, both in terms of coping with the migration of legacy systems and alsoas a means to provide distribution independent behaviour across a number of�Some authors prefer to think of a component as a class, and then the use of componentsis phrased in terms of instances of components.



platforms.To illustrate their use we consider an example of the latter. One of thecentral features of modern distributed system architectures is to hide certainaspects of actual distribution by providing a number of transparencies. Thetransparencies mean that the user, or indeed another part of the same system,is not concerned with the precise details of distribution and a seamless serviceis o�ered. A good example in practice is the use of nfs mountings of homedirectories to provide a location transparency to the user.The Open Distributed Processing (ODP) architecture is a joint ITU/ISOstandardisation framework for constructing distributed systems in a multi-vendor environment. ODP uses a number of viewpoints to specify a completesystem. The architecture has reached a level of maturity, and the ODP Refer-ence Model [19] has recently progressed to become an international standard.The reference model de�nes a number of transparencies, and the engineeringviewpoint is concerned in particular with the provision of various transparen-cies needed to support distribution. For example, distribution transparenciesde�ned in the ODP reference model include, amongst others:� Access transparency: which masks di�erences in data representation toenable interworking.� Location transparency: which masks the location of an object.� Migration transparency: which masks from an object the ability of thesystem to change its location.� Replication transparency: which masks the use of replicated objects.� Failure transparency: which masks the failure and possible recovery ofobjects, and which might use replication transparency to do so.As an example of the use of components we will consider the outline speci�-cation of a computational object together with engineering mechanisms whichsupport failure transparency. To do so a single computational object is �rstspeci�ed (here we just give a template) as an Object-Z class:CompObjstate declarations come hereINITinitialisation predicate comes hereput b= : : :get b= : : :other operation definitions come here...



which contains a number of operations (not fully speci�ed): put ; get ; : : :.The engineering mechanism consists of a number of Nodes, where each suchNode consists of a computational object c, an identi�er and a boolean repre-senting whether that node is in service. It has an operation start to bring itinto service and a put operation which performs a put on the computationalobject c.Nodec : CompObjid : INl : boolINITc:INIT ^ l = falseput b= c:putstart b= [�(l) j l 0]This is a very simple example of promotion where the local put on c ispromoted to a put on the Node. The failure transparency mechanism is achievedby using a collection of nodes indexed by a function over some index set I .Distinct nodes have distinct identi�ers. There is an operation start to bring anode into service, and an alarm when the number of nodes in service is less thantwo (and therefore failure transparency might fail!). The failure transparencyitself is ensured by replicating the computational operations across all nodes,so the put operation is promoted to an operation in this class and is performedsimultaneously on all nodes in service. The replication ensures that if one nodefails then there is at least one more node containing a correct copy of the statewhich can be used in its place.FTransparencyf : I 7! Node8 i ; j : dom f � i 6= j ) f (i):id 6= f (j ):idINIT#dom f = 2 ^ 8 i : dom f � f (i):INITput b=k(i:dom f �f (i):l) f (i):putalarm b= [report ! : R j #fi : dom f j f (i):lg � 1^ report ! = `start new node 0]start b= [id? : IN j 8 i � f (i):id = id?) f (i):start ]The use of a number of nodes indexed by f has allowed us to separate out theglobal behaviour (e.g. the alarm operation) from the behaviour at each node.



This is a typical use of promotion. We have used Object-Z here, however,the same promotion facility is available in Z (see [29, 1] for comprehensiveaccounts), although because Z does not have object encapsulation, the exactmechanism is syntactically more complex than in Object-Z.3 Structuring Speci�cationsWe have speci�ed the example above entirely in Object-Z, however, it is nowwell recognised that it is sometimes necessary or desirable to use di�erent lan-guages to specify di�erent parts of a system. This is particularly true in alarge complex distributed system which might encompass many concerns, andthe ODP reference model acknowledges this by splitting a single speci�cationinto a number of partial speci�cations called viewpoints, and recognising thatdi�erent languages might be applicable in di�erent viewpoints.Viewpoints provide a basic separation of concerns, enabling di�erent par-ticipants to observe the system from suitable perspectives and at suitable levelsof abstraction. It is a central device for structuring and managing the com-plexity inherent in describing systems. ODP uses �ve prede�ned viewpoints(enterprise, information, computational, engineering and technology), but isnot prescriptive about the choice of speci�cation language to be adopted withparticular viewpoints. However, it does advocate that the chosen languagesshould be formal [5]. Because of the perspectives the viewpoints o�er, theselanguages will typically include behavioural techniques such as process algebras(e.g. LOTOS, CSP etc) and state based techniques such as Z and Object-Z.With issues such as these in mind there have been a number of proposals tocombine or integrate Z and Object-Z with process algebras [25, 12, 14, 26, 13, 22,28, 15], and we are interested here in supporting component based speci�cationby using such methodologies. The key idea, as shown in the above example,is to use promotion to separate out the component from how components arecombined and used globally. There are two possible approaches to this whichwe discuss in turn.The �rst approach will be to separate out the speci�cation into two distinctpartial speci�cations written in di�erent languages (here we will use LOTOSand Object-Z). Each partial speci�cation will be largely independent and selfcontained, but can be combined by a process of translation and uni�cation. Ifwe conform to certain templates the resulting uni�cation is guaranteed to beconsistent by construction.The second approach will be to use hybrid languages composed of a processalgebra part and a state-based part, for example, a combination of CSP andObject-Z. Here a complete speci�cation consists of one language being used tocombine elements described in another. The hybrids described in [25, 12] useObject-Z to specify the components together with CSP to describe the compo-nent interaction. Here we reuse this mechanism to enable us to use promotionas a global way of gluing the components together. Although these hybridlanguages are clearly applicable to viewpoint architectures such as ODP, they



in fact provide a complimentary approach by describing a single speci�cationcomposed of two languages as opposed to two partial speci�cations.3.1 Viewpoints and promotionOne approach to using promotion to specify components is to specify the com-ponent in one viewpoint, with the description of how components will be usedin another viewpoint. These viewpoints are thus partial speci�cations of thecomplete system speci�cation. The viewpoints are linked by correspondenceswhich describe the relationship between the viewpoints.One of the problems of using partial speci�cations in development is thatdescriptions of the same or related entities can appear in di�erent viewpointsand must co-exist. Thus, di�erent viewpoints can impose contradictory re-quirements on the system under development and therefore the consistency ofspeci�cations across the viewpoints becomes important. Two viewpoints aresaid to be consistent if we can �nd a single implementation satisfying both view-points (i.e. the implementation must be a re�nement of both viewpoints). Theproblem is complicated by the fact that we can expect viewpoint speci�cationsto be written in di�erent languages.Given one viewpoint speci�cation written in, say, Object-Z and anotherviewpoint written in LOTOS, how can we reconcile these two viewpoints forboth consistency and further development? One way to do this is by translatingthe LOTOS viewpoint into an observationally equivalent Object-Z speci�cation.We can then check the consistency of the two viewpoints now both expressed inObject-Z. The constructive method used for this results in a common re�nementof the two Object-Z viewpoints, whose existence demonstrates consistency ofthe original viewpoints [2].3.1.1 Specifying the viewpointsFor example, we could use ODP viewpoints to specify the failure transparencymechanism described above. Because we have separated the description intotwo partial speci�cations we can use di�erent speci�cation languages in eachof them. The computational viewpoint speci�es a single computational objectCOMPOBJ, and we might choose to specify this in LOTOS. The second view-point, an engineering view, describes how a number of COMPOBJ componentsare used to provide the overall failure transparency functionality.The speci�cation of the computational viewpoint is simply the single com-putational object COMPOBJ given as a LOTOS process.processCOMPOBJ [put ; get ] : noexit := put?x : nat ; get !x ; COMPOBJ [put ; get ]endprocThe speci�cation of the engineering viewpoint consists of a number of Nodes,the overall functionality being speci�ed in the class FTransparency as before.However, since the CompObj class was de�ned in another viewpoint in order



to use it here we have to include it in this viewpoint, however, we only de�neits signature and do not prescribe any behaviour. That is, this viewpoint doesnot make any assumptions about a CompObj and the e�ect of the operations,apart from declaring their existencey.Our viewpoints are thus partial in the sense that the functionality of aviewpoint might be extended by another viewpoint, but they must be completein the sense that they need to type check and every item (e.g., class) mustat minimum be declared even if it isn't given any behaviour. The engineeringviewpoint is thus given by:CompObjINITput b= [ false ]get b= [ false ]other operation definitions come here...together with Node and FTransparency exactly as before. Here in CompObj thestate and initialisation really do have completely empty signature and predicateregardless of what is contained in the computational viewpoint.These viewpoints overlap in the parts of the system that they describe,therefore we need to describe the relationship between the viewpoints. In sim-ple examples such as this one, these parts will be linked implicitly by havingthe same name and type in both viewpoints. However, in general we may needmore complicated descriptions for relating common aspects of the viewpoints.The correspondence here links the two viewpoints and simply identi�es theCOMPOBJ class/process with its use as a component in the engineering view-point, and can then be documented as a relation which says that COMPOBJcorresponds to CompObj and the two put events coincide, etc:f(COMPOBJ ;CompObj ); (put ; put); (get ; get)g3.1.2 Combining the viewpointsComparing viewpoints written in LOTOS and Object-Z requires that we bridgea gap between completely di�erent speci�cation paradigms. Although both lan-guages can be viewed as dealing with states and behaviour, the emphasis di�ersbetween them. To support consistency checking between these two languageswe exploit a behavioural interpretation of Object-Z.yIn fact for technical reasons we declare all operations to have no behaviour, and this isdone by specifying that they have false predicate. This allows us to construct the combinedbehaviour correctly.



Object-based languages have a natural behavioural interpretation, and thereis a strong correlation between classes in object-oriented languages and pro-cesses in concurrent systems (see for example [31, 12, 24]). We have used thiscorrelation as the basis of a translation between the two languages, which hasbeen veri�ed by de�ning a common semantics for LOTOS and Object-Z.The translation is given in [9], where it is veri�ed against a common semanticmodel of the two languages. This model is based upon the semantics for Object-Z described in [24], which e�ectively de�nes a state transition system for eachObject-Z speci�cation. This model is used as a common semantic basis byembedding the standard labelled transition system semantics for LOTOS intoit in an obvious manner.The translation of the behaviour of a LOTOS speci�cation produces a num-ber of Object-Z classes, each one representing a behaviour expression (e.g.process de�nition) of the LOTOS speci�cation. The heart of the translationconsists of a number of translation rules, one for each of the LOTOS operatorsor terminals (i.e. occurrences of stop, exit or any process instantiations). Thetranslation of a process de�nition begins with its terminals and successivelyapplies the operator translation rules given in [9] until each operator/terminalhas been translated.For example, to translate the behaviour of COMPOBJ, we apply the trans-lation algorithm to produce an Object-Z class called COMPOBJ containingoperations schemas put and get . Inputs and outputs of the operations per-form the value passing, and predicates in the operations ensure the temporalordering explicit in the process algebra speci�cation is preserved in the implicitbehaviour of the Object-Z class. The result of the translation is a class asfollows: COMPOBJs : INx : ININITs = 0put�(s ; x )ch? : INx 0 = ch?(s = 0 ^ s 0 = 1) get�(s)ch! : INx = ch!(s = 1 ^ s 0 = 0)In fact the details of the mechanics of the translation are immaterial here,we could instantiate this approach with any translation into Object-Z.What is interesting about the use of components illustrated in this exampleis that it provides support for a change of granularity. This was the use of asingle component in the computational viewpoint, and the use of promotion in



Object-Z when we promoted the operations de�ned in the skeleton COMPOBJclass to an operation in the Node class. To perform this promotion all we neededto know was the signature of the component. The behaviour of the componentwas de�ned in a separate viewpoint and the correspondence relation was trivial(it just linked up names). The advantage of this style is that it automaticallyguarantees the consistency of the two viewpoints, and to unify them all that isneeded is the renaming of the signatures as speci�ed in the correspondence.Normally to check the consistency of two Z or Object-Z partial speci�ca-tions we have to construct a least re�ned uni�cation of the two viewpoints, intwo phases [2]. In the �rst phase (\state uni�cation"), a uni�ed state space(i.e., a state schema) for the two viewpoints has to be constructed. The essen-tial components of this uni�ed state space are the correspondences between thetypes in the viewpoint state spaces. The viewpoint operations are then adaptedto operate on this uni�ed state. At this stage we have to check that a condi-tion called state consistency is satis�ed. In the second phase, called operationuni�cation, pairs of adapted operations from the viewpoints which are linkedby a correspondence have to be combined into single operations on the uni�edstate. This also involves a consistency condition (operation consistency) whichensures that the uni�ed operation is a re�nement of the viewpoint operations.For non-trivial behaviour checking this overlap can be complex. The beautyof using components and promotion is that the separation of concerns thatthis enforces is precisely one that reduces the complexity of recombining byuni�cation and the resultant consistency checking. It even allows the viewpointsto be further developed in parallel, an issue we discuss later in Section 4.3.2 Hybrid languages and promotionThe previous section considered how to combine two separate speci�cationswritten in di�erent languages. An alternative approach to integrating di�erentformal methods which we consider now is to de�ne a hybrid language whichconsists of one or more di�ering techniques. These hybrid languages have typ-ically used a state based technique together with a process algebra. In [13]Fischer provides a survey of some of the available techniques for combining Zand Object-Z with process algebras such as CCS and CSP. Examples of theseapproaches include [15, 28], which both o�er combinations of Z and CCS andalso combinations of Object-Z and CSP discussed in [25, 12, 14, 26].Because the di�erent languages used in the hybrid have di�erent roles (e.g.Z to de�ne the state space, CCS to de�ne the communication), subsets of thelanguages are occasionally used. For example, there is no object instantiationin the Object-Z part of the hybrid language de�ned by Smith in [25]. Howthe hybrid language is used is thus de�ned in part by what is, and what isnot, included in the components of the hybrid. In this section we will discussthe hybrid language de�ned in [25], and consider how we might use promotionwithin it to combine together a number of components. To do so we willamend the subset of Object-Z used within the hybrid, and allow componentsto be speci�ed in CSP.



3.2.1 The semantics of hybrid languagesFor a hybrid language to make sense it is necessary to give it a semantic model.For example, in [25] classes are given a failures-divergences semantics, andthis allows classes de�ned in the Object-Z part of the speci�cation to be useddirectly in the CSP part and hence for these two languages to be combined.The failures-divergences semantics is the standard semantics of CSP [7, 8].A process is modelled by the triple (A;F ;D) where A is its alphabet , F is itsfailures and D is its divergences . The failures of a process are pairs (s ;X )where s is a �nite sequence of events that the process may undergo and Xis a set of events the process may refuse to perform after undergoing s . Thedivergences of a process are the sequences of events after which the process mayundergo an in�nite sequence of internal events, i.e. livelock. Divergences alsoresult from unguarded recursion. The semantics is well-formed if the failuresand divergences satisfy a number of axioms [7, 8].To de�ne the semantics of the hybrid language, Smith models a class C bya process. The alphabet is taken to be the set of events of the class, and thetraces are sequences of events corresponding to sequences of operations. Thefailures are derived from the historiesz of a class as follows: (t ;X ) is a failure if� there exists a �nite history of C satisfying the initial state,� the sequence of operations of the history corresponds to the sequence ofevents in t , and� for each event in X , there does not exist a history which extends theoriginal history by an operation corresponding to the event.Divergence is not possible since Object-Z does not allow hiding of operationsnor recursive de�nitions of operations, therefore the divergences of a class areempty.This approach enables classes speci�ed in Object-Z to be used within theCSP part of the speci�cation. Thus Object-Z is used to describe the individualobjects and CSP is used to describe how these are combined and interact. Themotivation for this decomposition is given as: \Object-Z provides a convenientway of modelling complex data structures needed to de�ne the component pro-cesses of such systems, and CSP enables the concise speci�cation of processinteractions" [26]. This is particularly useful when the system under discus-sion consists of a number of distinct components viewed as processes runningconcurrently.Although, this does allow a very nice separation of concerns between objectspeci�cation and process interaction, we sometimes might wish to specify morethan just concurrent synchronisation when we combine components. Consider,for example, the combination of components speci�ed in the FTransparencyclass. At this global level we require three operations to be speci�ed: put , startand alarm.zThe history model is the semantic model of Object-Z de�ned in [24].



The operation alarm does not appear in any of the components and thusis a new operation speci�ed in terms of the data structures in the class andthe components. The operation start applies the start operation in one (andonly one) component f (i) by promoting this operation, but which componentused depends upon an input that matches the components identity. The �naloperation put is a concurrent operation of puts in each of the active components.None of these operations are simple synchronisations and we have exploited the
exibility of promotion here in that it allows a more complex interaction to bespeci�ed when de�ning global operations in terms of component ones.3.2.2 Using promotion in a hybrid languageCan we use this 
exibility with a hybrid language? Not as it stands, but whatwe would like to do is to use a hybrid language where the components can becombined with the use of promotion as in the class FTransparency. To do so wewould need a semantic model where, for example, components speci�ed in CSPcan be used within the Object-Z part of the speci�cation. We brie
y sketchhow this might be achieved.The existing semantic approach de�ned in [25] gives a failures semantics tothe hybrid language by turning the history semantics for an Object-Z class intoa failures semantics in the manner described above. One option therefore isto simply extend this to the range of Object-Z speci�ed now, and this consistsof allowing object instantiation in the Object-Z part of the speci�cation. Thehistory semantics de�ned in [24] gives a meaning to object instantiation in aclass by allowing it to be used as a type. The dot notation for initialisingand promoting operations is then de�ned in terms of the history model. Thepromotion c:put is represented semantically by the history which states thatthe object c undergoes an event associated with the operation put .Therefore the history semantics is su�cient to model the complete range ofObject-Z facilities that we are now using. Since the mapping from histories tofailures works for an arbitrary history we can give a failure semantics to Object-Z speci�cations when they also contain object instantiation. The completehybrid speci�cation can thus be given a failure semantics and this allows usto use the 
exibility of object instantiation and to promote local operations toglobal ones. Such a speci�cation might look something like:CompObj b= put?x �! get !x �! CompObjtogether with Node and FTransparency exactly as before, viz



Nodec : CompObjid : INl : boolINITc:INIT ^ l = falseput b= c:putstart b= [�(l) j l 0]FTransparencyf : I 7! Node8 i ; j : dom f � i 6= j ) f (i):id 6= f (j ):idINIT#dom f = 2 ^ 8 i : dom f � f (i):INITput b=k(i:dom f �f (i):l) f (i):putalarm b= [report ! : R j #fi : dom f j f (i):lg � 1^ report ! = \start new node 00]start b= [id? : IN j 8 i � f (i):id = id?) f (i):start ]If we wished to calculate the failures of, say, the Node class, then we �rstnote that in the history model, c:INIT is identical to the schema which statesthat c has undergone no events, i.e. c:events = h i. We can then subsequentlycalculate failures of the class Node. The operation start can always be applied.Initially a put event can occur, however, once it has done so no further putevents are possible until a get has been invoked on c. Since this is not availablein the class Node all further events on c are refused. The failures of Node arethusx:f(s ;?) j s � fstartg = sgf(s a put a t ;X ) j s � fstartg = s ^ t � fstartg = t ^ X � fputggThe alternative approach is not to use the failure semantics, but to use thehistory semantics as the common semantic model. That is, keep the historymodel of the Object-Z part of the speci�cation and give a history interpretationto the failures model of the CSP part of the hybrid speci�cation. To do so onewould need to turn each failure into a history. Although we do not go intoxThe notation s � A is the trace s restricted to events from the set A.



details here, it should be clear that this is feasible modulo some technicalities.The technicalities arises because histories contain names of states etc, which donot appear in failures. However, it would be possible to de�ne a canonical em-bedding of failures into histories that resolves this problem{. Having achievedthis we will have extended the history semantics to cover both Object-Z andCSP parts of a hybrid speci�cation, and therefore we can use CSP to de�ne thecomponents and Object-Z to de�ne the global behaviour in terms of promotedoperations.4 Developing and re�ning componentsA key aspect to component based software engineering is the ability not onlyto specify the components separately, but also to develop them independentlyof how they are used. In this section we investigate how this may be done.By develop here we mean re�ne, and therefore we are interested in mech-anisms by which we can re�ne components in a compositional manner. Toconsider what we require, let X and Y be component speci�cations writtenin a language with re�nement relation vP , with X vP Y . Let C [:] and D [:]denote contexts in which a component may be used, written in a language withre�nement relation vZ . Then the requirements of separate development are:� if X vP Y then C [X ] vZ C [Y ].� if C vZ D then C [X ] vZ D [X ].That is, if the re�nement of components produces a re�nement of the globalspeci�cation; and if we re�ne how a component is used then the complete systemis re�ned. The second of these is an issue of compositionality within a singlelanguage and using a single re�nement relation. However, the �rst of theseasserts a relation between di�ering notions of re�nement. To answer this in ourcontext of integrating particular formal languages, we will need to use resultswhich compare re�nement relations in Object-Z with those in a process algebra.Re�nement in Object-Z and CSPRe�nement between Object-Z classes is de�ned in terms of simulations. It iswell known that any valid re�nement between state-based speci�cations (e.g.those written in Z and Object-Z) can be veri�ed as a sequence of upward anddownward simulations [11]. In Object-Z these take the following form [26]:De�nition 1 Downward simulationAn Object-Z class C is a downward simulation of the class A if there is aretrieve relation Abs such that every abstract operation AOp is recast into aconcrete operation COp and the following hold.{The translation between LOTOS and Object-Z discussed above e�ectively uses this typeof canonical embedding to de�ne appropriate input and output parameters in the Object-Zoperations.



DS.1 8Astate; Cstate � Abs =) (preAOp () preCOp)DS.2 8Astate; Cstate; Cstate 0 � Abs ^ COp =) 9Astate 0 � Abs 0 ^ AOpDS.3 8Cinit � 9Ainit � AbsDe�nition 2 Upward simulationAn Object-Z class C is an upward simulation of the class A if there is a retrieverelation Abs such that every abstract operation AOp is recast into a concreteoperation COp and the following hold.US.1 8Cstate � 9Astate � Abs ^ preAOp =) preCOpUS.2 8Astate 0; Cstate; Cstate 0 � COp ^ Abs 0 =) 9Astate � Abs ^AOpUS.3 8Astate; Cinit � Abs =) AinitWe write A vZ C if the Object-Z class C is a re�nement of the class A.Re�nement in process algebras is often de�ned in terms of failures anddivergences [8], where we write P vFD Q iffailures Q � failures P and divergences Q � divergences PThis is the standard notion of re�nement in CSP and is closely related tothe reduction re�nement relation (red) in LOTOS [6]. In fact if we restrictourselves to divergence free processes then red and vFD coincide, so for thesake of uniformity in the following discussion we will consider all speci�cationsto be free of divergence (Object-Z speci�cations are divergence free anywaysince there are no internal operations nor any operation hiding).In order to answer the compositionality issues raised above for our use ofcomponents we use the result that simulations are sound and jointly completewith respect to CSP (i.e. failures-divergences) re�nement. That is any CSPre�nement can be veri�ed as a sequence of upward and downward simulations,and that any simulation induces a CSP re�nement. This result has been provedfor the simulation rules used in Z [16, 30], and also for the Object-Z simulationrules (see [20] and the discussion in [26]).Re�ning componentsThe questions of compositionality of components upon re�nement is a generalproblem in the use of hybrid languages, and is discussed in [13, 23]. Clearly,answers to such questions depend on how the components are used within acontext C [:]. [26, 13] give positive answers for the hybrids consisting of Object-Z and CSP where Object-Z classes are used within a CSP speci�cation, i.e., ifX and Y are Object-Z classes, and C [:] is the CSP part of the speci�cationwhich describes the component interaction, then:� if X vZ Y then C [X ] vFD C [Y ].



However, even in a single language such compositionality properties do notalways hold. For example, consider LOTOS with the reduction re�nement rela-tion. Then the process i ; a; stop is a reduction of a; stop. However, if we placethese two processes in the context of a choice we �nd that b; stop[]i ; a; stop isnot a reduction of b; stop[]a; stop. Thus even with a single re�nement relationwe have lost compositionality by placing components in a particular context(the problem here is the initial internal action i).However, our contexts and components have a particular form, namely thatour components are objects and the context is their use within a promotion.Formally, a context in Object-Z is an incomplete class schema, with all theoccurrences of a class, used in declaring objects in the context, elided [24]. Forexample, we have the following Node[.] context:Node[:]c : �id : INl : boolINITc:INIT ^ l = falseput b= c:putstart b= [�(l) j l 0]where � represents the elided class. Node[CompObj] is thus the class Nodespeci�ed above.In this scenario we can exploit relevant results about re�nements of pro-motions. A promotion is said to be free if the global context does not makeconstraints upon the component variables in the local state [29]. [21] containsa detailed discussion about the conditions necessary for promotion to factorthrough downward simulations. In particular, it is known that in Z the freepromotion of a re�nement is a re�nement of a free promotion [21, 29]. Thisis in the context of Z, however, it is also easily shown to hold for Object-Zwhere the local states are classes X and Y and a context C [X ] contains anobject of type X and promotes its operations. Essentially the structure of theencapsulation into classes ensures that our promotions will be free, for exampleNode[.] contains no state predicates restricting or even refering to c, and wehave the following result.



Theorem 1 Let Object-Z class C be a downward simulation of the class Awith operations COpi and AOpi respectively. Let the context �(D) be de�nedby �(D)fD : I 7! DINIT8 i : dom fD � fD (i):INITOp1 b= [i? : I j i? 2 dom f ] � fD (i?):DOp1...Then �(C ) is a downward simulation of �(A).ProofBecause C is a downward simulation of the class A, there exists a retrieverelation Ret which can be used to verify that re�nement. To prove that �(C )is a downward simulation of �(A) one needs to de�ne a retrieve relation betweenthese two classes in terms of Ret . Suppose that Ret is de�ned byRetA:STATEC :STATEpredwhere A:STATE is the state space of the class A. We then de�ne the promotionretrieve relation byPromRetfA : I 7! AfC : I 7! Cdom fA = dom fC8 i : dom fA � 9Ret � �A:STATE = fA(i) ^ �C :STATE = fC (i)The conditions necessary for a downward simulation between �(C ) and �(A)easily follow. 2The speci�cation of the operation Op1 can be more complex than that givenabove in �(D), as long as the encapsulation of the components is preserved (asthey are in our examples above). That is, we require the promotion to be free.With this in place we can state the following result.



Theorem 2 Let X and Y be process de�nitions in LOTOS or CSP. Let C [:]be a context where all occurrences of a class have been elided. Let C [X ]beinterpreted as a hybrid speci�cation (CSP plus Object-Z). Then if X vFD Ywe have C [X ] vZ C [Y ].ProofBecause simulations are sound and jointly complete with respect to failures-divergences re�nement, if X vFD Y then there exist simulations to verify thisre�nement. Because the promotion of an Object-Z re�nement is a re�nementof a promotion we then have C [X ] vZ C [Y ]. 2This result also holds when we consider the uni�cation of two viewpointswritten in the style discussed above using LOTOS and Object-Z. Because ofthe templates we used there, the uni�cation process will result in the completespeci�cation C [X ], and re�nements can be undertaken incrementally.The second requirement on compositionality, namely that C [X ] vZ D [X ]whenever C vZ D is trivially satis�ed by the de�nition of re�nement betweenclasses.The consequence of these results is that using our particular form of com-ponent composition with promotion, we can re�ne the components separatelyand still be left with a valid overall development.Example 1 Re�ning the CompObj component.We can re�ne the componentCompObj b= put?x �! get !x �! CompObjto an implementation CompObj2 using separate sender and receiver pro-cesses which communication via a channel mid and an acknowledgement chan-nel ack :send b= put?x �! mid !x �! ack �! sendrec b= mid?x �! get !x �! ack �! recCompObj2 b= (send k rec) n fmid ; ackgThe failure transparency mechanism which uses CompObj2 in place of Com-pObj is then a re�nement of the original failure transparency mechanism.5 ConclusionsIn this paper we have considered how to use components with Object-Z classesby promoting the component operations. We looked at how we could use view-points combined together by a process of translation and uni�cation, and alsolooked at how we might use a hybrid language composed of Object-Z and CSP.These two approaches could in fact be extended to other languages, allthat is necessary is to provide a translation at either the syntactic or semantic
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