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Abstract. Pattern matching is advantageous for understanding and
reasoning about function definitions, but it tends to tightly couple the
interface and implementation of a datatype. Significant effort has been
invested in tackling this loss of modularity; however, decoupling patterns
from concrete representations while maintaining soundness of reasoning
has been a challenge. Inspired by the development of invertible program-
ming, we propose an approach to abstract datatypes based on a right-
invertible language rinv—every function has a right (or pre-) inverse. We
show how this new design is able to permit a smooth incremental tran-
sition from programs with algebraic datatypes and pattern matching,
to ones with proper encapsulation (implemented as abstract datatypes),
while maintaining simple and sound reasoning.

1 Introduction

1.1 Program Development

Suppose that you are developing a program involving some data structure. You
don’t yet know which operations you will need on the data structure, or what
efficiency constraints you will impose on those operations. Instead, you want to
prototype the program, and conduct some initial experiments on the prototype;
on the basis of the results from those experiments, you will decide whether
a naive representation of the data structure suffices, or whether you need to
choose a more sophisticated implementation. In the latter case, you do not want
to have to conduct major surgery on your prototype in order to refactor it to
use a different representation.

The traditional solution to this problem is to use data abstraction: identify
(or evolve) an interface for the abstract datatype, program to that interface, and
allow the implementation to vary without perturbing the program. However, that



2 Wang, Gibbons, Matsuda, Hu

requires you to prepare in advance for the possible change of representation:
it doesn’t provide a smooth revision path if you didn’t have the foresight to
introduce the interface in the first place, but used a bare algebraic datatype as
the representation.

Moreover, choosing a naive representation in terms of an algebraic datatype
has considerable attractions. Programs that manipulate the data can be defined
using pattern matching over the constructors of the datatype, rather than hav-
ing to use ‘observer’ operations on a data abstraction. This leads to a concise
and elegant programming style, which being based on equations is especially
convenient for reasoning about program behaviour [42].

1.2 Pattern Matching

As a simple example, consider encoding binary numbers as lists of bits, most
significant first:

data Bin = Zero | One
type Num = [Bin ]

Functions are typically defined by pattern matching. Consider normalizing bi-
nary numbers by eliding leading zeroes.

normal :: Num → Num
normal [ ] = [ ] -- clause (1)
normal (One : num) = One : num -- clause (2)
normal (Zero : num) = normal num -- clause (3)

The definition forms a collection of equations, which give a straightforward ex-
planation of the operational behaviour of the function:

normal [Zero,One,Zero ]
≡ { clause (3) }

normal [One,Zero ]
≡ { clause (2) }

[One,Zero ]

They are also convenient for calculation; for example, here is one case of an
inductive proof that normal is idempotent:

normal (normal (Zero : num))
≡ { clause (3) }

normal (normal num)
≡ { inductive hypothesis }

normal num
≡ { clause (3) }

normal (Zero : num)

An equivalent definition without using pattern matching is harder to read:
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normal :: Num → Num
normal num = if null num ∨ one (head num) then num

else normal (tail num)

It is also much less convenient for calculating with.
Pattern matching has accordingly been supported as a standard feature in

most modern functional languages, since its introduction in Hope [7]. More
recently, it has started gaining recognition from the object-oriented commu-
nity [9, 24, 28] too. Unfortunately, the appeal of pattern matching wanes when
we need to change the implementation of a data structure: function definitions
are tightly coupled to a particular representation, and a change of representa-
tion has a far-reaching effect. As a result, it has been observed that the wide
spread of pattern matching “leads to a discontinuity in programming: program-
mers initially use pattern matching heavily, and are then forced to abandon the
technique in order to regain abstraction over representations” [39].

1.3 Our Contribution

In this work, then, we strive to address the tension between the convenience of
pattern matching and the flexibility of data abstraction by proposing a mecha-
nism to allow programs written with pattern matching to be refactored smoothly
and incrementally into ones with abstract datatypes (ADTs) [23], without losing
the benefits of simple equational reasoning. In particular, we:

– propose the use of definitions with pattern matching as constructive specifi-
cations of ADTs;

– devise an equational reasoning framework for both the primitives of and the
user-defined operations on ADTs;

– identify necessary and sufficient conditions for correctness of such equational
reasoning;

– design a right-invertible language rinv that guarantees these conditions by
construction.

For the sake of demonstration, we explain our proposal using Haskell; but any
language providing algebraic datatypes would work just as well.

The rest of the paper is structured as follows. Section 2 gives a brief intro-
duction to ADT specification methods. Section 3 presents our proposed design
for pattern matching with ADTs, and Section 4 provides a formal definition of
the right-invertible language rinv on which our design is based. We then eval-
uate the performance and explore alternative points in the design space of our
system (Section 5), before discussing related work (Section 6) and concluding
(Section 7).

2 ADTs and their Specification

By definition, an ADT is characterized not by its representation or implemen-
tation, but by its interface: a fixed set of primitive operations, together with a
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specification of their semantics. Different styles of specification possess different
strengths and weaknesses, which makes them more or less suitable as refactoring
targets from programs defined with algebraic datatypes and pattern matching.
In this section, we briefly discuss two popular ways of defining the semantics,
namely axiomatic and constructive.

An axiomatic specification is implicit: the behaviour of the operations is
defined by relating them to each other by a collection of equations. For example,
consider operations suitable for queue structures:

adt Queue a
emptyQ :: Queue a
enQ :: a → Queue a → Queue a
deQ :: Queue a → Queue a
first :: Queue a → a
isEmpty :: Queue a → Bool

The following axioms are sufficient to specify the semantics:

deQ (enQ a emptyQ) ≡ emptyQ
deQ (enQ a q) ≡ enQ a (deQ q) ⇐ isEmpty q ≡ False
first (enQ a emptyQ) ≡ a
first (enQ a q) ≡ first q ⇐ isEmpty q ≡ False
isEmpty emptyQ ≡ True
isEmpty (enQ a q) ≡ False

(All the free variables above are assumed to be universally quantified over well-
defined terms, and equality takes precedence over implication.) If the ADT is
implemented in a ‘faithful’ manner [40], the above specification is all that is
known to users, and any properties of programs using the datatype should be
derived only from these axioms. The axiomatic approach avoids suggesting any
particular representation, and so provides a high degree of abstraction. On the
other hand, axiomatic specifications are not easy to construct.

As an alternative, a constructive specification explicitly defines the semantics
of operations by expressing them in terms of an underlying model. For example,
the queue ADT can be related to the familiar list model:

emptyQ = emptylist
isEmpty = isNull
deQ = tail
enQ a q = append q (wrap a)
first = head

(where wrap turns an element into a singleton list). The list model can be seen
as another ADT that is sufficiently powerful to simulate the queue ADT. Ap-
parently, the constructive approach makes the specifications easier to write and
to understand. The underlying model can be further instantiated into a repre-
sentation as an algebraic datatype (also known as a typical object in the litera-
ture [22]):
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data Queue a = None | More a (Queue a)

which results in the following specifications:

emptyQ = None
first (More a q) = a
isEmpty None = True
isEmpty x = False
enQ a None = More a None
enQ a (More x q) = More x (enQ a q)
deQ (More a q) = q

It it worth emphasising that the datatype acts only as a model of the ADT: it
may suggest but it does not imply a particular implementation. We also note
that this constructive approach does not cover all ADTs: for example, unordered
sets cannot be fully modelled by an algebraic datatype.

Whether the behaviour of an ADT is specified axiomatically or constructively,
the specification can be used in reasoning about programs that make use of the
ADT. In particular, one can use the model underlying a constructive specification
to infer properties of an implementation; for example, we can easily recover the
axiom deQ (enQ a q) ≡ enQ a (deQ q) ⇐ isEmpty q ≡ False with the following
derivation.

deQ (enQ a (More b q))
≡ { enQ }

deQ (More b (enQ a q))
≡ { deQ }

enQ a q
≡ { deQ }

enQ a (deQ (More b q))

3 Reasoning with Constructive Specifications

Our purpose is to allow incremental refactoring of a program, replacing an al-
gebraic datatype used with pattern matching by a more sophisticated ADT
implementation.

As described in Section 2, a typical approach to specifying an ADT is to use
an algebraic datatype as its model and the definitions by pattern matching for
constructive specifications of the operations. In moving from an initial program
explicitly depending on an algebraic datatype to a refactored one using an ADT,
one will generally have to reimplement some of the existing functions as primitive
operations of the new ADT, and rewrite the remaining functions in terms of these
primitives.

There are two problems with this process. Firstly, it is a ‘big bang’ refactoring:
all uses of the original algebraic datatype have to be changed at once, even though
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some of the old definitions may not gain from the refactoring. Secondly, it loses
the benefits of pattern matching for the functions that have to be redefined in
terms of the ADT primitives: it is no longer so convenient for reasoning.

In this section, we propose a framework free from the above pitfalls: refac-
toring can be done selectively; and at any point in the process, executability and
reasoning are fully supported. We look into the details of the design by means
of examples.

3.1 A First Example: FIFO Queue

The queue ADT we have seen is defined via the following specification.

adt Queue a = None | More a (Queue a)
emptyQ = None
first (More a q) = a
isEmpty None = True
isEmpty x = False
enQ a None = More a None
enQ a (More x q) = More x (enQ a q)
deQ (More a q) = q

This looks similar to an algebraic datatype declaration, but the right-hand side
of the definition introduces a model, instead of an implementation, of the ADT.
The primitive operations of the ADT are specified in term of this model; de-
spite having a previous life as an executable function, each specification now
serves only to express semantics, and is to be replaced by a corresponding ADT
implementation at run-time.

As an example, the enQ declaration should now be interpreted as a specifi-
cation:

enQ a q ≡ More a None ⇐ q ≡ None
first (enQ a q) ≡ first q ∧ deQ (enQ a q) ≡ enQ a (deQ q) ⇐ q 6≡ None

rather than as a concrete implementation.
Now let’s consider a possible concrete representation of queue structures:

type Queue a = ([a ], [a ])

The second list of the pair, representing the latter part of a queue, is reversed,
so that enqueuing simply prefixes an element onto it. The primitive operations
can be implemented as follows:

emptyQ = ([ ], [ ])
first ([ ], bq) = last bq
first ((a : fq), bq) = a
isEmpty ([ ], [ ]) = True
isEmpty q = False
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enQ a (fq , bq) = (fq , a : bq)
deQ ([ ], bq)) = deQ (reverse bq , [ ])
deQ (a : fq , bq) = (fq , bq)

(We use the naming convention of adding an underscore “ ” to an operation’s
name to distinguish its implementation from its specification.) The implementa-
tions are what really execute when ADTs are used. Since at the moment, we only
reimplemented the primitive operations, queues can still be constructed using the
model. During execution, any value constructed in the model is firstly converted
to a value in the implementation before being passed to the implemented oper-
ations; and the resulting output is converted back to the model. For example,
given the program enQ 1 None, what really executes is (to◦enQ 1◦ from) None,
where the two functions to and from convert the abstract representation of a
queue into the model and back again. For the case of queue ADT, the to func-
tion can be defined as follows:

to ([ ], [ ]) = None
to ([ ], q) = to (reverse q , [ ])
to (x : xs, q) = More x (to (xs, q))

The from function should be the right inverse of to—that is, to ◦ from ≡ id .
The operations will not always have types as simple as Queue a → Queue a,

like enQ 1 does. Suppose we have polymorphic model datatype M a and abstract
implementation N a, and polymorphic conversion functions to :: N a → M a
and from ::M a → N a. In the general case, a model function will take not just a
single value in the model (of type M a), but some combination of model values
and other arguments. We capture this in terms of an operation F on polymorphic
datatypes M . Similarly, the operation will return a different combination G of
model values and other results.

Technically, if polymorphic datatypes are represented as functors, then F ,G
are functors on the functor category (what Martin et al. [26] call ‘higher-order
functors’, or ‘hofunctors’ for short), so that F M and G M are themselves
functors. Then the model function f will have type F M a → G M a, and the
corresponding implementation function f :: F N a → G N a should satisfy the
correctness condition G to◦ f ◦F from ≡ f , as shown in the following commuting
diagram.

F N a ¾ F from F M a

G N a

f

? G to - G M a

f

?

Given the right-inverse property, we can simplify the proof obligation

G to ◦ f ◦ F from ≡ f
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to the promotion condition [3]

G to ◦ f ≡ f ◦ F to

which does not involve the function from, as the following lemma demonstrates.

Lemma 1 (Round trip). Given G to ◦ f ≡ f ◦ F to, we have f ≡ G to ◦ f ◦
F from.

Proof.

G to ◦ f ◦ F from
≡ {G to ◦ f ≡ f ◦ F to }

f ◦ F to ◦ F from
≡ {F is a hofunctor }

f ◦ F (to ◦ from)
≡ { to ◦ from ≡ id }

f ◦ F id
≡ {F is a hofunctor }

f

¤
For example, for the operation first ::Queue a → a of the queue ADT, F is the

identity hofunctor, matching the source type Queue a, and G is the constantly-
identity hofunctor (G F = Id), matching the target type a. The operation must
satisfy the following promotion condition:

first ≡ first ◦ to

The promotion equations for the rest of the operations are listed below.

to ◦ deQ ≡ deQ ◦ to
to ◦ enQ a ≡ enQ a ◦ to
isEmpty ≡ isEmpty ◦ to
to emptyQ ≡ emptyQ

The proofs of such equations follow by standard equational reasoning.
The astute reader may have noticed that we have avoided explicitly defining

the from function. This is because validating user-defined to and from with tra-
ditional methods requires additional machinery not available within most main-
stream languages, such as Haskell or ML. Instead, we explore a correctness-by-
construction technique: in the next section, we will present a combinator-based
language rinv implemented as a library in Haskell, in which every definable func-
tion gets a right inverse for free. That is to say, the ADT implementer writes
only to, in rinv, and the corresponding from function is automatically generated.
For the sake of completeness, in the case of the queue ADT presented above, a
possible definition in rinv reads:

to = fold (none O more) ◦ app ◦ (id × reverse)
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However, the details of the language are completely orthogonal to the discussion
in this section, and can be safely ignored for the time being.

In summary, other than the conventional expectation that implementations
of ADTs are certified against the specifications, the only additional requirement
on the implementer is the definition of the to function. Once this is done, an
ADT is sealed off; users of the ADT only interact with the model. They can
expect to reason about their programs faithfully using properties of the model;
for example, exactly the same reasoning on the model as shown at the end of
Section 2 allows us to conclude that

deQ (enQ a q) ≡ enQ a (deQ q) ⇐ isEmpty q ≡ False

As mentioned before, a programmer using the ADT now has the choice of
keeping the original definitions using pattern matching against the model, or of
refactoring them into the traditional style using only the primitive operations of
the ADT, or of having a mixture of the two. For example, it is very convenient
to define a map function in terms of the list-like model:

mapQ1 :: (a → b) → Queue a → Queue b
mapQ1 f None = None
mapQ1 f (More a q) = More (f a) (mapQ1 f q)

or a prioritisation function, which is essentially a stable sort based on element
weight:

prioritise :: Ord a ⇒ Queue a → Queue a
prioritise None = None
prioritise (More x xs) = insert x (prioritise xs)

where insert y None = More y None
insert y (More x xs) = if y 6 x then More y (More x xs)

else More x (insert y xs)

A definition using only the primitive operations is likely to be more clumsy:

mapQ2 :: (a → b) → Queue a → Queue b
mapQ2 f q = mapQ2acc f q emptyQ

where mapQ2acc f q accq =
if isEmpty q then accq
else mapQ2acc f (deQ q) (enQ (f (first q)) accq)

Nevertheless, since the non-primitive functions and the primitive operation spec-
ifications are based on the same model, we can prove the equivalence of the two
versions through equational reasoning.

Definitions with pattern matching are almost always more elegant [42]. How-
ever, from time to time, we may want to use the primitive operations for the
sake of efficiency, or for reuse of legacy libraries. For example, consider a circular
queue that is read for a certain amount of time, say repeatedly playing a piece
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of music. Using the primitive enQ operation allows us to take advantage of its
constant time performance.

play1 :: Time → Queue (IO ()) → IO ()
play1 0 q = first q
play1 (n + 1) q = do hd

play1 n (enQ hd tl)
where hd = first q

tl = deQ q

The two styles of programming can be mixed:

play2 0 (More a q) = a
play2 (n + 1) (More a q) = do a

play2 n (enQ a q)

Equational reasoning interacts with both styles in the obvious way.

3.2 Translation into Haskell

The semantics of non-primitive functions on ADTs can be elaborated by a me-
chanical translation into ordinary Haskell, following a rather straightforward
scheme: each use of a primitive function is replaced with its implementations,
precomposed with to and postcomposed with from (subject to the appropriate
hofunctors).

First of all, adt declarations are translated into data declarations.

data Queue ′ a = None | More a (Queue ′ a)

Functions that are written using pattern matching against the model now work
with the new datatype. The primitive operations that are defined on the ac-
tual implementation require their inputs to be converted from the model before
consumption, and the outputs converted back to the model. Effectively, all the
translated functions and constructors have the model datatypes as source and
target types; the implementations remain only as intermediate structures. As an
example, play2 is translated into the following.

play2 ′ 0 (More a q) = a
play2 ′ (n + 1) (More a q) = do a

play2 ′ n ((to ◦ enQ a ◦ from) q)

Given the round trip law (Lemma 1), it is easy to conclude that play2 ′ is equiv-
alent to play2 , in the sense that exactly the same output is produced for each
input.

Theorem 2. The translation into Haskell is semantics-preserving.

Proof. Follows directly from Lemma 1. ¤
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3.3 Optimization

Up to now, we have achieved sound equational reasoning for ADTs with little
additional burden for the ADT implementer. As a result, program construction
can benefit from pattern matching and straightforward proofs of correctness.
The run-time performance of non-primitive functions making use only of pattern
matching can be understood by considering the models as datatypes; however,
when primitive operations are called, additional conversion overhead will occur.
This performance loss is to be expected for definitions such as play2 , where an
obvious switch from pattern matching to primitive operations is inevitable. How-
ever, it may be surprising that play1 , which only involves primitive operations,
is not faster. The translated code is the following.

play1 ′ 0 q = (to ◦ first ◦ from) q
play1 ′ (n + 1) q = do hd

play1 ′ n ((to ◦ enQ hd ◦ from) tl)
where hd = (to ◦ first ◦ from) q

tl = (to ◦ deQ ◦ from) q

There are conversions everywhere in the program. It will be disastrous if all of
them have to be executed. Since there is no pattern matching involved, we can
try to remove the conversions through fusion. Indeed, the correctness of such
fusion follows from the promotion condition. Let’s take an expression fragment
from the above definition for demonstration. Consider

(to ◦ enQ hd ◦ from) ((to ◦ deQ ◦ from) q)

Our target is to fuse the intermediate conversions to produce

(to ◦ enQ hd ◦ deQ ◦ from) q

This would clearly follow from ◦ to ≡ id , but this is not a property that we
guarantee—for good reason, since requiring it in addition to the existing right
inverse property to◦from ≡ id demands isomorphic implementations and models,
which is too restrictive to be practically useful. Instead, using the promotion
condition, we can prove a weaker property that is sufficient for fusion.

Theorem 3 (Fusion Soundness). Given operation specifications f ::F M a →
G M a and g ::G M a → H M a, and their implementations f ::F N a → G N a
and g :: G N a → H N a, we have H to ◦ g ◦ G from ◦ G to ◦ f ◦ F from ≡
H to ◦ g ◦ f ◦ F from.

Proof.

H to ◦ g ◦ G from ◦ G to ◦ f ◦ F from
≡ { promotion: H to ◦ g ≡ g ◦ G to }

g ◦ G to ◦ G from ◦ G to ◦ f ◦ F from
≡ {G is a hofunctor; to ◦ from ≡ id }
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g ◦ G to ◦ f ◦ F from
≡ { promotion: H to ◦ g ≡ g ◦ G to }
H to ◦ g ◦ f ◦ F from

¤
Basically, this theorem states that although the input to g may differ from the
output of f , due to the from ◦ to conversions, nevertheless the post-conversion
of g ’s output brings possibly different results into the same value in the model.

It is now clear that when pattern matching is not used, strength reduction [29]
is able to lift the conversion out of the recursion, so that it is done only once.
The translation of play1 can be optimized into the following, which is free from
any overhead.

play1 ′ n = to ◦ play1 ′′ n ◦ from

play1 ′′ 0 q = first q
play1 ′′ (n + 1) q = do hd

play1 ′′ n (enQ hd tl)
where hd = first q

tl = deQ q

3.4 More Examples

Join Lists. As an alternative to the biased linear list structure, the join repre-
sentation of lists has been proposed for program elegance [4, 27], efficiency [37],
and more recently, parallelism [38]. It can be defined as:

data List a = Empty | Unit a | Join (List a) (List a)

As a simple example, a constant-time append function (in constrast to the linear-
time left-biased-list counterpart) can be defined with this representation.

append l1 l2 = Join l1 l2

At the same time, we don’t want to give up on the familiar notion of Nil and
Cons. Instead, they can serve as a model of the join representation.

adt List a = Nil | Cons a (List a)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

We can now inherit the rich body of function definitions on lists. For example,

head (Cons x xs) = x
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Binary Numbers. In the introduction, we showed a representation of binary
numbers as lists of digits with the most significant bit first (MSB). This repre-
sentation is intuitive, and offers good support for most operations; however, for
incrementing a number, having the least significant bit (LSB) first is better.

type Num = [Bin ]

incr ′ :: Num → Num
incr ′ [ ] = [One ]
incr ′ (Zero : num) = One : num
incr ′ (One : num) = Zero : (incr ′ num)

Effectively, in order to use the above definition with any other operations, we only
need to reverse the MSB representation, and a type synonym for Num can be
used as documentation of this intention. However, the synonyms are of no help to
the compiler in guaranteeing correct usage, because they are simply two different
names for the same type. At the same time, defining the two representations as
completely different types is very cumbersome. With our proposal, we can hide
one representation in an ADT, which effectively eliminates any possibility of
misuse.

adt Num = [Bin ]
incr = reverse ◦ incr ′ ◦ reverse

In contrast to other examples, there is no new pattern interface other than
the list constructors. However, a programmer using the ADT now only deals
with a single representation of binary numbers.

4 The Right-Invertible Language ‘RINV’

Our design of ADTs discussed previously relies on the existence of a right inverse,
from, of the user-defined conversion function to. This can be guaranteed by writ-
ing to in a right-invertible language that automatically generates a right inverse
for each function constructed. In this section, we introduce such a language.

The language rinv is defined as a combinator library in Haskell, the syntax
of which is as below. (Non-terminals are indicated in small capitals.)

Language rinv ::= cstr | prim | comb
Constructors cstr ::= nil | cons | snoc | wrap | ...
Primitives prim ::= app | id | assocr | assocl | swap | ...
Combinators comb ::= rinv ◦ rinv | fold rinv | rinv O rinv | rinv× rinv

The language is similar in flavour to the pointfree style of programming [5],
but with the additional feature that a right inverse is automatically generated
for each function that is constructed. As a result, a definition f :: s ¿ t in
rinv actually represents a pair of functions (hence the notation ¿): the forward
function [[f ]] :: s → t , and its right inverse [[f ]]◦ :: t → s, which together satisfy
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[[f ]] ◦ [[f ]]◦ ≡ id . For convenience when clear from context, we don’t distinguish
between f and its forward function [[f ]].

The generated right inverses are intended to be total, so the forward functions
have to be surjective; this property holds of the primitive functions (except for
individual constructors of a multi-variant algebraic datatype) and is preserved
by the combinators.

There is an extensible set of primitive functions defining the basic non-
terminal building blocks of the language. Any surjective function could be made
a primitive in rinv. All primitive functions are uncurried; this fits better with
the invertible framework, where a clear distinction between input and output is
required. For the sake of demonstration, we present a small but representative
collection of primitive functions above: swap, assocl , and assocr rearrange the
components of an input pair; id is the identity operation; app is the uncurried
append function on lists. As we will show, with just these few we can define
many interesting functions.

The set of constructor functions is also extensible, via new datatypes. We use
lowercase names for the uncurried versions of constructors. In addition to the
left-biased list constructor cons that comes with the usual datatype declaration,
we also include its right-biased counterpart snoc, which adds an element at the
end; it can be defined in Haskell as

snoc = λ(x , xs) → xs ++ [x ]

Another additional constructor for lists is wrap, which creates a singleton list.

wrap x = [x ]

This ability to admit functions that do not directly arise from a datatype decla-
ration as constructors is crucial for the expressiveness of rinv, which otherwise
would be rigidly surjective. Although this might seem ad hoc, it is by no means
arbitrary. One should only use functions that truly model a different repre-
sentation of the datatype. For example, snoc and nil form the familar backward
representation of lists, while wrap, nil and the primitive function app correspond
to the join list representation found in Section 3.4.

Since constructor functions are exceptions to the surjectivity rule, lone con-
structors must be combined with other functions by the ‘junc’ combinator O,
which dispatches to one of two functions according to the result of matching
on a sum. When one of the operands of O is surjective, or the two operands
cover both constructors of a two-variant datatype, the result is surjective. For
example, nil O cons and nil O id are both surjective, but cons O snoc is
not. Since O can be nested, this result extends to datatypes with more than two
constructors. Constructor functions can be composed with other functions as
well, using the standard function composition combinator ◦, but only to the left:
once a non-surjective function appears in a chain of compositions other than in
the leftmost position, it is difficult to analyse the exact range of the composition,
and the check for surjectivity ceases to be syntactic.
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Other than the two already mentioned combinators, × is the cartesian prod-
uct of two functions, and fold f is the unique homomorphism from the (implicit)
initial algebra of a datatype to algebra f . We do not explicitly mention the
datatype itself, as it is understood from context. Fold is the only combinator in
rinv that is recursive. In combination with swap, assocl and assocr , × is able to
define all functions that rearrange the components of a pair, while O is useful in
constructing the algebra for a fold . We don’t include M, the dual of O, in rinv,
because of surjectivity, as will be explained shortly.

With the language rinv, we can state the following property.

Theorem 4 (Right invertibility). Given a function f in rinv, for finitely
defined input x , ([[f ]] ◦ [[f ]]◦) x ≡ x .

The correctness of this theorem should become evident by the end of this sec-
tion, as we discuss in detail the various constructs of rinv and their properties.
(Throughout this paper, unless otherwise mentioned, we always assume finitely
defined values.)

4.1 The Primitive Functions

The function id is the identity; functions assocr , assocl and swap manipulate
pairs.

assocr :: ((a, b), c) ¿ (a, (b, c))
assocl :: (a, (b, c)) ¿ ((a, b), c)
swap :: (a, b) ¿ (b, a)

Together with the combinators × and ◦, these are sufficient to define many
interesting functions on pairs. For example,

subr :: (b, (a, c)) ¿ (a, (b, c))
subr = assocr ◦ (swap × id) ◦ assocl

trans :: ((a, b1), (b2, c)) ¿ ((a, b2), (b1, c))
trans = assocl ◦ (id × subr) ◦ assocr

Function app is the uncurried append function, which is not injective. The
admission of non-injective functions is one of the most important distinctions
between rinv and other invertible languages [31], allowing us to break away
from the isomorphism restriction. There are many possible right inverses for
app, of which we pick one:

[[app]]◦= λxs → splitAt ((length xs + 1) ‘div ‘ 2) xs
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4.2 The Constructors

The semantics of the constructor functions are simple: they follow directly from
the corresponding constructors introduced by datatype declarations, except for
being uncurried. For example,

[[nil ]] = λ() → [ ]
[[cons]] = λ(x , xs) → x : xs

Constructors snoc and wrap are not primitive on left-biased lists, but can be
encoded:

[[snoc]] = λ(xs, x ) → xs ++ [x ]
[[wrap]] = λx → [x ]

Inverses of the primitive constructor functions are obtained simply by swapping
the right- and left-hand sides of the definitions. For example, we have

[[nil ]]◦ = λ[ ] → ()
[[cons]]◦= λ(x : xs) → (x , xs)

They are effectively partial ‘guard’ functions, succeeding when the input value
matches the pattern. The right inverses of snoc and wrap are

[[snoc]]◦ [x ] = ([ ], x )
[[snoc]]◦ (x : xs) = let (ys, y) = [[snoc]]◦ xs in (x : ys, y)

[[wrap]]◦ [x ] = x

The inverses of constructor functions are generally not case-exhaustive. For ex-
ample, [[cons]]◦ only accepts non-empty lists, while [[nil ]]◦ only accepts the empty
list. As a result, in contrast to primitive functions, constructor functions cannot
be composed arbitrarily, as we will see shortly.

4.3 The Combinators

The combinators in rinv are familiar to functional programmers.

Composition, Sum and Product. Combinator ◦ sequentially composes two
functions:

[[f ◦ g ]] = [[f ]] ◦ [[g ]]
[[f ◦ g ]]◦= [[g ]]◦◦ [[f ]]◦

Its inverse is the reverse composition of the inverses of the two arguments.
Combinators × and O compose functions in parallel. The former applies a

pair of functions component-wise to its input:
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(×) :: (a ¿ b) → (c ¿ d) → ((a, c) ¿ (b, d))
[[f × g ]] = λ(w , x ) → ([[f ]] w , [[g ]] x )
[[f × g ]]◦= λ(y , z ) → ([[f ]]◦ y , [[g ]]◦ z )

It is well known that × can be defined in term of a more primitive combinator
M, which executes both of its input functions on a single datum:

(M) :: (a ¿ b) → (a ¿ c) → (a ¿ (b, c))
[[f M g ]] = λx → ([[f ]] x , [[g ]] x )

However, in the backward direction, [[f ]]◦ x and [[g ]]◦ y would have to converge,
which is difficult to enforce statically. Indeed, functions constructed with M are
generally not surjective, and so do not have total right inverses; for this reason,
we exclude M from rinv.

The combinator O consumes an element of a sum type.

data Sum a b = Inl a | Inr b
(O) :: (a ¿ c) → (b ¿ c) → (Sum a b ¿ c)
[[f O g ]] = λx → case x of {Inl a → [[f ]] a ; Inr b → [[g ]] b}

In the backward direction, if both f and g are surjective, it doesn’t matter
which branch is chosen. However, the use of constructor functions deserves some
attention, since they are not surjective in isolation. As a result, in the event that
[[f ]]◦ fails on certain inputs, [[g ]]◦ should be applied. To model this failure handling,
we lift functions in rinv into the Maybe monad (allowing an extra possibility
for the return value), and handle a failure in the first function by invoking the
second.

[[f O g ]]◦= λx → ([[f ]]◦ x ) ‘mplus‘ ([[g ]]◦ x )

This shallow backtracking is sufficient because the guards of conditionals are
only pattern matching outcomes, which are completely decided at each level.
For brevity, we still use the non-monadic types for f Og , with the understanding
that all functions in rinv are lifted to the Maybe monad in the implementation.

In general, it is not an easy task to check (joint) surjectivity of functions.
However, in rinv, this test is made relatively straightforward, since the only
possible cause for f O g not to be jointly surjective is that both f and g use
constructor functions; in this case, it is clear that we need the complete set of
constructors to satisfy the condition of joint surjectivity. We demonstrate this
check with examples towards the end of this section.

The more intricate part is to analyse the surjectivity of the composition
(and hence the totality of its inverse). It is clear that if one of the functions
in a chain of compositions is not surjective, the composed function may also
be non-surjective. However, there is no easy way of determining the range of
such a composition if the non-surjective function is not the leftmost one in the
chain, which makes it unsuitable for constructing jointly surjective functions
through the O combinator as discussed above. Therefore, in rinv, we disallow
compositions involving constructor functions on the right of a composition.
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Fold. With the ground prepared, we are now ready to discuss recursive combi-
nators. We define

[[fold f ]] = foldX [[f ]]
[[fold f ]]◦= unfoldX [[f ]]◦

The forward semantics of fold f is defined in terms of the standard foldX for a
datatype X , and the backward semantics is defined by a corresponding unfoldX .
In what follows, we call the f in fold f the ‘body’ of the fold. Note that unfold
is not in rinv, but is used to define right inverses. In this paper, we overload
fold and unfold when the datatype is understood. Intuitively, fold disassembles a
structure and replaces the constructors with applications of the body, effectively
collapsing the structure. Function unfold , on the other hand, takes a seed, split-
ting it with the body into building blocks of a structure and new seeds, which
are themselves recursively unfolded. In short, fold collapses a structure, whereas
unfold grows one.

When an algebraic datatype X is given, Haskell definitions of foldX and
unfoldX can be generated. For example, consider the datatype of lists:

foldL :: (Sum () (a, b) → b) → (List a → b)
foldL f = λxs → case xs of

[ ] → f (Inl ())
(x : xs) → f (Inr (x , (foldL f xs)))

unfoldL :: (b → Sum () (a, b)) → (b → List a)
unfoldL f = λb → case f b of Inl () → [ ]

Inr (a, b) → a : (unfoldL f b)

Another example is leaf-labelled binary trees. Note that the constructor Fork
is uncurried to fit better into the rinv framework.

data LTree a = Leaf a | Fork (LTree a,LTree a)

foldT :: (Sum a (b, b) → b) → LTree a → b
foldT f = λt → case t of

Leaf a → f (Inl a)
Fork (t1, t2) → f (Inr (foldT f t1, foldT f t2))

unfoldT :: (a → Sum a (b, b)) → b → LTree a
unfoldT f = λb → case f b of

Inl a → Leaf a
Inr (b1, b2) → Fork (unfoldT f b1, unfoldT f b2)

We use unfold to construct the right inverse of fold . From [12], we have the
following lemma.

Lemma 5. fold [[f ]] ◦ unfold [[f ]]◦ v id.

Since both fold and unfold are case-exhaustive when their bodies are case-
exhaustive, the only reason for not having an equality in the lemma above is
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that unfold is potentially non-terminating: when a body does not split a seed
into ‘smaller’ seeds, unfolding a seed creates an infinite structure. It is well known
that a function constructed by unfold terminates if the seed transformation is
well-founded (that is, there should be no infinite descending chain of seeds).
Static termination checkers exist in the literature [20, 36] and are orthogonal to
the discussion here.

4.4 Programming in RINV

With the knowledge of rinv, we are now ready to look into the kinds of function
we can define with it.

To start with, let’s look first at a very useful derived combinator map that
can be defined in term of fold . For example, map on lists, mapL, is defined as
follows.

mapL :: (a ¿ b) → (List a ¿ List b)
mapL f = fold ◦ (nil O (cons ◦ (f × id)))

Function mapL f applies argument f uniformly to all the elements of a list,
without modifying the list structure. Since nil and cons form a complete set of
constructors for lists, we know they are jointly surjective.

Similarly, map on leaf-labeled trees, mapT , is defined as follows.

mapT :: (a ¿ b) → (Tree a ¿ Tree b)
mapT f = foldT ◦ ((leaf ◦ f ) O fork)

The function reverse on lists can be defined as a fold:

reverse = fold (nil O snoc)
[[reverse]]◦= unfold [[nil O snoc]]◦

In the forward direction, a list is taken apart and the first element is appended
to the rear of the output list by snoc. This process terminates on reaching an
empty list, when an empty list is returned as the result. Function [[snoc]]◦ extracts
the last element in a list and adds it to the front of the result list by unfold ,
which terminates when [[nil ]]◦ can be successfully applied (i.e when the input is
the empty list). Since nil and snoc form a complete set of constructors for lists,
they are jointly surjective.

Function reverse is also used to construct the apprev function that reverses
a list and appends it.

apprev :: ([a ], [a ]) → [a ]
apprev = app ◦ (id × reverse)

Function apprev reverses the second list before concatenating the two. For ex-
ample, we have:

apprev ([1, 2], [3, 4, 5, 6, 7]) = [1, 2, 7, 6, 5, 4, 3]
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The companion apprev◦ function is

apprev◦ :: [a ] → ([a ], [a ])
apprev◦ = [[app ◦ (id × reverse)]]◦

In the backward direction, a list is split into two, and functions [[id ]]◦and [[reverse]]◦

are applied to the two parts. For example, we have

apprev (apprev◦ ([1, 2, 7, 6, 5, 4, 3])) ≡ apprev ([1, 2, 7, 6], [3, 4, 5])
≡ [1, 2, 7, 6, 5, 4, 3]

On the other hand,

apprev◦ (apprev ([1, 2], [3, 4, 5, 6, 7])) ≡ apprev◦ ([1, 2, 7, 6, 5, 4, 3])
≡ ([1, 2, 7, 6], [3, 4, 5])

It is clear from above that apprev◦ is not a left inverse of apprev , and it is not
intended to be a term in the language rinv.

Our last example is the traversal of node-labelled binary trees.

data BinTree a = BLeaf | BNode a (BinTree a,BinTree a)

The fold/unfold functions for binary trees are as follows.

foldB :: (Sum () (a, (b, b)) → b) → (BinTree b → b)
foldB f = λx → case x of

BLeaf → f (Inl ())
BNode a (l , r) → f (Inr (a, (foldB f l , foldB f r)))

unfoldB :: (b → Sum () (a, (b, b))) → (b → BinTree b)
unfoldB f =

λx → case f x of
Inl () → BLeaf
Inr (a, (l , r)) → BNode a (unfoldB f l , unfoldB f r)

Using the foldB combinator, pre- and post-order traversal of a binary tree can
be defined as follows.

preOrd = foldB (nil O (cons ◦ (id × app)))
postOrd = foldB (nil O (snoc ◦ swap ◦ (id × app)))

In the forward direction, foldB adds the node value at one end of the concate-
nation of the two subtrees’ traversals. In the backward direction, a node value is
extracted from the input list, and the rest of the list is divided and grown into
individual trees.

As a final remark to readers familiar with pointfree programming in Haskell,
the primitive function app can be defined as a fold:

app = uncurry (flip (foldr (:)))
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which effectively partially applies foldr and awaits an input as the base case. This
idiom of taking an extra argument to form the base case is difficult to realize
when the fold body is constructed independently, as it is in rinv. For some
cases, it even threatens the existence of right inverses as unfolds. For example,
the following function in Haskell

f :: a → [LTree a ] → LTree a
f a = foldr Fork (Leaf a)

does not have a right inverse as an unfold. In rinv, we rule out definitions of
this kind, and treat app as a primitive.

5 Discussion

5.1 The Dual Story

In this paper, we have picked the to function to be provided by ADT imple-
menters; the design of rinv and the subsequent discussion of ADTs is based on
this decision. However, this choice is by no means absolute. One can well imag-
ine ADT implementers coming up with from functions first, and a left-invertible
language generating the corresponding to functions; this would give the same
invertibility property to ◦ from ≡ id . But the implementer is now expected to
prove a different promotion condition, f ◦ F from ≡ G from ◦ f , adapted to
involve only from. Nevertheless, the crucial round-trip law and fusion law that
form the foundation of the translation and optimization are still derivable; for
round-trip, we have

G to ◦ f ◦ F from
≡ { f ◦ F from ≡ G from ◦ f }
G to ◦ G from ◦ f

≡ {G is a hofunctor; to ◦ from ≡ id }
f

and for fusion:

H to ◦ g ◦ G from ◦ G to ◦ f ◦ F from
≡ { f ◦ F from ≡ G from ◦ f }
H to ◦ g ◦ G from ◦ G to ◦ G from ◦ f

≡ {G is a hofunctor; to ◦ from ≡ id }
H to ◦ g ◦ G from ◦ f

≡ { f ◦ F from ≡ G from ◦ f }
H to ◦ g ◦ f ◦ F from
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5.2 Reasoning about Efficiency

A controversy in any design that embeds implicit computations into pattern
matching is the datatype-like notation. We think this feature is positive, since it
preserves the elegant syntax of pattern matching and offers backward compat-
ibility, an important property for incremental refactoring. On the other hand,
there is the concern that this similar look and feel may cause programmers to
overlook the possibility of non-constant run-time cost of pattern matching on
models. This is certainly a valid concern. As we have seen in Section 3.3, such
conversions only occur when primitive operations and pattern matching interact.
If this occurs in a recursion, run-time complexity could be affected. However, it is
clear that this inefficiency can be eliminated by not mixing primitive operations
and pattern matching in recursions.

5.3 Nested and Overlapping Patterns

Two well-regarded features of pattern matching are the scalability with respect
to nesting and the sharing between overlapping patterns. For example, consider
a function that sums elements of a list pair-wise:

pairSum Nil = Nil
pairSum (Cons x Nil) = Cons x Nil
pairSum (Cons x (Cons y ys)) = Cons (x + y) (pairSum ys)

Nested patterns allow simultaneous matching and variable binding to patterns
below top level (such as y above), in contrast to the sequential checking of ex-
pressions as guards. There is often a degree of sharing between patterns; for
example, input to pairSum that, when evaluated, fails to match the first pat-
tern does not need to be evaluated again for subsequent clauses. This is even
more important for pattern matching on models where non-constant computa-
tion (i.e., the to function) may be needed. Our proposal supports both features
nicely: nested patterns are written exactly the same way as with datatypes; and
execution of to functions is done prior to pattern matching and is shared among
all the patterns.

5.4 RINV Expressiveness

In our system, the set of definable models is determined by the existence of to
functions in rinv that map to them. rinv is designed to be extensible: new
primitives (and even new combinators) can be added to the language if needed.
The real limitation of rinv we face here is that all functions must be surjective,
in order to ensure existence of the right inverses: valid model values are bounded
by the actual range of the user-defined to function; invertibility is not guaranteed
for model values outside this range.

Totality of from is certainly desirable if it is used for model conversion, since
failures will not be observable through reasoning. In the current proposal, the to
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functions in rinv are always surjective, which rules out some useful programs.
An example already mentioned is the combinator M which executes both of its
input functions, and is defined as

(M) :: (a → b) → (a → c) → a → (b, c)
(f M g) = λx → (f x , g x )

Since f M g is generally not surjective, it doesn’t have a right inverse, despite the
fact that we can easily guard against inconsistent input in the reverse direction
as follows.

[[f M g ]]◦= λ(a, b) → if x == y then x else error "violation"
where x = [[f ]]◦ a ; y = [[g ]]◦ b

Definitions like the one above are known as weak right inverses [30].
Another useful function is unzip, which can be defined as a fold.

unzip = foldL ((nil M nil) O ((cons × cons) ◦ trans))

This definition will be rejected in rinv, since cons × cons and nil M nil are not
jointly surjective. Indeed, unzip only produces pairs of lists of equal length. This
is also the very reason that we exclude unfold as a combinator in rinv, as it in
general only constructs structures of a particular shape, as determined by the
splitting strategy of its body.

If a model value outside the range is constructed, the integrity of model level
equational reasoning may be corrupted. On the other hand, it is valid to argue
that the same invariant assumed for the original datatype prior to the refactoring
applies to the model too. For example, consider a program that requires balanced
binary trees. A to function that only produces balanced binary trees is safe
if the invariant is correctly preserved in the original program. It remains an
open question whether we should allow programmers to take some reasonable
responsibilities, or should insist on enforcing control through the language.

6 Related Work

Efforts to combine data abstraction and pattern matching started two decades
ago with Wadler’s views proposal [43]; and it is still a hot research topic [8, 10,
11,19,21,33–35,39,41].

Wadler’s views provide different ways of viewing data than their actual im-
plementations. With a pair of conversion functions, data can be converted to
and from a view. Consider the forward and backward representations of lists:

data List a = Nil | Cons a (List a)
view List a = Lin | Snoc (List a) a

to Nil = Lin
to (Cons x Nil) = Snoc Nil x
to (Cons x (Snoc xs y)) = Snoc (Cons x xs) y
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from Lin = Nil
from (Snoc Nil x ) = Cons x Nil
from (Snoc (Cons x xs) y) = Cons x (Snoc xs y)

The view clause introduces two new constructors, namely Lin and Snoc, which
may appear in both terms and patterns. The first argument to the view con-
struction Snoc refers to the datatype List a, so a snoclist actually has a conslist
as its child. The to and from clauses are similar to function definitions. The to
clause converts a conslist value to a snoclist value, and is used when Lin or Snoc
appear as the outermost constructor in a pattern on the left-hand side of an
equation. Conversely, the from clause converts a snoclist into a conslist, when
Lin or Snoc appear in an expression. Note that we are already making use of
views in the definition above; for example, Snoc appears on the left-hand side of
the third to clause, matching against which will trigger a recursive invocation of
to.

Functions can now pattern match on and construct values in either the
datatype or one of its views.

last (Snoc xs x ) = x

rotLeft (Cons x xs) = Snoc xs x
rotRight (Snoc xs x ) = Cons x xs

rev Nil = Lin
rev (Cons x xs) = Snoc (rev xs) x

Upon invocation, an argument is converted into the view by the to function; after
completion of the computation, the result is converted back to the underlying
datatype representation.

Just as with our proposal, this semantics can be elaborated by a straightfor-
ward translation into ordinary Haskell. First of all, view declarations are trans-
lated into data declarations.

data Snoc a = Lin | Snoc (List a) a

Note that the child of Snoc refers to the underlying datatype: view data is
typically hybrid (in contrast to our approach). Now the only task is to insert the
conversion functions at appropriate places in the program.

last xs = case to xs of Snoc xs x → x

rotLeft xs = case xs of Cons x xs → from (Snoc xs x )
rotRight xs = case to xs of Snoc xs x → Cons x xs

rev xs = case xs of
Nil → from Lin
(Cons x xs) → from (Snoc (rev xs) x )

In contrast to our approach, Wadler exposes both a datatype and its views
to programmers. To support reasoning across the different representations, the
conversion clauses are used as axioms.
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For example, we can evaluate an expression:

last (Cons 1 (Cons 2 Nil))
≡ {Cons x Nil = Snoc Nil x }

last (Cons 1 (Snoc Nil 2))
≡ {Cons x (Snoc xs y) = Snoc (Cons x xs) y }

last (Snoc (Cons 1 Nil) 2)
≡ { last }

2

or calculate with functions:

rotRight (rotLeft (Cons x xs))
≡ { rotLeft }

rotRight (Snoc xs x )
≡ { rotRight }

Cons x xs

However, this style of reasoning is limited in expressiveness. For example,
there is no way to calculate with rotLeft ◦ rotRight , because in Wadler’s set-
ting, inputs are always constructed in the underlying datatype: in (rotLeft ◦
rotRight) (Cons x xs), there is no way of converting Cons x xs to a Snoc view,
which would allow the calculation of rotRight to proceed. (The claim in the
original paper [43] that rotLeft ◦ rotRight ≡ id is provable is incorrect; what is
actually provided is a proof that rotRight ◦ rotLeft ≡ id .)

A perhaps more noticeable weakness of views is the use of user-defined con-
versions as axioms. It is expected for a view type to be isomorphic to a subset
of its underlying datatype, and for the pair of conversions between the values
of the two types to be each other’s full inverses. This is certainly restrictive;
and Wadler didn’t suggest any way to enforce such an invertibility condition. As
pointed out by Wadler himself [43], and followed up by several others [8,34], this
assumption is risky, and may lead to nasty surprises that threaten soundness of
reasoning.

Inspired by Wadler’s proposal, our work ties up the loose ends of views by
hiding the underlying datatype as an ADT, and using only the view (our model)
for pattern matching. The implementations of primitive operations of the ADT
can be proven correct through comparison against the constructive specification,
at no additional cost to ADT implementers. The language rinv for defining con-
versions guarantees right invertibility, a weaker condition that lifts the isomor-
phism restriction on abstract representations and models. In contrast to views,
our system does not cater for multiple views of the same ADT, because given
no explicit axioms connecting them, it is difficult to reason across views.

‘Safe’ variants of views have been proposed before [8,34]. To circumvent the
problem of equational reasoning, one typically restricts the use of view construc-
tors to patterns, and does not allow them to appear on the right-hand side of a
definition. As a result, expressions like Snoc Lin 1 become syntactically invalid.
Instead, values are only constructed by ‘smart constructors’, as in snoc lin 1.
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In this setting, equational reasoning has to be conducted on the source level
with explict applications of to. A major motivation for such a design is to admit
views and sources with conversion functions that do not satisfy the invertibil-
ity property. In another words, let Constr and constr be a constructor and its
corresponding smart constructor; in general, we have Constr x 6≡ constr x . This
appears to hinder program comprehension, since the very purpose of the conven-
tion that the name of a smart constructor differs only by case from its ‘dumb’
analogue is to suggest the equivalence of the two.

More recently, language designers have started looking into more expressive
pattern mechanisms. Active patterns [10, 35] and many of their variants [11, 19,
21,35,39,41] go a step further, by embedding computational content into pattern
constructions. All the above proposals either explicitly recognise the benefit of
using constructors in expressions, or use examples that involve construction of
view values on the right-hand sides of function definitions. Nevertheless, none
of them are able to support pattern constructors in expressions, due to the
inability to reason safely. Knowing that there is an absence of good solutions for
supporting constructors in expressions, some work focusses mainly on examples
that are primarily data consumers, an escape that is expected to be limited
and short-lived. Another common pitfall of active patterns is the difficulty in
supporting nested and overlapping patterns, as discussed in Section 5.3, because
each active pattern is computed and matched independently.

In particular, equational reasoning with ADTs is one of the central themes
in two notable proposals [8, 35]. These proposals demonstrate the possibility
of reasoning about programs containing safe views or active patterns, through
the axiomatic specifications of ADTs. In particular, it is observed in [8] that
an algebraic datatype called the ‘associated free type’ (model in our case) may
serve as the interface of an ADT. Through the view mechanism, an associated
free type can differ in structure from the abstract representation of the ADT. In
contrast to ours, their proposal is not able to separate functions over an ADT
into primitive and non-primitive, an essential feature for incremental refactoring;
nor to recognize the value of right-invertibility of to as the key to sound reasoning
with models.

The language rinv owes its origins to the rich literature on invertible pro-
gramming [2, 32], a programming paradigm where programs can be executed
both forwards and backwards. Mu et al. concentrate their effort on designing
a language that provides only injective functions. The resulting language Inv
is a combinator library that syntactically rules out any non-injective functions.
The most novel operator of Inv is dup f , which duplicates the input and ap-
plies f to one copy. In the backward direction, the two copies of the duplicated
input are checked for consistency before being restored. It is shown that Inv is
practically useful for maintaining consistency of structured data related by some
transformations [17, 31]. Invertible arrows [2] extend the arrow framework [18]
(a generalization of monads) with a combinator that encodes pairs of functions
being each other’s inverses. In an aside in [2], it is recognized that when full in-
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vertibility is not achievable (due to the non-isomorphic nature of the two sides),
biased (either left- or right-) invertibility is nevertheless approximation.

Right inverses have been studied as a component of the much more elaborate
bidirectional programming framework of lenses [6,13–15] targeting view-updates
of XML databases; in this context, right inverses are known as ‘create’ functions.
Based on record types, the combinators of lenses have little similarity to those
of rinv. A distinctive feature of the lenses framework is the use of semantic
types [16] to give precise bounds to the ranges of forward functions (thus the
domains of backward functions). As a result, surjectivity now concerns the re-
lationships of domains/ranges of lenses connected by a combinator, instead of
being a property between a function and its target datatype.

7 Conclusion

Algebraic datatypes and pattern matching offer great promise to programmers
seeking simple and elegant programming, but the promise turns sour when mod-
ular changes are demanded. Our work tackles this long-standing problem by
proposing a framework for refactoring programs written with pattern matching
into ones with ADTs: programmers are able to selectively reimplement original
function definitions into primitive operations of the ADT, and either rewrite the
rest in terms of the primitive ones, or simply leave them unchanged. This mi-
gration is completely incremental: executability and proofs through equational
reasoning are preserved at all times during the process.

At the heart of our proposal is a novel design of ADTs enriched with algebraic
models for backwards-compatible pattern matching. The model has the same
interface as the datatype that is being replaced; and the original definitions
of the selected primitive operations are turned into constructive specifications,
through which equational reasoning connects the primitive operations and the
rest of the functions. The soundness of such reasoning is established by the right-
inverse property of the conversion pairs that bridge the model and the abstract
representation.

We have implemented the language rinv as a combinator library in Haskell,
and a näıve translation of ADTs into Haskell immediately follows. However,
it remains to investigate how the fusion theory developed in the paper can be
applied in practice. There is literature on fusing embedding-projection pairs
(conceptually similar to our to and from functions) [1,25]. However the treatment
of recursive functions using a fixpoint combinator in [1] is not applicable directly,
because the ‘deep’ embedding in our approach (not producing hybrid data) does
not allow conversions to be isolated into a non-recursive part. Instead, we plan
to employ an analysis of mixed uses of patterns and primitive operations; and
use strength reduction to remove the conversions, as outlined in Section 3.3.

At this stage, our focus is on supporting refactoring of programs written with
datatypes and pattern matching, which automatically excludes some ADTs, such
as unordered sets, that cannot be fully modelled by algebraic datatypes. We leave
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it as future work to investigate the applicability of our proposal in a more general
setting.
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