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The VISITOR Pattern as a Reusable, Generic, Type-Safe Component
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Abstract the dominant decomposition’: when software can be mod-
ularized along just one primary dimension at a time, con-
cerns that do not break down naturally along that dimension
will be scattered across the dominant structure and ergelngl

fleibility makes it difficult to capture the pattern formall Wlth. other concerns. For another example, certain software
We show how to capture the essence of thesIVoR designs seem to be hard to capture more abstractly as soft-

pattern as a reusable software library, by using advancedware, componen_ts. This is the case for most of the Angg of
type system features appearing in modemn object-orientedr Ul (GoF)design patterngGamma et al., 1995], which
languages such as Scala. We preséype-safety statically cannot be expressed better than in terms of prose, pictures
no reflection or similar mechanisms are used. The library is @"d Prototypes. .

generic in two senses: by types (the traversal return type and Ou_r first contribution is to fshow that, W|th_the modern_ ex-
the object hierarchy shape) and by strategy (internal gersu pressive type systems starting to appear in object-oiente
external control, imperative versus functional behayiosr ~ 1anguages, we can in fact capture (at least the code aspects
thogonal aspects such as tracing and memoisation). Finally ©f) thé VISITOR design pattern [Gamma et al.,, 1995] as a
we propose a generalisddtatypelike notation, providinga  9€neric and type-safe visitor software component. Morgove

convenient functional decomposition style in object-ptéel it is possible to capture a number of variations on the patter
languages. within one parametrizable component — specifically, we

can support the following design decisions: who is responsi
1. Introduction ble for traversing the object structure, the visitor or tbgeat
structure; whether the visitor isnperative(with results of
traversals stored as mutable state in the visitofunctional
(pure, with results returned by tlaeceptmethod); whabr-
thogonal concernsuch as tracing or caching of computa-

The VISITOR design pattern shows how to separate the
structure of an object hierarchy from the behaviour of trave
sals over that hierarchy. The pattern is very flexible; tieis/v

A software componeris a piece of software that can be
safely reusedandflexibly adaptedSafety can be ensured,
for example, by a type system; flexibility stems from making

componentparametrizableComponent-oriented program-  tjons are supported. Instead of committing to a particular
ming [Mcllroy, 1969], a programming style in which soft-  yecision at the time we design a visitor, as would be nec-

ware _is assembled from independen_t components, has for %ssary with the informally-expresseds¥ror pattern, we
long time been advocated as a solution to the so-cabél 5 define a single visitor that postpones all of these design

ware crisis[Naur and Randell, 1969]. , decisions by allowing them to be specified by parametriza-
This vision still has not been fully realised, largely due o

to limitations of current programming languages. For ex- component is implemented in the Scala program-

ample, regarding th_e structure of da_tatype_definitions,tmos ming language [Odersky, 2006] and its type safetpti-

languages have a bias towards eitbisject-oriented decom- o1y guaranteed by the type system. The Scala features that

position (where adding new variants is easy)fanctional make this possible arparametrization by typgor gener-

decompositionfiwhere adding new functions is easy). This ics, as found in recent version of Java or C#) ambtract

is an instance of what Tarr et al. [1999] call ‘the tyranny of types(althoughtype-constructor polymorphispltherr and
Cremet, 2007] could be used instead). As far as we are
aware, all existing solutions trying to capture some notion
of generic visitors [Palsberg and Jay, 1998, Visser, 2001,
Grothoff, 2003, Forax et al., 2005, Meyer and Arnout, 2006]
make use of reflection or introspection mechanisms that do
not statically guarantee type-safety. Furthermore, mést o

[Copyright notice will appear here once 'preprint’ optiGrémoved.]



those solutions only capture particular variations of the p
tern.

Figure 2 shows examples of the two variations, using
functional-style fSITORs in Scala. In both visitors, the trait

Our second contribution is a semantics for a generalised Tree and the classeEmpty and Fork define a ©@MPOs

algebraic datatype notationThe notation allow us to define
parametriG mutually-recursiveand existentialvisitors, be-
ing comparable in expressive power to Haskell 98 and ML-
style datatypes. It also integrates well with object-cieeh
languages, allowing both datatypes and data-construictors

override or define new fields and methods. Furthermore,

it generalises traditional algebraic datatypes, in thessen

ITE. Using the visitor terminologylreeis the element type
andEmptyandFork are the concrete elements. The method
accept defined inTreeand implemented in the two concrete
elements, takes @reeVisitorobject with twovisit methods
(one for each concrete element). Unlike with the traditiona
presentation of the MITOR, the parameters of the construc-
tors are fed directly into theisit methods instead of passing

that both the traversal and the dispatching strategies arethe whole constructed object. Parametrizing ¢ieit meth-

parametrizable.

2. The VISITOR as a Design Pattern
2.1 The VisiTOR Pattern

The VISITOR design pattern is an alternative to the normal
object-oriented approach to hierarchical structuresaisgp

ing the operations from the object structure. Figure 1 shows

the class structure of the pattern. Tisitor interface de-
claresvisit methods for eaclConcreteElemertiype, imple-
mented in eaclConcreteVisitorclass; theElementabstract
superclass declares theceptmethod, taking &/isitor as ar-
gument, defined in eadboncreteElemergubclass to select
the appropriateisit method from avisitor.

In contrast to the standard object-oriented decomposi-

tion, the VisITOR pattern makes it easy to add new opera-
tions — at the cost of making it difficult to add new vari-

ants. One can see the pattern as a way of simulating doubl
dispatch in a single-dispatch language: the method imple-
mentation chosen depends on the dynamic types of both the

ConcreteElemerdand theConcreteVisitor

2.2

In the traditional presentation of the visitor pattern, st
andacceptmethods return no result; any value computed by
the visitor is stored in the visitor for later retrieval. Aliea-
native is for thevisit andacceptmethods to return the value
directly. Buchlovsky and Thielecke [2005] use the termm
perative visitorfor one that hasisit andacceptmethods that
returnvoid, with all computations executed through side-
effects, accumulating results via mutable state; in cehtra
afunctional visitoris immutable, all computations yielding
their results through the return values of thsit andaccept
methods, which are pure.

Imperative and Functional VISITOR S

2.3 Internal and External VISITORS

e

ods in this way gives a functional programming feel when
using visitors.

Operations on trees are encapsulate@€amcreteVisitor
objects. For example, an external visitor to compute the
depth of a binary tree — explicitly propagating itself to
subtrees — is defined as follows:

object DepthextendsTreeVisitorint] {

defempty =0
deffork (x:int,|: Treer: Tree) =
1+ max(l.accept(this),r.accept(this))
}

Defining values of typdree benefits from Scala’sase
classsyntax, which avoids some uses of ti@w keyword.
To use aConcreteVisitorwe need to pass it as a parameter
to theacceptmethod of alreevalue. As a simple example,
we define a methotkstto compute the depth of a small tree.
val atree= Fork (3, Fork (4, Empty Empty), Empty)
deftest = atreeaccept(Depth

2.4 The Class Explosion

As is the case with most design patterns, theIYOR pat-
tern presents the programmer with a number of design deci-
sions. An obvious dimension of variation follows the shape
of the object structure being traversed: Wisitor interface
for binary trees will differ from that for lists. We have just
discussed two other dimensions of choice: imperative wersu
functional behaviour, and internal versus external cdntro
A fourth dimension captures certain cross-cutting corgern
such as tracing of execution and memoization of results.
Handled naively, this flexibility introduces some prob-
lems. For one thing, capturing each combination sepa-
rately leads to an explosion in the number of classes:
ImpExtTreeBasicVisitofor imperative external tree visi-

Gamma et al. [1995] raise the question of where to place tors, FuncintTraceListVisitoffor functional internal tracing

the traversal code: in the object structure itself (inabeept
methods), or in the concrete visitors (in thisit methods).
Buchlovsky and Thielecke [2005] use the teimternal visi-

tor for the former approach, arekternal visitorfor the lat-
ter. Internal visitors are simpler to use and have more-inter
esting algebraic properties, but the fixed pattern of coaput
tion makes them less expressive than external visitors.

list visitors, and so on. Secondly, the dependency on user-
supplied information (the shape of the object structure} pr
vents these classes from being provided in a library. Rinall
because the variations have different interfaces, thecehoi
between them has to be made early, and is difficult to change.
All three of these problems can be solved, by specify-
ing the variation by parametrization. The main contribatio



Client Visitor

+visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB):void

ConcreteVisitor1 ConcreteVisitor2
+visitConcreteElementA(e:ConcreteElementA):void +visitConcreteElementA(e:ConcreteElementA):void
+visitConcreteElementB(e:ConcreteElementB):void +visitConcreteElementB(e:ConcreteElementB):void

ObjectStructure Element
0.*

+accept(v:Visitor):void

T

ConcreteElementA ConcreteElementB
void accept (Visitor v) { void accept (Visitor v) {
v.visitConcreteElementA(this); — —| +accept(v:Visitor):void +accept(v:Visitor):void f— — —|  V.visitConcreteElementB(this);
} +operationA():void +operationB():void }

Figure 1. The VisITOR design pattern

of this paper is the provision of a generic visitor compo-

nent, parametrizable on each of these dimensions: shape The following table presents the correspondence between
(of object structure), result type (hence imperative versu the concepts in our visitor library and the traditionals\/
functional), strategy (internal versus external), andoeon TOR pattern notation.

(cross-cutting).

) ) o ) Library notation VISITOR terminology
3. Programming with the Visitor Library dataT Element
3.1 A Datatype Notation for Visitors constructor Concrete Element
Inspired by datatype declarations from functional program (D)Case Visitor _
ming languages, we introduce a succidata-like notation Vextends(D)Caser | Concrete Visitor N
as syntactic sugar for the actual visitor library in Scalehw new (D)Caser Anonymous Concrete Visitor

out compromising clarity and expressiveness. We present
this notation informally in this section; a formal accoust i
presented in Section 6.

Consider the following Haskell [Peyton Jones, 2003]

The traits(D) Case are generated from the datatype defini-
tions. For the tree example, this means that we would have
DCaseTreandCaseTredraits.

datatype definition:
data Tree= Generalized data notation We also make oudata nota-
Empty tion more amenable to object-oriented programming by gen-
| Fork Int Tree Tree eralizing it so that datatypes can, in the same way as classes
An equivalent definition in oudata notation is: or traits, define and override methods and values. In Figure 3
dataTree{ we define a neWatdatatype that uses this generalized nota-
constructor Empty tion; it overrides theoString equalsandhashCodenethods
constructor Fork (x:int,|: Treer: Tree) and defines &al intValuethat is implemented by each of the
} constructors.



Internal Visitors
trait Tree{
defaccepfR] (v: TreeVisitorR]) : R

}

case clasEmptyextendsTree{
defaccepfR] (v: TreeVisitoR]) : R= v.empty

}

case classork (x:int,|: Treer : Tree) extendsTree{
defaccepfR] (v: TreeVisitorR]) :R=

External Visitors
trait Tree{
defaccepfR] (v: TreeVisitorR]) : R

}

case clasEmptyextendsTree{
defaccepfR] (v: TreeVisitor[R]) : R= v.empty

}

case classork (x:int,|: Treer : Tree) extendsTree{
defaccepfR] (v: TreeVisitorR]) :R=

v.fork (x,l.accept(v),r.accept(v)) v.fork (x,1,r)

} }
trait TreeVisitorR] { trait TreeVisitorR] {

defempty R defempty R

deffork (x:int,| :Rr:R):R deffork (x:int,1: Treer:Tree) : R
¥ }

Figure 2. Internal and External \61TORs for Binary Trees
dataNat { depth: Tree— Int

val intValue; Int

constructor Zero{
val intValue=0
}
constructor Succ(n: Nat) {
val intValue= 1+ n.intValue

}

override deftoString() : String= this.accept(
new CaseNaflnternal, String] {
defZero = "Zero"

def Succ(n: String) = "Succ("+n+")"

by

override def equals(x: Any) : boolean=
xmatch {
casem: Nat=- intValueequals(m.intValue
case_ = false

}
override def hashCodé) = intValuehashCodg)

}

Figure 3. Using the generalizedata notation to definéat.

3.2 Traversal Strategies and the Functional Notation

While conventional datatypes normally usase analysis

or pattern matchingo decompose values, visitors have a
choice of traversal strategies: internal, and externateCa
analysis and pattern matching are a form of the latter. Con-
sider, for example, a definition of thieepthfunction on trees

in Haskell:

depth t= caset of
Empty —O0
Fork x It — 1+ max(depth ) (depth )

This corresponds, in our library, to:
defdepth = newCaseTre¢Externalint] {
defEmpty=0
def Fork (x:int,|: R[TreeVisitol, r : R[TreeVisitol )
1+ max(l.accept(this),r.accept(this))
}

Here,depth defines a new anonymous concrete visitor on
Treeusing theCaseTreevisitor trait. TheExternaltype ar-
gument ofCaseTreeselects the external traversal strategy,
which allows the programmer to explicitly drive the traver-
sal through thecceptmethods. Thént type argument spec-
ifies the return type of theisit methodsEmptyand Fork.
R[TreeVisitod is a type dependent on the traversal strategy;
in the case of external visitors, it is effectively a type syn
onym for theTreecomposité. For the remainder of the pa-
per, for clarity, we will use the composite type directly in-
stead for specifying the recursive types for external @isit

Functional Notation Calling the acceptmethod repeat-
edly is awkward. In Scala, functions are objects, so we can
use a functional notation by making visitors a subclass of
functions with composites as arguments. With this notation
depth can be rewritten as follows, which nicely reflects the
recursive nature of the definition:

def depth = newCaseTre¢Externalint] {

def Empty =0

LUnfortunately, for external visitors, Scala does not allog to write
def (x:int,|: Treer : Tree) directly (we believe this may be a bug).



defFork (x:int,1: Treer : Tree) = memoization. In order to benefit from this additional power,
1+ max(depth (1),depth (1)) we explicitly parametrizéib by the dispatching behaviour:
} deffib, (d: DispatchefNatVisitor, Externalint]) =
newDCaseNatExternalint] (d) {
defZero =0
def Succ(n: Nat) = n.accept(
new CaseNaiExternalint] {
defZero =1
def Succ(m: Nat) = fib, (d) (n) +fib, (d) (m)

Internal Visitors In the definitions ofdepth anddepth
the particular traversal strategy used is parametrizedhen t
concrete visitor instead of being fixed by the visitor compo-
nent. This is a major advantage of our visitor library over th
traditional design pattern interpretation: we do not need t
commit in advance to a particular strategy when designing a 1)
new visitor. For example, instead of using external visitor i
to define thadepthfunctions, we could have used instead an
internal visitor:
defdepthy = newCaseTred@internal int] {
def Empty =0
def Fork (x:int, | :int,r :int) = 14+ max(l,r)

Instead ofCaseNatwe use the more gener@lCaseNat a
visitor parametrized by ®ispatcher(a type defined in our
library, explained in detail in Section 5). Ttii, function

now takes an extra value argument that determines dispatch-
ing and passes it to the constructobffaseNatWe include

} several commonly used pieces of advice in our library, and
provide templates for user-defined new ones. We discuss a

Since with internal visitors use traversal strategies reete
few of them below.

mined by the elements, the above definition does not require
explicit traversal of the structure, so it is simpler to defin ¢ Basic— the simple dispatcher, which defines the default
In the case of internal visitor® [TreeVisitol is just a type behaviour of a visitor;

synonym forint, which we use to give the types fbandr. o Memo— memoization of results:

3.3 Advice and Modular Concerns ¢ Advice— a template for defining new dispatchers, which
Having explicit control over traversal gives us the capabil hasbeforeandafter methods that are triggered before and
ity of decoupling non-functional concerns from base pro-  after calls;

grams into localized modules and invoking them at each e Trace— tracing a computation by printing out the input
step of recursion. Inspired #yspect-Oriented Programming and output, implemented usidglviceas template.

(AOP) [Kiczales et al., 1997], we term such localized non- . )

functional concernadvic&. Consider the following (naive) More than one piece of advice can be deployed at the

version of the Fibonacci function defined ovéat same time by composing them together. The spegzsic
deffib, = new CaseNafExternalint] { dispatcher is atomic and is used as the unit of composition.

def Zero -0 Here are a few possible instantiationdibj:

def Succ(n: Nat) = n.accept( defnfib = fib, (Basig
new CaseNaiExternalint] { defmfib = fib, (Memo(Basig)
def Zero —1 deftmfib= fib, ETrace(Memo(Basic)))

def Suce(m: Nat) = fib, (n) -+ fiby (M) def mtfib= fib, (Memo(Trace(Basig))
D

}

Though straightforward, the above definition has exponen-
tial time complexity. One way around this lsemoization
[Michie, 1968], which involves caching and reusing the
computed results. Memoization is an orthogonal concern to
the base computation, aetbss-cutdKiczales et al., 1997]
different functions, so is likely to become entangled with
those functions.

Our visitor library offers a way to overthrow this ‘tyranny
of the dominant decomposition’: it allows parametrization
by dispatching, which can be used to introduce advice like 3 4 |mperative Visitors

The programmfibis equivalent tdib;, while mfibis a ver-
sion with memoization. The progrartafib andmtfib com-
bine tracing and memoization in different ways and, while
both programs return the same output for any given input, the
trace written to the console is different. In our librarye thr-
dering of advices is determined by the order of composition.
In tmfib, traceis triggered befor&emaq which prints out all
calls including those resorting to memoization. On the othe
hand,mtfib only prints out traces that do not involve mem-
oization, asMemo(which can be seen as amundadvice)
takes precedence and may bypass the tracing.

21n contrast to the pointcut mechanism in AOP, our advice saited by _The GoF presentation '_:)f thaM_TOR Pa_‘ttem discusses bo_th _
parametrization. We leave a detailed comparison to Setion internal and external imperative visitors; the emphasis is



on the internal variant, with external visitors being recom
mended for advanced uses (where the recursion scheme does
not fit the internal variant). As it turns out, imperativeivis
tors are a special case of functional visitors, with themretu }
type set tovoid (or Unit, in Scala). For example, suppose we
wanted to add all the integers in some tree, but we wanted
to do so by using an imperative visitor that accumulates the
value of the sum in a mutable variable. Using iaternal
visitor, we could write that program in Scala as:
classAddTreg extendsCaseTredinternal Unit] {

var sumValue=0

def Empty ={}

def Fork (x:int,|: Unit,r: Unit) =

{sumValuer=x; }

} )

defisEmpty= new CaseTre¢External boolearj {
def Empty =true
defFork (x:int,|: Treer : Tree) = false

defequal(t: Tree): Tree=- boolean=
new CaseTre¢Externalboolean {
def Empty = ISEmpty(t)
defFork (x:int,I1: Treerl: Tree) =
t.accep{Externalboolear (
new CaseTre¢Externalboolear {
def Empty= false
defFork (y:int,12: Treer2: Tree) =
x=yAequal(ll) (12) A equal(rl) (r2)

We could also write an imperativexternalversion of the
visitor as:

Figure 4. A type-safe equality function using External Vis-

classAddTree extendsCaseTre¢External Unit] {
var sumValue=0

def Empty {}
defFork (x:int,|: Treer: Tree) =

itors.

on one of the trees, then in both tRenptyandFork cases,
performs a case analysis on the other tree.
Note that this version of equality requires triple dispatch

{this (I);this (r); sumValue+= x; }
}
ing, because the method is defined in some olfeethich

In this case, we need to explicitly traverse the structure, js used to dynamically determine the implementation of
by applying the visitor to the composites (remember that equal and the two tree arguments need to be dynamically
this (1) = l.accept(this)). The imperative visitors are used inspected. We could, of course, have defined a version of
as follows: equality that would only require double dispatching, bycpla

deftestint= { ing the methodequalin Treeand taking anothefreeas an

val addTree= newAddTreg (); argument.

valtreel = Fork (3,Empty(), Empty()); While this technique can be used to emulate a form of
valtree2 = Fork (4,treeltreel); multiple dispatching, the programs start suffering fromure
addTreg(tree?); ability issues, due to the nesting of visitors. Similar geohs

return addTreesumValue occur in functional programming languages, when multi-
} ple nested case analyses are used. To alleviate these, many
of those languages introduce pattern matching as syntactic
sugar on top of case analysis, allowing a definition ékeal
to be written as follows:
equal: Tree— Tree— Bool

Here, AddTreq should be replaced by eithéddTree or
AddTree. The program creates a new instarack Treeof
AddTreg, defines the valugee?2 appliesaddTreeto it, then

returns the value accumulated by the visitor traversal én th equal Empty Empty =True
variablesumValue equal(Fork x Iy ry) (Forky I r2) =
x=yAequalhlx Aequalrry
equal_ _ = False

Support for pattern-matching could be built on top of exter-
nal visitors in essentially the same way that it is built op to

AIS tvve (rjnergllorlje_d mt She_ctlo_n 2'1.’ thlesé.TORtp?‘t_te"} sim- of case analysis in most functional programming languages;
wiates double dispatching in a single-dispalching 1anguag - yq jeaye the details of such an extension for future work.
The use of nested external visitors allows us to go further,

and simulate multiple dispatching. For example, we could

define a type-safe (in the sense that no casts are required
equality function by using this nesting technique. Figure 4 The expressiveness of our library extends to parametrized
shows an implementation; the method takes two trees as arand mutually recursive visitors. An example is forests and

guments, performs a case analysis (using an externalnisito trees:

3.5 A Simple Form of Multiple Dispatching

?.6 Parametrized and Mutually Recursive Visitors



dataTree[a] { precise definitions of iteration versus recursion in thisseg

constructor Fork (x: a,f : Forest[a]) we shall not dig into the details in this paper.
} Figure 5 shows the Church and Parigot encodings of
data Foresta] { naturals and trees in a System F-like calculus extended with

recursion. For Church encodings, the typést and Tree

are not recursive: the constructors traverse the strucuare
the functions that form the basis of those two types only
need to process the results of those traversals. In contrast
with Parigot encodings, the constructors do not traverse th
structure; therefore, the functions that repredéattandTree
need to define the traversal themselves. This requiregthat t
types of those functions recursively refer Toee and Nat,
which can only be achieved if we allow recursive types. Note
that the internal and external visitors presented in Figure
correspond very closely to, respectively, the Church and
Parigot encodings for trees (although we st instead of

constructor Nil
constructor Cons(t: Tree[a],f : Forest[a])

}

Trees, of typélree[a], have one constructéork that builds
a tree containing one element of typand a forest; forests,
of type Forest[a], have two constructorisil and Consthat
construct empty and non-empty forests.

We could define a function to sum all the leaves of a tree
of integers as follows:

defsumTree= newCaseTredinternal int,int] {

def mrefForest= sumForest

int here).
deffork (x:int,xs:int) = x+xs
} 4.2 Generic Visitors: Shape Abstraction
def sumForest= new CaseForesfinternal int,int] { We are not the first to realize that visitors are related to en-
def mrefTree= sumTree codings of datatypes; in fact, it has become folklore knowl-
defnil -0 edge among some communities. Buchlovsky and Thielecke
def cons(x:int,xs: int) = X+ xs [2005]_, in work dirc_—:‘cted to the t_ype—theory community,
) ’ formalized the relation between visitors and encodings of

datatypes precisely and showed a sirgflape-generitorm
of the encodings.

The traditional presentation of encodings of datatypes in
System F (and common variants) [Girard et al., 1989] is of
the form:

T=VX. (FR=X)=X
where the operation on typés specifies the shape of the
datatype. Typicallyf- R takes the form of a sum of products
2; F R, a collection of variants in which ea¢hRis a simple
product of types; so the encoding is equivalent to

T=VX. (G RFR) =X)=X
4. Visitors as Encodings of Datatypes Now, the type(Z; Fi R) = X of functions from a sum is iso-
morphic to the typdl; (F R=- X) of products of functions

, ) ) (in the same way tha¥*? = x¥ x x?); so another equivalent
In the pure lambda calculus, there is no native notion of encoding is:

datatype; this has to be encoded using functions. Church 1 _ vy (Mi (FR= X)) = X
[1936] showed how to encode the natural numbers via re- g,,chjoysky and Thielecke [2005] point out that this clearly
peated function composition: the number 0 is represented by, |ates the datatyp® with the type of itsacceptmethod

‘zero-fold composition’, the number 1 by ‘one-fold compo- (M; (F R= X)) = X: the latter can be read, for some

sition’, the number 2 by ‘two-fold composition’, and so on. (gt typeX, as taking a visitor of typdT; (F R = X)
zero=Af = Ax= x and yielding a result of typ&; the visitor itself is just a
succ=An= A = Ax=1f (nfx) collection of functions of the forrf; R=- X, each being the

) visit method for one variant of the datatype, with argument
Much later, Bohm and Berarducci [1985] demonstrated vectorF; R.

precise typings of such encodings in System F. The name  cpyrch and Parigot encodings — corresponding, respec-
“Church encodingis normally associated with Bohm and |y, to internal and external visitors — follow from two
Beraducci's System F encoding. Church encodings allow us gpecific instantiations dR. For reference, define operation
to write iterative definitions. A less well-known encoding v pyv R X=; (F R= X)
is theParigot encodindParigot, 1992], which allows us to

write recursivedefinitions, but requires System F to be ex- e Generic internal visitorare obtained by specializiRj=
tended with recursion. Splawski and Urzyczyn [1999] give X; we can define

Due to the mutually dependent nature of the two visitors,
a function that traverses one must know of a corresponding
function on the other. For this reason, mutually recursise v
itors contain fields referring to the visitors that they deghe
on. We name such fieldsrefForestandmrefTree(the details

are explained in Section 6). Additionally, for parametdze
types likeTreela], type arguments (such ayare also passed

as arguments tGaseTree

4.1 Encoding Datatypes in the Lambda Calculus



Church Encodings Parigot Encodings

Nat =VA (A=A =A=A Nat =VA (Nat=A)=A=A

zero € Nat zero € Nat

zero =Asz=z zero =Asz=z

succ € Nat=- Nat succ € Nat=- Nat

succn =sz=s(ns2 succn =Asz=sn

Tree =VA A= (Nat=A=A=A)=A Tree =VA A= (Nat=-Tree= Tree=A) = A
empty < Tree empty < Tree

empty =Aef=e empty =Aef=e

fork € Nat=- Tree=- Tree= Tree fork € Nat=- Tree=- Tree= Tree
forkxIr=Aef=fx(lef) (ref) fork xIr=Aef=fxlIr

Figure 5. Encodings of naturals and binary trees.

Internal V=VX.V X X=X NatF R A= (A)R=A)
e Generic external visitorsare obtained by specializing Nat = Internal NatF
R = External \ we can define zero € Nat
External V=VX.V (External V) X = X zero =Nzs) =z
In each casey is a type parameter abstracting over con- succ € Nat=- Nat
crete visitor components. It could be said tkf@s theshape succn =A(zs)=s(n(z9))

parameterof the encodings, since different instantiations of

V will lead to different datatypes, Figure 6. Church encoding of Peano numerals using prod-

ucts of functions
4.3 Generic Visitors: Traversal Strategy Abstraction

Generic encodings based on products of functions allow one
to abstract from differences in the shape of data and model
different traversal strategies — internal and external — of
datatype-generic visitors. Still, there is substantigbloha- succe Nat=- Nat

tion of code whenever we want to have both strategies. How-  succ n=A(z,s) = s?

ever, this duplication can be avoided: we can model visitors

that are generic in both the shape and the traversal strategythere are no problems in defining the construzean How-

zeroe Nat
zero=A(z,s) =z

The template ever forsucg it is impossible to provide a value of the right
Composite V= ¥X. V R X=X type:srequires an argument with ty[®V X and we cannot
could be used to capture different implementations of the create any values of that type. The solution for this prob-
VISITOR pattern by using a proper instantiation farHow- lem consists in adding some extra information alfiatthe

ever, this definition is not valid in System F, becaRss un- definition of Composite
bound; some other approach is needed. SReepresents Composite \= VX S Decompose S> V (SV X X = X

the type of recursive occurrences that appear in the visit
methods, if we want to capture both internal and external The extra information is given bfpecompose Swhich is
visitors,R should depend on bott andX. This dependency  basically just a type-overloaded (in the type-param&er

can be made explicit by having = S V Xand bindingS method. In other words, the implementation of this method
universally. can be determined solely from the ty@eand, therefore,
Composite \=VS X V (SV X X = X made implicit. Referring to the method Decompose &s
deg;, we have that:
We shall refer td5 as thetraversal strategy deg eV (SV X X= Composite \= SV X
AlthoughComposite is now a valid System F definition,
it is still not right. To see what the problem is, let's firstae The operatiordegs solves the problem of producing a value

mulate the Church peano numerals using products of func-of type S V X and allows us to define the construcsoicc
tions, as in Figure 6. When we try to uS®mposite NatF as:
instead ofinternal NatF, succe Nat=- Nat

Nat= Composite NatF succ n=A(z,5) = s(deg (zs) n)



Odersky and Zenger [2005] to be essential for the construc-
Note that theDecompose arameter is implicitly passed. tion of reusable components; they allow information hiding
In order to define new strategies, we need to define someover several objects, a key part of component-oriented pro-
concrete typeS and the correspondingegs operation. For gramming [Pfister and Szyperski, 1996].

example, to make internal and external visitors two instanc Alternatively to abstract types, we could have usgik-

of Composite Vwe specializ&sto InternalandExternal constructor polymorphisrpAltherr and Cremet, 2007] in-
Internal vV X =X stead. A Haskell solution that exploits this approach is
External V X= Composite V shown in Oliveira [2007]. Since Scala now supports type-

constructor polymorphism [Moors et al., 2007], a solution
Here we reuse the identifidirsternalandExternalto refer to using such an approach should also be possible. However,
the associated traversal strategies. The specific inatemis as discussed by Oliveira, abstract types seem to be more

of degs for internal and external visitors are: expressive than type-constructor polymorphism alone, and
degniernal € (V (Internal V X) X) = Composite \= allow the definition of a slightly more general visitor lilbya
Internal V X

Visitors and the Functional Notation The Visitor compo-

d =
Clnternal V.C = CV nent in the library, which captures the shape of the type

deGxiemal € (V (External V X X) = Composite \=- the functional specification, has two abstract ty[B1sepre-
External V X senting the traversal strategy) addrepresenting the return
deGxtemalV C=C type of the visitor). ThevVisitor also contains a typR that

In the definition ofdegntera the reader should (again) note  corresponds to the tyg@V X(the first argument 0¥/, spec-
that theDecompose $arameter is implicitly passed and, jfying the type of recursive arguments).

therefore, the compositejust needs to take the visitoras trait Visitor {

an argument. Withdegxerna, We simply ignore the visitor type X

parameter and return the composite itself. This allows the type S<: Strategy

use of the composite directly in the definitions of wisit type R[v <: Visitor] =

methods. (S{type X = Visitor.this.X;typeV = v}) #Y
}

5. A Scala Library for Visitors _ _ o
. ) . The notationT #Y used in the definition of the type synonym

In the previous section, we used the Church and Parigot en-g js the equivalence ofbj.methodon type level. In other
codmgs_of datat_ypes Fo mo_twate a notion of visitors that is words, T#Y selects the typ¥ from the trait or clas¥. We
generic in two dimensions: in the shape of the data structure,,;, explain the typeY when we introducStrategy
being visited, and in the strategy for assigning the respon-  \ye also introduce a type synonyisFuncparametrized
sibility of traversal. Armed with this insight, we will now by a visitorv, a strategys and a result type, as a shortcut
present an implementation in Scala of a generic visitor li- ¢, visitors that are also functions.
brary. _ _ _ type VisFundv <: Visitor, s <: Strategyx] =

We use the results from Section 4.3 as a functional speci- Function1/Compositév], x] with
fication for our Scala visitor library. The translation frahe v {type S= stype X = x7}
functional specification into a Scala component is relafive '
straightforward, although some typi_ngs vary slightly doe t |, essence, we treat visitors as functions that taRempositév|
the differences bgtween Sys_tgr_n F-like Iang_uages and Scalaas an argumentand return a value of typley observing that
We start by recalling the definition @ompositeand anno-

+ with inf ion identifving th hod the invocatiora.accept(f) wherea is a composite antl is
tate it with extra information identifying thacceptmetho a visitor can be interpreted as a form of function applica-
and the visitor component.

tion f (a). Thewith keyword is used in Scala to do mixin

accept method /" X
composition of traits.

Composite \= ¥X S Decompose S V (SV X X = X
W Composites TheCompositdrait is parametrized by a visi-
In order to implement the different components present in tor V and contains aacceptmethod that takes two parame-
the functional specification we will make extensive use of ters. The first parameter is the visitor to apply; the secend i
generics (parametrization by types) and abstract typesfOd  the traversal strategy to use while visiting the structure.
sky, 2006], which provide a means to abstract over concrete  trait Compositév <: Visitor| {

types used inside a class or trait declaration. Abstra@syp defaccepfs<: Strategyx]| (vis: VisFundyv, s, x])
are used to hide information about internals of a component, (implicit decomposeDecomposs)) : x
in a way similar to their use in SML [Harper and Lillibridge, }

1994] and OCaml [Leroy, 1994]. They are considered by



We switch the order of the two arguments (when com- defded|v <: Visitor, x| (vis: VisFundv, External x],

pared to theCompositeequation shown earlier) because comp: Compositév]) = comp

decomposean be implicitly inferred (since it is determined 1

by the concrete instantiation @J, and Scala requires im-

plicit arguments to be placed last. The two implementations of the methddccorrespond, re-

spectively, to the definitiondeGniernal anddeGxiermal in the
functional specification. The important thing here — effec-
tively the piece of code that we want to abstract from — is
the definition ofdeg which isvis.apply (comp for internal
visitors and justtompfor external visitors. In essence, the
traversal strategy of the internal visitors recurs on tha-co
positecomp(since it calls theacceptmethod viaapply); and

} the traversal strategy for external visitors returns the-co
posite untouched, which allows concrete visitors to cdntro
recursion themselves.

Traversal Strategies The shape of the parameteis cap-
tured in Scala by the following trait:
trait Strategy{
type V <: Visitor
type X
typeY

A Strategyhas two abstract typeg and X and a typeY
that is dependent o and X (although that dependency is

not captured directly by Scala’s type system). The type  Dispatchers In Scala, functions are not primitive: they are
represents the type used in place of recursive occurrencesiefined as a traifunctionlwith an apply method. This
in the visit methods. Subtypes of this trait will Correspond means that we can provide our own imp|ementation of the

to different possible traversal strategies for the visitdn apply methods, which allows us to add extra behaviour
particular, the strategieisiternal and Externalare defined  on function calls. Our visitor library has the notion of a
as: dispatcher, allowing us to parametrize the dispatching be-
trait InternalextendsStrategy{ haviour of our visitors, adding an extra form of parametriza
typeY =X tion that is not considered by the functional specification.
} Figure 7 shows the trait that defines the interface of a
trait ExternalextendsStrategy{ Dispatcherand a few implementations of that trait. The
type Y = CompositéV| methoddispatchtakes a visitor and a traversal strategy and
} returns a function that will be used by tlag@ply method

in the visitor to define the dispatching behaviour. The def-

acceptmethod can be made implicit. This means that we can Patching behaviour by just calling treeceptmethod. The
call the acceptmethod by passing just the first parameter, €lassAdvice inspired by the notion of advice in AOP, wraps
given that alecoperation of the appropriaBecomposéype itself around another dispatcher and defidéspatchas a

for the second argument is in scope. The tREtomposés TEMPLATE METHOD [Gamma et al., 1995] that calls the
parametrized by the traversal strateggnd encapsulates a Peforeand after methodsaround the dispatchfunction of
single methodiec This method takes a visitor and a com- the dispatcher argument. One implementation of advice is
posite and returns the result of recurring on that composite 9iven byTrace which provides a simple tracing concern that

using the traversal strategy. prints the arguments before performing a call and prints the
trait Decomposgs<: Strategy { result after returning. Finally, thlemodispatcher imple-
def declv <: Visitor, x] (vis: VisFundv, s, x], ments a form of memoization: it intercepts function calls
comp: Compositév]) : so that only calls on values that have not beer_1 seen before
(s {typeV = vitype X = x}) #Y are performed — results for other calls are retrieved from a
) cache.

We should emphasize that dispatchers are composable
havingBasicas the unit of composition. Furthermore, new

Traversal strategies for internal and externals visitoes a .
ones can be easily added.

provided by the library (note that both strategies can bd use

implicit!y): . ) TheCaseVisitor  Having built the basic building blocks for
implicit def internal: Decomposfinternal] = the visitor library, we now introduce th@aseclass, which
newDecomposginternal { will be used to provide the functional notation and to define

defdec|v<: Visitor,x] (vis: VisFundv, Internal x], concrete visitors
comp: Compositgv]) = vis.apply (comp abstract classCasédv <: Visitor, s<: Strategyx]
} (d: Dispatchefv,s,x]) (implicit dec: Decomposgs|)
implicit def external DecomposfExternal = extendsFunctionl]Compositgv], x] {

new DecomposgExternal { self: Casdyv, s,x] with v {type S= s;type X =X} =

10



trait Dispatchelv <: Visitor,s<: Strategyx] {
defdispatch(vis: VisFundy, s,x],dec: Decomposgs]) : Functionl]Compositev], x]

}
implicit def Basicv <: Visitor, s<: Strategyx] = new Dispatchefv,s, x| {
def dispatch(vis: VisFundyv, s, x|, dec: Decomposgs]) : Function]]Compositgv], x| =
c = c.accepts,x] (vis) (deg

}
abstract classAdviced <: Visitor, s<: Strategyx] (dis: Dispatcherd,s, x]) extendsDispatchefd, s,x] {
def before(comp: Compositéd]) : Unit= {}
def after (comp: Compositéd],res: x) : Unit= {}
def dispatch(vis: VisFundd, s,x],dec: Decomposgs]) : Functionl]Compositgd], x] =
c= {before(c);val res= dis.dispatch(vis, de¢ (c);after (c,res);res}
}
def Trace]v <: Visitor, s<: Strategyx| (dis: Dispatchefv, s,x]) = newAdvicdyv,s, x| (dis) {
override def before(comp: Compositgv]) : Unit = {
Systenoutprintln ("Calling function with argument: \t"+comp;
}
override def after (comp Compositgv], res: x) : Unit = {
Systeroutprintin (res+ "\t was returned from the call with argument: \t"+comp;

}
}
def Memdyv <: Visitor, s<: Strategyx] (dis: Dispatchefv, s,x]) = new Dispatchefyv, s, x] {
val cache HashMagCompositév], x] = newHashMagCompositgv], x] ()
def dispatch(vis: VisFundy, s, x],dec: Decomposgs]) : Function]]Compositgv],x] = c = {
cacheget(c) match {
caseSomex) = X
caseNone=- {val res= dis.dispatch(vis,deg (c);cacheput (c,res);res}

}
}
¥
Figure 7. Visitor Library Dispatchers
type X =X Caseextends~unctionland theapplymethod is defined by
typeS=s calling thedispatchmethod from the provided dispatciaer

defdispatcher=d

defdecompose- dec

defapply(c: Compositév]) : x =
dispatcherdispatch(this,decomposeapply(c)

6. Translation of Datatypes

In this section we define a translation scheme between
datatype-like declarations and visitors defined using our
Scala library. We introduce a mini-language for datatypes

} as follows.
The classCaseis type-parametrized by a visitor (the Datas T &= data7 [a]={cs}
shape argument), a strategy(the traversal strategy argu-  Constructors c = constructor X [B] VT {S}
ment) and the return type Furthermore, it is also value- Types t = t1|7o[q]
parametrized by a (the dispatcher argument) and an im-  Non-recursive Typest; == a|71[ii][t1 —1t
plicit valuedec(related to the traversal strategy). Subclasses Scala s 1= Scaladeclarations

of Casewill implement the visitor typev passed as an ar-
gument. This is expressed by Scala&f-type annotation
self: Casdv, s, x| with v {type S= s;type X = x}. The class

A datatypeT, possibly parametrized by type variables
introduces a set of data constructors and some optionad Scal
codes. Each constructorg , can take an optional list of type

11



argument$ (which act as existentially quantified types) and eration ofForestVisitorfa], Foresta], CaseForestDCaseForest
a list of labelled type argumerniis t. Scala definitions can Nil andCons A mutual referencenrefTreeis also placed in
be inserted to define or override fields and methods. We ForestVisitofa].

single out non-recursive type argumertis,which do not

make s_elf-reference to the datatype that introduced them.7  Discussion and Related Work

Recursive occurrences of type constructors are dennted
to separate them from the non-recursive org$. (

The reason for this separation is to enforce a few syn- Traversal strategies are closely related to the recursaon p
tactic restrictions on the language. In particular, nested terns studied by the Algebra of Programming movement
datatypes [Bird and Meertens, 1998] and constructors with [Bird and De Moor, 1997]. This work supports Hoare’s ob-
functional parameters having recursive occurrences [Mei- servation that data structure determines program strectur
jer and Hutton, 1995] are excluded, since traversals arethe shape of the data induces for free a number of patterns
hard to define for those types. Despite these restrictibes, t of computation, together with reasoning principles forsio
data constructor presented here is comparable in expressivepatterns.
power to ML-style and Haskell 98-style datatypes, allow- The most familiar of these families of recursion patterns
ing us to expressgtype-)parametrized datatypesiutually is the ‘fold’ (or ‘catamorphism’) operation, which perfosm
recursive datatypeandexistential datatypes structurally inductive computations reducing a term to a

Declarations in the datatype language can be translatedvalue. Better still, those similar definitions are relatedsp
to visitors by the meta-functiogeN in Figure 8. Before metrically, and can all be subsumed in one sirdgé¢atype-
going into the details of the translation, we first introduce genericdefinition, parametrised by the shape. The internal
a few notational conventions. We writé for a sequence  visitors expressible with our library are basically folds.

7.1 Traversal Strategies and Recursion Patterns

of entities numbered from 1 to ando; as theit" of them. The Algebra of Programming patterns can provide inspi-
We use a pattern matching synta@7 [y] to denote that  ration for new types of visitor, beyond what is well-known in
the bound variabléis of type7 [y] for some7 andy. New the literature. For example, Meertens [1992] introduces th

names for visitors and references are created by prefixingnotion of aparamorphismwhich in a precise technical sense

or postfixing with the type constructor name, for example is to primitive recursion what catamorphism is to iteration

7 Visitor. We assume a dependency analysis and varite Informally, the body of a paramorphism has direct access to
to denote the set of mutually recursive types thamakes the original subterms of a term, in addition to the results of
references to (excluding itself). traversing those subterms as a catamorphism does. The ob-

For each datatype, we generate a corresponding vis- vious definition of factorial, in whichin+ 1)! depends on

itor type (a trait that extendsisitor) and a composite (a n as well asn!, is a representative application. This recur-
trait that extend€omposité7 Visitor [a]]). We also gener-  sion pattern can be expressed as a strategy using our visitor

ate two auxiliary visitorddCaser andCaser . The former library:

extendsCasd7 Visitor[a], s, x], providing a convenient way trait ParaextendsStrategy{

to parametrize visitors by traversal and dispatching etrat type Y = Pair [ X, CompositgV]]
gies as well as allowing visitors to be interpreted as func- }

tions. The latter provides a shorthand for Beesicdispatch- implicit def para: DecomposfPara] =

ing strategy. The functioGENDATA creates a case class for
each constructox extendingT [a] and generates the cor-
respondingacceptmethod by checking the recursive status
of K ’s arguments, which determines the traversal code.
Each of the visitorsr Visitor [0] may have mutually re-
cursive references to other visitors that it depends onghvhi
are generated by the functiGiENREF. The types of theisit
methodsx (hamed after the corresponding constructor) also
depend on the recursive status of the constructor’s argtamen

newDecomposfPara] {
defdec|v <: Visitor,x] (vis: VisFundv, Para x|,
comp: Compositév]) =
Pair [x, Compositév]] (vis.apply(comp,comp

7.2 Dispatching Strategies and Modular Concerns

and are generated by tieENT Y PE function. Kiczales et al. [1997]'s aspect-oriented programming (AOP
In Figure 9 we apply the translation to the trees and @ims at modularizing concerns that cut across the compo-

forests example in Section 3.6. For the datafyEe[a], we nents of a software system. These ideas inspired some of

generate the visitor and composite tyJeseVisitofa] and ~ the applications of our library in Section 3. In AOP, pro-

Treea], the two auxiliary visitorCaseTre@andDCaseTree grammers are able to modularize these crosscutting casicern
and the constructoFork. The mutual dependency with  Withinlocally defined aspectgpintcutsdesignate when and
Foresta] is captured by thenrefForestefinition onTreeVisitofa] Where to crosscut other modules, amlicespecifies what

cessfully separates concerns that are scattered and dangle
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GEN(dataT [0] ={CS}) =
LET
GENREF(Try) = def mrefry, : VisFund7yVisitor[a], S, X]
GENTYPE(constructor & [B]V T {§) =

def k. [B] (Vi : CASE STATUDF(t @7 'y]) OF RECURSIVE — R[7TVisitor[a]]
MUTUAL REC — R[T Visitor[a]]

NONREC  —t)i€ln:X
GENDATA (constructor k. [B] V-t {§) =
case class [B,a] (v :t) '“t-"extendsT [a] {
defaccep{s<: Strategyx] (vis: VisFund7 Visitor[a],s,x]) (implicit decomposeDecomposgs]) :x =
vis. % [B] (CASE STATUSOF(tj@7 '[y]) OF RECURSIVE — decomposeed|7 Visitor[a],x] (vis, Vi)
MUuTUAL REC — decomposeec|T Visitor[a],X] (vis.mrefz’,v;)
NONREC — yj)i€ln
s
}
IN
trait 7Visitor|a] extendsVisitor {
GENREF(7p)
GENTYPE(C)
}
trait 7 (o] extendsComposité7 Visitor[a]]{'g
abstract classCaser [s<: Strategya, x| (implicit dec: Decomposgs]) extendsDCaser [s,a,X] (Basig (deg
abstract classDCaser [s<: Strategya, x| (disp: Dispatchef7 Visitor[a],s,x]) (implicit dec: Decomposes])
extendsCasg 7 Visitor [a], s, x| (disp) (deg with T Visitor [a]
GENDATA(C)

Figure 8. Translation Scheme

throughout the program, it can also introduce a form of tight 7.3 Case Classes and Algebraic Datatypes

coupling between base programs and their aspects, whichrpe gatatype notation that we have introduced in this paper
complicates modular program underst_andmg and reasoningjs inspired byalgebraic datatypegAlgDts) from functional
Several authors [Aldrich, 2005, Kiczales and Mezini, programming. Scala [Odersky, 2006] has its own notion of

2005, Gudmundson and Kiczales, 2001] have proposedjqgpts via (sealed) case classes. With case classes, we coul
ways to harness the power of aspects by giving more control .o\ rite theTreeanddepthexamples as:

to programmers over which parts of th(_air code are opento  ¢agled case clasiee

ad\_/lce. Notable among _these are Ald_rlcb‘pen modules case clasEmptyextendsTree

which engapsulate function def|n|t|o_ns into modu_le_s and ex- case clas§ork (x:int, | : Treer : Tree) extendsTree
port public interfaces for both calling and advising from .
other modules. Internal function calls that are private to a  defdepth(t: Tree) :int = t match {

module can only be advised if the module explicitly chooses caseEmpty() =0

to allow this. In this sense, our use of advice through visito casefork (x,1,r) = 1+ max(depth(l),depth(r))

is akin to the internal advising of open modules. Functions }

or modules that are subject to advice are parametrized by

dispatchers and instantiated to a particular generic adgic ~ Thesealedkeyword guarantees that the class hierarchy will
significant difference between our approach and open mod-not be extended in other modules. Sealing allows the Scala
ules lies in the means of triggering advice: parametrizatio compiler to perform an exhaustiveness check, guaranteeing
versus pointcuts. It is no surprise that our library does not thatan operation is defined for all cases. This gives us essen
have fully fledged support for AOP; however, a significant tially the same advantages (and disadvantages) as AlgDts.

class of applications of AOP can be coded up conveniently However, simple case classes are more general than AlgDts,
and modularly. because they do not need to be sealed: we could have defined

Treewithout thesealedkeyword, gaining the ability to add
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trait TreeVisitorfa] extendsVisitor {
def mrefForest VisFundForestVisitorfa], S, X]

def Fork (x: a,xs: R[ForestVisitorja]]) : X
}

trait Tree[a] extendsComposité¢TreeVisitoffal |
abstract classCaseTre¢s<: Strategya, X] (implicit dec: Decomposgs]) extendsDCaseTreés, a, x] (Basig (deg

abstract classDCaseTreés <: Strategya, x| (disp: DispatchefTreeVisitora],s,x]) (implicit dec: Decomposfs])
extendsCasgTreeVisitora], s, x| (disp) (deg with TreeVisitofa]

case classork|[a] (x:a,xs: Forest/a]) extendsTree[a] {
defaccepfs<: Strategyx| (vis: VisFundTreeVisitora], s,x]) (implicit decomposeDecomposgs]) : x =
vis.Fork (x,decomposeéec(vis.mrefForestxs))

}

trait ForestVisitorfa] extendsVisitor {
def mrefTree VisFundTreeVisitofa], S X]

defNil : X
def Cons(x: R[TreeVisitora]], xs: R[ForestVisitora]]) : X
}

trait Forestla] extendsComposité¢ForestVisitora]]
abstract classCaseForesis <: Strategya, x| (implicit dec: Decomposgs|) extendsDCaseForesis, a, x| (Basig (de¢

abstract classDCaseForesis <: Strategya, x| (disp: DispatchefForestVisitorfa], s,x]) (implicit dec: Decomposgs])
extendsCasgForestVisitora],s, x] (disp) (dec with ForestVisitora]

case clasdil [a] extendsForest[a] {
defaccepfs<: Strategyx] (vis: VisFundForestVisitorfa], s,x]) (implicit decomposeDecomposgs]): x =
vis.Nil
}
case clas€onda] (x: Tree[a],xs: Foresta]) extendsForest{a] {
defaccepfs<: Strategyx] (vis: VisFundForestVisitoral, s, x]) (implicit decomposeDecomposs]): x =
vis.Cons(decomposéec(vis.mrefTreex), decomposeec(vis, xs))

Figure 9. Translation of théfreeandForestdatatypes into visitors.

new variants in the future. Nevertheless, this extra gditera  itself. For example, as we have seen in Section 7.1, it is very
can create problems because, although new variants can beimple to add a new kind of traversal strategy. We believe
added, functions defined by matching cannot be extendedthat an approach could be taken similar to the one with |
and exhaustiveness checks become unavailable, essentiallERATORs [Gamma et al., 1995] in C# and new versions of
introducing the possibility ofMessage not understobiin- Java, with a library component and some built-in language
time errors. support (thforeach keyword). We envision a language ex-
There are three main differences between the notion of tension supporting the datatype notation, perhaps aldo wit
datatypes introduced in this paper and case classesyFirstl a parametrizableaseconstruct and pattern matching nota-
AlgDts and case classes correspond, essentially, to visi-tion, built on top of the visitor library. Finally, the semios
tors with traversal and dispatching strategies s&btternal of case classes is essentially given by type inspection and
and Basig therefore losing much of the reusability bene- downcasting. Our semantics does not rely on the availgbilit
fits offered by those parametrizations. Secondly, although of casts or run-time type information, so it could be used in
the datatype notation requires a language extension, the apobject-oriented languages without these mechanisms.
proach we have taken is mostly library-based. This has the
important advantage that we can extend the functionally pro

vided by the visitor library, without extending the compile  There have been several proposalsgeneric visitorgvisi-
tor libraries that can be reused for developing softwanegisi

7.4 Generic Visitors
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something like the \SITOR pattern) in the past. Palsberg Visitors can be used to emulate a (limited) form of mul-
and Jay [1998] presented a solution relying on the Java re-tiple dispatching in object-oriented languages, as we men-
flection mechanism, where a single Java clegdkabout tioned in Section 2.1. Ambiguous and invalid combinations
could support all visitors as subclasses. Refinements o thi of dynamically dispatched arguments do not pose a problem
idea, mostly to improve performance, have been proposedfor our visitors, but the price to pay for this is that we lose
since by Grothoff [2003] and Forax et al. [2005]. Meyer and the ability to (easily) add new variants, which is possible
Arnout [2006] also present a generic visitor along the same with many of the multiple-dispatching solutions. Encapsul
lines, but having less dependence on introspection mechadion is more problematic, and visitor-based solutions dre o
nisms (although those are still needed). One advantage often criticized as not being very object oriented. We agrat th
these approaches is that they are not invasive — that is,the idea of encapsulation is important and, whenever possi-
the visitable class hierarchies do not need to haseept ble, it should be preserved. Nevertheless, for some prablem
methods and it is possible to write generic traversal code a functional decomposition style is more appropriate, and
(i.e. code that works for different visitors). In this papse trying to preserve (full) encapsulation is hard. What seems
can avoid most of the direct uses of theceptmethods by clearly worse to us than the loss of encapsulation is the fact
using the datatype and functional notations, but the meth-that most object-oriented languages do not have an easy-to-
ods will still be needed. Although we do not address the use mechanism for a form of multiple dispatching (even if
issue here, very flexible and type-safe generic traverstd co limited) except via the (statically) type-unsafestanceOf

can be written using datatype-generic programmirexten- introspection mechanism. We believe that our datatype nota
sion to our visitor library [Oliveira, 2007]. A disadvantag tion and the relateBxternaltraversal strategy could provide
of introspection-based approaches is that they cannat stat an easy-to-use and lightweight (if simple-minded) solutio
cally ensure type-safety, and so strictly speaking shoatd n  for the multiple dispatching problem.

be classified as components. Furthermore, those approaches

lack fl_exibility in the choice of the dispatching policy [Cein 8. Conclusions

and Vitek, 2005].

Visser [2001] observes that thei&TOR pattern suffers Ve have argued that (the code aspects of) theNOR de-
from two main limitations: lack of traversal control: and Sign pattern can be captured as a reusable, generic and stat-
resistance to combination, which are closely related to our I€@lly type-safe component by using some advanced type
notions of traversal and dispatching parametrization. His SYStém features that are starting to appear in modern ebject
solution for those problems consists of a number of generic ©"ented languages. We have shown that, inspired by func-
visitor combinators for traversal control. These comtnst ~ tional programming, we can significantly improve the use
can express interesting traversal strategies like botipm-  ©f Visitors by using a datatype-like and functional notasip
top-down or sequential composition of visitors and can be While atthe same time providing a simple functional decom-
used to define visitor-independent (or generic) functipal ~ POSition mechanism that, we think, is well-suited for objec
Like all other implementations of forms of generic visitors  ©riented languages. o _
Visser's solution requires run-time introspection. It webbe This work is based on Chapter 3 of Oliveira [2007] dis-

interesting to explore some of Visser's ideas in the context S€rtation that, in essence, builds on the insights provided
of our visitor library. by type-theoretic encodings of datatypes to derive a visito

software component. Other chapters of that dissertatien ad
dress two other issues, related to visitors, not discusses h
7.5 Multiple Dispatch datatype-generic programmin@he ability to write func-
Mainstream object-oriented languages, like C++, C# and tions that work for any visitors); anektensibility(the ability
Java, all use aingle dispatchingnechanism, where a single  to add new variants to visitors). Solutions for those are als
argument (theself object) isdynamicallydispatched and all ~ achieved without compromising static type-safety.
other dispatching is static. A problem arises, howeverrwhe ~ The hope is that this line of work will, more generally,
a method requires dynamic dispatching on two or more ar- Show how more expressive forms of parametrization can
guments. There is a rich literature motivating and propmsin help in resolving limitations of current programming lan-
solutions for this problem: Chambers and Leavens [1995], guages when it comes to componentization and modulariza-
Clifton et al. [2000], Ernst et al. [1998] are just a few ex- tion of software. For the future, we would like to:
amples. Still, none of those solutions have been adopted ) ] ) )
by mainstream programming languages. Two reasons for * Investigate possible programming languages extensions
this are the difficulty of providing modular (compile-time) for the datatype-notation, as well as a case analysis and
type-checking to catch ambiguous and invalid combinations & Pattern matching notation, with full support for all the
of dynamically dispatched arguments, and fears that multi- ~ Parametrization aspects of the visitor library.
methods go against object-oriented principles like encaps e Develop a formal setting that can be used to formalize
lation. and reason about components. In particular, we would
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