Aspect-Oriented Programming with Type Classes

Martin Sulzmann Meng Wang
School of Computing, National University of Singapore School of Computing, National University of Singapore
S16 Level 5, 3 Science Drive 2, Singapore 117543 S16 Level 5, 3 Science Drive 2, Singapore 117543
sulzmann@comp.nus.edu.sg wangmeng@comp.nus.edu.sg
Abstract from the more flexible AOP Haskell system to a simple target

language. We establish concise results such as type soundness,

We study aspect-oriented programming (AOP) in the context of the type inference and coherence of the translation. These results

strongly typed language Haskell. We show how to support AOP via : o
a straightforward type class encoding. Our main result is that type- figz g;a directly related to existing results for type classes (Sec-
directed static weaving of AOP programs can be directly expressed ’

in terms of type class resolution —the process of typing and translat-We continue in Section 2 where we give an introduction to type
ing type class programs. We provide two implementation schemes. classes. Section 3 gives an overview of the key ideas behind our
One scheme is based on type classes as available in the Glasgowpproach of mapping AOP to type classes. We conclude in Sec-
Haskell Compiler. The other, more expressive scheme, relies on antion 6 where we also discuss related work.

experimental type class system. Our results shed new light on AOP

in the context of languages with rich type systems.
guag ybe sy 2. Background: Type Classes

1. Introduction Type classes [12, 25] provide for a powerful abstraction mechanism
- ; ; ; ; to deal with user-definable overloading also known as ad-hoc poly-

@f‘?fhcggggg?: tﬁéﬂ%{gmgggn(ﬁ? Qeﬁlstsaarl ﬁjnr?ﬁ{%lgg-rﬂzrzggen;_ morphism. The basic idea behind type classes is simple. Class dec-

tial functionality provided by an aspect-oriented programming lan- arations allow one to group together related methods (overloaded

guage is the ability to specifyhatcomputation to perform as well functions). Instance declarations prove that a type is in the class, by

aswhento perform the computation. A typical example is profiling ~ Providing appropriate definitions for the methods.

where we may want to record the size of the function arguments Here are some standard Haskell declarations.

(what) each time a certain function is called (when). In AOP ter-

minology, what computation to perform is referred to asatieice class Eq a where (==)::a->a->Bool
and when to perform the advice is referred to aspbimtcut An instance Eq Int where (==) = primIntEq -= (In
aspecis a collection of advice and pointcuts belonging to a certain instance Eq a => Eq [a] where -- (I2)
task such as profiling. (==) [1 [1 = True

. . (==) (x:xs) (y:ys) = (x==y) && (xs==ys) -- (L)
There are numerous works which study the semantics of aspect- (==) = = False

oriented programming languages, for example consider [2, 13, 26,
27, 29]. Some researchers have been looking into the connec-The class declaration in the first line states that every type
tion between AOP and other paradigms such as generic program-type classkEq has an equality functior=. Instance (1) shows
ming [30]. To the best of our knowledge, we are the first to study that Int is in Eq. We assume thatrimIntEq is the (primitive)
the connection between AOP and the concept of type classes, a typequality function amongints. The common terminology is to
extension to support ad-hoc polymorphism [25, 12], which is one express membership of a type in a type class via constraints. Hence,
of the most prominent features of Haskell [15]. we say that theype class constrairkq Int holds. Instance (12)
shows thatEq [a] from the instanceéheadholds if Eq a in the
instancecontextholds. Thus, we can describe an infinite family of
¢ We introduce an AOP extension of Haskell, referred to as AOP (overloaded) equality functions.
Haskell, with type-directed pointcuts. Novel features of AOP
Haskell include the ability to advise overloaded functions and

In this paper, we make the following contributions:

We can extend the type class hierarchy by introducing new sub-

refer to overloaded functions in advice bodies. classes.

e We define AOP Haskell by means of a syntax-directed transla- ¢1ass Eq a => Ord a where (<)::a->a->Bool -- (S1)
tion scheme where AOP programming idioms are directly ex- instance Ord Int where ... -- (I3)
pressed in terms of type classes. Thus, typing and translation of instance Ord a => Ord [a] where ... - (14
AOP Haskell can be explained in terms of typing and translation The ahove class declaration introduces a new subolessvhich
of the resulting type class program. inherits all methods of its superclags. For brevity, we ignore the

e We consider two possible implementation schemes. One schemestraightforward instance bodies.
is based on type classes as supported by the Glasgow Haskel

Compiler (GHC) [5]. We critically rely on multi-parameter type n the standard type class translation approach we represent each

| d iapDIng inst Thi h h fricti %ype class via a dictionary [25, 6]. These dictionaries hold the ac-
Classes and overlapping Instances. This scheéme nas restricliony, o) method definitions. Each superclass is part of its (direct) sub-
in case we advise type annotated functions (Section 4). class dictionary. Instance declarations imply dictionary construct-
We show that these restrictions can be lifted by using a more ing functions and (super) class declarations imply dictionary ex-
flexible form of type classes as proposed by Stuckey and the tracting functions. Here is the dictionary translation of the above
first author [19]. We provide the type-directed translation rules declarations.

1 2006/10/3

type DictEq a = (a->a->Bool)

instIl :: DictEq Int

instIl = primIntEq

instI2 :: DictEq a -> DictEq [al

instI2 dEqa

let eq [1 [= True

eq (x:xs) (y:ys) = (dEqa x y) &&

(instI2 dEqa xs ys)

eq _ _ = False

in eq
type DictOrd a = (DictEq a, a->a->Bool)
superS1 :: DictOrd a -> DictEq a
superS1 = fst

instI3 :: DictOrd Int

instI3 = ...

instI4 :: DictOrd a -> DictOrd [al
instI4 =

Notice how the occurrences ef on line (L) have been replaced

by some appropriate dictionary values. For example, in the source __

program the expressiats == ys gives rise to the type class con-
straintEq [a]. In the target program, the dictionatystI2 dEqa
provides evidence foEq [a] wheredEqa is the (turned into a
function argument) dictionary fdEq a andinstI2 is the dictio-
nary construction function belonging to instance (12).

The actual translation of programs is tightly tied to type inference.

When performing type inference, we reduce type class constraints

import List(sort)

insert x [] [x]
insert x (y:ys)

| x <=y

| otherwise

X:y:ys
y : insert x ys

(]

insertionSort []
insertionSort xs
insert (head xs)

(insertionSort (tail xs))

-- sortedness aspect
Ni@advice #insert# ::
\x > \ys —>
let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)
then zs else error "Bug"
where
isSorted xs = (sort xs) == xs
efficiency aspect
N2@advice #insert# ::
\x > \ys —>
if x == 0 then x:ys
else proceed x ys

Ord a => a -> [a] -> [a] =

Int -> [Int] -> [Int] =

Figure 1. AOP Haskell Example

with respect to the set of superclass and instance declarations. This

process is known atype class resolutiofalso known as context

ments are sorted in hon-decreasing order. At some stage during the

reduction). For example, assume some program text gives rise toimplementation, we decide to add some security and optimization

the constrainttq [[[a]l]l]. We reduceEq [[al] to Eq a via
(reverse) application of instance (12). Effectively, this tells us that
given a dictionaryd for Eq a, we can build the dictionary faEq
[[al] by applyinginstI2 twice. That is,instI2 (instI2 d)

is the demanded dictionary faq [[al]. Notice that given the
dictionaryd’ for 0rd a, we can build the alternative dictionary
instI2 (instI2 (superS1 d4’)) forEq [[al]

aspects to our implementation. We want to ensure that each call to
insert takes a sorted list as an input argument and returns a sorted
list as the result.

In our AOP Haskell extension, we can guarantee this property
via the first aspect definition in Figure 1. We make use of the
(trusted) library functionsort which sorts a list of values. The
sort functions assumes the overloaded comparison opexator

In the above, we only use single-parameter type classes. Other addiwhich is part of theédrd class. Hence, we find the pointcut typed

tional type class features include functional dependency [10], con-

a=>[a]->[a]l->[al. The keywordpbroceed indicates to continue

structor [9] and multi-parameter [11] type classes. For the transla- with the normal evaluation. That is, we continue with the call

tion of AOP Haskell to Haskell we will use multi-parameter type

insert x ys. The second aspect definition provides for a more

classes and overlapping instances, yet another type class featuregfficientimplementation in case we caflsert on list of Ints. We

as supported by GHC [5]. As we will see, GHC-style type classes
have some limitations. Instead, we will later use a more flexible

assume that only non-negative numbers are sorted which implies
thato is the smallest element appearing in a listats. Hence, if

form of type classes which are an instance of our own general type 0 is the first element it suffices to cowsto the input list. Notice

class framework [19].

3. The Key Ideas
3.1 AOP Haskell

AOP Haskell extends the Haskell syntax [15] by supporting top-
level aspect definitions of the form

N@advice #f1,...,fn# ::

wherel is a distinct label attached to each advice and the pointcut
£1,....fn refers to a set of (possibly overloaded) functions. Com-
monly, we refer tafi’s asjoinpoints Notice that our pointcuts are
type-directed. Each pointcut has a type annotatios> t which
follows the Haskell syntax. We refer @ => t as thepointcut type

We will apply the advice if the type of a joinpoitti is an instance

of t such that constraints are satisfied. The advice bodyfol-
lows the Haskell syntax for expressions with the addition of a new
keywordproceed to indicate continuation of the normal evalua-
tion process. We only support “around” advice which is sufficient
to represent “before” and “after” advice.

C=>t e

In Figure 1, we give an example program. In the top part, we pro-
vide the implementation of an insertion sort algorithm where ele-

there is an overlap among the pointcut typesifasert. In case

we callinsert on list of Ints we apply both advice bodies in no
specific order unless otherwise stated. For all other cases, we only
apply the first advice.

A novel feature of AOP Haskell is that advice bodies may refer to
overloaded functions. See the first advice body where we make use
of the (overloaded) equality operater whose type i€q a => a

-> a -> a.In Haskell, theEq class is a superclass @fd. Hence,
there is no need to mention tiEq class in the pointcut type of the
advice definition. Besides ordinary function, we can advise

¢ overloaded functions,

e polymorphic recursive functions, and

e functions appearing in advice and instance bodies.
We will see such examples later in Section 3.4 and 4.2.

3.2 Typing and Translating AOP Haskell with Type Classes

Our goal is to embed AOP Haskell into Haskell by making use
of Haskell’s rich type system. We seek a transformation scheme
where typing and translation of tiseurceAOP Haskell program is
described by the resultingrgetHaskell program.

2006/10/3

and can be automated by pre-processing tools such as Template

insert x [] = [x] Haskell [18].
Hlls;rlx (y:zs; vs Each advice is turned into an instance declaration where the type
| Otherz’]iSF R parameten of the Advice class is set to the singleton type of the

advice and type parametelis set to the pointcut type. In case the
pointcut type is of the forne => ..., we set the instance context

to C. See the translation of adviaet. In the instance body, we
simply copy the advice body where we replaasceed by the
name of the advised function. For each ad¥icee addinstance
Advice N a where the body of this instance is set to the default
case as specified in the class declaration. The reader will notice
that for each advice we create two “overlapping” instances. That is,
the instance heads overlap, hence, we can potentially use either of
the two instances to resolve a type class constraint which may yield

y : (joinpoint N1 (joinpoint N2 insert)) x ys --(1)

1

insertionSort []
insertionSort xs =
(joinpoint N1 (joinpoint N2 insert)) --(2)
(head xs) (insertionSort (tail xs))

-- translation of advice
class Advice n t where

joinpoint :: n ->t -> t : :

Joinpoint . = id —~ default to two different results. We come back to this point shortly.

data N1 = N1 The actual (static) weaving of the program is performed by the type
instance Ord a => Advice N1 (a->[a]l->[a]) where -- (I1) class resolution mechanism. GHC will infer the following types for
joinpoint N1 insert = the transformed program.

\x -> \ys -> let zs = insert x ys
in if (isSorted ys) && (isSorted zs)
then zs else error "Bug"

insert :: forall a.
(Advice N1 (a -> [a] -> [al),
Advice N2 (a -> [a] -> [al),

where 4 a) =>
isSorted xs = (sort xs) == xs Ur_>a[i > [a]
instance Advice N1 a -- (I1’) default case a a a
data N2 = N2 insertionSort :: forall a.
instance Advice N2 (Int->[Int]->[Int]) where -- (I2) (Advice N1 (a -> [a] -> [a]),

Advice N2 (a -> [a] -> [al),
Ord a) =>
a -> [a] -> [a]

joinpoint N2 imsert = \x -> \ys ->
if x == 0 then x:ys
else insert x ys

instance Advice N2 a -- (I2’) default case EachAdvice type class constraint results from a calljteinpoint.
- - - GHC does not resolvedvice N1 (a -> [a] -> [al) because
Figure 2. GHC Haskell Translation of Figure 1 we could either apply instance (I1) or the default instance (11")

which may vyield to an ambiguous result. We say that GHC ap-
plies a “lazy” type class resolution strategy. However, if we use

The challenge we face is how to intercept calls to joinpoints and re- insert or insertionSort in a specific monomorphic context we
direct the control flow to the advice bodies. In AOP terminology, C&n resolve “unambiguously” the above constraints.

this process is known as aspect weaving. Weaving can either bej et ys assume we applhynsertionSort to a list of Ints. Then,
performed dynamically or statically. Dynamic weaving is the more \ye need to resolve the constraints

flexible approach. For example, aspects can be added and removed

at run-time. For AOP Haskell, we employ static weaving which (Advice N1 (Int -> [Int] -> [Int]),

is more restrictive but allows us to give stronger static guarantees Advice N2 (Int -> [Int] -> [Int]), Ord Int)

about programs. GHC applies the “best-fit” strategy and resol@sice N1 (Int
Our key insight is that type-directed static weaving can be phrased -> [Int] -> [Int]) via instance (I1),Advice N2 (Int ->

in terms of type classes based on the following principles: [Int] -> [Int]) viainstance (12) an@rd Int is resolved us-
)) ing a pre-defined instance from the Haskell Prelude [15]. Effec-
* We employ type class instances to represent advice. tively, this means that at locations (1) and (2) in the above program
* We use a syntactic pre-processor to instrument joinpoints with text, we intercept the calls tmsert by first applying the body of
calls to overloaded “weaving” function. instance (I1) followed by applying the body of instance (I2)

e We explain type-directed static weaving as type class resolu- In case, we applyinsertionSort to a list of Bools, we need to
tion. Type class resolution refers to the process of reducing type resolve the constraints
class constraints with respect to the set of instance declarations. (Advice N1 (Bool -> [Booll -> [Booll),

In Figure 2, we transform the AOP Haskell program from Figure 1 Advice N2 (Bool -> [Bool] -> [Booll), Ord Bool)

to Haskell based on the first two principles. We use here type The instance (I1) is still the best-fit fxdvice N1 (Bool ->
classes as supported by GHC. [Bool]l -> [Booll). However, instead of instance (12) we ap-
Let us take a closer look at how this transformation scheme works. Ply the default case to reso@dvice N2 (Bool -> [Bool] ->
First, we introduce a two-parameter type classrice which [Booll). Hence, at locations (1) and (2) we apply the body of in-
comes with a methogloinpoint. Each call toinsert is replaced stance (I1) followed by the body of the default instance for advice
by (12). 0rd Bool is resolved using a pre-defined instance from the

Haskell Prelude.
joinpoint N1 (joinpoint N2 insert)
Figure 3 summarizes our approach of typing and translating AOP

We assume here the following order among adviize< N1. That Haskell. In Section 4.1, we formalize AOP Haskell as a domain-
is, we first apply the advicéil before applying advicai2. This specific extension of Haskell using GHC style type classes. Unfor-
transformation step requires to traverse the abstract syntax treetunately, the system as described so far has some short-comings

3 2006/10/3

AOP HaskKell £ o

L. . :: [a] -> Bool
m eturn adwce_ln_to instances £ [] = True
einstrument joinpoints £ (x:xs) = (joinpoint N £) [xs]

Haskell+Type Classes

etype class resolution

Y further compilation steps class Advice n t where
[] s s .
_ _ joinpoint :: n ->t -> t
joinpoint _ = id -- default case
Figure 3. AOP Haskell Typing and Translation Scheme data N = N
instance Advice N ([[Bool]l]->Bool) where
joinpoint N = \x -> False
f :: [al -> Bool instance Advice N a
f [1 = True
f (x:xs) = f [xs] Figure 5. GHC Haskell Translation of Figure 4
N@advice fff :: [[Booll]l -> Bool = \x -> False
- — - - - calls tof on list of list of Bools to ensure termination for at least
Figure 4. Advising Polymorphic Recursive Functions some values.

To translate the above AOP Haskell program to Haskell with GHC
in case joinpoints are enclosed by type annotations. The short-type classes we cannot onfils type annotation becauseis a
comings are due to the way type classes are implemented in GHC.polymorphic recursive function. Our only hope is to rewtitetype
We can solve the problem by using an alternative type class system.annotation. For example, consider the attempt.
Next, we will f_irst examine the_ problem with GHC type classes and £ :: Advice N a => [a] -> Bool
then we consider the alternative type class system. £ [] = True

3.3 Short-comings using GHC Style Type Classes t (x:xs) = (joinpoint N £) [xs]

The call tof in the function body gives rise tadvice N [a]

Let us assume we provide explicit type annotations to the functions : o=
whereas the annotation only suppliesrice N a. Therefore, the

in Figure 1. e P . :

g GHC type checker will fail. Any similar “rewrite” attempt will lead
insert :: Ord a => a -> [a] -> [al to the same result (failure).
insertionSort :: Ord a => [a] —> [a]

)] o) A closer analysis shows that the problem we face is due to the
The trouble is that if we keepnsert’s annotation in the resulting way type classes are implemented in GHC. In GHC, type classes
target program, we find some unexpected (un-aspect like) behavior.are translated using the dictionary-passing scheme [6] where each
GHC's type class resolution mechanism will “eagerly” resolve the type class is represented by a dictionary containing the method

constraints definitions. In our case, dictionaries represent the advice which
Advice N1 (a -> [a] -> [al), will _be applied to a joinpoint. Let us assume we initially call
Advice N2 (a -> [a] -> [a]) £ with a |I$t of Bools. '_I'hen, the default adwce' applies and we
o proceed withf’s evaluation. Subsequently, we will callon a list
arising from of list of Bools. Recall that is a polymorphic recursive function.

Now, we wish that the advick applies to terminate the evaluation

joinpoint N1 (joinpoint N2 insert)) all
Joinp Joirp with resultFalse. The problem becomes now clear. The initial

by applying instance (1) oddvice N1 (a -> [a] -> [a]) advice (i.e. dictionary) supplied will need to be changed during the
and applying the default instance (12') @agvice N2 (a -> [a] evaluation of functiorf We cannot naturally program this behavior
-> [a]). Hence, will never apply the advise, even if we call via GHC type classes.

insert on list ofInts.

The conclusion is that we must either remove type annotations 3.4 More Flexible Type Classes for AOP Haskell
in the target program, or appropriately rewrite them during the The solution we propose is to switch to an alternative type class
translation process. For example, in the translation we must rewrite translation scheme to translate advice. Instead of dictionaries we
insert’s annotation to pass around types and select the appropriate method definitions
. . . _ _ (i.e. advice) based on run-time type information. Then, we can ap-
insert :: (ﬁgvy:e Ni (a ¢ (a] ¢ (al), _ ply the straightforward AOP to type class transformation. In an in-
vice N2 (a -> [a] -> [a]), Ord a) => h ¢
a -> [a] -> [a] termematg step, the program from Figure 4 translates to the pro-
gram in Figure 5. Whereas GHC fails to type check and compile

At first look, this does not seem to be a serious limitation (rather the program in Figure 5, we can type check and compile this pro-
tedious in case we choose to rewrite type annotations). However, gram under a type-passing based type class resolution scheme. The
there are type extensions which critically rely on type annotations. formal details are described in Section 5.4. The resulting program
For example, consider polymorphic recursive functions which de- is given in Figure 6. We use a target language extended with a form
mand type annotations to guarantee decidable type inference [8]. Inof type case similar to intensional type analysis [7]. Based on the
such cases we are unable to appropriately rewrite type annotationsun-time type information, we call the appropriate advice.
if we rely on GHC type classes to encode AOP Haskell.

. . oo — 3.5 Outline of The Rest of The Paper
Let us consider a (contrived) program to explain this point in more
detail. In Figure 4, functiof makes use of polymorphic recursion In the upcoming section, we show how to express a “light-weight”
in the second clause. We calbn list of lists whereas the argument form of AOP using GHC multi-parameter type classes and over-
is only a list. Functiore will not terminate on any argument other lapping instances. Programming in AOP Haskell light has some
than the empty list. The advice definition allows us to intercept all restrictions. In case joinpoints are enclosed by type annotations,

4 2006/10/3

f=Aa. \ys:[al ->
case ys of
[T -> True
(x:x8) -> (joinpoint N ([[a]]l->Bool)
(f [al)) [xs]
A n. A a. typecase (n,a) of
(N, [[b]]1->Bool) -> \f -> \x -> False
N,) > \f > f

joinpoint

Figure 6. Type-Passing Type Class Resolution Applied to Figure 5

we must remove these annotations which is not possible in case of
polymorphic recursive functions.

In Section 5, we show how to lift these restrictions by employing a

data N = N

instance C => Advice N t where
joinpoint _ f = e’

instance Advice N a -- default case

wheree’ results frome by substitutingproceed by the fresh
namet.

Joinpoints: For each functiort and for all adviceNi, ...,Nm where

f appears in their pointcut we repladeby
joinpoint N1 (... (joinpoint Nm £)...)

being careful to avoid name conflicts in case of lambda-bound
function names. We assume that the order among advice is as
follows:Nm < ... < N1.

To compile the resulting program we rely on the following GHC

type-passing type class translation scheme. The type class systengxtensions (compiler flags):

necessary to describe “full” AOP Haskell is an instance of the
general type class framework proposed by Stuckey and the first
author [19]. In particular, we can derive strong results for AOP
Haskell such as type inference and coherence via reduction from
known results for type classes.

4. AOP Haskell Lightin GHC

We consider an extension of GHC with top-level aspect definitions
of the form

N@advice #f1,...,fn# :: C => t e

We omit to give the syntactic description of Haskell programs
which can be found elsewhere [15]. We assume that type anno-
tationC => t and expressioa follow the Haskell syntax (with the
addition of a new keyworg@roceed which may appear ir). We
assume that symbofd, ... fn refer to the names of (top-level) func-

e —-fglasgow-exts
e -fallow-overlapping-instances

The first flag is necessary because we use multi-parameter type
classes. The second flag enables support for overlapping instances.

FAcT 1. Type soundness and type inference for AOP Haskell light
are established via translation to GHC-style type classes.

We take it for granted that GHC is type sound and type inference is
correct. However, it is difficult to state any precise results given the
complexity of Haskell and the GHC implementation. In Section 5,
we will formally develop type soundness and type inference for a
core fragment of AOP Haskell.

An assumption which we have not mentioned so far is that we can
only advise function names which are in scope. That is, pointcuts

tions and methods (i.e. overloaded functions). See also Section 3.1.and joinpoints must be in the same scope. We will explain this point

As motivated in Section 3.3, we impose the following condition on
the AOP extension of GHC.

DEFINITION 1 (AOP Haskell Light Restriction)\WWe demand that
each joinpointf is not enclosed by a type annotation, advice or
instance declaration.

Notice that instance declarations “act” like type annotations. In the
upcoming translation scheme we will translate advice declarations
to instance declarations. Hence, joinpoints cannot be enclosed b
advice and instance declarations either.

Next, we formalize the AOP to type class transformation scheme.
We will conclude this section by providing a number of programs
written in AOP Haskell light.

4.1 Type Class-Based Transformation Scheme

by example in the next (sub)section.

Another issue is that in our current type class encoding of AOP
we do not check whether advice definitions have any effect on
programs. For example, consider

f :: Int
f 1

N@advice #f# :: Bool = True

Ywhere the advice definitiois clearly useless. We may want to re-

ject such useless definitions by adding the following transformation
step to Definition 2.

Useful Advice: Each AOP Haskell statement

Based on the discussion in Section 3.2, our transformation scheme

proceeds as follows.

DEFINITION 2 (AOP to Type Class Transformation Schemiegt
p be an AOP Haskell program. We perform the following transfor-
mation steps op to obtain the progranp’.

Advice class: We add the class declaration

class Advice n t where
joinpoint :: n -> t
joinpoint _ id

Advice bodies: Each AOP Haskell statement

->t

N@advice #f1,...,fn# :: C => t e

is replaced by

N@advice #f1,...,fn# :: C => t = e
generates
£12 :: C => t
£1° = f1
fn’ :: C >t
fn’ = fn
inp’ wheref1’, ...,fn’ are fresh identifiers.

FACT 2. We find that definitiong1’,...fn’ are well-typed iff the
types off1,....fn are more specific than the pointcut type>t.

In case of our above example, we generate

£
f)

: Bool
f

which is ill-typed. Hence, we reject the useless advice

2006/10/3

accF xs acc = accF (tail xs) (head xs : acc)

reverse :: [a] -> [a] -> [a]
reverse xs = accF xs []
append :: [a]l -> [a] -> [al]

append xs ys = accF xs ys
N@advice faccFf :: [a]l -> [a] -> [a] =
\xs -> \acc -> case xs of
[1 -> acc
_ —> proceed xs acc

Figure 7. Advising Accumulator Recursive Functions

module CollectsLib where

class Collects c e | ¢ -> e where

insert :: e > c > ¢
test :: e -> ¢ -> Bool
empty :: ¢

instance Ord a => Collects [a] a where
insert x [] = [x]
insert x (y:ys)
| x <=y = x:y:ys
(insert x ys)

| otherwise =y :
test x xs = elem x xs
empty = []

Figure 8. Collection Library

4.2 AOP Haskell Light Examples

module Main where

import List(sort)
import CollectsLib

insertionSort []1 = []
insertionSort xs =

insert (head xs) (insertionSort (tail xs))
Ni@advice fiinsertf :: Ord a => a -> [a] -> [a] =
\x > \ys —>

let zs = proceed x ys

in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"

where

isSorted xs = (sort xs) == xs

N2@advice fiinsertf :: Int -> [Int] -> [Int] =
\x -> \ys -> if x == 0 then x:ys
else proceed x ys

Figure 9. Advising Overloaded Functions

Nl@advice
\xs ->

gff :: [Int] -> Int =
(head xs) + (proceed (tail xs))

N2@advice
\xs ->

fheadf ::

case xs of
0->-1
- —> proceed xs

[Int] -> Int =

Figure 10. Advising functions in advice bodies

We take a look at a few AOP Haskell light example programs. We where of course). Then, we face the problem of advising a function
will omit the translation to (GHC) Haskell which can be found enclosed by a “type annotation”. Recall that instance declarations
here [20]. We also discuss issues regarding the scope of pointcutsact like type annotations and there is now a joinpainkert

and how to deal with cases where the joinpoint is enclosed by an within the body of the instance declaration in scope. Our automatic
annotation. transformation scheme in Definition 2 will not work here. The

resulting program may type check but we risk that the program
will show some unaspect-like behavior. The (programmer-guided)
solution is to manually rewrite the instance declaration during the
transformation process which roughly yields the following result

Advising recursive functions. Our first example is given in Fig-
ure 7. We provide definitions afppend andreverse in terms of
the accumulator functioaccF. We deliberately left out the base
case of functioraccF. In AOP Haskell light, we can catch the base
case via the advics. It is safe here to give append and reverse
type annotations, although, the joinpoint is then enclosed by a type instance (Advice N1 (a->[a]->[al),

annotation. The reason is that only one adwi@plies here. Advice N2 (a->[a]->[al),
Ord a) => Collects [a] a where

- . . insert x [] = [x]
Advising overloaded functions. In our next example, we will insert x (y:ys)
show that we can even advise overloaded functions. We recast the |, - y = x:y:ys
example from Section 3.1 in terms of a library for collections. | otherwise =

See Figures 8 and 9. We use the functional dependency declara-
tion Collects ¢ e | c->e to enforce that the collection type
uniquely determines the element typeWe use the same aspect
definitions from earlier on to advise functidhsertionSort and

the now overloaded functiamsert. As said, we only advise func-
tion names which are in the same scope as the pointcut. Hence
our transformation scheme in Definition 2 effectively translates the
code in Figure 9 to the code shown in Figure 2. The code in Figure 8 We would like to stress that type inference for the transformed
remains unchanged. program is decidable. The “decidable instance check” in GHC is
simply conservative, hence, we need to force GHC to accept the
program.

y : ((joinpoint N2 (joinpoint N1 insert)) x ys)

To compile the transformed AOP Haskell light program with GHC,
we will need to switch on the following additional compiler flag:

' @ —fallow-undecidable-instances

Advising functions in instance declarationsIf we wish to advise
all calls to insert throughout the entire program, we will need
to place the entire code into one single module. Let us assume weAdvising functions in advice bodies.Given that we translate ad-
replace the statemeninport CollectsLib in Figure 9 by the vice into instances, it should be clear that we can also advice func-
code in Figure 8 (dropping the statemenidule CollectsLib tions in advice bodies if we are willing to “guide” the translation

6 2006/10/3

type T = [Int] -> Int
data N1 = N1
instance Advice N2 T => Advice N1 T where
joinpoint N1 £
\ xs -> ((joinpoint N2 head) xs) + (f (tail xs))

data N2 = N2
instance Advice N2 T where
joinpoint N2 head =
\xs -> case xs of
I -> -1
_ => head xs

Figure 11. GHC Haskell Translation of Figure 10

Types t = alt—t|Tt
Type Scheme o = t|Va.C =t
Type Classes tc = TCt
Constraints C = tar A .. Atey
Expressions e ;= proceed |z | Ax.e|ee|
r:C=t .
let - ine
r=e€
Pointcut pe Ty .eey Ty
Advice adv = NQadvicefipct::C=>t=c¢
Classes cl := class TC awherem :: C' =t
Instances st = instance C' = TC twherem =e
Programs P = adv; clyinst;e
Figure 12. AOP Mini Haskell Syntax

scheme. In Figure 10, we give such an example and its (manual)
translation is given in Figure 10. We rely again on the “undecid-
able” instance extension in GHC.

The last example makes us clearly wish for a system where we
do not have to perform any manual rewriting. Of course, we could
automate the rewriting of annotations by integrating the translation
scheme in Definition 2 with the GHC type inferencer. However,
the problem remains that we are unable to advise polymorphic
recursive functions. Recall the discussion in Section 3.3. Hence,
we seek for a more principled AOP extension of Haskell.

Next, we formally define the semantics and type inference for an

AOP extension of a core fragment of Haskell. We make use of

more flexible type classes to translate AOP programming idioms.

Thus, we obtain a more principled and powerful system where

we can also advise polymorphic recursive functions and verify

important formal results such as type inference and coherence of
the translation.

5. AOP Mini Haskell

We first define the syntax of AOP Mini Haskell. We use the term
“Mini” to indicate that we only consider a core fragment of Haskell.

pressions and assume that let-defined (possibly recursive) functions
carry type annotations. We also assume that each class declara-
tion introduces a type class with a single method only. In exam-
ple programs we may make use of pattern matching syntax which
can be expressed via primitives suchhaad : Va.[a] — a and
tail : Va.[a] — [a] which are recorded in some initial environment
init.
Before we define the semantics of AOP Mini Haskell, we first
define the semantics of type classes. We also define a subsumption
relation among types which is defined in terms of the type class
semantics.

5.2 Type Class Semantics

We explain the meaning of type classes in terms of Stuckey's

and the first author’s type class framework [19]. The idea is to

translate class and instance declarations into Constraint Handling
Rules (CHRs) [4]. CHRs serve as a meta specification language to
reason about type class relations.

For example, the instance declaration from Figure 8
instance Ord a => Collects [a] a
translates to the CHR
Collects [a] a <==> 0rd a

Logically, the symbol<==> stands for bi-implication while the
operational reading is to replace (i.e. rewrite) the constraints on
the left-hand side by those on the right-hand side. In contrast to
Prolog, we only perform matching babt unification during rule
application.

The advantage of CHRs is that we can more concisely describe
advice without having to resort to overlapping instances. Recall that
in AOP Haskell light the advice declaration

Ord a => a -> [a] -> [a] = ...
from Figure 1 translates to the overlapping instances

NilQ@advice #insert# ::

instance Ord a => Advice N1 (a->[a]l->[a])
instance Advice N1 a

We then relied on GHC's “lazy” and “best-fit” type class resolution
strategy to faithfully encode AOP.

In AOP Mini Haskell, we use CHRs with explicit guard constraints
to express type class relations implied by advice declarations. For
example, for the above example we generate the following CHRs.

Advice N1 (a->[a]l->[a]) <==> 0rd a
Advice N1 b <==> b /= (a->[a]l->[a]) | True

The first CHR fires if we encounter a joinpoint of type-> [t]->[t])
which means that advicel applies. The second CHR contains a
guard constraint and therefore only applies to joinpoints which are
notinstances of(t->[t]1->[t]). In this case advic#1 does not
apply. Hence, in the type class translation we use the default in-
stance. The upshot of using CHRs with guard constraints is that
they enable us to give a more concise (type class) description of
advice including precise results (see upcoming Section 5.5).

Then, we develop some technical machinery necessary to conciselye formalize the syntax and semantics of CHRs. We assume that

describe the type-directed translation rules from AOP Mini Haskell

fv(o) computes the free variables of some objecFor the mo-

to a simple target language. We use a type-passing scheme tment, we are only concerned with the logical semantics of CHRs.
translate type classes and advice. We conclude this section bywe postpone the definition of the operational semantics until we

stating some formal results.

5.1 Syntax

In Figure 12, we give the syntax of AOP Mini Haskell. We use
the following conventions. We writé as a short-hand to denote
a sequence of objects, ..., 0,,. We assume a distinct type class
True representing the always true constraint. We wyitet as a
short-hand fova. True = t. For simplicity, we ignore case ex-

discuss type inference.

DerINITION 3 (CHR Syntax and Logical Semantic$jor our pur-
poses, CHRs are of the form

TCt «— t#t|TCit1,...,TCh tn
Logically, we interpret the above as the first-order formula
V.a.(3bt#t) D (TC T« I(TCi Tt A ... N TC, 1))

2006/10/3

wherea = fv(f), b = fv(¥') — a andé = fv(fy,...,t,) — a. The
above formula simplifies téa.(7C' < 3e.(TC; & A ... A TC, T,)) 1TYPE ¢
in case we omit the guard constraint. TTypeScheme o;

altt—tt| Tt
tt | Va.tt

TValue v alv—v|Tv
The full set of CHR is much richer and provides support for im- Target E z|v|EE|Xx.E|letz=FEin E|
provement conditions as implied by the functional dependency in rec finE | case v of [0; — Filicr

Figure 8. We refer the interested reader to [3, 22] for details.

P
5.3 Subsumption V=W, +V>V+ o (EV Vaityx) |

In the upcoming type-directed translation scheme, we employ a

subsumption relation to compare types with respect tgtbgram n: Var —V
logic P. We assume thaP contains the set of CHRs derived from Il : Target — (Var — V) —V
type class declarations. l: : TTypeScheme — V
DEFINITION 4 (Subsumption)Let P be a program logic and [=]n = n(x)
va.C = t andVa’.C’ = t’ be two types. We define

~ _ [Mz.E]n = Au.[E]n[z = u]

PF (Va.C=1t) < (Va.C' = t)
iff PAC' = 3Ja.(C At =t'). We assume that there are no name [EETn = if[E]npeV —]f
clashes among anda’. then ([E]n) ([E']n)
else W
The statemenP A C' |= Ja.(C At = t') holds if for any model lletz =EinE'|ln = [E']nz:=[E]n]
M of P AC (in the first-order sense) we find théa.(C At = t')
i f .

holdsindf. _ , LR 0= i) =)then 40)
The important point to note is that the subsumption check turns into ! a
an entailment check among constraints. We postpone a discussion ifn(v) = No,, (va)then[EL] (1 - 1w,,)
of how to operationally check for subsumption until we consider else W
type inference. (wherel ={1,...,n})
5.4 Type-Directed Translation Scheme [rec fin Bl £ix(o[Enlf = D)
We give the type-directed translation rules from AOP Mini Haskell [11 — po]e =
to a simple target language. We slightly deviate from the scheme { fev—=V|ze[m]:= fzeu]: }
shown in Figure 3. Instead of first transforming AOP constructs to [Tp...pmle=
type class constructs and then translating type classes, we imme- U
diately translate AOP and type class constructs to the target lan- {K [pi]e - [unde |
guage. It will be obvious how to split the upcomidgect transla- rlorset = Koo — o= = T i}
tion scheme into a two-step translation scheme. Va.ths =
Figure 13 describes the target language. In the translation, we g[[[ll//a]t]]L

will write letrec x = FEjin E, as syntactic sugar fdet z =
(rec fin [f/x]E1) E» wheref is a fresh identifier. Multiple bind-
ing groupslet x1 = Fu,...,z, = E,in I can also be desugared
into let z = E’in E” for some appropriat&’ and E”. We also Figure 13. Target Language
use type case, type application and type abstraction to support a

type-passing type class resolution strategy. Again, these constructs

are only syntactic sugar for value case, value application and value 4. |nstancesl’ + adv ~ jp = E.

abstraction, assuming that types are represented by values. See the) _

syntactic category TValue. We could easily switch to a “real” typed °- Advice:I' = instrc ~ m = E.

where for monotypeg: we require thatv(u) = § and 79

contains the set of value constructors used in this context.

target language [7, 21] with no change in results. From the previous (sub)section, we assume the subsumption judg-

We interpret target expressions in an untyped denotational semanmentP F o1 < o2 and the model-theoretic entailment relation
tics.pphe semantic equations are straightforward. For example,

and denote coalesced sums avid— V' is the continuous func- The first judgment drives the translation process. In the premise

tion space. In general, we leave injection and projection operators of ryle (Prog), we call the second judgment to collect thelset
for sums implicit. The valuéW is the error element(is the set ot method declarations implied by class declarations, thePset

of value constructors anli x refers to the fix-point operator. Inthe of CHRs implied by instance and advice declarations and the set

rule for case expressions, we wrifév) = 7., (v;) to denote that 7 of pairs of function name and advice. As said, we omit the

the valuen(v) is matched against; for some (local) value bind- jntermediate step where we first translate advice declarations into
ing 7. We writer - 7., to denote composition of value bindings. type class declarations. We directly translate advice declarations
In the second semantic (type) equation from the bottom, we write jnto CHRs using guard constraints to resolve the overlap among the

Lot b K :ph — ... —pp — Tpi...pptodenoteavalid adviceN and the default case. We assume thavice is a special

Hindley/Milner typing judgment. purpose type class (advice) constraint and for each adVisee
Figure 14 specifies the translation of AOP Mini Haskell programs find a valueN of (singleton) typeN in the initial environment

to target expressions in terms of five judgments of the form: Linit.

1. Programsp + E. Then, we call the fourth and fifth judgment to translate the ad-

o p . LT PJ vise and instances. We writest rc to denote a sequence of in-
- Freprocessingd = L, [J. stance declarations which refer to type cl4&§ in their instance
3. ExpressionsC,T" - e: t~ E. “head”. The result is sequence of binding groyps= E’,m1 =

8 2006/10/3

b H

adv; cl; instre, , ..., instre, = T, P, J
FUFinit [adv«»]’p = E/
Ul F inStTci ~m; = F; fori= 1,...n
(Prog) C.,TUTini b e:t~ E
PEC

adv; cl; instre, , ..., instro,; e F let jp = E';m1 = E1,....m, = E,in E

)

TP

inst = P inst B Py

inst C = TC iwh =eFH{TCt=C —
instance wherem = e b { ¥ inst,inst = P U Py

P = {Advice N t < C, Advice N t < a # t | True} adv - Pi,J1 adv - P, Jo
NQ@advice §f1,..., fmf : C =t =e F P, {(f1,N), ..., (fm,N)} adv,adv = Py U Py, Jy U Js
B:fV(C,t)fa a}—l—‘l cl F 1'%
class TC awherem :: C =t F {m :Va,b.TC a AC =t} clyel F T1UT:

adv - P,,J c FT instb P,
adv; clyinst;e - T, P, U Py, J

C,FF€1:t2—>t1’\»E1 C7FF62:t2’v>E2

C'u{z:ti} Fe:to~FE

(Abs) C,I'F Axe:ty —ta~ A E (App) C, '+ eiez:ti ~ E1 Es
cy,Tu {z:Va.Ci = t1} F e1: t) ~ E1
P+ (VZ)C{ = tll) < (VEL.CI = tl) a = fV(C1,t1) b= fV(Ci,t/l) — fV(F)
(Let) C, Ty {:17 Va.Cp = tl} F e :to~ FEo
C, T F let z - (21 =h in es :ty ~ letrecx = Aa.F1in Es
=el
(fuvaC' =1t)el J(f)={(f,N),....(f,Nm)} N
J A . :Va.C' t r Jx) =
(Var-dP) ¢’ = [t/alt! C = [t/a]C’ A Advice Ny t" A ... A Advice Nyt (Var-vElim) CEIA Tac;; F)E. r(tﬁf) 05
CTF fit ~jpNit" ((jp Now £ (f 0))-n.) [t/alC, T 1 @ [t/a]t ~ @
[0+ adv~ jp = E|
C{,TU{f:t;} = [f/proceedle; : t; ~ E; f fresh
P+ (Vb;.C{ = t;) < (V&i.C; = t;) by = (C], 1)) — () & =1t(C;,t;) foriel
(Advice) (v6:.C; = &) < (Vei.Ci = t:) (Cit) —N(I) @ (()t)irzA;E
I' b [N;@advice fpciff :: Cs = t; = €;]ier ~ jp = An.Aa.typecase (n,a) of (Ni,) — AL

IC F instre ~ m = E|

CiTFei:ti~E (m:Va,bTCanC =t)eT d; =)
(Inst)y P+ (V&.Cl = t;) < (Vd;,bTCT; A [ti/a]C = [t;/alt) & = N(C], 1)) — () forie I
T, [instance C; = TC T; where m = ¢;];e1 ~» m = Aa.typecase @ of [t; — Ab.F;]ier

Figure 14. Mini AOP Haskell Translation Scheme

9 2006/10/3

Ei,...,m, = E, defining the joinpoint and type class methods. to decidingP A C’ = Ja.(C At = t’). From [19], we know that
Finally, we call the third judgment to translate the expression = PAC’ = Ja.(CAt =t') can be rephrased &A\C'At =t = C

The conditionP = C ensure that all type class and advise con- which effectively means that undét, C’ A t = ¢’ entailsC' writ-
straints arising frone are resolved. tenC’ At =t D C.W.lo.g.t andt’ refer to variables assuming
The third judgment for translating expressions uses a constraintthf’]}t ;Ne enrich thi constraint language with t¥pe equafgnsr\] We c?n
component to infer the type class and advise constraints arising fr? eCyHIr?emov? L etse type eti_uatlons t\ﬂa ”.n'h'tcﬁt'og ['d]' Hone o .
out of the program text. It should be clear that we could easily | e - sk;:on ains type ef(fq_ua |onsdoniBe right-nan S'he' ence, to
refine our formulation and infer also type equations (also known 9€CIG€ SU sumption it suffices to deciBte= C1 > C; whereC:

PP ; : andC- contain type class constraints. There is an implicit quantifier
g? ; mfcl)crgtlnoor;st):/ogrségaelr?;tgzicl)r:]rules (Abs) and (App) on the expense Va scoping overlC; D C> wherea = fv(C1, C2). We will leave
_ R this quantifier implicit. Notice thaP is a closed formula. Hence,
In rule (Var+Elim), we build an instance af’s type scheme for our task is to devise an algorithm to decifte= C1 D> C-> which

a given type. We writelt/a] to denote a substitution mapping will supply us with an algorithm to decide |= C as well.

varlabIeSai to typest;. Rule (Var-JP) works similarly. In addltlo_n, In [19], we showed how to redud@ |= C; > Cs to CHR solving.

we intercept the call _t(f and instrument the program text with We apbly CHRs orC;, andC; A Cy and check whether we reach
callls to the advice de/ﬂned fof. We write J(f) as a short-hand f_or the same canonical normal form. The only slight complication
{(f',N) € J | f = f'}. Recall that source typesare reflected in oo i that we use CHRS with guard constraints which were only
the target language as expressionbut, we writet for simplicity. briefly covered in [19]. For example, consider the translation of
In rule (Let), we deal withclosedtype annotated function defini- the program in Figure 1 where we assume thmasert carries
tions. That is, we quantify over the set of variable<in=- t. In the type annotationinsert :: Ord a => a -> [a] -> [a].

the translation of the body of the let functions, we may refer to In the translation ofinsert, the subsumption check boils down
the let function. Hence, we support (possibly polymorphic) recur- to checking

sive functions. We use the subsumption check to test whether the)

inferred typeVvb.C; = t; subsumes the annotated.C; = t; P = Ord a 5 Advice N (o — [a] — [a]) (%)

with respect to the program logiE. In a type-passing translation where

scheme it suffices to check for “logical” subsumption. The target Advice Np (Int — [Int] — [Int]) <= True, J
translation ofz = e, is therefore simplyr = Aa.E:. Under a p— Advice Ny a <= a # (Int — [Int] — [Int])| True
dictionary-passing scheme we would need a “constructive” sub- Ord Int —> True ’

sumption check which must yield a proef(i.e. coercion) to turn])])
the target expressiofb. E; of typeVb.Cj = t; into a target ex- We ignore here advic&/; and include the CHR representing the

pressiom\a.(Ab.E1)(c a) of the expected typea.Cy = t;. Haskell Preludeinstance Ord Int. The trouble is that none of
the CHRs applies toldvice N2 (a — [a] — [a]). The first CHR

Rules (Inst) and (Advice) translate instance and advice declara- goes not apply because we use matching and not unification when

tions. Thetypecase statement is syntactic sugar faase. We call firing CHRs. The second CHR does not apply because of the guard
the third judgment to translate the advice and instance bodies into constraint. Although, logically the statement (*) clearly holds.

target expressions. Both rules are very similar which is no surprise o))

given that we could explain advise in terms of type classes. As in Our solution is to simply perform a case analysis. In essence, we
case of let statements, we verify that the inferred type subsumesperform solving by search. In case= Int, we verify (*) by re-

the annotated type. In case of instances, we check that the inferredsoIving Ord a to True via the third CHR andldvice Nz (a — [a] — [a])

type subsumes the declared type of the method where the type claséesolves toTrue via the first CHR. Hence, (*) holds far = Int.
parameters are instantiated bg;. In casea # Int, Advice N2 (a — [a] — [a]) resolves toTrue

) via the second CHR. In summary, we have verified (*) by case
For example, we can apply our translation scheme to the programgnalysis.

in Figure 4 which yields the target program in Figure 6.))]]]
. . . . We formalize this observation. First, we repeat the CHR operational
In a practical implementation, we might want to use the standard ggmantics.

dictionary-passing scheme for the type class part and only use the
type-passing scheme for translating the advice. In fact, we could DEFINITION 5 (CHR Operational Semanticsh CHR
use generalized algebraic data types [16] to encode the type-passing

scheme to enaple an integration of our.translation scheme into the TCt <= t#t|TCr 1, ... TCh 1y
typed intermediate language of a compiler such as GHC. applies to a constrain® if we find 7C 7 € O suchthaw(?) = T
5.5 Results and ¢(t) and ¢(t’) are not unifiable for some substitutiah We

. . . assume that we rename CHRs before application to avoid name
The following results are (mostly) immediate consequences of re- gjashes. In such a situation, we write

sults found in [24, 19]. . . -
[] C—C—TC¢"U{TC; ¢(t1),..., TCn ¢(tn)}

)) to denote the constraint rewriting step using the above rule. We
We writen) |= T'if n(x) € [o:]+ for each(z : 0;) € T treat constraints as sets of type class constraints and Wititetc to

THEOREM L (Type Soundnessletp F E such that) = Tinse. denote the constraint resulting froi wheretc has been removed.
Then,[E]n # W. We writeC' ~—* C’ to denote exhaustive application of CHRs on

initial constraintC' yielding thefinal constraintC’ on which no
further CHRs are applicable.

5.5.1 Type Soundness

The above results follows directly from Theorem 2 in [24]. In
case we included functional dependencies in our description, we
additionally require consistency [22] to maintain type soundness. The entailment checking algorithm is given in Figure 15. By con-
struction, we know thatddvice constraints only appear on the
5.5.2 Type Inference right-hand side of the entailment. In case (1), we can directly apply
To obtain a decidable type inference algorithm, we will need al- the first CHR which belongs to the advice declaration. Case (2) ap-
gorithms to decide” = C and subsumption which boils down plies if t andt’ are not unifiable. Then, we can directly apply the

10 2006/10/3

entail(P | C1 D Cy) = f_=1

if JAdvice N t' € C && N@advice #f# :: [[Booll] -> Int = \x -> 2
{Advice N t <= C, Advice N a <= a#t | True} € P main :: Bool
then if 3¢.¢(t) =t -- (1) main = f undefined
then entail(P I €1 O (Ch — Advice N #"U¢(C"))) Our pointcuts are type directed. However, we cannot unambigu-
elseif —Jdo.¢(t) = #(t') - (2) ously decide whether we apply adviteor the “default’ advice.
then entail(P | C1 D (Cy — Advice N t')) The problem becomes clear in the translation which shows that
else let ¢ be the mgu of ¢ and t'; -- (3) (jp N £) undefined has typeBool under the constraintdvice
entail(P | ¢(C1 D (C2 — Advice N t'UC"))); N (a->Bool). Type variablea does not appear in the result type.
entail (P | ¢(C1 D (C2 — Advice N t'))) Hence, we can freely choose
else C; —* C1; —- (4)

The solution employed for type classes is to reject ambiguous pro-
grams. We will follow this path for AOP Mini Haskell. Under this
condition we can guarantee coherence as we will shortly see. A
side-effect of rejecting ambiguous programs is that we lose com-
pleteness of type inference. Here are two (incomparable) annota-
tions which make the program from above unambiguous.

Coy —" Cé:
if C] = C) then return else abort

Figure 15. Entailment Checking Algorithm

second CHR which belongs to the “default” advice. In case (3), we main :: Bool

build the most general unifier (mgu) amohgndt’ and perform a main = f (undefined::[[Booll]l)
case analysis by considering the possibility that both CHRs are ap-

plicable. Case (4) is the “standard” case where use the entailment

procedure from [19] and check whether the canonical normal forms main :: Bool

of C; andC A C; are equivalent. main = f (undefined::[Int])

The important result is that thentail procedure retains all the ~ The conclusion is that in case we reject ambiguous programs we
nice properties we know from [19]. We say theis acomplete and can only guarantee weakform of completeness. That is, in case
decidableAOP Mini Haskell program if the set of CHRs resulting the principal derivation of a program is unambiguous, type infer-
from instance declarations is terminating and the left-hand side of ence will succeed. For the above example, type inference will fail
CHRs are non-overlapping. We need both properties to guaranteebecause we reject ambiguous programs. Notice that the principal
completeness and decidability for the “standard” case. derivation for the above program is ambiguous. However, in the
above we find that the program can be given two incomparable, un-

LEMMA 1. Letp be a complete and decidable program such that ambiguous derivations. Hence, we cannot hope fsirang com-
p = -, P,_andC; and C; be two constraints. Then, we find the pleteness result which guarantees that type inference with the ad-
following results: dition of the unambiguity check succeeds if there exists an unam-
1. The procedurentail(P1C; O C,) is decidable. biguous derivation.

. ; To state the coherence result concisely, we will first need to for-
2. entail(P1Cy 5 C) succeeds, iff” (= €1 5 Co. mally define unambiguity and a more general relation among type
For the above to hold, it is crucial that (by construction) there are g:ierlvatlon. The following definitions can be found in similar form
no “cyclic’ CHRs with guard constraints of the form in [19].

Foo [a] <= a # Int| Foo a We sayC, T + e:t~» FE isunambiguousff fv(C) C fv(T,).

We can therefore guarantee that in cases (1), (2) and (3) we We say a derivatiol® is unambiguous iff all judgments, I" - e :
will make progress and eventually reach the “standard” case (4). t ~ E in the derivation tree are unambiguous.

Also note that CHRs resulting from advice declarations are non- we sayCy,T' - e : t; is more generathanCy, T + e : ¢y iff
overlapping by construction because of the guard constraint. P F (Va.Cy = t1) < (Vb.Cy = to) wherea = fv(Ci,t) —

We immediately obtain the following result. fv(I') andb = fv(C2,t2) — fv(I'). In such a situation, we write
Cl,F l_ e:t1 SCQ,F |_ €It2.

We say a derivatio®; with final judgmentC;,T" F e : t; ismore
generalthan a derivatiorD; with final judgmentCs, T' - e : to iff

We might hope to obtain a completeness result. However, there for all judgmentsCy, T = ¢’ : ¢y in Dy andC3, T' F ¢’ : t5 in

are well-known incompleteness problems in case of “nested” type D= Which are at the same position in the derivation tree we have that
annotations and type classes. We refer [23] for details. There isC1,T”" F ¢ : t; < C3,T" F ¢ : t;. Recall that the translation
another source of incompleteness which is due to “ambiguous” judgments for expressions are syntax-directed.

programs. We will discuss this issue in the context of coherence yyg say that a derivatiof; with final judgmentCy, T F e : ¢, is
which is our next topic. principal iff there is no other more general derivation with final
judgmentCs,T" F e : to.

THEOREM 2 (Type Inference)Letp be a complete and decidable
program. Then, type inference is decidable.

5.6 Coherence

We would like to guarantee that regardless of the typing of the | HEOREM3 (Coherence)Letp be a complete and decidable pro-
program the semantics of the target program is always the same 3ram such thatthe (1) principal derivation pis unambiguous, (2)
This property is known as coherence [1]. In the type class world, ? ™ £1, 3)p = Ez and (4)n) = Tinic. Then,[Ex]n = [Ez]n.

it is a well-known problem that we might lose coherence because The gpove follows directly from Theorem 15 in [19].

of ambiguous programs. Think of the classic Show/Read example.
The same problem arises in case of aspects in AOP Mini Haskell. 6. Conclusion and Related Work
There is a large amount of works on the semantics of aspect-
f :: [a] -> Int oriented programming languages, for example consider [2, 13, 26,

For example, consider

11 2006/10/3

27, 29] and the references therein. There have been only a few [9] M. P. Jones. A system of constructor classes: Overloading and

works [2, 14] which aim to integrate AOP into ML style lan-

guages. These impressive works substantially differ from ours. For

implicit higher-order polymorphism. IRroc. of FPCA '93 pages
52-61. ACM Press, 1993.

instance, the work described in [2] supports first-class pointcuts and [10] M. P. Jones. Type classes with functional dependencieBrda. of

dynamic weaving whereas our pointcuts are second class and we
employ static weaving. None of the previous works we are aware [11] S. Peyton Jones, M. P. Jones, and E. Meijer.
of of considers the integration of AOP and type classes. In some ' '

previous work, the second author [29, 28] gives a a static weaving
scheme for a strongly typed functional AOP language via a type-

directed translation process. However, there are no formal type in-

ference and coherence results.
The main result of our work is that static weaving for strongly

typed languages can be directly expressed in terms of type class
resolution — the process of typing and translating type class pro-

[12] S. Kaes.

ESOP’0Q volume 1782 o NCS Springer-Verlag, 2000.

Type classes: an
exploration of the design space. Haskell WorkshopJune 1997.

Parametric overloading in polymorphic programming
languages. Inn Proc. of ESOP’88volume 300 ofLNCS pages
131-141. Springer-Verlag, 1988.

[13] Ralf Lammel. A semantical approach to method-call interception.

In AOSD '02: Proceedings of the 1st international conference on
Aspect-oriented software developmegrages 41-55. ACM Press,
2002.

grams. We could show that GHC type classes as of today can [14] H. Masuhara, H. Tatsuzawa, and A. Yonezawa. Aspectual caml:

provide for a light-weight AOP extension of Haskell (Section 4).
We critically rely on GHC'’s overlapping instance which imply

an aspect-oriented functional language.Phoc. of ICFP’'05 pages
320-330. ACM Press, 2005.

a lazy and best-fit type class resolution strategy. We provided a [15] 5. peyton Jones, editoHaskell 98 Language and Libraries: The

number of programming examples in AOP Haskell lightPro-
gramming in AOP Haskell light has the restriction that we are
unable to advice polymorphic recursive functions. The restriction

is due to the dictionary-passing translation scheme employed in

GHC (Section 3.3). Therefore, we formalized a more principled

and expressive AOP extension for a core fragment of Haskell, re-

ferred to as AOP Mini Haskell. Instead of overlapping instances we

use guarded CHRs to represent advice and instead of a dictionary-
passing scheme we use a type-passing scheme to translate AORL8l

programs. Type class resolution is achieved via CHR solving by

search. This is one of the main technical achievements of this work.

Revised RepartCambridge University Press, 2003.

[16] S. Peyton Jones, D.Vytiniotis, G. Washburn, and S. Weirich. Simple

unification-based type inference for GADTSs. Pnoc. of ICFP'06
ACM Press, 2006.

[17] J. A. Robinson. A machine-oriented logic based on the resolution

principle. Journal of the Association for Computing Machinery
12:23-41, 1965.

T. Sheard and S. Peyton Jones. Template meta-programming for
Haskell. InProc. of the ACM SIGPLAN workshop on Haskplges
1-16. ACM Press, 2002.

We could state concise type soundness, type inference and coher{19] P. J. Stuckey and M. Sulzmann. A theory of overloadi_M

ence results for AOP Mini Haskell (Section 5). We believe that this

system can serve as a foundational framework to study aspects and

type classes.
In future work, we plan to investigate to what extent our results

apply to other languages which support type classes. We also want

to look into effect-full advice which we can represent via monads in
Haskell. The study of more complex pointcuts is also an interesting
topic for future work.

References

[1] V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheri-
tance as implicit coerciorinformation and Computatiqr®3(1):172—
221, July 1991.

[2] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. PolyAML:
a polymorphic aspect-oriented functional programming language. In
Proc. of ICFP’05 pages 306—319. ACM Press, 2005.

[3] G.J. Duck, S. Peyton Jones, P. J. Stuckey, and M. Sulzmann. Sound

and decidable type inference for functional dependencie®rdn.
of ESOP’04 volume 2986 olLNCS pages 49-63. Springer-Verlag,
2004.

[4] T. Fruhwirth. Constraint handling rules. onstraint Programming:
Basics and Trendd.NCS. Springer-Verlag, 1995.

[5] Glasgow haskell compiler home page. http://www.haskell.org/ghc/.

[6] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler. Type
classes in HaskellACM Transactions on Programming Languages
and Systemd8(2):109-138, 1996.

[7] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. IRroc. of POPL'95 pages 130-141.
ACM Press, 1995.

[8] Fritz Henglein. Type inference with polymorphic recursion.
Transactions on Programming Languages and Systég(4):253—
289, April 1993.

1we would like to point out that all examples from [29, 28] can be repre-
sented in the AOP extension of GHC. They are available via [20].

12

Transactions on Programming Languages and Systems (TOPLAS)
27(6):1-54, 2005.

[20] M. Sulzmann. AOP Haskell light: Aspect-oriented programming with
type classes. http://www.comp.nus.edu.sg/” sulzmann/aophaskell.

[21] M. Sulzmann, M. Chakravarty, , S. Peyton Jones, and K. Donnelly.

System F with type equality coercions. http://www.comp.nus.edu.sg/” sulzrr

July 2006.

[22] M. Sulzmann, G. J. Duck, S. Peyton Jones, and P. J. Stuckey.
Understanding functional dependencies via constraint handling rules.
Journal of Functional Programmin@006. To appear.

[23] M. Sulzmann, T. Schrijvers, and P. J. Stuckey. Principal type inference
for GHC-style multi-parameter type classes.Proc. of APLAS'06
2006. To appear.

[24] S. R. Thatte. Semantics of type classes revisited LAR '94:
Proceedings of the 1994 ACM conference on LISP and functional
programming pages 208-219. ACM Press, 1994.

[25] P. Wadler and S. Blott. How to malad-hocpolymorphism less
ad-hoc In Proc. of POPL'89 pages 60—76. ACM Press, 1989.

[26] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspectroc.
of ICFP’03, pages 127-139. ACM Press, 2003.

[27] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programmi®CM Trans.
Program. Lang. Syst26(5):890-910, 2004.

[28] M. Wang, K. Chen, and S.C. Khoo. On the pursuit of staticness and
coherence. IIFOAL '06: Foundations of Aspect-Oriented Languages
2006.

[29] M. Wang, K. Chen, and S.C. Khoo. Type-directed weaving of
aspects for higher-order functional language<Pioc. of PEPM '06:
Workshop on Partial Evaluation and Program Manipulatigrages
78-87. ACM Press, 2006.

[30] G. Washburn and S. Weirich. Good advice for type-directed
programming: Aspect-oriented programming and extensible generic
functions. InProc. of the 2006 Workshop on Generic Programming
(WGP’06) pages 33-44. ACM Press, 2006.

2006/10/3

