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AbstractA speci�cation provides a concise description of a system, and can be used as both thebenchmark against which any implementation is tested, and also as a means to generate tests.Formal speci�cations have potential advantages over informal descriptions because they o�erthe possibility of reducing the costs of testing by automating part of the testing process.This observation has led to considerable interest in developing test generation techniquesfrom formal speci�cations, and a number of di�erent methods have been derived for statebased formalisms such as Z, B and VDM. However, after tests have been derived from aformal speci�cation, the speci�cation might be re�ned further before its implementation, andtherefore a mechanism is needed to relate the abstract tests to the re�ned implementation.The purpose of this paper is to provide such a method by exploring the relationshipbetween testing and re�nement. In this paper a model for test generation is used whichconstructs a �nite state machine (FSM) from a Z speci�cation by using a DNF partitionanalysis of the state and operations. The �nite state machine is then used to derive suitabletest suites. The paper describes a way of calculating a FSM for a re�nement from an abstractFSM together with the information about the re�nement embodied in the retrieve relation.This means that it is possible to test an implementation by generating a new concrete �nitestate machine from a set of abstract tests.Keywords: Formal Speci�cation; Z; Re�nement; Finite State Machines; Partition analysis.1 IntroductionA speci�cation, whether formal or informal, acts as the benchmark against which any implemen-tation is tested. A speci�cation also provides a means by which tests can be generated. Formalmethods are important because they o�er a possibility of reducing the software development costby automating part of the testing process.This observation has led to considerable theoretical and practical work on how to automatically(or semi-automatically) generate test cases from formal speci�cations, and how scheduling of thesetests can be achieved. Di�erent types of formalisms have developed di�erent ways to do this, andfor state based languages such as Z [Spivey, 1989], B [Abrial, 1996] and VDM [Jones, 1989] a num-ber of techniques have been developed, see for example [Scullard, 1988, Cusack and Wezeman, 1992,Dick and Faivre, 1993, Carrington and Stocks, 1994, Horcher, 1995, Stepney, 1995].One elegant and simple method for generating and sequencing tests from state based languages hasbeen developed by Dick and Faivre [Dick and Faivre, 1993]. The basic technique of test generationconsists of a partition analysis, which reduces the speci�cation of each operation into a Disjunctive1



Normal Form (DNF). This is then used to construct a Finite State Machine (FSM) which canserve as a means to derive test suites. The approach was based on VDM, but has been appliedto Z in [Horcher, 1995, Singh et al., 1997] and B in [van Aertryck et al., 1997], and bene�ts fromtool support, which is described in [Dick and Faivre, 1993] and [van Aertryck et al., 1997]. In[Horcher, 1995] an industrial application of the method to an aircraft control system is described.However, after tests have been derived from a formal speci�cation, the speci�cation might bedeveloped or re�ned further before its implementation. Indeed any implementation can be viewedas a re�nement of the original speci�cation. The conditions under which a development is acorrect re�nement are encapsulated into two re�nement rules: downward and upward simulations[Woodcock and Davies, 1996]. To verify a re�nement the simulations use a retrieve relation whichrelates the concrete to abstract states.The process of re�nement changes the speci�cation in a number of ways. For example, the con-crete state space may change (e.g. sets may be implemented as lists) and non-determinism inthe speci�cation may be resolved. Because of this a �nite state machine generated from the ab-stract speci�cation cannot be used to test a concrete implementation except under the simplestof re�nements, since the abstract tests may be insu�cient or even incomparable to the concreteimplementation. For example, the abstract tests may be de�ned in terms of sets whereas the con-crete implementation uses lists, and in order to use the abstract tests to test the implementationit is necessary to relate the values in the state spaces (i.e. sets to lists). Similar but more complexsituations arise when non-determinism in the abstract speci�cation is resolved or moved.Therefore tests generated from a speci�cation will only be usable if the speci�cation is the imple-mentation speci�cation (i.e. the one from which the coding is done directly), or if the re�nementsare extremely simple.To deal e�ectively with these situations a method is needed to test an implementation based uponthe tests generated from the abstract speci�cation. The aim of this paper is to address this issue,which is achieved by describing a way of calculating a FSM for a re�nement from an abstract FSMtogether with the information about the re�nement embodied in the retrieve relation. This meansa new concrete �nite state machine can be generated in a simple manner from a set of abstracttests.The structure of the paper is as follows. Section 2 describes how to generate �nite state machinesfor Z speci�cations based on a DNF partition analysis, and Section 3 provides some backgroundmaterial on re�nement in Z. Sections 4 and 5 describe how to calculate a concrete �nite statemachine for re�nements which are downward simulations, and Section 6 for upward simulations.Conclusions are presented in Section 7.2 Using Finite State Machines to Test Speci�cationsDi�erent formal paradigms have associated methods for aiding the test generation process inan automatic, semi-automatic or manual fashion. The interest in this paper is in how to testspeci�cations written in state based languages such as Z, B and VDM. The approach consideredhere is that of Dick and Faivre [Dick and Faivre, 1993], which describes a means to automate testgeneration and sequencing from VDM speci�cations, and has also been applied to Z speci�cationsin [Horcher, 1995, Singh et al., 1997]. In [Horcher, 1995] H�orcher describes an application of thismethodology to a portion of the Cabin Intercommunication Data System for the Airbus A330/340aircraft. In [Singh et al., 1997] this methodology is combined with the classi�cation tree method[Grochtmann and Grimm, 1993] and is used to test an adaptive control system.Dick and Faivre consider the complete testing activity from test generation from individual opera-2



tions, through the scheduling of tests, to the veri�cation of test results. The basic technique of testcase generation consists of a partition analysis, which reduces the speci�cation of each operationinto its Disjunctive Normal Form (DNF). Each element in the DNF represents an individual testcase for the operation. From these test cases a partition of the system state is performed resultingin a set of disjoint states, each of which is either the before-state or after-state of at least onetest to be performed. This partition then serves as a basis for the construction of a �nite statemachine which is then used to derive test suites (i.e. a structured sequence of test cases).This paper is concerned with this construction of FSMs from state-based speci�cations, and theaim of the paper is to show how the FSM alters upon re�nement. This will allow tests to be adaptedto take account of implementation choices such as changes in the data structures and resolution ofnon-determinism. This paper builds upon earlier work described in [Derrick and Boiten, 1998b]which considered the partition analysis of individual operations. Although the results are describedwith reference to the construction of FSMs due to Dick and Faivre, it is equally applicable to otherapproaches, such as those described in [Murray et al., 1998, Hierons, 1997].As an example of how to extract a FSM from a speci�cation consider the speci�cation of a systemprocess scheduler adapted from [Dick and Faivre, 1993] (and rewritten in Z). The system consistsof processes either ready to be scheduled or waiting to become ready and, optionally, a singleactive process. These processes are identi�ed by a unique Pid == IN. A process cannot be bothready and waiting, and the active process is neither ready nor waiting. In addition, there mustbe an active process whenever there are processes ready to be scheduled. The schedule functiondescribes the algorithm abstractly by picking any process from those which are ready. The systemcan be in two modes: user or super.The speci�cation describes ready and waiting as sets and contains four operations. New introducesanother process, Ready puts a process into the ready state, and Swap changes the active process.The operation Boot enables a restart if the system is in super mode. (nil stands for an inactiveprocess.)schedule : PPid ! Pid8 s : PPid � s 6= ?) schedule(s) 2 sStateactive : Pidready : PPidwaiting : PPidadmin : user j superready \ waiting = ?active 62 (ready [ waiting)nil 62 (ready [ waiting)active = nil ) ready = ?
InitState 0active 0 = nilready 0 [ waiting 0 = ?admin 0 = user

New�Statep? : Pidp? 6= activep? 62 (ready [ waiting)waiting 0 = waiting [ fp?gactive 0 = activeready 0 = readyadmin = admin 0 = user 3



Ready�Stateq? : Pidq? 2 waitingwaiting 0 = waiting n fq?gactive = nil ) (ready 0 = ready ^ active 0 = q?)active 6= nil ) (ready 0 = ready [ fq?g ^ active 0 = active)admin = admin 0 = userSwap�Stateactive 6= nilwaiting 0 = waiting [ factivegready = ?) (active 0 = nil ^ ready 0 = ?)ready 6= ?) (active 0 = schedule(ready) ^ ready 0 = ready n factive 0g)admin = admin 0 = userBoot�Stateadmin = superactive = nilwaiting = ready = ?admin 0 = user ^ active 0 6= nil(ready 0 = ? ^ waiting 0 6= ?) _ (ready 0 6= ? ^ waiting 0 = ?)To generate and sequence tests Dick and Faivre build a FSM using the following procedure1. Perform a partition analysis on all operations to generate the test cases. These are thetransitions in the FSM.2. From each test case obtain its before-state and after-state (by existentially quantifying vari-ables not being considered).3. Perform a DNF partition analysis on the states from step 2. This gives the states in theFSM.4. Construct the FSM by resolving transitions against states.In order to perform the partition analysis on the operations each operation is transformed intoDNF. Each schema in this DNF then represents a single test case. Each test case will be disjoint,allowing them all to be treated separately. It should be noted that for any non-trivial speci�cationthere are many possible choices for DNF [Stocks, 1993], the choice taken depends upon the as-pects that are considered important. Here the operations are partitioned by considering whetheractive = nil and whether ready ;waiting = ?. The resulting test cases are given by Init plus thefollowing eight tests
4



New1�Statep? : Pidactive 0 = active = nilready 0 = ready = ?p? 62 waitingwaiting 0 = waiting [ fp?gadmin = admin 0 = user
New2�Statep? : Pidp? 6= activep? 62 (ready [ waiting)waiting 0 = waiting [ fp?gactive 0 = active 6= nilready 0 = readyadmin = admin 0 = userReady1�Stateq? : Pidq? 2 waitingwaiting 0 = waiting n fq?gactive = nilready 0 = ready = ?active 0 = q?admin = admin 0 = user
Ready2�Stateq? : Pidq? 2 waitingwaiting 0 = waiting n fq?gactive 6= nilready 0 = ready [ fq?gactive 0 = activeadmin = admin 0 = userSwap1�Stateactive 6= nilwaiting 0 = waiting [ factivegready = ready 0 = ?active 0 = niladmin = admin 0 = user
Swap2�Stateactive 6= nilwaiting 0 = waiting [ factivegactive 0 2 readyready 0 = ready n factive 0gadmin = admin 0 = userBoot1�Stateadmin = superactive = nilwaiting = ready = ?admin 0 = user ^ active 0 6= nilready 0 = ? ^ waiting 0 6= ?
Boot2�Stateadmin = superactive = nilwaiting = ready = ?admin 0 = user ^ active 0 6= nilready 0 6= ? ^ waiting 0 = ?This construction has two important properties: coverage and disjointness; that is, New equalsthe disjunction of its test cases (coverage) and these tests are disjoint. In general a collection oftests fAOpigi is said to cover an operation AOp acting on state space Astate ifAOp = Wi AOpiand that the tests are disjoint, if, for all i 6= j:9Astate; Astate 0 � AOpi ^ AOpjIt is easy to see that fNew1;New2g form a disjoint covering for New.A distributed disjunction (W) has been used here, which although nonstandard Z, can be de�nedin the obvious manner (for example, by using existential quanti�cation). Similarly, the equality5



1 2 3 4 5 6

Init

New1

New1

Swap1

S1

R1

Ready1

N2

New2

New2

Swap2
Swap2

S2

S2

R2

R2

Ready2

N2

Boot1 Boot2

7

Figure 1: The FSM for the schedulersign between schemas should be viewed as schema equivalence. The symbols W and = are retainedfor the sake of clarity.Next the states that result from these test cases are calculated. The before state for the New1test case is given by 9State 0 � New1 n fp?g, and the after state will be given by 9State � New1.After performing a DNF partition analysis on the result the following seven states remain:State1Stateactive = nilready = ?waiting = ?admin = user
State2Stateactive = nilready = ?waiting 6= ?admin = user

State3Stateactive 6= nilready = ?waiting = ?admin = userState4Stateactive 6= nilready = ?waiting 6= ?admin = user
State5Stateactive 6= nilready 6= ?waiting = ?admin = user

State6Stateactive 6= nilready 6= ?waiting 6= ?admin = userState7Stateactive = nilready = ?waiting = ?admin = superThe FSM can now be constructed by calculating the individual transitions. For example, a tran-sition of New1 exists from state State1 to State2 precisely when the following evaluates to true:9State; State 0; inputs ; outputs � State1^New1^State20. This produces the FSM shown in �gure1.Although state 7 cannot be reached via transitions in the FSM this state is not pruned from theFSM for reasons discussed in Section 5. 6



3 Re�nementIn addition to deriving tests from a formal speci�cation, the speci�cation might be re�ned fur-ther before its implementation. Such a re�nement might typically weaken the precondition ofan operation, remove some non-determinism or even alter the state space of the speci�cation.The conditions under which a development is a correct re�nement are encapsulated into tworules: downward and upward simulations [Woodcock and Davies, 1996]. These re�nement rulesare known to be sound and jointly complete, that is any upward or downward simulation is a validre�nement, and any re�nement can be proved correct by application of appropriate upward anddownward simulations [He, 1989, Woodcock and Morgan, 1990]. (Downward and upward simula-tions are sometimes also known as forward and backward simulations respectively.)The downward simulation rules are more straightforward, and form the usual presentation of re-�nement (e.g. as in [Spivey, 1989]), however, upward simulations are occasionally necessary, for ex-ample when the resolution of non-determinism has been postponed [Woodcock and Davies, 1996].Consider an abstract speci�cation with state space Astate and initialisation schema Ainit be-ing re�ned by a concrete speci�cation with state space Cstate and initialisation schema Cinit .Downward and upward simulations are de�ned as follows.De�nition 1 Downward simulationThe concrete speci�cation is a downward simulation of the abstract if there is a retrieve relation Retsuch that every abstract operation AOp is recast into a concrete operation COp and the followinghold.DS.1 8Astate; Cstate � preAOp ^ Ret =) preCOpDS.2 8Astate; Cstate; Cstate 0 � Ret ^ preAOp ^ COp =) 9Astate 0 � Ret 0 ^ AOpDS.3 8Cstate 0 � Cinit =) 9Astate 0 � Ainit ^ RetDe�nition 2 Upward simulationThe concrete speci�cation is an upward simulation of the abstract if there is a retrieve relation Retsuch that every abstract operation AOp is recast into a concrete operation COp and the followinghold.US.1 8Cstate � (8Astate � Ret =) preAOp) =) preCOpUS.2 8Astate 0; Cstate; Cstate 0 � (8Astate � Ret =) preAOp) =) (COp ^ Ret 0 =) 9Astate �Ret ^ AOp)US.3 8Astate 0; Cstate 0 � Cinit ^ Ret 0 =) AinitDownward and upward simulations are used to verify that a concrete speci�cation is indeed are�nement of an abstract speci�cation. They allow the state spaces to be di�erent, but thesemust be linked by a suitable retrieve relation, and the concrete speci�cation will typically be moredeterministic than the abstract speci�cation. For examples and discussion of the role of re�nementsee [Woodcock and Davies, 1996].As an example, consider an implementation of the system process scheduler. The implementationuses sequences instead of sets to record the ready and waiting processes. It has also chosen aparticular scheduling strategy, namely to take the process at the head of the ready queue. Theimplementation has therefore resolved some of the non-determinism in the abstract speci�cationand also changed the state space. The speci�cation is given as follows:7



CStateactive : Pidcready : seqPidcwaiting : seqPidadmin : user j superran cready \ ran cwaiting = ?active 62 (ran cready [ ran cwaiting)nil 62 (ran cready [ ran cwaiting)active = nil ) cready = h i
CInitCState 0active 0 = nilcready 0 = cwaiting 0 = h iadmin 0 = user

CNew�CStatep? : Pidp? 6= activep? 62 (ran cready [ ran cwaiting)ran cwaiting 0 = ran cwaiting [ fp?gactive 0 = activecready 0 = creadyadmin = admin 0 = userCReady�CStateq? : Pidq? 2 ran cwaitingran cwaiting 0 = ran cwaiting n fq?gactive = nil ) (cready 0 = cready ^ active 0 = q?)active 6= nil ) (ran cready 0 = ran cready [ fq?g ^ active 0 = active)admin = admin 0 = userCSwap�CStateactive 6= nilran cwaiting 0 = ran cwaiting [ factivegcready = h i ) (active 0 = nil ^ cready 0 = h i)cready 6= h i ) (active 0 = head cready ^ cready 0 = tail cready)admin = admin 0 = userCBoot�CStateadmin = superactive = nilcwaiting = cready = h iadmin 0 = user ^ active 0 6= nilcready 0 = h i ^ cwaiting 0 6= h iThis speci�cation is a downward simulation of the abstract scheduler where the retrieve relationis given by 8



RetStateCStateready = ran creadywaiting = ran cwaitingIt should be possible to test the concrete implementation against the abstract speci�cation, byusing the test cases and FSM calculated above. However, the transitions and states in the FSMare described in terms of the abstract state space (i.e. sets etc) and not the concrete realisation(e.g. sequences). Therefore New1 or New2 cannot be used to test CNew because the latter is anoperation de�ned in terms of sequences whereas the tests are de�ned in terms of sets. In addition,the process of re�nement potentially resolves or moves the non-determinism in the operations, forexample the concrete operations might have weaker preconditions and stronger postconditions. Forexample, the operation CSwap has resolved non-determinism that was present in Swap (and so hasa stronger postcondition), and in more complex situations (e.g. see [Derrick and Boiten, 1998b])the non-determinism can be moved around the speci�cation in quite subtle ways. Hence the FSMgenerated from the abstract speci�cation cannot be used to test a concrete implementation exceptunder the simplest of re�nements. This can happen even in a speci�cation close to implementationas the implementor can still implement any valid re�nement and therefore change the speci�cationin any of the ways mentioned above. Therefore it is necessary to provide a means to test such are�nement and instead of re-calculating the FSM from scratch, the abstract FSM is used togetherwith the information about the re�nement embodied in the retrieve relation. This means it ispossible to generate a new FSM in a simple manner.The idea of testing an implementation using a retrieve relation is not new. Dick and Faivreraise the problem in [Dick and Faivre, 1993]: \... the test-bed will have to be equipped with themeans of converting between these abstract and concrete values. In ideal circumstances, retrievalfunctions could be implemented as part of the test-bed...\, but provides no means by which todo this. The problem is also discussed in [Stocks, 1993], as it is in [Stepney, 1995]. However,the latter erroneously states that the abstract states can be used without conversion. H�orcherdiscusses the problem in more depth in [Horcher, 1995], and in particular comments that retrieverelations may be used in the production of test oracles. The purpose of this paper is to provideanswers as to how exactly to achieve this and describe how properties of the retrieve relation e�ectthe construction.In order to do this it is necessary to calculate the most general re�nement of an abstract speci�-cation together with a retrieve relation, a process now described.3.1 Calculating Downward SimulationsGiven an abstract speci�cation, a concrete state space and a retrieve relation between the concreteand abstract state spaces, it is possible to calculate the weakest (most general) description of theconcrete operations [Josephs, 1988, Woodcock and Davies, 1996, Derrick and Boiten, 1998a]. Anoperation COp is the weakest re�nement of AOp whenever it describes precisely the same operationmodulo the retrieve relation. If it is a re�nement but not the weakest re�nement, then it means ithas made some further implementation choices such as resolving some of the non-determinism inAOp. Let Astate and Cstate be the abstract and concrete state spaces, Ret the retrieve relationand AOp an abstract operation. The weakest re�nement COp of AOp is calculated byCOp b= 9Astate; Astate 0 � Ret ^AOp ^ Ret 0In general, if it is not known whether Ret de�nes a re�nement, it is necessary to check the appli-cability. This is summarised in the following theorem (for a proof see [Derrick and Boiten, 1998a,9



Josephs, 1988]) which shows that COp is the weakest re�nement of AOp, provided that one exists.Theorem 1 Let vDS denote a downward simulation. Suppose that AOp speci�es an operationover the abstract state space Astate. Let Cstate be a concrete state space, and Ret a retrieverelation between concrete and abstract. Let COp be de�ned as above. Then for every operation XAOp vDS X i� preAOp ^Ret ) pre COp and COp vDS XIn the context of this discussion it is known that applicability (preAOp ^ Ret ) preCOp) holdssince tests are being generated for an existing development and therefore it is known that Retde�nes a re�nement. In these circumstances COp describes the most general concrete re�nementof the operation AOp. It is also possible to calculate the most general concrete initialisation whichwill be given byCinit b= 9Astate 0 � Ainit ^ Ret 03.2 Calculating Upward SimulationsSome valid re�nements can not be proved correct with a downwards simulation, and for these itis necessary to use an upwards simulation. An example of this is given below in Section 6.For re�nements that are upward simulations the following will de�ne the weakest re�nement of anabstract operation AOp (for a proof see [Derrick and Boiten, 1998a])COp b= (8Astate � Ret =) preAOp) ^ 8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOp)Theorem 2 Let vUS denote an upward simulation. Suppose that AOp speci�es an operation overthe abstract state space Astate. Let Cstate be a concrete state space, and Ret a retrieve relationbetween concrete and abstract. Let COp be de�ned as above. Then for every operation XAOp vUS X i� (8Astate � Ret =) preAOp) =) preCOp and COp vUS XIf the retrieve relation is a function, then the weakest re�nement of AOp will be given byCOp b= 9Astate; Astate 0 � Ret ^AOp ^ Ret 0a formula that is identical to the downward simulation case. For an arbitrary relation R it is stillnecessary to check applicability8Cstate � (8Astate � R =) preAOp) =) preCOpHowever, if it is known that the retrieve relation does indeed de�ne an upward simulation it is notnecessary to check this.3.3 Generating TestsThe technique employed to generate tests for a re�nement is very simple. Given an abstract spec-i�cation with operation AOp and a covering disjoint set of tests fAOpigi ; a concrete speci�cationwith operation COp which re�nes AOp, and a retrieve relation Ret , a set of tests fCOpigi isgenerated where each test COpi is the weakest re�nement calculated from Ret and AOpi . Thesenew concrete tests will become the transitions in the new FSM. The states are generated usingthe retrieve relation in a similar fashion.The remainder of the paper discusses the two cases of downward and upward simulations sepa-rately. In each case the following questions are explored:10



� how are new transitions COpi generated;{ do these tests fCOpigi cover COp;{ are these tests fCOpigi disjoint.� how are new states and the FSM generated?The following two sections discuss these questions when the re�nement is a downward simulation,and Section 6 then looks at upward simulations.4 Re�ning the Partition analysisDownward simulations are perhaps the most common form of state based re�nement, for examplethe concrete scheduler is a downward simulation of the abstract scheduler. This section discusseshow the test cases of an operation change under such re�nements.Given an operation AOp with AOp = Wi AOpi being its disjoint set of tests, and a retrieve relationRet , the concrete tests are given byCOpi b= 9Astate; Astate 0 � Ret ^ AOpi ^Ret 0These will in some way represent test cases for the original concrete operation COp, and in factthe following result (for a proof see [Derrick and Boiten, 1998b]) holds.Theorem 3 Let AOp be an abstract operation with AOp = Wi AOpi being its disjoint set of tests.Let COp be a downward simulation of AOp. Let Ret be the retrieve relation. Let COpi be theconcrete tests given above. ThenWi COpi vDS COpand if COp is the weakest downward simulation of AOp then COp = Wi COpi .The practical consequences of this is that it is possible to use abstract tests (i.e. the partitionanalysis) together with the retrieve relation to calculate a new concrete partition analysis for there�nement. If the concrete is the weakest re�nement of the abstract then these concrete testsexactly cover the concrete operations.Example 1 Calculating tests for a re�nement.Consider the New operation in the abstract scheduler. Its test cases were New1 and New2, theseare used to calculate test cases CNew1 b= 9State; State 0 � Ret ^ New1 ^ Ret 0 etc, which giveCNew1�CStatep? : Pidactive 0 = active = nilcready 0 = cready = h ip? 62 ran cwaitingran cwaiting 0 = ran cwaiting [ fp?gadmin = admin 0 = user
CNew2�CStatep? : Pidp? 6= activep? 62 (ran cready [ ran cwaiting)ran cwaiting 0 = ran cwaiting [ fp?gactive 0 = active 6= nilran cready 0 = ran creadyadmin = admin 0 = user11



It can be seen that Wi CNewi vDS CNew , however, CNew is not the weakest re�nement becausethe weakest re�nement only requires that ran cready 0 = ran cready whereas CNew resolved thisnon-determinism to require that cready 0 = cready (i.e. the order in the ready sequence must bepreserved). So the calculated tests contain additional detail not included in the concrete operation.However, in this case an exact covering can be constructed by replacing the test CNew2 by the testCNew2^CNew . Indeed this is a general strategy which works whenever the concrete operation hasfailed to be the weakest re�nement because it has resolved more non-determinism than formallynecessary.This strategy is also applied to the CBoot operation. CBoot has resolved non-determinism presentin Boot, it is therefore not its weakest re�nement. Calculating tests CBoot1^CBoot and CBoot2^CBoot results in the latter evaluating to false, leaving just one test for the concrete boot operationgiven by:CBoot1�CStateadmin = superactive = nilcwaiting = cready = h iadmin 0 = user ^ active 0 6= nilcready 0 = h i ^ cwaiting 0 6= h i 2This provides a means to calculate tests which cover the concrete operation, are these tests disjoint?For a functional retrieve relation disjoint abstract tests will generate disjoint concrete tests.Theorem 4 Let fAOpigi be disjoint test cases, Ret a functional (from concrete to abstract) re-trieve relation and fCOpigi calculated from fAOpigi . Then fCOpigi are disjoint.For a proof see [Derrick and Boiten, 1998b]. Note that disjointness is not the same as inequality(two tests with false predicates are considered disjoint).Example 2 Re�ned tests are disjoint for a functional retrieve relation.The retrieve relation for the scheduler is a surjective function from concrete to abstract. Allthe calculated tests are therefore disjoint, and the remainder of these are given by the concreteinitialisation together withCReady1�CStateq? : Pidq? 2 ran cwaitingran cwaiting 0 = ran cwaiting n fq?gactive = nilcready 0 = cready = h iactive 0 = q?admin = admin 0 = user
CReady2�CStateq? : Pidq? 2 ran cwaitingran cwaiting 0 = ran cwaiting n fq?gactive 6= nilran cready 0 = ran cready [ fq?gactive 0 = activeadmin = admin 0 = user
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CSwap1�CStateactive 6= nilran cwaiting 0 = ran cwaiting [ factivegcready = cready 0 = h iactive 0 = niladmin = admin 0 = user
CSwap2�CStateactive 6= nilran cwaiting 0 = ran cwaiting [ factivegactive 0 2 ran creadyran cready 0 = ran cready n factive 0gadmin = admin 0 = userFrom this it can be seen that CSwap2 also contains more non-determinism than is in CSwap, itcan be further constrained by taking the test to be CSwap2^CSwap. Seven new disjoint concretetests have been produced, calculated from the eight original abstract tests. 2Although re�ned tests are disjoint for a functional retrieve relation, in general disjointedness fails.This can be seen from the following example.Example 3 Re�ned tests are not disjoint in general.Consider the abstract and concrete schedulers. Suppose both speci�cations are limited to the threeoperations Ready, New and Swap, and that the speci�cation of CNew is modi�ed to the following:CNew�CStatep? : Pidp? 6= activep? 62 (ran cready [ ran cwaiting)ran cwaiting 0 = ran cwaiting [ fp?gactive 0 = activeran cready 0 = ran creadyadmin = admin 0 = userThe set based scheduler is now a re�nement of this speci�cation with the same retrieve relationas before. However, viewed this way round the retrieve relation is not functional: each set readyhas many (abstract) representations as a sequence cready with ready = ran cready .One possible partition analysis for CNew would contain one test for each permutation of cready ;for example, two such tests would beCNew1�CStatep? : Pidp? 6= activep? 62 (ran cready [ ran cwaiting)ran cwaiting 0 = ran cwaiting [ fp?gactive 0 = activecready 0 = creadyadmin = admin 0 = user
CNew2�CStatep? : Pidp? 6= activep? 62 (ran cready [ ran cwaiting)ran cwaiting 0 = ran cwaiting [ fp?gactive 0 = activecready 0 = rev creadyadmin = admin 0 = userCalculating the re�ned tests for each one of these abstract tests produces the same test New inevery case. So all the abstract tests are mapped onto the same concrete test, which are thereforenot disjoint. 213



5 Re�ning the Finite State MachineThe previous section has discussed how to take transitions in an abstract FSM and calculate cor-responding transitions to test an implementation with a concrete FSM. To construct the concreteFSM it is also necessary to de�ne the states of the FSM and then describe the transitions betweenthe states. This section describes the process for downward simulations, and also discusses hownew transitions can be enabled due to the re�nement process.5.1 Re�ning the StatesSuppose that an abstract FSM has n disjoint states Astate1; : : : ;Astaten , each one being a beforeor after state of an abstract transition AOpi (1 � i � m). The concrete states Cstate1; : : : ;Cstatenare calculated by takingCstatei b= 9Astate � Astatei ^ RetEach concrete state Cstatei will be a potential before or after state of a concrete transition. How-ever, some abstract states might collapse (i.e. become identi�ed) when their concrete counterpartsare calculated. In fact it is not hard to see that the concrete states will be disjoint wheneverthe retrieve relation is a function, but that a general relation will not necessarily produce disjointconcrete states.Example 4 Calculating the concrete states.The concrete states can now be calculated for the scheduler, and since Ret is functional they willbe disjoint. Upon calculation the states are:CState1CStateactive = nilcready = h icwaiting = h iadmin = user
CState2CStateactive = nilcready = h icwaiting 6= h iadmin = user

CState3CStateactive 6= nilcready = h icwaiting = h iadmin = userCState4CStateactive 6= nilcready = h icwaiting 6= h iadmin = user
CState5CStateactive 6= nilcready 6= h icwaiting = h iadmin = user

CState6CStateactive 6= nilcready 6= h icwaiting 6= h iadmin = userCState7CStateactive = nilcready = h icwaiting = h iadmin = super 214



5.2 Building the FSMA set of potential states Cstatej has been identi�ed, as has a set of potential tests COpi . It is nownecessary to resolve the test cases against the states, and see if any new transitions are enableddue to the re�nement process.Because the concrete test calculations are given byCOpi b= 9Astate; Astate 0 � Ret ^ AOpi ^Ret 0it is clear that in the weakest re�nement there exists a transition COpi between Cstatej andCstatek precisely when there exists a transition AOpi between Astatej and Astatek .Whether these are the only transitions depends on whether or not the concrete speci�cation is theweakest re�nement of the abstract with respect to the retrieve relation.5.2.1 The concrete speci�cation is the weakest re�nement of the abstractIf the retrieve relation is functional, then disjoint abstract states and transitions produce disjointconcrete states and transitions. Because the concrete operations are the weakest re�nement ofthe abstract ones, the concrete tests cover the concrete operations, no further non-determinismhas been resolved and there exists a transition COpi between Cstatej and Cstatek precisely whenthere exists a transition AOpi between Astatej and Astatek .Therefore the concrete FSM will be isomorphic to the abstract FSM (isomorphic but not identicalas the states and transitions are de�ned in terms of the concrete state space).Example: in the concrete scheduler the operation CReady was the weakest re�nement of Ready.Therefore the concrete tests and transitions for the CReady operation are identi�ed precisely bydirect reference to those due to Ready in the abstract FSM. 2If the retrieve relation is not functional, no new transitions can be enabled, but the concreteFSM potentially has fewer states and transitions than the abstract because disjoint states andtransitions can be identi�ed under re�nement. However, this is the result of the calculation, andno further additions to the process are needed.5.2.2 The concrete speci�cation is not the weakest re�nement of the abstractWhen the concrete speci�cation is not the weakest re�nement, the process of re�nement canpotentially add new transitions or disable existing ones because re�nement can both weaken anoperation's precondition but also reduce any non-determinism in an operation by strengtheningits postcondition.When an operation's postcondition is strengthened, the set of potential outcomes is reduced. If oneof these outcomes was a transition on its own, the concrete FSM can dispense with this transition.It was shown above that the actual transitions can be calculated by taking COpi ^ COp whereCOpi is the calculated test and COp the more deterministic concrete operation.Example: in the concrete scheduler the postcondition in CBoot strengthens that of Boot, resultingin only one test for CBoot because CBoot2 ^ CBoot was false. The concrete FSM therefore doesnot have a transition CBoot2. 2Note that in general a transition is not always lost, whether it is depends on the partition analysischosen. For example, in the concrete scheduler CNew and CSwap were not the weakest re�nement15
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Figure 2: The FSM for the concrete scheduler.of New and Swap. However, restricting the non-determinism in the tests CNew2 and CSwap2 didnot disable them completely but just restricted their functionality.When an operation's precondition is weakened under re�nement, states and transitions have to beadded in general to the concrete FSM, possibly having to recalculate new portions of the graph.Example: suppose the concrete scheduler is re�ned further by replacing the CSwap operation byCCS b= CSwap _ CSI where CSI is given byCSI�CStateactive = active 0 = nilcready = cready 0 = cwaiting = cwaiting 0 = h iadmin = useradmin 0 = superThis new swap operation has weakened the precondition by being enabled initially. Now testsCSwap1 and CSwap2 do not cover CCS exactly:CSwap1 _ CSwap2 v CCS but CSwap1 _ CSwap2 6= CCSUnder these circumstances it is necessary to include additional tests (in fact just one test here,CSI itself) and recalculate new states and transitions. New states might arise if the after-stateof the additional test is not included in the existing concrete partition, which can happen ifWCstatei 6= Cstate.In fact, in this example this new test CSI adds only one new transition from CState1 to CState7,and the FSM can be adjusted accordingly. The �nal FSM is shown in �gure 2. 2Notice that by weakening an operation's precondition under re�nement, portions of the graphwhich were unreachable have now become directly accessible. It was for this reason that unreach-able states were not pruned in the initial abstract �nite state machine.
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6 Re�nements due to Upward SimulationsAs commented above, some valid re�nements can not be proved correct with a downwards simu-lation, and for these it is necessary to use an upwards simulation. Here is an example.Example 5 An upward simulation.Consider the following two simple speci�cations. The abstract speci�cation is:Astatex : 0::5 AinitAstate 0x 0 = 0 A�Astatex = 0 ^ x 0 2 f1; 2gB�Astate(x = 1 ^ x 0 = 3) _ (x = 2 ^ x 0 = 4) D�Astate(x = 1 ^ x 0 = 3) _ (x = 0 ^ x 0 = 5)The concrete speci�cation isCstatey : f0; 1; 2; 3; 5g CinitCstate 0y 0 = 0 A�Cstatey = 0 ^ y 0 = 1B�Cstatey = 1 ^ y 0 2 f2; 3g D�Cstatey = 0 ^ y 0 = 5The concrete speci�cation is an upward simulation (but not a downward simulation) of the ab-stract, where the retrieve relation is given byRetAstateCstatex 2 f0; 3; 5g ) x = yx = 4 i� y = 2x 2 f1; 2g i� y = 1 2In order to generate a FSM for an upward simulation the same methodology is adopted as before,that is, use the weakest re�nement calculation to generate the transitions and the states in theconcrete FSM. The exact means to do this depends on whether the retrieve relation is functionalor not, and these cases are discussed separately.When the retrieve relation is a function, the calculation of concrete tests is given byCOpi b= 9Astate; Astate 0 � Ret ^ AOpi ^Ret 017



In this case all the calculations about states and transitions carry through from the downwardsimulation case, and the comments made before apply here in their entirety.For a non-functional retrieve relation in order to generate concrete tests from the abstract testcases fAOpigi the following formula is usedCOpi b= (8Astate � Ret =) preAOpi ) ^ 8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOpi)Since it is known that Ret de�nes a re�nement (no need to check applicability), each COpi is are�nement of AOpi .To see that the general formula is necessary, consider the operation D in the abstract speci�cationgiven above. The weakest re�nement of this is the re�nement given in the concrete speci�cation,however, notice that this re�nement does not require a concrete transition that corresponds tothe abstract one between 1 and 3. If the simpler calculation COp b= 9Astate; Astate 0 � Ret ^AOp ^ Ret 0 had been used, then the concrete speci�cation of D would have included the option(y = 1^ y 0 = 3). The simpler calculation therefore constrains the operation too much, and is thusnot the weakest re�nement.Although it is necessary to use a more complex formula for an upward simulation, the coverageand disjointedness results are similar to those for downward simulations, and we have the following[Derrick and Boiten, 1998b].Theorem 5 Let AOp be an abstract operation with AOp = Wi AOpi being its disjoint set of tests.Let COp be an upward simulation of AOp. Let Ret be the retrieve relation. Let COpi be theconcrete tests given above. ThenWi COpi vUS COpand if COp is the weakest upward simulation of AOp then COp = Wi COpi .The disjointedness properties are also symmetric. When the retrieve relation is a function, theformulae for calculating tests are the same as for downward simulations. Therefore, as was thecase then, disjoint abstract tests will produce disjoint concrete tests. However, in general re�nedtests are not disjoint.Example 6 Calculating concrete tests from an upward simulation.A FSM can be calculated for the above abstract speci�cation which partitions the state into �vestates: f0g; : : : ; f5g with the FSM shown in �gure 3.Following the procedure outlined above this is used to calculate a concrete FSM, which containsthe following tests: A, D2 (b= D) andB1�Cstatey = 1 ^ y 0 = 3 B2�Cstatey = 1 ^ y 0 = 2Notice also that the concrete tests cover the operations (i.e. B1_B2 = B). However, the concretetests are not disjoint illustrating that functionality of the retrieve relation really is needed fordisjointedness. To see this, note that the abstract tests A1 and A2 become the same concrete testA upon calculational re�nement. 218
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7 ConclusionsThis paper has provided a means to calculate concrete FSMs from abstract ones for both upwardand downward simulations. For retrieve relations which are functions the calculations simpli-�ed considerably, and in this case the calculations needed for upward and downward simulationscoincide.This can be used as a basis for a methodology for determining the correct concrete FSM calculation.Given abstract and concrete state spaces, a retrieve relation and abstract operations, generate aconcrete FSM by� generating concrete transitions COpi from abstract transitions;� generating concrete states Cstatej from abstract states Astatej ;� resolving the concrete transitions against the states using the abstract FSM and propertiesof the retrieve relation.To do this proceed as follows:1. Determine whether Ret is a function. If it is, then the concrete tests are given byCOpi b= 9Astate; Astate 0 � Ret ^AOpi ^ Ret 02. If Ret is not a function determine whether it de�nes a downward or upward simulation. Dothis by determining ifpreAOp ^ Ret ) preCOpIf this is the case, then the re�nement is a downward simulation, and therefore the concretetests are still given byCOpi b= 9Astate; Astate 0 � Ret ^AOpi ^ Ret 03. If Ret does not de�ne a downward simulation, then the re�nement must be an upwardsimulation. In this case the concrete tests are given byCOpi b= (8Astate � Ret =) preAOpi) ^ 8Astate 0 � (Ret 0 =) 9Astate � Ret ^ AOpi )4. Generate concrete states by takingCstatei b= 9Astate � Astatei ^ Ret5. Build the concrete FSM. First check whether each concrete operation COp was in fact theweakest re�nement, do this by determining ifWi COpi = COp(a) If the concrete speci�cation is the weakest re�nement of the abstract and the retrieverelation is functional, then the concrete FSM will be isomorphic to the abstract FSM.(b) If the concrete speci�cation is the weakest re�nement of the abstract and the retrieverelation is not functional, then the concrete FSM potentially has fewer states andtransitions than the abstract because disjoint states and transitions can be identi�edunder re�nement. 20
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