Testing Refinements of State-based Formal Specifications

John Derrick and Eerke Boiten
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
(Phone: + 44 1227 764000, Email: J.Derrick@ukc.ac.uk.)

Abstract

A specification provides a concise description of a system, and can be used as both the
benchmark against which any implementation is tested, and also as a means to generate tests.
Formal specifications have potential advantages over informal descriptions because they offer
the possibility of reducing the costs of testing by automating part of the testing process.
This observation has led to considerable interest in developing test generation techniques
from formal specifications, and a number of different methods have been derived for state
based formalisms such as Z, B and VDM. However, after tests have been derived from a
formal specification, the specification might be refined further before its implementation, and
therefore a mechanism is needed to relate the abstract tests to the refined implementation.

The purpose of this paper is to provide such a method by exploring the relationship
between testing and refinement. In this paper a model for test generation is used which
constructs a finite state machine (FSM) from a Z specification by using a DNF partition
analysis of the state and operations. The finite state machine is then used to derive suitable
test suites. The paper describes a way of calculating a FSM for a refinement from an abstract
FSM together with the information about the refinement embodied in the retrieve relation.
This means that it is possible to test an implementation by generating a new concrete finite
state machine from a set of abstract tests.

Keywords: Formal Specification; Z; Refinement; Finite State Machines; Partition analysis.

1 Introduction

A specification, whether formal or informal, acts as the benchmark against which any implemen-
tation is tested. A specification also provides a means by which tests can be generated. Formal
methods are important because they offer a possibility of reducing the software development cost
by automating part of the testing process.

This observation has led to considerable theoretical and practical work on how to automatically
(or semi-automatically) generate test cases from formal specifications, and how scheduling of these
tests can be achieved. Different types of formalisms have developed different ways to do this, and
for state based languages such as Z [Spivey, 1989], B [Abrial, 1996] and VDM [Jones, 1989] a num-
ber of techniques have been developed, see for example [Scullard, 1988, Cusack and Wezeman, 1992,
Dick and Faivre, 1993, Carrington and Stocks, 1994, Horcher, 1995, Stepney, 1995].

One elegant and simple method for generating and sequencing tests from state based languages has
been developed by Dick and Faivre [Dick and Faivre, 1993]. The basic technique of test generation
consists of a partition analysis, which reduces the specification of each operation into a Disjunctive

Normal Form (DNF). This is then used to construct a Finite State Machine (FSM) which can
serve as a means to derive test suites. The approach was based on VDM, but has been applied
to Z in [Horcher, 1995, Singh et al., 1997] and B in [van Aertryck et al., 1997], and benefits from
tool support, which is described in [Dick and Faivre, 1993] and [van Aertryck et al., 1997]. In
[Horcher, 1995] an industrial application of the method to an aircraft control system is described.

However, after tests have been derived from a formal specification, the specification might be
developed or refined further before its implementation. Indeed any implementation can be viewed
as a refinement of the original specification. The conditions under which a development is a
correct refinement are encapsulated into two refinement rules: downward and upward simulations
[Woodcock and Davies, 1996]. To verify a refinement the simulations use a retrieve relation which
relates the concrete to abstract states.

The process of refinement changes the specification in a number of ways. For example, the con-
crete state space may change (e.g. sets may be implemented as lists) and non-determinism in
the specification may be resolved. Because of this a finite state machine generated from the ab-
stract specification cannot be used to test a concrete implementation except under the simplest
of refinements, since the abstract tests may be insufficient or even incomparable to the concrete
implementation. For example, the abstract tests may be defined in terms of sets whereas the con-
crete implementation uses lists, and in order to use the abstract tests to test the implementation
it is necessary to relate the values in the state spaces (i.e. sets to lists). Similar but more complex
situations arise when non-determinism in the abstract specification is resolved or moved.

Therefore tests generated from a specification will only be usable if the specification is the imple-
mentation specification (i.e. the one from which the coding is done directly), or if the refinements
are extremely simple.

To deal effectively with these situations a method is needed to test an implementation based upon
the tests generated from the abstract specification. The aim of this paper is to address this issue,
which is achieved by describing a way of calculating a FSM for a refinement from an abstract FSM
together with the information about the refinement embodied in the retrieve relation. This means
a new concrete finite state machine can be generated in a simple manner from a set of abstract
tests.

The structure of the paper is as follows. Section 2 describes how to generate finite state machines
for Z specifications based on a DNF partition analysis, and Section 3 provides some background
material on refinement in Z. Sections 4 and 5 describe how to calculate a concrete finite state
machine for refinements which are downward simulations, and Section 6 for upward simulations.
Conclusions are presented in Section 7.

2 Using Finite State Machines to Test Specifications

Different formal paradigms have associated methods for aiding the test generation process in
an automatic, semi-automatic or manual fashion. The interest in this paper is in how to test
specifications written in state based languages such as Z, B and VDM. The approach considered
here is that of Dick and Faivre [Dick and Faivre, 1993], which describes a means to automate test
generation and sequencing from VDM specifications, and has also been applied to Z specifications
in [Horcher, 1995, Singh et al., 1997]. In [Horcher, 1995] Horcher describes an application of this
methodology to a portion of the Cabin Intercommunication Data System for the Airbus A330/340
aircraft. In [Singh et al., 1997] this methodology is combined with the classification tree method
[Grochtmann and Grimm, 1993] and is used to test an adaptive control system.

Dick and Faivre consider the complete testing activity from test generation from individual opera-

tions, through the scheduling of tests, to the verification of test results. The basic technique of test
case generation consists of a partition analysis, which reduces the specification of each operation
into its Disjunctive Normal Form (DNF). Each element in the DNF represents an individual test
case for the operation. From these test cases a partition of the system state is performed resulting
in a set of disjoint states, each of which is either the before-state or after-state of at least one
test to be performed. This partition then serves as a basis for the construction of a finite state
machine which is then used to derive test suites (i.e. a structured sequence of test cases).

This paper is concerned with this construction of FSMs from state-based specifications, and the
aim of the paper is to show how the FSM alters upon refinement. This will allow tests to be adapted
to take account of implementation choices such as changes in the data structures and resolution of
non-determinism. This paper builds upon earlier work described in [Derrick and Boiten, 1998b]
which considered the partition analysis of individual operations. Although the results are described
with reference to the construction of FSMs due to Dick and Faivre, it is equally applicable to other
approaches, such as those described in [Murray et al., 1998, Hierons, 1997].

As an example of how to extract a FSM from a specification consider the specification of a system
process scheduler adapted from [Dick and Faivre, 1993] (and rewritten in Z). The system consists
of processes either ready to be scheduled or waiting to become ready and, optionally, a single
active process. These processes are identified by a unique Pid == IN. A process cannot be both
ready and waiting, and the active process is neither ready nor waiting. In addition, there must
be an active process whenever there are processes ready to be scheduled. The schedule function
describes the algorithm abstractly by picking any process from those which are ready. The system
can be in two modes: user or super.

The specification describes ready and waiting as sets and contains four operations. New introduces
another process, Ready puts a process into the ready state, and Swap changes the active process.
The operation Boot enables a restart if the system is in super mode. (nil stands for an inactive
process.)

schedule : P Pid — Pid
Vs:PPid e s# @ = schedule(s) € s

_ State _Init
active : Pid State'
ready : P Pid

active' = nil
ready’ U waiting' = &
admin' = user

waiting : P Pid
admin : user | super

ready N waiting = &
active & (ready U waiting)
nil & (ready U waiting)
active = nil = ready = &

__ New
A State
p?: Pid

p? # active

p? & (ready U waiting)
waiting' = waiting U {p?}
active’ = active

ready’ = ready

admin = admin' = user

__ Ready
A State
q? : Pid

q? € waiting

waiting’ = waiting \ {q7}

active = nil = (ready’ = ready A active' = q7)

active # nil = (ready’ = ready U {q?} A active’ = active)
admin = admin' = user

—_ Swap
A State

active # nil

waiting' = waiting U {active}

ready = @ = (active’ = nil A ready’ = @)

ready # @ = (active’ = schedule(ready) A ready’ = ready \ {active’})
admin = admin' = user

__ Boot
AState

admin = super

active = nil

waiting = ready = &

admin’' = user A active’ # nil

(ready’ = @ A waiting' # @) V (ready’ # @ A waiting' = &)

To generate and sequence tests Dick and Faivre build a FSM using the following procedure

1. Perform a partition analysis on all operations to generate the test cases. These are the
transitions in the FSM.

2. From each test case obtain its before-state and after-state (by existentially quantifying vari-
ables not being considered).

3. Perform a DNF partition analysis on the states from step 2. This gives the states in the
FSM.

4. Construct the FSM by resolving transitions against states.

In order to perform the partition analysis on the operations each operation is transformed into
DNF. Each schema in this DNF then represents a single test case. Each test case will be disjoint,
allowing them all to be treated separately. It should be noted that for any non-trivial specification
there are many possible choices for DNF [Stocks, 1993], the choice taken depends upon the as-
pects that are considered important. Here the operations are partitioned by considering whether
active = nil and whether ready, waiting = &. The resulting test cases are given by Init plus the
following eight tests

_ Newl

AState
p?: Pid

active! = active = nil
ready’ = ready = @

p? & waiting

waiting' = waiting U {p?}
admin = admin' = user

_ Readyl

AState
q? : Pid

q? € waiting
waiting' = waiting \ {q7}
active = nil
ready’ = ready = @
active' = q?
admin = admin' = user

_ Swapl

A State

active # nil
waiting' = waiting U {active}
ready = ready’ = &
active’ = nil
admin = admin' = user

_ New?2

AState
p? : Pid

p? # active
p? & (ready U waiting)
waiting' = waiting U {p?}
active’ = active # nil
ready’ = ready

admin = admin’ = user

_ Ready2

AState
q? : Pid

q? € waiting
waiting' = waiting \ {q?}
active # nil
ready’ = ready U {q?}
active' = active
admin = admin’ = user

_ Swap?2

AState

active # nil
waiting' = waiting U {active}
active' € ready
ready’ = ready \ {active'}
admin = admin’ = user

_ Boot1

AState

admin = super
active = nil
waiting = ready = &
admin' = user A active' # nil
ready’ = @ A waiting' # &

_ Boot2

AState

admin = super
active = nil
waiting = ready = &
admin’ = user A active' # nil
ready’ # @ A waiting' = &

This construction has two important properties: coverage and disjointness; that is, New equals
the disjunction of its test cases (coverage) and these tests are disjoint. In general a collection of

tests {AOp;}; is said to cover an operation AOp acting on state space Astate if

AOp =\/; AOp;
and that the tests are disjoint, if, for all i # j

— 3 Astate; Astate' @ AOp; A AOp;

It is easy to see that {Newl, New2} form a disjoint covering for New.

A distributed disjunction (\/) has been used here, which although nonstandard Z, can be defined
in the obvious manner (for example, by using existential quantification). Similarly, the equality

Init

Ready1

Ready?2

Figure 1: The FSM for the scheduler

sign between schemas should be viewed as schema equivalence. The symbols \/ and = are retained

for the sake of clarity.

Next the states that result from these test cases are calculated. The before state for the Newl
test case is given by 3 State’ @ Newl \ {p?}, and the after state will be given by 3 State e New].
After performing a DNF partition analysis on the result the following seven states remain:

_Statel

State

active = nil
ready = &
waiting = &
admin = user

_State2

State

active = nil
ready = &
waiting # @
admin = user

_State3
State

active # nil
ready = &
waiting = @
admin = user

_Stated

State

active # nil
ready = &
waiting # &
admin = user

_Stated

State

active # nil
ready # &
waiting = &
admin = user

_Stateb
State

active # nil
ready # &
waiting # &
admin = user

__ State7

State

active = nil
ready = &
waiting = &
admin = super

The FSM can now be constructed by calculating the individual transitions. For example, a tran-
sition of New! exists from state Statel to State2 precisely when the following evaluates to true:
3 State; State'; inputs; outputs e Statel A New1A State2'. This produces the FSM shown in figure

1.

Although state 7 cannot be reached via transitions in the FSM this state is not pruned from the
FSM for reasons discussed in Section 5.

3 Refinement

In addition to deriving tests from a formal specification, the specification might be refined fur-
ther before its implementation. Such a refinement might typically weaken the precondition of
an operation, remove some non-determinism or even alter the state space of the specification.
The conditions under which a development is a correct refinement are encapsulated into two
rules: downward and upward simulations [Woodcock and Davies, 1996]. These refinement rules
are known to be sound and jointly complete, that is any upward or downward simulation is a valid
refinement, and any refinement can be proved correct by application of appropriate upward and
downward simulations [He, 1989, Woodcock and Morgan, 1990]. (Downward and upward simula-
tions are sometimes also known as forward and backward simulations respectively.)

The downward simulation rules are more straightforward, and form the usual presentation of re-
finement (e.g. asin [Spivey, 1989]), however, upward simulations are occasionally necessary, for ex-
ample when the resolution of non-determinism has been postponed [Woodcock and Davies, 1996].
Consider an abstract specification with state space Astate and initialisation schema Ainit be-
ing refined by a concrete specification with state space Cstate and initialisation schema Cinit.
Downward and upward simulations are defined as follows.

Definition 1 Downward simulation
The concrete specification is a downward simulation of the abstract if there is a retrieve relation Ret

such that every abstract operation AOp is recast into a concrete operation COp and the following
hold.

DS.1 V Astate; Cstate o pre AOp A Ret = pre COp
DS.2 V Astate; Cstate; Cstate’ @ Ret A pre AOp A COp —> 3 Astate' Ret' AN AOp

DS.3 V Cstate’ o Cinit => 3 Astate’ o Ainit A Ret

Definition 2 Upward simulation
The concrete specification is an upward simulation of the abstract if there is a retrieve relation Ret

such that every abstract operation AOp is recast into a concrete operation COp and the following
hold.

US.1 V Cstate o (V¥ Astate ¢ Ret = pre AOp) = pre COp

US.2 V Astate'; Cstate; Cstate' o (V Astate @ Ret = pre AOp) = (COp A Ret’ = 3 Astate o
Ret A AOp)

US.3 V Astate'; Cstate' o Cinit A Ret' — Ainit

Downward and upward simulations are used to verify that a concrete specification is indeed a
refinement of an abstract specification. They allow the state spaces to be different, but these
must be linked by a suitable retrieve relation, and the concrete specification will typically be more
deterministic than the abstract specification. For examples and discussion of the role of refinement
see [Woodcock and Davies, 1996].

As an example, consider an implementation of the system process scheduler. The implementation
uses sequences instead of sets to record the ready and waiting processes. It has also chosen a
particular scheduling strategy, namely to take the process at the head of the ready queue. The
implementation has therefore resolved some of the non-determinism in the abstract specification
and also changed the state space. The specification is given as follows:

_ CState _ Clnit
active : Pid CState'
cready : seq Pid .,
cwaiting : seq Pid
admin : user | super

active' = nil
cready’ = cwaiting' = ()
admin' = user

ran cready N ran cwaiting = &
active ¢ (ran cready U ran cwaiting)
nil € (ran cready U ran cwaiting)
active = nil = cready = ()

_ CNew
A CState
p?: Pid

p? # active

p? & (ran cready U ran cwaiting)
ran cwaiting' = ran cwaiting U {p?}
active' = active

cready' = cready

admin = admin' = user

— CReady
A CState
q? : Pid

q? € ran cwaiting

ran cwaiting’ = ran cwaiting \ {q7}

active = nil = (cready’ = cready A active’ = ¢?)

active # nil = (ran cready’ = ran cready U {¢q?} A active' = active)
admin = admin' = user

__ CSwap
A CState

active # nil

ran cwaiting’ = ran cwaiting U {active}

cready = () = (active’ = nil A cready’ = ())

cready # () = (active’ = head cready A cready’ = tail cready)
admin = admin' = user

_ CBoot
A CState

admin = super

active = nil

cwaiting = cready = ()
admin' = user A active' # nil
cready’ = () A cwaiting’ # ()

This specification is a downward simulation of the abstract scheduler where the retrieve relation
is given by

__ Ret
State
CState

ready = ran cready
waiting = ran cwaiting

It should be possible to test the concrete implementation against the abstract specification, by
using the test cases and FSM calculated above. However, the transitions and states in the FSM
are described in terms of the abstract state space (i.e. sets etc) and not the concrete realisation
(e.g. sequences). Therefore Newl or New2 cannot be used to test CNew because the latter is an
operation defined in terms of sequences whereas the tests are defined in terms of sets. In addition,
the process of refinement potentially resolves or moves the non-determinism in the operations, for
example the concrete operations might have weaker preconditions and stronger postconditions. For
example, the operation CSwap has resolved non-determinism that was present in Swap (and so has
a stronger postcondition), and in more complex situations (e.g. see [Derrick and Boiten, 1998b])
the non-determinism can be moved around the specification in quite subtle ways. Hence the FSM
generated from the abstract specification cannot be used to test a concrete implementation except
under the simplest of refinements. This can happen even in a specification close to implementation
as the implementor can still implement any valid refinement and therefore change the specification
in any of the ways mentioned above. Therefore it is necessary to provide a means to test such a
refinement and instead of re-calculating the FSM from scratch, the abstract FSM is used together
with the information about the refinement embodied in the retrieve relation. This means it is
possible to generate a new FSM in a simple manner.

The idea of testing an implementation using a retrieve relation is not new. Dick and Faivre
raise the problem in [Dick and Faivre, 1993]: “... the test-bed will have to be equipped with the
means of converting between these abstract and concrete values. In ideal circumstances, retrieval
functions could be implemented as part of the test-bed...*, but provides no means by which to
do this. The problem is also discussed in [Stocks, 1993], as it is in [Stepney, 1995]. However,
the latter erroneously states that the abstract states can be used without conversion. Hércher
discusses the problem in more depth in [Horcher, 1995], and in particular comments that retrieve
relations may be used in the production of test oracles. The purpose of this paper is to provide
answers as to how exactly to achieve this and describe how properties of the retrieve relation effect
the construction.

In order to do this it is necessary to calculate the most general refinement of an abstract specifi-
cation together with a retrieve relation, a process now described.

3.1 Calculating Downward Simulations

Given an abstract specification, a concrete state space and a retrieve relation between the concrete
and abstract state spaces, it is possible to calculate the weakest (most general) description of the
concrete operations [Josephs, 1988, Woodcock and Davies, 1996, Derrick and Boiten, 1998a]. An
operation COp is the weakest refinement of AOp whenever it describes precisely the same operation
modulo the retrieve relation. If it is a refinement but not the weakest refinement, then it means it
has made some further implementation choices such as resolving some of the non-determinism in
AOp. Let Astate and Cstate be the abstract and concrete state spaces, Ret the retrieve relation
and AOp an abstract operation. The weakest refinement COp of AOp is calculated by

COp = 3 Astate; Astate’ ® Ret AN AOp A Ret'

In general, if it is not known whether Ret defines a refinement, it is necessary to check the appli-
cability. This is summarised in the following theorem (for a proof see [Derrick and Boiten, 1998a,

Josephs, 1988]) which shows that COp is the weakest refinement of AOp, provided that one exists.

Theorem 1 Let Cpg denote a downward simulation. Suppose that AOp specifies an operation
over the abstract state space Astate. Let Cstate be a concrete state space, and Ret a retrieve
relation between concrete and abstract. Let COp be defined as above. Then for every operation X

AOp Eps X iff pre AOp A Ret = pre COp and COp Cps X

In the context of this discussion it is known that applicability (pre AOp A Ret = pre COp) holds
since tests are being generated for an existing development and therefore it is known that Ret
defines a refinement. In these circumstances COp describes the most general concrete refinement
of the operation AQOp. It is also possible to calculate the most general concrete initialisation which
will be given by

Cinit = 3 Astate' o Ainit A Ret'

3.2 Calculating Upward Simulations

Some valid refinements can not be proved correct with a downwards simulation, and for these it
is necessary to use an upwards simulation. An example of this is given below in Section 6.

For refinements that are upward simulations the following will define the weakest refinement of an

abstract operation AOp (for a proof see [Derrick and Boiten, 1998a])
COp = (V Astate @ Ret => pre AOp) AV Astate’ o (Ret’ => 3 Astate Ret A AOp)

Theorem 2 Let C g denote an upward simulation. Suppose that AOp specifies an operation over
the abstract state space Astate. Let Cstate be a concrete state space, and Ret a retrieve relation
between concrete and abstract. Let COp be defined as above. Then for every operation X

AOp Cys X iff (V Astate @ Ret => pre AOp) = pre COp and COp Cys X

If the retrieve relation is a function, then the weakest refinement of AOp will be given by
COp = 3 Astate; Astate’ @ Ret A AOp A Ret’

a formula that is identical to the downward simulation case. For an arbitrary relation R it is still
necessary to check applicability

V Cstate o (V Astate ¢ R =—> pre AOp) = pre COp

However, if it is known that the retrieve relation does indeed define an upward simulation it is not
necessary to check this.

3.3 Generating Tests

The technique employed to generate tests for a refinement is very simple. Given an abstract spec-
ification with operation AOp and a covering disjoint set of tests { AOp;};; a concrete specification
with operation COp which refines AOp, and a retrieve relation Ret, a set of tests {COp;}; is
generated where each test COp; is the weakest refinement calculated from Ret and AOp;. These
new concrete tests will become the transitions in the new FSM. The states are generated using
the retrieve relation in a similar fashion.

The remainder of the paper discusses the two cases of downward and upward simulations sepa-
rately. In each case the following questions are explored:

10

e how are new transitions COp; generated;

— do these tests {COp;}; cover COp;
— are these tests {COp;}; disjoint.

e how are new states and the FSM generated?

The following two sections discuss these questions when the refinement is a downward simulation,
and Section 6 then looks at upward simulations.

4 Refining the Partition analysis

Downward simulations are perhaps the most common form of state based refinement, for example
the concrete scheduler is a downward simulation of the abstract scheduler. This section discusses
how the test cases of an operation change under such refinements.

Given an operation AOp with AOp =\/, AOp; being its disjoint set of tests, and a retrieve relation
Ret, the concrete tests are given by

COp; = 31 Astate; Astate’ @ Ret A AOp; A Ret’
These will in some way represent test cases for the original concrete operation COp, and in fact

the following result (for a proof see [Derrick and Boiten, 1998b]) holds.

Theorem 3 Let AOp be an abstract operation with AOp =\/, AOp; being its disjoint set of tests.
Let COp be a downward simulation of AOp. Let Ret be the retrieve relation. Let COp; be the
concrete tests given above. Then

V, COp; Cps COp
and if COp is the weakest downward simulation of AOp then COp =\/, COp;.
The practical consequences of this is that it is possible to use abstract tests (i.e. the partition
analysis) together with the retrieve relation to calculate a new concrete partition analysis for the

refinement. If the concrete is the weakest refinement of the abstract then these concrete tests
exactly cover the concrete operations.

Example 1 Calculating tests for a refinement.

Consider the New operation in the abstract scheduler. Its test cases were Newl and New2, these
are used to calculate test cases CNew1l = 3 State; State’ @ Ret A Newl A Ret' etc, which give

_ CNewl — CNew?2
A CState A CState
p? : Pid p? : Pid
active’ = active = nil p? # active
cready' = cready = () p? & (ran cready U ran cwaiting)
p? & ran cwaiting ran cwaiting' = ran cwaiting U {p?}
ran cwaiting’ = ran cwaiting U {p?} active' = active # nil
admin = admin' = user ran cready’ = ran cready
admin = admin' = user

11

It can be seen that \/, CNewi Cps CNew, however, CNew is not the weakest refinement because
the weakest refinement only requires that ran cready’ = ran cready whereas CNew resolved this
non-determinism to require that cready’ = cready (i.e. the order in the ready sequence must be
preserved). So the calculated tests contain additional detail not included in the concrete operation.

However, in this case an exact covering can be constructed by replacing the test CNew2 by the test
CNew2A CNew. Indeed this is a general strategy which works whenever the concrete operation has
failed to be the weakest refinement because it has resolved more non-determinism than formally
necessary.

This strategy is also applied to the CBoot operation. CBoot has resolved non-determinism present
in Boot, it is therefore not its weakest refinement. Calculating tests CBoot1 A CBoot and CBoot2 A
CBoot results in the latter evaluating to false, leaving just one test for the concrete boot operation
given by:

_ CBootl
A CState

admin = super

active = nil

cwaiting = cready = ()
admin' = user A active’ # nil
cready’ = () A cwaiting’ # ()

O
This provides a means to calculate tests which cover the concrete operation, are these tests disjoint?

For a functional retrieve relation disjoint abstract tests will generate disjoint concrete tests.

Theorem 4 Let {AOp;}; be disjoint test cases, Ret a functional (from concrete to abstract) re-
trieve relation and {COp;}; calculated from {AOp;};. Then {COp;}; are disjoint.

For a proof see [Derrick and Boiten, 1998b]. Note that disjointness is not the same as inequality
(two tests with false predicates are considered disjoint).

Example 2 Refined tests are disjoint for a functional retrieve relation.

The retrieve relation for the scheduler is a surjective function from concrete to abstract. All
the calculated tests are therefore disjoint, and the remainder of these are given by the concrete
initialisation together with

_ CReadyl _ CReady?2
A CState A CState
q? : Pid q? : Pid
q? € ran cwaiting q? € ran cwaiting
ran cwaiting’ = ran cwaiting \ {¢?} ran cwaiting' = ran cwaiting \ {q7}
active = nil active # nil
cready' = cready = () ran cready’ = ran cready U {¢q?}
active’ = ¢? active' = active
admin = admin' = user admin = admin’ = user

12

_ CSwapl — CSwap?2

A CState A CState

active # nil active # nil

ran cwaiting’ = ran cwaiting U {active} ran cwaiting' = ran cwaiting U {active}
cready = cready’ = () active' € ran cready

active' = nil ran cready’ = ran cready \ {active'}
admin = admin' = user admin = admin' = user

From this it can be seen that CSwap2 also contains more non-determinism than is in CSwap, it
can be further constrained by taking the test to be CSwap2 A CSwap. Seven new disjoint concrete
tests have been produced, calculated from the eight original abstract tests. a

Although refined tests are disjoint for a functional retrieve relation, in general disjointedness fails.
This can be seen from the following example.

Example 3 Refined tests are not disjoint in general.

Consider the abstract and concrete schedulers. Suppose both specifications are limited to the three
operations Ready, New and Swap, and that the specification of CNew is modified to the following:

_ CNew
A CState
p?: Pid

p? # active

p? & (ran cready U ran cwaiting)
ran cwaiting’ = ran cwaiting U {p?}
active’ = active

ran cready’ = ran cready

admin = admin' = user

The set based scheduler is now a refinement of this specification with the same retrieve relation
as before. However, viewed this way round the retrieve relation is not functional: each set ready
has many (abstract) representations as a sequence cready with ready = ran cready.

One possible partition analysis for CNew would contain one test for each permutation of cready;
for example, two such tests would be

_ CNeun _ CNew»

A CState A CState

p?: Pid p? : Pid

p? # active p? # active

p? & (ran cready U ran cwaiting) p? & (ran cready U ran cwaiting)
ran cwaiting’ = ran cwaiting U {p?} ran cwaiting' = ran cwaiting U {p?}
active’ = active active’ = active

cready’ = cready cready’ = rev cready

admin = admin' = user admin = admin’ = user

Calculating the refined tests for each one of these abstract tests produces the same test New in

every case. So all the abstract tests are mapped onto the same concrete test, which are therefore
not disjoint. |

13

5 Refining the Finite State Machine

The previous section has discussed how to take transitions in an abstract FSM and calculate cor-
responding transitions to test an implementation with a concrete FSM. To construct the concrete
FSM it is also necessary to define the states of the FSM and then describe the transitions between
the states. This section describes the process for downward simulations, and also discusses how
new transitions can be enabled due to the refinement process.

5.1 Refining the States

Suppose that an abstract FSM has n disjoint states Astatey, ..., Astate,, each one being a before
or after state of an abstract transition AOp; (1 < 4 < m). The concrete states Cstatey, ..., Cstate,
are calculated by taking

Cstate; = 3 Astate o Astate; A Ret

Each concrete state Cstate; will be a potential before or after state of a concrete transition. How-
ever, some abstract states might collapse (i.e. become identified) when their concrete counterparts
are calculated. In fact it is not hard to see that the concrete states will be disjoint whenever
the retrieve relation is a function, but that a general relation will not necessarily produce disjoint
concrete states.

Example 4 Calculating the concrete states.

The concrete states can now be calculated for the scheduler, and since Ret is functional they will
be disjoint. Upon calculation the states are:

_ CStatel
CState

active = nil
cready = ()
cwaiting = ()
admin = user

_ CState2
CState

active = nil
cready = ()

cwaiting # ()
admin = user

_ CState3
CState

active # nil
cready = ()
cwaiting = ()
admin = user

_CStated
CState

active # nil
cready = ()

cwaiting # ()
admin = user

_ CStated
CState

active # nil
cready # ()
cwaiting = ()
admin = user

_ CStateb
CState

active # nil

cready # ()

cwaiting # ()
admin = user

__ (CState7

CState

active = nil
cready = ()

cwaiting = ()
admin = super

14

5.2 Building the FSM

A set of potential states Cstate; has been identified, as has a set of potential tests COp;. It is now
necessary to resolve the test cases against the states, and see if any new transitions are enabled
due to the refinement process.

Because the concrete test calculations are given by
COp; = d Astate; Astate' Ret A AOp; A Ret’

it is clear that in the weakest refinement there exists a transition COp; between Cstate; and
Cstatey, precisely when there exists a transition AOp; between Astate; and Astatey,.

Whether these are the only transitions depends on whether or not the concrete specification is the
weakest refinement of the abstract with respect to the retrieve relation.

5.2.1 The concrete specification is the weakest refinement of the abstract

If the retrieve relation is functional, then disjoint abstract states and transitions produce disjoint
concrete states and transitions. Because the concrete operations are the weakest refinement of
the abstract ones, the concrete tests cover the concrete operations, no further non-determinism
has been resolved and there exists a transition COp; between Cstate; and Cstate;, precisely when
there exists a transition AOp; between Astate; and Astatey,.

Therefore the concrete FSM will be isomorphic to the abstract FSM (isomorphic but not identical
as the states and transitions are defined in terms of the concrete state space).

Example: in the concrete scheduler the operation CReady was the weakest refinement of Ready.
Therefore the concrete tests and transitions for the CReady operation are identified precisely by
direct reference to those due to Ready in the abstract FSM. O

If the retrieve relation is not functional, no new transitions can be enabled, but the concrete
FSM potentially has fewer states and transitions than the abstract because disjoint states and
transitions can be identified under refinement. However, this is the result of the calculation, and
no further additions to the process are needed.

5.2.2 The concrete specification is not the weakest refinement of the abstract

When the concrete specification is not the weakest refinement, the process of refinement can
potentially add new transitions or disable existing ones because refinement can both weaken an
operation’s precondition but also reduce any non-determinism in an operation by strengthening
its postcondition.

When an operation’s postcondition is strengthened, the set of potential outcomes is reduced. If one
of these outcomes was a transition on its own, the concrete FSM can dispense with this transition.
It was shown above that the actual transitions can be calculated by taking COp; A COp where
COp; is the calculated test and COp the more deterministic concrete operation.

Example: in the concrete scheduler the postcondition in CBoot strengthens that of Boot, resulting
in only one test for CBoot because CBoot2 A CBoot was false. The concrete FSM therefore does
not have a transition CBoot2. |

Note that in general a transition is not always lost, whether it is depends on the partition analysis
chosen. For example, in the concrete scheduler CNew and CSwap were not, the weakest refinement

15

CReady?2

Figure 2: The FSM for the concrete scheduler.

of New and Swap. However, restricting the non-determinism in the tests CNew2 and CSwap2 did
not disable them completely but just restricted their functionality.

When an operation’s precondition is weakened under refinement, states and transitions have to be
added in general to the concrete FSM, possibly having to recalculate new portions of the graph.

Example: suppose the concrete scheduler is refined further by replacing the CSwap operation by
CCS = CSwap Vv CSI where CSI is given by

__(OSI
A CState

active = active’ = nil

cready = cready’ = cwaiting = cwaiting' = ()
admin = user

admin' = super

This new swap operation has weakened the precondition by being enabled initially. Now tests
CSwapl and CSwap2 do not cover CCS exactly:

CSwapl v CSwap2 C CCS but CSwapl VvV CSwap2 # CCS

Under these circumstances it is necessary to include additional tests (in fact just one test here,
CST itself) and recalculate new states and transitions. New states might arise if the after-state

of the additional test is not included in the existing concrete partition, which can happen if
\/ Cstate; # Cstate.

In fact, in this example this new test CST adds only one new transition from CStatel to CStateT,
and the FSM can be adjusted accordingly. The final FSM is shown in figure 2. |

Notice that by weakening an operation’s precondition under refinement, portions of the graph
which were unreachable have now become directly accessible. It was for this reason that unreach-
able states were not pruned in the initial abstract finite state machine.

16

6 Refinements due to Upward Simulations

As commented above, some valid refinements can not be proved correct with a downwards simu-
lation, and for these it is necessary to use an upwards simulation. Here is an example.

Example 5 An upward simulation.

Consider the following two simple specifications. The abstract specification is:

Astate _ Ainit _A
(:v :0..5 Astate’ A Astate
z'=0 z=0Az"€{1,2}
_B _D
AAstate AAstate
(z=1ANz'=3)V(z=2A12"=4) (z=1A2'=3)V(z=0A2"=5)

The concrete specification is

Cstate _Clinit _A
(y :{0,1,2,3,5} Cstate’ A Cstate
y'=0 y=0ny =1
_B _D
A Cstate A Cstate
y=1A¢y" €{2,3} y=0Ay =5

The concrete specification is an upward simulation (but not a downward simulation) of the ab-
stract, where the retrieve relation is given by

__ Ret
Astate
Cstate
z€{0,3,5}=>z=y
r=4iff y=2
ze{l,2}iffy=1

O

In order to generate a FSM for an upward simulation the same methodology is adopted as before,
that is, use the weakest refinement calculation to generate the transitions and the states in the
concrete FSM. The exact means to do this depends on whether the retrieve relation is functional
or not, and these cases are discussed separately.

When the retrieve relation is a function, the calculation of concrete tests is given by

COp; = d Astate; Astate' Ret A AOp; A Ret’

17

In this case all the calculations about states and transitions carry through from the downward
simulation case, and the comments made before apply here in their entirety.

For a non-functional retrieve relation in order to generate concrete tests from the abstract test
cases {AOp;}; the following formula is used

~

COp; = (VY Astate « Ret = pre AOp;) AV Astate’ o (Ret' = 3 Astate ® Ret A AOp;)

Since it is known that Ret defines a refinement (no need to check applicability), each COp; is a
refinement of AOp;.

To see that the general formula is necessary, consider the operation D in the abstract specification
given above. The weakest refinement of this is the refinement given in the concrete specification,
however, notice that this refinement does not require a concrete transition that corresponds to
the abstract one between 1 and 3. If the simpler calculation COp = 3 Astate; Astate’ e Ret A
AOp A Ret' had been used, then the concrete specification of D would have included the option
(y = 1Ay = 3). The simpler calculation therefore constrains the operation too much, and is thus
not the weakest refinement.

Although it is necessary to use a more complex formula for an upward simulation, the coverage
and disjointedness results are similar to those for downward simulations, and we have the following
[Derrick and Boiten, 1998b].

Theorem 5 Let AOp be an abstract operation with AOp =\/, AOp; being its disjoint set of tests.
Let COp be an upward simulation of AOp. Let Ret be the retrieve relation. Let COp; be the
concrete tests given above. Then

V,; COp; Eys COp
and if COp is the weakest upward simulation of AOp then COp =\/, COp;.
The disjointedness properties are also symmetric. When the retrieve relation is a function, the
formulae for calculating tests are the same as for downward simulations. Therefore, as was the

case then, disjoint abstract tests will produce disjoint concrete tests. However, in general refined
tests are not disjoint.

Example 6 Calculating concrete tests from an upward simulation.

A FSM can be calculated for the above abstract specification which partitions the state into five
states: {0}, ..., {5} with the FSM shown in figure 3.

Following the procedure outlined above this is used to calculate a concrete FSM, which contains
the following tests: A, D2 (= D) and

_B1 _ B2
A Cstate A Cstate
y=1Ay =3 y=1Ay =2

Notice also that the concrete tests cover the operations (i.e. B1V B2 = B). However, the concrete
tests are not disjoint illustrating that functionality of the retrieve relation really is needed for
disjointedness. To see this, note that the abstract tests A1 and A2 become the same concrete test
A upon calculational refinement. O

18

D1

{1} ——>(3}
Bl

{5} €—{0}

IS

2} ———{ 4}
B2

Figure 3: The FSM for the abstract specification.

Figure 4: The FSM for the concrete specification.

Finally, having calculated the test cases it is necessary to calculate the states for a concrete FSM. To
do so calculate Cstate; = 3 Astate o Astate; A Ret for each state Astate; in the abstract FSM. This
gives, for a weakest refinement, all the possible concrete states in the new FSM. However, in general
some of these states might be redundant because a transition has been disabled under the upward
simulation. The example given above illustrates the situation where after calculation the test D1
does not appear in the refinement, and on calculating the states and checking the transitions we
arrive at the concrete FSM shown in figure 4. Notice as well that the non-functionality of the
retrieve relation has collapsed some of the states to produce non-disjoint concrete states. O

As a parting word a comment is in order concerning the changes in the partitioning of the opera-
tions under a refinement. Dick and Faivre posed the question: does refining a specification create
a super-set of the partitions of the previous level? The answer is no in general for both types of
simulations. For the upward case it has just been seen that the tests for operation A are a subset
rather than a super-set of those on the previous level. In general there is no relation between the
number of tests in a partition and those in a subsequent refinement: tests can be identified by a
non-functional retrieve relation, on the other hand weakening the precondition can enable more
tests to be included in the FSM.

Even for a functional retrieve relation and without weakening the preconditions, there is no re-
lation between the number of tests in a partition and those in a subsequent refinement. This is
because refinement can move non-determinism through a specification while preserving its observ-
able behaviour. See [Derrick and Boiten, 1998b] for a discussion and illustration of this issue.

19

7 Conclusions

This paper has provided a means to calculate concrete FSMs from abstract ones for both upward
and downward simulations. For retrieve relations which are functions the calculations simpli-
fied considerably, and in this case the calculations needed for upward and downward simulations
coincide.

This can be used as a basis for a methodology for determining the correct concrete FSM calculation.
Given abstract and concrete state spaces, a retrieve relation and abstract operations, generate a
concrete FSM by
e generating concrete transitions COp; from abstract transitions;
e generating concrete states Cstate; from abstract states Astate;;
e resolving the concrete transitions against the states using the abstract FSM and properties
of the retrieve relation.

To do this proceed as follows:

1. Determine whether Ret is a function. If it is, then the concrete tests are given by

COp; = 3 Astate; Astate’ @ Ret A AOp; A Ret’

2. If Ret is not a function determine whether it defines a downward or upward simulation. Do
this by determining if

pre AOp A Ret = pre COp

If this is the case, then the refinement is a downward simulation, and therefore the concrete
tests are still given by

COp; = d Astate; Astate' o Ret A AOp; A Ret’

3. If Ret does not define a downward simulation, then the refinement must be an upward
simulation. In this case the concrete tests are given by

COp; = (V Astate @ Ret = pre AOp;) AV Astate' o (Ret' => 3 Astate @ Ret A AOp;)

4. Generate concrete states by taking

Cstate; = 3 Astate o Astate; N\ Ret

5. Build the concrete FSM. First check whether each concrete operation COp was in fact the
weakest refinement, do this by determining if

V, COp; = COp
(a) If the concrete specification is the weakest refinement of the abstract and the retrieve

relation is functional, then the concrete FSM will be isomorphic to the abstract FSM.

(b) If the concrete specification is the weakest refinement of the abstract and the retrieve
relation is not functional, then the concrete FSM potentially has fewer states and
transitions than the abstract because disjoint states and transitions can be identified
under refinement.

20

(c) If the concrete specification is not the weakest refinement of the abstract, then

i. When an operation’s postcondition is strengthened the actual transitions can be
calculated by taking the tests to be {COp; A COp};.

ii. When an operation’s precondition is weakened it is necessary, in general, to add
states and transitions to the concrete FSM, possibly having to recalculate new
portions of the graph.

If COp is the weakest refinement of AOp then the set of tests {COp;}; cover COp. If Ret is a
function then the concrete tests and states will be disjoint whenever the abstract tests and states
are disjoint.

One issue not considered in this paper is the sequencing of tests where a path through the FSM
is found, preferably involving the minimum of duplication. Some of these issues are discussed
in [Dick and Faivre, 1993], and it would be interesting to see whether paths can be refined in a
similar way to the refinement of FSMs derived above. One issue noted above, however, was that
when an operation’s precondition is weakened upon refinement it was possible that previously
unreachable portions of the FSM were now reachable. Any approach to refining test sequencing
would have to address this problem.

References

[Abrial, 1996] Abrial, J. R. (1996). The B-Book: Assigning programs to meanings. CUP.

[Bowen et al., 1998] Bowen, J. P., Fett, A., and Hinchey, M. G., editors (1998). ZUM’98: The Z Formal
Specification Notation, 11th International Conference of Z Users, Berlin, Germany, 24-26 September
1998, volume 1493 of LNCS. Springer-Verlag.

[Carrington and Stocks, 1994] Carrington, D. and Stocks, P. (1994). A tale of two paradigms: Formal
methods and software testing. In Bowen, J. and Hall, J., editors, ZUM’94, Z User Workshop, pages
51-68, Cambridge, United Kingdom.

[Cusack and Wezeman, 1992] Cusack, E. and Wezeman, C. (1992). Deriving tests for objects specified
in Z. In Bowen, J. P. and Nicholls, J. E., editors, Seventh Annual Z User Workshop, pages 180-195,
London. Springer-Verlag.

[Derrick and Boiten, 1998a] Derrick, J. and Boiten, E. (1998a). Calculating upward and downward sim-
ulations of state-based specifications. Submitted for publication.

[Derrick and Boiten, 1998b] Derrick, J. and Boiten, E. (1998b). Testing refinements by refining tests. In
[Bowen et al., 1998], pages 265—283.

[Dick and Faivre, 1993] Dick, J. and Faivre, A. (1993). Automating the generation and sequencing of
test cases from model-based specifications. In Woodcock, J. C. P. and Larsen, P. G., editors, FME’93:
Industrial-Strength Formal Methods, pages 268—284. Formal Methods Europe, Springer-Verlag. Lecture
Notes in Computer Science 670.

[Grochtmann and Grimm, 1993] Grochtmann, M. and Grimm, K. (1993). Classification trees for partition
testing. Software Testing, Verification and Reliability, 3:63-82.

[He, 1989] He, J. (1989). Process refinement. In McDermid, J., editor, The Theory and Practice of
Refinement. Butterworths.

[Hierons, 1997] Hierons, R. (1997). Testing from a Z specification. Software Testing, Verification and
Reliability, 7(1):19-33.

[Horcher, 1995] Horcher, H.-M. (1995). Improving software tests using Z specifications. In Bowen, J. P.
and Hinchey, M. G., editors, Ninth Annual Z User Workshop, LNCS 967, pages 152-166, Limerick.
Springer-Verlag.

[Jones, 1989] Jones, C. B. (1989). Systematic Software Development using VDM. Prentice Hall.

[Josephs, 1988] Josephs, M. B. (1988). The data refinement calculator for Z specifications. Information
Processing Letters, 27:29-33.

21

[Murray et al., 1998] Murray, L., Carrington, D., MacColl, I., McDonald, J., and Strooper, P. (1998).
Formal derivation of finite state machines for class testing. In [Bowen et al., 1998], pages 42-59.

[Scullard, 1988] Scullard, G. (1988). Test case selection using VDM. In VDM 88 VDM - The Way Ahead,
pages 178-186.

[Singh et al., 1997] Singh, H., Conrad, M., and Sadeghipour, S. (1997). Test case design based on Z and
the classification-tree method. In Hinchey, M. and Liu, S., editors, First IEEE International Conference
on Formal Engineering Methods (ICFEM ’97), pages 81-90, Hiroshima, Japan. IEEE Computer Society.

[Spivey, 1989] Spivey, J. M. (1989). The Z notation: A reference manual. Prentice Hall.

[Stepney, 1995] Stepney, S. (1995). Testing as Abstraction. In Bowen, J. P. and Hinchey, M. G., editors,
Ninth Annual Z User Workshop, LNCS 967, pages 137-151, Limerick. Springer-Verlag.

[Stocks, 1993] Stocks, P. (1993). Applying Formal Methods to Software Testing. PhD thesis, Department
of Computer Science, University of Queensland, St. Lucia 4072, Australia.

[van Aertryck et al., 1997] van Aertryck, L., Benveniste, M., and Metayer, D. L. (1997). Casting: a
formally based software test generation method. In Hinchey, M. and Liu, S., editors, First IEEE

International Conference on Formal Engineering Methods (ICFEM ’97), pages 101-110, Hiroshima,
Japan. IEEE Computer Society.

[Woodcock and Davies, 1996] Woodcock, J. and Davies, J. (1996). Using Z: Specification, Refinement,
and Proof. Prentice Hall.

[Woodcock and Morgan, 1990] Woodcock, J. C. P. and Morgan, C. C. (1990). Refinement of state-based
concurrent systems. In Bjorner, D., Hoare, C. A. R., and Langmaack, H., editors, VDM ’90 VDM and
7 - Formal Methods in Software Development, LNCS 428, pages 340-351, Kiel, FRG. Springer-Verlag.

22

