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Abstract
“Generics for the Masses” (GM) and “Scrap your Boilerplate”
(SYB) are generic programming approaches based on some in-
genious applications of Haskell type classes. To achieve modu-
larity, the GM and SYB approach have been extended by using
some experimental language extensions such as abstraction over
type classes and recursive instances. Hence, the type class encod-
ings behind the GM and SYB approach become less practical and
harder to understand.

We show that none of these type class features are necessary if we
use the single feature of extensible superclasses, the complement
of subclass extension. We formalize type classes with extensible
superclasses as the combination of a previously introduced type-
passing translation scheme and a general type class framework. Our
results shed some new light on the use of type classes to support
generic programming.

1. Introduction
Generic programming is a style of programming where a single
generic function definition is applicable to a wide range of data
types. This is in contrast to aad-hoc polymorphicfunction which
provides a separate definition for each data type. There are a num-
ber of compelling approaches which exploit ad-hoc polymorphism
to support generic programming.

Prominent examples are “Generics for the Masses” (GM) [9] by
Hinze and “Scrap your Boilerplate” (SYB) [17] by Lämmel and
Peyton Jones. These works employ Haskell type classes [22, 28],
which are an elegant formulation to support ad-hoc polymor-
phism as an extension of Hindley/Milner. Besides Haskell, type
classes can also be found in a number of other languages such as
Clean [23], HAL [2] and Mercury [8, 14].

Unfortunately, the GM approach requires to update the class dec-
larations with new method definitions for each ad-hoc type case.
The consequence is that the GM approach is not modular. In some
recent work [21] this problem has been addressed, by either rely-
ing on specific dispatcher functions for each generic function or
using some non-standard type class extensions such as undecidable
instances [4]. We believe that the proposed solutions are not en-
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tirely satisfactory and may affect the understandability of the GM
approach.

The SYB approach has similar problems when it comes to the mod-
ular extension of generic functions. In [18], non-standard type class
features such as type class abstraction [11] and recursive instances
(a.k.a. recursive dictionaries, co-inductive type classes) [26] are
employed to support modular, extensible generic functions.

In this paper, we take a fresh look at generic programming with
type classes. Our contributions are as follows:

• We show that the GM and SYB approach can be made modu-
lar by employingextensible superclasses, a type class feature
which supports the incremental extension of superclasses (Sec-
tions 5 and 4). In our opinion, extensible superclasses provide
for a much more natural solution to the “modularity” problem.

• We formalize extensible superclasses using a combination of a
previously proposed type-passing translation scheme by Thatte
and our own Constraint Handling Rules based type class frame-
work (Section 6).

In Section 7 we discuss further related work. We conclude in
Section 8.

The GM and SYB approach make heavy use of type classes.
Hence, we first give an introduction to Haskell type classes in the
next section. Unless otherwise stated, we assume Haskell 98 type
classes [22]. We implement a library which supplies evaluation and
printing functions for a simple arithmetic expression language us-
ing type classes in the most straightforward way. In case we extend
the functionality of our library, we wish to maintain close relations
among the set of instances provided. But this requires to update
existing class declarations which in turn forces us to recompile
the entire program. Hence, modularity is broken. For very similar
reasons, the GM and SYB approach struggle to achieve modularity.

In Section 3, we investigate why changing class declarations breaks
modularity by taking a closer look at the dictionary-passing trans-
lation scheme [5, 26] underlying Haskell implementations. Haskell
implementations support the modular extension of subclasses but
notsuperclasses. If we switch to a type-passing translation scheme,
we can incrementally introduce further superclasses without hav-
ing to recompile existing code. This is the essence of our method
to achieve modularity for the GM and SYB approach.

2. Haskell Type Classes
We start off with the definition and specific implementations of the
evaluation function for a simple expression language.

-- expression language
data Lit = Lit Int
data Plus a b = Plus a b
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-- evaluator
class Eval a where

eval :: a->Int
instance Eval Lit where

eval (Lit n) = n
instance (Eval a, Eval b) => Eval (Plus a b) where

eval (Plus a b) = eval a + eval b

The class declaration states that classEval has a functioneval
(also known as method) to evaluate values of typet to integers.
A type class constraint such asEval t expresses that typet is a
member of classEval. The instance declarations provide specific
implementations ofeval on data typesLit andPlus a b. Notice
that the last instance declaration states that we can build an instance
of eval on typePlus a b if we can provide definitions for the
callseval a andeval b. We commonly refer to(Eval a, Eval
b) as the instancecontextand toEval (Prod a b) as the instance
head.

It is straightforward to define new cases by providing new in-
stances.

data Minus a b = Minus a b
instance (Eval a, Eval b) => Eval (Minus a b) where

eval (Minus a b) = eval a - eval b

We can also easily introduce new functions. For convenience, we
omit the instance bodies in the program text below. They do not
matter here.

class Print a where
print :: a -> String

instance Print Lit
instance (Print a,Print b) => Print (Plus a b)
instance (Print a,Print b) => Print (Minus a b)
instance Print a => Print [a] -- (L)

The addition of the new cases and functions does not require to re-
compile any existing code. Hence, type classes support the modular
extension of libraries.

The trouble is thateval andprint, respectively their type classes
Eval andPrint, are only loosely connected. We support printing
on lists, see instance (L), but there is no such instance forEval.
This may result in some unexpected behavior for the user. For
example, consider the following user program.

literals = [Lit 1, Lit 2]
evalAndprint = (eval literals, print literals)

We attempt to useeval andprint on type[Lit] In case ofeval,
there is no definition that deals with this case. In Haskell speak,
the above yields an unresolved instance errorEval [Lit]. We
would much prefer to catch this error at the definition rather than
use site. What we would like is to guarantee thateval andprint
are defined for the exact same set of instances.

In Haskell, we can give such guarantees via subclassing. We replace
Print’s class declaration as follows.

class Eval a => Print a where print :: a -> String

This declaration definesPrint to be a subclass ofEval. Or putting
it the other way around,Eval is declared to be a superclass of
Print. Then, any Haskell implementation such as GHC [4] or
HUGS [12] will complain that there is an instance forPrint [a],
see (L) above, but such an instance is missing forEval.

Subclassing effectively guarantees that the set of instances of the
superclass are a subset of the set of instances of the subclass. Hence,
it is only natural to replaceEval’s class declaration by

class Print a => Eval a where eval :: a -> Int

Thus, we can guarantee that for everyprint instance there is a
eval instance and vice versa. We have achieved our goal to catch
the error at the definition site. But there is a serious problem.

Haskell currently prohibits recursive subclass relations. But this
restriction can be safely lifted as we will argue later in Section 6.2.
The real problem is that our use of subclassing breaks modularity.
For example, at some later stage we may want to introduce

class Size a where size :: a -> Int

to compute the size of expressions. We leave out the instances for
simplicity. We would like to ensure thatsize operates on the exact
same set of types aseval andprint. To impose this condition, we
will need to altereval’s andprint’s class declarations.

class (Eval a, Size a) => Print a
where print :: a -> String

class (Print a, Size a) => Eval a
where eval :: a -> Int

class (Eval a, Print a) => Size a
where size :: a -> Int

But changing existing class declarations means we need to recom-
pile existing code. Hence, modularity is broken. To better under-
stand why this is the case and how to fix the problem, we take a
look at possible ways to translate type classes.

3. Translating Type Classes
3.1 Dictionary-Passing Translation Scheme

In Haskell, we translate type classes by representing them via
dictionaries. These dictionaries hold the actual method definitions.
Each superclass dictionary is part of its (direct) subclass dictionary.
For example, the declarations

class Eval a where eval :: a -> Int
class Eval a => Print a where -- (PE)

print :: a -> String
instance Eval Lit -- (E1)
instance (Eval a, Eval b) =>

Eval (Plus a b) -- (E2)
instance Print Lit -- (P1)
instance (Print a,Print b) =>

Print (Plus a b) -- (P2)

imply the dictionary declarations

data EvalDict a = E (a -> Int)
data PrintDict a = P (EvalDict a) (a -> String)

We can thus easily access the superclass dictionary via its subclass
dictionary. The actual construction of dictionaries is described by
instance declarations. For example, instance (E1) shows that a
dictionary forEval Lit exists. Instance (E2) shows how to build
a dictionary forEval (Plus a b) given dictionaries forEval a
andEval b.

More formally, class and instance declarations specify a type class
proof system∆ ` d : TCDict t where the environment∆
holds the set of given dictionaries and dictionary valued of type
TCDict t can be concluded from∆ with respect to a given set of
class and instance declarations.

In Figure 1, we give the specific type class proof system result-
ing from the above declarations. Rule (Var) allows us to lookup
assumptions from the environment. Each of the next four rules cor-
respond to one of the four instance declarations. We assume the
following dictionary construction functions.
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(Var)
(d : TCDict t) ∈ ∆

∆ ` d : TCDict t

(E1) ∆ ` instE1 : EvalDict Lit

(E2)
∆ ` d1 : EvalDict a ∆ ` d2 : EvalDict b

∆ ` instP2 (d1, d2) : EvalDict (Plus a b)

(P1) ∆ ` instP1 : PrintDict Lit

(P2)
∆ ` d1 : PrintDict a ∆ ` d2 : PrintDict b

∆ ` instP2 (d1, d2) : PrintDict (Plus a b)

(PE)
∆ ` P d′ print : PrintDict a

∆ ` d′ : EvalDict a

Figure 1. Dictionary-Based Type Class Proof Rules

instE1 :: EvalDict Lit
instE2 :: (EvalDict a,EvalDict b) ->

EvalDict (Plus a b)
instP1 :: PrintDict Lit
instP2 :: (PrintDict a,PrintDict b) ->

PrintDict (Plus a b)

They follow from the instance declarations by turning type classes
in the instance context into argument dictionaries. We leave out
their actual definitions for simplicity. Rule (PE) shows how to
extract theEval dictionary fromPrint. For convenience, we use
pattern matching syntax instead of case expressions.

The translation of programs is now straightforward. For example,
the source program

f1 :: Print a => a -> Int
f1 x = eval x

is translated by turning type classes into additional dictionary ar-
guments. Methods are replaced with some appropriate dictionary
values.

f1 :: PrintDict a -> a -> Int
f1 d = case d of

P d’ print -> case d’ of
E eval -> eval x

In the above, the class contextPrint a is turned into an additional
argument. The calleval demands a dictionary forEval a which
we can supply by extraction from the dictionary ofPrint a. In
terms of the type class proof system, we can express this statement
as follows:

{d : PrintDict a} ` case d of
P d′ print → d′ : EvalDict a

We use case expressions instead of the (short-hand) pattern match-
ing syntax.

The next example makes use of dictionary constructors belonging
to instances in the translation. The program

f2 :: (Eval a, Eval b) => a -> b -> Int
f2 x y = eval (Plus x y)

translates to

f2 :: (EvalDict a, EvalDict b) -> a->b->Int
f2 (d1, d2) x y = case (instP2 (d1,d2)) of

P _ eval -> eval (Plus x y)

The source program demands a dictionary forEval (Plus a
b) which we can supply by applying the dictionary constructor
instP2 to the two dictionaries supplied by the annotation.

Here comes the important observation. In a dictionary-passing
translation scheme, we can introduce new instances and subclasses
without having to recompile existing code. But if we include a
new superclass, saySize, in Print’s class declaration, we need to
change the definition of existing superclass extraction rules such as
(PE). Hence, programs such as functionf1 need to be recompiled.

3.2 Type-Passing Translation Scheme

Let’s see how to translate some of the above programs based on
Thatte’s type-passing translation scheme [27]. We use a System F
style target language extended with type case as found in inten-
tional type analysis [7]. The main idea is to pass around types in-
stead of dictionaries. These types are made available anyway by the
standard translation of Hindley/Milner to System F [6].

Then, the program from before

f1 :: Print a => a -> Int
f1 x = eval x

translates to

f1 = Λa. λx:a. eval a x

None of the type classes are turned into dictionaries. We simply
erase them. We directly use the typea to lookup the specific method
definition. In the translation, functionf1 receives a type argument,
indicated by the “big” lambdaΛa, and passesa to the method
lookup functioneval to select the appropriate method. The details
of eval are given below.

The important insight is that if at some later stage we introduce a
further superclass of classPrint or Eval, the target program of
function f1 remains unchanged and does not need to be recom-
piled. Hence, a type-passing translation scheme naturally supports
the modular extension of superclasses. This is the essential feature
we propose to simplify the “modular” type class encodings of the
GM and SYB approach.

We yet need to discuss how to translate instances. In a dictionary-
passing translation scheme each instance declaration is compiled
into a separate dictionary constructing function. In a type-passing
translation, we need to lump together all these instances. That is, for
each method we need one central method lookup function to access
the type-specific method definitions. Here is the method lookup
function belonging to the above instance declarations of theEval
class.

eval = Λ a. typecase a of
Lit -> ...
Prod b c -> ...

Somebody may argue that this will break separate compilation in
case we introduce new instances. But clearly we can compile the
individual instances separately. Our assumption is that the linker
collects the instance definitions (which are in pre-compiled form)
and glues them together to build the method lookup functioneval.

Another implementation detail is that the actual method definitions
are only built at run-time. Hence, there may be a potential ineffi-
ciency if we use a type-passing translation scheme. For example,
consider the situation where we need to built a definition forPrint
[...[Lit]...]. In Haskell’s translation scheme, we may be able
to built Print [...[Lit]...]’s dictionary based on given dic-
tionaries more efficiently. Obviously, we can improve the transla-
tion by using dynamic programming techniques etc.
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Besides supporting the modular extension of superclasses, the type-
passing translation scheme has a further advantage For example,
the program

g :: Eval (Plus a b) => a -> b -> Int
g x y = eval x + eval y

can be easily translated as follows

g = Λ a,b. λ x:a. λ y:b. eval a x + eval b y

The program text ofg demandsEval a andEval b. We can argue
that these constraints follow (logically) from the constraintEval
(Plus a b) given by the annotation. The dictionary-passing
translation scheme fails here because we must (constructively)
build demanded dictionaries from given dictionaries. Rule (E2) in
Figure 1 only tells us how to buildEval (Plus a b)’s dictionary
given the dictionaries forEval a andEval b. But the other di-
rection, necessary to translate functiong, does not hold in general.
The fact that under a type-passing translation scheme we can in-
terpret instance declarations as “if-and-only-if” relations between
instance context and instance head is interesting but not essential
in our recast of the GM and SYB approach. Though, the ability to
extend the set of superclasses is essential.

3.3 The Story So Far and The Next Steps

We summarize the main points. Under a dictionary-passing trans-
lation scheme, we cannot naturally support the extension of super-
classes. Updating class declarations affects existing proofs, that is
dictionaries, derived from the type class proof system. Hence, the
program needs to be recompiled. Under a type-passing translation
scheme, however, none of the existing proofs is affected if we in-
troduce new superclasses. Hence, no recompilation is necessary.

In the upcoming sections, we revisit the GM and SYB approach and
show that extensible superclasses is the crucial feature to support
modularity. Existing Haskell implementations lack this feature.
Therefore, the extensible version of GM [21] and SYB [18] rely
on features such as abstraction over type classes and recursive
instances. In essence, these features allow to mimic extensible
superclasses under a dictionary-passing translation scheme. We
will discuss this point in more detail for the SYB approach in
Section 4. We argue that we can achieve modularity more directly
by employing extensible superclasses. The type class encodings
become more transparent and easier to maintain for the user.

The details of extensible superclasses are given in Section 6. We
formalize them as an instance of our Constraint Handling Rules
(CHRs) based type class framework married with Thatte’s type-
passing translation method. In such a system, we do not derive dic-
tionaries from type class proofs. We only need to check that type
class proofs are valid. Hence, we can give the user the flexibility to
specify additional proof rules which are not necessarily connected
to any class or instance declarations. We choose the CHR formal-
ism to specify such proof rules. For example, the CHRs

rule Print a ==> Size a
rule Eval a ==> Size a

declareSize to be a superclass ofPrint andEval. Hence, the
CHR notation==> can be read as “subclass of” which is somewhat
contrary to the Haskell notation

class Size a => Eval a
class Size a => Print a

Though, subclassing corresponds logically to Boolean implication.
Hence,==> is the more appropriate notation. Next, we take a look
at the SYB and GM approach and make use of CHR proof rules to
specify extensible superclasses.

4. Scrap Your Boilerplate
4.1 A Non-modular Encoding

The SYB approach allows to write generic functions via a combi-
nator library. We take a look at an example taken from [18] to get
a better understanding of the modular extension problem. We in-
troduce a standard generic function to compute the size of a data
structure.

gsize :: Data a => a -> Int
gsize t = 1 + sum (gmapQ gsize t)

The combinatorgmapQ applies functiongsize to each of the im-
mediate children oft. The result is a list of these sizes which are
then summed up and incremented by one to obtain the total size.
In general, there are further combinators besidesgmapQ to write
generic functions other than queries. These combinators are meth-
ods of theData class. For simplicity, we only consider thegmapQ
combinator.

class Typable a => Data a where
gmapQ :: (forall b. Data b => b -> r) -> a -> [r]

Notice that we givegmapQ a rank-2 type, an extension which is
supported by GHC. Rank-2 types are necessary, for example see
the upcoming instance (D) where we applyf on values of different
type. The instances of theData class can be derived automatically.
Here are two of them.

instance Data Char where
gmapQ f c = []

instance Data a => Data [a] where -- (D)
gmapQ f (x:xs) = [f x, f xs]

Each time we introduce a new generic function such asgsize,
we define a new classSize with methodgsize. Thus, we can
easily specify type-specific behavior ofgsize by providing aSize
instance. Here is the straightforward representation in Haskell

class Size a where
gsize :: a -> Int

-- specific instance
instance Size Name where ...
-- generic instance
instance Data t => Size t where -- (S)

gsize t = 1 + sum (gmapQ gsize t)

The last case is the default, generic case and defines the behavior
on all types that do not matchName. This is an example of an over-
lapping instance, an extension supported by GHC. In the instance
context we findData t because of the callgmapQ in the instance
body. Everything seems fine but the above program will not type
check. The program textgmapQ gsize is the trouble maker. In this
specific context, the combinatorgmapQ expects (as its first argu-
ment) a function of type∀a.Data a=>a->Int but the actual argu-
mentgsize has type∀a.Size a=>a->Int. There is clearly a mis-
match and therefore the program will not type check. As pointed
out in [18], we can fix the problem by makingSize a superclass of
Data.

class (Typable a, Size a) => Data a where
gmapQ :: (forall b. Data b => b -> r) -> a -> [r]

Then, type∀a.Size a=>a->Int can be specialized to the type
∀a.Data a=>a->Int and therefore the above instance (S) type
checks. The down-side is that we need to recompile all existing
code that refers to type classData. This will happen for each newly
introduced generic function. The SYB authors have recognized this
problem.
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4.2 The SYB3 Solution

The key idea behind the solution proposed in [18] (also known as
the SYB3 approach) is to employabstraction over type classes,
a feature that has been suggested by Hughes [11] in a different
context. Here is the rewritten program using type class abstraction.

class (Typeable a, cxt a) => Data cxt a where
gmapQ :: (forall b. Data cxt b => b -> r) ->

a -> [r]
instance Data Size t => Size t where

gsize t = 1 + sum (gmapQ gsize t)

Notice that variablecxt ranges overtype classesinstead oftypes
(hence Hughes coined the term type class abstraction to refer to this
feature). Then, the superclass described bycxt is not fixed when
classData is declared. Thus, we can instantiatecxt with Size
later. See the instance declaration.

There are a number of further adjustments necessary. For example,
abstraction over type classes introduces “ambiguous” types. Hence,
the translation of programs may become ambiguous. Therefore,
explicit type applications must be introduced. We cannot repeat all
the details here and refer to the reader to [18].

The problem is that neither type class abstraction nor explicit type
applications are features supported by any Haskell implementation.
Although, it is possible to encode them by adding a auxiliary
classSat and typeProxy, the details are quite tricky and involve
quite a bit of programmer effort in case we introduce new generic
functions. As mentioned in [18], each generic function requires
a record type, aSat instance and a type proxy that needs to be
inserted at the proper place. The encoding even makes it necessary
to deal with another type class feature known as recursive instances.
We briefly elaborate on this feature in Section 7.

4.3 Our Solution

In our proposed system of extensible superclasses, we can leave
the declaration of classData unchanged. We can introduce the
new generic functiongsize as presented in Section 4.1. All that
is required is to impose the additional condition

rule Data a ==> Size a

which declaresSize to be a superclass ofData.

The program is then accepted in our system. Here is the type-
passing translation for thegmapQ andgsize instances.

gmapQ = Λ a r. λ f:(∀b.b -> r). λ x:a.
typecase a of

Char -> []
[t] -> case x of (y:ys) -> [f t x, f [t] xs]

Each type case corresponds to one instance. The formal parameter
f has a polymorphic type. Hence, in the translation we supplyf
with additional type arguments as in[f t x, f [t] xs]. The
translation ofgsize instances is similar.

gsize = Λ a. λ x:a. typecase a of
Name -> ...
t -> 1 + sum ((gmapQ a Int) gsize x)

In the generic case, thegmapQ-call is supplied with the type argu-
mentsa andInt.

A type-passing translation scheme allows us to keep type class re-
lations flexible. We use dynamic type information to select the ap-
propriate method definitions. Thus, our solution to obtain modular,
extensible, generic functions is more light-weight (in terms of user
programmer effort).

5. Generics for the Masses
Let’s take a look at the GM approach where we will encounter very
similar problems as in case of the SYB approach.

The main idea behind the GM approach is to provide a uniform
representation of data types in terms of unit, sum and product
types. Generic functions are defined in terms of this uniform
rather than the concrete structural representation of a data type. The
programmer only needs to maintain a type isomorphism between
the uniform and concrete representation. Thus, there is no need to
extend the (now generic) definition of functions in case we include
new data types. The trouble is that we cannot override generic with
specific (ad-hoc) behavior in a modular fashion. We will see shortly
why.

Here is a (over-simplified) presentation of the GM approach applied
to our example from Section 2. In the GM approach, each generic
function is an instance of the classGeneric.

data Lit = Lit Int
data Plus a b = Plus a b
data Iso a b = Iso {from :: a -> b,to :: b -> a}
class Generic g where

lit :: g Lit
plus :: g a -> g b -> g (Plus a b)
view :: Iso a b -> g a -> g b

For simplicity, we assume that the concrete representations “lit-
eral” and “plus” are already part of theGeneric class. They are
structurally equivalent to the uniform representations for “unit”
and “products” which are commonly found in theGeneric class.
Via the “view” function we can use the generic function on many
Haskell data types given a type isomorphism between the data
type and its structural representation. By including literal and plus
from the start, we avoid defining some straightforward type isomor-
phisms which would make the whole presentation more noisy. We
will see later in Section 5.1 an example of a type isomorphism. No-
tice thatg in Generic g ranges over type constructors. This is an
example of a constructor class [16] which is supported in Haskell.

Here is the generic definition of the evaluation function.

newtype Ev a = Ev{eval’ :: a -> Int}
instance Generic Ev where

lit = Ev (\x -> case x of Lit i -> i)
plus a b =

Ev (\p -> case p of
(Plus x y) -> eval’ a x + eval’ b y)

view iso a = Ev (\x -> eval’ a (from iso x))

In order to use the evaluator on its familiar type, we need a “dis-
patcher” function to select the appropriate case of a generic func-
tion. The most straightforward approach is to use an ad-hoc poly-
morphic (therefore extensible) function.

class Rep a where
rep :: Generic g => g a

instance Rep Lit where
rep = lit

instance (Rep a,Rep b) => Rep (Plus a b) where
rep = plus rep rep

eval :: Rep t => t -> Int
eval = eval’ rep

The dispatcher functionrep will select the appropriate generic case
depending on the concrete type context. We can straightforwardly
introduce new generic functions.
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newtype Pr a = Pr{print’ :: a -> String}
instance Generic Pr where

lit = Pr (\x -> case x of Lit i -> show i)
plus a b =

Pr (\p -> case p of
(Plus x y) -> print’ a x ++

" + " ++ print’ b y)
view iso a = Pr (\x -> print’ a (from iso x)

print :: Rep t => t -> Int
print = print’ rep

The benefits of the GM approach compared to the Haskell type
class approach become clear. In the GM approach, functionseval
andprint are represented by types which are instances of class
Generic. Thus, both functions work on the same set of types. In
the Haskell type class approach, we introduce a new class for each
function and therefore we cannot give the same guarantees. On the
other hand, we can easily introduce new (ad-hoc) cases by provid-
ing additional instances. This is a problem for the GM approach.
We cannot specify ad-hoc cases without breaking modularity.

For example, data typesPlus a b andMinus a b have the same
uniform representation (as a product type). We obviously do not
want to use the same generic definition for both types. To extend
the Generic class with an ad-hoc “minus” case, we introduce a
subclass.

class Generic g => GMinus g where
minus :: g a -> g b -> g (Minus a b)

instance GMinus Ev where
minus a b =

Ev (\p -> case p of
(Minus x y) -> eval’ a x - eval’ b y)

The problem is that we cannot access this new case, unless we
update the type of the dispatcher functionrep.

class Rep a where
rep :: GMinus g => g a

-- original code: rep :: Generic g => g a
instance (Rep a,Rep b) => Rep (Minus a b) where

rep = minus rep rep
eval :: Rep t => t -> Int
eval = eval’ rep

The original code will not type check for similar reasons as encoun-
tered in the SYB approach.

Alternatively, we could leave the dispatcher untouched and make
GMinus a superclass ofGeneric.

class GMinus g => Generic g where
lit :: g Lit
plus :: g a -> g b -> g (Plus a b)
view :: Iso a b -> g a -> g b

We have not progressed much. Adding the superclassGMinus is
again a non-local change and requires to recompile the entire pro-
gram.

Each time we extend the generic function with a new ad-hoc case,
we have to change the type declaration of the dispatcher. This is
a non-local change and requires to recompile existing code. We
conclude that the GM approach is not modular.

This problem has been addressed [21]. The solution is inspired
by the modular extension of the SYB approach and requires some
experimental type class extensions.

5.1 Our Solution

We first introduce the type classGMinus to represent the new ad-
hoc case. We also provide a (default) generic instance definition for
“minus” in terms of “plus” by means of the “view” case and and a
type isomorphism betweenMinus andPlus.

rule GMinus g ==> Generic g
class GMinus g where

minus :: g a -> g b -> g (Minus a b)
minus a b = view isoMinus (plus a b)

isoMinus :: Iso (Minus a b) (Plus a b)
isoMinus = Iso fromMinus toMinus
fromMinus :: Minus a b -> Plus a b
fromMinus (Minus a b) = Plus a b
toMinus :: Plus a b -> Minus a b
toMinus (Plus a b) = Minus a b

The rule declaration guarantees that for eachGMinus instance
there is aGeneric instance (as expected). This condition is re-
quired by the default instance definition. In Haskell, we would usu-
ally express such conditions via subclassing. But we want to make a
point that under a type-passing translation scheme the introduction
of sub-/superclasses is not necessarily connected to class declara-
tions.

Next, we extend the dispatcher function by adding a new case for
“minus”.

rule Generic g ==> GMinus g
instance (Rep a,Rep b) => Rep (Minus a b) where

rep = minus rep rep

Via therule declaration we introduceGMinus as a superclass of
Generic. This is essential, otherwise, the instance declaration for
the “minus” case will not type check. Two issues arise here.

Therule declaration claims that for eachGeneric instance there
is a GMinus instance. Above we have defined an instance of
Generic on typePr a but there is no such instance declaration
for GMinus. Hence, there seems to be a problem. In terms of the
terminology we develop later in Section 6.2, the type class proof
system is “non-confluent”. But wait! We forgot the generic, de-
fault definition forGMinus. The argument is that unless otherwise
stated, for eachGeneric instance there is always a defaultGMinus
instance. Hence, the type class proof system is confluent.

The second issue is that cyclic dependencies

rule GMinus g ==> Generic g
rule Generic g ==> GMinus g

among theGeneric andGMinus class may threaten decidable type
inference. Again, there is no problem here. Type inference remains
decidable for such cases. We elaborate in Section 6.2.

We conclude that we can introduce new ad-hoc cases and easily
inherit generic definitions without having to change any existing
code. What we do next is override the default evaluator case with a
new ad-hoc definition.

instance GMinus Ev where
minus a b =

Ev (\p -> case p of
(Minus x y) -> eval’ a x - eval’ b y)

In summary, we have achieved a modular extension of the GM
approach. To convince ourselves that our solution works correctly,
we consider the type-passing translation of all declared instances.
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Here is the translation of theRep instances. As said earlier, we can
translate the individual instances separately and link them together
later. We show the final code produced by the linker.

rep = Λ a. typecase a of
Lit -> Λ g. lit g
Plus b c -> Λ g. plus g ((rep b) g) ((rep c) g)
Minus b c -> Λ g. minus g ((rep b) g) ((rep c) g)

The translation is slightly more involved than outlined in Section 3.
In the class declaration ofRep, the type of the methodrep is lo-
cally constrained byGeneric g. In case of the dictionary-passing
translation scheme, we may therefore assume that the dictionary for
Generic gwill be locally supplied at the use site. Hence, the trans-
lation of the instance definitions takes an additional dictionary ar-
gument. The same principle applies in case of a type-passing trans-
lation scheme. For each type case branch, we introduce the local
type abstractionΛ g. At a use site we supply the appropriate type
argument, for example see(rep b) g. The presence of construc-
tor classes also makes it necessary to switch to System Fω as the
target language (this applies to both translation schemes).

The translation of the remaining instances is straightforward.

lit = Λ a. typecase a of
Ev -> Ev (λ x. case x of Lit i -> i)
Pr -> ...

plus = Λ a. typecase a of
Ev -> λ b c. Ev (λ p. case p of

(Plus x y) -> eval’ b x + eval’ c y)
Pr -> λ b c. Ev (λ p. case p of

(Plus x y) -> print’ b x ++
" + " ++ print’ c y)

minus = Λ a. typecase a of
Pr -> λ b c. to (plus Pr b c)
Ev -> λ b c. Ev (λ p. case p of

(Plus x y) -> eval’ b x - eval’ c y)

Notice that we (automatically) included the default instance for
printing.

Functioneval translates to

eval = Λ a. eval’ ((rep a) Ev)

and the call

eval (Minus (Lit 2) (Lit 1))

translates to

eval (Minus Lit Lit) (Minus (Lit 2) (Lit 1))

It should be clear that this program text correctly evaluates to1.

6. Extensible Superclasses
We formalize extensible superclasses using a combination of our
own CHR-based type class framework [25] and Thatte’s type-
passing translation scheme. CHR stand for Constraint Handling
Rule [3] and we use them to specify the type class proof system
for extensible superclasses.

6.1 CHR Type Class Proof System

The syntax of class and instance declarations is as follows:

Types t ::= a | t → t | T t̄
Type Classes tc ::= TC t
Context Ctx ::= (tc1 , ..., tcn)
Constraint C ::= tc | C ∧ C
Classes cls ::= class Ctx ⇒ TC a
Instances inst ::= instance Ctx ⇒ TC t

Notice that constraints and contexts effectively describe the same
object, i.e. collections of type classes. Depending on the situation,
we will use set, tuple or “∧” notation.

We make use of CHRs of the following two forms:

rule TC t =⇒ TC1 t
′

rule TC t ⇐⇒ TC1 t1, ..., TCn tn

where we assume thatTC refers to a type class andt refers to a type.
The first CHR is referred to as apropagationrule and the second is
referred to assimplificationrule. Logically, the symbol=⇒ denotes
Boolean implication and⇐⇒ denotes Boolean equivalence. CHRs
have also a simple operational reading which we will ignore for the
moment. In essence, CHRs model proof rules, similar to type class
proof rules from Section 3.1.

Each declaration

class(TC1 a, ..., TCn a) => TC a

translates to

rule TC a ==> TC1 a
...
rule TC a ==> TCn a

Subclassing states subset relations among instances which can log-
ically be expressed in terms of Boolean implication. Notice that the
Haskell subclass arrow=> is (logically speaking) the wrong way
around!

Each declaration

instance(TC1 t1, ..., TCn tn) => TC t

translates to

rule TC t <==> TC1 t1,...,TCn tn

This is exactly the meaning required to describe type classes under
a type-passing translation scheme. Recall that instances specify if-
and-only-if relations.

Extensible superclasses can then be modeled straightforwardly by
providing additional CHR propagation rules. For example, the fol-
lowing CHRs

rule Eval a ==> Print a -- (1)
rule Print a ==> Eval a -- (2)

state thatPrint is a superclass ofEval and vice versa. The in-
troduction of cyclic CHRs such as (1) and (2) raises the concern
whether we can maintain decidable type inference. We will address
such issues further below.

We can also introduce “short-hand” notation via CHR simplifica-
tion rules.

rule EvalAndPrint a <==> Eval a, Print a

The above introduces anabstract type classEvalAndPrint.
We assume that there are no methods connected to this type
class. In programs, that is in type annotations, we can then use
EvalAndPrint a as a short-hand forEval a, Print a.

Based on this understanding of type classes in terms of CHRs, we
can express type class proofs directly in terms of some familiar
first-order logic statements. LetP be the set of CHRs, derived from
class and instance declarations and specified by the programmer.
Let C be a conjunction of (given) type class constraints andTC t
a (demanded) type class constraint. Then, we can writeP |=
C ⊃ TC t to express thatTC t is derivable fromC underP .
The symbol|= denotes model-theoretic entailment. The statement
P |= C ⊃ TC t holds if TC t can be satisfied in any (first-order)
model ofP andC.
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6.2 CHR Proof Checking

We briefly show how to verify that statementsP |= C ⊃ TC t
hold. First, we perform some logical equivalence transformations.
We have thatP |= C ⊃ TC t iff P |= C ↔ C ∧ TC t. CHRs have
a straightforward operational reading in terms of rewritings among
constraints, more formally written½∗ P . Thus, we can check
P |= C ↔ C∧TC t by executingC ½∗

P C1 andC∧TC t ½∗
P C2

testing whetherC1 andC2 refer to the same canonical normal form.
Decidability and completeness of this check depend on whether
CHRs are terminating and confluent.

Let’s take a look at the formal definition of the operational reading
of CHRs. We assume that we are given a setC of constraints where
TC t′ ∈ C and consider the (rewriting) effect the different forms of
CHRs can have onTC t′.

Propagation step: We can apply

rule TC t =⇒ TC1 t
′′ ∈ P

by adding (propagating)TC1 φ(t′′) to C, if we find a substitu-
tion φ such thatt’ andphi(t) are equal. Notice that we only
perform matching (but not Prolog style unification). That is, we
rewriteC to C ∪ {TC1 φ(t′′)}, written C ½P C, TC1 φ(t′′).
We assume that CHRs are renamed before rule application. No-
tice that we avoid infinite propagation by prohibiting to fire a
rule on the same constraint twice. We refer to [1] for further
details.

Simplification step: We can apply

rule TC t ⇐⇒ TC1 t1, ..., TCn tn ∈ P

if we find a substitutionφ such thatt′ andφ(t) are equal. Then,
we can rewriteC intoC−{TC t′}∪{TC1 φ(t1), ..., TCn φ(tn)},
i.e. the constraint resulting fromC by replacing (simplifying)
TC t′ with TC1 φ(t1), ..., TCn φ(tn).

Each of the rewriting steps preserve the equivalence among con-
straints. Hence, the above checking method forP |= ∆ ⊃ TC t is
clearly correct.

We writeC ½∗
P C′ to denote the exhaustive application of rewrit-

ing steps yielding thefinal constraintC′. We say a set of CHRs is
terminatingif for each constraintC we find a final constraintC′

such thatC ½∗ C′. We say that a set of CHRs isconfluentif dif-
ferent rewriting derivations starting from the same point can always
be brought together again.

Let’s see whether the (extensible superclass) examples we have
seen so far satisfy termination and confluence of CHRs.

We consider the “cyclic” CHRs.

rule Eval a ==> Print a -- (1)
rule Print a ==> Eval a -- (2)

We find that
Eval a

½ Eval a, Print a
½ Eval a

In the first step, we apply CHR (1) onEval a and addPrint a.
In the second step, apply CHR (2) onPrint a which adds the
constraintEval a. But wait, this constraint is already present. We
assume set semantics. Hence, no further constraint will be added.
Recall that we prevent firing the same rule twice on the same
constraint. We have already fired the propagation rule onEval a.
Hence,Eval a ½∗ Eval a, Print a. Hence, the above CHRs are
terminating.

Here is another “cyclic” set of CHRs which arises from the SYB
example. The (simplified) declarations

class Size a => Data a -- (Super)
instance Data a => Size a -- (Inst)

yield

rule Data a ==> Size a
rule Size a <==> Data a

We find that
Size a

½ Data a
½ Data a, Size a
½ Data a, Size a

In the first step, we apply the simplification rule. Then, the propa-
gation rule addsSize a. In the final step, we apply again the sim-
plification rule and simplifySize a byData a. But this constraint
is already present (recall set semantics). The propagation rule has
already been fired onData a. Hence,Size a ½∗ Data a, Size a.
Hence, the above CHRs are terminating.

The SYB authors claim that the above program is non-terminating.
That is, the rewriting steps implied by class and instance declara-
tions may not terminate. As we show above this is not the case.
There is also no connection to recursive instances. The “recursion”
goes through a superclass!

We conclude. Although extensible superclasses introduce “cyclic”
relations, resulting CHRs are terminating for the examples we have
seen so far. We leave it for future work to establish syntactic
conditions (in style of the Haskell conditions [22] imposed on
instances) that guarantee termination. Note that for terminating
CHRs there is an easy check of confluence by testing whether all
“critical pairs” are joinable.

For example, consider

rule Print a ==> Eval a
rule Print Lit <==> True

We consider the critical pairPrint Lit. We find two non-joinable
derivationsPrint Lit ½∗ True and Print Lit ½∗ Eval Lit.
Hence, the above CHRs are non-confluent and hence we must reject
the program. And rightly so, the first CHR claims that for each
Print t there is aEval t which is not the case because of the
second CHR.

6.3 Type-Passing Translation Scheme

We highlight the main aspects. For simplicity, we only consider the
translation of expressions and focus on the most interesting rules.
The development is pretty much similar to the standard dictionary-
passing translation method. The crucial difference is that we strictly
erase type classes and use types to access specific method defini-
tions.

We work with a simple expression language representing the core
of a functional language with type classes. As our target language,
we use a simplified version of System F. Function parameters are
annotated with Hindley/Milner types which is sufficient here. There
is also no need for a type case because we only consider the
translation of expressions:

Type Schemes σ ::= t | ∀a.σ | TC t ⇒ σ
Expressions e ::= x | λx.e | e e | let g = e in e
Target E ::= x | λx : σ.E | E E | Λa.E | E t

We follow the common path and employ a type-directed translation
scheme formulated in terms of judgmentsC, Γ ` e : σ ; E
whereC is a constraint holding the set of type class constraints,
Γ is a environment assigning type schemes to free variables,e is a
expression with typeσ andE is a target expression. The judgment
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C, Γ ` e : σ ; E states that a well-typed expressione with type
σ is translated to the target programE.

Here are the most interesting translation rules:

(∀Intro)
C, Γ ` e : σ ; E a 6∈ fv(Γ, C)

C, Γ ` e : ∀a.σ ; Λa.E

(∀Elim)
C, Γ ` e : ∀a.σ ; E

C, Γ ` e : [t/a]σ ; E t

(⇒Intro)
C ∧ TC t , Γ ` e : t′ ; E

C, Γ ` e : TC t ⇒ t′ ; E

(⇒Elim)
C, Γ ` e : TC t ⇒ σ ; E P |= C ⊃ TC t

C, Γ ` e : σ ; E

The first two rules are familiar from translating Hindley/Milner to
System F [6]. In rule (∀Intro), we assume thatfv(Γ, C) computes
the set of free (type) variables of an environment and constraint.
If a variable is not in this set we can universally quantify over
this variable. We use a System F style target language, therefore,
we make type abstraction (and later application) explicit viaΛ,
pronounced “big” lambda. In case of elimination (i.e. instantiation)
of a universal quantifier we use type application in the target term.
Up to know the same translation steps apply to the dictionary-
translation scheme as well.

The crucial difference between the dictionary- and type-passing
is manifested in the last two rules. Pushing a type class into a
type scheme has no effect on the translated program under a type-
passing scheme. See rule (⇒Intro). That is, type classes are simply
erased during the translation. This is in contrast to the dictionary-
passing scheme where we would introduce a lambda-abstraction
because type classes are turned into dictionaries. In rule (⇒Elim),
we eliminate a type class if we can prove that this type class follows
from the given assumptions (represented byC) under the given set
of proof rules (represented byP ), i.e. P |= C ⊃ TC t holds.
Again, elimination has no effect on the translated program. In the
dictionary-passing scheme, we would need to derive a dictionary
our of the type class proof.

We leave it to future work to establish properties such as type
soundness and coherence. We expect that these properties follow
by straightforward application of methods and techniques found
in [27, 25]. For example, Thatte has already proven type soundness
whereas we have verified coherence if CHRs are confluent.

7. Related Work
7.1 Translating Type Classes

Thatte [27] is the first to propose a type-passing translation scheme
for type classes. His main motivation is to provide an alternative
semantics where type classes can be interpreted co-inductively. For
example, consider the following program.

class Foo a where foo :: a->Int
instance Foo a => Foo a where foo = foo

Under the standard inductive interpretation of type classes,Foo t
has no meaning for any typet. Simply because we cannot (induc-
tively) rewriteFoo t to some simpler form. Under a co-inductive
interpretation, however, we can giveFoo t the “undefined” mean-
ing.

In case we employ the standard dictionary-passing translation, the
meaning of co-inductive type classes can be explained in terms of
recursive dictionaries.

data Foo a = F (a->Int)
inst :: Foo a -> Foo a
inst (F foo) = F foo

d :: Foo t
d = inst d

Among others, such an extension is required in the SYB3 ap-
proach [18]. In our own work [26], we formalize recursive instances
in the presence of a dictionary-passing translation scheme.

Thatte’s work does not include superclasses. We show here that
we can naturally support extensible superclasses in a combination
of Thatte’s type-passing translation scheme and our own CHR-
based type class framework. The translation scheme we employ
in the CHR-based type class framework (from here-on referred
to as ATO) is in fact a hybrid. Similar to the dictionary-passing
scheme, we assume dictionary constructing functions. Though, in-
stance declarations describe if-and-only-if relations in ATO. For
example, in ATO the statementPrint [a] ` Print a is correct.
In Haskell, we cannot verify this statement because it is not obvi-
ous how to construct a proof (i.e. dictionary) forPrint a out of
the proof forPrint [a]. In ATO this problem is solved by assum-
ing that dictionary constructing functions are defined for all ground
instances. Of course, to implement such a scheme Thatte’s type-
passing translation method is the natural choice.

Another alternative translation scheme for type classes, similar to
Thatte’s type-passing method, appears also in the work by Pottier
and Gauthier [24]. They use GADTs (also known as guarded recur-
sive data types [31]) instead of System F extended with type-case
for the translation. The idea is to represent dictionaries via GADTs.
Here is the dictionary representation of thePrint andEval class
using the GADT notation as available in GHC.

data EvalDict a where
EInstLit :: EvalDict List
EInstProd :: EvalDict a ->

EvalDict b -> EvalDict (Prod a b)
data PrintDict a where

PInstLit :: PrintDict Lit
PInstProd :: PrintDict a ->

PrintDict b -> PrintDict (Prod a b)

The above constructor definitions require GADTs because the (out-
put) type changes. They directly correspond to the instance decla-
rations.

As in case of the type-passing translation scheme, we need to lump
together the instance definitions. Here is the translation of theEval
instances.

eval :: EvalDict a -> a-> Int
eval d = case d of

EInstLit -> ...
EInstProd -> ...

Up to here this looks exactly like Thatte’s type-passing translation.
This is not surprising given that the idea of GADTs can be traced
back to work on intentional type analysis.

However, the GADT-based translation scheme has a slight disad-
vantage when it comes to translating programs with sub-/superclasses.
For example, the program we have seen earlier

f1 :: Print a => a -> Int
f1 x = eval x

translates to the GADT program

f1 :: PrintDict a -> a -> Int
f1 d = eval (super d) x
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The functionsuper to extract superclass from subclass dictionaries
is defined as follows.

super :: PrintDict a -> EvalDict a
super PInstLit = EInstLit
super (PInstProd a b) = EInstProd (super a) (super b)

The disadvantage of the GADT translation scheme is that each
time we introduce a new sub-/superclass we will need to adapt the
definition ofsuper. Though, this is still a local change. Hence, we
do not need to recompile functionf1. The point is that in a type-
passing translation scheme there are literally no changes necessary.
Hence, we can argue that for a practical implementation Thatte’s
type-passing translation method is the preferred choice over the
encoding in terms of GADTs.

7.2 Generic Programming

Language extensions such as Generic Haskell [19] and PolyP [13]
have direct support for generic functions but do not provide sup-
port for open extension. The Clean [23] supports both generic pro-
gramming with the opportunity to override generic instances via
specialization.

Wang, Chen and Khoo [29] apply aspect-oriented programming
techniques to support openly extensible generic functions. Their
idea is to use type classes to define the generic cases andtype-
scoped(also known as type-guarded)aspectsfor extensions. We
yet have to work out the precise connections to our work. In [30],
Washburn and Weirich propose a similar solution by modeling type
class style overloading with aspects.

In [20], Löh and Hinze proposed a simple yet powerful solution to
the problem of extensibility on both dimensions of functions and
data types. Their source language allows definitions of function
clauses and data constructors to be scattered in different modules;
and merge them into one by preprocessing. It is obvious that many
of the examples in this paper can be encoded in their language. The
primary difference between our proposal and their’s is the use of
data constructors versus class instances. There are pros and cons for
both approaches. For some applications such as extensibleeval, a
data type encoding of expression appears to be more straightfor-
ward. For the others such asgsize, ad-hoc polymorphism avoids
clumsy embedding of types into data constructors. Another notable
advantage of our approach is static safety. A function called with
arguments which has no instances defined on will result in a static
error; instead of a run-type pattern matching failure as in Löh’s and
Hinze’s system.

Much of our work, concerns explaining how to make type class
encodings of the GM and SYB approach “modular” in terms of
the alternative concept of extensible superclasses. In this respect,
our work can be seen orthogonal to work by Hinze, Löh and
Oliveira [10] who explain the “spine-view” underlying the SYB
approach. It is interesting to note that they use GADTs in their
example programs. As argued above GADTs are nothing else than
a convenient source-language notation to mimic a type-passing
translation scheme.

8. Conclusion
We have given a new perspective how to achieve modularity for
the GM and SYB generic programming approach via extensible
superclasses. In our opinion, extensible superclasses provide for a
much more natural solution compared to previous solutions which
require type class abstraction and recursive instances. We have
formalized the main aspects of extensible superclasses using a
combination of Thatte’s type-passing translation scheme and our
own CHR-based framework. There is lots of future work ahead.

The translation scheme behind extensible superclasses demands
significant changes to the dictionary-passing translation scheme
currently employed in Haskell. We yet have to study the impact
Thatte’s translation scheme has on existing compiler optimizations.
Realistically, we do not expect that any time soon systems such
as GHC will be able to support extensible superclasses. However,
the experimental Haskell compiler JHC [15] implements a type
class translation scheme that is very close to Thatte’s type-passing
method. We consider this as evidence that a specialized Haskell
compiler to support modular generic programming via extensible
superclasses is feasible in the near future.

Thatte’s type-passing translation scheme resembles method lookup
as found in OO languages. Modularity, local modification and
separate compilation have been studied in OO languages for years.
We hope that we can take advantage of results in this area and plan
to pursue this topic in future work.
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