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Abstract tirely satisfactory and may affect the understandability of the GM
approach.

“Generics for the Masses” (GM) and “Scrap your Boilerplate”
(SYB) are generic programming approaches based on some in-The SYB approach has similar problems when it comes to the mod-
genious applications of Haskell type classes. To achieve modu- ular extension of generic functions. In [18], non-standard type class
larity, the GM and SYB approach have been extended by using features such as type class abstraction [11] and recursive instances
some experimental language extensions such as abstraction ovefa.k.a. recursive dictionaries, co-inductive type classes) [26] are
type classes and recursive instances. Hence, the type class encodmployed to support modular, extensible generic functions.

ings behind the GM and SYB approach become less practical and

harder to understand. In this paper, we take a fresh look at generic programming with

type classes. Our contributions are as follows:
We show that none of these type class features are necessary if we
use the single feature of extensible superclasses, the complement
of subclass extension. We formalize type classes with extensible

superclasses as the combination of a previously introduced type-

passing translation scheme and a general type class framework. Our
results shed some new light on the use of type classes to support

¢ We show that the GM and SYB approach can be made modu-
lar by employingextensible superclasses type class feature
which supports the incremental extension of superclasses (Sec-
tions 5 and 4). In our opinion, extensible superclasses provide
for a much more natural solution to the “modularity” problem.

generic programming. ¢ We formalize extensible superclasses using a combination of a
previously proposed type-passing translation scheme by Thatte
1. Introduction and our own Constraint Handling Rules based type class frame-

. L . . work (Section 6).
Generic programming is a style of programming where a single

genericfunction definition is applicable to a wide range of data In Section 7 we discuss further related work. We conclude in
types. This is in contrast to @d-hoc polymorphidunction which Section 8.

provides a separate definition for_each dat_a type. There are a NUM-rp o oM and SYB approach make heavy use of type classes.
ber of compelling approaches which exploit ad-hoc polymorphism

o SUPPOIt generic programming Hence, we first give an introduction to Haskell type classes in the

' next section. Unless otherwise stated, we assume Haskell 98 type
Prominent examples are “Generics for the Masses” (GM) [9] by classes [22]. We implement a library which supplies evaluation and
Hinze and “Scrap your Boilerplate” (SYB) [17] bydmmel and printing functions for a simple arithmetic expression language us-
Peyton Jones. These works employ Haskell type classes [22, 28],ing type classes in the most straightforward way. In case we extend
which are an elegant formulation to support ad-hoc polymor- the functionality of our library, we wish to maintain close relations
phism as an extension of Hindley/Milner. Besides Haskell, type among the set of instances provided. But this requires to update
classes can also be found in a number of other languages such aexisting class declarations which in turn forces us to recompile
Clean [23], HAL [2] and Mercury [8, 14]. the entire program. Hence, modularity is broken. For very similar

Unfortunately, the GM approach requires to update the class dec."€asons, the GM and SYB approach struggle to achieve modularity.

larations with new method definitions for each ad-hoc type case. In Section 3, we investigate why changing class declarations breaks

The consequence is that the GM approach is not modular. In somemodularity by taking a closer look at the dictionary-passing trans-

recent work [21] this problem has been addressed, by either rely- lation scheme [5, 26] underlying Haskell implementations. Haskell

ing on specific dispatcher functions for each generic function or implementations support the modular extension of subclasses but

using some non-standard type class extensions such as undecidableot superclasses. If we switch to a type-passing translation scheme,

instances [4]. We believe that the proposed solutions are not en-we can incrementally introduce further superclasses without hav-
ing to recompile existing code. This is the essence of our method
to achieve modularity for the GM and SYB approach.

2. Haskell Type Classes

Permission to make digital or hard copies of all or part of this work for personal or . . e . .
classroom use is granted without fee provided that copies are not made or distributed VW& Start off with the definition and specific implementations of the

for profit or commercial advantage and that copies bear this notice and the full citation evaluation function for a simple expression language.
on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. -- expression language
) _ data Lit = Lit Int
Copyright© ACM [to be supplied]. .. $5.00. data Plus a b = Plus a b
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-- evaluator Thus, we can guarantee that for evemyint instance there is a
class Eval a where eval instance and vice versa. We have achieved our goal to catch
eval :: a->Int the error at the definition site. But there is a serious problem.
instance Eval Lit where
eval (Lit n) = n
instance (Eval a, Eval b) => Eval (Plus a b) where
eval (Plus a b) = eval a + eval b

Haskell currently prohibits recursive subclass relations. But this
restriction can be safely lifted as we will argue later in Section 6.2.

The real problem is that our use of subclassing breaks modularity.
For example, at some later stage we may want to introduce

The class declaration states that cl@ssl has a functioreval

(also known as method) to evaluate values of typ® integers. class Size a where size :: a —> Int

A type class constraint such &sal t expresses thattypeisa  to compute the size of expressions. We leave out the instances for
member of clas&val. The instance declarations provide specific - simplicity. We would like to ensure thatize operates on the exact
implementations oéval on data typesit andPlus a b. Notice same set of types asal andprint. To impose this condition, we

that the last instance declaration states that we can build an instanceyil| need to altereval’s andprint’s class declarations.
of eval on typePlus a b if we can provide definitions for the

callseval aandeval b. We commonly refertqEval a, Eval class (Eval a, Size a) => Print a

b) asthe instanceontextand toEval (Prod a b) astheinstance where print :: a -> String

head class (Print a, Size a) => Eval a
. . . - . where eval :: a -> Int

Itt is straightforward to define new cases by providing new in- class (Eval a, Print a) => Size a

stances. where size :: a -> Int

data Minus a b = Minus a b
instance (Eval a, Eval b) => Eval (Minus a b) where
eval (Minus a b) = eval a - eval b

But changing existing class declarations means we need to recom-
pile existing code. Hence, modularity is broken. To better under-

o ] ] stand why this is the case and how to fix the problem, we take a
We can also easily introduce new functions. For convenience, we |ook at possible ways to translate type classes.

omit the instance bodies in the program text below. They do not
matter here. 3 T lating T Cl
class Print a where ! rans atmg ype L1asses

print :: a -> String 3.1 Dictionary-Passing Translation Scheme
instance Print Lit
instance (Print a,Print b) => Print (Plus a b)
instance (Print a,Print b) => Print (Minus a b)
instance Print a => Print [al - @)

In Haskell, we translate type classes by representing them via
dictionaries. These dictionaries hold the actual method definitions.
Each superclass dictionary is part of its (direct) subclass dictionary.
For example, the declarations

The addition of the new cases and functions does not require to re-

compile any existing code. Hence, type classes support the modularcclass Eval a where eval :: a -> Int

extension of libraries. class Eval a => Print a where -- (PE)
. . . print :: a -> String
The trouble is thaéval andprint, respectively their type classes  instance Eval Lit -- (E1)
Eval andPrint, are only loosely connected. We support printing  instance (Eval a, Eval b) =>
on lists, see instance (L), but there is no such instanc&aL. Eval (Plus a b) —— (E2)
This may result in some unexpected behavior for the user. FOr jpstance Print Lit - (P1)
example, consider the following user program. instance (Print a,Print b) =>
literals = [Lit 1, Lit 2] Print (Plus a b) -- (P2)

evalAndprint = (eval literals, print literals) imply the dictionary declarations

We attempt to useval andprint on type[Lit] In case ofeval,
there is no definition that deals with this case. In Haskell speal
the above yields an unresolved instance eBesl [Lit]. We

would much prefer to catch this error at the definition rather than \we can thus easily access the superclass dictionary via its subclass

k data EvalDict a = E (a -> Int)
" data PrintDict a = P (EvalDict a) (a -> String)

use site. What we would like is to guarantee te@l andprint dictionary. The actual construction of dictionaries is described by
are defined for the exact same set of instances. instance declarations. For example, instance (E1) shows that a
In Haskell, we can give such guarantees via subclassing. We replacedictionary forEval Lit exists. Instance (E2) shows how to build
Print’s class declaration as follows. a dictionary forEval (Plus a b) given dictionaries foEval a

) ) ) andEval b.
class Eval a => Print a where print :: a -> String

More formally, class and instance declarations specify a type class
proof systemA + d : TCDict t where the environmenf\
holds the set of given dictionaries and dictionary vaduef type
TCDict t can be concluded fromh with respect to a given set of
class and instance declarations.

This declaration defineg&rint to be a subclass @val. Or putting

it the other way aroundgval is declared to be a superclass of
Print. Then, any Haskell implementation such as GHC [4] or
HUGS [12] will complain that there is an instance farint [al,
see (L) above, but such an instance is missinE&fei1.

Subclassing effectively guarantees that the set of instances of theln Figure 1, we give the specific type class proof system result-

: ing from the above declarations. Rule (Var) allows us to lookup
superclass are a subset of the set of instances of the subclass. Hencgssumptions from the environment. Each of the next four rules cor-
it is only natural to replacgval’s class declaration by :

respond to one of the four instance declarations. We assume the
class Print a => Eval a where eval :: a -> Int following dictionary construction functions.
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) The source program demands a dictionary el (Plus a
(Var) (d:TCDict t) € A b) which we can supply by applying the dictionary constructor
A F d:TCDict t instP2 to the two dictionaries supplied by the annotation.
(E1) A b instEl : EvalDict Lit Here comes the important_observation. In a dictionary-passing
translation scheme, we can introduce new instances and subclasses
. . without having to recompile existing code. But if we include a
(E2) AF d.l :EvalDicta 4 F d? - Evalbict b new superclass, s@ize, in Print's class declaration, we need to
A |- instP2 (d1,d2) : EvalDict (Plus ab) change the definition of existing superclass extraction rules such as
(PE). Hence, programs such as functfanneed to be recompiled.
(P1) A F instP1:PrintDict Lit
3.2 Type-Passing Translation Scheme
(P2) Ar d_1 :PrintDicta A .'_ d2_ s PrintDict b Let's see how to translate some of the above programs based on
A b instP2 (d1,d2) : PrintDict (Plusab) Thatte’s type-passing translation scheme [27]. We use a System F
style target language extended with type case as found in inten-
A F Pd print : PrintDict a tional type analysis [7]. The main idea is to pass around types in-
(PE) : : ctionari :
A - d : EvalDict a stead of dictionaries. These types are made available anyway by the
standard translation of Hindley/Milner to System F [6].
Figure 1. Dictionary-Based Type Class Proof Rules Then, the program from before
f1 :: Print a => a -> Int
instEl :: EvalDict Lit fl x = eval x

instE2 :: (EvalDict a,EvalDict b) ->
EvalDict (Plus a b)

instP1 :: PrintDict Lit f1 = Aa. Ax:a. eval a x

instP2 :: (PrintDict a,PrintDict b) ->
PrintDict (Plus a b)

translates to

None of the type classes are turned into dictionaries. We simply
erase them. We directly use the typt lookup the specific method
They follow from the instance declarations by turning type classes definition. In the translation, functiofil receives a type argument,

in the instance context into argument dictionaries. We leave out indicated by the “big” lambda\a, and passes to the method
their actual definitions for simplicity. Rule (PE) shows how to lookup functioneval to select the appropriate method. The details
extract theEval dictionary fromPrint. For convenience, we use  of eval are given below.

ttern matchin ntax inst f Xpressions. . S . .
patte atching syntax instead of case expressions The important insight is that if at some later stage we introduce a

The translation of programs is now straightforward. For example, further superclass of clagxrint or Eval, the target program of

the source program function £1 remains unchanged and does not need to be recom-

piled. Hence, a type-passing translation scheme naturally supports
the modular extension of superclasses. This is the essential feature

) ) ) N o we propose to simplify the “modular” type class encodings of the
is translated by turning type classes into additional dictionary ar- GM and SYB approach.

guments. Methods are replaced with some appropriate dictionary

f1 :: Print a => a -> Int
fl x = eval x

values. We yet need to discuss how to translate instances. In a dictionary-
passing translation scheme each instance declaration is compiled
f1 :: PrintDict a -> a -> Int into a separate dictionary constructing function. In a type-passing
fl1 d = case d of translation, we need to lump together all these instances. That is, for
P d’ print -> case d’ of each method we need one central method lookup function to access
E eval -> eval x the type-specific method definitions. Here is the method lookup
In the above, the class cont@¢tint a is turned into an additional ~ function belonging to the above instance declarations oftka
argument. The cakkval demands a dictionary f@val a which class.

we can supply by extraction from the dictionary Bxfint a. In

. eval = A a. typecase a of
terms of the type class proof system, we can express this statement

Lit -> ...
as follows: Prod b ¢ => ...
{d:PrintDicta} - °25¢ 3 °f , . S is wi ilation i
P d print — d : EvalDicta omebody may argue that this will break separate compilation in

. ) case we introduce new instances. But clearly we can compile the
We use case expressions instead of the (short-hand) pattern matchygividual instances separately. Our assumption is that the linker
ing syntax. collects the instance definitions (which are in pre-compiled form)
The next example makes use of dictionary constructors belonging and glues them together to build the method lookup funatiesi.
to instances in the translation. The program Another implementation detail is that the actual method definitions
£f2 :: (Eval a, Eval b) => a -> b -> Int are only built at run-time. Hence, there may be a potential ineffi-
f2 x y = eval (Plus x y) ciency if we use a type-passing translation scheme. For example,

consider the situation where we need to built a definitiorPfaimt

translates to [...[Lit]...].In Haskell's translation scheme, we may be able

£2 :: (EvalDict a, EvalDict b) -> a->b->Int to built Print [...[Lit]...]’s dictionary based on given dic-
£2 (d1, d2) x y = case (instP2 (d1,d2)) of tionaries more efficiently. Obviously, we can improve the transla-
P _ eval -> eval (Plus x y) tion by using dynamic programming techniques etc.
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Besides supporting the modular extension of superclasses, the type4.  Scrap Your Boilerplate
passing translation scheme has a further advantage For example ) .
the program 4.1 A Non-modular Encoding
The SYB approach allows to write generic functions via a combi-
nator library. We take a look at an example taken from [18] to get

a better understanding of the modular extension problem. We in-

g :: Eval (Plus a b) => a -> b -> Int
gxy=-eval x + eval y

can be easily translated as follows troduce a standard generic function to compute the size of a data
g=Aa,b. A x:a. A y:b. eval a x + eval b y structure.
gsize :: Data a => a -> Int

The program text of demand€val aandEval b.We can argue
that these constraints follow (logically) from the constraintl

(Plus a b) given by the annotation. The dictionary-passing The combinatogmapq applies functiongsize to each of the im-
translation scheme fails here because we must (constructively) mediate children ot. The result is a list of these sizes which are
build demanded dictionaries from giVen dictionaries. Rule (E2) in then summed up and incremented by one to obtain the total size.
Figure 1 only tells us how to builEival (Plus a b)’s dictionary In general, there are further combinators besigespQ to write

given the dictionaries foEval a andEval b. But the other di-  generic functions other than queries. These combinators are meth-

rection, necessary to translate functigrdoes not hold in general.  ods of theData class. For simplicity, we only consider tigapQ
The fact that under a type-passing translation scheme we can in-combinator.

terpret instance declarations as “if-and-only-if” relations between
instance context and instance head is interesting but not essentiaklass Typable a => Data a where

in our recast of the GM and SYB approach. Though, the abilityto ~ gmapQ :: (forall b. Data b => b -> r) -> a -> [r]
extend the set of superclasses is essential.

gsize t = 1 + sum (gmapQ gsize t)

Notice that we givegmapQ a rank-2 type, an extension which is
3.3 The Story So Far and The Next Steps supported by GHC. Rank-2 types are necessary, for example see
the upcoming instance (D) where we applgn values of different

We summarize the main points. Under a dictionary-passing trans- type. The instances of tiiata class can be derived automatically.
lation scheme, we cannot naturally support the extension of super-Here are two of them.

classes. Updating class declarations affects existing proofs, that is

dictionaries, derived from the type class proof system. Hence, the instance Data Char where

program needs to be recompiled. Under a type-passing translation gmapQ £ c = []

scheme, however, none of the existing proofs is affected if we in- instance Data a => Data [a] where -- (D)

troduce new superclasses. Hence, no recompilation is necessary.  gmapQ £ (x:xs) = [f x, f xs]

In the upcoming sections, we revisit the GM and SYB approach and Each time we introduce a new generic function suchzsize,
show that extensible superclasses is the crucial feature to supportve define a new clasSize with methodgsize. Thus, we can
modularity. Existing Haskell implementations lack this feature. easily specify type-specific behaviorgdize by providing aSize
Therefore, the extensible version of GM [21] and SYB [18] rely instance. Here is the straightforward representation in Haskell
on features such as abstraction over type classes and recursive .
instances. In essence, these features allow to mimic extensibleclass Size a where
superclasses under a dictionary-passing translation scheme. We 8size :: a -> Int
will discuss this point in more detail for the SYB approach in ~~ Specific instance
Section 4. We argue that we can achieve modularity more directly instance Size Name where ...
by employing extensible superclasses. The type class encodings ~ &eneric instance
become more transparent and easier to maintain for the user. instance Data t => Size t where - ()

gsize t = 1 + sum (gmapQ gsize t)
The details of extensible superclasses are given in Section 6. We
formalize them as an instance of our Constraint Handling Rules The last case is the default, generic case and defines the behavior
(CHRs) based type class framework married with Thatte’s type- On all types that do not matafame. This is an example of an over-
passing translation method. In such a system, we do not derive dic-lapping instance, an extension supported by GHC. In the instance
tionaries from type class proofs. We only need to check that type context we findbata t because of the cagmapQ in the instance
class proofs are valid. Hence, we can give the user the flexibility to body. Everything seems fine but the above program will not type
specify additional proof rules which are not necessarily connected check. The program tegiapQ gsize is the trouble maker. In this
to any class or instance declarations. We choose the CHR formal-Specific context, the combinatgtapQ expects (as its first argu-

ism to Specify such proof rules. For examp|e, the CHRs ment) a function of typﬁa.Data a=>a->Int but the actual argu-

] ) mentgsize hastypeva.Size a=>a->Int. Thereis clearly a mis-
rule Print a ==> S}Ze a match and therefore the program will not type check. As pointed
rule Eval a ==> Size a out in [18], we can fix the problem by makirs ze a superclass of

declaresize to be a superclass #frint andEval. Hence, the Data.
CHR notation==> can be read as “subclass of” which is somewhat

. class (Typable a, Size a) => Data a where
contrary to the Haskell notation (Typ ize a) "

gmapQ :: (forall b. Data b => b -> r) -> a -> [r]
class Size a => Eval a

class Size a => Print a Then, typeVa.Size a=>a->Int can be specialized to the type

Va.Data a=>a->Int and therefore the above instance (S) type
Though, subclassing corresponds logically to Boolean implication. checks. The down-side is that we need to recompile all existing
Hence,==> is the more appropriate notation. Next, we take a look code that refers to type claBsta. This will happen for each newly

at the SYB and GM approach and make use of CHR proof rules to introduced generic function. The SYB authors have recognized this
specify extensible superclasses. problem.
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4.2 The SYB3 Solution

The key idea behind the solution proposed in [18] (also known as
the SYB3 approach) is to empla@bstraction over type classes

a feature that has been suggested by Hughes [11] in a different
context. Here is the rewritten program using type class abstraction.

class (Typeable a, cxt a) => Data cxt a where
gmapQ :: (forall b. Data cxt b => b -> r) ->
a -> [r]
instance Data Size t => Size t where
gsize t = 1 + sum (gmapQ gsize t)

Notice that variablext ranges ovetype classeinstead oftypes

(hence Hughes coined the term type class abstraction to refer to thigN

feature). Then, the superclass describeaty is not fixed when
classData is declared. Thus, we can instantiatet with Size
later. See the instance declaration.

There are a number of further adjustments necessary. For example
abstraction over type classes introduces “ambiguous” types. Hence
the translation of programs may become ambiguous. Therefore
explicit type applications must be introduced. We cannot repeat all
the details here and refer to the reader to [18].

The problem is that neither type class abstraction nor explicit type
applications are features supported by any Haskell implementation.
Although, it is possible to encode them by adding a auxiliary
classsat and typeProxy, the details are quite tricky and involve
quite a bit of programmer effort in case we introduce new generic
functions. As mentioned in [18], each generic function requires
a record type, 8at instance and a type proxy that needs to be

data Lit

5. Generics for the Masses

Let’s take a look at the GM approach where we will encounter very
similar problems as in case of the SYB approach.

The main idea behind the GM approach is to provide a uniform
representation of data types in terms of unit, sum and product
types. Generic functions are defined in terms of this uniform
rather than the concrete structural representation of a data type. The
programmer only needs to maintain a type isomorphism between
the uniform and concrete representation. Thus, there is no need to
extend the (now generic) definition of functions in case we include
new data types. The trouble is that we cannot override generic with
specific (ad-hoc) behavior in a modular fashion. We will see shortly

hy.
Here is a (over-simplified) presentation of the GM approach applied

to our example from Section 2. In the GM approach, each generic
function is an instance of the claGsneric.

= Lit Int

data Plus a b = Plus a b
data Iso a b = Iso {from ::
class Generic g where

a->b,to :: b > a}

lit :: g Lit
plus :: ga ->gb ->g (Plus a b)
view :: Isoab ->ga->gb

For simplicity, we assume that the concrete representations “lit-
eral” and “plus” are already part of the&eneric class. They are
structurally equivalent to the uniform representations for “unit”

inserted at the proper place. The encoding even makes it necessargnd "products” which are commonly found in tfieneric class.
to deal with another type class feature known as recursive instancesvia the “view” function we can use the generic function on many

We briefly elaborate on this feature in Section 7.

4.3 Our Solution

Haskell data types given a type isomorphism between the data
type and its structural representation. By including literal and plus
from the start, we avoid defining some straightforward type isomor-
phisms which would make the whole presentation more noisy. We

In our proposed system of extensible superclasses, we can leavgy|| see later in Section 5.1 an example of a type isomorphism. No-

the declaration of clasBata unchanged. We can introduce the
new generic functiorgsize as presented in Section 4.1. All that
is required is to impose the additional condition

rule Data a > Size a

which declaresize to be a superclass Dhata.

The program is then accepted in our system. Here is the type-
passing translation for thgmapQ andgsize instances.

gmapQ = A ar. A £f:(Vb.b -> r). X x:a.
typecase a of
Char -> []
[t] -> case x of (y:ys) -> [f t x, £ [t] xs]

tice thatg in Generic g ranges over type constructors. This is an
example of a constructor class [16] which is supported in Haskell.

Here is the generic definition of the evaluation function.

newtype Ev a = Ev{eval’ :: a -> Int}
instance Generic Ev where
lit = Ev (\x -> case x of Lit i -> i)
plus a b =
Ev (\p -> case p of
(Plus x y) -> eval’ a x + eval’ b y)
Ev (\x -> eval’ a (from iso x))

view iso a

In order to use the evaluator on its familiar type, we need a “dis-

Each type case corresponds to one instance. The formal parametepatcher” function to select the appropriate case of a generic func-

£ has a polymorphic type. Hence, in the translation we sugply
with additional type arguments as It t x, £ [t] xs]. The
translation ofgsize instances is similar.

gsize = A a. A x:a. typecase a of
Name -> ...
t -> 1 + sum ((gmapQ a Int) gsize x)

In the generic case, thenapQ-call is supplied with the type argu-
mentsa andInt.

A type-passing translation scheme allows us to keep type class re-eval

lations flexible. We use dynamic type information to select the ap-
propriate method definitions. Thus, our solution to obtain modular,
extensible, generic functions is more light-weight (in terms of user
programmer effort).

tion. The most straightforward approach is to use an ad-hoc poly-
morphic (therefore extensible) function.

class Rep a where
rep :: Generic g => g a

instance Rep Lit where
rep = lit

instance (Rep a,Rep b) => Rep (Plus a b) where
rep = plus rep rep

eval :: Rep t => t -> Int

eval’ rep

The dispatcher functionep will select the appropriate generic case
depending on the concrete type context. We can straightforwardly
introduce new generic functions.
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newtype Pr a = Pr{print’
instance Generic Pr where

lit = Pr (\x -> case x of Lit i -> show i)

plus a b =

Pr (\p -> case p of
(Plus x y) -> print’ a x ++
nogpon o4y prin‘t’ b y)

Pr (\x -> print’ a (from iso x)
=>t -> Int
rep

:: a -> String}

view iso a
print :: Rep t
print = print’

The benefits of the GM approach compared to the Haskell type
class approach become clear. In the GM approach, funcéiess
andprint are represented by types which are instances of class
Generic. Thus, both functions work on the same set of types. In

the Haskell type class approach, we introduce a new class for eachtoMinus ::

5.1 Our Solution

We first introduce the type clas$linus to represent the new ad-
hoc case. We also provide a (default) generic instance definition for
“minus” in terms of “plus” by means of the “view” case and and a
type isomorphism betweefinus andPlus.

rule GMinus g ==> Generic g

class GMinus g where
minus :: g a -> g b -> g (Minus a b)
minus a b = view isoMinus (plus a b)

isoMinus :: Iso (Minus a b) (Plus a b)
isoMinus = Iso fromMinus toMinus
fromMinus :: Minus a b -> Plus a b

fromMinus (Minus a b) = Plus a b
Plus a b -> Minus a b

function and therefore we cannot give the same guarantees. On thetcoMinus (Plus a b) = Minus a b

other hand, we can easily introduce new (ad-hoc) cases by provid-
ing additional instances. This is a problem for the GM approach.
We cannot specify ad-hoc cases without breaking modularity.

For example, data typ@3us a b andMinus a b have the same
uniform representation (as a product type). We obviously do not
want to use the same generic definition for both types. To extend
the Generic class with an ad-hoc “minus” case, we introduce a
subclass.

class Generic g => GMinus g where
minus :: ga ->gb -> g (Minus a b)
instance GMinus Ev where
minus a b =
Ev (\p -> case p of
(Minus x y) -> eval’ a x - eval’ b y)

The problem is that we cannot access this new case, unless W&o «

update the type of the dispatcher functiesp.

class Rep a where
rep :: GMinus g => g a
-- original code: rep :: Generic g => g a
instance (Rep a,Rep b) => Rep (Minus a b) where
rep = minus rep rep
eval :: Rep t => t -> Int
eval = eval’ rep

The original code will not type check for similar reasons as encoun-
tered in the SYB approach.

Alternatively, we could leave the dispatcher untouched and make
GMinus a superclass dfeneric.

class GMinus g => Generic g where

1lit :: g Lit
plus :: ga ->gb ->g (Plus a b)
view :: Isoab ->ga->gb

We have not progressed much. Adding the superatdisaus is
again a non-local change and requires to recompile the entire pro-
gram.

Each time we extend the generic function with a new ad-hoc case,
we have to change the type declaration of the dispatcher. This is
a non-local change and requires to recompile existing code. We
conclude that the GM approach is not modular.

This problem has been addressed [21]. The solution is inspired
by the modular extension of the SYB approach and requires some
experimental type class extensions.

The rule declaration guarantees that for ea@inus instance
there is aGeneric instance (as expected). This condition is re-
quired by the default instance definition. In Haskell, we would usu-
ally express such conditions via subclassing. But we want to make a
point that under a type-passing translation scheme the introduction
of sub-/superclasses is not necessarily connected to class declara-
tions.

Next, we extend the dispatcher function by adding a new case for
“minus”.

rule Generic g ==> GMinus g
instance (Rep a,Rep b) => Rep (Minus a b) where
rep = minus rep rep

Via the rule declaration we introducéMinus as a superclass of
Generic. This is essential, otherwise, the instance declaration for
minus” case will not type check. Two issues arise here.

Therule declaration claims that for eackeneric instance there

is a GMinus instance. Above we have defined an instance of
Generic on typePr a but there is no such instance declaration
for GMinus. Hence, there seems to be a problem. In terms of the
terminology we develop later in Section 6.2, the type class proof
system is “nhon-confluent”. But wait! We forgot the generic, de-
fault definition forGMinus. The argument is that unless otherwise
stated, for eacleneric instance there is always a defaGitinus
instance. Hence, the type class proof system is confluent.

The second issue is that cyclic dependencies

rule GMinus g ==> Generic g
rule Generic g ==> GMinus g

among the&eneric andGMinus class may threaten decidable type
inference. Again, there is no problem here. Type inference remains
decidable for such cases. We elaborate in Section 6.2.

We conclude that we can introduce new ad-hoc cases and easily
inherit generic definitions without having to change any existing
code. What we do next is override the default evaluator case with a
new ad-hoc definition.

instance GMinus Ev where
minus a b =
Ev (\p -> case p of
(Minus x y) -> eval’ a x - eval’ b y)

In summary, we have achieved a modular extension of the GM
approach. To convince ourselves that our solution works correctly,
we consider the type-passing translation of all declared instances.
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Here is the translation of theep instances. As said earlier, we can  Notice that constraints and contexts effectively describe the same
translate the individual instances separately and link them togetherobiject, i.e. collections of type classes. Depending on the situation,
later. We show the final code produced by the linker. we will use set, tuple orA” notation.

rep = A a. typecase a of We make use of CHRs of the following two forms:
Lit -> A g. lit g
Plus b ¢ -> A g. plus g ((rep b) g) ((rep ¢) g
Minus b ¢ -> A g. minus g ((rep b) g) ((rep c) g

rule TCt = TC;t
rule TCt <= TC; ty,...,TCy ty

where we assume thae refers to a type class andefers to a type.
The first CHR is referred to asmopagationrule and the second is
referred to asimplificationrule. Logically, the symbot=> denotes
Boolean implication and=- denotes Boolean equivalence. CHRs
have also a simple operational reading which we will ignore for the

The translation is slightly more involved than outlined in Section 3.
In the class declaration ®&ep, the type of the methodep is lo-
cally constrained bgeneric g. In case of the dictionary-passing
translation scheme, we may therefore assume that the dictionary for
Generic gwill be locally supplied at the use site. Hence, the trans- S

lation of the instance definitions takes an additional dictionary ar- rr:'gr(;]ﬁm'elsnf?;;eggiﬁgrr?i model proof rules, similar 1o type class
gument. The same principle applies in case of a type-passing trans? "
lation scheme. For each type case branch, we introduce the localEach declaration

type abstraction\ g. At a use site we supply the appropriate type c1ass(TC; a,.., TCs a) => TC a
argument, for example sdeep b) g. The presence of construc-

tor classes also makes it necessary to switch to SystemsRhe translates to
target language (this applies to both translation schemes). rule TC a ==> TC; a

The translation of the remaining instances is straightforward.

lit = A a. typecase a of rule TC a ==> TC, a

Ev -> Ev (A x. case x of Lit i -> i) Subclassing states subset relations among instances which can log-
Pr > ... ically be expressed in terms of Boolean implication. Notice that the
Haskell subclass arrow> is (logically speaking) the wrong way

plus = A a. typecase a of
Ev -> A b c. Ev (A p. case p of
(Plus x y) -> eval’ b x + eval’ c y) Each declaration
Pr -> A b c. Ev (A p. case p of
(Plus x y) -> print’ b x ++

around!

instance(TC; t1,...,TCn tn) => TC t

"+ " 44+ print’ c y) translates to
minus = A a. typecase a of rule TC t <==> TC; ti,...,TC, tn
Pr -> A b c. to (plus Pr b c) This is exactly the meaning required to describe type classes under
Ev -> A b c. Ev (A p. case p of a type-passing translation scheme. Recall that instances specify if-
(Plus x y) -> eval’ b x - eval’ c y) and-only-if relations.
Notice that we (automatically) included the default instance for Extensible superclasses can then be modeled straightforwardly by
printing. providing additional CHR propagation rules. For example, the fol-
Functioneval translates to lowing CHRs
eval = A a. eval’ ((rep a) Ev) rule Eval a ==> Print a - (1)
rule Print a ==> Eval a -- (2)

and the call

. . . state thafPrint is a superclass dfval and vice versa. The in-
eval (Minus (Lit 2) (Lit 1)) troduction of cyclic CHRs such as (1) and (2) raises the concern
translates to whether we can maintain decidable type inference. We will address

eval (Minus Lit Lit) (Minus (Lit 2) (Lit 1)) such issues further below.

It should be clear that this program text correctly evaluates to We can also introduce “short-hand” notation via CHR simplifica-

tion rules.
6. Extensible Superclasses rule EvalAndPrint a <==> Eval a, Print a

We formalize extensible superclasses using a combination of our The above introduces aabstract type classEvalAndPrint.

own CHR-based type class framework [25] and Thatte’s type- We assume that there are no methods connected to this type
passing translation scheme. CHR stand for Constraint Handling class. In programs, that is in type annotations, we can then use
Rule [3] and we use them to specify the type class proof system EvalAndPrint a as ashort-hand f&val a, Print a.

for extensible superclasses. Based on this understanding of type classes in terms of CHRs, we

6.1 CHR Type Class Proof System can express type class proofs directly in terms of some familiar
) ) ) first-order logic statements. Lét be the set of CHRs, derived from
The syntax of class and instance declarations is as follows: class and instance declarations and specified by the programmer.
Types t s= a|t—t|Tt Let C be a conjunction of (given) type class constraints aodt
Type Classes tc == TC't a (demanded) type class constraint. Then, we can writg=
Context Ctr == (tci,...,tcs) C D TCt to express thalC t is derivable fromC' under P.
Constraint C = tc|CAC The symbol= denotes model-theoretic entailment. The statement
Classes cls = class Ctx = TC a P |= C D TCt holds if TC t can be satisfied in any (first-order)
Instances inst = instance Ctz = TC't model of P andC.
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6.2 CHR Proof Checking class Size a => Data a -- (Super)

We briefly show how to verify that statemenis = C' D TCt instance Data a => Size a - (Inst)
hold. First, we perform some logical equivalence transformations. yield

We have that? = C D TCt iff P = C < C ATC t. CHRs have

a straightforward operational reading in terms of rewritings among
constraints, more formally written~* P. Thus, we can check

rule Data a ==> Size a
rule Size a <==> Data a

P = C < CATC t by executingC —% C1andCATC t —p Co We find that
testing whethe€; andC’, refer to the same canonical normal form. Size a
Decidability and completeness of this check depend on whether — Dataa
CHRs are terminating and confluent. — Dataa,Sizea
Let's take a look at the formal definition of the operational reading — Dataa,Sizea
of CHRs. We assume that we are given a&eif constraints where I the first step, we apply the simplification rule. Then, the propa-
TC t’ € ¢ and consider the (rewriting) effect the different forms of ~ gation rule addsize a. In the final step, we apply again the sim-
CHRSs can have oncC t’. plification rule and simplifysize a byData a.Butthis constraint
) is already present (recall set semantics). The propagation rule has

Propagation step: We can apply already been fired obata a. HenceSize a —* Data a, Size a.

rule TCt = TC, t” € P Hence, the above CHRs are terminating.

by adding (propagatind)C; ¢(t") to C, if we find a substitu- The SYB authors claim that the above program is non-terminating.
tion ¢ such that’ andphi(t) are equal. Notice that we only ~ That is, the rewriting steps implied by class and instance declara-
perform matching (but not Prolog style unification). Thatis, we tions may not terminate. As we show above this is not the case.
rewrite C to C' U {TCy ¢(t")}, writtenC —p C,TC; ¢(t"). There is also no connection to recursive instances. The “recursion”
We assume that CHRs are renamed before rule application. No-goes through a superclass!

tice that we avoid infinite propagation by prohibiting to fire a e conclude. Although extensible superclasses introduce “cyclic”
rule on the same constraint twice. We refer to [1] for further g|ations, resulting CHRs are terminating for the examples we have
details. seen so far. We leave it for future work to establish syntactic
Simplification step: We can apply conditions (in style of the Haskell conditions [22] imposed on
instances) that guarantee termination. Note that for terminating
rule TCt <= TC1t1,.,TCata € P CHRs there is an easy check of confluence by testing whether all
if we find a substitutiorp such that’ and¢(¢) are equal. Then,  “critical pairs” are joinable.
we can rewrite”' into C—{TC t' }U{TC: ¢(t1), ..., TCqa ¢(ta)},
i.e. the constraint resulting froi&' by replacing (simplifying)
TC t" with TC1 ¢(t1), ..., TCa A(tn). rule Print a  ==> Eval a

. . rule Print Lit <==> True
Each of the rewriting steps preserve the equivalence among con-

straints. Hence, the above checking methodRoE= A O TC t is We_considerthe critical paRrint Lit. We find two non-joinable
clearly correct. derivationsPrint Lit —™ True and Print Lit —™ Eval Lit.

. . . L . Hence, the above CHRs are non-confluent and hence we must reject
We writeC" — C” to denote the exhaustive application of rewrit-  the program. And rightly so, the first CHR claims that for each

ing steps yielding théinal constraintC”. We say a set of CHRS IS prin+ ¢ there is aEval t which is not the case because of the
terminatingif for each constrainC' we find a final constrain€’ second CHR.

such thaiC' —* C’. We say that a set of CHRs i®nfluentf dif-
ferent rewriting derivations starting from the same point can always 6.3 Type-Passing Translation Scheme
be brought together again.

For example, consider

. We highlight the main aspects. For simplicity, we only consider the
Let's see whether the (extensible superclass) examples we haveranslation of expressions and focus on the most interesting rules.
seen so far satisfy termination and confluence of CHRs. The development is pretty much similar to the standard dictionary-
We consider the “cyclic’ CHRs. passing translation method. The crucial difference is that we strictly
erase type classes and use types to access specific method defini-

rule Eval a ==> Print a - (1) tions.
rule Print a ==> Eval a -- (2) . . . .
) We work with a simple expression language representing the core
We find that of a functional language with type classes. As our target language,
Eval a we use a simplified version of System F. Function parameters are
— Eval a,Print a annotated with Hindley/Milner types which is sufficient here. There
— Evala is also no need for a type case because we only consider the
In the first step, we apply CHR (1) d&val a and addPrint a. translation of expressions:
In the second step, apply CHR (2) ®@rint a which adds the L
constraintEval a. But wait, this constraint is already present. We 'IE'))/(pGrleSSC;POeanSleS g T t ||V)\a'g “ re \tI: U_ in
assume set semantics. Hence, no further constraint will be added. Tar%et E o i | )\i'figeEﬂ E Eg\_As ETEt

Recall that we prevent firing the same rule twice on the same
constraint. We have already fired the propagation rul@wl a.
HenceEval a —* Eval a,Print a. Hence, the above CHRs are
terminating.

We follow the common path and employ a type-directed translation
scheme formulated in terms of judgmen@sI” - e¢ : 0 ~ E
where(' is a constraint holding the set of type class constraints,
Here is another “cyclic” set of CHRs which arises from the SYB T'is a environment assigning type schemes to free variablissa
example. The (simplified) declarations expression with type and E is a target expression. The judgment
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C,T' + e: o~ E states that a well-typed expressiowith type data Foo a = F (a->Int)
o is translated to the target prografh inst :: Foo a -> Foo a

Here are the most interesting translation rules: inst (F foo) = F foo

(vIntro) C'Fe:o~E agfvIl,QC) d :: Foo t
C,T F e:Va.oc~ Aa.E d = inst d
Among others, such an extension is required in the SYB3 ap-
i C,'+e:Yao~FE proach [18]. In our own work [26], we formalize recursive instances
(vElim) CTFe:[t/alo~ Et in the presence of a dictionary-passing translation scheme.
Thatte’s work does not include superclasses. We show here that
Int CANTCt,T Fe:t'~E we can naturally support extensible superclasses in a combination
(=Intro) CTre:TCt=t ~E of Thatte’s type-passing translation scheme and our own CHR-
based type class framework. The translation scheme we employ
. F'Ee:TCt E P TC t in the CHR-_ba}sed type class frz_am_ework (from_ h_ere-on refe_rred
(=Elim) G, c:T0t=o0r FCoTC to as ATO) is in fact a hybrid. Similar to the dictionary-passing

Clkeio~FE scheme, we assume dictionary constructing functions. Though, in-
The first two rules are familiar from translating Hindley/Milner to ~ stance declarations describe if-and-only-if relations in ATO. For
System F [6]. In rule{Intro), we assume thdv(I", C') computes example, in ATO the statemeRtint [a] F Print a is correct.

the set of free (type) variables of an environment and constraint. In Haskell, we cannot Verify this statement because it is not obvi-
If a variable is not in this set we can universally quantify over 0uUs how to construct a proof (i.e. dictionary) farint a out of

this variable. We use a System F style target language, therefore the proof forPrint [a]. In ATO this problem is solved by assum-
we make type abstraction (and later application) explicit Aja ing that dictionary constructing functions are defined for all ground
pronounced “big” lambda. In case of elimination (i.e. instantiation) instances. Of course, to implement such a scheme Thatte’s type-
of a universal quantifier we use type application in the target term. passing translation method is the natural choice.

Up to know the same translation steps apply to the dictionary- another alternative translation scheme for type classes, similar to
translation scheme as well. Thatte's type-passing method, appears also in the work by Pottier
The crucial difference between the dictionary- and type-passing and Gauthier [24]. They use GADTSs (also known as guarded recur-
is manifested in the last two rules. Pushing a type class into a Sive data types [31]) instead of System F extended with type-case
type scheme has no effect on the translated program under a typefor the translation. The idea is to represent dictionaries via GADTSs.
passing scheme. See rute-[ntro). That is, type classes are simply  Here is the dictionary representation of theint andEval class
erased during the translation. This is in contrast to the dictionary- using the GADT notation as available in GHC.

passing scheme where we would introduce a lambda-abstractiony,+, EvalDict a where

because type classes are turned into dictionaries. In i), EInstLit :: EvalDict List

we eliminate a type class if we can prove that this type class follows  grnstProd :: EvalDict a ->

from the given assumptions (represented’Byunder the given set EvalDict b -> EvalDict (Prod a b)
of proof rules (represented b¥), ie. P = C O TC ¢ holds. data PrintDict a where

Again, elimination has no effect on the translated program. Inthe  prpct1it :: PrintDict Lit

dictionary-passing scheme, we would need to derive a dictionary  prpstprod :: PrintDict a ->

our of the type class proof. PrintDict b -> PrintDict (Prod a b)

We leave it to future work to establish properties such as type The above constructor definitions require GADTSs because the (out-

soundness and coherence. We expect that these properties follow ) type changes. They directly correspond to the instance decla-
by straightforward application of methods and techniques found [ations.

in [27, 25]. For example, Thatte has already proven type soundness

whereas we have verified coherence if CHRs are confluent. As in case of the type-passing translation scheme, we need to lump
together the instance definitions. Here is the translation dthe
7. Related Work instances.
. eval :: EvalDict a -> a-> Int
7.1 Translating Type Classes oval d = case d of
Thatte [27] is the first to propose a type-passing translation scheme EInstLit -> ...
for type classes. His main motivation is to provide an alternative EInstProd -> ...

semantics where type classes can be interpreted co-inductively. Fo

r . . , . .
example, consider the following program. Up to here this looks exactly like Thatte’s type-passing translation.

This is not surprising given that the idea of GADTSs can be traced
class Foo a where foo :: a->Int back to work on intentional type analysis.

inst F =>F h f = f . . .
instance Foo a 00 a where 1oo o0 However, the GADT-based translation scheme has a slight disad-

Under the standard inductive interpretation of type clases, t vantage when it comes to translating programs with sub-/superclasses.
has no meaning for any tyge Simply because we cannot (induc-  For example, the program we have seen earlier

tively) rewriteFoo t to some simpler form. Under a co-inductive
interpretation, however, we can gi¥eo t the “undefined” mean-

ing.
In case we employ the standard dictionary-passing translation, the

meaning of co-inductive type classes can be explained in terms off1 :: PrintDict a -> a -> Int
recursive dictionaries. f1 d = eval (super d) x

f1 :: Print a => a -> Int
fl1 x = eval x

translates to the GADT program
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The functionsuper to extract superclass from subclass dictionaries The translation scheme behind extensible superclasses demands
is defined as follows. significant changes to the dictionary-passing translation scheme
currently employed in Haskell. We yet have to study the impact
Thatte’s translation scheme has on existing compiler optimizations.
Realistically, we do not expect that any time soon systems such
as GHC will be able to support extensible superclasses. However,
The disadvantage of the GADT translation scheme is that eachthe experimental Haskell compiler JHC [15] implements a type
time we introduce a new sub-/superclass we will need to adapt the class translation scheme that is very close to Thatte’s type-passing
definition of super. Though, this is still a local change. Hence, we method. We consider this as evidence that a specialized Haskell
do not need to recompile functiait. The point is that in a type- compiler to support modular generic programming via extensible
passing translation scheme there are literally no changes necessarguperclasses is feasible in the near future.

Hence, we can argue that for a practical implementation Thatte’s
type-passing translation method is the preferred choice over the
encoding in terms of GADTSs.

super :: PrintDict a -> EvalDict a
super PInstLit = EInstLit
super (PInstProd a b) = EInstProd (super a) (super b)

Thatte’s type-passing translation scheme resembles method lookup
as found in OO languages. Modularity, local modification and

separate compilation have been studied in OO languages for years.
7.2 Generic Programming We hope that we can take advantage of results in this area and plan

) ) to pursue this topic in future work.
Language extensions such as Generic Haskell [19] and PolyP [13]

have direct support for generic functions but do not provide sup-
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