Calculating upward and downward simulations of state-based
specifications

John Derrick and Eerke Boiten
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
(Phone: + 44 1227 764000, Email: J.Derrick@ukc.ac.uk.)

Abstract

This paper concerns calculational methods of refinement in state-based specification lan-
guages. Data refinement is a well established technique for transforming specifications of
abstract data types into ones which are closer to an eventual implementation. The conditions
under which a transformation is a correct refinement are encapsulated into two simulation
rules: downward and upward simulations.

One approach to refining an abstract system is to specify the concrete data type, and
then attempt to verify that it is a valid refinement of the abstract type. An alternative
approach is to calculate the concrete specification based upon the abstract specification and
a retrieve relation which links the abstract and concrete states. In this paper we generalise
existing calculational methods for downward simulations and derive similar results for upward
simulations; we also document their use and application in a particular specification language,
namely Z.

Keywords: Refinement; State-based systems; Z; Calculating refinements.

1 Introduction

This paper concerns methods by which we can calculate refinements of systems specified in state-
based specification languages such as Z [8], B [1] and VDM [6]. These state-based languages have
gained a certain amount of acceptance in the software community as an industrial strength formal
method. As a canonical example, we will concentrate on Z in this paper, although the remarks
we make apply equally to similar languages. Z is a state-based language whose specifications are
written using set theory and first order logic. Abstract data types are specified in Z using the so
called “state plus operations” style, where a collection of operations describe changes to the state
space. The state space, initialisation and operations are described as schemas, and the schema,
calculus has proved to be an enduring structuring mechanism for specifying complex systems.
These schemas, and the operations that they represent, can be understood as (total or partial)
relations on the underlying state space.

In addition to specifying a system, we might also wish to develop, or refine, it further. This idea
of data refinement is a well established technique for transforming specifications of abstract data
types into ones which are closer to an eventual implementation. The conditions under which a
development is a correct refinement are encapsulated into two refinement (or simulation) rules:
downward and upward simulations [9]. These refinement rules are known to be sound and jointly
complete, that is any upward or downward simulation is a valid refinement, and any refinement

can be proved correct by application of appropriate upward and downward simulations [5, 10]. To
verify a refinement the simulations use a retrieve relation which relates the concrete to abstract
states and allow the comparison between the data types to be made on a step by step basis by
comparing an abstract operation with its concrete counterpart. Versions of the simulation rules
for Z are given in [9].

One approach to refining an abstract system is to calculate the concrete specification based upon
the abstract specification, the concrete state space and a given retrieve relation which links the
abstract and concrete states. The calculated concrete specification is then the most general re-
finement with respect to this retrieve relation, i.e., any other refinement will be a refinement of
this calculated specification. It is useful then to be able to find the simplest means to calculate
both upward and downward simulations of a given data type specification.

The principal work in this area is that of [5], where they consider refinement calculations in the
context of total relations (partial operations are first totalised). However, in Z operations can be
partial and our purpose is to derive equivalent results in a partial setting. This will be seen to
generalise and simplify results in [7].

The structure of the paper is as follows. We discuss refinement in Z in Section 2, and in Section 3
we show how we can calculate refinements from a given retrieve relation. We simplify the result
for downward simulation given in [7] and derive a result for upward simulations (which weren’t
considered in [7]). The final section makes some concluding remarks.

2 Refinement

In this section we discuss refinement in Z. We begin with an example followed by a discussion of
the relational basis for the Z refinement rules, and it is this relational basis we use subsequently
when deriving calculational methods of refinement. Throughout the paper we assume the reader
is familiar with the Z notation.

Example:

In our example (adapted from [7]) the abstract specification consists of two sequences s and ¢
(both initially empty). There are two operations: pushs and pops. The pusha operation has
two inputs and pushes m? into one of the sequences according to whether i? is 1 or 0. The popa
operation non-deterministically pops one of the sequences when either is non-empty, and outputs
an error message if they are both empty. This operation is specified as the disjunction of two
operations popora and popgrora- The specification is as follows.

Astate

Fs,t :seqIN

__ Ainit
AAstate
S =t=()

___pushy
A Astate
m?: N

i7:{0,1}

(?7=0At=t" (MmN =s)V(E?T=1As'=s " (mD At =1)

— POPOKA
AAstate
n!: IN

(t=t'"(nhAs =8)V(s=s " ()Nt =1)

— POD ErrorA
AAstate

report! : REPORT

s = () ANt =) A report! = “error — nothing to pop"

POpA = PopokA V POPErrorA

In fact it is possible to refine this to a concrete specification whose state space consists of a
single sequence u. That is, the two separate sequences were actually unnecessary in terms of the
observable behaviour which consists of output values that are just some valid merge of the input
streams. So the nondeterminism in the popora operation about which sequence is popped can be
replaced by the nondeterminism of taking any valid merge of s and ¢ in a single sequence. The
concrete specification will have the following state space

Cstate

Fu :seqIN

together with an initialisation and operations pushc and popc. Given such a complete concrete
specification we would then have to verify that this is a refinement (in fact it would be a downward
simulation) by using a retrieve relation R and show that it satisfies the following for the push and
the pop operations.

Definition 1 Let R be the retrieve relation between data types (Astate, Ainit, {AOp;}) and
(Cstate, Cinit,{COp;}). R is a downwards simulation if the following hold for all operations.

Y Cstate o Clnit = (3 Astate o Alnit A R)
V Astate; Cstate o pre AOp; A R = pre COp;
Y Astate; Cstate; Cstate’ @ pre AOp; A COp; A R = 3 Astate’ @« R' A AOp;

The retrieve relation we would use here would be

_ R
Astate
Cstate

Umerge(sa t)

where the predicate in the retrieve relation defines a merge of the two sequences s and ¢, and for
example has the properties: Umerge(s, () iff v = s and Umerge(s, t) iff Umerge(t, s).

An alternative approach to this aspect of software engineering is to move the emphasis from
verification to calculation. That is instead of writing down the concrete operations and verifying
they are refinements, it is possible to calculate the operations and initialisation. All that is needed
is the description of the concrete state space and a retrieve relation which links the abstract to

concrete. The result will be the most general refinement of the abstract specification with respect
to the concrete state space and retrieve relation used.

There are clear advantages in moving effort from verification to calculation in terms of complexity
and automation of the process - providing the calculations are simple enough. As mentioned
above there are two forms of refinement: downward and upward simulations. For state based
specifications there are known ways to calculate refinements that are downward simulations. The
contribution of this paper is to simplify those calculations (Section 3.1) and derive analogous
calculations for upward simulations (Section 3.2).

2.1 The relational basis for simulations

In this subsection we discuss the relational view of refinement and describe how it treats partiality,
leading to the standard presentation of refinement in a language such as Z [8, 9]. In doing so we
present a summary of results in [5, 4, 9] to which the reader is directed for more detailed explanation
if necessary.

We shall need the following relational notation. § denotes relational composition, < is domain
restriction, B> is range subtraction, < is domain subtraction, and X is the complement of X. If §
is a relation, then 4 98 = {(z,9) | (z,y) € SAz € A}, A4S = {(z,y) | (z,y) € SAz & A},
and S & B = {(2,y) | (z,y) € SAy ¢ B}.

The underlying model of a state based system is a relational model, where the components (e.g.
operation schemas in Z) of an abstract data type (ADT) are relations. An ADT is a quadruple
A = (Astate, ai, {aop; }icr, af) which acts on a global state space G such that

e Astate is the space of values;
e ai € G & Astate is an initialisation;
e af € Astate +» G is a finalisation;

e aop; are operations in Astate <> Astate.

Assuming for the moment that all the relations are total, a program P is then a sequence of
operations upon a data type beginning with an initialisation and ending with a finalisation, e.g.

P(A) = ai § aopy § aops § af

We can now consider refinement between two ADTs. It is assumed that the abstract and concrete
data types have the same global state space G and that the indexing sets for the operations
coincide (i.e., every abstract operation has a concrete counterpart and vice versa). Refinement is
then defined as being the reduction of non-determinism, i.e. a data type C refines a data type A
if, for every program P, P(C) C P(A).

This definition involves quantification over all programs, and in order to verify such refinements,
simulations are used which consider values produced at each step of a program’s execution. Sim-
ulations are thus the means to make the verification of a refinement feasible. In order to consider
values produced at each step we need a relation r between the two state spaces Astate and Cstate;
this relation is known as the retrieve relation. The schema R in the example above is an example
of a retrieve relation.

So far we have assumed that all the relations in a specification are total. However, in practice
this is not the case (e.g. the operation pops above is partial), and the meaning of an operation

p specified as a partial relation is that p behaves as specified when used within its precondition
(domain), and outside its precondition, anything may happen.

Therefore in order to apply refinement to such specifications we have to totalise their partial
relations, i.e. in the semantics we add a distinguished element 1 to the state space, denoting
undefinedness, and X' denotes the augmented version of X. Thus if p is a partial relation
between X and Y, we add the following sets of pairs to p

{z: XY y: YVt |z¢gdompes—y}

and call this new (total) relation p.

It is worth noting that this interpretation of the meaning of a partial relation differs between
specification languages. For example, in Object-Z [2] outside a partial relation’s precondition
nothing may happen (i.e. preconditions denote guards). Different totalisations can be used to
model these different interpretations. Some languages, such as B, have constructs which enable
both interpretations to be specified.

The final requirement that we make is that the retrieve relation be strict, i.e., that r propagates
undefinedness and we ensure this by considering the lifted form of r € X < Y:

r=rU({L} x Y1)

With this in place we can consider the two types of step by step comparisons possible: downwards
simulation and upwards simulation [9]. Their usefulness lies in the fact that they are sound and
jointly complete [5].

A downward simulation is a relation r from Astate to Cstate such that

a
cop; 3 1C [§ aop; for each index i € T

These simulation rules are defined in terms of augmented relations. We can extract the underlying
rules for the original partial relations as follows. For example, for a downwards simulation the
above definition is equivalent to the following conditions

ci Cai§r

rgcf Caf

(dom aop <1 7§ cop) C aop §r
ran((dom aop) < r) C dom cop

The last two conditions mean that: the effect of cop must be consistent with that of aop; and, the
operation cop is defined for every value that can be reached from the domain of aop using r.

We can also extract the underlying conditions in the definition of an upwards simulation, to find
(see for example [9]) that they equivalent to the following conditions

ci 8l Cai

of Clgaf

dom(! & (dom aop)) < cop g1 C 13 aop
dom cop C dom(! & (dom aop))

The last two conditions mean: the effect of cop must be consistent with that of aop; and the set
of values for which cop is not defined must be a subset of those for which aop is not defined.

These relational rules can now be used in a particular specification notation. For example, we can
transform the rules from their relational setting to simulation rules for Z specifications by writing
them in the Z schema calculus. The presentation of the downward simulation conditions in Z were
given above, the upward simulation conditions are similar (see [9] for details). In Z (and VDM
etc) we lose all explicit references to finalisation for reasons given in [9, 3].

3 Calculating refinements

In this section we consider the calculational aspects of refinement, and we develop rules for
both upward and downward simulations. To do so we work in the relational setting, giving
the results in Z as corollaries. Suppose we are given a specification of an abstract data type
A = (Astate, ai, {aop; }icr, af), a concrete state space Cstate together with a retrieve relation r
between Astate and Cstate. It is possible to calculate the most general refinement of A4, that is
calculate the initialisation, finalisation and concrete operations.

As noted in [5], the calculations can be found by considering the most general solutions to the
simulation requirements in the definitions given above. Therefore, the most general (i.e. weakest)
solution for a downward simulation is given by:

- . I}
cr=ar g r
L) L)
ot [o]
r S cf=af
o] . o . R
r§ cop;=aop; § T for each index i € T

which have explicit solutions (see [5]):

.v .- I}
cL=a1 g T
of=af | T
co.pi: (ao.pi gr)/ T for each index i € T

where X/R = (R~ § X).

Similarly, for an upward simulation the weakest solution is given by:
* 5 .
ci=[\ ai
o L[]

of =13 af

o o .

copi=1 \(7 8 aop;) for each index 7 € T

where L\ X = (X § L~!). We now consider how to simplify these conditions and to extract the
calculation on the underlying partial relations. We begin with downward simulations.

3.1 Downward simulations

In this section the main result (Theorem 2) is the simplification of existing calculational methods

for downward simulations. Extracting the calculations for the initialisation and finalisation is easy
L] () o
since we know that ¢iCai §r iff ¢i C ai §r etc. Therefore the weakest concrete initialisation and

finalisation are given by

ci=ai3r

cf =af/r

To calculate the concrete operations we note that the calculation cop= (a(.)p) / r can be re-
written as two conditions: (dom aop < r § cop) = aop § r and ran((dom aop) < r) = dom cop.
Therefore cop is given by the weakest solution which is:

cop = ran(dom aop < r) < ((aop §r)/(dom aop < r))

However, for a partial relation we also need to check applicability, and only if this concrete opera-
tion satisfies the applicability condition does a downward simulation exist. We summarise this in
the following theorem.

Theorem 1 The weakest data type that is a downward simulation of A with respect to r is given
by

ct=atgr
cf =af/r
cop = ran(dom aop < r) < ((aop §r)/(dom aop < r))

whenever ran((dom aop) < 1) C dom cop. If the latter does not hold then no downward simulation
is possible for this A and r.

This theorem concurs with the results in [7] which were given in terms of the Z schema calculus.
[7] also comments that in the case of r—! defining a (partial) surjective function from Cstate to
Astate, then the calculation simplifies to cop = r~19aop3r, and that in this case it is not necessary
to check that ran((dom aop) <t r) C dom cop. We show now that we can relax this hypothesis.
In particular, it is not necessary that r~' is surjective, and in addition »~! does not have to be

completely functional, it is sufficient that it is functional on a restricted domain.

Theorem 2 Let cop = ran(dom aop <1 r) <t ((aop §7)/(domaop < 1)). Then cop C r~' gaop§r,

and if ran((dom aop) < r) C dom cop and domaop <\ r §r—t C id then cop =r 1 3aop3r.

Proof

We first of all show that cop C r=gaopgr. Let (a,b) € cop. Then (Is e (s,a) € (dom aop <
r)) A (Vs o (s,a) ¢ (domaop < r)V (s,b) € (aop §r)). Hence there exists an s such that
(s,a) € (domaop <1 r) and (s,b) € (aop §r), and therefore (a,b) € r=' §aop §r.

Next we show that if ran((dom aop) <tr) C dom cop then r—1gaop3r C cop. To do so suppose that
(a,b) € 1 3 aop §r, then there exists s such that (s,a) € (dom aop < r) and (s,b) € (aop §r).
We have to show that Vu e (u,a) € (domaop <)V (u,b) € (aop §r). Consider any u with
(u, a) € (dom aop < 1), it suffices to show that (u,b) € (aop § 7).

Since (u, a) € (dom aop<ir) and (a, b) € r—*3aopsr, we find that (u, b) € dom aop<ir§r—1gaopgr C
aop §r since dom aop < r3r—t C id.

Therefore Vu o (u,a) ¢ (domaop <) V (u,b) € (aop §r). We also know that Is e (s,a) €
(dom aop <1 7) and (s, b) € (aop §r). Thus by the definition of cop, (a, b) € cop. O

Note also that in the case that r defines a function (not necessarily total or surjective) from Cstate
to Astate, then it is not necessary to check that applicability holds.

The consequences of this theorem are the following. For the simpler calculation cop = r~' gaop§r
to be used

e it is not necessary that r—! is surjective, i.e. not every abstract state needs to be linked to
a concrete state;

e it is not necessary that r—! is a function, it only has to be functional on the smaller set
ran(dom aop <).

As we shall see in a moment these are sufficient, but not necessary, conditions, e.g. there are
occasions where the simplified calculation can still be used even when r~! is not functional at all.
It is also easy to construct examples where the simplified calculation cannot be used when the
necessary conditions on r fail.

We can describe these results in the Z schema calculus. To do so let R be the retrieve relation,
let Astate be the abstract state space, Ainit the abstract initialisation, and let every abstract
operation AOp have a concrete counterpart COp.

Corollary 1 Given an abstract specification, a concrete state space and a retrieve relation R, the
most general downward simulation can be calculated as:

Cinit = 3 Astate o Ainit A R
COp = 3 Astate; Astate’ @ (RN AOp A R')

whenever a downward simulation exists (which is guaranteed to do so when R is functional from
concrete to abstract) and whenever R is a function from Cstate to Astate on ran(dom AOp <1 R).

Example:

We can apply this result to our example given in Section 2. This example is interesting because the
retrieve relation is not functional: for every u there are many choices of s and ¢ with wmerge(s,).
In [7] Josephs thus uses complex calculations to produce the concrete operations, for example,
pushco is calculated by

pushe = (3 s,t:seqIN o pre pusha A R) A (Vs,t e prepusha AR = 3s',t" @ pusha A R')

The retrieve relation R is not functional on ran(dom pushs < R) which is the whole of Cstate

since push4 is total. So we cannot automatically use the simple calculation pushc = 3t,s,t',s" :

seqN o (R A pusha A R').

However, the retrieve relation is functional on ran(dom popgrrora < R), i.e. R links u = () to only
one abstract state (namely when both s and ¢ are also empty). Therefore the simple calculation

DPOPErrorC =3 ta S, tla s’ Seq]N ° (R A DPOPErrorA A Rl)
can be used. This evaluates to

— POD ErrorC
A Cstate

report! : REPORT

u = () A report! = “error — nothing to pop"

Incidentally, this example shows that the condition of functionality is not necessary since, for
example, the calculation

poporc = It,s,t',s" : seqIN o (R A popora A R')

evaluates to the same schema as the more complex calculation used in [7], namely

— DOpokC
A Cstate
n!: IN

t,5 & Umerge(t ™ (n!),8) A Upyerge (£, 5)

Note that one obvious further refinement of this would be the operation

— POpokC
A Cstate
n!: IN

t=1t""(nl)

3.2 Upward simulations

Turning to the case of upward simulations, we can produce analogous results, and again it is easy
to extract the calculations for the initialisation and finalisation. They are given by:

ci=1\ai

cf =13 af

To calculate the concrete operations the equation cap:; \(O 8 a(.)p) is equivalent (see [9]) to the
two conditions dom(! & (dom aop)) < cop §1 =13 aop and dom cop C dom(! & (dom aop)).

Therefore the weakest solution if one exists is given by dom(/ & (dom aop)) < cop = 1\ (I § aop),
and hence

cop = dom(l & (dom aop)) < (I\ (1§ aop))

This will be a refinement whenever this cop satisfies the applicability condition dom cop C dom(I&
(dom aop)). If cop is total this condition is true since in this case dom cop = &. If the applicability
condition fails then no upward simulation is possible for this A and . We can summarise this as
follows.

Theorem 3 The weakest data type that is an upward simulation of A with respect to 1 is given
by

ci=1\ai
cf =13 af
cop = dom(l & (dom aop)) < (I\ (1§ aop))

whenever dom cop C dom(l & (dom aop)). If the latter does not hold then no upward simulation is
possible for this A and [.

We can now simplify this calculation in a fashion similar to that described for downward simu-
lations. Note first that an upward simulation [must be total from concrete to abstract. This is
due to the totality of a finalisation and the condition that ¢f C [§af. The simplification of the
calculation will then depend upon whether [is functional.

Theorem 4 Let cop = dom(l & (dom aop)) < (I\ (1§ aop)). Then whenever | is a function from
Cstate to Astate, cop =15 aop §l~'.

Proof

Let (a,b) € cop. Then a ¢ dom(l &> (dom aop)) and (a,b) € (I\ (I aop)). Hence, V3 o (a,) €
Il = 3 € domaop and Ve o (b,¢) € | = (a,c) € (I3 aop). By the assumption of totality there
exists at least one ¢ with (b, ¢) € [, and hence (a, ¢) € (1§ aop). Thus (a,b) € 13 aop 3l L.

For the converse we need the assumption of functionality. Let (a,b) € [3 aop §1~'. To show that
(a,b) € cop we need to show that a ¢ dom(l & (dom aop)) and (a,b) € (I\ (I § aop)). For the
former this amounts to showing that Vy e (a,y) ¢ [V y € dom aop. However, since [is a function
and (a,b) € 13 aop 31! there is precisely one y with (a,y) € I and for this y we know that
y € dom aop.

Showing that (a,b) € (I\ (I3 aop)) amounts to showing that V¢ e (b,¢) € | = (a,c) € (I3 aop),
and again by the functionality of [this is easily seen to be true. Hence (a, b) € cop.

|

Note that in fact the functionality of I can actually be weakened to requiring that dom aop<11—191 C
id and ran aop < 171 g1 C id.

Example:

The following example shows that the simplification does not always hold. The diagram depicts
an abstract data type with state space {0,...,3} and one operation a = {(1,2)}. The concrete
state space has just two points {0,1} and we are given a total relation [as our retrieve relation,
where [= {(0,0), (0,1),(1,2),(1,3)}.

Abstract

—
-
SN————w

0 1 Concrete

Then cop = dom(l & (dom aop)) < (I'\ (I § aop)) = @, however, [$aop §1~1 = {(0,1)}. Therefore
13 aop 3171 is not the most general upward simulation with this retrieve relation.

Finally, let us describe these results in the Z schema calculus. Again let R be the retrieve relation,
let Astate be the abstract state space, Ainit the abstract initialisation, and let every abstract
operation AOp have a concrete counterpart COp.

Corollary 2 Given an abstract specification, a concrete state space and a retrieve relation R, the
most general upward simulation can be calculated as:

Cinit = Y Astate o (R = Ainit)
COp =V Astate o (R = pre AOp) A (Y Astate' o (R’ = 3 Astate @« R A AOp))

whenever an upward simulation exists. In the case when R is functional from concrete to abstract,
COp 1is given by

COp = 3 Astate; Astate’ @ (RN AOp A R')

10

and in this case there is no need to check applicability.

4 Conclusions

In this note we have considered the calculation of refinements in state-based systems and in
particular the Z specification language. We have simplified the existing result for calculations of
downward simulations, and illustrated via an example how such calculations are carried out to
produce the operations in a concrete specification. We have also derived a similar result for upward
simulations. A small example illustrated that we cannot in general simplify the calculations of
upward simulations.

References

[1] J. R. Abrial. The B-Book: Assigning programs to meanings. CUP, 1996.

[2] R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated for the
description of standards. Computer Standards and Interfaces, 17:511-533, September 1995.

[3] Kai Engelhardt and W-P de Roever. Model-Oriented Data Refinement. To appear.

[4] He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In B. Robinet and
R. Wilhelm, editors, Proc. ESOP 86, volume 213, pages 187—196. Springer-Verlag, 1986.

[5] He Jifeng and C.A.R. Hoare. Prespecification and data refinement. In Data Refinement in
a Categorical Setting, Technical Monograph, number PRG-90. Oxford University Computing
Laboratory, November 1990.

[6] C. B. Jones. Systematic Software Development using VDM. Prentice Hall, 1989.

[7] M. B. Josephs. The data refinement calculator for Z specifications. Information Processing
Letters, 27:29-33, February 1988.

[8] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

[9] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall,
1996.

[10] J. C. P. Woodcock and C. C. Morgan. Refinement of state-based concurrent systems. In
D. Bjorner, C. A. R. Hoare, and H. Langmaack, editors, VDM °90 VDM and Z - For-
mal Methods in Software Development, LNCS 428, pages 340-351, Kiel, FRG, April 1990.
Springer-Verlag.

11

