
Cal
ulating upward and downward simulations of state-basedspe
i�
ationsJohn Derri
k and Eerke BoitenComputing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.(Phone: + 44 1227 764000, Email: J.Derri
k�uk
.a
.uk.)
Abstra
tThis paper
on
erns
al
ulational methods of re�nement in state-based spe
i�
ation lan-guages. Data re�nement is a well established te
hnique for transforming spe
i�
ations ofabstra
t data types into ones whi
h are
loser to an eventual implementation. The
onditionsunder whi
h a transformation is a
orre
t re�nement are en
apsulated into two simulationrules: downward and upward simulations.One approa
h to re�ning an abstra
t system is to spe
ify the
on
rete data type, andthen attempt to verify that it is a valid re�nement of the abstra
t type. An alternativeapproa
h is to
al
ulate the
on
rete spe
i�
ation based upon the abstra
t spe
i�
ation anda retrieve relation whi
h links the abstra
t and
on
rete states. In this paper we generaliseexisting
al
ulational methods for downward simulations and derive similar results for upwardsimulations; we also do
ument their use and appli
ation in a parti
ular spe
i�
ation language,namely Z.Keywords: Re�nement; State-based systems; Z; Cal
ulating re�nements.1 Introdu
tionThis paper
on
erns methods by whi
h we
an
al
ulate re�nements of systems spe
i�ed in state-based spe
i�
ation languages su
h as Z [8℄, B [1℄ and VDM [6℄. These state-based languages havegained a
ertain amount of a

eptan
e in the software
ommunity as an industrial strength formalmethod. As a
anoni
al example, we will
on
entrate on Z in this paper, although the remarkswe make apply equally to similar languages. Z is a state-based language whose spe
i�
ations arewritten using set theory and �rst order logi
. Abstra
t data types are spe
i�ed in Z using the so
alled \state plus operations" style, where a
olle
tion of operations des
ribe
hanges to the statespa
e. The state spa
e, initialisation and operations are des
ribed as s
hemas, and the s
hema
al
ulus has proved to be an enduring stru
turing me
hanism for spe
ifying
omplex systems.These s
hemas, and the operations that they represent,
an be understood as (total or partial)relations on the underlying state spa
e.In addition to spe
ifying a system, we might also wish to develop, or re�ne, it further. This ideaof data re�nement is a well established te
hnique for transforming spe
i�
ations of abstra
t datatypes into ones whi
h are
loser to an eventual implementation. The
onditions under whi
h adevelopment is a
orre
t re�nement are en
apsulated into two re�nement (or simulation) rules:downward and upward simulations [9℄. These re�nement rules are known to be sound and jointly
omplete, that is any upward or downward simulation is a valid re�nement, and any re�nement1

an be proved
orre
t by appli
ation of appropriate upward and downward simulations [5, 10℄. Toverify a re�nement the simulations use a retrieve relation whi
h relates the
on
rete to abstra
tstates and allow the
omparison between the data types to be made on a step by step basis by
omparing an abstra
t operation with its
on
rete
ounterpart. Versions of the simulation rulesfor Z are given in [9℄.One approa
h to re�ning an abstra
t system is to
al
ulate the
on
rete spe
i�
ation based uponthe abstra
t spe
i�
ation, the
on
rete state spa
e and a given retrieve relation whi
h links theabstra
t and
on
rete states. The
al
ulated
on
rete spe
i�
ation is then the most general re-�nement with respe
t to this retrieve relation, i.e., any other re�nement will be a re�nement ofthis
al
ulated spe
i�
ation. It is useful then to be able to �nd the simplest means to
al
ulateboth upward and downward simulations of a given data type spe
i�
ation.The prin
ipal work in this area is that of [5℄, where they
onsider re�nement
al
ulations in the
ontext of total relations (partial operations are �rst totalised). However, in Z operations
an bepartial and our purpose is to derive equivalent results in a partial setting. This will be seen togeneralise and simplify results in [7℄.The stru
ture of the paper is as follows. We dis
uss re�nement in Z in Se
tion 2, and in Se
tion 3we show how we
an
al
ulate re�nements from a given retrieve relation. We simplify the resultfor downward simulation given in [7℄ and derive a result for upward simulations (whi
h weren't
onsidered in [7℄). The �nal se
tion makes some
on
luding remarks.2 Re�nementIn this se
tion we dis
uss re�nement in Z. We begin with an example followed by a dis
ussion ofthe relational basis for the Z re�nement rules, and it is this relational basis we use subsequentlywhen deriving
al
ulational methods of re�nement. Throughout the paper we assume the readeris familiar with the Z notation.Example:In our example (adapted from [7℄) the abstra
t spe
i�
ation
onsists of two sequen
es s and t(both initially empty). There are two operations: pushA and popA. The pushA operation hastwo inputs and pushes m? into one of the sequen
es a

ording to whether i? is 1 or 0. The popAoperation non-deterministi
ally pops one of the sequen
es when either is non-empty, and outputsan error message if they are both empty. This operation is spe
i�ed as the disjun
tion of twooperations popOkA and popErrorA. The spe
i�
ation is as follows.Astates ; t : seq INAinit�Astates 0 = t 0 = h ipushA�Astatem? : INi? : f0; 1g(i? = 0 ^ t 0 = t a hm?i ^ s 0 = s) _ (i? = 1 ^ s 0 = s a hm?i ^ t 0 = t)2

popOkA�Astaten! : IN(t = t 0 a hn!i ^ s 0 = s) _ (s = s 0 a hn!i ^ t 0 = t)popErrorA�Astatereport ! : REPORTs = h i ^ t = h i ^ report ! = \error � nothing to pop00popA b= popOkA _ popErrorAIn fa
t it is possible to re�ne this to a
on
rete spe
i�
ation whose state spa
e
onsists of asingle sequen
e u. That is, the two separate sequen
es were a
tually unne
essary in terms of theobservable behaviour whi
h
onsists of output values that are just some valid merge of the inputstreams. So the nondeterminism in the popOkA operation about whi
h sequen
e is popped
an berepla
ed by the nondeterminism of taking any valid merge of s and t in a single sequen
e. The
on
rete spe
i�
ation will have the following state spa
eCstateu : seq INtogether with an initialisation and operations pushC and popC . Given su
h a
omplete
on
retespe
i�
ation we would then have to verify that this is a re�nement (in fa
t it would be a downwardsimulation) by using a retrieve relation R and show that it satis�es the following for the push andthe pop operations.De�nition 1 Let R be the retrieve relation between data types (Astate;Ainit ; fAOpig) and(Cstate;Cinit ; fCOpig). R is a downwards simulation if the following hold for all operations.8Cstate � CInit) (9Astate � AInit ^ R)8Astate; Cstate � preAOpi ^ R) preCOpi8Astate; Cstate; Cstate 0 � preAOpi ^ COpi ^ R) 9Astate 0 � R0 ^ AOpiThe retrieve relation we would use here would beRAstateCstateumerge(s ; t)where the predi
ate in the retrieve relation de�nes a merge of the two sequen
es s and t , and forexample has the properties: umerge(s ; h i) i� u = s and umerge(s ; t) i� umerge(t ; s).An alternative approa
h to this aspe
t of software engineering is to move the emphasis fromveri�
ation to
al
ulation. That is instead of writing down the
on
rete operations and verifyingthey are re�nements, it is possible to
al
ulate the operations and initialisation. All that is neededis the des
ription of the
on
rete state spa
e and a retrieve relation whi
h links the abstra
t to3

on
rete. The result will be the most general re�nement of the abstra
t spe
i�
ation with respe
tto the
on
rete state spa
e and retrieve relation used.There are
lear advantages in moving e�ort from veri�
ation to
al
ulation in terms of
omplexityand automation of the pro
ess - providing the
al
ulations are simple enough. As mentionedabove there are two forms of re�nement: downward and upward simulations. For state basedspe
i�
ations there are known ways to
al
ulate re�nements that are downward simulations. The
ontribution of this paper is to simplify those
al
ulations (Se
tion 3.1) and derive analogous
al
ulations for upward simulations (Se
tion 3.2).2.1 The relational basis for simulationsIn this subse
tion we dis
uss the relational view of re�nement and des
ribe how it treats partiality,leading to the standard presentation of re�nement in a language su
h as Z [8, 9℄. In doing so wepresent a summary of results in [5, 4, 9℄ to whi
h the reader is dire
ted for more detailed explanationif ne
essary.We shall need the following relational notation. o9 denotes relational
omposition, C is domainrestri
tion, �B is range subtra
tion, �C is domain subtra
tion, and X is the
omplement of X . If Sis a relation, then A C S = f(x ; y) j (x ; y) 2 S ^ x 2 Ag, A �C S = f(x ; y) j (x ; y) 2 S ^ x 62 Ag,and S �B B = f(x ; y) j (x ; y) 2 S ^ y 62 Bg.The underlying model of a state based system is a relational model, where the
omponents (e.g.operation s
hemas in Z) of an abstra
t data type (ADT) are relations. An ADT is a quadrupleA = (Astate; ai ; faopigi2I ; af) whi
h a
ts on a global state spa
e G su
h that� Astate is the spa
e of values;� ai 2 G $ Astate is an initialisation;� af 2 Astate $ G is a �nalisation;� aopi are operations in Astate $ Astate.Assuming for the moment that all the relations are total, a program P is then a sequen
e ofoperations upon a data type beginning with an initialisation and ending with a �nalisation, e.g.P(A) = ai o9 aop1 o9 aop2 o9 afWe
an now
onsider re�nement between two ADTs. It is assumed that the abstra
t and
on
retedata types have the same global state spa
e G and that the indexing sets for the operations
oin
ide (i.e., every abstra
t operation has a
on
rete
ounterpart and vi
e versa). Re�nement isthen de�ned as being the redu
tion of non-determinism, i.e. a data type C re�nes a data type Aif, for every program P , P(C) � P(A).This de�nition involves quanti�
ation over all programs, and in order to verify su
h re�nements,simulations are used whi
h
onsider values produ
ed at ea
h step of a program's exe
ution. Sim-ulations are thus the means to make the veri�
ation of a re�nement feasible. In order to
onsidervalues produ
ed at ea
h step we need a relation r between the two state spa
es Astate and Cstate;this relation is known as the retrieve relation. The s
hema R in the example above is an exampleof a retrieve relation.So far we have assumed that all the relations in a spe
i�
ation are total. However, in pra
ti
ethis is not the
ase (e.g. the operation popA above is partial), and the meaning of an operation4

� spe
i�ed as a partial relation is that � behaves as spe
i�ed when used within its pre
ondition(domain), and outside its pre
ondition, anything may happen.Therefore in order to apply re�nement to su
h spe
i�
ations we have to totalise their partialrelations, i.e. in the semanti
s we add a distinguished element ? to the state spa
e, denotingunde�nedness, and X? denotes the augmented version of X . Thus if � is a partial relationbetween X and Y , we add the following sets of pairs to �fx : X?; y : Y ? j x 62 dom � � x 7! ygand
all this new (total) relation ��.It is worth noting that this interpretation of the meaning of a partial relation di�ers betweenspe
i�
ation languages. For example, in Obje
t-Z [2℄ outside a partial relation's pre
onditionnothing may happen (i.e. pre
onditions denote guards). Di�erent totalisations
an be used tomodel these di�erent interpretations. Some languages, su
h as B, have
onstru
ts whi
h enableboth interpretations to be spe
i�ed.The �nal requirement that we make is that the retrieve relation be stri
t, i.e., that r propagatesunde�nedness and we ensure this by
onsidering the lifted form of r 2 X $ Y :Ær= r [(f?g �Y?)With this in pla
e we
an
onsider the two types of step by step
omparisons possible: downwardssimulation and upwards simulation [9℄. Their usefulness lies in the fa
t that they are sound andjointly
omplete [5℄.A downward simulation is a relation r from Astate to Cstate su
h that�
i� �ai o9 ÆrÆr o9 �
f� �afÆr o9 �
opi� �aopi o9 Ær for ea
h index i 2 IAn upward simulation is a relation l from Cstate to Astate su
h that�
i o9 Æl� �ai�
f�Æl o9 �af�
opi o9 Æl� Æl o9 �aopi for ea
h index i 2 IThese simulation rules are de�ned in terms of augmented relations. We
an extra
t the underlyingrules for the original partial relations as follows. For example, for a downwards simulation theabove de�nition is equivalent to the following
onditions
i � ai o9 rr o9
f � af(dom aop C r o9
op) � aop o9 rran((dom aop) C r) � dom
opThe last two
onditions mean that: the e�e
t of
op must be
onsistent with that of aop; and, theoperation
op is de�ned for every value that
an be rea
hed from the domain of aop using r .5

We
an also extra
t the underlying
onditions in the de�nition of an upwards simulation, to �nd(see for example [9℄) that they equivalent to the following
onditions
i o9 l � ai
f � l o9 afdom(l �B (dom aop)) �C
op o9 l � l o9 aopdom
op � dom(l �B (dom aop))The last two
onditions mean: the e�e
t of
op must be
onsistent with that of aop; and the setof values for whi
h
op is not de�ned must be a subset of those for whi
h aop is not de�ned.These relational rules
an now be used in a parti
ular spe
i�
ation notation. For example, we
antransform the rules from their relational setting to simulation rules for Z spe
i�
ations by writingthem in the Z s
hema
al
ulus. The presentation of the downward simulation
onditions in Z weregiven above, the upward simulation
onditions are similar (see [9℄ for details). In Z (and VDMet
) we lose all expli
it referen
es to �nalisation for reasons given in [9, 3℄.3 Cal
ulating re�nementsIn this se
tion we
onsider the
al
ulational aspe
ts of re�nement, and we develop rules forboth upward and downward simulations. To do so we work in the relational setting, givingthe results in Z as
orollaries. Suppose we are given a spe
i�
ation of an abstra
t data typeA = (Astate; ai ; faopigi2I ; af), a
on
rete state spa
e Cstate together with a retrieve relation rbetween Astate and Cstate. It is possible to
al
ulate the most general re�nement of A, that is
al
ulate the initialisation, �nalisation and
on
rete operations.As noted in [5℄, the
al
ulations
an be found by
onsidering the most general solutions to thesimulation requirements in the de�nitions given above. Therefore, the most general (i.e. weakest)solution for a downward simulation is given by:�
i= �ai o9 ÆrÆr o9 �
f= �afÆr o9 �
opi= �aopi o9 Ær for ea
h index i 2 Iwhi
h have expli
it solutions (see [5℄):�
i= �ai o9 Ær�
f= �af = Ær�
opi= (�aopi o9 Ær)= Ær for ea
h index i 2 Iwhere X =R = (R�1 o9X).Similarly, for an upward simulation the weakest solution is given by:�
i=Æl n �ai�
f=Æl o9 �af�
opi=Æl n(Æl o9 �aopi) for ea
h index i 2 Iwhere L n X = (X o9 L�1). We now
onsider how to simplify these
onditions and to extra
t the
al
ulation on the underlying partial relations. We begin with downward simulations.6

3.1 Downward simulationsIn this se
tion the main result (Theorem 2) is the simpli�
ation of existing
al
ulational methodsfor downward simulations. Extra
ting the
al
ulations for the initialisation and �nalisation is easysin
e we know that �
i� �ai o9 Ær i�
i � ai o9 r et
. Therefore the weakest
on
rete initialisation and�nalisation are given by
i = ai o9 r
f = af =rTo
al
ulate the
on
rete operations we note that the
al
ulation �
op= (�aop o9 Ær)= Ær
an be re-written as two
onditions: (dom aop C r o9
op) = aop o9 r and ran((dom aop) C r) = dom
op.Therefore
op is given by the weakest solution whi
h is:
op = ran(dom aop C r)C ((aop o9 r)=(dom aop C r))However, for a partial relation we also need to
he
k appli
ability, and only if this
on
rete opera-tion satis�es the appli
ability
ondition does a downward simulation exist. We summarise this inthe following theorem.Theorem 1 The weakest data type that is a downward simulation of A with respe
t to r is givenby
i = ai o9 r
f = af =r
op = ran(dom aop C r)C ((aop o9 r)=(dom aop C r))whenever ran((dom aop)C r) � dom
op. If the latter does not hold then no downward simulationis possible for this A and r.This theorem
on
urs with the results in [7℄ whi
h were given in terms of the Z s
hema
al
ulus.[7℄ also
omments that in the
ase of r�1 de�ning a (partial) surje
tive fun
tion from Cstate toAstate, then the
al
ulation simpli�es to
op = r�1 o9aop o9r , and that in this
ase it is not ne
essaryto
he
k that ran((dom aop) C r) � dom
op. We show now that we
an relax this hypothesis.In parti
ular, it is not ne
essary that r�1 is surje
tive, and in addition r�1 does not have to be
ompletely fun
tional, it is suÆ
ient that it is fun
tional on a restri
ted domain.Theorem 2 Let
op = ran(dom aop C r) C ((aop o9 r)=(domaop C r)). Then
op � r�1 o9 aop o9 r ,and if ran((dom aop) C r) � dom
op and domaop C r o9 r�1 � id then
op = r�1 o9 aop o9 r .ProofWe �rst of all show that
op � r�1 o9 aop o9 r . Let (a; b) 2
op. Then (9 s � (s ; a) 2 (dom aop Cr)) ^ (8 s � (s ; a) 62 (dom aop C r) _ (s ; b) 2 (aop o9 r)). Hen
e there exists an s su
h that(s ; a) 2 (dom aop C r) and (s ; b) 2 (aop o9 r), and therefore (a; b) 2 r�1 o9 aop o9 r .Next we show that if ran((dom aop)Cr) � dom
op then r�1 o9aop o9r �
op. To do so suppose that(a; b) 2 r�1 o9 aop o9 r , then there exists s su
h that (s ; a) 2 (dom aop C r) and (s ; b) 2 (aop o9 r).We have to show that 8u � (u; a) 62 (dom aop C r) _ (u; b) 2 (aop o9 r). Consider any u with(u; a) 2 (dom aop C r), it suÆ
es to show that (u; b) 2 (aop o9 r).Sin
e (u; a) 2 (dom aopCr) and (a; b) 2 r�1o9aopo9r , we �nd that (u; b) 2 dom aopCr o9r�1o9aopo9r �aop o9 r sin
e dom aop C r o9 r�1 � id . 7

Therefore 8u � (u; a) 62 (dom aop C r) _ (u; b) 2 (aop o9 r). We also know that 9 s � (s ; a) 2(dom aop C r) and (s ; b) 2 (aop o9 r). Thus by the de�nition of
op, (a; b) 2
op. 2Note also that in the
ase that r de�nes a fun
tion (not ne
essarily total or surje
tive) from Cstateto Astate, then it is not ne
essary to
he
k that appli
ability holds.The
onsequen
es of this theorem are the following. For the simpler
al
ulation
op = r�1 o9aop o9 rto be used� it is not ne
essary that r�1 is surje
tive, i.e. not every abstra
t state needs to be linked toa
on
rete state;� it is not ne
essary that r�1 is a fun
tion, it only has to be fun
tional on the smaller setran(dom aop C r).As we shall see in a moment these are suÆ
ient, but not ne
essary,
onditions, e.g. there areo

asions where the simpli�ed
al
ulation
an still be used even when r�1 is not fun
tional at all.It is also easy to
onstru
t examples where the simpli�ed
al
ulation
annot be used when thene
essary
onditions on r fail.We
an des
ribe these results in the Z s
hema
al
ulus. To do so let R be the retrieve relation,let Astate be the abstra
t state spa
e, Ainit the abstra
t initialisation, and let every abstra
toperation AOp have a
on
rete
ounterpart COp.Corollary 1 Given an abstra
t spe
i�
ation, a
on
rete state spa
e and a retrieve relation R, themost general downward simulation
an be
al
ulated as:Cinit b= 9Astate � Ainit ^ RCOp b= 9Astate; Astate 0 � (R ^AOp ^ R0)whenever a downward simulation exists (whi
h is guaranteed to do so when R is fun
tional from
on
rete to abstra
t) and whenever R is a fun
tion from Cstate to Astate on ran(domAOp CR).Example:We
an apply this result to our example given in Se
tion 2. This example is interesting be
ause theretrieve relation is not fun
tional: for every u there are many
hoi
es of s and t with umerge(s ; t).In [7℄ Josephs thus uses
omplex
al
ulations to produ
e the
on
rete operations, for example,pushC is
al
ulated bypushC b= (9 s ; t : seq IN � pre pushA ^ R) ^ (8 s ; t � pre pushA ^R) 9 s 0; t 0 � pushA ^ R0)The retrieve relation R is not fun
tional on ran(dom pushA C R) whi
h is the whole of Cstatesin
e pushA is total. So we
annot automati
ally use the simple
al
ulation pushC b= 9 t ; s ; t 0; s 0 :seq IN � (R ^ pushA ^R0).However, the retrieve relation is fun
tional on ran(dom popErrorACR), i.e. R links u = h i to onlyone abstra
t state (namely when both s and t are also empty). Therefore the simple
al
ulationpopErrorC b= 9 t ; s ; t 0; s 0 : seq IN � (R ^ popErrorA ^ R0)
an be used. This evaluates topopErrorC�Cstatereport ! : REPORTu = h i ^ report ! = \error � nothing to pop008

In
identally, this example shows that the
ondition of fun
tionality is not ne
essary sin
e, forexample, the
al
ulationpopOkC b= 9 t ; s ; t 0; s 0 : seq IN � (R ^ popOkA ^ R0)evaluates to the same s
hema as the more
omplex
al
ulation used in [7℄, namelypopOkC�Cstaten! : IN9 t ; s � umerge(t a hn!i; s) ^ u 0merge(t ; s)Note that one obvious further re�nement of this would be the operationpopOkC�Cstaten! : INt = t 0 a hn!i 23.2 Upward simulationsTurning to the
ase of upward simulations, we
an produ
e analogous results, and again it is easyto extra
t the
al
ulations for the initialisation and �nalisation. They are given by:
i = l n ai
f = l o9 afTo
al
ulate the
on
rete operations the equation �
op=Æl n(Æl o9 �aop) is equivalent (see [9℄) to thetwo
onditions dom(l �B (dom aop)) �C
op o9 l = l o9 aop and dom
op � dom(l �B (dom aop)).Therefore the weakest solution if one exists is given by dom(l �B (dom aop)) �C
op = l n (l o9 aop),and hen
e
op = dom(l �B (dom aop)) �C (l n (l o9 aop))This will be a re�nement whenever this
op satis�es the appli
ability
ondition dom
op � dom(l�B(dom aop)). If
op is total this
ondition is true sin
e in this
ase dom
op = ?. If the appli
ability
ondition fails then no upward simulation is possible for this A and l . We
an summarise this asfollows.Theorem 3 The weakest data type that is an upward simulation of A with respe
t to l is givenby
i = l n ai
f = l o9 af
op = dom(l �B (domaop)) �C (l n (l o9 aop))whenever dom
op � dom(l �B (dom aop)). If the latter does not hold then no upward simulation ispossible for this A and l . 9

We
an now simplify this
al
ulation in a fashion similar to that des
ribed for downward simu-lations. Note �rst that an upward simulation l must be total from
on
rete to abstra
t. This isdue to the totality of a �nalisation and the
ondition that
f � l o9 af . The simpli�
ation of the
al
ulation will then depend upon whether l is fun
tional.Theorem 4 Let
op = dom(l �B (dom aop)) �C (l n (l o9 aop)). Then whenever l is a fun
tion fromCstate to Astate,
op = l o9 aop o9 l�1.ProofLet (a; b) 2
op. Then a 62 dom(l �B (dom aop)) and (a; b) 2 (l n (l o9 aop)). Hen
e, 8� � (a; �) 2l) � 2 dom aop and 8
 � (b;
) 2 l) (a;
) 2 (l o9 aop). By the assumption of totality thereexists at least one
 with (b;
) 2 l , and hen
e (a;
) 2 (l o9 aop). Thus (a; b) 2 l o9 aop o9 l�1.For the
onverse we need the assumption of fun
tionality. Let (a; b) 2 l o9 aop o9 l�1. To show that(a; b) 2
op we need to show that a 62 dom(l �B (dom aop)) and (a; b) 2 (l n (l o9 aop)). For theformer this amounts to showing that 8 y � (a; y) 62 l _ y 2 dom aop. However, sin
e l is a fun
tionand (a; b) 2 l o9 aop o9 l�1 there is pre
isely one y with (a; y) 2 l and for this y we know thaty 2 dom aop.Showing that (a; b) 2 (l n (l o9 aop)) amounts to showing that 8
 � (b;
) 2 l) (a;
) 2 (l o9 aop),and again by the fun
tionality of l this is easily seen to be true. Hen
e (a; b) 2
op. 2Note that in fa
t the fun
tionality of l
an a
tually be weakened to requiring that dom aopCl�1o9l �id and ran aop C l�1 o9 l � id .Example:The following example shows that the simpli�
ation does not always hold. The diagram depi
tsan abstra
t data type with state spa
e f0; : : : ; 3g and one operation a = f(1; 2)g. The
on
retestate spa
e has just two points f0; 1g and we are given a total relation l as our retrieve relation,where l = f(0; 0); (0; 1); (1; 2); (1; 3)g.
1 2

3

0 1

0

a Abstract

ConcreteThen
op = dom(l �B (dom aop)) �C (l n (l o9 aop)) = ?, however, l o9 aop o9 l�1 = f(0; 1)g. Thereforel o9 aop o9 l�1 is not the most general upward simulation with this retrieve relation.Finally, let us des
ribe these results in the Z s
hema
al
ulus. Again let R be the retrieve relation,let Astate be the abstra
t state spa
e, Ainit the abstra
t initialisation, and let every abstra
toperation AOp have a
on
rete
ounterpart COp.Corollary 2 Given an abstra
t spe
i�
ation, a
on
rete state spa
e and a retrieve relation R, themost general upward simulation
an be
al
ulated as:Cinit b= 8Astate � (R) Ainit)COp b= 8Astate � (R) preAOp) ^ (8Astate 0 � (R0) 9Astate � R ^ AOp))whenever an upward simulation exists. In the
ase when R is fun
tional from
on
rete to abstra
t,COp is given byCOp b= 9Astate; Astate 0 � (R ^AOp ^ R0)10

and in this
ase there is no need to
he
k appli
ability.4 Con
lusionsIn this note we have
onsidered the
al
ulation of re�nements in state-based systems and inparti
ular the Z spe
i�
ation language. We have simpli�ed the existing result for
al
ulations ofdownward simulations, and illustrated via an example how su
h
al
ulations are
arried out toprodu
e the operations in a
on
rete spe
i�
ation. We have also derived a similar result for upwardsimulations. A small example illustrated that we
annot in general simplify the
al
ulations ofupward simulations.Referen
es[1℄ J. R. Abrial. The B-Book: Assigning programs to meanings. CUP, 1996.[2℄ R. Duke, G. Rose, and G. Smith. Obje
t-Z: A spe
i�
ation language advo
ated for thedes
ription of standards. Computer Standards and Interfa
es, 17:511{533, September 1995.[3℄ Kai Engelhardt and W-P de Roever. Model-Oriented Data Re�nement. To appear.[4℄ He Jifeng, C. A. R. Hoare, and J. W. Sanders. Data re�nement re�ned. In B. Robinet andR. Wilhelm, editors, Pro
. ESOP 86, volume 213, pages 187{196. Springer-Verlag, 1986.[5℄ He Jifeng and C.A.R. Hoare. Prespe
i�
ation and data re�nement. In Data Re�nement ina Categori
al Setting, Te
hni
al Monograph, number PRG-90. Oxford University ComputingLaboratory, November 1990.[6℄ C. B. Jones. Systemati
 Software Development using VDM. Prenti
e Hall, 1989.[7℄ M. B. Josephs. The data re�nement
al
ulator for Z spe
i�
ations. Information Pro
essingLetters, 27:29{33, February 1988.[8℄ J. M. Spivey. The Z notation: A referen
e manual. Prenti
e Hall, 1989.[9℄ J. Wood
o
k and J. Davies. Using Z: Spe
i�
ation, Re�nement, and Proof. Prenti
e Hall,1996.[10℄ J. C. P. Wood
o
k and C. C. Morgan. Re�nement of state-based
on
urrent systems. InD. Bjorner, C. A. R. Hoare, and H. Langmaa
k, editors, VDM '90 VDM and Z - For-mal Methods in Software Development, LNCS 428, pages 340{351, Kiel, FRG, April 1990.Springer-Verlag.

11

