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Abstra
tThis paper 
on
erns 
al
ulational methods of re�nement in state-based spe
i�
ation lan-guages. Data re�nement is a well established te
hnique for transforming spe
i�
ations ofabstra
t data types into ones whi
h are 
loser to an eventual implementation. The 
onditionsunder whi
h a transformation is a 
orre
t re�nement are en
apsulated into two simulationrules: downward and upward simulations.One approa
h to re�ning an abstra
t system is to spe
ify the 
on
rete data type, andthen attempt to verify that it is a valid re�nement of the abstra
t type. An alternativeapproa
h is to 
al
ulate the 
on
rete spe
i�
ation based upon the abstra
t spe
i�
ation anda retrieve relation whi
h links the abstra
t and 
on
rete states. In this paper we generaliseexisting 
al
ulational methods for downward simulations and derive similar results for upwardsimulations; we also do
ument their use and appli
ation in a parti
ular spe
i�
ation language,namely Z.Keywords: Re�nement; State-based systems; Z; Cal
ulating re�nements.1 Introdu
tionThis paper 
on
erns methods by whi
h we 
an 
al
ulate re�nements of systems spe
i�ed in state-based spe
i�
ation languages su
h as Z [8℄, B [1℄ and VDM [6℄. These state-based languages havegained a 
ertain amount of a

eptan
e in the software 
ommunity as an industrial strength formalmethod. As a 
anoni
al example, we will 
on
entrate on Z in this paper, although the remarkswe make apply equally to similar languages. Z is a state-based language whose spe
i�
ations arewritten using set theory and �rst order logi
. Abstra
t data types are spe
i�ed in Z using the so
alled \state plus operations" style, where a 
olle
tion of operations des
ribe 
hanges to the statespa
e. The state spa
e, initialisation and operations are des
ribed as s
hemas, and the s
hema
al
ulus has proved to be an enduring stru
turing me
hanism for spe
ifying 
omplex systems.These s
hemas, and the operations that they represent, 
an be understood as (total or partial)relations on the underlying state spa
e.In addition to spe
ifying a system, we might also wish to develop, or re�ne, it further. This ideaof data re�nement is a well established te
hnique for transforming spe
i�
ations of abstra
t datatypes into ones whi
h are 
loser to an eventual implementation. The 
onditions under whi
h adevelopment is a 
orre
t re�nement are en
apsulated into two re�nement (or simulation) rules:downward and upward simulations [9℄. These re�nement rules are known to be sound and jointly
omplete, that is any upward or downward simulation is a valid re�nement, and any re�nement1




an be proved 
orre
t by appli
ation of appropriate upward and downward simulations [5, 10℄. Toverify a re�nement the simulations use a retrieve relation whi
h relates the 
on
rete to abstra
tstates and allow the 
omparison between the data types to be made on a step by step basis by
omparing an abstra
t operation with its 
on
rete 
ounterpart. Versions of the simulation rulesfor Z are given in [9℄.One approa
h to re�ning an abstra
t system is to 
al
ulate the 
on
rete spe
i�
ation based uponthe abstra
t spe
i�
ation, the 
on
rete state spa
e and a given retrieve relation whi
h links theabstra
t and 
on
rete states. The 
al
ulated 
on
rete spe
i�
ation is then the most general re-�nement with respe
t to this retrieve relation, i.e., any other re�nement will be a re�nement ofthis 
al
ulated spe
i�
ation. It is useful then to be able to �nd the simplest means to 
al
ulateboth upward and downward simulations of a given data type spe
i�
ation.The prin
ipal work in this area is that of [5℄, where they 
onsider re�nement 
al
ulations in the
ontext of total relations (partial operations are �rst totalised). However, in Z operations 
an bepartial and our purpose is to derive equivalent results in a partial setting. This will be seen togeneralise and simplify results in [7℄.The stru
ture of the paper is as follows. We dis
uss re�nement in Z in Se
tion 2, and in Se
tion 3we show how we 
an 
al
ulate re�nements from a given retrieve relation. We simplify the resultfor downward simulation given in [7℄ and derive a result for upward simulations (whi
h weren't
onsidered in [7℄). The �nal se
tion makes some 
on
luding remarks.2 Re�nementIn this se
tion we dis
uss re�nement in Z. We begin with an example followed by a dis
ussion ofthe relational basis for the Z re�nement rules, and it is this relational basis we use subsequentlywhen deriving 
al
ulational methods of re�nement. Throughout the paper we assume the readeris familiar with the Z notation.Example:In our example (adapted from [7℄) the abstra
t spe
i�
ation 
onsists of two sequen
es s and t(both initially empty). There are two operations: pushA and popA. The pushA operation hastwo inputs and pushes m? into one of the sequen
es a

ording to whether i? is 1 or 0. The popAoperation non-deterministi
ally pops one of the sequen
es when either is non-empty, and outputsan error message if they are both empty. This operation is spe
i�ed as the disjun
tion of twooperations popOkA and popErrorA. The spe
i�
ation is as follows.Astates ; t : seq INAinit�Astates 0 = t 0 = h ipushA�Astatem? : INi? : f0; 1g(i? = 0 ^ t 0 = t a hm?i ^ s 0 = s) _ (i? = 1 ^ s 0 = s a hm?i ^ t 0 = t)2



popOkA�Astaten! : IN(t = t 0 a hn!i ^ s 0 = s) _ (s = s 0 a hn!i ^ t 0 = t)popErrorA�Astatereport ! : REPORTs = h i ^ t = h i ^ report ! = \error � nothing to pop00popA b= popOkA _ popErrorAIn fa
t it is possible to re�ne this to a 
on
rete spe
i�
ation whose state spa
e 
onsists of asingle sequen
e u. That is, the two separate sequen
es were a
tually unne
essary in terms of theobservable behaviour whi
h 
onsists of output values that are just some valid merge of the inputstreams. So the nondeterminism in the popOkA operation about whi
h sequen
e is popped 
an berepla
ed by the nondeterminism of taking any valid merge of s and t in a single sequen
e. The
on
rete spe
i�
ation will have the following state spa
eCstateu : seq INtogether with an initialisation and operations pushC and popC . Given su
h a 
omplete 
on
retespe
i�
ation we would then have to verify that this is a re�nement (in fa
t it would be a downwardsimulation) by using a retrieve relation R and show that it satis�es the following for the push andthe pop operations.De�nition 1 Let R be the retrieve relation between data types (Astate;Ainit ; fAOpig) and(Cstate;Cinit ; fCOpig). R is a downwards simulation if the following hold for all operations.8Cstate � CInit ) (9Astate � AInit ^ R)8Astate; Cstate � preAOpi ^ R ) preCOpi8Astate; Cstate; Cstate 0 � preAOpi ^ COpi ^ R ) 9Astate 0 � R0 ^ AOpiThe retrieve relation we would use here would beRAstateCstateumerge(s ; t)where the predi
ate in the retrieve relation de�nes a merge of the two sequen
es s and t , and forexample has the properties: umerge(s ; h i) i� u = s and umerge(s ; t) i� umerge(t ; s).An alternative approa
h to this aspe
t of software engineering is to move the emphasis fromveri�
ation to 
al
ulation. That is instead of writing down the 
on
rete operations and verifyingthey are re�nements, it is possible to 
al
ulate the operations and initialisation. All that is neededis the des
ription of the 
on
rete state spa
e and a retrieve relation whi
h links the abstra
t to3




on
rete. The result will be the most general re�nement of the abstra
t spe
i�
ation with respe
tto the 
on
rete state spa
e and retrieve relation used.There are 
lear advantages in moving e�ort from veri�
ation to 
al
ulation in terms of 
omplexityand automation of the pro
ess - providing the 
al
ulations are simple enough. As mentionedabove there are two forms of re�nement: downward and upward simulations. For state basedspe
i�
ations there are known ways to 
al
ulate re�nements that are downward simulations. The
ontribution of this paper is to simplify those 
al
ulations (Se
tion 3.1) and derive analogous
al
ulations for upward simulations (Se
tion 3.2).2.1 The relational basis for simulationsIn this subse
tion we dis
uss the relational view of re�nement and des
ribe how it treats partiality,leading to the standard presentation of re�nement in a language su
h as Z [8, 9℄. In doing so wepresent a summary of results in [5, 4, 9℄ to whi
h the reader is dire
ted for more detailed explanationif ne
essary.We shall need the following relational notation. o9 denotes relational 
omposition, C is domainrestri
tion, �B is range subtra
tion, �C is domain subtra
tion, and X is the 
omplement of X . If Sis a relation, then A C S = f(x ; y) j (x ; y) 2 S ^ x 2 Ag, A �C S = f(x ; y) j (x ; y) 2 S ^ x 62 Ag,and S �B B = f(x ; y) j (x ; y) 2 S ^ y 62 Bg.The underlying model of a state based system is a relational model, where the 
omponents (e.g.operation s
hemas in Z) of an abstra
t data type (ADT) are relations. An ADT is a quadrupleA = (Astate; ai ; faopigi2I ; af ) whi
h a
ts on a global state spa
e G su
h that� Astate is the spa
e of values;� ai 2 G $ Astate is an initialisation;� af 2 Astate $ G is a �nalisation;� aopi are operations in Astate $ Astate.Assuming for the moment that all the relations are total, a program P is then a sequen
e ofoperations upon a data type beginning with an initialisation and ending with a �nalisation, e.g.P(A) = ai o9 aop1 o9 aop2 o9 afWe 
an now 
onsider re�nement between two ADTs. It is assumed that the abstra
t and 
on
retedata types have the same global state spa
e G and that the indexing sets for the operations
oin
ide (i.e., every abstra
t operation has a 
on
rete 
ounterpart and vi
e versa). Re�nement isthen de�ned as being the redu
tion of non-determinism, i.e. a data type C re�nes a data type Aif, for every program P , P(C) � P(A).This de�nition involves quanti�
ation over all programs, and in order to verify su
h re�nements,simulations are used whi
h 
onsider values produ
ed at ea
h step of a program's exe
ution. Sim-ulations are thus the means to make the veri�
ation of a re�nement feasible. In order to 
onsidervalues produ
ed at ea
h step we need a relation r between the two state spa
es Astate and Cstate;this relation is known as the retrieve relation. The s
hema R in the example above is an exampleof a retrieve relation.So far we have assumed that all the relations in a spe
i�
ation are total. However, in pra
ti
ethis is not the 
ase (e.g. the operation popA above is partial), and the meaning of an operation4



� spe
i�ed as a partial relation is that � behaves as spe
i�ed when used within its pre
ondition(domain), and outside its pre
ondition, anything may happen.Therefore in order to apply re�nement to su
h spe
i�
ations we have to totalise their partialrelations, i.e. in the semanti
s we add a distinguished element ? to the state spa
e, denotingunde�nedness, and X? denotes the augmented version of X . Thus if � is a partial relationbetween X and Y , we add the following sets of pairs to �fx : X?; y : Y ? j x 62 dom � � x 7! ygand 
all this new (total) relation ��.It is worth noting that this interpretation of the meaning of a partial relation di�ers betweenspe
i�
ation languages. For example, in Obje
t-Z [2℄ outside a partial relation's pre
onditionnothing may happen (i.e. pre
onditions denote guards). Di�erent totalisations 
an be used tomodel these di�erent interpretations. Some languages, su
h as B, have 
onstru
ts whi
h enableboth interpretations to be spe
i�ed.The �nal requirement that we make is that the retrieve relation be stri
t, i.e., that r propagatesunde�nedness and we ensure this by 
onsidering the lifted form of r 2 X $ Y :Ær= r [ (f?g �Y?)With this in pla
e we 
an 
onsider the two types of step by step 
omparisons possible: downwardssimulation and upwards simulation [9℄. Their usefulness lies in the fa
t that they are sound andjointly 
omplete [5℄.A downward simulation is a relation r from Astate to Cstate su
h that�
i� �ai o9 ÆrÆr o9 �
f� �afÆr o9 �
opi� �aopi o9 Ær for ea
h index i 2 IAn upward simulation is a relation l from Cstate to Astate su
h that�
i o9 Æl� �ai�
f�Æl o9 �af�
opi o9 Æl� Æl o9 �aopi for ea
h index i 2 IThese simulation rules are de�ned in terms of augmented relations. We 
an extra
t the underlyingrules for the original partial relations as follows. For example, for a downwards simulation theabove de�nition is equivalent to the following 
onditions
i � ai o9 rr o9 
f � af(dom aop C r o9 
op) � aop o9 rran((dom aop) C r) � dom 
opThe last two 
onditions mean that: the e�e
t of 
op must be 
onsistent with that of aop; and, theoperation 
op is de�ned for every value that 
an be rea
hed from the domain of aop using r .5



We 
an also extra
t the underlying 
onditions in the de�nition of an upwards simulation, to �nd(see for example [9℄) that they equivalent to the following 
onditions
i o9 l � ai
f � l o9 afdom(l �B (dom aop)) �C 
op o9 l � l o9 aopdom 
op � dom(l �B (dom aop))The last two 
onditions mean: the e�e
t of 
op must be 
onsistent with that of aop; and the setof values for whi
h 
op is not de�ned must be a subset of those for whi
h aop is not de�ned.These relational rules 
an now be used in a parti
ular spe
i�
ation notation. For example, we 
antransform the rules from their relational setting to simulation rules for Z spe
i�
ations by writingthem in the Z s
hema 
al
ulus. The presentation of the downward simulation 
onditions in Z weregiven above, the upward simulation 
onditions are similar (see [9℄ for details). In Z (and VDMet
) we lose all expli
it referen
es to �nalisation for reasons given in [9, 3℄.3 Cal
ulating re�nementsIn this se
tion we 
onsider the 
al
ulational aspe
ts of re�nement, and we develop rules forboth upward and downward simulations. To do so we work in the relational setting, givingthe results in Z as 
orollaries. Suppose we are given a spe
i�
ation of an abstra
t data typeA = (Astate; ai ; faopigi2I ; af ), a 
on
rete state spa
e Cstate together with a retrieve relation rbetween Astate and Cstate. It is possible to 
al
ulate the most general re�nement of A, that is
al
ulate the initialisation, �nalisation and 
on
rete operations.As noted in [5℄, the 
al
ulations 
an be found by 
onsidering the most general solutions to thesimulation requirements in the de�nitions given above. Therefore, the most general (i.e. weakest)solution for a downward simulation is given by:�
i= �ai o9 ÆrÆr o9 �
f= �afÆr o9 �
opi= �aopi o9 Ær for ea
h index i 2 Iwhi
h have expli
it solutions (see [5℄):�
i= �ai o9 Ær�
f= �af = Ær�
opi= ( �aopi o9 Ær)= Ær for ea
h index i 2 Iwhere X =R = (R�1 o9X ).Similarly, for an upward simulation the weakest solution is given by:�
i=Æl n �ai�
f=Æl o9 �af�
opi=Æl n(Æl o9 �aopi ) for ea
h index i 2 Iwhere L n X = (X o9 L�1). We now 
onsider how to simplify these 
onditions and to extra
t the
al
ulation on the underlying partial relations. We begin with downward simulations.6



3.1 Downward simulationsIn this se
tion the main result (Theorem 2) is the simpli�
ation of existing 
al
ulational methodsfor downward simulations. Extra
ting the 
al
ulations for the initialisation and �nalisation is easysin
e we know that �
i� �ai o9 Ær i� 
i � ai o9 r et
. Therefore the weakest 
on
rete initialisation and�nalisation are given by
i = ai o9 r
f = af =rTo 
al
ulate the 
on
rete operations we note that the 
al
ulation �
op= ( �aop o9 Ær)= Ær 
an be re-written as two 
onditions: (dom aop C r o9 
op) = aop o9 r and ran((dom aop) C r) = dom 
op.Therefore 
op is given by the weakest solution whi
h is:
op = ran(dom aop C r)C ((aop o9 r)=(dom aop C r))However, for a partial relation we also need to 
he
k appli
ability, and only if this 
on
rete opera-tion satis�es the appli
ability 
ondition does a downward simulation exist. We summarise this inthe following theorem.Theorem 1 The weakest data type that is a downward simulation of A with respe
t to r is givenby 
i = ai o9 r
f = af =r
op = ran(dom aop C r)C ((aop o9 r)=(dom aop C r))whenever ran((dom aop)C r) � dom 
op. If the latter does not hold then no downward simulationis possible for this A and r.This theorem 
on
urs with the results in [7℄ whi
h were given in terms of the Z s
hema 
al
ulus.[7℄ also 
omments that in the 
ase of r�1 de�ning a (partial) surje
tive fun
tion from Cstate toAstate, then the 
al
ulation simpli�es to 
op = r�1 o9aop o9r , and that in this 
ase it is not ne
essaryto 
he
k that ran((dom aop) C r) � dom 
op. We show now that we 
an relax this hypothesis.In parti
ular, it is not ne
essary that r�1 is surje
tive, and in addition r�1 does not have to be
ompletely fun
tional, it is suÆ
ient that it is fun
tional on a restri
ted domain.Theorem 2 Let 
op = ran(dom aop C r) C ((aop o9 r)=(domaop C r)). Then 
op � r�1 o9 aop o9 r ,and if ran((dom aop) C r) � dom 
op and domaop C r o9 r�1 � id then 
op = r�1 o9 aop o9 r .ProofWe �rst of all show that 
op � r�1 o9 aop o9 r . Let (a; b) 2 
op. Then (9 s � (s ; a) 2 (dom aop Cr)) ^ (8 s � (s ; a) 62 (dom aop C r) _ (s ; b) 2 (aop o9 r)). Hen
e there exists an s su
h that(s ; a) 2 (dom aop C r) and (s ; b) 2 (aop o9 r), and therefore (a; b) 2 r�1 o9 aop o9 r .Next we show that if ran((dom aop)Cr) � dom 
op then r�1 o9aop o9r � 
op. To do so suppose that(a; b) 2 r�1 o9 aop o9 r , then there exists s su
h that (s ; a) 2 (dom aop C r) and (s ; b) 2 (aop o9 r).We have to show that 8u � (u; a) 62 (dom aop C r) _ (u; b) 2 (aop o9 r). Consider any u with(u; a) 2 (dom aop C r), it suÆ
es to show that (u; b) 2 (aop o9 r).Sin
e (u; a) 2 (dom aopCr) and (a; b) 2 r�1o9aopo9r , we �nd that (u; b) 2 dom aopCr o9r�1o9aopo9r �aop o9 r sin
e dom aop C r o9 r�1 � id . 7



Therefore 8u � (u; a) 62 (dom aop C r) _ (u; b) 2 (aop o9 r). We also know that 9 s � (s ; a) 2(dom aop C r) and (s ; b) 2 (aop o9 r). Thus by the de�nition of 
op, (a; b) 2 
op. 2Note also that in the 
ase that r de�nes a fun
tion (not ne
essarily total or surje
tive) from Cstateto Astate, then it is not ne
essary to 
he
k that appli
ability holds.The 
onsequen
es of this theorem are the following. For the simpler 
al
ulation 
op = r�1 o9aop o9 rto be used� it is not ne
essary that r�1 is surje
tive, i.e. not every abstra
t state needs to be linked toa 
on
rete state;� it is not ne
essary that r�1 is a fun
tion, it only has to be fun
tional on the smaller setran(dom aop C r).As we shall see in a moment these are suÆ
ient, but not ne
essary, 
onditions, e.g. there areo

asions where the simpli�ed 
al
ulation 
an still be used even when r�1 is not fun
tional at all.It is also easy to 
onstru
t examples where the simpli�ed 
al
ulation 
annot be used when thene
essary 
onditions on r fail.We 
an des
ribe these results in the Z s
hema 
al
ulus. To do so let R be the retrieve relation,let Astate be the abstra
t state spa
e, Ainit the abstra
t initialisation, and let every abstra
toperation AOp have a 
on
rete 
ounterpart COp.Corollary 1 Given an abstra
t spe
i�
ation, a 
on
rete state spa
e and a retrieve relation R, themost general downward simulation 
an be 
al
ulated as:Cinit b= 9Astate � Ainit ^ RCOp b= 9Astate; Astate 0 � (R ^AOp ^ R0)whenever a downward simulation exists (whi
h is guaranteed to do so when R is fun
tional from
on
rete to abstra
t) and whenever R is a fun
tion from Cstate to Astate on ran(domAOp CR).Example:We 
an apply this result to our example given in Se
tion 2. This example is interesting be
ause theretrieve relation is not fun
tional: for every u there are many 
hoi
es of s and t with umerge(s ; t).In [7℄ Josephs thus uses 
omplex 
al
ulations to produ
e the 
on
rete operations, for example,pushC is 
al
ulated bypushC b= (9 s ; t : seq IN � pre pushA ^ R) ^ (8 s ; t � pre pushA ^R ) 9 s 0; t 0 � pushA ^ R0)The retrieve relation R is not fun
tional on ran(dom pushA C R) whi
h is the whole of Cstatesin
e pushA is total. So we 
annot automati
ally use the simple 
al
ulation pushC b= 9 t ; s ; t 0; s 0 :seq IN � (R ^ pushA ^R0).However, the retrieve relation is fun
tional on ran(dom popErrorACR), i.e. R links u = h i to onlyone abstra
t state (namely when both s and t are also empty). Therefore the simple 
al
ulationpopErrorC b= 9 t ; s ; t 0; s 0 : seq IN � (R ^ popErrorA ^ R0)
an be used. This evaluates topopErrorC�Cstatereport ! : REPORTu = h i ^ report ! = \error � nothing to pop008



In
identally, this example shows that the 
ondition of fun
tionality is not ne
essary sin
e, forexample, the 
al
ulationpopOkC b= 9 t ; s ; t 0; s 0 : seq IN � (R ^ popOkA ^ R0)evaluates to the same s
hema as the more 
omplex 
al
ulation used in [7℄, namelypopOkC�Cstaten! : IN9 t ; s � umerge(t a hn!i; s) ^ u 0merge(t ; s)Note that one obvious further re�nement of this would be the operationpopOkC�Cstaten! : INt = t 0 a hn!i 23.2 Upward simulationsTurning to the 
ase of upward simulations, we 
an produ
e analogous results, and again it is easyto extra
t the 
al
ulations for the initialisation and �nalisation. They are given by:
i = l n ai
f = l o9 afTo 
al
ulate the 
on
rete operations the equation �
op=Æl n(Æl o9 �aop) is equivalent (see [9℄) to thetwo 
onditions dom(l �B (dom aop)) �C 
op o9 l = l o9 aop and dom 
op � dom(l �B (dom aop)).Therefore the weakest solution if one exists is given by dom(l �B (dom aop)) �C 
op = l n (l o9 aop),and hen
e
op = dom(l �B (dom aop)) �C (l n (l o9 aop))This will be a re�nement whenever this 
op satis�es the appli
ability 
ondition dom 
op � dom(l�B(dom aop)). If 
op is total this 
ondition is true sin
e in this 
ase dom 
op = ?. If the appli
ability
ondition fails then no upward simulation is possible for this A and l . We 
an summarise this asfollows.Theorem 3 The weakest data type that is an upward simulation of A with respe
t to l is givenby 
i = l n ai
f = l o9 af
op = dom(l �B (domaop)) �C (l n (l o9 aop))whenever dom 
op � dom(l �B (dom aop)). If the latter does not hold then no upward simulation ispossible for this A and l . 9



We 
an now simplify this 
al
ulation in a fashion similar to that des
ribed for downward simu-lations. Note �rst that an upward simulation l must be total from 
on
rete to abstra
t. This isdue to the totality of a �nalisation and the 
ondition that 
f � l o9 af . The simpli�
ation of the
al
ulation will then depend upon whether l is fun
tional.Theorem 4 Let 
op = dom(l �B (dom aop)) �C (l n (l o9 aop)). Then whenever l is a fun
tion fromCstate to Astate, 
op = l o9 aop o9 l�1.ProofLet (a; b) 2 
op. Then a 62 dom(l �B (dom aop)) and (a; b) 2 (l n (l o9 aop)). Hen
e, 8� � (a; �) 2l ) � 2 dom aop and 8 
 � (b; 
) 2 l ) (a; 
) 2 (l o9 aop). By the assumption of totality thereexists at least one 
 with (b; 
) 2 l , and hen
e (a; 
) 2 (l o9 aop). Thus (a; b) 2 l o9 aop o9 l�1.For the 
onverse we need the assumption of fun
tionality. Let (a; b) 2 l o9 aop o9 l�1. To show that(a; b) 2 
op we need to show that a 62 dom(l �B (dom aop)) and (a; b) 2 (l n (l o9 aop)). For theformer this amounts to showing that 8 y � (a; y) 62 l _ y 2 dom aop. However, sin
e l is a fun
tionand (a; b) 2 l o9 aop o9 l�1 there is pre
isely one y with (a; y) 2 l and for this y we know thaty 2 dom aop.Showing that (a; b) 2 (l n (l o9 aop)) amounts to showing that 8 
 � (b; 
) 2 l ) (a; 
) 2 (l o9 aop),and again by the fun
tionality of l this is easily seen to be true. Hen
e (a; b) 2 
op. 2Note that in fa
t the fun
tionality of l 
an a
tually be weakened to requiring that dom aopCl�1o9l �id and ran aop C l�1 o9 l � id .Example:The following example shows that the simpli�
ation does not always hold. The diagram depi
tsan abstra
t data type with state spa
e f0; : : : ; 3g and one operation a = f(1; 2)g. The 
on
retestate spa
e has just two points f0; 1g and we are given a total relation l as our retrieve relation,where l = f(0; 0); (0; 1); (1; 2); (1; 3)g.
1 2

3

0 1

0

a Abstract

ConcreteThen 
op = dom(l �B (dom aop)) �C (l n (l o9 aop)) = ?, however, l o9 aop o9 l�1 = f(0; 1)g. Thereforel o9 aop o9 l�1 is not the most general upward simulation with this retrieve relation.Finally, let us des
ribe these results in the Z s
hema 
al
ulus. Again let R be the retrieve relation,let Astate be the abstra
t state spa
e, Ainit the abstra
t initialisation, and let every abstra
toperation AOp have a 
on
rete 
ounterpart COp.Corollary 2 Given an abstra
t spe
i�
ation, a 
on
rete state spa
e and a retrieve relation R, themost general upward simulation 
an be 
al
ulated as:Cinit b= 8Astate � (R ) Ainit)COp b= 8Astate � (R ) preAOp) ^ (8Astate 0 � (R0 ) 9Astate � R ^ AOp))whenever an upward simulation exists. In the 
ase when R is fun
tional from 
on
rete to abstra
t,COp is given byCOp b= 9Astate; Astate 0 � (R ^AOp ^ R0)10



and in this 
ase there is no need to 
he
k appli
ability.4 Con
lusionsIn this note we have 
onsidered the 
al
ulation of re�nements in state-based systems and inparti
ular the Z spe
i�
ation language. We have simpli�ed the existing result for 
al
ulations ofdownward simulations, and illustrated via an example how su
h 
al
ulations are 
arried out toprodu
e the operations in a 
on
rete spe
i�
ation. We have also derived a similar result for upwardsimulations. A small example illustrated that we 
annot in general simplify the 
al
ulations ofupward simulations.Referen
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