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Abstract

The purpose of this thesis is to develop tools to more easily classify the mod-

ular representations of elementary abelian p-groups and better understand their

invariant rings. Since these groups almost always have wild representation type

complete classification of the indecomposables is considered impossible and as

such an alternative perspective is required.

We reformulate the representation classification in the perspective of classi-

fying maximal abelian subgroups of unipotent groups. Thence we express the

problem as determining finitely many ‘covering’ homomorphisms of the form

σ : (Fd,+) → GLn(F) whose images collectively contain the images of all such

representations up to equivalence. To aid in this we attach a combinatorial equiv-

alence invariant object to modular p-group representations thereby allowing us to

segment the problem and more easily distinguish between inequivalent families.

Using these tools we build upon the work of [11] and develop a full set of cover-

ing homomorphisms for all modular elementary abelian p-groups inGL4(F), GL5(F)

and GL6(F). In doing so we also provide covering homomorphisms for select fam-

ilies in arbitrary dimension with specific patterns in their combinatorial invariant.

By way of example we use these to provide an explicit construction for the Sylow

p-subgroups of the finite orthogonal groups.

Thereafter our focus switches to invariant rings. Given a matrix group in

the image of a homomorphism σ : (Fd,+) → GLn(F) we explore methods of

recovering the W ≤ (Fd,+) used to generate the group purely through its action

on specific elements in the symmetric algebra of the dual, properties of which are

indicative of properties of the invariant ring. Using this we provide an alternative

explicit construction for the invariant rings implicitly generated in [8]. Further we

generalise a long-exploited technique for inductively defining invariants from those

of maximal subgroups. After classifying the invariant rings and fields of several

hitherto classified families we focus on the four-dimensional modular elementary

abelian p-groups with rank 2, providing their invariant rings if Cohen-Macaulay

and algorithmic methods to procure it otherwise.
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Chapter 1

Introduction

Overview

Whilst the worlds of representation theory and invariant theory both flourish

in recent years there seems to exist a dichotomy between the two. Whilst the

representation theoretic world begins to gravitate towards more fruitful modern

techniques – representations of algebras, category theory, sheaves and cohomology

– invariant theory remains caught, relying on the classical focus they have left

behind. Frequently it is left to invariant theorists to develop their own tools to

construct and study their initial groups.

The modular case, when the field characteristic p > 0 divides the group’s

order, causes complications. Many of the grand structural questions of non-

modular representation and invariant theory have long been answered. In the

case of wild representation type – a case in which almost all p-groups sit in

the modular case – it is generally considered to be impossible to obtain a full

classification of decomposable modules. Hence the representation theorists divert

attention.

However the deriving a modular representation’s invariants from those of its

Sylow p-subgroups enjoys many of the luxuries of the non-modular case. It is

thus a desire to understand the modular representations of p-groups to better

understand their invariants. This is the baton we grasp in our study of the

modular representations and invariants of the elementary abelian p-groups Zrp.
This document may be considered a spiritual, if unlicensed, successor to

the paper [11]. Therein the authors classified all three-dimensional modular

Zrp-representations and thence determined their invariants when r ≤ 3. Here

8



CHAPTER 1. INTRODUCTION 9

we mimic and generalise many of their techniques, alongside developing original

structural tools, to many more dimensions and ranks.

We divide this document fairly neatly into two parts, the representation the-

ory and the invariant theory, flanked by this introduction and their conclusions.

These sections are as self contained as possible, making explicit references be-

tween them as necessary. If the reader is particularly invariant-inclined one may

begin there to give motivation to the section prior.

We proffer much of the preliminary definition from the literature in Section

1.1, all required and well-worn throughout this document, including the heavily

leaned-upon ‘socle-type’. Section 1.2 recaps the work of [11] in dimension 3 and

provides motivation and philosophy going forward. We provide a rough guideline

to the document’s structure as follows.

Representation Theory

Excluding the cyclic groups and Z2
2 the representation type of an elementary

abelian p-group is wild and thus the problem of classifying the indecomposable

modules is generally looked upon as folly. However this does not diminish our

interest and so we develop techniques of our own.

We divide the problem of classification into two components: We deal with pa-

rameterisation in Section 2.1 by developing covering homomorphisms σ : (Fd,+)→
GLn(F) from which we may construct representations we desire. Section 2.2 then

divides representations into smaller families by attaching a combinatorial equiva-

lence invariant, the socle tabloid, to them. These sections are distinct, the latter

applying to any general p-group. We combine them in Section 2.3 to demonstrate

how these techniques allow us to classify infinitely many families of representa-

tions from select small-dimensional examples.

Hereafter we begin concrete formulation, classifying those Zrp-representations

with longest possible socle-series in Section 2.4 and using iterative techniques

extend to many more families in Section 2.5. On the opposite end of the spec-

trum Section 2.6 deals with Zrp-representations whose socle series has length 3,

the smallest interesting case, reformulating the problem of classification into one

of invariants of algebraic groups. For flavour this section includes a direct ap-

plication by providing an explicit construction for the Sylow p-subgroups of the

finite orthogonal groups.
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We continue the thread of [11] in their classification of all 3-dimensional

Zrp-representations and use Sections 2.7, 2.8 and 2.9 to classify all modular Zrp-
representations in dimensions 4, 5 and 6 respectively.

Invariant Theory

Having concluded constructing Zrp-representations we go about the business of

examining their invariants. Unless otherwise stated this part of the document is

self-contained. Having recapped the notation and useful results from the litera-

ture in Section 3.1, we develop two tools for invariant construction in situ.

Section 3.2 develops the matrix minor method of constructing invariants from

recovery functions which allows us to directly transfer information about the

group’s generation into an invariant theoretic context. We demonstrate by ex-

plicitly constructing a generating set for the invariant ring of the hyperplane

groups, an implicit construction having been given in [8].

We take this into Section 3.3 applying representations with socle-type (m, 1, . . . , 1)

– as constructed in Section 2.5 – yielding their invariant fields and thence a

method of constructing a basis for their invariant rings.

Section 3.4 diverts course to develop a technique of iteratively constructing

invariants from those of maximal subgroups. We demonstrate their effectiveness

upon representations with socle-length 2.

Combining all prior sections together we spend Section 3.5 studying and con-

structing the invariant fields of a family of socle-length 3 representations whose

images consist wholly of bireflections.

We conclude with Section 3.6 in which we examine the invariants of four-

dimensional Zrp-representations. Therein we consider all rank 2 representations,

providing either generating sets for the invariant ring when the ring is Cohen-

Macaulay, or otherwise the invariant field with an algorithm to construct the ring

thereafter.

1.1 Preliminaries

In this section we shall introduce the preliminary definitions and results which

provide impetus for all questions that follow.
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1.1.1 Basic Definitions

The notation we introduce here shall be consistent throughout the remainder of

this document.

We denote by F a field of prime characteristic char(F) = p > 0 and F its alge-

braic closure. By GLn(F) we denote the general linear group over F of dimension

n. For V an n-dimensional F-vector space we write GL(V ) ∼= GLn(F) as specifi-

cally the general linear group acting on V . When we wish to view Fn as an addi-

tive group we shall denote it (Fn,+) and its elements c := (c1, . . . , cn) ∈ (Fn,+).

We take N to be the natural numbers without zero and N0 := N ∪ {0}. For

n,m ∈ N we write Mn,m(F) for the set of all n ×m matrices over F. For short-

hand we write Mn(F) := Mn,n(F). We denote by A[i, j] the (i, j)th entry of

A ∈ Mn,m(F). As the title of this document may suggest we desire abelian

representations and as such we shall make heavy use of the matrix commutator

[A,B] := AB −BA.

Given v ∈ Nr
0 with

∑
vi = s we use the multinomial short-hand(
s

v

)
:=

(
s

v1, . . . , vr

)
=

s!

v1! · · · vr!
.

We write Un(F) for the set of n-dimensional upper-triangular unipotent ma-

trices over F. More specifically for (m1, . . . ,mk) ∈ Nk with
∑

imi = n we denote

U(m1,...,mk)(F) :=



Im1 Γ12 . . . Γ1k

0 Im2 · · · Γ2k
...

...
. . .

...
0 0 · · · Imk

 ∣∣ Γi,j ∈Mmi,mj(F)

 .

As multiplicative groups we note that U(m1,...,mk)(F) ≤ Un(F) ≤ GLn(F).

Let p be a prime number and denote by Zp the group of integers modulo p.

We write

Zrp := Zp × · · · × Zp︸ ︷︷ ︸
r

to denote an elementary abelian p-group of rank r.

For G a (finite) group we let V be a finite-dimensional left FG-module. By

choosing a basis B = {v1, . . . , vn} ⊂ V the linear (left) action of g ∈ G may be
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presented by left multiplication of a matrix on column vectors in V .

By a representation of G we shall often hop between referring to an explicit

FG-module V , a homomorphism G→ GL(V ) and the image of such a homomor-

phism. Which of these we use at any given time we hope to make clear in situ.

We consider representations as modular when char(F) divides |G|.
We often use the short-hand Zrp ∼= G ≤ GL(V ) to refer to an FZrp-module V

with a given basis upon which the action of the group induces the matrix group

G ≤ GLn(F).

Given Zrp ∼= G ≤ GL(V ) we observe the dual module V ∗ = HomF(V,F) of V

with dual basis B = {v∗1, . . . , v∗n}. Then V ∗ is a right FZrp-module upon which

σ ∈ Zrp acts by (x · σ)(v) = x(σ · v). This action is represented by G acting upon

row vectors in V ∗ by right multiplication.

We remark that there is a one-to-one correspondence between quotient mod-

ules of V and submodules of its dual V ∗ and vice-versa induced by duality, as

seen in citeLandrock Lemma 6.5 for instance. We shall often make use of this

correspondence.

Two modules V, V ′ ∈ FG-mod are equivalent if there exists a linear, invertible

T : V → V ′ such that g · T (v) = T (g · v) for all g ∈ G. Two representation

homomorphisms σ, σ′ : G → GLn(F) are said to be equivalent if there exists an

A ∈ GLn(F) such that σ(g) = Aσ′(g)A−1 for all g ∈ G. The modules induced by

such homomorphisms are equivalent if and only if the homomorphisms themselves

are equivalent, and so we use these terms interchangeably.

Given an FG-module V we denote by F[V ] := S(V ∗) the symmetric algebra

of the dual space. We extend the action of G on V ∗ to an action on F[V ] by

extending multiplicatively. A prime focus of the latter part of this document will

be the invariant ring

F[V ]G := {f ∈ F[V ]
∣∣ f · g = f, ∀g ∈ G}.

1.1.2 Socle Series and Socle-Type

A significant effort in this paper is to classify all modular representations of Zrp
in a given dimension up to equivalence. In order to better distinguish between

these cases we utilise more representation-specific properties which are invariant

under equivalence. To this end we note the following lemma which may be found
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as Lemma 4.0.1 in [12], among others.

Lemma 1.1.1. Let P be a p-group, F a field of characteristic p and V a positive-

dimensional FP -module. Then

V P := {v ∈ V
∣∣ σ · v = v, ∀σ ∈ P} 6= {0}.

In particular given a representation Zrp ∼= G ≤ GL(V ) the value of dim(V G) >

0 is invariant under equivalence. We also have that V G is the socle of the repre-

sentation, i.e. the sum of the irreducible submodules. This is because the only ir-

reducible submodule is the one-dimensional trivial module. Hence Soc(V ) = V G.

Using this construct inductively Soc1(V ) := Soc(V ) and

Soci+1(V )/Soci(V ) := Soc
(
V/Soci(V )

)
.

Since at each stage the socle of V/Soci(V ) is simply the fixed point subspace,

which we have ascertained is nonzero, this sequence can be easily calculated

when the representation is explicit and terminates at Sock(V ) = V . Hence we

acquire the socle series

0 < Soc1(V ) < Soc2(V ) < · · · < Sock(V ) = V.

Naturally the same construction can be performed on V ∗ to acquire

0 < Soc1(V ∗) < Soc2(V ∗) < · · · < Soc`(V
∗) = V ∗.

It is known – see, for instance, [22] Lemma 8.2 – that the socle-series has the

same length as the Loewy series defined by

Rad1(V ) := Rad(V ) =
⋂
{W

∣∣ W a maximal submodule of V },

Radi+1 := Rad(Radi(V )).

This coupled with the fact that

Radi(V ) = {v ∈ V
∣∣ x(v) = 0 ∀x ∈ Soci(V

∗)}

as in [22] Lemma 8.4, implies that the socle-series’ of V and V ∗ have the same
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length. We refer to this integer k = ` as the socle-length of V (or G). The

following definition is inspired by the work of [11].

Definition 1.1.2. Given Zrp ∼= G ≤ GL(V ) define the positive integers

m1 := dim
(
Soc1(V )

)
, mi := dim

(
Soci(V )/Soci−1(V )

)
,

n1 := dim
(
Soc1(V ∗)

)
, ni := dim

(
Soci(V

∗)/Soci−1(V ∗)
)
,

for i = 2, . . . , k where k is the socle-length of V . Then we say V and G have

socle-type (m1, . . . ,mk) and dual socle-type, or simply dual-type, (n1, . . . , nk).

Suppose G acts upon the basis {v1, . . . , vn} for V such that {v1, . . . , vm1+···+mi}
forms a basis for Soci(V ) for each i ∈ J1, kK := {1, 2, . . . , k}. We call such a basis

socle-conforming and so G ⊂ U(m1,...,mk)(F).

We define these for the purpose of classification. The socle- and dual-type

of a representation are invariant under equivalence, and socle-conforming bases

provide a pseudo-canonical form which makes the socle-type visible at a glance.

We divide our classifications into distinct inequivalent families parameterised by

such invariants.

1.2 Three-Dimensional Representations

Here we summarise the work performed in [11] in their classification of all three-

dimensional Zrp-representations. They do so by dividing representations into fam-

ilies by what we’ve come to call their socle-type. Honourable mention goes to the

socle-type (3) representation which is, by construction, trivial.

1.2.1 Socle-Types (2, 1) and (1, 2)

Let Zrp ∼= G ≤ GL(V ) have socle-type (2, 1), that is V ∈ FZrp-mod with socle-

type (2, 1) induces the action of the matrix group G ≤ GLn(F). By choosing a

socle-conforming basis for V we may ensure that each element g ∈ G is of the

form

σ2,1(c1, c2) :=

 1 0 c2

0 1 c1

0 0 1

 ∈ U(2,1)(F)
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for some c1, c2 ∈ F. Note then that σ2,1(c)σ2,1(d) = σ2,1(c+ d), that is

σ2,1 : (F2,+)→ U(2,1)(F)

is a group homomorphism. Hence G is conjugate to σ2,1(W ) for some W ≤
(F2,+). Thus by choosing an appropriate injection ι : Zrp → W we see that

the representation induced by V is equivalent to σ2,1 ◦ ι, that is a representation

induced by σ2,1.

Similarly should V instead have socle-type (1, 2) then given a socle-conforming

basis g ∈ G adopts the form

σ1,2(c1, c2) :=

 1 c1 c2

0 1 0
0 0 1

 ∈ U(1,2)(F)

where σ1,2(c)σ1,2(d) = σ1,2(c+ d). Thus V is then equivalent to a representation

induced by σ1,2.

Fortuitously U(2,1)(F) and U(1,2)(F) are both already abelian groups. Indeed

this extends to all

U(m1,m2)(F) =

{[
Im1 Γ
0 Im2

] ∣∣ Γ ∈Mm1,m2(F)

}
≤ Um1+m2(F).

There thus exist natural homomorphisms between the rank r subgroups of (Fm1m2 ,+)

and the images of Zrp-representations with socle-type (m1,m2) up to equivalence,

depending on how one wishes to unravel the corner matrices.

Remark. Note that not all representations induced from such homomorphisms

may have the desired socle-type. For instance if for some α ∈ F we have c2 = αc1

for all c ∈ W ≤ (F2,+) then a representation induced from σ1,2(W ) shall have

socle-type (2, 1). In a sense these additional cases are ‘degenerate’. Hence we

often demand that the coefficients used to construct the homomorphism be, in

some precise sense, sufficiently independent throughout the chosen subgroup of

(Fd,+) in order to acquire the desired form.

For longer socle-types we are required to seek maximal abelian subgroups of

UM(F) as we shall see in the only remaining dimension 3 case.
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1.2.2 Socle-Type (1, 1, 1)

Let Zrp ∼= G ≤ GL(V ) have socle-type (1, 1, 1). By choosing a socle-conforming

basis {v1, v2, v3} for V we ensure G ≤ U(1,1,1)(F) = U3(F). Since U3(F) is non-

abelian we seek abelian subgroups therein.

Suppose we wish to find all abelian G ≤ U(1,1,1)(F) with socle-type (1, 1, 1).

These must contain at least one element

C =

 1 c1,2 c1,3

0 1 c2,3

0 0 1


for which c2,3 6= 0, lest we degrade to socle-type (1, 2). For any other D in our

abelian subgroup we have

[C,D][1, 3] = c1,2d2,3 − d1,2c2,3 = 0 (1.1)

and so d1,2 = c1,2
c2,3
d2,3. Since the [1, 2] entry of some element must also not vanish,

lest we degrade into socle-type (2, 1), it follows that c1,2 6= 0. In particular

(C − I2)2 6= 0 and so we acquire the following.

Corollary 1.2.1. There exist no modular Zr2-representations with socle-type (1, 1, 1).

It is an ongoing question to determine which socle-types have no associated

representations in fields of a given characteristic. Sections 2.3.2 and 2.6.3 examine

this problem in more detail.

Once we find an element with a large Jordan normal form, such as the C given

above, we wish to view these elements as acting on V ∼= F3 by left multiplication

and fix a basis on which it acts conveniently. Suppose C acts as above on the

basis {v′1, v′2, v′3} we upper-triangularly transform this into

{v1, v2, v3} := {(C − I3)2 · v′3, (C − I3) · v′3, v′3}.

As an upper-triangular change of basis this leaves the action of U3(F) unchanged

as a whole. However C acts on this basis in its Jordan normal form 1 1 0
0 1 1
0 0 1

 .
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We find it computationally convenient to adopt the following: Since p > 2 we

alter the dual basis to become {w∗1, w∗2, w∗3} := {2v∗1 + 3v∗2 + v∗3, v
∗
2 + v∗3, v

∗
3} on

which C acts by  1 2 1
0 1 1
0 0 1

 .
Remark. We shall often find ourselves possessing an element J which acts as a

single Jordan block on a basis {v1, . . . , vn}, so that J · vi+1 = vi+1 + vi, and wish

to convert this into a binomial form by an upper-triangular basis change. This

may be achieved when p ≥ n by choosing the dual basis {w∗1, . . . , w∗n} where

w∗n+1−m :=
m∑
i=1

(i− 1)!S2(m, i)v∗n+1−i (1.2)

for S2(i, j) the Stirling numbers of the second kind. By utilising well-known

relations we see that

w∗n+1−m · J =
m∑
i=1

(i− 1)!S2(m, i)v∗n+1−i +
m∑
i=2

(i− 1)!S2(m, i)v∗n+2−i

=
m∑
i=1

(i− 1)!v∗n+1−i [S2(m, i) + iS2(m, i+ 1)]

=
m∑
i=1

(i− 1)!v∗n+1−i [S2(m+ 1, i+ 1)− S2(m, i+ 1)]

=
m∑
i=1

(i− 1)!v∗n+1−i

[
m∑
j=i

(
m

j

)
S2(j, i)−

m−1∑
j=i

(
m− 1

j

)
S2(j, i)

]

=
m∑
i=1

(i− 1)!v∗n+1−i

m∑
j=i

(
m− 1

j − 1

)
S2(j, i)

=
m∑
j=1

(
m− 1

j − 1

) j∑
i=1

(i− 1)!S2(j, i)v∗n+1−i

=
m∑
j=1

(
m− 1

j − 1

)
w∗n+1−j.

Thus the action of J on the resulting basis shall render J into the form J =

[
(
n−i
n−j

)
]i,j.

Returning to our example it follows from (1.1) that d2,3 = 2d1,2 for all other
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elements D of our subgroup. Thus all modular representations of Zrp with socle-

type (1, 1, 1) have images conjugate to a subgroup of

Ũ3(F) :=


 1 2c2,3 c1,3

0 1 c2,3

0 0 1

 ∣∣ c2,3, c1,3 ∈ F

 ≤ U3(F). (1.3)

Theoretically our task is complete. However easily procuring subgroups therein

is not a simple affair since the multiplication in this group is tangled. We thus

follow the advice of our predecessors and re-parameterise our matrix entries.

Proposition 1.2.2 ([11], Proposition 5.1). Let Zrp ∼= G ≤ GL(V ) have socle-type

(1, 1, 1). Then G is conjugate to a subgroup in the image of the homomorphism

σ111 : (F2,+)→ U3(F), σ111(c) :=

 1 2c1 c2
1 + c2

0 1 c1

0 0 1


Thus V is equivalent to a representation induced by σ111, that is a representation

of the form σ111 ◦ ι for some injection ι : Zrp → W ≤ (F2,+).

Proof. The set σ111(F2) is equal to the set Ũ3(F) procured in (1.3) and thus

contains the images of all such representations up to equivalence. Thereafter we

verify that σ111 : (F2,+) → Ũ3(F) is a homomorphism and that conjugacy of

images implies equivalence of representations up to only precomposition with an

automorphism of Zrp. The freedom of choice in ι then yields the result.

Classification of the modular Zrp-representations with socle-type (1, 1, 1) re-

quired more effort than with socle-length 2. We first had to find the maximal

abelian subgroups of U(1,1,1)(F) and then reparameterise their entries to acquire

a homomorphism from (F2,+) into such groups.

This process shall act as a prototype for our general classification of Zrp rep-

resentations explored in generality in Section 2.1.

Conclusion

Here we recapped the work of [11] in which the authors determine the three-

dimensional modular representations of Zrp up to equivalence.
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We slightly reworked their original construction to demonstrate the techniques

we generalise in chapter 2. We shall thence apply these to our classification of all

modular Zrp-representations in dimensions n = 4, 5, 6, as well as certain general-

dimensional families which conveniently extend from their smaller brethren.



Chapter 2

Representation Theory

The modular representation theory of p-groups suffers many natural knock-backs.

In particular since most have wild representation type the quest to fully acquire

the indecomposables has been dubbed unsolvable [5]. In lieu of such conveniences

we develop methods to aid the classification of modular Zrp-representations, with

focus on dividing the problem into smaller manageable families and thence the

management itself. Our methods do not classify on indecomposable modules

alone but we shall briefly touch upon how to distinguish them when possible.

Section 2.1 extends the methods of Section 1.2 associating homomorphisms

from groups of the form (Fd,+) onto the images of our families. We acquire

through this a covering homomorphism for the family.

Separately Section 2.2 refines the socle-type further into the socle tabloid,

and further still into deconstruction data, to separate representations into finitely

many inequivalent, parameterisable families. This section, unlike the remainder

of the thesis, is valid for any given p-group.

Section 2.3 combines the prior sections and illustrates how this combination

extends previously known representations into infinite families with relatively

little effort.

Using this cut-and-cover system we classify all representations with socle-

type (1, . . . , 1) in Section 2.4. Thence we extend to socle-type (m, 1, . . . , 1) and

(1,m, 1, . . . , 1) in Section 2.5.

In Section 2.6 we take time to study the representations with socle-length 3.

Therein we discover a reformulation of the classification problem as an invariant-

theoretic problem for algebraic groups. We conclude by demonstrating a method

for constructing the Sylow p-subgroup of finite orthogonal groups.

20
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Collecting prior general results and examples together we explicitly provide

the reader all modular Zrp-representations in dimensions 4, 5 and 6 in sections

2.7, 2.8 and 2.9 respectively.

2.1 Covering Homomorphisms

We remarked in Section 1.2.1 that since the group

U(m1,m2)(F) :=

{[
Im1 Γ12

0 Im2

] ∣∣ Γ12 ∈Mm1,m2(F)

}
is abelian we may write the image of any Zrp-representation with socle-type

(m1,m2) as a subgroup of U(m1,m2)(F) up to equivalence. Thus the group isomor-

phism σ : (Mm1,m2(F),+) → U(m1,m2)(F) yields a relation between those repre-

sentations and certain additive subgroups of Mm1,m2(F) ∼= (Fm1m2 ,+). These ho-

momorphisms often yield more ‘degenerate’ representations than those we covet.

This shall act as a prototype for a general construction introduced in this

chapter. We determine a method of constructing homomorphisms from additive

groups of vectors into maximal abelian subgroups of UM(F) which collectively

contain the images all of the representations with socle-type M = (m1, . . . ,mk)

up to equivalence within their image.

Here we demand that char(F) = p ≥ k, however Section 2.1.4 illustrates how

this may be bypassed in practical constructions.

2.1.1 Defining Covering Homomorphisms

Throughout this document our attempts to classify modular Zrp-representations

rest heavily on the following definition.

Definition 2.1.1. Given a (group) homomorphism σ : (Fd,+) → GLn(F) by

choosing an injection ι : Zrp → W ≤ (Fd,+) we construct the Zrp-representation

σ ◦ ι. Such representations are said to be induced from σ.

Fix a family of elementary abelian p-group representations in GLn(F), not

necessarily all of the same rank. Define covering homomorphisms for this family

as a sequence of (group) homomorphisms σi : (Fdi ,+) → Un(F) such that each

representation in the family is equivalent to a representation induced from some

σi.
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We remark that we since our focus is primarily upon faithful representations,

their images being the prime target of acquisition, we would prefer our covering

homomorphisms to be injective. Whilst all examples given in this document

are injective we cannot yet preclude the necessity for a non-injective covering

homomorphism in more advanced cases.

By reformulating the work of [11] in Section 1.2, we have seen that separating

the 3-dimensional representations by their socle-type is sufficient to procure a

single covering homomorphism per family.

Remark. Recall that two representations ρ1, ρ2 : Zrp → GLn(F) have conjugate

images if and only if they are equivalent up to precomposing one with an au-

tomorphism. Thus in order to verify whether a homomorphism is a covering

homomorphism for a family of representations we need only check that their

images are conjugate to a subgroup of the image of the homomorphism. The

additional stipulation of precomposing with an automorphism is automatically

absorbed into the choice of injection to construct the induced representation.

Much of the first part of this document is attempting to determine when such

a technique is possible and how to construct these homomorphisms. Often we

non-uniquely identify the group Zrp ∼= σ(W ) for some W ≤ (Fd,+) with a matrix

A ∈ Md,r(F) whose columns serve as generators of W . Then we say A generates

the representation (with respect to σ).

Warning. The antagonist for the first part of this document is the seemingly

innocuous word wild : The representation type of an elementary abelian p-group

is, in general, wild. This means (see for instance [5] Section 4.4) that the problem

of classifying the indecomposable FZrp-modules is at least as complex as classifying

the indecomposable modules for a free F-algebra over two variables. Since the

latter has been considered ‘undecidable’ – that is no Turing machine algorithm

can verify the validity of any given sentence in the language of these modules –

the same extends to FZrp. Thus the modular indecomposable representations for

elementary abelian p-groups has been dubbed ‘unclassifiable’.

As the document progresses and our techniques for separating representations

into manageable families with covering homomorphisms become more acute, one

might believe that they extend forth to ever-higher dimensional representations

thus rendering the whole problem more manageable. To believe so is to vastly un-
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derestimate the power of the word ‘wild’ and one will soon find oneself retreating

to the drawing board, eraser in the dominant hand, hubris in the other.

2.1.2 The Matrix Exponential and Logarithm

In order to further study these covering homomorphisms it is worth first con-

vincing ourselves that in any given situation their existence and construction are

guaranteed. We do so by exploiting the matrix exponential, defined in character-

istic zero as

exp(Γ) :=
∞∑
i=0

1

i!
(Γ)i where Γ0 := In.

Given an M ∈ Nk and a matrix Γ ∈ UM(F) define Γ0 := Γ − In. Thence we

consider the additive group

UM,0(F) := {Γ0

∣∣ Γ ∈ UM(F)}.

Any Γ0 ∈ UM,0(F) is nilpotent of degree at most k. Hence over fields of charac-

teristic p ≥ k we may define the matrix exponential exp : UM,0(F) → UM(F) by

the truncated sum

exp(Γ0) :=
k−1∑
i=0

1

i!
(Γ0)i.

We would be surprised were the following not to exist elsewhere, but we include

it here for completion.

Proposition 2.1.2. The truncated matrix exponential exp : UM,0(F) → UM(F)

is a bijection. The inverse map log : UM(F)→ UM,0(F) is given by

log(Γ) :=
k−1∑
i=1

(−1)i

i
Γi0.

Proof. To see that exp is a bijection is clear from the image: Each term Γi0 has

the first i diagonals (i.e. the blocks Γ`,`+j for j = 0, . . . , i − 1) vanish. As such

each block-entry of exp(Γ0) is of the form exp(Γ0)ij = Γij + L.O.T.S where the

remaining terms are monomials in the Γi′,j′ for j′ − i′ < j − i.
However we show that exp and log are inverses by direct calculation. We
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observe the following:

log(exp(Γ0)) =
k−1∑
i=1

(−1)i

i

(
k−1∑
j=1

Γj0
j!

)i

=
k−1∑
i=1

(−1)i

i

k−1∑
j1=1

· · ·
k−1∑
ji=1

Γj1+···+ji
0

j1! · · · ji!
.

Recalling that Γs0 = 0 for any s ≥ k we may rewrite this as

log(exp(Γ0)) =
k−1∑
i=1

(−1)i

i

k−1∑
s=i

∑
α∈Ni∑
αj=s

Γs0
α1! · · ·αi!

=
k−1∑
s=1

Γs0
s!

s∑
i=1

(−1)i(i− 1)!
∑
α∈Ni∑
αj=s

1

i!

(
s

α

)
.

Note that
∑

α∈Ni∑
αj=s

1
i!

(
s
α

)
is the Sterling number of the second kind S2(s, i). It is

also well known that
∑s

i=1(−1)i(i − 1)!S2(s, i) = 0 whenever s > 1. Thus we

acquire

log(exp(Γ0)) =
k−1∑
s=1

1

s!
Γs0

s∑
i=1

(−1)i(i− 1)!S2(s, i) = Γ0.

Since exp is a bijection the result then follows.

The purpose of this section is the proof of following result which is indicative

of our ultimate goal.

Theorem 2.1.3. Let F have characteristic p > 0 and M ∈ Nk for k ≤ p. For

any Γ0,∆0 ∈ UM,0(F),

[exp(Γ0), exp(∆0)] = 0 =⇒ exp(Γ0) exp(∆0) = exp(Γ0 + ∆0).

Any reader familiar with the scalar exponential will be unsurprised by this

result. However it is not immediate when extended to the matrix case, and thus

such a statement must be treated with care.

The immediate consequence of this is the following: Given a commutative

multiplicative group G ≤ UM(F) we construct the additive group log(G) :=

{log(Γ)
∣∣ Γ ∈ G} ≤ UM,0(F) and thus exp : log(G) → G becomes a group

homomorphism indicative of our covering homomorphisms.
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Furthermore since C−1 exp(Γ0)C = exp(C−1Γ0C) for C ∈ GLn(F) the conju-

gacy class of G in GLn(F) corresponds to the conjugacy class of log(G).

It is well known that if two arbitrary matrices M1,M2 ∈ Mn(F) commute

then exp(M1) exp(M2) = exp(M1 + M2). Hence Theorem 2.1.3 is effectively a

corollary of the following.

Proposition 2.1.4. Let M ∈ Nk and F have characteristic p ≥ k. Given two

Γ0,∆0 ∈ UM,0(F)

[exp(Γ0), exp(∆0)] = 0 ⇐⇒ [Γ0,∆0] = 0.

Proof. If [Γ0,∆0] = 0 then

exp(Γ0) exp(∆0) =
k−1∑
i=0

k−1∑
j=0

1

i!j!
Γi0∆j

0 =
k−1∑
j=0

k−1∑
i=0

1

j!i!
∆j

0Γi0 = exp(∆0) exp(Γ0).

Suppose instead that [exp(Γ0), exp(∆0)] = 0. Recalling that any monomial in Γ0

and ∆0 of degree k or more vanishes, we see that

[exp(Γ0), exp(∆0)] =
k−1∑
i=1

k−i−1∑
j=1

1

i!j!
(Γi0∆j

0 −∆j
0Γi0)

=
k−1∑
i=1

k−1∑
j=i+1

1

i!(j − i)!
(Γi0∆j−i

0 −∆j−i
0 Γi0)

=
k−1∑
j=2

1

j!

j−1∑
i=1

(
j

i

)
(Γi0∆j−i

0 −∆j−i
0 Γi0) = 0. (2.1)

Define Dj :=
∑j−1

i=1

(
j
i

)
(Γi0∆j−i

0 −∆j−i
0 Γi0) so that

[exp(Γ0), exp(∆0)] =
k−1∑
j=2

1

j!
Dj = 0.

For a matrix

A =


Im1 A1,2 · · · A1,k

0 Im2 · · · A2,k
...

...
. . .

...
0 0 · · · Imk

 ∈ UM(F)

and similarly for A0 ∈ UM,0(F), we refer to the ith diagonal as the blocks of the
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form A`,`+i, thus referring to the regular block diagonal of the matrix a s the 0th

diagonal. Any product of Γ0 and ∆0 of degree j vanishes along the diagonals

0, . . . , j − 1. Hence the 2nd diagonal is the first in (2.1) which isn’t immediately

zero. The only terms which contribute to this diagonal are the summands of

D2 = Γ0∆0 −∆0Γ0.

Showing that D2 = 0 shall conclude the proof.

Since the 2nd diagonal of D2 must vanish it follows that Γ`,`+1∆`+1,`+2 =

∆`,`+1Γ`+1,`+2. We propagate this effect by observing that we may write all other

Dj involving D2. Since

Γ0∆n
0 = D2∆n−1

0 + ∆0Γ0∆n−1
0

= D2∆n−1
0 + ∆0D2∆n−2

0 + ∆2
0Γ0∆n−2

0

= · · ·

= D2∆n−1
0 + ∆0D2∆n−2

0 + · · ·+ ∆n−1
0 D2 + ∆n

0 Γ0

It then follows that Γ0∆n
0 − ∆n

0 Γ0 =
∑n−1

i=0 ∆i
0D2∆n−1−i

0 . Repeating this induc-

tively for higher powers of Γ0 we acquire

Dj =

j−1∑
i=1

(
j

i

)[ i−1∑
α=0

j−i−1∑
β=0

Γα0 ∆β
0D2∆j−i−β−1

0 Γi−α−1
0

]
. (2.2)

More pertinently one can observe that if the `th diagonal of D2 vanishes then

so must the ` + j − 2th diagonal of Dj. Furthermore the mth diagonal of

[exp(Γ0), exp(∆0)] relies only on the Dj from j = 2, . . . ,m. Thus we have our-

selves an inductive argument.

Since the 2nd diagonal of D2 must vanish so too must the jth diagonal of

each Dj for j = 3, . . . , k − 1 by (2.2).

The third diagonal of [exp(Γ0), exp(∆0)] relies only on D2 and D3. However

by our prior step the 3rd diagonal of D3 already vanishes, and so we conclude

that so must the 3rd diagonal of D2. It then follows that the j + 1st diagonal of

each Dj must vanish for each j = 3, . . . , k − 2.

We repeat this inductively to show

� The `th diagonal of [exp(Γ0), exp(∆0)] relies solely on D2, . . . , D`;
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� The `th diagonal of each D3, . . . , D` already vanish by induction, thus so

must the `th diagonal of D2;

� The j + `− 2th diagonals of Dj for j = 3, . . . , k + 1− ` vanish, since they

all depend on the `th diagonal of D2.

We repeat this process until we show that the k − 1st diagonal of D2 vanishes,

thus vanishing all of D2 thereby concluding the proof.

2.1.3 The Construction of Covering Homomorphisms

Having ascertained a correspondence between additive subgroups of UM,0(F) and

images of modular representations of Zrp (for large enough p) using the truncated

matrix exponential/logarithm, our purpose is to generate such representations in

a predictable and manipulable way. Currently the construction of the represen-

tation relies on acquiring the additive subgroup, itself currently constructed from

the representation thus rendering the process fruitless.

Here we demonstrate that the relationship between the additive group and

representation is closer than one may presume at first glance. We determine a

(group) isomorphism between some (Fd,+) and each maximal abelian subgroup

of UM(F) in a method indicative of the work of Section 1.2.

In order to acquire this we use the following method, demanding that our

maximal abelian subgroups be described as subgroups of UM(F) of elements whose

entries satisfy certain linear relations. We have yet to see if this process is immune

to generalisation, but it suffices for all cases we consider in this document.

Definition 2.1.5. Choose a field F of characteristic p > 0 and a nominal socle-

type M ∈ Nk for k ≤ p.

� We call maximal abelian subgroups Gi ≤ UM(F) with socle-type M unre-

fined groups.

To classify these we construct a collection of sets of matrices such that at

least one exists, up to conjugacy, inside each maximal abelian subgroup

of UM(F) with socle-type M . Such a collection must necessarily exist,

although choosing it to be minimal is often a challenge.

Every other element in the subgroup must commute with each element of

this subset. Applying these commutativity criteria to a general element
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of UM(F) yields linear relations between its entries. All matrices satisfying

these linear relations form a group, the maximal abelian subgroups of which

yield the groups we desire.

Any maximal abelian subgroups without socle-type M are unimportant to

the classification and thus ignored.

A maximal sequence of non-conjugate unrefined groupsG1, . . . , Gs ≤ UM(F)

collectively contain the images of all Zrp-representations (for arbitrary r)

over F up to equivalence.

� Since the relations defining each Gi are linear, each

Gi,0 := {Γ0

∣∣ Γ ∈ Gi} ⊂ UM,0(F)

is an F-vector space. Furthermore since for any two Γ0,∆0 ∈ Gi,0 we have

Γ0∆0 = Γ∆− Γ−∆ + In = (Γ∆)0 − Γ0 −∆0 ∈ Gi,0

it is also multiplicatively closed and commutative. We call these unrefined

algebras, viewed as an analogue to Lie algebras with commutator [−,−]

acting as the bracket. Since we chose our Gi to be non-conjugate so too are

the Gi,0.

� We then construct the refined groups exp(Gi,0).

Theorem 2.1.6. Let F have characteristic p > 0 and M ∈ Nk be such that

p ≥ k. Suppose G1, . . . , Gs ≤ UM(F) form a maximal sequence of pairwise

non-conjugate unrefined groups. Then exp(G1,0), . . . , exp(Gs,0) ≤ UM(F) form

a maximal sequence of pairwise non-conjugate refined groups.

Hence there exist covering homomorphisms σi : (Fdi ,+)→ exp(Gi,0) for di ∈
N and all i = 1, . . . , s covering all modular Zrp-representations with socle-type M .

Proof. It is clear from the definition of exp that exp(Gi,0) are subgroups of UM(F).

Since the Gi were chosen to be non-conjugate then the Gi,0 are non-conjugate.

Since the conjugacy action and exponentiation commute it follows that each

exp(Gi,0) are all non-conjugate.
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Since UM(F)
−In−−→ UM,0(F)

exp−−→ UM(F) is formed of bijections it follows that

the exp(Gi,0) are also maximal. As conjugacy is preserved under this map and the

unrefined groups are pairwise non-conjugate so too must be the refined groups.

Further since the Gi form a maximal sequence of maximal abelian subgroups

up to conjugacy each exp(Gi,0), as an abelian subgroup, is conjugate to a subgroup

of one of the Gi. However since they are maximal they must be conjugate to the

entire Gi. Hence there is a one-to-one correspondence between the unrefined and

refined groups each conjugate to their paired kith. Thus the refined groups also

form a maximal sequence of non-conjugate maximal abelian subgroups.

The choice of bijections allow us to construct our covering homomorphisms

from the following diagram:

UM(F) (Fdi ,+)

Gi(
unrefined

groups

) Gi,0(
unrefined
algebras

) exp(Gi,0)(
refined
groups

)
linear

commutativity
relations

τi
σi

−In exp

The τi are given by any natural isomorphism between (Fdi ,+) and Gi,0 since

the latter are F-vector spaces whose entries are linear and thus easy to unravel.

Thence the σi := exp ◦τi for i = 1, . . . , s collectively form a full set of covering

homomorphisms for socle-type M , thus concluding the proof.

Naturally our focus in this document then is to acquire a maximal sequence

of inequivalent unrefined groups for each socle-type and the remainder of the

classification follows from Theorem 2.1.6. We hope the reader will garner a better

understanding of this process as more examples are considered.

Example 2.1.7. Consider a field F = F of characteristic p ≥ 3. We wish to

classify representations with both socle-type and dual-type (1, 2, 1). We thus

focus our attentions upon the maximal abelian subgroups of

U(1,2,1)(F) =


 1 c12 c13 c14

0 1 0 c24

0 0 1 c34

0 0 0 1

 ∣∣ c12, c13, c14, c24, c34 ∈ F

 ≤ U4(F).
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Suppose for such a subgroup that any two elements C,D satisfy

∣∣∣∣ c24 d24

c34 d34

∣∣∣∣ =

0. Then, up to reordering of basis, we may write e24 = αe34 for all elements E in

the group for some α ∈ F. However it then follows that [0, 0, 0, 1] and [0,−1, α, 0]

are both fixed by the right action of these elements. Then the resulting group

cannot have dual-type (1, 2, 1) providing a contradiction.

Thus we take C,D in our group to satisfy

∣∣∣∣ c24 d24

c34 d34

∣∣∣∣ 6= 0. Given another

element E in our proposed subgroup we demand

[
[C,E][1, 4] [D,E][1, 4]

]
= [e24 e34]

[
c12 d12

c13 d13

]
− [e12 e13]

[
c24 d24

c34 d34

]
= 0

and so

[e12 e13] = [e24 e34]

[
c12 d12

c13 d13

] [
c24 d24

c34 d34

]−1

=: eA (2.3)

where A ∈ M2(F). Applying the same arguments as before to the fact that

we require socle-type (1, 2, 1) representations, the [1, 2] and [1, 3] entries of our

elements cannot have the same ratio throughout the group. Thus it follows from

(2.3) that det(A) 6= 0.

Specifically applying the commutativity criteria to both C and D themselves

we acquire[
[C,C][1, 4] [D,C][1, 4]
[C,D] [1, 4] [D,D][1, 4]

]
=

[
c12 c13

d12 d13

] [
c24 d24

c34 d34

]
−
[
c24 c34

d24 d34

] [
c12 d12

c13 d13

]
=

[
c12 d12

c13 d13

]T [
c24 d24

c34 d34

]
−

([
c12 d12

c13 d13

]T [
c24 d24

c34 d34

])T

= 0

It thus follows that A is symmetric. Furthermore [E,E ′][1, 4] = e(AT −A)e′T = 0

and so any group of elements satisfying the linear relation (2.3) for some sym-

metric A ∈ GL2(F) is abelian and thus an unrefined group. We need only now

determine which choices of A yield conjugate groups.

Suppose two such groups G,G′ with associated symmetric matrices A,B ∈
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GL2(F) are conjugate with respect to the relations X11 X12 X13

0 X22 X23

0 0 X33

 1 eA e14

0 I2 eT

0 0 1

−
 1 e′B e′14

0 I2 e′T

0 0 1

 X11 X12 X13

0 X22 X23

0 0 X33


=

 0 X11eA− e′BX22 X11e14 +X12e
T − e′BX23 − e′14X33

0 0 X22e
T − e′TX33

0 0 0

 = 0

for all appropriately paired E ∈ G,E ′ ∈ G′. Thus we observe that e′ = X−1
33 eX

T
22

for X33 ∈ F∗ and X22 ∈ GL2(F). Therefore

X11eA− e′BX22 = e
(
X11A−X−1

33 X
T
22BX22

)
= 0.

Due to the independence of the e in the group it follows that B = MTAM for

some M ∈ GL2(F). Hence via conjugation we may choose our symmetric matrix

up to congruence. By leaning on our assumption that F is algebraically closed

all such matrices are congruent and thus we choose A =

[
0 1
1 0

]
. Thus up to

conjugation we acquire the sole abelian unrefined group

G1 :=

τ(c1, c2, c3) + In :=

 1 c1 c2 c3

0 1 0 c2

0 0 1 c1

0 0 0 1

 ∣∣ (c1, c2, c3) ∈ F3


with homomorphism τ : (F3,+) → U(1,2,1),0(F), within which the image of every

socle- and dual-type (1, 2, 1) Zrp-representation over F sits up to equivalence.

Concatenating this with exp we obtain our covering homomorphism σ : (F3,+)→
GL4(F)

σ(c) = exp(τ(c1, c2, c3)) =

 1 c1 c2 c3 + c1c2

0 1 0 c2

0 0 1 c1

0 0 0 1

 .
We can see that exp(G1,0) = σ(F3) = G1 and thus σ is a covering homomorphism

for the Zrp-representations over F with socle- and dual-type (1, 2, 1).
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2.1.4 Small Primes

Since any p-group can be chosen up to equivalence to belong to some UM(F) the

following is indicative that the relationship between the length of the socle-series

k and the field characteristic p is important.

Corollary 2.1.8. Let F have characteristic p > 0, M = (m1, . . . ,mk) ∈ Nk for

k ≤ p and P ≤ UM(F) be a group. If P is abelian then P is elementary abelian.

Proof. This follows directly from Theorem 2.1.3 via the observation that

exp(Γ0)p = exp(pΓ0) = exp(0) = In.

Non-elementary abelian p-groups begin to obfuscate our approach when our

prime is relatively small. Our methods for constructing unrefined groups remain

intact but since the refinement process involves exp, a function undefined if p < k,

the reader may be forgiven for abandoning this approach altogether. However by

temporarily abusing notation we may still ensure a definition for exp.

If p < k then the first term of exp(Γ0) to be undefined is 1
p!

Γp0. However since

we seek elementary abelian p-groups we expect Γp0 = 0. There are occasions where

we may reasonably define 1
p!

Γp0 outside of the characteristic before re-entering. To

do so we must explicitly ensure each element has the requisite order, a fact we

often take for granted when p ≥ k.

We may view the covering homomorphisms as a reparameterisation of the

entries of the unrefined groups since we no longer have access to exp. In practice

we do this without cause to mention, however we illustrate here with an example.

Example 2.1.9. Recall from Example 2.1.7 that for p ≥ 3 the images all repre-

sentations with socle- and dual-type (1, 2, 1) exist up to conjugacy in the image

of the homomorphism σ : (F3,+)→ U4(F) given by

σ(c) := exp


 0 c1 c2 c3

0 0 0 c2

0 0 0 c1

0 0 0 0


 =

 1 c1 c2 c3 + c1c2

0 1 0 c2

0 0 1 c1

0 0 0 1

 .
We remarked that σ(F3) was equal to the unrefined group. However the unrefined

group was still well-defined over p = 2. For char(F) = p = 2 the final form of
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σ(c) is also well-defined and thus equals the unrefined group. Hence σ still acts

as a covering homomorphism for the char(F) = 2 case whether its method of

construction is valid or not.

We may envisage this process as follows: By temporarily working over Z we

observe that

τ(c1, c2, c3)2 =

 0 c1 c2 c3

0 0 0 c2

0 0 0 c1

0 0 0 0


2

=

 0 0 0 2c1c2

0 0 0 0
0 0 0 0
0 0 0 0


which then naturally vanishes in characteristic 2. However by abusing notation

we may define the violating exp term as

1

2!

 0 c1 c2 c3

0 0 0 c2

0 0 0 c1

0 0 0 0


2

:=

 0 0 0 c1c2

0 0 0 0
0 0 0 0
0 0 0 0


regardless of characteristic. Thus we may include the p = 2 case into this con-

struction by temporarily abusing notation.

If this unsettles the reader simply verify that σ : (F3,+) → GL4(F) is still a

homomorphism of groups and that the image equals the unrefined group. Since

procuring the unrefined group did not involve the characteristic of the field σ still

acts as a covering homomorphism.

2.1.5 Equivalence within Covering Homomorphisms

Given a sequence of covering homomorphisms σi(Fdi ,+)→ GLn(F) for a family

of Zrp-representations we acquire the images of all representations in the family

up to equivalence within the homomorphisms’ images. It would be beneficial to

know which subgroups in the image were equivalent to one another.

Proposition 2.1.10. Let σ : (Fd,+) → GLn(F) be a covering homomorphism

for a family of Zrp-representations as constructed in Section 2.1.3. Then the

conjugacy action of the stabiliser of the image of σ corresponds to a linear group

action on the subgroups of (Fd,+).

Proof. Let A be an element of the conjugacy stabiliser of σ(Fd) and suppose

W,W ′ ≤ (Fd,+) are such that A−1σ(W )A = σ(W ′). Then for any two c, d ∈ W
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acquire their conjugate partners c′, d′ ∈ W ′, that is

σ(c′) = A−1σ(c)A and σ(d′) = A−1σ(d)A.

Then we see from Theorem 2.1.3 that

σ(c′ + d′) = σ(c′)σ(d′) = A−1σ(c)AA−1σ(d)A = A−1σ(c)σ(d)A = A−1σ(c+ d)A

Thus c′ + d′ ∈ W ′ is the conjugate partner of c + d ∈ W and thus conjugation

of groups in the image of σ corresponds to a linear action on the subgroups of

(Fdi ,+) as required.

We note that some subgroups in the image of a homomorphism may be con-

jugate by matrices not within the image’s stabiliser. However it is often the case

that such groups are, in some sense, degenerate. A covering homomorphism of-

ten induces many representations outside of the family it was originally designed

to cover, often less complex in structure than those desired. Since the struc-

ture of the homomorphism was explicitly defined by the structure of the desired

representation family any conjugacy among those is reflected by the stabiliser.

In all examples hence the stabiliser will be sufficient for our understanding

of representation equivalence. Thus we shall often reformulate the problem of

equivalence as a linear group action on the underlying vector space. Thereafter

the problem of determining inequivalent representations is a matter determine

the orbits of this action and thus (often algebraic) invariant theory.

Conclusion

By acquiring a maximal sequence of inequivalent, maximal, abelian subgroups

(unrefined groups) in UM(F) and applying the refinement process in definition

2.1.5 we may parameterise all such representations via covering homomorphisms,

as in Theorem 2.1.3.

It still remains to be seen how best to construct the maximal sequence of

unrefined groups. Due to the wildness of the representation type it is unlikely this

process shall find a generalisation-immune formulation. However we can make the

process much simpler by dividing UM(F) into further inequivalent parts, where

UM(F) ≤ Un(F) acts as a first step.
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2.2 Socle Tabloids

In GL3(F) dividing the Zrp-representations into distinct families by their socle-

type was a sufficient enough distinction to allow their parameterisation. In higher

dimensional examples it is prudent to enter their study with more refined equip-

ment.

We examine in more detail the socle- and dual socle-series to find that their

interaction encodes into a more refined combinatorial invariant than their types

alone, thereby allowing us to further separate inequivalent representations. Un-

less otherwise stated the results in this section apply to any modular p-group

representation.

2.2.1 Defining Socle Tabloids

Let P ≤ GL(V ) be a modular p-group representation with socle-type M =

(m1, . . . ,mk). Recall that an ordered basis for V is called socle-conforming if

for each i ∈ J1, kK the first m1 + · · · + mi elements of the basis form a basis for

Soci(V ). We can, however, be more specific.

Definition 2.2.1. We call an ordered basis for an FP -module V doubly-conforming

if it is socle-conforming and the associated dual basis is also socle-conforming,

i.e. conforms to the dual socle series (Soci(V
∗))i, up to some permutation of the

elements.

Coercing representations into doubly-conforming form presents their proper-

ties in as upfront a fashion as possible. The following is of minor assistance to

this end.

Theorem 2.2.2. Let V be an FP -module. Then V has a doubly-conforming

basis.

Proof. The proof we provide is constructive. We remark that applying an upper-

triangular change to a socle-conforming basis, one for which each vi is replaced

with some element of the form
∑i

j=1 αjvj, yields another socle-conforming basis.

Furthermore an upper-triangular change of basis for V corresponds to a lower-

triangular change of basis for V ∗, one for which v∗i is replaced with
∑n

j=i βjv
∗
j .

We show that a socle-conforming basis whose dual contains bases for Soci(V
∗)

for 1 ≤ i ≤ t may be upper-triangularly transformed into one whose dual contains
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bases for Soci(V
∗) for 1 ≤ i ≤ t + 1. The result then follows from recursive

application.

Denote by (n1, . . . , nk) the dual-type of V and by di := dim(Soci(V
∗)). Let

B = {v1, . . . , vn} be a socle-conforming basis for V whose dual B∗ = {v∗1, . . . , v∗n}
contains bases for Soci(V

∗) for i ≤ t.

In the case t = 0 we simply begin with any socle-conforming basis. If t > 0

let τ ∈ Sdt be a permutation such that {v∗τ(1), . . . , v
∗
τ(dt)
} is a basis for Soct(V

∗).

Construct elements w∗1, . . . , w
∗
nt+1
∈ V ∗ such that {v∗τ(1), . . . , v

∗
τ(dt)

, w∗1, . . . , w
∗
nt+1
}

is a basis for Soct+1(V ∗). Since B∗ is a basis for V ∗ write

w∗i =
n∑

j=`i

αi,jv
∗
j

where αi,`i 6= 0 for all i = 1, . . . , nt+1. We construct the V ∗ basis B̂∗ from B∗ by

replacing v∗`i with w∗i for all 1 ≤ i ≤ mt+1, subject to the following stipulations:

By taking linear combinations of the w∗i and relabelling we may ensure that

`1 < · · · < `mt+1 . Thus the change of basis given shall be lower-triangular.

Furthermore if t > 0 by adding linear combinations of the v∗τ(i) ∈ Soct(V
∗) to the

w∗i we also ensure that `i 6= τ(j) for any j ∈ J1, dtK, i ∈ J1,mt+1K. Thus the bases

for Soci(V
∗) for i ≤ t remain intact.

Thence construct B̂ by dualising B̂∗. By construction the corresponding

change of basis to V will be upper-triangular. Hence B̂ is a socle-conforming

basis for V whose dual contains a bases for Soci(V
∗) for all 1 ≤ i ≤ t + 1. The

result then follows.

With a doubly conforming basis comes information beyond the socle-type

and dual-type alone. There may be many permutations which place the dual

basis into a socle-conforming order. The orbit of such a permutation under the

subgroup of Sn which keep the basis elements of each Soci(V
∗) in place all act

as candidates. We refer to this as the class of permutations associated to the

doubly-conforming basis.

Different permutation classes for different representations shall remain distinct

under equivalence. This gives us the incentive to introduce the notion of a tabloid

associated to such a representation which encodes this information.

A tabloid is an equivalence class of tableaux of left-justified boxes containing

entries in N such that two tableaux are considered equivalent if their ith rows
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from the top contain the same number of j for all i, j ∈ N. That is two tableaux

are equivalent if one can acquire the second from the first only by reordering

the boxes in each row. In this work we identify the equivalence class with the

representative whose row elements are non-increasing. We also index the rows

of tabloids in N from top to bottom, unless otherwise stated. The following are

examples of tabloids:

3 3 1
2
1

4
3 2 1 1
2
1 1

1
2
3 1

.

We are now equipped to define the focus of this section.

Definition 2.2.3. Let P ≤ GL(V ) be a p-group representation with doubly-

conforming basis B. We define the socle tabloid of P (or V ) to be the tabloid

δ such that there is a one-to-one correspondence between the elements of B and

the boxes of the tabloids, where each v ∈ B with

v ∈ Soci(V ) \ Soci−1(V ), v∗ ∈ Socj(V
∗) \ Socj−1(V ∗)

corresponds to a j in row i, with no other boxes present. We write P ∼ δ (or

V ∼ δ) to denote that δ is the socle tabloid of P (or V ).

The socle tabloid of a representation encodes three pieces of information: The

socle-type is given by the row box counts, the dual-type is given by counting the

frequency of each number’s appearance in the tabloid, and the class of permuta-

tions required to ensure the dual basis conforms is encoded in the arrangement

of the numbers in the tabloid.

Strictly our definition ought to make reference to the chosen doubly-conforming

basis used to construct the tabloid. The efforts which follow show that this is

unnecessary.

Effectively the first i rows of the socle tabloid tell the reader where the duals

of each basis element of Soci(V ) sit in the dual-socle series. This naturally leads

us to the following property.

Lemma 2.2.4. Let P ≤ GL(V ) be a modular p-group representation with doubly-

conforming basis B = {v1, . . . , vn}. Let δ be the associated socle tabloid. Then the

set of coset representatives B′ = {vdim(Soci(V ))+1, . . . , vn} form a doubly conforming

basis for V/Soci(V ) with socle tabloid δ′ acquired by deleting the first i rows from

δ.
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Proof. The shape of δ′ is acquired from the last k − i rows of δ given that the

box count of each row is given by the socle series.

Since our action is upper-triangular with respect to the socle-conforming basis

B taking this quotient does not alter the action on the duals of the remaining

coset representatives. Hence the positions of the basis elements’ duals in the dual

socle series remains unchanged. Consequently B′ is doubly conforming and the

socle tabloid information remains excepting the deletion of the first i rows.

This allows us the following luxury.

Proposition 2.2.5. Let V be an FP -module. Let B1,B2 be doubly conforming

bases which yield socle tabloids δ1, δ2 for V respectively. Then δ1 = δ2.

Proof. Suppose for the sake of contradiction that δ1 and δ2 first disagree in row

i, say δ1 has more j in this row than δ2.

Construct the corresponding tabloids δ′1 and δ′2 for V(i) := V/Soci(V ), as in

Lemma 2.2.4, by deleting the first i rows from δ1 and δ2 respectively. Then since

δ1 and δ2 had exactly dim(Socj(V
∗)/Socj−1(V ∗)) many j , δ′1 now has fewer j

overall than δ′2. However both should contain exactly dim(Socj(V
∗

(i))/Socj−1(V ∗(i)))

many j , thus yielding a contradiction.

The socle tabloid is thus an invariant under equivalence, since it remains

static for any choice of doubly-conforming basis. It can thus serve as a visual

replacement for the socle- and dual-type. The socle tabloid is indeed more specific

since, for example, the tabloids

3 2
2 1
1

and
3 1
2 2
1

both correspond to socle-type (2, 2, 1) (the row box count) and dual-type (2, 2, 1)

(two 1 ’s, two 2 ’s and one 3 ) but to a different family of permutations required

to conform the associated dual basis.

We illustrate the construction of a socle tabloid in the following example.

Example 2.2.6. Consider a representation V of Z2
3 with image generated over
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F3 by the elements 
1 0 2 0 1
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 ,


1 0 0 2 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 .
Denote by B := {v1, v2, v3, v4, v5} the corresponding basis for V upon which these

elements act by left multiplication. Thence denote by B∗ := {v∗1, v∗2, v∗3, v∗4, v∗5}
the corresponding dual basis for V ∗ upon which these elements act by right

multiplication. One can check that B is already doubly-conforming and as such

we can see that the socle-type is (2, 2, 1). Thus we begin with the empty tabloid

Since the action of these elements is on a doubly-conforming basis, a basis for

Soc(V ∗) exists in B′. Only rows 2 and 5 of each generator agree with the identity

and so Soc(V ∗) = 〈v∗2, v∗5〉. Using this we begin filling in the tabloid by

v2 ∈ Soc1(V ), v∗2 ∈ Soc1(V ∗) =⇒ row 1 contains a 1 ,

v5 ∈ Soc3(V ), v∗5 ∈ Soc1(V ∗) =⇒ row 3 contains a 1 .

Considering the submodule generated by v1, v3 and v4 we acquire the generator

actions  1 2 0
0 1 0
0 0 1

 ,
 1 0 2

0 1 0
0 0 1

 .
We see that the images of the dual elements v∗3 and v∗4 are acted upon trivially

in the quotient and so they belong to Soc2(V ∗). Since both v3 and v4 belong to

Soc2(V ) and their duals belong to Soc2(V ∗) it follows that row 2 of our tabloid

contains a pair of 2 s.

It is then clear that v∗1 ∈ Soc3(V ∗) and so we place a 3 in the remaining box
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of row 1 to acquire the socle tabloid

3 1
2 2
1

.

From this example we see the construction of the socle tabloid as a matter of

record-keeping while constructing the socle- and dual-types

2.2.2 Manipulating Socle Tabloids

Whilst acquiring socle tabloids aids in distinguishing between inequivalent fami-

lies of representations we would like to know more and find, if possible, practical

applications. The following provides a certain incentive for our election of a

non-increasing order on tabloid rows.

Lemma 2.2.7. Let P ≤ GL(V ) be a p-group representation with socle tabloid

δ. Then the ith row from the bottom of δ contains at least one i and no entries

which exceed i.

Proof. This is a translated property of the socle series: For a representation V

with socle-length k any v ∈ Sock+1−i(V )\Sock−i(V ) has dual v∗ ∈ Soci(V
∗) with

at least one element attaining v∗ ∈ Soci(V
∗) \ Soci−1(V ∗).

The quotient module V/Sock−i(V ) has, by construction, socle-length i. Thus

so shall its dual, a submodule of V ∗. Hence every element within this submodule

cannot sit further in the socle series of V ∗ than Soci(V
∗). Furthermore there must

exist at least one element of this submodule sitting within Soci(V
∗) \ Soci−1(V ∗)

lest the socle length of the submodule fall short of i.

Since the ith row from the bottom must contain an i and nothing greater

we may ensure that the left-most column of our tabloid is a strictly ascending

sequence of integers 1, 2, . . . , k from bottom to top. The reader, of course, is

welcome to elect their own ordering.

We saw in Lemma 2.2.4 that taking the quotient of part of the socle series

yielded a predictable manipulation of the socle tabloid. To the end of determining

further predictable manipulations we posit the following library.

Definition 2.2.8. Let γ, δ be tabloids. Then we define the following.
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� We define γ ⊕ δ to be the tabloid whose ith row is constructed from all

elements of the ith rows of δ and γ.

� Define δ(i) to be the tabloid acquired from δ by removing its first i rows.

� Define δ(i) to be the tabloid acquired from δ by removing all boxes con-

taining entries less than or equal to i and rescaling all remaining boxes by

subtracting i.

� Define δ∗ as containing a i in row j for every j in row i of δ for all

i, j ∈ J1, kK.

Example 2.2.9. Consider the tabloids

γ =
2 2
1

δ =
3 1
2 1
1

.

Then

γ ⊕ δ = 3 1
2 1
1

⊕ 2 2
1

= 3 2 2 1
2 1 1
1

δ(1) = 3 1
2 1
1

= 2 1
1

δ(1) =

3−1 1

2−1 1

1

=
2
1

δ∗ =
3 2 1
2
1

Theorem 2.2.10. Let V,W be FP -modules. Suppose V ∼ δ and W ∼ γ. Then

the following hold:

i) V ⊕W ∼ δ ⊕ γ,

ii) V (i) := V/Soci(V ) ∼ δ(i),

iii) V(i) :=
(
V ∗/Soci(V

∗)
)∗ ∼ δ(i),

iv) V ∗ ∼ δ∗.

Proof. Claim i) is a direct consequence of the definition of the socle tabloid and

the fact Soci(V1 ⊕ V2) = Soci(V1)⊕ Soci(V2).

Claim ii) is a reiteration of Lemma 2.2.4.
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Claim iv) follows directly from the definition of δ.

Claim iii) is a corollary of ii) and iv) observing that δ(i) =
(
(δ∗)(i)

)∗
.

We might ask whether a similar formulation is possible when taking other

combinations of submodules and quotients, or indeed whether in some sense we

may extend the module with socle tabloid predictability. We begin by examining

the smallest possible submodules.

Lemma 2.2.11. Let the FP module V ∼ δ have socle length k. Suppose v ∈
Soc1(V ) belongs to a doubly-conforming basis and v∗ ∈ Soci(V

∗) \ Soci−1(V ∗),

i.e. there exists an i in row 1 of δ. Suppose further that no box in row 2 of δ

contains an entry less than i. Then the tabloid of V/〈v〉 is acquired from δ by

removing an i from the first row of δ.

Proof. Order the doubly-conforming basis of V such that v is first. Then our

group elements act on V in the form
Im1

0 0 · · · 0
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗

· · ·

0 Im2 · · ·
...

...
. . .


.

This is because the image of the action on v∗ can only include elements in

Soci−1(V ∗) and v∗ itself. By assumption the elements dual to the basis of Soc2(V )

are not included in this. Hence under the quotient it follows that no alteration

is made to either the socle-type, the dual-type or their basis interactions besides

the removal of the element v. The result then follows.

For this lemma to be applicable to a representation V it demands that our

proposed element v not exist in the action of any element in Soc2(V ). The

following is the case where there is so little freedom of movement that such

requirements are unnecessary.

Lemma 2.2.12. Let P ≤ GL(V ) have socle tabloid δ with dim(SocV ) > 1

and second row consisting of a single k−1 . Let v ∈ Soc(V ) be part of a doubly

conforming basis for V with v∗ ∈ Soci(V ) \ Soci−1(V ). Then the representation
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V/〈v〉 has socle tabloid δ′ acquired by deleting a single i from row 1 of δ if and

only if this removal leaves at least one k in the first row.

Proof. If the dual of v is belongs to Sock−1(V ∗) (with respect to the aforemen-

tioned doubly-conforming basis) then the result follows from Lemma 2.2.11.

Suppose instead that v is the sole element corresponding to a k in the first

row – and thus, by Lemma 2.2.7, the entire tabloid. Then, by definition the dual

of V/〈v〉 is Sock−1(V ∗). Thus the resulting quotient has socle-length k− 1 and so

the resulting socle tabloid will possess k−1 rows, thus bearing little resemblance

to δ.

Suppose instead that v is not the sole element corresponding to a k in the

first row. Order our doubly-conforming basis {v1, . . . , vn} such that v1, . . . , vα

are precisely those elements with duals not in Sock−1(V ∗), so that α > 1 is the

number of k-blocks in δ. Then the action of an element of the representation

dons the form 
Im1

c1,m1+1
...

cα,m1+1

0
...
0

∗

0 1 ∗
0 0 ∗


Since our basis is doubly-conforming no non-trivial linear combination of v∗1, . . . , v

∗
α

lies in Sock−1(V ∗). Hence there exists no relation between the c1,m1+1, . . . , cα,m1+1

which holds across all elements of the representation. Thus taking the quotient

of V with some vi for 1 ≤ i ≤ α shall not affect where in the dual socle series the

dual of any element in Soc(V ) sits. Furthermore since α > 1 by assumption no

element of Soc2(V ) shall be repositioned in the quotient’s socle series. Thus the

tabloid remains the same, excepting for the removal of a single k .

This lemma, unlike its predecessor, poses a restriction on the dimension of

Soc2(V )/Soc1(V ). Whilst this might seem less than optimal we shall see in Sec-

tion 2.3.2 that its application is less for the observation of representations and

more for their outright refusal. The following generalisation, however, shall be-

come pivotal for constructing families of representations.
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Lemma 2.2.13. Let P ≤ GL(V ) be a p-group representation with doubly-conforming

basis B. Let v1, . . . , vm and w1, . . . , wm′ denote all of the basis elements with the

strict inclusions

vi ∈ Soc1(V ), v∗i ∈ Soc2(V ∗) and wi ∈ Soc2(V ), w∗i ∈ Soc1(V ∗)

i.e. the elements of B corresponding to the 2 in the first row and the 1 in the

second row of δ respectively. Then the representation resulting from

〈B \ {w1, . . . , wm′}〉 / 〈v1, . . . , vm〉

has tabloid obtained by deleting the aforementioned boxes from δ.

Proof. Taking the quotient of a vi will affect where in the socle series some w

in the basis appears only if w ∈ Soc2(V ). Since this corresponds to taking a

submodule in V ∗ the dual action remains unaffected.

Dualising the argument says that taking the submodule without wi will affect

where in the dual socle series some v∗ appears only if v∗ ∈ Soc2(V ∗).

Hence taking the quotient by all vi and the submodule without the wi will

not affect where in either socle series any remaining element of the given sits.

Furthermore the dimensions of the series remain the same, modulo removing the

vi and wi. Hence the tabloid remains untouched bar the removal of the boxes

corresponding with the vi and wi.

We shall only see the true power of this result come Theorem 2.3.3.

Having ascertained that the direct sum of two FP -modules simply concate-

nates their socle tabloids and that the δ
(i)
(j) are socle tabloids of sub / quotient

modules it behoves us to consider how these modules might decompose simply

by observing their tabloids. We shall find this useful for further refining our

representation management.

Definition 2.2.14. Given an FP -module V with socle tabloid δ we define the

deconstruction of δ with respect to V to be the following data: For each 0 ≤
i, j ≤ k we take

δ
(i)
(j) = δi,j,1 ⊕ · · · ⊕ δi,j,si,j

where

V
(i)

(j) = Vi,j,1 ⊕ · · · ⊕ Vi,j,si,j
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is a decomposition by indecomposables with Vi,j,` ∼ δi,j,`.

Example 2.2.15. Let V be an FP -module with socle tabloid δ =
3 3
2 2
1 1

. The

possible deconstructions of δ are

� δ =
3
2
1
⊕

3
2
1

=⇒ δ(1) = δ(1) = 2
1 ⊕

2
1 ;

� δ =
3 3
2 2
1 1

, δ(1) = δ(1) = 2 2
1 1 ;

� δ =
3 3
2 2
1 1

, δ(1) = 2 2
1 1 , δ(1) = 2

1 ⊕
2
1 ;

� δ =
3 3
2 2
1 1

, δ(1) = 2
1 ⊕

2
1 , δ(1) = 2 2

1 1 ;

� δ =
3 3
2 2
1 1

, δ(1) = δ(1) = 2
1 ⊕

2
1 ;

It follows that any two representations with different deconstructions cannot be

equivalent. We shall use this to our advantage when determining the maximal

abelian subgroups with a given tabloid δ.

Conclusion

However convenient the socle tabloid may seem in its translation of key properties

its introduction means nought if it cannot yield information unlikely to have been

noticed without it. We have yet to consider how this impacts the work of Section

2.1. Hereafter we specify to FZrp-modules and back into the purview of covering

homomorphisms.

2.3 Iterating Covering Homomorphisms

In Section 2.1 we developed the notion of covering all equivalence classes of Zrp-
representations with socle-type M using homomorphisms from F-vector spaces.

Quite how many homomorphisms are required depends on the length of the

largest sequence of maximal abelian subgroups of UM(F).
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With the introduction of socle tabloids in Section 2.2 we may further divide

our representations into more manageable families, and further still with decon-

structions. We wish to see how this refinement aids our classification of covering

homomorphisms and maximal abelian subgroups.

This extends beyond a simple refinement of families and allows us to iter-

atively construct covering homomorphisms for infinite families of socle tabloids

given only the lowest-dimensional case.

2.3.1 Iteration

We take our first step towards an inductive argument with the following.

Definition 2.3.1. Let σ : (Fd,+)→ GL(V ) be a homomorphism of the form

σ(c) =


Im1 σ1,2(c) · · · σ1,k(c)
0 Im2 · · · σ2,k(c)
...

...
. . .

...
0 0 · · · Imk


such that the image has socle tabloid δ and is already given acting on a dou-

bly conforming basis {v1, . . . , vn} for V . Let the corresponding socle-type be

(m1, . . . ,mk) and dual type (n1, . . . , nk).

For i ∈ N0 define the homomorphism σ+(i,0) : (Fd+in1 ,+) → GLn+i(F) =

GL(V ′) by

σ+(i,0)(c) :=


Im1+i

σ1,2(c)
M2(c)

· · · σ1,k(c)
Mk(c)

0 Im2 · · · σ2,k(c)
...

...
. . .

...
0 0 · · · Imk


where the entries of Mj(c) are defined as follows: In those columns corresponding

to the action on v` for which v∗` ∈ Soc1(V ∗) we fill the entries with the independent

variables cd+1, . . . , cd+in1 in some specified order. In all remaining columns we

place zero entries.

Hence we augment V to a larger-dimensional module V ′ by introducing i

many v ∈ Soc1(V ), v∗ ∈ Soc2(V ∗) in the most generic manner possible. Thus

σ+(i,0)(Fd+in1) has tabloid acquired by adding i many 2 to the first row of δ.

Dually for a given j ∈ N0 define the homomorphism σ+(0,j) : (Fd+jm1 ,+) →
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GLn+j(F) by

σ+(0,j)(c) :=



Im1 σ1,2(c) [cd+(ι−1)j+κ]ι,κ σ1,3(c) · · · σ1,k(c)

0 Im2+j
σ2,3(c)

0
· · · σ2,k(c)

0
0 0 Im3 · · · σ3,k(c)
...

...
...

. . .
...

0 0 0 · · · Imk

 .

Thus we augment V with j many v ∈ Soc2(V ), v∗ ∈ Soc1(V ∗) as generically as

possible. Hence σ+(0,j)(Fd+jm1) has tabloid acquired by adding j many 1 to the

second row of δ.

Thence we may define σ+(i,j) : (Fd+(i+m1)(j+n1)−m1n1 ,+)→ GLn+i+j(F) by

σ+(i,j) := (σ+(i,0))+(0,j).

Note that up to reordering the parameters of Fd+(i+m1)(j+n1)−m1n1 the images of

(σ+(i,0))+(0,j) and (σ+(0,j))+(i,0) are equal. We often abuse this by relabelling the

parameters more so for aesthetic purposes than following rigorous definition.

Before we prove results regarding these homomorphism we demonstrate their

construction by way of example.

Example 2.3.2. It has been shown by [11] (and replicated in Section 1.2.2) that

all modular Zrp-representations over a field F with socle-type (1, 1, 1) are covered

by the homomorphism

σ111 : (F2,+)→ GL3(F), σ111(c1, c2) =

 1 2c1 c2
1 + c2

0 1 c1

0 0 1

 ∼ 3
2
1
.

We thus endeavour to acquire a homomorphism containing representations with

socle tabloid
3 2 2
2 1
1
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by constructing σ
+(2,1)
111 as follows:

σ111(c1, c2)→ σ
+(2,0)
111 (c1, . . . , c4) :=


1 0 0 2c1 c2

1 + c2

0 1 0 0 c4

0 0 1 0 c3

0 0 0 1 c1

0 0 0 0 1



→ σ
+(2,1)
111 (c1, . . . , c7) :=


1 0 0 2c1 c7 c2

1 + c2

0 1 0 0 c6 c4

0 0 1 0 c5 c3

0 0 0 1 0 c1

0 0 0 0 1 0
0 0 0 0 0 1


The following theorem acts as a powerful tool demonstrating that this con-

struction not only yields higher dimensional representations from smaller ones

but is arguably exhaustive in doing so.

Theorem 2.3.3. Suppose σ` : (Fd` ,+) → GLn(F) for ` = 1, . . . , s are a full set

of covering homomorphisms for the modular Zrp-representations with a given socle

tabloid δ, socle-type (m1, . . . ,mk) and dual-type (n1, . . . , nk).

Construct δ′ by adding i many 2 to the first row and j many 1 to the

second row of δ. Then

σ
+(i,j)
` (Fd`+(i+m1)(j+n1)−m1n1 ,+)→ GLn+i+j(F) for ` = 1, . . . , s

collectively form a full set covering homomorphisms for all Zrp-representations

with socle tabloid δ′.

Proof. For convenience we may assume that the images of each σ` are already

acting on a doubly-conforming basis. Let Zrp ∼= G′ ≤ GL(V ′) have socle tabloid

δ′ and doubly-conforming basis B′. Denote by v1, . . . , vi, w1, . . . , wj ∈ B′ basis

elements of V ′ such that

v` ∈ Soc1(V ′), v∗` ∈ Soc2((V ′)∗) and w` ∈ Soc2(V ′), w∗` ∈ Soc1((V ′)∗).

Then denote by V := 〈B′ \ {w1, . . . , wj}〉 / 〈v1, . . . , vi〉 another FZrp-module in-

ducing the action G ≤ GL(V ).

By Lemma 2.2.13 the socle tabloid of G (resp. V ) is δ. Since this was the

only alteration to the socle tabloid the quotient representatives of the remaining
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elements of B′ form a doubly-conforming basis for V . We may alter this basis

such that G exists in the image of one of the homomorphisms σ` by assumption.

Applying this same basis change to the corresponding elements of B′ we acquire

a new doubly-conforming basis for V ′ containing the vi and wi such that the

induced G has image inside σ`.

Since v∗s ∈ Soc2((V ′)∗) the dual action on vs may only involve elements of

Soc((V ′)∗). Since ws ∈ Soc2(V ′) the action on ws may only involve elements in

Soc(V ′). The resulting form must then exist within the image of σ
+(i,j)
` by design.

Hence up to equivalence all such representations’ images exist within the image

of some σ
+(i,j)
` as required.

It follows from this that the homomorphism acquired at the conclusion of

exercise 2.3.2 is in fact a covering homomorphism for all Zrp-representations with

socle tabloid
3 2 2
2 1
1

.

If one considers a tabloid with a 1 in its first row then both the basis element

to which it corresponds and its dual shall be fixed under the action of the group.

Given that our search is often to find covering homomorphisms for representations

of a given degree Theorem 2.3.3 yields a corollary ensuring we need not induce

these representations separately.

Corollary 2.3.4. Suppose for ` = 1, . . . , s that σ` : (Fd` ,+) → GLn(F) col-

lectively cover the Zrp-representations with socle tabloid δ. Then the σ
+(1,0)
` for

` = 1, . . . , s collectively cover all Zrp-representations with socle tabloid δ′ acquired

from δ by adding a 1 to its first row.

Proof. Let Zrp ∼= G′ ≤ GL(V ′) have socle tabloid δ′. Fix a doubly-conforming

basis with element v ∈ Soc(V ′) such that v∗ ∈ Soc((V ′)∗). Since 〈v〉 is a trivial

free summand V := V ′/〈v〉 has socle tabloid δ and thus is covered by some σ`.

By choosing the appropriate doubly-conforming basis the elements of G′ may

be written as elements in the image of σ` augmented with a trivial row and

column. This can be achieved by constructing σ
+(1,0)
` : (Fd`+dim(Soc V ∗),+) →

GLn(F) and choosing the appropriate subspaceW ≤ (Fd`+dim(Soc V ∗),+) for which

the newly introduced variables cd`+1 = · · · = cd`+dim(Soc V ∗) = 0 for all c ∈ W .

The upside of these results is the following: In classifying all Zrp-representations

of a given degree, any representation whose socle tabloid contains a 1 or 2 in its
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first row or a 1 in its second can be easily induced from covering homomorphisms

which collectively cover the tabloid with these boxes removed altogether.

Example 2.3.5. In Example 2.3.2 we showed that the homomorphism

σ′ : (F7,+)→ GL6(F), σ′(c) =


1 0 0 2c1 c7 c2

1 + c2

0 1 0 0 c6 c4

0 0 1 0 c5 c3

0 0 0 1 0 c1

0 0 0 0 1 0
0 0 0 0 0 1


covers the representations with socle tabloid

3 2 2
2 1
1

. Since, up to ordering the

parameters, σ′ = (σ+(0,1))+(2,0) Corollary 2.3.4 tells us that σ′ also covers the

representations with socle tabloid

δ1 =
3 2 1
2 1
1

and δ2 =
3 1 1
2 1
1

.

For δ1 we, for instance, may assume that for each element c ∈ F7 in our vector

group satisfies c3 = c5 = 0. This ensures that our third basis element is fixed in

the dual action and thus we acquire a trivial free summand.

For δ2 we ensure that all generating vectors satisfy c3 = c4 = c5 = c6 = 0 for

a similar effect.

Indeed since σ′ = (σ+(2,0))+(0,1) we may further dualise the result and cover

all representations with socle tabloid
3 2 2 1
2
1

. These exist in σ′ by setting c5 =

c6 = c7 = 0 for all generating vectors. This is the dual of Corollary 2.3.4 because

exchanging a 2 in the first row for a 1 is the equivalent in the dual diagram

of moving a 1 from the second row to the first:

3 2 2
2 1
1

∗

=
3 2
2 1 1
1

−→
3 1
2 1 1
1

=
3 2 2 1
2
1

∗

.

Hence we conclude that σ′ in fact covers all Zrp-representations with any of the

following tabloids:

3 2 2
2 1
1

,
3 2 1
2 1
1

,
3 1 1
2 1
1

,
3 2 2 1
2
1

,
3 2 1 1
2
1

,
3 1 1 1
2
1

.
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Recall that we further our classification refinement by specifying the decon-

struction of a tabloid, encoding the way in which the sub/quotient modules V
(j)

(i)

decompose. Thus if some V(i) decomposes we may wish to ask how the quotient

of V by these submodules affects the socle tabloid. This process is often less

predictable, but worth investigation.

Example 2.3.6. Suppose Zrp ∼= G ≤ GL(V ) has socle tabloid
3 3
2 2
1

. Suppose

further that its deconstruction specifies V(1) = V1 ⊕ V2 ∼ 2
1 ⊕

2
1 so that we may

write the elements in G in the form
1 0 c13 0 c15

0 1 0 c24 c25

0 0 1 0 c35

0 0 0 1 c45

0 0 0 0 1

 .
In order to preserve the socle tabloid neither the entries c35 nor c45 are identically

zero across all elements, and thus both V/V1 and V/V2 have socle tabloid
3
2
1

.

Since we know that representations with this socle tabloid are covered by the

homomorphism

σ111(c) =

 1 2c1 c2 + c2
1

0 1 c1

0 0 1


it follows that we may write our original elements in the form

1 0 2c35 0 c15 + c2
35

0 1 0 2c45 c25 + c2
45

0 0 1 0 c35

0 0 0 1 c45

0 0 0 0 1

 .
One may thence construct a covering homomorphism from this, however we shall

give an alternate construction in Example 2.6.5 equal to this but in a more

generalised context.

Thus far our attempts to augment socle tabloids with additional boxes and

examine the fallout has been fruitful. Naturally, however, no experienced math-

ematician ought to take an example as proof of a claim beyond the example’s

scope. For instance is there a method to augment representations with a tabloid
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δ to those of δ′ acquired by appending a 3 to δ’s first row? We examine this

trail of thought in the following section, the title and introduction of which may

possibly go some way to spoiling the conclusion.

2.3.2 Vanishing Tabloids

In all results and examples given prior we have constructed representations from

others by either enlarging or reducing the dimension in a manner such that the

associated tabloid is affected predictably. This all lies under the assumption that

for a given tabloid there exists a representation associated to it.

Proposition 2.3.7. Let Zrp ∼= G ≤ GL(V ) have socle-type (m1, . . . ,mk). If

mj = 1 for some 1 < j < k then mj = mj+1 = · · · = mk = 1.

Proof. By taking the quotient of Socj−2(V ) we need only prove by contradiction

the result in the case j = 2 and subsequently extend the non-existence upwards.

Assume that m2 = 1 < m3. Adopting a socle-conforming basis we can write

elements in G in the form

C =


Im1 C12 C13 · · ·
0 1 C23 · · ·
0 0 Im3 · · ·
...

...
...

. . .


where C12 = [c1,m1+1, . . . , cm1,m1+1]T . Choosing this basis appropriately we ensure

that c1,m1+1 6= 0 for some element C. Given a general D ∈ G of a similar form

to above we see that [C,D] = 0 implies that C12D23 = D12C23. This is a matrix

equation and so, in particular, we must have equality of the first rows:

c1,m1+1D23 = d1,m1+1C23 =⇒ D23 =
d1,m1+1

c1,m1+1

C23.

Hence the [2, 3] blocks of all elements are scalar multiples of C23. This means

that, for example,

[1, 0, . . . , 0]T , [0, cm1+1,m1+3,−cm1+1,m1+2, 0, . . . , 0]T ∈ (V (1))G

as indeed does any augmented nonzero element from the kernel of C23. However

we must have dim((V (1))G) = m2 = 1. This contradiction yields the result.
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This is the first instance, since the impositions from the socle series, of tabloids

with no valid Zrp-representations. They are accompanied by the following.

Corollary 2.3.8. For all k, ` ≥ 3, there exist no modular abelian p-group repre-

sentations associated to the tabloids

k `

k−1

...

1

. (2.4)

Proof. The result follows from Proposition 2.3.7, noting that the dual-type asso-

ciated to each of these tabloids is (1, . . . , 1, 2︸︷︷︸
`

, 1, . . . , 1).

This puts pay to the notion that we might arbitrarily extend the dimension

of the socle of our representation and expect to acquire valid representations

with predictable tabloids. Indeed the following is a generalisation of only the

k = ` = 3 case of Corollary 2.3.8 acquired by applying most of the results

appearing in Section 2.2.2.

Proposition 2.3.9. Let δ be a tabloid with k rows. Suppose that for some i > 1

the ith row from the top contains exactly one k−i+1 and the (i−1)th row contains

at least two k−i+2 . Then there are no abelian p-group representations with socle

tabloid δ.

Proof. Suppose an abelian p-group representation over V exists with socle tabloid

δ. Then by Theorem 2.2.10 the representation V
(i−2)

(k−i−1) has socle-length 3 and

has socle-tabloid whose first row contains at least two 3 ’s and whose second row

contains exactly one 2 , that is δ
(i−2)
(k−i−1) =

3 3 ? ···
2 1 ···
1 ···

.

Using Lemma 2.2.13 we may take the quotient of all v ∈ Soc1(V
(i−2)

(k−i−1)) and

submodule without w ∈ Soc2(V
(i−2)

(k−i−1)) such that v∗ ∈ Soc2

(
(V

(i−2)
(k−i−1))

∗
)

and

w ∈ Soc1

(
(V

(i−2)
(k−i−1))

∗
)

to acquire a representation

V ′ ∼
3 3 ··· 3
2
1 ···

.
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The socle-type of V ′ is then (m1, 1,m3) for m1 > 1 equal to the number of

(k− i+ 2)-boxes in row (i− 1) of δ. This then contradicts Proposition 2.3.7 thus

yielding the result.

This result aims to save us a certain amount of time. For instance were we to

wish to classify all modular Zrp-representations of dimension 5 (see Section 2.8)

by separating them into socle tabloid families then we would not need to consider

any of the tabloids

3 3 3
2
1

3
2
1 1 1

3 3 2
2
1

3
2 1
1 1

3 3 1
2
1

3 1
2
1 1

3 3
2 1
1

3 2
2
1 1

3 3
2
1 1

4 4
3
2
1

4
3
2
1 1

4
3 3
2
1

4
3
2 2
1

4 3
3
2
1

since either they, their dual or some sub/quotient form of either satisfy the con-

ditions of Proposition 2.3.7, Corollary 2.3.8 or Proposition 2.3.9.

Since we are no longer guaranteed that a given tabloid has associated repre-

sentations we consider whether certain tabloids do have representations but only

for specific deconstructions.

Example 2.3.10. Consider a representation P ≤ GL(V ) of an abelian p-group

with socle tabloid δ =
3 3
2 2
1 1

. In Example 2.2.15 we detailed the possible decon-

structions of δ corresponding to the decompositions of the sub/quotient modules

of V .

Suppose we are in the case with V(1) = V1⊕V2 ∼ 2
1 ⊕

2
1 and with V (1) ∼ 2 2

1 1

indecomposable. Then by choosing the appropriate basis {v1, . . . , v6} we may

write the elements of P in the form
1 0 c13 0 c15 c16

0 1 0 c24 c25 c26

0 0 1 0 c35 c36

0 0 0 1 c45 c46

0 0 0 0 1 0
0 0 0 0 0 1

 .

Since V(1) is a submodule of V , up to choice of Vi we have the action of V/V1
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given by  1 c24 c25 c26

0 1 c45 c46

0 0 1 0
0 0 0 1

 ∼ δ =
3
2
1 1

.

However we have seen that such representations cannot exist. Hence we have

shown that only certain deconstructions of δ have associated representations. We

summarise this in a handy-to-reference result for ease of later use.

Corollary 2.3.11. Let V ∈ FZrp-mod have socle tabloid
3 3
2 2
1 1

. Then V(1) is de-

composable if and only if V (1) is decomposable.

Proof. If V(1) is decomposable then the proof is given in example (2.3.10). If V (1)

is decomposable then apply the same argument to V ∗.

Conclusion

We have now introduced the notion of iterating covering homomorphisms to

arbitrary dimension by socle tabloid-predictable manipulations. This assists in

the construction and negation of proposed representations from existing ones.

This, however, is of little use were we not to have a solid foundation of existing

representations from which to work.

2.4 Socle-Type (1, . . . , 1) Representations

Hitherto our studies of the modular Zrp-representations have been presented in as

general a fashion as possible. However in order to apply these to acquire specific

representations we require foundations.

We consider the case where the representation dimension equals the socle

length. We ascertain up to equivalence all socle-type (1, . . . , 1) representations

of Zrp by way of a covering homomorphism. To this end we employ well known

combinatorial objects and, in the process, learn more about their properties.

We then describe the equivalence of such representations in terms of a linear

action which permutes these additive preimages.
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2.4.1 Prime Restriction

For a representation Zrp ∼= G ≤ GL(V ) to have socle-type 1n := (1, . . . , 1) is, by

a certain measure, either an upper limit of our representations or lower base for

induction. It sits as a low base since the associated socle tabloid

G ∼

n
...

2

1

is prime foundation material for our inductive constructions. Yet it is an upper

limit in the sense that we begin with U1n(F) = Un(F) and can restrict no further

without losing the desired socle-type. Fortunately we shall see that this inability

to restrict affords us greater control.

Recall from Section 2.1 that the process of constructing covering homomor-

phisms becomes obfuscated when the prime characteristic of our field sits below

the socle length. This is a situation we need not concern ourselves with.

Lemma 2.4.1. Let Zrp ∼= G ≤ GL(V ) have socle-type 1n. Then there exists an

element Γ ∈ G for which (Γ− In)n−1 6= 0. In particular n ≤ p.

Proof. Suppose G acts upon a socle-conforming basis for V and, for a contra-

diction, assume that (Γ − In)n−1 = 0 for all elements Γ = [γi,j] ∈ G. This is

equivalent to ensuring
∏n−1

i=1 γi,i+1 = 0.

Since the representation has socle-type 1n, for all k ∈ J1, n − 1K there must

exist elements Γ(k) = [γ
(k)
i,j ] for which γ

(k)
k,k+1 6= 0 .

Let i ∈ J2, n−1K be the smallest such integer for which γ
(1)
i,i+1 = 0, which must

exist by assumption. Since the group is abelian we acquire

[γ(1), γ(i)][i− 1, i+ 1] = γ
(1)
i−1,iγ

(i)
i,i+1 − γ

(i)
i−1,iγ

(1)
i,i+1 = γ

(1)
i−1,iγ

(i)
i,i+1 = 0.

Since i was minimal we have γ
(1)
i−1,iγ

(i)
i,i+1 6= 0. This yields the desired contradiction.

Since there only exist Zrp-representations with socle-type 1n over fields of char-

acteristic p ≥ n we can use the techniques of Section 2.1.3 to classify them. We

determine the commutativity criteria to acquire our maximal abelian (unrefined)

groups as follows.
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Let J ∈ G be a representation element with (J − In)n−1 6= 0 already acting

on a socle-conforming basis {v′1, . . . , v′n}. Upper-triangularly altering our basis to

{v1, . . . , vn} := {(J − I)n−1v′n, . . . , (J − I)v′n, v
′
n} for V we may ensure that this

element is in Jordan form whilst retaining the socle-conforming property.

In keeping with previous conventions set in [11] we use the fact that p ≥ n to

lower-triangularly alter the dual of this basis to

w∗n+1−m :=
m−1∑
i=0

i!S2(m, i+ 1)v∗n−i

for S2(m, i) the Stirling numbers of the second kind. Then J acts upon this basis

by

w∗n+1−m · J =
m∑
i=1

(
m− 1

i− 1

)
w∗n+1−i and so J =

[(
n− i
n− j

)]
i,j

∈ Un(F) (2.5)

as shown in Section 1.2.2. We determine our linear commutativity criteria by

coercing a general element in Un(F) to commute with this fixed form J .

Lemma 2.4.2. Suppose an M ∈ Un(F) commutes with J as given as in (2.5).

Then for some mi ∈ F

M = τ1n(mn−1, . . . ,m1) + In

:=



1
(
n−1
n−2

)
mn−1

(
n−1
n−3

)
mn−2 · · ·

(
n−1

1

)
m2 m1

0 1
(
n−2
n−3

)
mn−1 · · ·

(
n−2

1

)
m3 m2

0 0 1 · · ·
(
n−3

1

)
m4 m3

...
...

...
. . .

...
...

0 0 0 · · · 1 mn−1

0 0 0 · · · 0 1


(2.6)

Proof. We may state the result as any M = [mi,j] ∈ Un(F) which commutes with

J = [
(
n−i
n−j

)
] satisfies mi,i+k =

(
n−i

n−i−k

)
mn−k,n for all 1 ≤ i < n− k and 1 ≤ k < n.

We prove this by induction on k.

For k = 1 we consider for each i ∈ J1, n− 2K

[J,M ][i, i+ 2] =
(
n−i
n−i−1

)
mi+1,i+2 −

(
n−i−1
n−i−2

)
mi,i+1 = 0.
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Thus we acquire our base of induction as

mi,i+1 =
(
n−i
n−i−1

)(
n−i−1
n−i−2

)−1
mi+1,i+2 =

(
n−i
n−i−1

)(
n−i−2
n−i−3

)−1
mi+2,i+3 = . . .

=
(
n−i
n−i−1

)(
1
0

)−1
mn−1,n.

Now suppose mi,i+j =
(
n−i
n−i−j

)
mn−j,n for all j < k ≤ n − 1. Then for i ≤

n− k − 1 we apply the induction hypothesis to

(JM)[i, i+ k + 1] = mi,i+k+1 +
(
n−i
n−i−1

)
mi+1,i+k+1 +

(
n−i
n−i−2

)
mi+2,i+k+1 + . . .

+
(

n−i
n−i−k

)
mi+k,i+k+1 +

(
n−i

n−i−k−1

)
= mi,i+k+1 +

(
n−i
n−i−1

)
mi+1,i+k+1 +

(
n−i
n−i−2

)(
n−i−2

n−i−k−1

)
mn−k+1,n + . . .

+
(

n−i
n−i−k

)(
n−i−k
n−i−k−1

)
mn−1,n +

(
n−i

n−i−k−1

)
(MJ)[i, i+ k + 1] =

(
n−i

n−i−k−1

)
+
(

n−i−1
n−i−k−1

)
mi,i+1 + . . .

+
(
n−i−k+1
n−i−k−1

)
mi,i+k−1 +

(
n−i−k
n−i−k−1

)
mi,i+k +mi,i+k+1

=
(

n−i
n−i−k−1

)
+
(

n−i−1
n−i−k−1

)(
n−i
n−i−1

)
mn−1,n + . . .

+
(
n−i−k+1
n−i−k−1

)(
n−i

n−i−k+1

)
mn−k+1,n +

(
n−i−k
n−i−k−1

)
mi,i+k +mi,i+k+1

Comparing these and using the identity
(
a
a−b

)(
a−b
a−b−c

)
=
(
a
a−c

)(
a−c
a−b−c

)
it follows that

[J,M ][i, i+k+1] =
(
n−i
n−i−1

)
mi+1,i+k+1−

(
n−i−k
n−i−k−1

)
mi,i+k. Applying this recursively

we acquire

mi,i+k =
(
n−i
n−i−1

)(
n−i−k
n−i−k−1

)−1
mi+1,i+k+1

=
(
n−i
n−i−1

)(
n−i−k
n−i−k−1

)−1(n−i−1
n−i−2

)(
n−i−k−1
n−i−k−2

)−1
mi+2,i+k+2

= · · ·

=
(
n−i
n−i−1

)
· · ·
(
k+1
k

)(
n−i−k
n−i−k−1

)−1 · · ·
(

1
0

)−1
mn−k,n

=
(n− i)!
k!

1

(n− i− k)!
mn−k,n =

(
n−i

n−i−k

)
mn−k,n

from which the result follows by induction.

One may verify that any two elements of the form τ1n(c) + In commute. Thus

{τ1n(c) + In
∣∣ c ∈ Fn−1} is a commutative, multiplicative group and serves as our

lone unrefined group. Thence τ1n(Fn−1) becomes our unrefined algebra. In order

to easily describe the exponentiated refined group we borrow some information

from the common library of combinatorics.
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2.4.2 Parameterising Socle-Type 1n Representations and

Bell Polynomials

We shall hereafter make use of the complete exponential Bell polynomials

from [3], defined here by

Bm(c1, . . . , cm) =
∑
v∈Nm0

wt(v)=m

m!∏m
i=1 vi!(i!)

vi
cv11 · · · cvmm

where wt(v) :=
∑m

i=1 ivi for all v ∈ Nm
0 . We occasionally abuse notation and

define for n > m

Bm(c1, . . . , cn) := Bm(c1, . . . , cm).

Theorem 2.4.3. The homomorphism

σ1n : (Fn−1,+)→ GLn(F), σ1n(γ)[i, j] =
(
n−i
n−j

)
Bj−i(γ),

where Bm is the mth complete exponential Bell polynomial, is a covering ho-

momorphism for all modular Zrp-representations over F with socle-type 1n =

(1, . . . , 1).

Proof. Let Zrp ∼= G ≤ GL(V ) have socle-type 1n. By Lemma 2.4.1 we choose the

socle-conforming basis for V upon which G acts such that some J ∈ G is in the

form (2.5). Then by Lemma 2.4.2 any element of Un(F) which commutes with J

is of the form τ1n(c) + In. Thus τ1n(Fn−1) is our unrefined algebra. We need only

show that σ1n = exp ◦τ1n , that is

exp(τ1n(c))[i, j] =
(
n−i
n−j

)
Bj−i(c).

For any given v ∈ Nα denote s(v, β) :=
∑β

i=1 vi with special cases s(v) :=

s(v, α) and s(v, 0) = 0. By straight-forward calculation

[τ1n(c)α][i, j] =
∑
v∈Nα

s(v)=j−i

α∏
β=1

(
n− (i+ s(v, β − 1))

n− (i+ s(v, β))

)
cvβ =

(
n− i
n− j

) ∑
v∈Nα

s(v)=j−i

(
j − i
v

) α∏
β=1

cvβ
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There is a correspondence between the sets

{v ∈ Nα
∣∣ s(v) = j − i} → {w ∈ Nj−i

0

∣∣ wt(w) = j − i, s(w) = α}.

where to each such v we associate w where w` is the number of entries of v

equal to `. To each w there are naturally
(
α
w

)
associated v acquired from any

given example by permuting the entries. We may thus rewrite our expression as

follows:

[τ1n(c)α][i, j] =

(
n− i
n− j

) ∑
w∈Nj−i0
s(w)=α

wt(w)=j−i

(
α

w

)
(j − i)!

[1!]w1 [2!]w2 · · · [(j − i)!]wj−i

j−i∏
β=1

c
wβ
β .

Thus we obtain

exp(τ1n(c))[i, j] =
n−1∑
α=0

1

α!
[τ1n(c)α][i, j]

=
n−1∑
α=0

1

α!

(
n− i
n− j

) ∑
w∈Nj−i0
s(w)=α

wt(w)=j−i

(
α

w

)
(j − i)!

[1!]w` [2!]w2 · · · [(j − i)!]wj−i

j−i∏
β=1

c
wβ
β

=

(
n− i
n− j

) ∑
w∈Nj−i0

wt(w)=j−i

(j − i)!∏j−i
`=1[`!]w1w`!

j−i∏
β=1

c
wβ
β =

(
n− i
n− j

)
Bj−i(c)

as required.

We conclude with a few well known properties of the Bell polynomials.

Lemma 2.4.4 ([3] (4.9)). For all c, δ ∈ Fk and k ≥ 0 we have

Bm(c+ d) =
m∑
i=0

(
m

i

)
Bi(c)Bm−i(d).

Note that this result is readable from Theorem 2.4.3 were one to examine the

[n−m,n] entry of the equation

[(
n−i
n−j

)
Bj−i(c)

][(
n−i
n−j

)
Bj−i(d)

]
=
[(
n−i
n−j

)
Bj−i(c+ d)

]
.
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Lemma 2.4.5 ([3] (4.2)). For all m ≥ 0

Bm+1(c) =
m∑
i=0

(
m

i

)
ci+1Bm−i(c).

2.4.3 Equivalence of Socle-Type 1n Representations

Theorem 2.4.3 tells us that any representation with socle-type 1n is induced by the

covering homomorphism σ1n : (Fn−1,+)→ GLn(F) up to equivalence. Recall that

Proposition 2.1.10 suggests a connection between equivalence of representations

induced by the same covering homomorphism and some linear action upon the

underlying vector group.

Here we construct an explicit linear action on Fn−1 whose orbits directly

connect the images of equivalent representations induced by σ1n . To do so we

require the following.

Definition 2.4.6. For 1 ≤ k ≤ m the incomplete exponential Bell Polynomials

are given by

Bm,k(c) :=
∑
v∈Nm0

s(v,m)=k
wt(v)=m

m!∏m
i=1 vi!(i!)

vi
cv11 · · · cvmm .

The incomplete Bell polynomials, as with their complete kinBm(c) =
∑m

k=1Bm,k(c),

are well-studied.

Lemma 2.4.7 ([13] (1.4)). For 0 ≤ s ≤ j,

(
j

s

)
Bi,j(α) =

i−s∑
k=j−s

(
i

k

)
Bi−k,s(α)Bk,j−s(α).

Using this we may determine the equivalence action as follows.

Proposition 2.4.8. Two W,W ′ ≤ (Fn−1,+) that the groups σ1n(W ), σ1n(W ′)

both induce socle-type 1n representations. Then these representations are equiva-

lent if and only if there exists an α ∈ F∗ × Fn−2 such that

W ′ = [Bi,j(α)]W.
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Proof. Assume that the representations are equivalent, that is there exists an

E ≤ GLn(F) such that σ1n(W ) = E−1σ1n(W ′)E. Since both representations act

on socle-conforming bases we have ei,j = 0 when i > j.

The claim can be restated as

E−1σ1n(d)E = σ1n(c) =⇒ dm =
m∑
i=1

Bm,i(α)ci

for all m = 1, . . . , n− 1 and all c ∈ W with corresponding d ∈ W ′. We prove by

induction on m.

Observe that

(Eσ1n(c)− σ1n(d)E)[i, i+ 1] = (n− i)(ei,ic1 − ei+1,i+1d1) = 0

for all i = 1, . . . , n − 1. Thus we require d1 =
ei+1,i+1

ei,i
c1 for all i = 1, . . . , n − 1,

thus yielding the constant

α1 :=
e2,2

e1,1

=
e3,3

e2,2

= · · · = en,n
en−1,n−1

.

It follows then that ei,i = α1ei+1,i+1 = · · · = αn−i1 en,n. The further stipulation

that our representations have socle-type 1n demands that there exist elements of

both W and W ′ for which the first coordinate is nonzero. Thus α1 6= 0. This

case acts as the base of induction.

Suppose now that for all m = 0, . . . , t− 2 < n− 1 we have

dm+1 =
m+1∑
`=1

Bm+1,`(α)c`,

ei,i+m =
m∑
`=0

(
n− i
`

)
Bn−(i+`),n−(i+m)(α)en−`,n

for some α ∈ F∗ × Ft−2. We prove that this then holds for m = t− 1 as follows.

Without loss of generality we preempt success by writing

dt =
t∑

`=1

Bt,`(α)c` + d′t
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ei,i+(t−1) =
t−1∑
`=0

(
n− i
`

)
Bn−(i+`),n−(i+t−1)(α)en−`,n + e′i,i+(t−1) (2.7)

for i = 1, . . . , n − t for some indeterminate d′t, e
′
i,i+(t−1) and αt ∈ F. Our aim

is to show that by choosing αt appropriately we have d′t = e′i,i+(t−1) = 0 for all

i = 1, . . . , n− t.

Recall that σ1n(c) = exp

([(
n−i
n−j

)
cj−i

]
ij

)
=: exp(C) and similarly for σ1n(d) =:

exp(D). Thus Eσ1n(c)E−1 = exp (ECE−1) and so EC −DE = 0.

Thus using the induction hypothesis for i < n− t

(DE)i,i+t =
t∑

j=1

(
n−i
j

)
ei+j,i+tdj

=
t∑

j=1

(
n−i
j

) [ t−j∑
`=0

(
n−(i+j)

`

)
Bn−(i+j+`),n−(i+t)(α)en−`,n

][
j∑

k=1

Bj,k(α)ck

]
+
(
n−i

1

)
e′i+1,i+t[B1,1(α)c1] +

(
n−i
t

)
[Bn−i,n−i(α)en,n]d′t

=
t∑

j=1

j∑
k=1

t−j∑
`=0

(
n−i
j

)(
n−(i+j)

`

)
Bn−(i+j+`),n−(i+t)(α)Bj,k(α)cken−`,n

+
(
n−i

1

)
B1,1(α)c1e

′
i+1,i+t +

(
n−i
t

)
Bn−i,n−i(α)d′ten,n.

By observing that
∑t

j=1

∑j
k=1

∑t−j
`=0 =

∑t
k=1

∑t−k
`=0

∑t−`
j=k and applying Lemma

2.4.7 we acquire

(DE)i,i+t =
t∑

k=1

ck

t−k∑
`=0

(
n−i
`

)
en−`,n

[
t−∑̀
j=k

(
n−(i+`)

j

)
Bn−(i+j+`),n−(i+t)(α)Bj,k(α)

]
+
(
n−i

1

)
B1,1(α)c1e

′
i+1,i+t +

(
n−i
t

)
Bn−i,n−i(α)d′ten,n

=
t∑

k=1

ck

t−k∑
`=0

(
n−i
`

)
en−`,n

[(
k+n−i−t

k

)
Bn−i−`,k+n−i−t(α)

]
+
(
n−i

1

)
B1,1(α)c1e

′
i+1,i+t +

(
n−i
t

)
Bn−i,n−i(α)d′ten,n

=
t∑

k=1

(
n−(i+t)+k

k

)
ck

t−k∑
`=0

(
n−i
`

)
Bn−(i+`),n−(i+t)+k(α)en−`,n

+
(
n−i

1

)
B1,1(α)c1e

′
i+1,i+t +

(
n−i
t

)
Bn−i,n−i(α)d′ten,n.
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On the other hand for all i we observe that

(EC)i,i+t =
t∑

j=1

(
n−(i+t)+j

j

)
ei,i+t−jcj

=
t∑

j=1

(
n−(i+t)+j

j

)
cj

t−j∑
`=0

(
n−i
`

)
Bn−(i+`),n−(i+t)+j(α)en−`,n

+
(
n−(i+t)+1

1

)
c1e
′
i,i+(t−1)

In taking the difference we cancel their terms to acquire

0 = (EC −DE)i,i+t

=
[(

n−(i+t)+1
1

)
e′i,i+(t−1) −

(
n−i

1

)
B1,1(α)e′i+1,i+t

]
c1 −

(
n−i
t

)
Bn−i,n−i(α)d′ten,n

for all i < n− t. Hence

d′t =

(
n−(i+t)+1

1

)
e′i,i+(t−1) −

(
n−i

1

)
B1,1(α)e′i+1,i+t(

n−i
t

)
Bn−i,n−i(α)

c1.

However by altering our choice of αt we see

dt =
t∑

`=1

Bt,`(α1, . . . , αt−1, αt + β)c` + d′t =
t∑

`=1

Bt,`(α1, . . . , αt−1, αt)c` + βc1 + d′t

and thus we may choose αt so that d′t contains no multiple of c1, and thus d′t = 0.

Thus we have the recurrence relation

e′i,i+(t−1) =
n− i

n− (i+ t) + 1
B1,1(α)e′i+1,i+t. (2.8)

To solve this recurrence relation we rely on the one element of the t’th diagonal

of EC −DE we have yet to consider. For i = n− t we have

(EC −DE)n−t,n =
t∑

j=1

t−j∑
`=0

(
t

`

)
Bt−`,j(α)cjen−`,n + e′n−t,n−1c1

−
t∑

j=1

j∑
`=1

(
t

j

)
Bj,`(α)c`en−t+j,n − en,nd′t
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=
t∑

j=1

t−j∑
`=0

(
t

`

)
Bt−`,j(α)cjen−`,n + e′n−t,n−1c1

−
t∑

`=1

t−∑̀
j=0

(
t

j

)
Bt−j,`(α)c`en−j,n − en,nd′t

= e′n−t,n−1c1 = 0.

Thus since there exists some c1 6= 0 in W we have e′n−t,n−1 = 0. The relation

(2.8) then yields e′i,i+(t−1) = 0 for all i = 1, . . . , n − t. Since the ei,i+(t−1) and dt

have the desired form the implication follows by induction.

The reverse implication simply requires reversing the above argument. Sup-

posing instead we have two W,W ′ ≤ (Fn−1,+) and a α ∈ F∗ × Fn−2 such that

W ′ = [Bi,j(α)]W . Then by constructing the matrix E ∈ GLn(F) which satisfies

(2.7) for any choice of ei,n ∈ F and en,n ∈ F∗ one can see that E−1σ1n(W ′)E =

σ1n(W ) as desired.

From this we garner an immediate corollary for the Bell polynomials.

Corollary 2.4.9. Let α, β ∈ F∗ × Fn−2. Define α ◦ β ∈ F∗ × Fn−2 by

(α ◦ β)i :=
i∑

`=1

Bi,`(α)β`.

Then

[Bi,j(α)][Bi,j(β)] = [Bi,j(α ◦ β)].

Proof. Proposition 2.4.8 shows that conjugate subgroups in the image of σ1n

yield linear actions by matrices [Bi,j(α)] upon Fn−1. However taking a relation

[Bi,j(α)]W = W ′ for some α ∈ F∗×Fn−2 and W,W ′ ≤ (Fn−2,+) we can construct

a conjugation matrix E such that E−1σ1n(W ′)E = σ1n(W ) according to the

relations given in (2.7).

Thus since equivalence is transitive it follows that the product of two of these

linear equivalence matrices is another linear equivalence matrix. Thus for any

α, β ∈ F∗ × Fn−2 we have [Bi,j(α)][Bi,j(β)] = [Bi,j(γ)] for some γ ∈ F∗ × Fn−2.

Then observing that Bi,1(γ) = γi it follows that

γi =
i∑

`=1

Bi,`(α)β` = (α ◦ β)i.
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Conclusion

Using the covering homomorphisms σ1n : (Fn−1,+) → GLn(F) we have success-

fully determined all equivalence classes of Zrp-representations with socle-type 1n.

Whilst precise representatives of these classes remain unclassified we have pre-

sented the equivalence action as a linear action upon the subgroups of (Fn−1,+).

These representations are, of course, far from all we wish to consider. At the

outset we introduced these as a basis for further induction to acquire yet larger

families of representations. It is there we travel next.

2.5 Extensions of Socle-Type (1, . . . , 1)

In Section 2.3 we developed techniques for iteratively constructing families of

representations from small examples. Whilst specific examples were given along-

side these formulations we have yet to see them in full effect. Having spent the

previous section classifying all representations with socle-type 1n := (1, . . . , 1) we

now possess a firm foundation onto which to erect this architecture.

Here we shall construct covering homomorphisms for representations with

socle-type of the form (1, . . . , 1,m, 1, . . . , 1) for arbitrary 1 < m ∈ N. Recall,

however, from Proposition 2.3.7 that the only cases with valid abelian represen-

tations are (m, 1, . . . , 1) and (1,m, 1, . . . , 1).

2.5.1 Socle-Type (m, 1, . . . , 1) Representations

The classification of representations with socle-type (m, 1, . . . , 1) may almost be

considered a corollary of our work thus far.

Theorem 2.5.1. For 1 < m ∈ N the homomorphism

σm,1,...,1 : (Fn−1,+)→ GLn(F), σm,1,...,1(c) =

 Im−1

0 · · · 0 cn−1

0 · · · 0 cn−2
...

...
...

...
0 · · · 0 cn−m+1

0 σ1n−m+1(c1, . . . , cn−m)

 ,
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where σ1k(c) =
[(
k−i
k−j

)
Bj−i(c)

]
is given in Proposition 2.4.3, is a covering homo-

morphism for all modular Zrp-representations with socle-type (m, 1, . . . , 1).

Proof. By definition V has socle tabloid of the form

k δ1,2 · · · δ1,m

k−1

...

1

for some δ1,i ∈ J1, n − 1K. By Lemma 2.2.12 and Corollary 2.3.8 if any δ1,i ≥ 3

then no such representation with this tabloid exists. Hence δ1,i ∈ J1, 2K.
By Corollary 2.3.4 a full set of covering homomorphisms for the representa-

tions with this tabloid
k 2 · · · 2

k−1

...

1

. (2.9)

automatically cover the cases for which some δ1,i = 1. The result then follows

immediately by applying the inductive methods of Theorem 2.3.3 to the covering

homomorphism σ1n−m+1 as given in Theorem 2.4.3.

Equivalence of Socle-Type (m, 1, . . . , 1) Representations

Proposition 2.4.8 translates the equivalence of representations induced by the ho-

momorphism σ1n into a linear group action upon the subgroups of the preimage

(Fn−1,+). Here we determine a similar linear action for the covering homomor-

phism given in Theorem 2.5.1.

Recall from Section 2.4.3 that two representations with images σ1n(W ), σ1n(W ′)

for someW,W ′ ∈ F(n−1)×r are equivalent if and only if there exists an (α1, . . . , αn−1) ∈
F∗ × Fn−2 such that

W ′ = [Bi,j(α)]W

for the partial Bell polynomials Bi,j(α). We posit the analogue here.
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Proposition 2.5.2. Let W,W ′ ≤ (F(n−1)×r,+) and suppose σm,1,...,1(W ) and

σm,1,...,1(W ′) are conjugate. Then there exist constants (α1, . . . , αn−1) ∈ F∗×Fn−2,

β1, . . . , βm−1 ∈ F and [γij] ∈ GLm−1(F) such that

W ′ =


[Bi,j(α)]j=1,...,n−m

i=1,...,n−m

0 · · · 0
...

...
0 · · · 0
β1 · · · βm−1

αn−m+1 0 · · · 0
...

...
...

αn−1 0 · · · 0

[γij]
j=1,...,m−1
i=1,...,m−1


W.

Proof. By assumption Eσm,1,...,1(W )E−1 = σm,1,...,1(W ′) for some E = [ei,j] ∈
GLn(F). Recall from Section 2.1 that we may reformulate the problem, noting

that

σm,1,...,1(c) =

 Im−1 0

cn−1
...

cn−m+1

0 σ1n−m+1(c)

 = exp

 0 0

cn−1
...

cn−m+1

0 τ1n−m+1(c)

 =: exp(τm,1,...,1(c))

where τ1k(c) =
[(

k−i
k−j

)
cj−i

]
taking c0 = c−1 = · · · = 0. Then since E exp(M)E−1 =

exp(EME−1) our problem is equivalent to ensuring the additive groups τm,1,...,1(W )

and τm,1,...,1(W ) exist in the same conjugacy class.

Given the socle-type M = (m1, . . . ,mk) = (m, 1, . . . , 1) the matrix E must be

block upper-triangular with arbitrary diagonal blocks in Mmi(F). Furthermore

since the socle-tabloid of the representation must be as in (2.9) there must exist

in any given doubly-conforming basis a single element v ∈ Soc(V ) whose dual

under this basis sits in V ∗ \ Sock−1(V ). The remaining basis elements in Soc(V )

have duals in Soc2(V ∗). As such we cannot introduce a multiple of v into any of

these under any basis change lest the resulting basis fail to be doubly conforming.

The effect of this upon E is that e1,m = · · · = em−1,m = 0.

By defining

E1 :=

 e1,1 · · · e1,m−1
...

. . .
...

em−1,1 · · · em−1,m−1

 ∈ GLm−1(F), E2 :=

 e1,m+1 · · · e1,n
...

. . .
...

em−1,m+1 · · · em−1,n


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E3 := [em,1, . . . , em,m−1] E4 :=


em,m em,m+1 · · · em,n

0 em+1,m+1 · · · em+1,n
...

...
. . .

...
0 0 · · · en,n

 ∈ GLn−m+1(F)

we may write our equivalence matrix

E =

 E1 0 E2

E3

0
E4

 . (2.10)

If the images of c ∈ W and d ∈ W ′ are paired under this equivalence then

∆c,d := Eτm,1,...,1(c)− τm,1,...,1(d)E

=


0 E1

0

cn−1
...

cn−m+1

+ [0 E2]τ1n−m+1(c)−

0

dn−1
...

dn−m+1

E4

0

[
E3

0

]0

cn−1
...

cn−m+1

− (E4τ1n−m+1(c)− τ1n−m+1(c)E4)


= 0.

In the top-right block of ∆c,d the only term contributing to the first n−m columns

is [0 E2]τ1n−m+1(c). Since these must vanish, and τ1n−m+1(c) is upper-triangular

with zero diagonal it follows that ei,j = 0 for all (i, j) ∈ J1,m−1K×Jm+1, n−2K.
Thus the final column of the upper-right component of ∆c,d equals

E1

 cn−1
...

cn−m+1

+ c1

 e1,n−1
...

em−1,n−1

− en,n
 dn−1

...
dn−m+1

 .
Thus defining (γi,j) ∈ GLm−1(F) and αn−m+1, . . . , αn−1 ∈ F appropriately the

vanishing of this block yields dn−m+1
...

dn−1

 = (γi,j)

 cn−m+1
...

cn−1

+ c1

 αn−m+1
...

αn−1

 .
This leaves the lower-right block of ∆c,d which greatly resembles the conjugacy
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of groups in the image of τ1n−m+1 . Since

[
E3

0

]0

cn−1
...

cn−m+1

 =

[
0
∑m−1

i=1 em,icn−i
0 0

]

only the very upper-right entry of this block differs from the calculations given

in the proof of Proposition 2.4.8. We may apply the same arguments to conclude

that di =
∑i

j=1Bi,j(α)cj for some α = (α1, . . . , αn−m−1) ∈ F∗ × Fn−m−2 for all

i = 1, . . . , n−m− 1.

Furthermore the entries of E4 satisfy the form of the equivalence matrices

given in the proof of Proposition 2.4.8. The only unconsidered entry of ∆c,d is

(∆c,d)m,n =
m−1∑
j=1

em,jcn−j + (E4τ1n−m+1(c)− τ1n−m+1(c)E4)1,n−m+1 = 0.

Defining dn−m :=
∑n−m

j=1 Bn−m,j(α, αn−m)cj + d′n−m for some αn−m, d
′
n−m ∈ F we

may once again use the same arguments as in the proof of Proposition 2.4.8: By

choosing αn−m appropriately we ensure that

(∆c,d)m,n =
m−1∑
j=1

em,jcn−j − en,nd′n−m = 0

and thus by defining β1, . . . , βm−1 appropriately we acquire

dn−m =
n−m∑
j=1

Bn−m,j(α, αn−m)cj +
m−1∑
j=1

βjcn−m+j

thus concluding the proof.

2.5.2 Socle-Type (1,m, 1, . . . , 1) Representations

Thus far our techniques for augmenting existing representations into higher di-

mensions center around expanding either the first or second part of the socle

series. When considering representations with socle-type (1,m, 1, . . . , 1) however

we must take a different approach.

Naturally a representation V ∈ FZrp-mod with socle-type (1,m, 1, . . . , 1) in-
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duces the representation V/Soc(V ) with socle-type (m, 1, . . . , 1) and as such is

covered by the covering homomorphism σm,1,...,1 given in Theorem 2.5.1. Thus

the socle tabloid of V must be of the form

k

k−1 2 · · · 2 1 · · · 1
...

1

.

In this instance we must take care: There exist representations for which our

chosen prime p does not exceed the socle series length, a situation we have yet

to find ourselves in. Fortunately we shall that this is not a concern when p > 2.

Case 1: Characteristic p > 2

Whilst the characteristic of the representation avoids p = 2 we may employ the

services of covering homomorphisms as designed to acquire the following.

Theorem 2.5.3. Let F = F have characteristic p > 2 and fix 1 < m ∈ N. Then

the homomorphism

σ
(µ)
1m1...1 : (Fn−1,+)→ GL(V )

where σ
(µ)
1m1...1(c) takes the form

1 2vc 2v′c
0 Im−1−µ 0
0 0 Iµ

(
n−m
n−m−1

)
B1(c) · · ·

(
n−m

1

)
Bn−m−1(c) Bn−m(c) + vcv

T
c

0 · · · 0 vTc
0 · · · 0 0

0 σ1n−m(c)


with vc := [cn−1, . . . , cn−m+µ+1], v′c = [cn−m+µ, . . . , cn−m+1], is a covering homo-

morphism for all modular Zrp-representations with socle-type (1,m, 1, . . . , 1) with

dim(SocV ∗) = µ+ 1.

We prove Theorem 2.5.3 via sequential lemmas which, in turn, enforce the

prime restriction, construct the homomorphism and finally determine homomor-

phism uniqueness up to equivalence.

Consider Zrp ∼= G ≤ GL(V ) = GLn(F) with socle-type (1,m, 1, . . . , 1) and

dim(SocV ∗) = µ + 1. Since V/Soc(V ) has socle-type (m, 1, . . . , 1) we may use
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Theorem 2.5.1 to choose a doubly-conforming basis and place the image in the im-

age of σm,1,...,1. Augmenting this to a doubly-conforming basis for V an arbitrary

element C ∈ G then dons form

C =

 1 wc
0 Im−1

wc
′ cn−m

0 (w′′c )
T

0 0 σ1n−m(c1, . . . , cn−m−1)


where wc = [cn, . . . , cn+m−2], w′c = [cn+m−1, . . . , c2n−3] and w′′c = [cn−1, . . . , cn−m+1].

Lemma 2.5.4. Let Zrp ∼= G ≤ GL(V ) be as above. Then p > n −m and there

exists an element J ∈ G for which (J − In)n−m 6= 0.

Proof. Let m 6= n− 2 and the representation acts on a doubly-conforming basis.

It is a simple exercise to show that (C−In)n−m[1, n] = (n−m−1)!cn−m−1
1 cn+m−1

and all other entries immediately vanish. Recall that p ≥ n−m due to the form

of V/Soc(V ).

Assume (C − In)n−m[1, n] = 0 for all elements C ∈ G. By the socle-tabloid

structure there must exist C,D ∈ G for whom c1, dn+m−1 6= 0. Thence by our

assumption cn+m−1 = d1 = 0 and so

(CD − In)n−m[1, n] = (n−m− 1)!(c1 + d1)n−m−1(cn+m−1 + dn+m−1)

= (n−m− 1)!cn−m−1
1 dn+m−1 6= 0.

This is a contradiction and so such an element J with (J−In)n−m[1, n] 6= 0 exists.

Since our group is elementary abelian the prime restriction then follows.

Suppose instead that m = n− 2 > 1 and thus our elements are of the form

C =

 1 vc cn−m
0 In−2 wTc
0 0 1

 .
By assumption we have p > 2 and we see that (C − In)2[1, n] = vcw

T
c . Suppose

this vanishes for all elements. Given two C,D ∈ G which are not Fp-multiples of

one another we have

[C,D][1, n] = vcw
T
d − vdwTc = 0.

(CD − In)2[1, n] = (vc + vd)(wc + wd)
T = vcw

T
d + vdw

T
c = 0.
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The fact that p > 2 then gives a contradiction and thus the result.

Given J ∈ G with (J − In)n−m 6= 0 we alter our chosen doubly-conforming

basis {v1, . . . , vn} to better fix J as follows.

We begin by ensuring that v2, . . . , vm are the basis elements of Soc2(V ) whose

duals, under this basis, sit in Soc2(V ∗). Let v∗i · (J − In) = ji,nv
∗
n for each

i = 2, . . . ,m and i = n − 1. Then since jn−1,n 6= 0 by assumption we replace v∗i

for i = 2, . . . ,m with (v∗i )
′ := v∗i −

ji,n
jn−1,n

v∗n−1 in the dual basis to ensure that (v∗i )
′

are acted upon trivially. Dualising back we acquire a new doubly-conforming

basis for V .

For the remaining elements we replace v1, vm+1, vm+2, . . . , vn with

vn · (J − In)n−m, vn · (J − In)n−m−1, . . . , vn · (J − In), vn

so that now J acts in Jordan normal form. Transforming these elements as per

the methods of Section 1.2.2 and (1.2) we acquire the form

J =


1 0
0 Im−1

(
n−m
n−m−1

)
· · ·

(
n−m

1

)
1

0 · · · 0 0
0 0
...

...
0 0

σ1n−m(1, 0, . . . , 0)

 = σ1m1...1(1, 0, . . . , 0).

Naturally we wish to ascertain how other elements C ∈ G commute with this,

given that

[C, J ][1,m+ `] =
m+∑̀
i=1

C1,iJi,m+` −
m+∑̀
i=1

J1,iCi,m+`

=
(
n−m
`

)
+
∑̀
i=1

(
n−m−i
n−m−`

)
(w′c)i − C1,m+` −

∑̀
i=1

(
n−m
i

)
σ1n−m(c)i,`

=
`−1∑
i=1

(
n−m−i
n−m−`

) [
cn+m−2+i −

(
n−m
i

)
B`−i(c)

]
= 0 (2.11)

for ` = 1, . . . , n−m− 1. This leads to the following.

Lemma 2.5.5. Suppose Zrp ∼= G ≤ GL(V ) contains J as above. Then for all

other elements C = [ci,j] ∈ G there exists a c ∈ Fn−1 such that cn+m−2−i =(
n−m
n−m−i

)
Bi(c) for all i ∈ J1, n−m− 1K.
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Proof. We prove by induction on i. For i = 1 we take ` = 2 in (2.11) to acquire

(
n−m−1
n−m−2

)−1 [
cn+m−1 −

(
n−m
n−m−1

)
B1(c)

]
= 0

which yields the base. Now assume the result holds for i = 1, . . . , t−1 < n−m−1.

Then by (2.11) for ` = t+ 1 we have

cn+m−2+t =
(
n−m−t

1

)−1

[
t∑
i=1

(
n−m−i
n−m−t−1

)(
n−m
n−m−i

)
Bt−i+1(c)−

t−1∑
i=1

(
n−m−i
n−m−t−1

)
cn+m−2+i

]

=
(
n−m−t

1

)−1

[
t∑

j=1

(
n−m−(t+1−j)
n−m−t−1

)(
n−m

n−m−(t+1−j)

)
Bj(c)−

t−1∑
i=1

(
n−m−i
n−m−t−1

)(
n−m
n−m−i

)
Bi(c)

]

=
(
n−m−t

1

)−1(n−m
t+1

)[ t∑
j=1

(
t+1
j

)
Bj(c)−

t−1∑
i=1

(
t+1
i

)
Bi(c)

]
=
(
n−m−t

1

)−1(n−m
t+1

)(
t+1
t

)
Bt(c) =

(
n−m
n−m−t

)
Bt(c).

The result follows by induction.

Proof of Theorem 2.5.3. By Lemma 2.5.4 we may assume J := σ
(µ)
1m1...1(1, 0, . . . , 0)

lies in the image of our representation. All other elements of the representation

must then satisfy Lemma 2.5.5. Using this and the Bell polynomial property as

in Lemma 2.4.4 we see that for two such elements

(CD)[1,m+ j] =
(
n−m
n−m−j

)
Bj(c+ d)

for j = 1, . . . , n−m− 1 as we would desire. The only entry not clearly fulfilling

the form of our proposed homomorphisms is the [1, n] entry. By observing that

(CD)[1, n] = dn−m + cn−m + wc(w
′′
d)
T +Bn−m(c+ d)−Bn−m(c)−Bn−m(d)

we demand wc(w
′′
d)
T = wd(w

′′
c )
T in order for these two elements C,D to commute.

By the restriction dim(Soc V ) = 1 there exist distinct elements C(1), . . . , C(m−1)

such that the matrix [wT
c(1)
· · ·wT

c(m−1) ] is invertible. Then by observing the com-
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mutators [C(i), D] for all of these elements we acquire

(w′′d)
T =

 wc(1)
...

wc(m−1)

−1  w′′
c(1)
...

w′′
c(m−1)

wTd =
1

2
AwTd

for the appropriate matrix A ∈ F(m−1)×(m−1). Then for general elements C,D we

have

2(wc(wd
′′)T − wd(w′′c )T ) = wcAw

T
d − wdAwTc

= wdA
TwTc − wdAwTc

= wd(A
T − A)wTc = 0.

Since we can find m − 1 linearly independent wc throughout the representation

it follows that A is symmetric.

Without loss of generality relabel cn−m 7−→ Bn−m(c) + vcAv
T
c so that

(CD)[1, n] = Bn−m(c+ d) + (wc + wd)A(wc + wd)
T

recalling that Bn−m(c+ d) =
∑n−m

i=0

(
n−m
i

)
Bi(c)Bn−m−i(d).

Note that the image of σ
(µ)
1m1...1(c) differs from our interim construction

C =

 1 2wc
0 Im−1

(
n−m
n−m−1

)
B1(c) · · ·

(
n−m

1

)
Bn−m−1(c) Bn−m(c) + wcAw

T
c

0 · · · 0 AwTc
0 σ1n−m(c)



only by virtue of specifying that A =

[
Im−1−µ 0

0 0

]
.

Suppose {v1, . . . , vn} is the doubly-conforming basis for V under which our

elements act in the form above for some symmetric A. Since dim(Soc V ∗) = µ+1

we see that A has rank m− 1− µ. By exchanging the basis elements v2, . . . , vm

with  ṽ2
...
ṽm

 = E

 v2
...
vm


for some E ∈ GLm−1(F) we acquire a similar action, altering our symmetric

matrix by A 7−→ EAET . Since any two symmetric matrices A,B over an alge-
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braically closed field with characteristic p 6= 2 are congruent – that is there exists

an invertible E such that B = EAET – if and only if they have the same rank,

the result then follows.

Whilst in the socle-type (m, 1, . . . , 1) cases had no small-prime instances, we

cannot presume their non-existence for all cases. We shall now see such caution

pay off.

Characteristic p = 2

Let G ≤ GL(V ) be a modular Zr2-representation with socle-type (1,m, 1, . . . , 1).

Since V/V G has socle-type (m, 1, . . . , 1) this demands that p = 2 ≥ n −m and

thus m = n− 2. The socle tabloid of V then takes the form

3

2 · · · 2 1 · · · 1

1

.

Recall that if there are any 1-boxes in the second row of the tableau, then one may

construct homomorphisms covering these from lower-dimensional representations

by utilising Theorem 2.3.3.

Since dim(V G) = 1 we may choose a doubly-conforming basis for V such that

G contains elements C(k) for all k ∈ J1, n− 2K satisfying

C
(k)
1,k+1 = 1, C

(k)
1,j = 0 ∀j ∈ J2, nK \ {k + 1}.

Since G is commutative we have

[C(i), C(j)][1, n] = C
(j)
i+1,n − C

(i)
j+1,n = 0

and so C
(j)
i+1,n = C

(i)
j+1,n for all 1 ≤ i, j ≤ n − 2. Furthermore since G is an

elementary abelian 2-group (C(i))2[1, n] = C
(i)
i+1,n = 0 for all 1 ≤ i ≤ n− 2.

Let A be the n − 2 × n − 2 matrix with entries A[i, j] := C
(i)
j+1,n. By the

above arguments A is alternate — that is (skew-)symmetric with identically zero
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diagonal. Then for any other given element M in the representation

[C(i),M ][1, n] = Mi+1,n −
n−1∑
j=2

M1,jC
(i)
j,n = 0

for all 1 ≤ i ≤ n− 2, and so all elements adhere to the form

MA(c, c1,n) :=

 1 c c1,n

0 In−2 AcT

0 0 1

 (2.12)

where c = [c1,2, . . . , c1,n−1]. To aid in our manipulations and understanding of A

we provide the following result, a combination of [23] Lemma 3.3 and [1] Theorem

4.

Lemma 2.5.6 ([23] Lemma 3.3, [1] Theorem 4). Suppose A is an n×n alternate

matrix with entries over a field F of arbitrary characteristic. Then rank(A) = 2t

for some t ∈ N0 and A is congruent in F to 0 −It 0
It 0 0
0 0 0

 .
This finally moves us along to the following.

Theorem 2.5.7. Let F have characteristic 2. For t ∈ N define the homomor-

phism

σt(c) =


1 v1(c) v2(c) v3(c) cn−1 + v1(c)v2(c)T

0 It 0 0 v2(c)T

0 0 It 0 v1(c)T

0 0 0 In−2t−2 0
0 0 0 0 1


where v1(c) = [c1, . . . , ct], v2(c) = [ct+1, . . . , c2t] and v3(c) = [c2t+1, . . . , cn−2].

Then σt is a covering homomorphism for all modular Zr2 representations with

socle tabloid
3
2 ··· 2 1 ··· 1
1

where the number of 2 equals 2t. Furthermore no such representation exist with

an odd number of 2 in the tabloid.

Proof. Using the above arguments we may choose a basis for such a representation
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such that all elements act in the form MA(c, c1,n) as given in (2.12) for some alter-

nate A ∈Mn−2(F). Taking an E ∈ GLn−2(F) and constructing E ′ = diag(1, E, 1)

we observe that

E ′MA(c, c1,n)(E ′)−1 = MEAET (cE−1, c1,n).

Hence we may choose our basis such that A is given as in the statement Lemma

2.5.6. Each matrix of the form MA(c, c1,n) then exists in the image of σt. The

only difference between their forms is the [1, n] entry, chosen in σt to ensure that

(σt(c)σt(d))1,n = cn−1 + dn−1 + v1(c)v2(c)T + v1(c)v2(d)T + v2(c)v1(d)T + v1(d)v2(d)T

= (cn−1 + dn−1) + (v1(c) + v1(d))(v2(c) + v2(d))T

= (c+ d)n−1 + v1(c+ d)v2(c+ d)T = σt(c+ d)1,n

and thus that it is a homomorphism. Thus σt acts as a covering homomorphism

which yields the proof.

Recall from the proof of Theorem 2.5.3 that the p > 2 case yielded a choice

in covering homomorphisms up to congruence of a symmetric matrix. One may

easily choose this symmetric matrix to be precisely of the form given in 2.5.6

when its rank is even. This would then yield consistence between the p = 2 and

p > 2 cases. However we choose the forms as given for ease of later application.

Conclusion

This and the prior sections’ work particularly focus on the cases with long socle

series with low-dimensional factors. We would be remiss not to at least consider

the opposite end of this extreme.

2.6 Socle-Length 3 Representations

Having dealt with representations with long socle series we now turn our atten-

tion to more minimalist constructions. As our aim is to classify low-dimension

representations first our attentions ought to be drawn here eventually.

During our classification of representations with socle-type (1,m, 1, . . . , 1) in

Section 2.5.2 we provided a covering homomorphism for these up to a choice of
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symmetric or alternate matrix, all choices yielding equivalent images under al-

gebraically closed fields. These represent the hummock of quite a considerable

iceberg, the interconnected nature of classifying such representations and differ-

entiating vector spaces of symmetric matrices. By the climax of the section it

shall be clear to the reader that representatives of such orbits immediately yield

for us the covering homomorphisms we so covet.

2.6.1 Symmetric Matrices, Vector Spaces and Orbits

For this section we take F = F an algebraically closed field of positive character-

istic p > 0.

Notation 2.6.1. Denote by Symk(F) ⊂ GLk(F) the F-vector space of k × k

symmetric matrices and by Sym0
k(F) ≤ Symk(F) the subspace of symmetric ma-

trices with zeroes on the diagonal. We observe that Sym0
k(F) ≤ Symk(F) have

dimension k(k−1)
2
≤ k(k+1)

2
as F-vector spaces.

Let

Sk :=

{
Symk(F) p > 2
Sym0

k(F) p = 2.

Then we consider the (right) action of GLk(F) on Sk given by the congruence

action M · A = ATMA ∈ Sk for M ∈ Sk and A ∈ GLk(F).

Consider a subspace S ≤ Sk of dimension d ≤ k(k±1)
2

. The action of GLk(F)

on the elements of S naturally yields an action S ·A := {M ·A
∣∣M ∈ S} on the

set of all subspaces of Sk of dimension d.

We say two subspaces S1, S2 ≤ Sk are congruent if there exists A ∈ GLk(F)

such that S1 · A = S2 and incongruent otherwise.

We guide the use of these subspaces in our representation theoretic direction

using the following.

Definition 2.6.2. For a given subspace S ≤ Sk with basis A = {A1, . . . , Ad} we

define the homomorphism σA : (Fn−1,+)→ GLn(F) by

σA(c) :=


Id

wcA1
...

wcAd

cn−1 + wcA1w
T
c

...
ck+1 + wcAdw

T
c

0 Ik wTc
0 0 1


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for wc = [ck, . . . , c1].

With a bit of effort the reader may discern that the images of such homomor-

phisms contain the images of representations with dual-type (1, k, d). In fact we

may be stronger.

Theorem 2.6.3. Let S1, . . . , Sm ≤ Ss be a sequence of incongruent d-dimensional

subspaces for which m is maximal. Then for any choice of bases Ai ⊂ Si for

i = 1, . . . , s the homomorphisms σA1
, . . . , σAm collectively form a complete set

of covering homomorphisms for all modular Zrp-representations with dual-type

(1, k, d) up to equivalence .

Proof. We proceed using the notation of the result adding that our representation

is of dimension n := k + d+ 1.

Consider Zrp ∼= G ≤ GL(V ) with dual-type (1, k, d). By choosing a doubly

conforming basis we may write the elements of G in the form

M :=


Id

v1,M
...

vd,M

M ′

0 Ik wTM
0 0 1

 .

Since the dual-type is (1, k, d) there exist no F-relations between the vi,M which

hold for every element and there existM1, . . . ,Mk such that the matrix [wTM1
, . . . , wTMk

]

is invertible.

Remark. One might be convinced that such matrices would induce a socle-type

(d, k, 1) representation. However we do not make any further assumptions on

the entries of the vi,M and as such the dimension of V G may exceed d. All we

stipulate is that the dual socle-type is (1, k, d).

Given another element N we observe for each i = 1, . . . , k that

[Mi, N ] =


0 0

 v1,Mi

...
vd,Mi

wTN −
 v1,N

...
vd,N

wTMi

0 0 0
0 0 0

 = 0.
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Thus since vj,Nw
T
Mi

= vj,Mi
wTN = wNv

T
j,Mi

for all i = 1, . . . , k, j = 1, . . . , d it then

follows that

vj,N [wTM1
, . . . , wTMk

] = wN [vTj,M1
, . . . , vTj,Mk

]

and thus

vj,N = wN [vTj,M1
, . . . , vTj,Mk

][wTM1
, . . . , wTMk

]−1. (2.13)

Hence every vj,N is a (right) matrix multiple of wN . Moreover by altering the

basis of V upon which these act such that [wTM1
, . . . , wTMk

] = Ik we see that

[Mi,Mj] =


0 0

 v1,Mi

...
vd,Mi

wTMj
−

 v1,Mj

...
vd,Mj

wTMi

0 0 0
0 0 0



=


0 0

 (v1,Mi
)j

...
(vd,Mi

)j

−
 (v1,Mj

)i
...

(vd,Mj
)i


0 0 0
0 0 0

 = 0.

Thus [vTj,M1
, . . . , vTj,Mk

] is symmetric for each j = 1, . . . , d. Therefore by (2.13)

each vj,N is a acquired from wN by (right) multiplication by a symmetric matrix.

Noting that

Mp
i =


Id p

 v1,Mi

...
vd,Mi

 pM ′
i +
(
p
2

) v1,Mi

...
vd,M

wTMi

0 Ik pwTMi

0 0 1


each element of this form has order p except when p = 2 where we demand

wMi
[vT1,Mi

, . . . , vTd,Mi
] = [(v1,Mi

)i, . . . , (vd,Mi
)i] = 0. Then the matrices [vTj,M1

, . . . , vTj,Mk
]

have zero diagonals and so when p = 2 each vj,N is a acquired from wN by (right)

multiplication by an element of Sym0
k(F).

By the above arguments any representation with dual-type (1, k, d) are equiv-

alent to one induced by a homomorphism of the form σA for A = {A1, . . . , Ad} ⊂
Sk. All which remains it to determine which of these homomorphisms induce

equivalent representations.
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For some Γ ∈ GLn(F) and W,W ′ ≤ Fn−1 suppose ΓσA(W ) = σB(W ′)Γ, that

is σA and σB yield conjugate images for A1, . . . , Ad, B1, . . . , Bd ∈ Symk(F). Then

by denoting

Γ =


γ1,1 · · · γ1,d

...
. . .

...
γd,1 · · · γd,d

γ
1
...
γ
d

γ1,n
...
γd,n

0 Γ′ γ′

0 0 γn,n


we have

0 = ΓσA(c)− σB(b)Γ

=


0

wc
∑d

i=1 γ1,iAi − wbB1Γ′

...

wc
∑d

i=1 γd,iAi − wbBdΓ
′

∑d
i=1 γ1,i(cn−i + wcAiw

T
c )− wbB1γ

′ − (bn−1 + wbB1w
T
b )γn,n

...∑d
i=1 γd,i(cn−i + wcAiw

T
c )− wbBdγ

′ − (bn−d + wbBdw
T
b )γn,n

0 0 Γ′wTc − γn,nwTb
0 0 0

.

In particular wTb = γ−1
n,nΓ′wTc . Thence we acquire the relations

wc

d∑
i=1

γj,iAi − γ−1
n,nwcΓ

′TBjΓ
′ = wc

[
d∑
i=1

γj,iAi − γ−1
n,nΓ′TBjΓ

′

]
= 0

for each j = 1, . . . , d. Since there must be k linearly independent wc it follows

that

Bj = ((Γ′)−1)Tγn,n

[
d∑
i=1

γj,iAi

]
(Γ′)−1

for all j = 1, . . . , d. The remaining relations simply yield expressions defining

bk+1, . . . , bn. Thus two homomorphisms σA and σB corresponding to the sequences

A1, . . . , Ad and B1, . . . , Bd have conjugate images if and only if the F-linear span

of the Ai is congruent to the F-linear span of the Bi under GLk(F).

Hence two homomorphisms of the form σA have non-conjugate images if and

only if their sequence of symmetric/alternate matrices span incongruent vector

spaces. The result then follows.
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2.6.2 Degeneracy

Having determined the usefulness of the congruent subspaces of Sk in classifying

modular Zrp-representations with dual-type (1, k, d) we aim to understand these

orbits and the representations which their resulting homomorphisms cover. We

are focusing on representations with dual-type (1, k, d), but there are many socle

tabloids with this information, all of the form

3 3 · · · 3 2 · · · 2

2 · · · 2

1

with d total 3 , k total 2 (2.14)

To better manipulate these orbits we divide them into smaller families with

respect to their corresponding tabloids.

Definition 2.6.4. For a given subspace S ≤ Symk(F) define ker(S) := ∩M∈S ker(M).

We call S degenerate if dim(kerS) > 0 and non-degenerate otherwise.

If S is degenerate then we choose a congruence matrix in GLk(F) to incor-

porate a basis of ker(S). Thus we can choose a representative of its congruence

orbit whose elements are of the form

M =

[
M ′ 0
0 0

]
for M ′ ∈ Symk−dim(kerS)(F). Hence the problem of determining orbits of degen-

erate S ≤ Symk(F) is equivalent to determining the orbits of non-degenerate

S ′ ≤ Symk−dim(kerS)(F).

Remark. If S is degenerate then the socle tabloid of the representations induced

by image of σS is of the form (2.14) with dim(kerS) many 2 in the first row. We

saw in Theorem 2.3.3 that covering homomorphisms for these are constructed

from those covering the tabloid with these boxes removed. This corroborates

the correspondence between the degenerate cases and the lower-dimensional non-

degenerate cases.

We focus our efforts on constructing orbit representatives of non-degenerate

subspaces for increasing k. The following case is useful in the document’s future.
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Example 2.6.5. Let F = F have characteristic p > 2 and consider 2-dimensional

subspaces S ≤ Sym2(F). The orbits are divided into the non-degenerate cases and

cases equivalent to the non-degenerate cases in Sym1(F). However Sym1(F) ∼= F
has no dimension 2 subspaces and so the latter is trivial.

If S ≤ Sym2(F) is non-degenerate and all nonzero elements in S have rank 2

then up to congruence we choose S = spanF{I2, A}. However

det
(
A−

[
tr(A)−

√
tr(A)2 ± 4 det(A)

]
I2

)
= 0.

Thus there must exist an element in S of rank 1 and so we may ensure that our

vector space basis contains

J =

[
1 0
0 0

]
, and A =

[
0 a12

a12 a22

]
up to congruence. We then split into two cases. If a22 6= 0 then[

1 0
−a12
a22

1√
a22

]T [
0 a12

a12 a22

] [
1 0
−a12
a22

1√
a22

]
=

[ −a212
a22

0
0 1

]
.

If a22 = 0 then by non-degeneracy a12 is nonzero. Then instead we may take[
1 0
0 1

a12

]T [
0 a12

a12 0

] [
1 0
0 1

a12

]
=

[
0 1
1 0

]
.

Since neither transformation alters J it follows that up to congruence we have

two distinct orbit representatives

S1 := spanF

{[
1 0
0 0

]
,

[
0 0
0 1

]}
, and S2 := spanF

{[
1 0
0 0

]
,

[
0 1
1 0

]}
.

This process was ultimately to classify representations with dual-type (1, 2, 2).

Here both cases correspond to the socle tabloid δ =
3 3
2 2
1

. The covering homo-

morphisms these yield are σS1 , σS2 : (F4,+)→ GL5(F) given by

σS1(c) =


1 0 2c2 0 c4 + c2

2

0 1 0 2c1 c3 + c2
1

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1

 , σS2(c) =


1 0 2c2 0 c4 + c2

2

0 1 c1 c2 c3 + c1c2

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1

 .
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These collectively cover the representations with socle tabloid
3 3
2 2
1

. Specifically

σS1 covers representations V for which V(1) := (V ∗/Soc(V ∗))∗ is decomposable –

so that δ(1) = 2
1 ⊕

2
1 – and σS2 covers those for which V(1) is indecomposable.

If we consider the same case for p = 2 we observe that since Sym0
2(F) ∼= F

there are no two-dimensional subspaces. Hence there are no representations with

dual-type (1, 2, 2) for p = 2.

2.6.3 More Vanishing Tabloids

To classify the representations with socle tabloid
3 3 ··· 3
2 ··· 2
1

we consider the nonde-

generate subspaces of Sk(F) := Symk(F) (or Sk(F) := Sym0
k(F) for char(F) = 2)

of dimension d. However Sk(F) is an F-vector space of dimension k(k±1)
2

. Thus if

d exceeds this bound then no such subspaces can exist. From this we achieve the

following.

Proposition 2.6.6. Let δ :=
3 3 ··· 3
2 ··· 2
1

have d many 3 and k many 2 . Then if

d > k(k+1)
2

there are no modular Zrp-representations with socle tabloid δ. Further

no modular Zr2-representations exist with socle tabloid δ if d > k(k−1)
2

.

Section 2.3.2 introduced tabloids with no associated Zrp-representations such

as
3 3
2
1

. This corresponds to Sym1(F) ∼= F having no 2-dimensional subspaces.

However this result provides additional examples. For instance the tabloids

3 3 3 3
2 2
1

,
3 3 3 3 3 3 3
2 2 2
1

,
3 3 3 3 3 3 3 3 3 3 3
2 2 2 2
1

are now known not to have representations associated. One may also augment

these with 1 and 2 in the first row and 1 in the second to acquire more vanishing

examples.

2.6.4 The Orthogonal Groups

We provide here an application of our work on those socle-type (1, n − 2, 1)

Zrp-representations to the orthogonal groups. An excellent resource for the back-

ground of these can be found in [28] whose content we summarise here.
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Let p > 2 be a prime and q = pr for some r ∈ N. For V = Fnq define a

non-degenerate quadratic form Q : V → Fq and its polar form β : V 2 → F by

β(v, u) := Q(v + u)−Q(v)−Q(u).

From this we then construct the orthogonal group

O(V,Q) := {f ∈ GL(V )
∣∣ Q(f(v)) = Q(v), ∀v ∈ V }. (2.15)

An alternate, convenient definition of the orthogonal groups is as follows: Let

M ∈ GL(V ) and define

O(V,M) := {N ∈ GL(V )
∣∣ NTMN = M}.

We note that given Q as in (2.15) and its corresponding β we may take M =

(β(ei, ej))i,j where {e1, . . . , en} is a basis for V and then O(V,M) = O(V,Q).

Consider a Zrp-representation G ≤ GL(V ) over Fq with socle tabloid
3
2 ··· 2
1

induced by σA(W ) for some W ≤ (Fn−2,+) where

σA(c) := σ1,n−2,1(c, 0) =

 1 2c cAcT

0 In−2 AcT

0 0 1

 (2.16)

for an invertible A ∈ Symn−2(F). Let {v1, . . . , vn} denote the given basis of

V where G acts on
∑
αivi by left multiplication on [α1, . . . , αn]T . Dually let

{x1, . . . , xn} be the associated dual basis for V ∗ where G acts on
∑
αixi by right

multiplication on [αn, . . . , α1].

Lemma 2.6.7. Let G be as above. Define x := [xn−1, . . . , x2]. Then

δ := x1xn − xA−1xT ∈ F[V ]G.

Proof. The proof is straight-forward substitution as follows:

δ · σA(c) = x1

(
xn +

n−1∑
i=2

2ci−1xi + (cAcT )x1

)
− (x+ (AcT )Tx1)A−1(x+ (AcT )Tx1)T
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= x1xn + 2x1

n−1∑
i=2

ci−1xi + (cAcT )x2
1

− xA−1xT − xA−1AcTx1 − cAA−1xTx1 − cAA−1AcTx2
1

= x1xn + 2x cTx1 + (cAcT )x2
1 − xA−1xT − 2x cTx1 − (cAcT )x2

1

= x1xn − xA−1xT = δ.

An important observation from an invariant-theoretic perspective is the fact

that these group consist wholly of bireflections, that is elements g ∈ G for which

dim(V g) ≥ dim(V )−2. Further we acquire from this result an ‘integral’ invariant,

an element of F[V ]G whose structure does not rely on the prime characteristic.

More immediately however the result tells us that such representations are sub-

groups of an orthogonal group with δ as the given quadratic form.

Proposition 2.6.8. Let Fq = 〈α1, . . . , αr〉Fp and define

W = 〈(αi, 0, . . . , 0), (0, αi, . . . , 0), . . . , (0, 0, . . . , αi)
∣∣ i ∈ J1, rK〉 ≤ (Fn−2,+)

For some invertible A ∈ Symn−2(F) construct the group

E(n,A, q) :=

〈
σc :=

 1 2c cAcT

0 In−2 AcT

0 0 1

 ∣∣ c ∈ W〉 .
Then |E(n,A, q)| = qn−2 and E(n,A, q) ≤ O(V, δ) for δ = x1xn − xA−1xT where

x := [xn−1, . . . , x2].

Proof. Lemma 2.6.7 yields E(n,A, q) ≤ O(V,Q). It is then easy to see from the

fact that W → E(n,A, q) is a bijection that G has order pr(n−2) = qn−2.

Having shown that E(n,A, q) ∼= Zr(n−2)
p is a subgroup of the Sylow p-subgroup

of O(V, δ) we go on to consider elements of GL(V ) of the form

M ′ =

 1 0 0
0 M 0
0 0 1

 .
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Suppose M ′ ∈ O(V, δ), that is

δ·M = x1xn−(xMT )A−1(xMT )T = x1xn−x(MTA−1M)xT = x1xn−xA−1xT = δ.

Then M ∈ O(V ′, xA−1xT ) = O(V ′, A−1) for V ′ := 〈v1, . . . , vn−1〉/〈v1〉. Hence we

can augment E(n,A, q) by adding elements M ′ constructed from M ∈ O(V ′, A−1)

further into the orthogonal group O(V, δ). We take this to its ultimate conclusion.

Theorem 2.6.9. Let V be an n-dimensional Fq-vector space with basis v1, . . . , vn,

dual basis xn, . . . , x1 and n ≥ 3. Define V ′ := V/〈v1, vn〉 and δ := x1xn−xA−1xT

for x = [xn−1, . . . , x2] for invertible A ∈ Symn−2(F). If S ≤ O(V, δ) is a Sylow

p-subgroup then

S ∼= E(n,A, q) o S ′

where S ′ is a Sylow p-subgroup of O(V ′, A−1). Thence

S ∼= Zr(n−2)
p o Zr(n−4)

p o · · ·o Zrεp

where ε := 2 if n is even and ε := 1 otherwise. In particular S is a bireflection

group.

Proof. Given σA(c) ∈ E(n,A, q) and M ′ := diag(1,M, 1) for M ∈ S ′ we see that

σA(c)M ′ = M ′σA(cM) since MTA−1M = A−1 by definition. Thus E(n,A, q) o
S ′ ≤ S and so

|E(n,A, q) o S ′| = qn−2|S ′|.

It is then a matter of noting that for a general n-dimensional vector space W and

quadratic form Q, a Sylow p-subgroup Σ ≤ O(W,Q) has order

|Σ| =

{
q
n(n−2)

4 n even,

q
(n−1)

4

2

n odd

(see, for instance [28]). Thus |E(n,A, q) o S ′| = |S|.
Via continued application of this we acquire (2.6.9) noting that if n = 3 then

S ∼= Zrp and if n = 4 then S ∼= Z2r
p .

We see S is a bireflection group since each elementary abelian p-group copy

in S is (up to factoring out appropriate copies of the irreducible representation)

of socle-type (1,m − 2, 1). Such representations consist entirely of bireflections
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(with the identity nominally so) and so the result follows.

Conclusion

This section marks the threshold of our classifications in full generality. Having

thus far undertaken our studies in arbitrary dimension we begin to focus our

efforts down and recap what we have learned in a more orderly fashion.

2.7 The Four-Dimensional Representations

The ulterior motive for all of our representation theory delving thus far has been

to plunge the depths of the four-dimensional modular representations of Zrp in

a setting of convenient generality. In this section we fully classify all such rep-

resentations distinguishing them by socle tabloid and thence parameterising via

covering homomorphisms.

Note that we omit any socle tabloid with a 1-box in row 1 due to its redun-

dancy (see Section 2.2).

2.7.1 Socle-Length 2 Representations

We have remarked before that any natural isomorphism from (Fm1m2 ,+) to

U(m1,m2)(F) automatically yields a covering homomorphism for the Zrp-representations

with socle-type (m1,m2). Below we provide an example of these covering homo-

morphisms for each socle tabloid.

σ2|111 : (F3,+)→ GL4(F), σ2|111(c) =

 1 c1 c2 c3

0 1 0 0
0 0 1 0
0 0 0 1

 ∼ 2
1 1 1

σ22|11 : (F4,+)→ GL4(F), σ22|11(c) =

 1 0 c1 c2

0 1 c3 c4

0 0 1 0
0 0 0 1

 ∼ 2 2
1 1

σ222|1 : (F3,+)→ GL4(F), σ222|1(c) =

 1 0 0 c3

0 1 0 c2

0 0 1 c1

0 0 0 1

 ∼ 2 2 2
1
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2.7.2 Socle-Length 3 Representations

We move on to classifying all modular Zrp-representations in GL4(F) whose socle

series has length 3. We immediately acquire the following from Corollary 2.3.8.

Proposition 2.7.1. There exist no modular Zrp-representations with socle tabloid

δ =
3 3
2
1

or δ∗ =
3
2
1 1

.

Note that this result implies that no modular representation of Zrp has socle-

type (1, 1, 2). This also excludes one possible case of socle-type (2, 1, 1), the

remainder of which are comfortably covered by Theorem 2.5.1 and recapped here.

Proposition 2.7.2. The homomorphism

σ211 : (F3,+)→ GL4(F), σ211(c) :=

 1 0 0 c3

0 1 2c1 c2
1 + c2

0 0 1 c1

0 0 0 1


is a covering homomorphism for all modular Zrp-representations with socle-type

(2, 1, 1). Furthermore if W,W ′ ≤ (F3,+) are such that σ211(W ) and σ211(W ′) are

conjugate with socle-type (2, 1, 1), then there exist constants α ∈ F∗ × F2, β ∈ F
and γ ∈ F∗ such that

W ′ = M(α1, α2, α3, β, γ)W :=

 α1 0 0
α2 α2

1 β
α3 0 γ

W.
Furthermore these linear equivalence matrices M(α1, α2, α3, β, γ) form a group

with structure

M(F∗ × F2,F,F∗) ∼= (F∗)2 n (F n F2).

Proof. The homomorphism arises from Theorem 2.5.1. The equivalence is given

in Proposition 2.5.2. The structure of the equivalence group is then easily verifi-

able, observing that

M(F∗ × F2,F,F∗) = {M(α1, 0, 0, 0, γ)
∣∣ α1, γ ∈ F∗}

n
(
{M(1, 0, α3, 0, 1)

∣∣ α3 ∈ F}n {M(1, α2, 0, β, 1)
∣∣ α2, β ∈ F}

)
.
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All which remains is the following classification of all socle-type (1, 2, 1) rep-

resentations given in Section 2.5.2.

Proposition 2.7.3. For F a field of characteristic p > 2 the homomorphisms

σ3|21|1 : (F3,+)→ GL4(F) σ3|21|1(c) =

 1 2c2 2c1 c3 + c2
2

0 1 0 c2

0 0 1 0
0 0 0 1

 ∼ 3
2 1
1

, or

σ3|22|1 : (F3,+)→ GL4(F) σ3|22|1(c) =

 1 2c2 2c1 c3 + c2
2 + c2

1

0 1 0 c2

0 0 1 c1

0 0 0 1

 ∼ 3
2 2
1

are covering homomorphisms for all modular Zrp-representations over F with socle-

type (1, 2, 1). If instead F has characteristic p = 2 then the homomorphism

σ′3|22|1 : (F3,+)→ GL4(F) σ′3|22|1(c) =

 1 c1 c2 c3 + c1c2

0 1 0 c2

0 0 1 c1

0 0 0 1

 ∼ 3
2 2
1

is a covering homomorphism for these representations over F.

2.7.3 Socle-Length 4 Representations

The socle-length 4 representations in GL4(F) consist only of those of socle-type

(1, 1, 1, 1). Their classification and equivalences follow immediately from Theorem

2.4.3 and Proposition 2.4.8, which we recap here.

Proposition 2.7.4. The homomorphism

σ14 : (F3,+)→ GL4(F), σ14(c) =

 1 3c1 3(c2
1 + c2) c3

1 + 3c1c2 + c3

0 1 2c1 c2
1 + c2

0 0 1 c1

0 0 0 1


is a covering homomorphism for all modular Zrp-representations with socle-type

(1, 1, 1, 1). Furthermore if W,W ′ ≤ (F3,+) such that σ(W ) and σ(W ′) are con-
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jugate with socle-type 1n then there exists an α ∈ F∗ n F2 such that

W ′ =

 α1 0 0
α2 α2

1 0
α3 3α1α2 α3

1

W.
2.7.4 The Atlas of 4-Dimensional Representations

For completion we provide a table of all socle tabloids in dimension 4 and the

covering homomorphism associated to each. We refer to this as the atlas of

dimension 4, if the reader forgives our blatant theft from the hands of group

theorists, topologists and, prior to them, cartographers.

The reader may wish to consider socle tabloids δ and δ∗ as a single case,

since the homomorphism(s) governing δ∗ are easily recoverable from those of δ.

However for completeness we include all required homomorphisms here explicitly.

Furthermore any diagram whose representations contain a trivial free sum-

mand (i.e. a 1-box in the first row) shall be singled out as unimportant, since by

Corollary 2.3.4 they exist in the image of some other homomorphism automati-

cally.

� 1 1 1 1 : I4

�

2 2 2
1 : σ(c) =

 1 0 0 c3

0 1 0 c2

0 0 1 c1

0 0 0 1



�

2
1 1 1 : σ(c) =

 1 c1 c2 c3

0 1 0 0
0 0 1 0
0 0 0 1


�

2 2 1
1 : Decomposable - 2 2

1 ⊕ 1
∗←−→ 2 1

1 1 : Decomposable - 2
1 1 ⊕ 1

�

2 1 1
1 : Decomposable - 2

1 ⊕ 1 1

�

2 2
1 1 : σ(c) =

 1 0 c1 c2

0 1 c3 c4

0 0 1 0
0 0 0 1


�

3 3
2
1

∗←−→
3
2
1 1

: Do not exist
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�

3 2
2
1

: σ(c) =

 1 0 2c1 c3 + c2
1

0 1 0 c2

0 0 1 c1

0 0 0 1

 ∗←−→
3
2 1
1

: σ(c) =

 1 2c2 2c1 c3 + c2
2

0 1 0 c2

0 0 1 0
0 0 0 1


�

3 1
2
1

: Decomposable -
3
2
1
⊕ 1

�

3
2 2
1

: σ(c) =

 1 2c2 2c1 c3 + c2
2 + c2

1

0 1 0 c2

0 0 1 c1

0 0 0 1

 or

 1 c1 c2 c3 + c1c2

0 1 0 c2

0 0 1 c1

0 0 0 1



�

4
3
2
1

: σ(c) =

 1 3c1 3(c2
1 + c2) c3

1 + 3c1c2 + c3

0 1 2c1 c2
1 + c2

0 0 1 c1

0 0 0 1


Atlas Overlap

4
3
2
1

4
3
2
1

2 2
1 1

2
1 1 1

3
2 1
1

3
2 2
1

3 2
2
1

2 2 2
1

2 2
1 1

2 1
1 1

3 1
2
1

2 2 1
1

2 1 1
1

1 1 1 1

Figure 2.1: Diagram demonstrating how the covering homomorphisms of the
four-dimensional atlas overlap in their images.

We have remarked before that covering homomorphisms often spread them-

selves wide enough to encompass more representations than their intended purview.
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Indeed Corollary 2.3.4 tells us that any representation with a 1 in the first row of

its socle tabloid is automatically caught in the net of a covering homomorphism

for the tabloid given by replacing that box with a 2 . Dually it also sits inside

a covering homomorphism attached to the tabloid acquired by moving 1 to the

second row. Thus our covering homomorphisms often have a nontrivial overlap.

Considering all of the homomorphisms given in the atlas we proffer figure 2.1.

This illustrates the overlap between the maps of the four dimensional atlas, where

an arrow δ −→ δ′ indicates that the covering homomorphism for δ also induces all

representations with tabloid δ′ up to equivalence. The dashed line corresponds

to only a partial covering.

Note that the diagram loops at the sides and thus may be better demonstrated

as a three-dimensional graph, something the author capitulated on within the

LATEX architecture.

Conclusion

Largely the intent of the representation theoretic part of this document was to

construct the four-dimensional modular Zrp-representations for use in the latter

invariant theoretic part. In the process our methods have been generalised to

larger families. It is by this virtue that we may in fact continue the process into

dimension 5.

2.8 The Five-Dimensional Representations

Having classified all 4-dimensional representation we proceed to dimension 5.

Between sections 2.4, 2.5 and 2.6 we have already classified all representations

in this dimension via covering homomorphisms. We give a summary of the 5-

dimensional atlas covering all socle tabloids in dimension 5, their deconstructions

and associated covering homomorphisms.

2.8.1 The Atlas of 5-Dimensional Representations

Here we list the socle tabloids in dimension 5 along with their deconstructions

and provide covering homomorphisms for each.
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Before doing so we recap each of the tabloids

3 3 3
2
1

∗←−→
3
2
1 1 1

3 3 2
2
1

∗←−→
3
2 1
1 1

3 3 1
2
1

∗←−→
3 1
2
1 1

3 3
2 1
1

∗←−→
3 2
2
1 1

3 3
2
1 1

4 4
3
2
1

∗←−→
4
3
2
1 1

4 3
3
2
1

∗←−→
4
3
2 1
1

4
3 3
2
1

∗←−→
4
3
2 2
1

which have no associated representations since either they or their duals violate

the results of Section 2.3.2 or 2.6.3. We also separate the tabloids

1 1 1 1 1 , 2 2 2 1
1

∗←−→ 2 1
1 1 1 ,

2 2 1 1
1

∗←−→ 2 1 1
1 1 , 2 1 1 1

1

2 2 1
1 1 ,

3 2 1
2
1

∗←−→
3 1
2 1
1

,
3 1 1
2
1

,
3 1
2 2
1

,

4 1
3
2
1

since any representation associated to one of these shall contain a trivial free

summand (i.e. a 1-box in the first row). We ignore them since by Corollary 2.3.4

such representations exist in the image of some other covering homomorphism.

We now proceed to provide the atlas of 5-dimensional representations. For

brevity we consider socle tabloids δ and δ∗ as a single case, since the covering

homomorphisms governing δ∗ are easily recoverable from those of δ.

Furthermore we omit the domain on which the covering homomorphism is

defined since it is of the form (Fd,+) where the value of d can be easily observed

from the homomorphism itself. The lower limit for the characteristic p of the

fields over which these representations exist should also be determinable from

the homomorphism, as any prime for which the image induces the desired socle

tabloid.

Note also that Bi denotes the ith complete exponential Bell polynomial.

1. 2 2 2 2
1

∗←−→ 2
1 1 1 1 : σ(c) =


1 0 0 0 c4

0 1 0 0 c3

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1



2. 2 2 2
1 1

∗←−→ 2 2
1 1 1 : σ(c) =


1 0 0 c5 c6

0 1 0 c3 c4

0 0 1 c1 c2

0 0 0 1 0
0 0 0 0 1


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3.
3 2 2
2
1

∗←−→
3
2 1 1
1

: σ(c) =


1 0 0 2c1 c4 + c2

1

0 1 0 0 c3

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1


4.

3 3
2 2
1

∗←−→
3
2 2
1 1

(from Example 2.6.5)

(a) δ(1) = 2 2
1 1 indecomposable: σS1(c) =


1 0 2c2 0 c4 + c2

2

0 1 c1 c2 c3 + c1c2

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1



(b) δ(2) = 2
1 ⊕

2
1 decomposable: σS2(c) =


1 0 2c2 0 c4 + c2

2

0 1 0 2c1 c3 + c2
1

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1



5.
3 2
2 2
1

∗←−→
3
2 2 1
1

: σ(c) =


1 0 c1 c2 c4 + c1c2

0 1 0 0 c3

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1



6.
3 2
2 1
1

: σ(c) =


1 0 2c1 c5 c3 + c2

1

0 1 0 c4 c2

0 0 1 0 c1

0 0 0 1 0
0 0 0 0 1



7.
3
2 2 2
1

: σ(c) =


1 2c1 2c2 2c3 c4 + 2c1c3 + c2

2

0 1 0 0 c3

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1



8.

4 2
3
2
1

∗←−→
4
3 1
2
1

: σ(c) =


1 0 3c1 3(c2

1 + c2) c3
1 + 3c1c2 + c4

0 1 0 0 c3

0 0 1 2c1 c2
1 + c2

0 0 0 1 c1

0 0 0 0 1


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9.

4
3 2
2
1

: σ(c) =


1 3c3 3c1 3(c2

1 + c2) c2
3 + c3

1 + 3c1c2 + c4

0 1 0 0 c3

0 0 1 2c1 c2
1 + c2

0 0 0 1 c1

0 0 0 0 1



10.

5
4
3
2
1

: σ(c) =


1 4B1(c) 6B2(c) 4B3(c) B4(c)
0 1 3B1(c) 3B2(c) B3(c)
0 0 1 2B1(c) B2(c)
0 0 0 1 B1(c)
0 0 0 0 1


2.8.2 Overlap in the Dimension 5 Atlas

Since our given covering homomorphisms overlap in image we present diagrams

2.2 and 2.3 which illustrate these overlaps. Each arrow δ −→ δ′ indicates that the

covering homomorphisms for δ also acts as covering homomorphisms for δ′. We

also display partial inclusions using dashed arrows.

We denote by δ :=
3 3
2 2
1 d.

the tabloid
3 3
2 2
1

with the additional structural data

that δ(1) = 2 2
1 1 = 2

1 ⊕
2
1 is decomposable, and similarly for its dual. For the

tabloid
3 3
2 2
1

with this submodule indecomposable we denote
3 3
2 2
1 ind.

, and similarly

for the dual.

Conclusion

The studious reader might be able to predict the title of the following section.

Whilst in GL4(F) and GL5(F) our prior calculations and formulations sufficed

to fully describe our representations, explorations in GL6(F) require rather more

original calculation.

2.9 The Six-Dimensional Representations

Having exhausted the modular Zrp-representations in GL4(F) and GL5(F) we

naturally progress to GL6(F). Unfortunately our earlier skills and tool-set are

not quite as effective in this new environment. Additional work is required to

classify all six-dimensional representations. We posit here those representations
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5
4
3
2
1

5
4
3
2
1

3 2
2 1
1

2 2
1 1 1

2
1 1 1 1

3
2 1 1
1

3
2 2
1 1 d.

3
2 2 1
1

3
2 2 2
1

3 2
2 2
1

3 3
2 2
1 d.

3 2 2
2
1

2 2 2 2
1

2 2 2
1 1

3 2
2 1
1

2 2 1
1 1

2 1
1 1 1

3 1
2 1
1

3 1
2 2
1

3 2 1
2
1

2 2 2 1
1

2 2 1
1 1

2 1 1
1 1

3 1 1
2
1

2 2 1 1
1

2 1 1 1
1

1 1 1 1 1

Figure 2.2: A diagram illustrating overlaps in the 5-dimensional atlas.

whose covering homomorphisms do not follow from prior results, omitting a full

atlas for brevity.

2.9.1 Representations with Trivial Free Summands

We begin by giving a glancing appraisal of the representations with trivial free

summands, those whose socle tabloids contain 1-boxes in their first rows. By
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4 2
3
2
1

4
3 2
2
1

4
3 1
2
1

3 3
2 2
1 ind.

4 1
3
2
1

3
2 2
1 1 ind.

3 2
2 1
1

2 2 2
1 1

2 2 1
1 1

2 2
1 1 1

3 2
2 1
1

Figure 2.3: A diagram illustrating partial overlaps in the 5-dimensional atlas.

Corollary 2.3.4 the equivalence classes of these representations exist in the image

of covering homomorphisms for other tabloids. These tabloids are included for

the sake of completion, listed below with their corresponding duals.

2 2 2 2 1
1

∗←−→ 2 1
1 1 1 1

2 2 2 1 1
1

∗←−→ 2 1 1
1 1 1

2 2 1 1 1
1

∗←−→ 2 1 1 1
1 1

2 1 1 1 1
1

2 2 2 1
1 1

∗←−→ 2 2 1
1 1 1

2 2 1 1
1 1

3 2 2 1
2
1

∗←−→
3 1
2 1 1
1

3 2 1 1
2
1

∗←−→
3 1 1
2 1
1

3 1 1 1
2
1

3 3 1
2 2
1

∗←−→
3 1
2 2
1 1

3 2 1
2 2
1

∗←−→
3 1
2 2 1
1

3 2 1
2 1
1

3 1 1
2 2
1

3 1
2 2 2
1

4 2 1
3
2
1

∗←−→
4 1
3 1
2
1

4 1 1
3
2
1

4 1
3 2
2
1

5 1
4
3
2
1

2.9.2 Tabloids without Representations

Below we posit all six-box tabloids which satisfy the necessary requirements to be

socle tabloids (as in Lemma 2.2.7) but fail to have any associated representations.

Given a proposed doubly-conforming basis B for a module with tabloid δ we

colour in pink boxes of δ corresponding to the subset Bp and green the boxes
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corresponding to the subset Bg of B. The resulting representation 〈B \ Bg〉/〈Bp〉
or its dual then violates either the results of Section 2.3.2 or 2.6.3.

3 3 3 3
2
1

∗←−→
3
2
1 1 1 1

3 3 3 2
2
1

∗←−→
3
2 1
1 1 1

3 3 3 1
2
1

∗←−→
3 1
2
1 1 1

3 3 2 2
2
1

∗←−→
3
2 1 1
1 1

3 3 2 1
2
1

∗←−→
3 1
2 1
1 1

3 3 1 1
2
1

∗←−→
3 1 1
2
1 1

3 3 3
2 1
1

∗←−→
3 2
2
1 1 1

3 3 2
2 1
1

∗←−→
3 2
2 1
1 1

3 3 1
2 1
1

∗←−→
3 2 1
2
1 1

3 3 3
2
1 1

∗←−→
3 3
2
1 1 1

3 3 2
2
1 1

∗←−→
3 3
2 1
1 1

3 3 1
2
1 1

3 2 2
2
1 1

∗←−→
3 3
2 1 1
1

4 4 4
3
2
1

∗←−→
4
3
2
1 1 1

4 4 3
3
2
1

∗←−→
4
3
2 1
1 1

4 4 2
3
2
1

∗←−→
4
3 1
2
1 1

4 4 1
3
2
1

∗←−→
4 1
3
2
1 1

4 3 3
3
2
1

∗←−→
4
3
2 1 1
1

4 3 2
3
2
1

∗←−→
4
3 1
2 1
1

4 3 1
3
2
1

∗←−→
4 1
3
2 1
1

4 4
3 3
2
1

∗←−→
4
3
2 2
1 1

4 4
3 2
2
1

∗←−→
4
3 2
2
1 1

4 4
3 1
2
1

∗←−→
4 2
3
2
1 1

4 3
3 3
2
1

∗←−→
4
3
2 2 1
1

4 3
3 1
2
1

∗←−→
4 2
3
2 1
1

4 2
3 3
2
1

∗←−→
4
3 1
2 2
1

4 1
3 3
2
1

∗←−→
4 1
3
2 2
1

4 4
3
2 2
1

∗←−→
4
3 3
2
1 1

4 4
3
2 1
1

∗←−→
4 3
3
2
1 1

4 3
3
2 2
1

∗←−→
4
3 3
2 1
1

4 3
3
2 1
1

4 2
3
2 2
1

∗←−→
4
3 3 1
2
1

4
3 3 3
2
1

∗←−→
4
3
2 2 2
1

4 4
3
2
1 1

4
3 3 2
2
1

∗←−→
4
3 2
2 2
1

5 5
4
3
2
1

∗←−→
5
4
3
2
1 1

5 4
4
3
2
1

∗←−→
5
4
3
2 1
1

5 3
4
3
2
1

∗←−→
5
4
3 1
2
1

5
4 4
3
2
1

∗←−→
5
4
3
2 2
1

5
4 3
3
2
1

∗←−→
5
4
3 2
2
1

5
4
3 3
2
1
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2.9.3 Tabloids with Representations

We examine those socle tabloids with associated representations in dimension 6,

but whose classification does not follow from prior explicit or inductive arguments.

Socle-Type (3,2,1), Dual-Type (1,2,3)

Suppose Zrp ∼= G ≤ GL(V ) is a modular representation with socle tabloid

δ =
3 3 3
2 2
1

.

Distinct cases to consider are whether V(1) ∼ δ(1) = 2 2 2
1 1 is indecomposable or

δ(1) = 2 2
1 ⊕ 2

1 . At first this appears as two cases covered by distinct homomor-

phisms. The following, however, breaks this illusion.

Proposition 2.9.1. Suppose Zrp ∼= G ≤ GL(V ) has socle tabloid
3 3 3
2 2
1

. Then

the submodule V(1) := (V ∗/SocV ∗)∗ is indecomposable.

Proof. Suppose instead that V(1) ∼ δ(1) = 2 2
1 ⊕ 2

1 decomposes. By choosing a

doubly-conforming basis {v1, . . . , v6} upon which G shall act its elements take

the form 
1 0 0 c14 0 c16

0 1 0 0 c25 c26

0 0 1 0 c35 c36

0 0 0 1 0 c46

0 0 0 0 1 c56

0 0 0 0 0 1


the submodule with socle tabloid 2

1 is 〈v1, v4〉. One can then observe that the

quotient V/〈v1, v4〉 has socle tabloid
3 3
2
1

. Such a representation cannot exist by

Corollary 2.3.8 and so neither can the representation we began with.

This leaves us with a single case to examine.



CHAPTER 2. REPRESENTATION THEORY 102

Proposition 2.9.2. The homomorphism

σ : (F5,+)→ GL6(F), σ(c) =


1 0 0 c1 c2 c5 + c1c2

0 1 0 2c2 0 c4 + c2
2

0 0 1 0 2c1 c3 + c2
1

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1


covers all modular Zrp-representations with socle tabloid

3 3 3
2 2
1

.

Proof. By Theorem 2.6.3 a complete set of covering homomorphisms for the rep-

resentations with dual-type (1, 2, 3) for p > 2 correspond to the incongruent

orbits of 3-dimensional subspaces of Sym2(F) acted on by GL2(F). However

Sym2(F) ∼= F3 and as such there is only one orbit consisting of Sym2(F) itself.

By taking our basis to be

Sym2(F) = spanF

{[
0 1
1 0

]
,

[
2 0
0 0

]
,

[
0 0
0 2

]}
we acquire the result. Since the p = 2 case requires 3-dimensional subspaces of

Sym0
2(F) ∼= F the non-existence is clear.

Socle-Type (2,3,1), Dual-Type (1,3,2) Representations

We examine the first instance for which multiple covering homomorphisms are

required per tabloid deconstruction.

Proposition 2.9.3. The homomorphisms σS1 , . . . , σS6 : (F5,+)→ GL6(F),

σS1(c) =


1 0 2c3 2c2 0 c5 + c2

3 + c2
2

0 1 0 0 2c1 c4 + c2
1

0 0 1 0 0 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

 , σS2(c) =


1 0 2c3 0 0 c5 + c2

3

0 1 c1 2c2 c3 c4 + c2
2 + c1c3

0 0 1 0 0 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

,

σS3(c) =


1 0 2c3 2c2 0 c5 + c2

2 + c2
3

0 1 2c3 0 2c1 c4 + c2
3 + c2

1

0 0 1 0 0 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

 , σS4(c) =


1 0 2c3 2c2 0 c5 + c2

3 + c2
2

0 1 2c3 + c1 0 c3 c4 + c2
3 + c1c3

0 0 1 0 0 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

,
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σS5(c) =


1 0 2c3 + c1 2c2 c3 c5 + c1c3 + c2

2 + c2
3

0 1 c2 c3 0 c4 + c2c3

0 0 1 0 0 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

 , σS6(c) =


1 0 c2 c3 0 c5 + c2c3

0 1 0 c1 c2 c4 + c1c2

0 0 1 0 0 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1


form a complete set of covering homomorphisms for all modular Zrp-representations

with socle tabloid
3 3
2 2 2
1

.

This is an immediate consequence of Theorem 2.6.3 and the following, the

proof of which is relegated to Appendix A.

Lemma (Lemma A.1). The incongruent orbits of non-degenerate dimension 2

subspaces in Sym3(F) are represented by

S1 :=


 1 0 0

0 0 0
0 0 0

 ,
 0 0 0

0 1 0
0 0 1

 , S2 :=


 1 0 0

0 0 0
0 0 0

 ,
 0 0 1

0 1 0
1 0 0


S3 :=


 1 0 0

0 1 0
0 0 0

 ,
 1 0 0

0 0 0
0 0 1

 , S4 :=


 1 0 0

0 1 0
0 0 0

 ,
 1 0 1

0 0 0
1 0 0


S5 :=


 1 0 1

0 1 0
1 0 0

 ,
 0 1 0

1 0 0
0 0 0

 , S6 :=


 0 1 0

1 0 0
0 0 0

 ,
 0 0 0

0 0 1
0 1 0


We remark that the only covering homomorphism required in the p = 2 case

is σ6 since it corresponds to the only subspace of alternate matrices. Indeed σg

is the only homomorphism given which induces representations with the given

socle tabloid over such a field.

Socle-Type (2,2,2), Dual-Type (2,2,2) Representations

Suppose Zrp ∼= G ≤ GL(V ) has socle tabloid δ =
3 3
2 2
1 1

. Recall from Corollary 2.3.11

that in this instance V(1) is decomposable if and only if V (1) is also decomposable.

These deconstructions carry a single covering homomorphism each.
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Proposition 2.9.4. The homomorphisms σd., σind. : (F6,+)→ GL6(F) given by

σd.(c) =


1 0 2c1 0 c5 + c2

1 c6

0 1 0 2c2 c3 c4 + c2
2

0 0 1 0 c1 0
0 0 0 1 0 c2

0 0 0 0 1 0
0 0 0 0 0 1

 .

σind.(c) =


1 0 2c1 2c2 c5 + c2

1 c6 + 2c1c2

0 1 0 2c1 c3 c4 + c2
1

0 0 1 0 c1 c2

0 0 0 1 0 c1

0 0 0 0 1 0
0 0 0 0 0 1


form a complete set of covering homomorphisms for the modular Zrp-representations

with socle tabloid
3 3
2 2
1 1

.

Proof. Consider a representation Zrp ∼= G ≤ GL(V ) with socle tabloid
3 3
2 2
1 1

acting

on a doubly conforming basis. Given any two C = [ci,j], D = [di,j] ∈ G we see

that

[C,D] =

 0

[
c13 c14

c23 c24

] [
d35 d36

d45 d46

]
−
[
d13 d14

d23 d24

] [
c35 c36

c45 c46

]
0 0

 = 0

(2.17)

In order to preserve the socle tabloid there must be elements C,D such that∣∣∣∣ c13 c14

c23 c24

∣∣∣∣ 6= 0 and

∣∣∣∣ d35 d36

d45 d46

∣∣∣∣ 6= 0.

Hence by (2.17) C satisfies both conditions. Thus (C − I6)2 6= 0 and thus p > 2.

We may then choose a basis {v1, . . . , v6} for V such that G contains

J = σd.(1, 1, 0, 0, 0, 0) = σind.(1, 0, 0, 0, 0, 0) =

 I2 2I2 I2

0 I2 I2

0 0 I2

 .
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For some other element D to commute with this we require from (2.17) that[
d13 d14

d23 d24

]
= 2

[
d35 d36

d45 d46

]
If both V(1) and V (1) decompose choose a corresponding basis which reflects this

form 
1 0 2d35 0 d15 d16

0 1 0 2d46 d25 d26

0 0 1 0 d35 0
0 0 0 1 0 d46

0 0 0 0 1 0
0 0 0 0 0 1


and exponentiate to acquire the image of the homomorphism σd..

If neither V(1) nor V (1) decompose then up to permuting v5 and v6 we must

have 〈v1, v2, v3, v4, v6〉 ∼
3 3
2 2
1

=: δ′ with δ′(1) = 2 2
1 1 indecomposable. This sub-

representation sits in the image of the homomorphism 4(a) in Section 2.8.1 up

to equivalence. An alternative but equivalent homomorphism can be given by

σ : (F4,+)→ GL5(F) where

σ(c) :=


1 0 2c1 2c2 c4 + 2c1c2

0 1 0 2c1 c3 + c2
1

0 0 1 0 c2

0 0 0 1 c1

0 0 0 0 1

 .
Applying the same basis change to the respective elements in V we may preserve

the form of J and as such the representation elements take the form
1 0 2d46 2d36 d15 d16

0 1 0 2d46 d25 d26

0 0 1 0 d46 d36

0 0 0 1 0 d46

0 0 0 0 1 0
0 0 0 0 0 1


the exponential of which yields the image of σind. thus completing the proof.
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Socle-Type (2,2,1,1), Dual-Type (1,2,2,1)

In this section we consider the representations with socle tabloid

4 3
3 2
2
1

.

Proposition 2.9.5. The homomorphisms σi : (F5,+)→ GL6(F) given by

σ1(c) :=


1 0 3c1 0 3(c2

1 + c3) c3
1 + 3c1c3 + c5

0 1 0 2c2 0 c4 + c2
2

0 0 1 0 2c1 c3 + c2
1

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

 V(1) ∼
3
2
1
⊕ 2

1

σ2(c) :=


1 0 3c1 0 3(c2

1 + c3) c3
1 + 3c1c3 + c5

0 1 0 c1 c2 c4 + c1c2

0 0 1 0 2c1 c3 + c2
1

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1


V(1) indec.

Soc2(V ) ∼ 2
1 ⊕

2
1

σ3(c) :=


1 0 3c1 2c2 3(c2

1 + c3) c3
1 + 3c1c3 + c2

2 + c5

0 1 0 c1 c2 c4 + c1c2

0 0 1 0 2c1 c3 + c2
1

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1


V(1) indec.
Soc2(V ) indec.

are a complete set of covering homomorphisms for the modular Zrp-representations

with socle tabloid δ :=

4 3
3 2
2
1

.

Proof. Let Zrp ∼= G ≤ GL(V ) have socle tabloid δ and act on a doubly conforming

basis. Observing that δ(1) =
3 2
2
1

we may choose a basis such that c35 = 2c56 for

all C = [ci,j] ∈ G, in particular showing p > 2. Further since δ(1) =
3 2
2 1
1

we may

further specify our basis to take c13 = 2c35 = 4c56. Since (C − I6)3[1, 6] = 8c3
56 is

nonzero for some element it follows that p > 3.

Let C,D be such that

∣∣∣∣ c46 d46

c56 d56

∣∣∣∣ 6= 0 as must exist since dim(SocV ∗) = 1.

Up to labelling, choice of basis for V and by enforcing commutativity we may
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take these to be

C =


1 0 3 c1 0 0
0 1 0 2c2 0 0
0 0 1 0 2 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 D =


1 0 0 d1 3d3 + c1 d5

0 1 0 2d2 2c2 d4

0 0 1 0 0 d3

0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 .

Denote the basis upon which these act by B = {v1, . . . , v6}. In order to commute

with both C and D any other element must then adopt the form

E =


1 0 3e1 d1e2 + (3d3 + c1)e1 − 3e1d3 c1e2 + 3e3 e5

0 1 0 2c2e1 + 2d2e2 2c2e2 e4

0 0 1 0 2e1 e3

0 0 0 1 0 e2

0 0 0 0 1 e1

0 0 0 0 0 1


for (e1, e2, e3, e4, e5) ∈ F5.

Suppose V(1) decomposes. Then B can be chosen such that c1 = c2 = d1 = 0

and thus d2 6= 0. By altering this basis to {v1, d2v2, v3, v4, v5, v6} we acquire the

unrefined form of the image of σ1, from which this part follows.

Suppose instead that V(1) is indecomposable. Then c2 6= 0 and d2 = 0. If

Soc2(V ) decomposes then we may choose d1 = c1 = 0. Thereafter by acting on

the basis {v1, 2c2v2, v3, v4, v5, v6} we acquire the unrefined group corresponding

to the refined image of σ2, from which the result follows.

If instead Soc2(V ) is indecomposable then we demand that d1 6= 0. Then

by acting upon the basis {v1,
√

2
d1

(c1v1 + 2c2v2), v3,
√

2
d1
v4, v5, v6} we acquire the

unrefined form of the image of σ3, thus concluding the proof.

Socle-Type (1,2,2,1), Dual-Type (1,2,2,1)

In this section we examine the representations with socle tabloid

4
3 3
2 2
1

.
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Proposition 2.9.6. The homomorphisms σ1, σ2 : (F5,+)→ GL6(F) given by

σ1(c) :=


1 3c2 3c1 3(c2

2 + c4) 3(c2
1 + c3) c3

1 + c3
2 + 3(c1c3 + c2c4) + c5

0 1 0 2c2 0 c2
2 + c4

0 0 1 0 2c1 c2
1 + c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1



σ2(c) :=


1 2c1 c2 c2

1 + c3 2(c1c2 + c4) c2
1c2 + 2c1c4 + c2c3 + c5

0 1 0 c1 c2 c1c2 + c4

0 0 1 0 2c1 c2
1 + c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1


are covering homomorphisms for all modular Zrp-representations with socle tabloid

δ :=

4
3 3
2 2
1

.

Proof. Let Zrp ∼= G ≤ GL(V ) have socle tabloid δ and act on a doubly conforming

basis. Suppose V
(1)

(1) is decomposable. Then V (1) is covered by homomorphism

4(b) of the 5-dimensional atlas in Section 2.8.1. Thus p > 2 and we may choose

our basis such that the elements of G are in the form

C :=


1 c9 c8 c7 c6 c5

0 1 0 2c2 0 c4

0 0 1 0 2c1 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

 .

Let C,D be two such elements satisfying

∣∣∣∣ c2 d2

c1 d1

∣∣∣∣ 6= 0, as must exist since

dim(SocV ∗) = 1. By choosing our basis B = {v1, . . . , v6} for V appropriately,

and noting that they must commute, we may take these elements to be

C :=


1 0 c8 c7 c6 0
0 1 0 0 0 0
0 0 1 0 2 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 , D :=


1 d9 0 d7 c8d3 + c7 d5

0 1 0 2 0 d4

0 0 1 0 0 d3

0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 .
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For a general element E to commute with C we require that e8 = c8e1. In

particular this requires c8 6= 0 which, since (C − I6)3[1, 6] = 2c8, implies that

p > 3. Using this we may further alter B to fix [c8, c7, c6] = [3, 0, 0] and d4 = 0.

Thence E commutes with C and D only if [e9, e8, e7, e6] = [d9e2, 3e1, d9e4, 3e3].

By altering the basis one final time to {v1,
√

2
d9
v2, v3,

√
2
d9
v4, v5, v6} we see the

resulting action of E lies in the unrefined form of σ1 in the statement.

Suppose instead that V
(1)

(1) is indecomposable. Then V (1) is covered by homo-

morphism 4(a) of Section 2.8.1 and so p > 2. We thus choose our basis to write

our representation elements in the form

C :=


1 c9 c8 c7 c6 c5

0 1 0 c1 c2 c4

0 0 1 0 2c1 c3

0 0 0 1 0 c2

0 0 0 0 1 c1

0 0 0 0 0 1

 .

Once again let C,D ∈ G satisfy

∣∣∣∣ c2 d2

c1 d1

∣∣∣∣ 6= 0 as must exist since dim(SocV ∗) =

1. By choosing our dual basis B∗ = {x6, . . . , x1} for V ∗ appropriately, noting that

our elements must commute, we take these elements to act by

C :=


1 2d8 c8 0 0 0
0 1 0 1 0 0
0 0 1 0 2 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 , D :=


1 0 d8 d7 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 .

For an E to commute with both C and D we require that [e9, e8, e7, e6] =

[2d8e1, c8e1 + d8e2, d7e2 + d8e3, c8e3 + 2d8e4]. In particular we observe that d8

is nonzero.

If p > 3 we elect to use the dual basis{
1

d8

x6 +
c8d7

6d2
8

x5, x5 +
c8

3d8

x4, x4 +
d7

2d8

x3, x3 +
c8

3d8

x2, x2, x1

}
on which our elements act in the form of the unrefined group equal to the image

of σ2.

If instead p = 3 then since (C − I6)3[1, 6] = 2c8 we have c8 = 0. Thus by
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acting upon the dual basis {x6
d8
, x5, x4 + d7

2d8
x3, x3, x2, x1} then we once again arrive

in the unrefined group equal to the image of σ2. Thus the result follows.

2.9.4 Seeding the Six-Dimensional Atlas

All of the six-dimensional tabloids without trivial free summands and with valid

representations are given here:

2 2 2 2 2
1 ←→ 2

1 1 1 1 1
2 2 2 2
1 1 ←→ 2 2

1 1 1 1
2 2 2
1 1 1

3 2 2 2
2
1

←→
3
2 1 1 1
1

3 3 3
2 2
1

←→
3
2 2
1 1 1

3 3 2
2 2
1

←→
3
2 2 1
1 1

3 2 2
2 2
1

←→
3
2 2 1 1
1

3 2 2
2 1
1

←→
3 2
2 1 1
1

3 3
2 2 2
1

←→
3
2 2 2
1 1

3 2
2 2 2
1

←→
3
2 2 2 1
1

3 3
2 2 1
1

←→
3 2
2 2
1 1

3 2
2 2 1
1

3 3
2 2
1 1

3
2 2 2 2
1

4 2 2
3
2
1

←→
4
3 1 1
2
1

4 3
3 2
2
1

←→
4
3 2
2 1
1

4 2
3 2
2
1

←→
4
3 2 1
2
1

4 2
3 1
2
1

4
3 3
2 2
1

4
3 2 2
2
1

5 2
4
3
2
1

←→
5
4 1
3
2
1

5
4 2
3
2
1

6
5
4
3
2
1

Whilst it has become tradition to provide an atlas in each given dimension we

take the liberty of omitting it here for brevity. We trust the reader understands

that the more taxing work is complete. Compiling an atlas of all 57 covering

homomorphisms (when F = F) is hereafter a matter of going through each tabloid

and applying the appropriate results.

2.10 Conclusion

In this chapter we focused our efforts on explicitly describing the modular rep-

resentations in as much generality as possible. We discerned the notion of socle

tabloids and their deconstructions to rend inequivalent families of representa-

tions apart. Thence we generalised methods of identifying equivalence classes

with certain additive vector groups in order to parameterise them comfortably.

This, however, does not answer all questions which might arise. Hence we collect
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here some of the open questions following from our work.

2.10.1 Further Problems for Covering Homomorphisms

By specifying a socle tabloid δ and the decomposition of each of the quotient-

and sub-module’s tabloids δ
(j)
(i) we have been able to divide representations into

manageable families in all dimensions up to and including 6.

If the reader wishes to continue into dimension 7 the characteristic of the

field begins to play a role beyond limiting Jordan block sizes we have seen thus

far. This stems from Theorem 2.6.3 and the fact that the number of incongruent

3-dimensional subspaces of Sym3(F) is larger when p = 3 than otherwise.

To what extent does the characteristic then interfere with the number of

covering homomorphisms required for a given family of representations? How

much information is required to ensure a family has a predictable number of

covering homomorphisms? Does the wildness of the representation type make

this unpredictable or grow predictably?

Once the families have been divided the question still remains to determine

the unrefined groups. There exists a body of work regarding commuting upper-

triangular matrices which may aid in this endeavour. Furthermore any reader

familiar with Lie group and algebras will have noticed the similarity between

these and the constructions in Section 2.1. We would like to make use of these

to solidify our processes so that we need only focus on combinatorial data.

2.10.2 Further Problems for Equivalences

Suppose we have our family of representations and covering homomorphisms

σi : (Fd,+) → GL(V ). We wish to know which subgroup σi(W ) are conjugate

and how to determine this from the W ≤ Fd chosen.

Conjugacy of subgroups in the image of σi by the stabiliser corresponds to

a linear action on the W . Since we express each covering homomorphism as

σ = exp ◦τ where τ(W ) is an additive group of commuting matrices, conjugacy

classes of σ(W ) correspond to conjugacy classes of τ(W ). Whilst it is easier to

calculate in the latter form, since the entries of τ(c) are linear, deciphering the

equivalence actions and their resulting group structure is still not a trivial task.

Were we to understand this linear action the problem of acquiring inequivalent
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orbits of representations then amounts to determining the orbits of the linear

action.

Furthermore representations may be equal as sets but inequivalent as rep-

resentations. Our prime impetus in this classification problem is to study the

invariant rings, which does not care for the representation’s arrangement. Hence

we may precompose any representation with an automorphism to acquire the

same matrix group but a possibly inequivalent representation.

In the case of covering homomorphisms all such representations shall be in-

duced by the same homomorphism. As such determining conjugacy of subgroups

of the image gains more importance from this invariant theoretic perspective.

This is made more significant given how large the automorphism group of Zrp is

compared to other groups.

The questions of immediate value are the following: Can we determine the

group structure of the linear equivalence map for any given covering homomor-

phism without lengthy calculation? How easily can we determine the orbits of

these maps to distinguish between equivalent representations? Can we then dis-

tinguish between the further orbits of the right action of the automorphism group

GLr(Fp) thereby identifying potentially inequivalent representations with equal

invariant rings?

2.10.3 Further Problems for Socle Tabloids

Since the socle tabloid is a new construction many of its uses and properties are

likely yet to be determined.

All work constructing and deconstructing socle tabloids holds for general mod-

ular p-group representations. Our work has been centered fully upon elementary

abelian p-groups. How much use can these tabloids have in the more general

representation theoretic world beyond our own purview?

The representation type of Zrp (except when r = 1 or p = r = 2) is wild and

as a consequence determining a complete classification of all indecomposables is

generally considered impossible. If the socle tabloid of a representation cannot

be decomposed then neither can the representation itself. However the converse

does not hold.

Given a decomposable socle tabloid with specific deconstruction what addi-

tional information must be specified about a representation with this data in
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order to ensure it is (in)decomposable? If this information is relatively simple to

procure/specify it would make the degree-by-degree process of identifying inde-

composables a more manageable, if still ultimately unfinishable, task.

Another notion not touched upon in this chapter is the effect of tensor prod-

ucts of representations and the resulting socle tabloids. Experiments in this area

show that the resulting tabloid is not necessarily predictable from the initial

tabloids alone. However a ‘generic’ tensor of tabloids may be defined as follows:

Given two tabloids δ, γ the generic tensor δ ⊗ γ can be defined to contain an

(i+ j − 1)-box in row r + s− 1 for every i-box in row r of δ and j-box in row s

of γ. It seems we may then formulate socle tabloids of tensors of representations

as being either the generic tabloid tensor or some ‘degenerate’ form thereafter.

Full examination of this idea is required to either deny it or fully formulate into

a useful result.

Moving On

The ultimate aim of this representation theory is to best equip ourselves to delve

into the depths of their invariant theory. In the following chapter we begin this

descent using the methods developed.



Chapter 3

Invariant Theory

3.1 Preliminaries

In this chapter we direct our focus upon the invariant theory of modular Zrp-
representations. Whilst the prior chapter went into details on the representation

theory side the reader may consider the two chapters distinct. Any results used

from the prior chapter will be explicitly referenced. Instead we introduce our

chapter specific notation as follows.

3.1.1 Notation and Standard Results

We consider modular Zrp-representations V as left FZrp-modules with dual module

V ∗ = HomF(V,F) over fields of characteristic char(F) = p. This induces a matrix

group G ≤ GL(V ) given by decoding the action as a left multiplication on column

vectors in V . More specifically for g ∈ G, v ∈ V and x ∈ V ∗ we have (x · g)(v) :=

x(g · v), thereby making V ∗ a right FZrp-module.

Given an FZrp-module V = 〈v1, . . . , vn〉 we denote by F[V ] := S(V ∗) the

symmetric algebra of the dual space onto which we extend the action of Zrp, and

thus the action of G, multiplicatively. We write F[V ] = F[x1, . . . , xn] where xi is

dual to vn−i+1. We focus on the invariant ring

F[V ]G := {f ∈ F[V ]
∣∣ f · g = f, ∀g ∈ G}.

The aim is often to acquire explicit generating sets for the invariant ring, or learn

more about its structural properties.

114
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We remark that the invariant ring of a representation depends only on its

image, the order in which the elements are presented posing no significance.

Hence we often simply refer to the invariants of a matrix group rather than a

representation, hence the notation F[V ]G.

Given an α ∈ Nn
0 we denote xα := xα1

1 · · ·xαnn . Unless otherwise stated we

use the graded reverse lexicographic ordering on F[V ] with x1 < · · · < xn, that

is xα < xβ if deg(xα) < deg(xβ) or if they have the same degree but the first

nonzero element in α− β is positive.

Let f ∈ F[V ]. We define the lead monomial of f , denoted LM(f), to be

the largest monomial under our given monomial ordering appearing in f with

non-zero coefficient LC(f) 6= 0, called the lead coefficient of f . Subsequently the

lead term of f is defined LT (f) := LC(f)LM(f). We augment these with an

element subscript xi, for example LTxi(f), when viewing f as a single-variable

polynomial in xi.

The Krull dimension of a ring is equal to the supremum of the lengths of

ascending chains of prime ideals of the ring. It is known, for instance in Example

2.3.1 of [12], that polynomial rings F[x1, . . . , xn] have Krull dimension n.

Many of the following common definitions and results may be found in a

variety of sources. We shall cite [12] specifically, the following to be found in

Section 2.6 of [12].

Definition 3.1.1. A sequence of homogeneous elements f1, . . . , fn in a finitely

generated algebra A ⊆ F[V ] of Krull dimension n is called a homogeneous system

of parameters if A is a finitely generated F[f1, . . . , fn]-module.

It is prudent to note that a subset of F[V ]G is a homogeneous system of

parameters for the invariant ring if and only if it is a homogeneous system of

parameters for F[V ] whenever G is finite (see [12] Corollary 3.0.6). Thus the

Krull dimension of F[V ]G equals the Krull dimension of F[V ], that is dim(V ).

By [25] any finitely generated graded connected F-algebra has a homogeneous

system of parameters and thus we may always find one for our invariant rings. We

often use the following to verify whether a proposed set constitutes a homogeneous

system of parameters, as given in Lemma 2.6.3 of [12].

Lemma 3.1.2. Let f1, . . . , fn ∈ F[V ]G be homogeneous and denote V := V ⊗F F.

Then {f1, . . . , fn} form a homogeneous system of parameters for F[V ]G if and



CHAPTER 3. INVARIANT THEORY 116

only if

VV (f1, . . . , fn) := {v ∈ V
∣∣ fi(v) = 0, ∀ i ∈ J1, nK} = {0}.

It follows from Lemma 3.1.2 that a sequence of homogeneous invariants f1, . . . , fn

with lead terms xα1
1 , . . . , x

αn
n respectively (under any monomial ordering) form a

homogeneous system of parameters for F[V ]G. It is thus useful to consider the

following constructions.

Definition 3.1.3. For G ≤ GLn(F) and f ∈ F[V ] define the stabiliser of f under

G by Gf := {σ ∈ G
∣∣ f · σ = f}. If H ≤ G we define the relative norm and

relative transfer of f by

NG
H (f) :=

∏
σ∈G/H

f · σ, TrGH(f) :=
∑

σ∈G/H

f · σ

where σ ∈ G/H represents running over coset representatives of G/H in G. Thus

we define the norm and transfer of f by

NG(f) := NG
Gf

(f) =
∏

σ∈G/Gf

f · σ, TrG(f) := TrGGf (f) =
∑

σ∈G/Gf

f · σ.

Often we denote NG
i := NG(xi).

The norm as we define it is the product of the elements in the orbit of f by

G, the transfer being the sum thereof. We remark that some authors choose to

define the norm as NG
{Id}(f) = NG(f)|Gf | however we remove the stabiliser to

avoid this redundancy, and similarly for the transfer.

By choosing a socle-conforming basis for a p-group P we act upper-triangularly

and thus LT (NP
i ) = xp

αi

i for some αi. Hence by Lemma 3.1.2 NP
1 , . . . , N

P
n always

form a homogeneous system of parameters.

3.1.2 Invariant Ring Structure

Many of the open problems within modular invariant theory circulate around

classifying which groups have invariant rings with a specific structure. We recount

those relevant to our studies.

Arguably the simplest and most desirable invariant rings are those for which

a homogeneous systems of parameters act as a generating set.
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Lemma 3.1.4. A homogeneous system of parameters {f1, . . . , fn} ⊂ F[V ]G for

n = dim(V ) satisfies F[V ]G = F[f1, . . . , fn] if and only if
∏n

i=1 deg(fi) = |G|.

In this case we say that F[V ]G is a polynomial invariant ring, since it is a free

polynomial ring over F. In modular invariant theory many groups will have more

complicated invariant rings than polynomial. There is one particular family of

groups with polynomial invariant rings which are well studied.

Definition 3.1.5. Let P ≤ GL(V ) be a modular P -group representation. We

say P is Nakajima with Nakajima basis B ⊂ V ∗ if B = {x1, . . . , xn} satisfies

P = {σnσn−1 · · · σ1

∣∣ σi ∈ Pi} where Pi := {σ ∈ P
∣∣ xj · σ = xj ∀j 6= i}.

This, as hinted before, satisfies the following.

Lemma 3.1.6. Let P ≤ GL(V ) be a p-group with ordered dual basis B =

{x1, . . . , xn} ⊂ V ∗ whose dual is socle-conforming (i.e. P acts upper-triangularly).

Then P is a Nakajima group with Nakajima basis B if and only if

F[V ]P = F[NP
1 , . . . , N

P
n ].

Arguably the polynomial structure is the simplest and most convenient, to be

generated as an algebra by dim(V ) many algebraically independent invariants. It

is an ongoing problem to determine precisely those modular representations with

polynomial invariant rings. See for instance [4]

We call an element g ∈ G ≤ GL(V ) a reflection if dim(V g) = dim(V )− 1 and

say G is a reflection group if it is generated by reflections. We note the following

well known result of Serre [26].

Lemma 3.1.7. Let G ≤ GL(V ) be finite. If F[V ]G is polynomial then G is a

reflection group.

As an extreme example we shall see in Section 3.2 that representations for

which dim(V G) = dim(V ) − 1 have polynomial invariant rings. However not all

reflection groups have polynomial invariant rings and thus we require more tools

to analyse the structure.

For a graded Noetherian ring R a sequence r1, . . . , rs ∈ R is called a regular

sequence of length s if
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� (r1, . . . , rs)R 6= R,

� r1 is not a zero divisor in R and

� for each 1 < i ≤ s the element ri is not a zero divisor of R/(r1, . . . , ri−1)R.

A regular sequence is called maximal if it not the start of a longer regular se-

quence. Any two maximal regular sequences in R have the same length, which

we define to be the depth of R.

We say that F[V ]G is Cohen-Macaulay if the depth of F[V ]G is equal to

dim(V ) = n (i.e. its Krull dimension). This is – in a subjective, computa-

tional sense – a second-best scenario to polynomial. In particular we have the

following, exemplified in Theorem 4.3.5 of [4].

Lemma 3.1.8. The invariant ring F[V ]G is Cohen-Macaulay if and only if it

is free as a module over F[f1, . . . , fn] for any homogeneous system of parameters

f1, . . . , fn.

It is known ([12] Proposition 9.2.4) that if H < G has index |G : H| invertible

in F and F[V ]H is Cohen-Macaulay then so is F[V ]G. Hence the study of p-group

invariants is of great interest in this area.

Practically speaking we’d like to know how many generators we’d need to

generate this module.

Proposition 3.1.9 ([14] Theorem 3.7.1). Let f1, . . . , fn be a homogeneous system

of parameters for F[V ]G. Then F[V ]G is a free F[f1, . . . , fn]-module if and only if

it has
∏n

i=1 deg(fi)/|G| many module generators. If it is not a free F[f1, . . . , fn]-

module then more generators are required.

By the well known result of [18] non-modular invariant rings are always Cohen-

Macaulay. Unfortunately in the case of modular p-group representations very few

have Cohen-Macaulay invariants. In practice for P ≤ GL(V ) a p-group, F[V ]P

being Cohen-Macaulay is preferable since the number of generators required as

a module over a homogeneous system of parameters does not depend on the

characteristic of the field over which the representation was defined, a property

not shared in the non-Cohen-Macaulay case.

An element g ∈ GL(V ) is called a bireflection if dim(V g) ≥ dim(V )− 2. We

then acquire the analogue to Lemma 3.1.7 from Kemper [21].
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Lemma 3.1.10. If the ring F[V ]G is Cohen-Macaulay then G is generated by

bireflections.

In cases where we choose to prove the non-Cohen-Macaulay-ness of a ring we

shall employ the contrapositive of the following. We call a subset of a homoge-

neous system of parameters a partial homogeneous system of parameters.

Lemma 3.1.11. Let A ⊆ F[V ] be a finitely generated algebra. Then A is Cohen-

Macaulay if and only if every partial homogeneous system of parameters for A is

a regular sequence in A.

We say a ring R is regular if the size of every minimal generating set for

the maximal ideal of the localisation of R at any prime ideal is equal to its

Krull dimension. Thence a ring R a complete intersection if we may write

R ∼= R′/(r1, . . . , rm) where R′ is a regular ring and r1, . . . , rm ∈ R′ is a regular se-

quence. An invariant ring F[V ]G with F[f1, . . . , fn]-module generators h1, . . . , hs

is a complete intersection if the ideal of relations between f1, . . . , fn, h1, . . . , hs is

minimally generated by s relations.

It can be shown (see [16] chapter 18) that complete intersections are Cohen-

Macaulay. In [11] it was conjectured that the invariant rings of all three-dimensional

modular Zrp-representations are Cohen-Macaulay if and only if they are complete

intersections, a result which remains open. We continue this examination into

higher dimensions in this chapter.

3.1.3 Invariant Fields

We denote the fraction field of F[V ] by F(V ) := Quot(F[V ]) and thus the field of

invariants F(V )G := Quot(F[V ]G) = Quot(F[V ])G. For P ≤ GL(V ) a modular p-

group representation F(V )P is purely transcendental (see, for instance, [24]) and

so there exist algebraically independent f1, . . . , fn ∈ F(V )G such that F(V )G =

F(f1, . . . , fn).

We often find it simpler to construct a generating set for F(V )G than for F[V ]G

and would thus prefer some translation tool between the two.

Proposition 3.1.12 ([7], Theorem 2.4). Let P ≤ GL(V ) be an upper-triangular

p-group representation. Choose homogeneous invariants φ1, . . . , φn such that φm ∈
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F[x1, . . . , xm]P has minimal positive xm-degree for m = 1, . . . , n. Then F(V )P =

F(φ1, . . . , φn). Furthermore

F[x1, . . . , xm]P [LCxm(φm)−1] = F[x1, . . . , xm−1]P [φm, LCxm(φm)−1].

We shall often make use of this result, particularly in instances where we know

F[x1, . . . , xn−1]G and a choice of φn such that LCxn(φn) = xα1 and so F[V ]G[x−1
1 ] =

F[x1, . . . , xn−1]G[φn, x
−1
1 ]. Then we may use the following algorithm outlined in

[11].

The SAGBI/Divide-by-x1 Algorithm

Given a subalgebra A ⊆ F[V ] the lead term algebra of A, denoted LT (A) is the

algebra generated by the lead terms of all elements in A. A set B ⊆ A is a SAGBI

basis (Subalgebra Analogue for a Gröebner Basis of Ideals) for A if the lead terms

(or monomials) of B generate LT (A) as an algebra.

Let B = {f1, . . . , fm} ⊂ F[V ]G be a set of homogeneous elements. A tête-à-

tête is a pair of monomials in the fi denoted f I := f i11 · · · f imm , fJ := f j11 · · · f jmm
such that LT (f I) = LT (fJ). A tête-à-tête is non-trivial if ikjk = 0 for all

k = 1, . . . ,m, that is f I and fJ share no factors in B.

Given a tête-à-tête f I , fJ we subduct their difference against B as follows:

We take F0 = f I − fJ and inductively construct Fk+1 by subtracting from Fk a

monomial in the elements of B with the same lead term as Fk. We continue this

until Fk has a lead monomial not constructible from the lead monomials in B.

By definition all non-trivial tête-à-têtes in a SAGBI basis subduct to zero.

The slightly renamed SAGBI/Divide-by-x1 algorithm from [11] is as follows:

Given a set B ⊂ F[V ] we subduct each tête-à-tête arising from its elements and

for each nonzero subduction f with lead monomial xa we append x−a11 f ∈ F[V ]

to B. We continue this process until B has been augmented to a SAGBI basis for

the algebra it generates.

For our purposes the power of this algorithm arises when we prepare the

following setup.

Proposition 3.1.13 ([11], Theorem 2.2). Let Zrp ∼= G ≤ GL(V ) be upper-

triangular. Let B ⊂ F[V ]G contain x1 and generate an algebra A such that

A[x−1
1 ] = F[V ]G[x−1

1 ]. Suppose there exist f2, . . . , fn ∈ B such that LM(fi) = xaii
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for some ai ∈ N. Then applying the SAGBI/Divide-by-x1 algorithm to B yields

a SAGBI basis for F[V ]G.

3.1.4 Trivial Free Summands

Let G ≤ GL(V ) be a representation with V = V ′ ⊕ V1 with V1 a trivial free

module. Then a basis {v1, . . . , vn} for V may be chosen such that v1 ∈ V G and

xn ∈ (V ∗)G. Then

F[V ]G = F[x1, . . . , xn−1]G[xn]

and so this reduces to an (n − 1)-dimensional problem. Henceforth we elect to

ignore representations with trivial free summands. For more information on such

representations see Section 2.2.

Chapter Outline

Having dealt with preliminary results and notation we move on to consider the

invariants of modular Zrp-representations. Sections 3.2 and 3.4 each introduce a

general method of constructing invariants of which we shall make heavy use.

By way of example for each, sections 3.3 and 3.5 examine specific families of

representations and how their invariants may be constructed using these methods.

Finally Section 3.6 deals with all modular Z2
p-representations in dimension 4,

providing SAGBI bases for those Cohen-Macaulay invariant rings and generat-

ing sets for localised invariant rings (and thus invariant fields) which satisfy the

criteria of Proposition 3.1.13 otherwise.

3.2 Recovery Functions, Matrix Minors and Hy-

perplane Groups

The method of constructing invariants as the determinants and minors of ma-

trices stretches back to at least the work of Dickson [15]. The trend continued

and developed, a branch of which ended with constructions in [11] for elements

in F(V )Z
r
p . This section aims to examine this construction in generality before

applying to a notable example.
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In [8] a method for inductively generating generators for hyperplane group

invariant rings was outlined. In the language of this document such groups are

all those modular Zrp-representations with socle-type (n− 1, 1). Here we provide

an explicit construction for a set of generating invariants for these groups using

the matrix minor method.

3.2.1 Recovery Functions

The modular Zrp-representations we examine often arise from some homomor-

phism σ : (Fd,+) → GLn(F). In the parlance of section 2.1 we call these cov-

ering homomorphisms. In this situation we identify each matrix group Zrp ∼=
G ≤ GLn(F) with a d × r matrix C = [cT1 · · · cTr ] such that G is generated by

σ(ci) = σ(c1,i, . . . , cm,i). We say that C generates G with respect to σ. It is

beneficial for us to be able to encode this information in an invariant-theoretic

context.

Definition 3.2.1. Let C ∈ Md,r(F) generate G ≤ GL(V ) with respect to σ :

(Fd,+)→ GLn(F). We call δi ∈ F(V ) a recovery function for G if

δi · (σ(cj)− 1) = ci,j, ∀j ∈ J1, rK.

We call a full set of recovery functions δ1, . . . , δd a complete recovery set.

Suppose we have a complete recovery set δ1, . . . , δd. By defining ri := [ci,1, . . . , ci,r, δi]

we construct an (r + 1)× (r + 1) matrix with rows given by the ri and their pth

powers. The resulting determinant shall be an element of F(V )G, since the final

column shall be mapped to the jth column under the action of σ(cj) by design.

The variety with which we can construct these matrices is key to constructing

useful invariants.

3.2.2 Hyperplane Groups

We demonstrate the effectiveness of recovery functions on a prominent example.

Let Zrp ∼= G ≤ GL(V ) have socle-type (m, 1) for m = n − 1 and act on a socle-
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conforming basis. Thus G is in the image of the homomorphism

σ : (Fm,+)→ U(m,1)(F) ≤ GLm+1(F), σ(c) =

 Im

cm
...
c1

0 1


where c = (c1, . . . , cm). Let G be generated by C = [cT1 , . . . , c

T
r ] with respect to

σ and denote σi := σ(ci). We assume no relation between the rows of C so that

x1 is the only monic invariant of degree 1.

Since xi+1 · σj = xi+1 + ci,jx1 it follows that the δi := xi+1/x1 for i = 1, . . . ,m

form a complete recovery set for G. Consider an A = (α1, . . . , αm) ∈ Nm such

that
∑m

i=1 αi = r and construct the matrix

Γ := ΓA :=



c1,1 c1,2 · · · c1,r δ1

cp1,1 cp1,2 · · · cp1,r δp1
...

...
...

...

cp
α1−1

1,1 cp
α1−1

1,2 · · · cp
α1−1

1,r δp
α1−1

1
...

cm,1 cm,2 · · · cmr δm
cpm,1 cpm,2 · · · cpmr δpm

...
...

...
...

cp
αm−1

m,1 cp
αm−1

m,2 · · · cp
αm−1

m,r δp
αm−1

m

cp
α1

1,1 cp
α1

1,2 · · · cp
α1

1,r δp
α1

1
...

...
...

...

cp
αm

m,1 cp
αm

m,2 · · · cp
αm

m,r δp
αm

m



=



r1

rp1
...

rp
α1−1

1
...
rm
rpm
...

rp
αm−1

m

rp
α1

1
...

rp
αm

m



∈Mr+m,r+1(F).

The (r+1)×(r+1) minors of this matrix shall exist in F[V ]G[x−1
1 ] ⊂ F(V )G: The

action of any (σ(ci)− 1) upon any such minor shall affect only terms contributed

by the final column, each of which are mapped to their counterparts in the ith

column, thus causing the minor to vanish.

Denote by Γ[S1|S2] the minor of Γ constructed from rows indexed by S1 and

columns indexed by S2. Similarly we define Γ{S1|S2} to be the minor with rows

indexed by J1, r +mK \ S1 and columns indexed by J1, r + 1K \ S2.

We shall find the following of use:

∆ = ∆A := Γ[1, . . . , r
∣∣ 1, . . . , r] ∈ F,
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f̃i = f̃i,A := Γ[1, . . . , r, r + i
∣∣ 1, . . . , r + 1] ∈ F[V ]G[x−1

1 ].

We then define fi,A ∈ F[V ]G to be the polynomial obtained from f̃i,A by minimally

clearing the x1 denominator. Precisely how useful these invariants are relies on

how A is chosen.

We inductively construct a useful choice of A as follows: Beginning with

A := (0, . . . , 0), for j from 1 to r increase the entry Ai 7−→ Ai + 1 if

dim(spanFp{ci,1, . . . , ci,j}) > Ai

and Ai is minimal amongst these choices. If A is constructed in this fashion then

we say it is C-compatible.

The remainder of this section is reserved for the proof of the following, which

acts as an explicit alternative to the inductive work of [8].

Theorem 3.2.2. Let C generate G under σ as above and A be C-compatible.

Then ∆A 6= 0 and F[V ]G = F[x1, f1,A, . . . , fm,A].

We prove by induction on r = rank(G) that ∆A 6= 0, deg(fj,A) = pAj , and

x1, f1,A, . . . , fm,A is a h.s.o.p for F[V ]G. Theorem 3.2.2 would then follow from

these by Lemma 3.1.4.

Proof of Theorem 3.2.2

When r = m the only C-compatible choice is A = (1, 1, . . . , 1) and thus by

assumption ∆A = det(C) 6= 0. The fi,A = NG
i+1 = xpi+1 − xi form a homogeneous

system of parameters and thus the result holds.

Now suppose the result holds up to and including representations of rank

r− 1. Let C ∈Md,r(F) generate G ≤ GLm+1(F). Create Ĉ by removing the final

column of C and Ĝ ≤ G the group generated by Ĉ under σ. By induction there

exists a Ĉ-compatible Â such that ∆Â 6= 0 and F[V ]Ĝ = F[x1, f1,Â, . . . , fm,Â] with

deg(fi,Â) = pα̂i .

Since Ĝ < G we have F[V ]G ⊂ F[V ]Ĝ. Hence for some 1 ≤ i ≤ m we have

fi,Â · (σr − 1) 6= 0. Choose such an i with minimal degree, and thus a minimal

α̂i, and define the consequently C-compatible

A = (α1, . . . , αm) := (α̂1, . . . , α̂i + 1, . . . , α̂m).
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Since fi,Â is a p-polynomial in each δi we see that fi,Â · (σr − 1) becomes

±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1,1 · · · c1,r−1 δ1
...

...
...

cp
α1−1

1,1 · · · cp
α1−1

1,r−1 δp
α1−1

1
...

ci,1 · · · ci,r−1 δi
...

...
...

cp
αi

i,1 · · · cp
αi

i,r−1 δp
αi

i
...

cm,1 · · · cm,r−1 δm
...

...
...

cp
αm−1

m,1 · · · cp
αm−1

m,r−1 δp
αm−1

m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· (σr − 1) = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1,1 · · · c1,r−1 c1,r
...

...
...

cp
α1−1

1,1 · · · cp
α1−1

1,r−1 cp
α1−1

1,r
...

ci,1 · · · ci,r−1 ci,r
...

...
...

cp
αi

i,1 · · · cp
αi

i,r−1 cp
αi

i,r
...

cm,1 · · · cm,r−1 cm,r
...

...
...

cp
αm−1

m,1 · · · cp
αm−1

m,r−1 cp
αm−1

m,r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and so is equal to ±∆A. Thus ∆A = ±fi,Â · (σr − 1) 6= 0.

To continue we require understanding of the relationship between the fj,A and

the fj,Â. Technical lemmas contained in appendix B aid in this.

Lemma (B.2). For M ∈ Fn×r with n > r let S1, S2 ⊆ J1, nK be subsets of size

r − 1, R := J1, rK and 1 ≤ c1 < c2 ≤ r be integers. Then

M
[
S1

∣∣ R \ c1

]
M
[
S2

∣∣ R \ c2

]
−M

[
S1

∣∣ R \ c2

]
M
[
S2

∣∣ R \ c1

]
= (−1)r

r−1∑
i=1

(−1)iM
[
S1, S2,i

∣∣ R]M[S2 \ S2,i

∣∣ R \ {c1, c2}
]
.

Corollary (B.3). Let M ∈ Fn×n for n ≥ 3 and r1, r2, c1, c2 ∈ J1, nK with r1 < r2

and c1 < c2. Then

det(M)M{r1, r2|c1, c2} = M{r1|c1}M{r2|c2} −M{r1|c2}M{r2|c1}

Using Corollary B.3 we write fj,A in terms of the previously constructed fj,Â.

Recall that i was chosen such that f̃i,Â · (σr − In) 6= 0.

Corollary 3.2.3. For j 6= i we have

fj,A = ∆−1

Â

(
∆Afj,Â − x

pαj−(αi−1)

1 fi,Â
[
f̃j,Â · (σr − 1)

])
Proof. Apply Corollary B.3 to the matrix constructing f̃j,A with the final two
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columns, the final row and the row corresponding to the highest power of δi.

Clear denominators to acquire the result, noting that if αj < αi − 1 then by

assumption f̃j,Â · (σ − 1) = 0.

This result implies that deg(fA,j) = deg(fÂ,j) = pαj for j 6= i. We need now

an expression for fi,A in terms of the f̃j,Â.

Corollary 3.2.4. Define βi :=
∑i

j=1 αj and denote by Γi the matrix taken from

Γ to construct f̃i,A, i.e. det(Γi) = Γ[1, . . . , r, r + i
∣∣ 1, . . . , r + 1]. Then

∆Af̃
p

i,Â
−∆p

Af̃i,Â =
m∑
j=1

(−1)βi−βjΓi{βj, r + 1
∣∣ r, r + 1}pf̃j,A.

Proof. Apply Lemma B.2 to Γ using

S1 = J1, rK, S2 = J1, r +mK \ {1, β1 + 1, . . . , βm−1 + 1}, c1 = r, c2 = r + 1.

This yields

Γ
[
J1, rK

∣∣ 1, . . . , r − 1, r + 1
]
Γ
[
S2

∣∣ J1, rK]− Γ
[
J1, rK

∣∣ J1, rK]Γ[S2

∣∣ 1, . . . , r − 1, r + 1
]

= (−1)r+1

r∑
j=1

(−1)jΓ
[
J1, rK, S2,j

∣∣ J1, r + 1K
]
Γ
[
S2 \ {S2,j}

∣∣ J1, r − 1K
]
.

Hence the choice of S1 and S2 ensures that

Γ
[
S2

∣∣ S1

]
= (−1)

∑m−1
j=1 βm−βj−jΓ

[
S1

∣∣ S1

]p
.

Since Γ
[
S1

∣∣ S1

]
= ∆A and Γ

[
S1

∣∣ 1, . . . , r − 1, r + 1
]

= (−1)βm−βi f̃i,Â we have

(−1)βm−βi+
∑m−1
j=1 βm−βj−(n−j)

(
∆p
Af̃i,Â −∆Af̃

p

i,Â

)
= (−1)r+1

r∑
j=1

(−1)jΓ
[
S1, S2,j

∣∣ J1, r + 1K
]
Γ
[
S2 \ {S2,j}

∣∣ J1, r − 1K
]
.

Note that Γ
[
S1, S2,j

∣∣ J1, r + 1K
]

is zero unless r < S2,j ≤ r + m that is for

j = r −m+ 1, . . . , r. In this case

Γ
[
S1, S2

∣∣ J1, rK] = Γ
[
1, . . . , r, r + k

∣∣ J1, r + 1K
]

= f̃k,A.
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On the flip side we have

Γ
[
S2\{r+k}

∣∣ J1, r−1K
]

= (−1)βn+βk+(n−k)+(
∑n−1
j=1 βn−βj−(n−j))Γi{βk, r+1

∣∣ r, r+1}p

the change in sign accounting for the reordering of rows. Thus we obtain

(
∆p
Af̃i,Â −∆Af̃

p

i,Â

)
= (−1)r+1

n∑
j=1

(−1)βj−βi+rΓi{βj, r + 1
∣∣ r, r + 1}pf̃j,A.

The result follows.

It follows from Corollary 3.2.4 that we may write

f̃i,A = ∆−p
Â

(
∆Af̃

p

i,Â
−∆p

Af̃i,Â−
∑

j=1,...,n
j 6=i

(−1)βi−βjΓi{βj, r+1
∣∣ r, r+1}pf̃j,A

)
. (3.1)

Note in particular that since Γi{βj, r + 1
∣∣ r, r + 1} is (up to sign) the coefficient

of δp
αj−1

j in f̃i,Â these vanish whenever αi < αj. Hence it follows by induction

that deg(fi,A) = deg(fi,Â)p = pαi and so the degrees have been confirmed.

All that remains is to show that x1, f1,A, . . . , fm,A form a h.s.o.p. We do this

using Lemma 3.1.2 by showing that the set of v ∈ V which vanish on these

elements is zero.

Suppose x1(v) = f1,A(v) = · · · = fm,A(v) = 0. Then since v vanishes on

fj,A for j 6= i, we clear denominators in (3.1) (noting that the coefficients of f̃j,A

vanish if αi < αj) to acquire

∆A(fi,Â(v))p − (x1(v))p∆p
Afi,Â(v) = ∆A(fi,Â(v))p = 0.

Hence it follows that fi,Â vanishes at v. Then from Corollary 3.2.3 we have

0 = fj,A(v) = ∆−1

Â

(
fj,Â(v)∆A− xp

αj−αi

1 (v)fi,Â(v)
[
f̃j,Â · (σ− 1)

])
= ∆−1

Â
∆Afj,Â(v)

and so v vanishes on all of the fj,Â. Since these, x1 included, form a h.s.o.p for

F[V ]Ĝ it follows that v = 0 by the vanishing criterion for h.s.o.p’s. Thus it follows

that the fj,A and x1 form a h.s.o.p for F[V ]G. The product of the degrees finalise

induction step and so the proof of Theorem 3.2.2.
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3.2.3 SAGBI Bases

In practice it is often useful to acquire a SAGBI basis for our invariant rings. All

invariants constructed from Γ are p-polynomials in each variable except possibly

x1, but their lead monomials may be dependent.

Proposition 3.2.5. Let C generate G and F[V ]G = F[x1, f1,A, . . . , fm,A] be as

constructed above. Apply the SAGBI/Divide-by-x1 algorithm to the set {x1, f1,A, . . . , fm,A}
to acquire {x1, h1, . . . , hk}. Then k = m and {x1, h1, . . . , hk} is a SAGBI basis

for F[V ]G with LT (hi) = xp
αi

i+1 up to relabeling.

Proof. Assume there is a tête-à-tête between the generators, lest we terminate

immediately. By construction each monomial in each fi,A is of the form xα1x
pβ

j

for some j ≥ 1 and α, β ∈ N0. Hence this tête-à-tête difference is of the form

fi,A − fp
γ

j,A. Subduct this difference, using only pth powers of the fj,A, until we

acquire an invariant xφi1 f
′
i,A with lead term not in the lead term algebra. We then

replace fi with f ′i and so F[V ]G = F[x1, f1,A, . . . , f
′
i,A, . . . , fm,A].

By construction the only terms that appear in the subduction are also of the

form xα1x
pβ

j . The lead term of xφi1 f
′
i must therefore be of the form xφi1 x

pθ

ι . If φi > 0

then deg(f ′i) < deg(fi). However

|G| =
n∏
j=1

deg(fj) > deg(f1,A) · · · deg(fi−1,A) deg(f ′i,A) deg(fi+1,A) · · · deg(fm,A)

which contradicts Lemma 3.1.4. Hence LM(f ′i) = xp
θ

ι doesn’t exist in the lead

term algebra of the original set. We then repeat the process having replaced fi

with f ′i until no tête-à-tête remains. The result then follows.

Conclusion

The definition of recovery functions and their resulting matrix minor invariants

shall be of use for future examples, although we stem the enthusiasms of anybody

expecting such a clean classification as that of the hyperplane example given.

Whilst these invariant rings were polynomial we shan’t always be so fortunate,

as the invariant rings for many representations aren’t even Cohen-Macaulay.
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3.3 Invariants of Socle-Type (m, 1, . . . , 1) Repre-

sentations

Whilst the generalisation of recovery functions has been fruitful we have thus

far focused on representations with low-length socle series. Here we examine the

opposition in extremis, considering those representations classified in Section 2.4

and 2.5. The reader need not familiarise themselves with these sections beyond

that which we claim here, although is welcome to do so.

In general we shall provide a construction for generators of the invariant field

for all representations with socle-type (m, . . . , 1) for m ≥ 1. In many such cases

the invariant ring cannot be Cohen-Macaulay.

3.3.1 Recovery Functions

Let W ≤ (Fn−1,+) be finite. We generate our matrix group Zrp ∼= G ≤ GLn(F)

with socle-type M := (m, 1, . . . , 1) as in Section 2.5.1 via the homomorphism

σM : (Fn−1,+)→ GLn(F), σM(c) =

 Im−1

0 · · · 0 cn−1
...

...
...

0 · · · 0 cn−m+1

0 σ1n−m+1(c)


where σ1k(c)[i, j] =

(
k−i
k−j

)
Bj−i(c) for Bm(c) the complete exponential bell polyno-

mials.

We aim to construct recovery functions for these representations by abusing

the properties of the Bell polynomials. In particular we recall the well-known

additive property given in Lemma 2.4.4,

Bm(γ + δ) =
m∑
i=0

(
m

i

)
Bi(γ)Bm−i(δ).

Definition 3.3.1. Let ∆(c) := σM(c)−1 ∈ FG. For i = 2, . . . , n−m inductively

define

δ1 := x2, δi := xi+1x
i−1
1 −Bi(δ1, . . . , δi−1, 0).

We use these to exploit the following.
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Lemma 3.3.2. For ` = 1, . . . , n−m

δ`
x`1
·∆(c) = c`.

Proof. We prove by induction on `, δ1 = x2 serving as a clear base. Assume the

result holds for all integers i < `. Then using the additivity relation of Lemma

2.4.4 we acquire

δ` · σM(c) = x`−1
1 x`+1 · σ1n(c)−B`(δ1, . . . , δ`−1, 0) · σ1n(c)

= x`−1
1

[∑̀
i=0

(
`

i

)
Bi(c)x`+1−i

]
−B`(δ1 + c1x1, . . . , δ`−1 + c`−1x

`−1
1 , 0)

=
∑̀
i=0

(
`

i

)[
x`−1

1 x`+1−iBi(c)−B`−i(δ1, . . . , δ`−1, 0)Bi(c1x1, . . . , c`−1x
`−1
1 , 0)

]
.

Recall from the definition of the Bell polynomials that any monomial cα appearing

in Bi(c) satisfies
∑i

j=1 jαj = i. Hence it follows that

Bi(c1x1, . . . , c`−1x
`−1
1 , 0) = xi1Bi(c1, . . . , c`−1, 0).

Furthermore the definition also truncates monomials in Bi(c) at i. Hence

Bi(c1, . . . , c`−1, c`) = Bi(c1, . . . , c`−1, 0), i < `,

B`(c1, . . . , c`−1, c`) = c` +B`(c1, . . . , c`−1, 0).

Hence we have

δ` · σ1n(c) =
∑̀
i=0

(
`

i

)[
x`−1

1 x`+1−iBi(c)− xi1B`−i(δ1, . . . , δ`−1, 0)Bi(c1, . . . , c`−1, 0)
]

= x`−1
1 x`+1 −B`(δ1, . . . , δ`−1, 0)︸ ︷︷ ︸

δ`

+
`−1∑
i=1

(
`

i

)
Bi(c)x

i
1

[
x`−i−1

1 x`+1−i −B`−i(δ1, . . . , δ`−i)
]︸ ︷︷ ︸

0

+ x`1

(
B`(c1, . . . , c`)−B`(c1, . . . , c`−1, 0)︸ ︷︷ ︸

c`

)
= δ` + c`x

`
1.
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The result follows by induction.

We note several properties of the δ` which we shall find useful. For the purpose

of constructing invariant fields we shall find it pertinent to observe that

δ`−1 ∈ F[x1, . . . , x`], LTx`(δ`−1) = x`−2
1 x`.

It follows immediately from Lemma 3.3.2 that any representation element σ1n(c)

for which c` = 0 leaves δ` invariant. In particular we acquire the following.

Corollary 3.3.3. Given a symmetric power of a two-dimensional modular rep-

resentation, that is with image of the form

Zrp ∼= G = 〈σ1n(c, 0, . . . , 0)
∣∣ c ∈ W 〉

for some W ≤ (F,+), then

F[V ]G[x−1
1 ] = F[x1, N

G
2 , δ2, . . . , δn−1][x−1

1 ].

Furthermore applying the SAGBI/Divide-by-x1 algorithm to the set

{x1, N
G
2 , . . . , N

G
n , δ2, . . . , δn−1}

shall yield a SAGBI basis for F[V ]G.

Proof. By Lemma 3.3.2 each of δ2, . . . , δn−1 are invariants. Since the action of

G on F[x1, x2] is Nakajima we have F[x1, x2]G = F[x1, N
G(x2)]. Then since each

δi−1 ∈ F[x1, . . . , xi]
G is of minimal degree in xi with LMxi(δi−1) = xi−2

1 xi we

apply Proposition 3.1.12 to acquire

F[x1, . . . , xi]
G[x−1

1 ] = F[x1, . . . , xi−1]G[δi−1, x
−1
1 ]

from which we inductively acquire the construction. Adding the norms of x3, . . . , xn

to these yields a set which satisfies the conditions of the SAGBI/Divide-by-x1 al-

gorithm.

If m > 1 we have yet to construct a full set of recovery functions. Fortunately

since xi · (σ − In) ∈ F[x1] for all σ ∈ G and i = n−m+ 2, . . . , n we may use the
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same techniques for the remainder as were developed for hyperplane groups. By

taking δ̃i := xi+1 for i = n−m+ 1, . . . , n− 1 we acquire{
δ1

x1

, . . . ,
δn−m
xn−m1

,
δ̃n−m+1

x1

, . . . ,
δ̃n−1

x1

}

as a complete set of recovery functions.

3.3.2 Invariant Fields of Socle-Type (m, 1, . . . , 1)

Considering an arbitrary Zrp ∼= G = 〈σM(c1), . . . , σM(cr)〉 where we denote

ci = (c1,i, c2,i, . . . , cn−1,i) ∈ Fn−i

we borrow the structures of Section 3.2 to construct F(V )G as follows.

If the stabiliser G` ≤ G of F[`] := F[x1, . . . , x`] has rank ρ` then the restriction

of the action of G to F[`] is equal to the restriction of the action of G/G` which has

rank r` := r − ρ`. From this define A = (α1, . . . , αn−1) so that αm := rm+1 − rm.

We define the single-row matrices

R` :=


[
c`,1, c`,2, · · · , c`,r, δ`

x`1

]
, ` = 1, . . . , n−m,[

c`,1, c`,2, · · · , c`,r, x`+1

x1

]
, ` = n−m+ 1, . . . , n− 1.

and thus Rpi by raising each entry of R to the power pi. Thence we construct

the matrix

Γ :=



R1

Rp
1

...

Rpα1−1

1
...

Rn−1

Rp
n−1
...

Rpαn−1−1

n−1

Rpα1
1
...

Rpαn−1

n−1


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From this we construct the minors

f̃i := Γ[1, . . . , r, r + i
∣∣ 1, . . . , r + 1] ∈ F[V ]G[x−1

1 ]

and thence define fi by minimally clearing the denominator of f̃i.

Theorem 3.3.4. Let G = σM(W ) ≤ GLn(F) have socle-type M = (m, 1, . . . , 1)

for some W ≤ Fn−1. Then

F[V ]G[x−1
1 ] = F[x1, f1, . . . , fn−1][x−1

1 ].

Consequently applying the SAGBI/Divide-by-x1 algorithm to the set

{x1, f2, . . . , fn−1, N
G
3 , . . . , N

G
n }

shall yield a SAGBI basis for F[V ]G.

The remainder of this section is devoted to the proof of this result. Naturally

we use Proposition 3.1.12 in this proof. Consequently it is sufficient to show that

f` ∈ F[x1, . . . , x`+1]G and is of minimal positive degree in x`+1.

Lemma 3.3.5. For each ` = 1, . . . , n− 1 we have f` ∈ F[`+ 1]G.

Proof. Note that, up to a sign, the coefficient of
(
δi
xi1

)pα
or
(
xi+1

x1

)pα
in f` is an

r × r minor of Γ.

If i > ` then the submatrix yielding this minor contains, by construction,

α1 + · · ·+ α` + 1 = r`+1 + 1 rows containing powers of cj,k for j = 1, . . . , `. Since

r`+1 is the rank of the group acquired by restricting the action of G to F[` + 1]

it thus follows that this minor must vanish, as a relation must exist between

these elements. Since the δi (and trivially the xi+1) contain only the variables

x1, . . . , xi+1 the result then follows.

All that remains is to show that each f` has minimal positive x`+1 degree in

F[`+ 1]G. Observe that Γ[ 1, . . . , r | 1, . . . , r ] 6= 0 by the choice of A. Since this is

the coefficient of (δ`/x`1)
pα` or (x`/x1)

pα` it follows that

degx`+1
(f`) ≥

{
degx`+1

(δp
α`

` ) = pα`

degx`+1
(xp

α`

`+1) = pα`
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Moreover the degree cannot exceed this since no power of δi or xi+1 for i > `

occurs in f` and all other terms appearing do not contain x`+1, and thus must be

equal.

If r`+1 = r` then α` = 0 and so degx`+1
(f`) = 1 is thus minimal.

If instead r`+1 > r` then by definition there exists a subgroup of G of rank

r`+1 − r` which acts trivially on F[`] but not on F[` + 1]. By construction this

subgroup acts on the variables x1, . . . , x`+1 by
1 0 · · · 0 c`
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 .

In particular this subgroup G`+1 is Nakajima and thus

F[`+ 1]G`+1 = F[x1, . . . , x`, N
G`+1

`+1 ].

Since F[`+ 1]G is a subring of this polynomial ring it follows that

deg(N
G`+1

`+1 ) = pr`+1−r` = pα` = degx`+1
(f`)

is the minimal positive x`+1 degree of an element in F[`+ 1]G. Thus the proof of

Theorem 3.3.4 follows through continued application of Proposition 3.1.12.

Conclusion

Despite the enthusiasms of the last two sections not all problems in invariant

theory can be solved using recovery functions. We have restricted our attentions

thus far to groups for which we may always obtain a complete set of recovery

functions. In the next section we delve into worlds where this is not always

possible.
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3.4 Invariant Induction in Socle-Length 2

Denote by σm,n−m : (Mm,n−m(F),+)→ U(m,n−m)(F) the homomorphism

σm,n−m(A) =

[
Im A
0 In−m

]
Then σm,n−m contains in its image the image of all Zrp-representations with socle-

type (m,n−m) up to equivalence.

Those representations with socle-type (1, n− 1) are Nakajima groups and so

by Lemma 3.1.6 have known polynomial invariant rings. Similarly socle-type

(n− 1, 1) representations are hyperplane groups and thus as in Section 3.2 their

invariant rings are also polynomial.

In section 8.2 of [12] an example of a reflection group with socle-type (2, 2)

is shown to have non-polynomial invariant ring. Hence we cannot always be so

fortunate in this sphere.

This section is aimed at generalising a method of inductively constructing

invariants by rank to better understand the invariant ring structure of these

representations. Our efforts are at least partly aimed at acquiring a semi-reliable

measure of the complexity these rings obtain.

3.4.1 Socle Length 2 Representations, Invariants and Re-

flections

Much of the impetus behind the work in this section arises from the work of

Broer [6] which we paraphrase here.

Corollary 3.4.1. Let H ≤ G be elementary abelian p-groups with [G : H] = p.

Then

F[V ]H = F[V ]G[u]

is a hypersurface for some u ∈ F[V ]H if and only if F[V ]G is a direct summand

of F[V ]H as an F[V ]G-module. This holds, for instance, if F[V ]G is polynomial.

Recalling that g ∈ G is a bireflection if dim(V g) ≥ dim(V )− 2, this leads to

the following.
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Proposition 3.4.2. Let Zrp ∼= G ≤ GL(V ) have socle-type (m,n−m) and be gen-

erated by reflections σ1, . . . , σr−1 and a bireflection τ . Let G′ := 〈σ1, . . . , σr−1〉 ≤
G be Nakajima. By defining

φ(σ) := (σ − In)V

for σ ∈ G, suppose

1. φ(τ) = φ(σi) + φ(σj) for some i 6= j,

2. φ(τ) = φ(σi) + Fv for some v /∈
∑r−1

i=1 φ(σi), or

3. φ(τ) ∩
∑r−1

i=1 φ(σi) = {0},

i.e. φ(τ) intersects with not more than two independent φ(σ) non-trivially. Then

F[V ]G is a hypersurface.

Similarly if τ is a reflection with φ(τ) 6= φ(σi) for all i and φ(τ) ∈ φ(σi)+φ(σj)

for some i 6= j then F[V ]G is a hypersurface.

Proof. By Lemma 3.1.6 F[V ]G
′

is polynomial. The above cases tell us that we

may choose a Nakajima basis for G′ under which τ acts nontrivially on only two

of the dual basis elements, which we may assume to be xn−1 and xn.

Let τi for i = 1, 2 be reflections defined by

xn+1−i · τi := xn+1−i · τ

and trivial elsewhere. Then τ = τ1τ2. Defining G+ := 〈σ1, . . . , σr−1, τ1, τ2〉 we

have [G+ : G] = p. By construction G+ is Nakajima and so F[V ]G
+

is polynomial.

Hence by Corollary 3.4.1 we have F[V ]G is a hypersurface over F[V ]G
+

as required.

The criteria in the previous proposition were to ensure that φ(τ) did not

intersect with any more than two φ(σi) nontrivially. Thus under the basis given

for G′, τ does not differ from In in more than two rows.

Whilst this may seem peculiarly specific we include it for the hope of an

extension to the inclusion of more bireflections – perhaps with an aim to show

bireflection (m,n−m) groups are complete intersections – and for the following.
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Corollary 3.4.3. Let Zrp ∼= G ≤ GL(V ) have socle-type (2, 2) for r ≥ 2. Suppose

the index p subgroup G′ ≤ G is Nakajima. Then either G is again Nakajima or

F[V ]G is a hypersurface.

Proof. Let G′ = 〈σ1, . . . , σr−1〉 where σi are reflections, and G = 〈σ1, . . . , σr−1, τ〉.
If G is Nakajima the result follows from Lemma 3.1.6.

Suppose G is not Nakajima. By Proposition 3.4.2 either criterion 1 (if there

exists i 6= j with φ(σi) 6= φ(σj)) or criterion 2 (if all φ(σi) are equal) holds, from

which the result follows.

Theorem A of [20] puts pay to the prospect of general type (m,n−m) repre-

sentations following this pattern.

Having discovered a collection of hypersurface invariant rings it would be

advantageous to explicitly define their generators. Indeed since the polynomial

ring from which they grow is a Nakajima invariant ring, the only mystery is the

additional generator which yields the hypersurface.

3.4.2 Inductive Difference Invariants

Let H ≤ G ≤ GL(V ) be elementary abelian p-groups with |G : H| = p. Then

F[V ]G ⊂ F[V ]H . Let τ ∈ G \H and write ∆τ := τ − 1 ∈ FG. For f1, f2 ∈ F[V ]H

we define

R(f1, f2, τ) := gcd
(
f1 ·∆τ , f2 ·∆τ

)−1

∣∣∣∣ f1 f1 ·∆τ

f2 f2 ·∆τ

∣∣∣∣ .
Since F[V ]H is a unique factorisation domain we define gcd to be the common

monic divisor of greatest degree with respect to our usual ordering. If fi ·∆τ ∈
F[V ]G then R(f1, f2, τ) ∈ F[V ]G. We thus refer to these as inductive difference

invariants of G since this process allows us to inductively construct invariants

from those of subgroups H ≤ G of decreasing index.

Such a construction has been used implicitly in many situations, an example

of which we reiterate here.

Example 3.4.4. For a matrix A ∈ M2(F) we denote by A :=

[
I2 A
0 I2

]
.

Consider the group

G =

〈
σ1 :=

1 0
0 0

, σ2 :=
0 0
0 1

, τ :=
1 1
1 1

〉
Fp
.
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It has been shown (for instance in [12]) that the invariant ring Fp[V ]G is a hyper-

surface given by

Fp[V ]G = Fp[x1, x2, N
G
3 , N

G
4 ][h]

h = x1(xp3 − x
p−1
1 x3) + x2(xp4 − x

p−1
2 x4).

Note that by setting H = 〈σ1, σ2〉Fp we have

NH
3 · (τ − 1) = (x1 + x2)p − xp−1

1 (x1 + x2) = x2(xp−1
2 − xp−1

1 ) ∈ F[V ]G

NH
4 · (τ − 1) = (x1 + x2)p − xp−1

2 (x1 + x2) = x1(xp−1
1 − xp−1

2 ) ∈ F[V ]G

and so

R
(
NH

3 , N
H
4 , τ

)
= −x1N

H
3 − x2N

H
4 = −h ∈ F[V ]G.

Thus we have Fp[V ]G = Fp[x1, x2, N
G
3 , N

G
4 ][R

(
NH

3 , N
H
4 , τ

)
].

To obtain the main result of this section we effectively generalise this example

of [12] and in doing so precisely describe the situation as posited in Corollary 3.4.3.

For this though, we need the following.

Proposition 3.4.5 ([12] Prop. 11.0.1). Let G ≤ G+ be groups acting on an

integral domain R of characteristic [G+ : G] = p. Let σ ∈ G+ \G. Suppose there

exists a y ∈ RG such that

� the polynomial x := y · (σ − 1) lies in RG+
and

� the set (σ − 1)RG lies in the principal ideal (x)R.

Then RG = RG+
[y].

Using this we prove what our narrative might suggest predictable.

Proposition 3.4.6. Let H ≤ G ≤ GL(V ) be elementary abelian p-groups with

[G : H] = p under a socle-conforming basis with socle-type (2, 2). Suppose H =

〈σ1, . . . , σr〉 and τ ∈ G \H. If H is Nakajima and G is not then

F[V ]G = F[x1, x2, N
G
3 , N

G
4 ][R(NH

3 , N
H
4 , τ)].

Proof. Ensuring that {x1, x2, x3, x4} is a Nakajima basis for H, define τ1, τ2 as

acting trivially on V ∗, except

x4 · τ1 := x4 · τ x3 · τ2 := x3 · τ.
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Then by taking G+ := 〈H, τ1, τ2〉 we acquire H < G < G+ by assumption.

Furthermore G+ is Nakajima with invariant ring

F[V ]G
+

= F[x1, x2, N
G
3 , N

G
4 ].

We use Proposition 3.4.5 with G,G+ as their namesakes, y := R(NH
3 , N

H
4 , τ)

and σ = τ1. Since NG
3 · (τ1 − 1) = 0 we have

xG := R(NH
3 , N

H
4 , τ) · (τ1 − 1)

=
NH

3 · (τ2 − 1)NH
4 · (τ1 − 1)

gcd(NH
3 · (τ2 − 1), NH

4 · (τ1 − 1))
∈ F[x1, x2] ⊂ F[V ]G

+

and so we need only show that each element in F[V ]G · (τ1− 1) is divisible by xG.

Since H is Nakajima we have

F[V ]G ⊂ F[V ]H = F[x1, x2, N
H
3 , N

H
4 ].

Let m := xa11 x
a2
2 (NH

3 )a3(NH
4 )a4 be an arbitrary ‘monomial’ in F[V ]H . Then

m · (τ1 − 1) = xa11 x
a2
2 (NH

3 )a3
[
(NH

4 · τ1)a4 − (NH
4 )a4

]
= xa11 x

a2
2 (NH

3 )a3
[
(NH

4 + (NH
4 · (τ1 − 1)))a4 − (NH

4 )a4
]

= xa11 x
a2
2 (NH

3 )a3

[
a4∑
i=1

(
a4
i

)
(NH

4 )a4−i(NH
4 · (τ1 − 1))i

]
.

Hence either NH
4 · (τ1 − 1) divides m · (τ1 − 1) or the latter is zero. Similarly we

may see that

m · (τ−1
2 − 1) = xa11 x

a2
2 (NH

4 )a4

[
a3∑
i=1

(
a3
i

)
(−1)i(NH

3 )a3−i(NH
3 · (τ2 − 1))i

]
.

Hence either NH
3 · (τ2 − 1) divides m · (τ−1

2 − 1) or the latter is zero.

Let f ∈ F[V ]G ⊆ F[V ]H . Then we note that

f = f · τ = f · (τ1τ2), =⇒ f · (τ1 − 1) = f · (τ−1
2 − 1).

Hence by the above argument NH
4 · (τ − 1) and NH

3 · (τ − 1) divide f · (τ1 − 1)

and thus the xG divides all f · (τ1 − 1) as required.
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Whilst this particular case is conveniently covered by the R polynomials,

their influence stretches further as we begin to examine the invariant fields of an

arbitrary representation with socle-type (2, 2).

3.4.3 The Field Of Fractions of Socle-Type (2, 2) Invari-

ants

We base the constructions of this section upon the following specification of

Proposition 3.1.12.

Corollary 3.4.7. Let Zrp ∼= G ≤ GL(V ) have socle-type (2, 2) acting upon a

socle-conforming basis. Let f4 ∈ F[V ]G be such that degx4(f4) 6= 0 is minimal.

Then

F[V ]G[LCx4(f4)−1] = F[x1, x2, N
G
3 , f4][LCx4(f4)−1].

Proof. Let f ∈ F[V ]G. By Proposition 3.1.12 there exists an integer k ≥ 0 such

that LCx4(f4)kf ∈ F[x1, x2, x3]G[f4].

The action of G on F[x1, x2, x3] is either trivial – in which case G is Nakajima

and the result follows trivially – or has socle-type (1, 2). Hence F[x1, x2, x3]G =

F[x1, x2, N
G
3 ] and so LCx4(f4)kf ∈ F[x1, x2, N

G
3 , f4] which yields the result.

This gives an implicit description of the desired field of fractions. Whilst

appealing the task remains to calculate f4. We do so by use of the R invariants.

Proposition 3.4.8. Let Zrp ∼= G = 〈σ1, . . . , σr, τ1, . . . , τs〉 ≤ GL(V ) have socle-

type (2, 2) such that H0 := 〈σ1, . . . , σr〉 is a maximal Nakajima subgroup of G.

Choose a socle-conforming basis for V arising from a Nakajima basis of H0.

Construct the subgroups

Hi := 〈σ1, . . . , σr, τ1, . . . , τi〉 i = 1, . . . , s

and inductively define the polynomials

hi := R(hi−1, N
Hi−1

3 , τi)

for i = 1, . . . , s, where h0 := NH0
4 . Then

F[V ]G[LCx4(hs)
−1] = F[x1, x2, N

G
3 , hs][LCx4(hs)

−1]
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where, in particular, LCx4(hs) ∈ F[x1, x2]. Furthermore hs may be written as the

sum of a p-polynomial in x3 and a p-polynomial in x4, both with coefficients in

F[x1, x2].

Proof. We wish to show that degx4(hs) > 0 is minimal in F[V ]G and then apply

Corollary 3.4.7.

By upper-triangularity the action of any element σ ∈ G on x3 yields no x4

terms. Since F[V ]G ⊂ F[V ]H0 = F[x1, x2, N
H0
3 , NH0

4 ] a lower bound for the x4

degree of a polynomial in F[V ]G is degx4(N
H0
4 ). Then we observe that

h1 = gcd(NH0
3 ·∆τ1 , N

H0
4 ·∆τ1)︸ ︷︷ ︸

∈F[x1,x2]

−1
(NH0

3 ·∆τ1︸ ︷︷ ︸
∈F[x1,x2]

NH0
4︸︷︷︸

∈F[x1,x2,x4]

−NH0
4 ·∆τ1︸ ︷︷ ︸
∈F[x1,x2]

NH0
3︸︷︷︸

∈F[x1,x2,x3]

).

Since NH0
3 and NH0

4 are p-polynomials in x3 and x4 respectively it follows that

h1 · (τ2− 1) ∈ F[x1, x2]. Furthermore degx4(h1) = degx4(N
H0
4 ) and so LCx4(h1) is

a polynomial in F[x1, x2]. Hence if s = 1 the result follows.

Applying the same arguments inductively through h1, . . . , hs, since

hi = gcd(N
Hi−1

3 ·∆τi , hi−1 ·∆τi)︸ ︷︷ ︸
∈F[x1,x2]

−1
(N

Hi−1

3 ·∆τi︸ ︷︷ ︸
∈F[x1,x2]

hi−1︸︷︷︸
∈F[V ]

−hi−1 ·∆τi︸ ︷︷ ︸
∈F[x1,x2]

N
Hi−1

3︸ ︷︷ ︸
∈F[x1,x2,x3]

)

it follows hi is a p-polynomial in x3 and x4, LCx4(hi) ∈ F[x1, x2] and degx4(hi) =

degx4(hi−1). Hence by induction we obtain that degx4(hs) = degx4(N
H0
4 ) is mini-

mal and that LCx4(hs) ∈ F[x1, x2] from which the result follows.

The issues with calculating the invariant rings hereafter lie largely in the

complexity of LCx4(hs). For instance when NG
3 ∈ F[x1, x3] we can see that

LCx4(hs) ∈ F[x1]. Short of being constant this is one of the more preferable

examples since we may then apply the SAGBI/Divide-by-x1 algorithm (as in

Section 3.1.3) to acquire a SAGBI basis. In general, however, we may not be so

fortunate.

For now we consider a case whose invariant rings follow almost instantaneously

from this result.
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3.4.4 Invariants of Socle-Type (2, 2) Vector Representa-

tions

Consider the group 〈[
1 c
0 1

] ∣∣ c ∈ W ≤ F
〉
≤ GL(V2).

Then 2V2 := V2 ⊕ V2 has socle-type (2, 2). The invariants F[mV ]G are often

referred to as vector invariants. Generating invariants have been calculated in

the case G ∼= Zp by Campbell and Hughes in [9] and subsequently by Campbell,

Shank and Wehlau in [10]. The elementary abelian case generally remains open,

but for 2V2 we can provide a classification here.

Proposition 3.4.9. Let Zrp ∼= G ≤ GL(2V2) be as above. Define δ := x2x3 −
x1x4 ∈ F[V ]G. Then

F[V ]G = F[x1, x2, N
G
3 , N

G
4 , δ].

Furthermore these elements form a SAGBI basis subject to the sole relation

xp
r

2 N
G
3 − x

pr

1 N
G
4 =

r∑
i=0

γi(x1x2)p
r−piδp

i

where NG
3 =

∑r
i=0 γix

pr−pi
1 xp

i

3 .

Proof. Since δ is invariant and degx4(δ) = 1 it follows from Proposition 3.1.12

that F[V ]G[x−1
1 ] = F[x1, x2, N

G
3 , δ][x

−1
1 ]. Thus we may, and shall, apply the

SAGBI/Divide-By-x1 algorithm to the set {x1, x2, N
G
3 , N

G
4 , δ}.

The only tête-à-tête in this set corresponds to the difference xp
r

2 N
G
3 − δp

r
.

Subducting this difference yields the relation above and thus the algorithm ter-

minates. We hence acquire a SAGBI basis for F[V ]G by Proposition 3.1.13.

Conclusion

This section primarily focused on the hypersurface invariants of socle-length 2

representations and methods of constructing generators using the R polynomials.

Such constructions shall prove useful for representations beyond this purview, as

shall be seen almost immediately.
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3.5 Invariants of Socle Length 3 Representations

Hitherto our invariant theoretic constructions revolved around the recovery func-

tions of sections 3.2 and 3.3 and the inductive methods of Section 3.4. Here we

consider a wider case in which both methods have their advantages.

Unlike socle-length 2 there is yet to exist an explicit construction for all Zrp-
representations with socle-length 3. Nevertheless many families existing therein

have been classified. We focus on the invariants of a prominent family.

3.5.1 Hook Groups

We call a p-group P ≤ GL(V ) a hook group if there exists some P -stable subspace

U < V with dim(U) = dim(V )− 1 such that

{(σ − 1) · v
∣∣ σ ∈ P, v ∈ U} ⊆ Fu

for some u ∈ U . This allows us to write the elements of P in the form
1 γ1,2 · · · γ1,n−1 γ1,n

0 In−2

γ2,n
...

γn−1,n

0 0 1

 .

We have seen hook groups as Sylow p-subgroups of the finite orthogonal groups

in Section 2.6.4. From the perspective of invariant theory the fact that hook

groups consist solely of bireflections is of intrigue to the Cohen-Macaulay problem.

One can see from the structure of hook groups that their socle series has length

2 or 3. The latter demands a socle-type of the form (m1,m2, 1) and dual-type

(n1, n2, 1). Such p-groups may not necessarily be elementary abelian.

Applying the techniques of sections 2.3.1 and 2.5 we can wholly classify the

elementary abelian hook groups as follows: The images of Zrp-representations with

socle-type (µ1, µ2, 1) and dual-type (ν1, ν2, 1) exist up to conjugacy in the image
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of σ : (Fn+m1m3−1,+)→ GLn(F) where

σ(c) =


1 0 2v1(c) v3(c) cm1+m2+1 + v1(c)v1(c)T

0 Im1 0 C v2(c)T

0 0 Im2 0 v1(c)T

0 0 0 Im3 0
0 0 0 0 1

 ,

v1(c) = [cm2 , . . . , c1], v2(c) = [cm1+m2 , . . . , cm2+1], v3(c) = [cm1+m2+2, . . . , cn−1],

with C ∈Mm1,m3(F) independent. Socle-length 3 elementary abelian hook groups

are these representations for which C ≡ 0. Those with socle length 2 have m2 = 0

and are automatically elementary abelian.

3.5.2 Hyperplane Invariants of Hook Groups

Explicitly given an ordered generating set σ1, . . . , σr for an elementary abelian

hook group G we denote

Gj
i := 〈σi, σi+1, . . . , σj〉

with Gj := Gj
1 for simplicity. Choose this generating set and ρ2 ∈ N such that

Gr
ρ2+1 is the stabiliser of F[x1, . . . , xn−1]. Thus F[x1, . . . , xn−1]G = F[x1, . . . , xn−1]G

ρ2

and this restricted action of Gρ2 is that of a hyperplane group. Thus we use the

work of Section 3.2 as follows.

If dim(Soc1 V
∗) = m then define the ci,j ∈ F by

xm+i · (σj − 1) =: x1ci,j.

Thence for k = 1, . . . , ρ2 construct the matrices C(k) := [ci,j] ∈ Mn−m−1,k(F)

which generate Gk acting on F[x1, . . . , xn−1].

As per Section 3.2 we choose C(k)-compatible sequences α(k) = (α
(k)
1 , . . . , α

(k)
n−m−1) ∈

Nn−m−1
0 . Using these we construct the matrices Γ(k) as in Section 3.2.2 with mi-

nors

f̃
(k)
i := Γ(k)

[
1, . . . , k, k + i

∣∣ 1, . . . , k + 1
]

and so the invariants f
(k)
i by clearing the denominator of f̃

(k)
i . Then by Theorem
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3.2.2 we have

F[x1, . . . , xn−1]G
k

= F[x1, . . . , xm, f
(k)
1 , . . . , f

(k)
n−m−1].

Remark. We shall require use of all Γ(k) in later sections. Astute readers shall

recall that the process of constructing a C(ρ2)-compatible αρ2 already requires

constructing C(k)-compatible α(k) for all k = 1, . . . , ρ2−1. Hence little additional

calculation is required to construct these.

It remains to reintroduce xn into consideration. It follows from Proposition

3.1.12 that, should we find an F ∈ F[V ]G which has minimal positive degree in

xn, we we have

F[V ]G[LCxn(F )−1] = F[x1, . . . , xm, f
(ρ2)
1 , . . . , f

(ρ2)
n−m−1, F ][LCxn(F )−1]

3.5.3 Integral Hook Invariants

Momentarily suppose that our elementary abelian hook group G ≤ GL(V ) has

socle length 3. Under the appropriate basis for V our elements are of the form

σ(c) =


1 0 2v1(c) v3(c) cm1+m2+1 + v1(c)v1(c)T

0 Im1 0 0 v2(c)T

0 0 Im2 0 v1(c)T

0 0 0 Im3 0
0 0 0 0 1


for v1(c) := [cm2 , . . . , c1], v2(c) = [cm1+m2 , . . . , cm2+1] and v3(c) = [cm1+m2+2, . . . , cn−1].

Such representations require elements σ(c1), . . . , σ(cm2
) such that the matrix

[v1(c1)T · · · v1(cm2
)T ] is invertible. By choosing our basis appropriately we ensure

that these each satisfy v3(ci) = 0 and (ci)m1+m2+1 = 0. Then the polynomial

δ := x1xn −

(
m3+m2+1∑
i=m3+2

x2
i

)

is invariant under the action of these elements, since

δ · (σ(c)− 1) = v3(c)

 xm3+1
...
x2

x1 + cm1+m2+1x
2
1 ∈ F[x1, . . . , xm3+1] ⊂ F[V ]G.
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In summary by choosing our basis appropriately we ensure that the subgroup of

elements fixing δ is at least of order pm2 . With foresight we suggest that the more

computationally convenient choices are those for which this set is maximised.

If instead our representation has socle-length 2 our elements take the form

γ :=

 Im1+1

γ1,m1+2 · · · γ1,n−1 γ1,n

0 · · · 0 γ2,n
...

...
...

...
0 · · · 0 γm1+1,n

0 Im3+1

 .
Such a representation must contain an element whose Jordan normal form con-

tains two 2× 2 Jordan blocks. We then choose our basis to fix
1 0 · · · 1 0
0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

 ∈ G.

This element then leaves δ′ := x1xn − x2xn−1 invariant since

δ′ · (γ − 1) = x1

m3+1∑
i=1

γ1,n+1−ixi − γ2,nx1x2 ∈ F[x1, . . . , xm3+1] ⊂ F[V ]G.

Hence for any given elementary abelian hook group G ≤ GL(V ) we may

choose a socle-conforming basis for V and a homogeneous δ ∈ F[V ] such that

� LTxn(δ) = x1xn,

� δ · (σ − 1) ∈ F[x1, . . . , xm] ⊂ F[V ]G for all σ ∈ G,

� {σ ∈ G
∣∣ δ · σ = δ} is nontrivial.

Combining this with the thus far obtained hyperplane work and the inductive

R constructions of Section 3.4.2 we may construct invariant field generators as

follows.

3.5.4 Invariant Fields of Hook Groups

Let Zrp ∼= G ≤ GL(V ) be an elementary abelian hook group. Let m := m3 + 1 =

dim(Soc(V ∗)) and choose a basis for V and a generating set σ1, . . . , σr for G such
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that

Gρ1 = 〈σ1, . . . , σρ1〉 = {σ ∈ G
∣∣ δ · σ = δ}

for δ as given in Section 3.5.3 and

Gr
ρ2+1 = 〈σρ2+1, . . . , σr〉 = {σ ∈ G

∣∣ xi · σ = xi, ∀i = 1, . . . , n− 1}.

Note that Gr
ρ2+1 may be trivial but we choose our basis for V such that Gρ1 is

not. Denote by ∆i := σi − 1 ∈ FG.

Define also the Gk-invariants f
(k)
1 , . . . , f

(k)
n−m−1 for k = 1, . . . , ρ2 as given in

Section 3.5.2.

We iteratively transform δ from being an invariant under Gρ1 to being invari-

ant under larger Gj as follows: Defining δρ1 := δ we iterate

δj+1 := R(δj, f
(j)
ij
, σj+1)

= gcd(δj ·∆j+1, f
(j)
ij
·∆j+1)−1

∣∣∣∣ δj δj ·∆j+1

f
(j)
ij

f
(j)
ij
·∆j+1

∣∣∣∣
for j = ρ1, . . . , ρ2− 1, where the ij are chosen such that f

(j)
ij
·∆j+1 6= 0. Then we

have the following.

Theorem 3.5.1. Let G ≤ GL(V ) be as above. Then

F[V ]G[x−1
1 ] = F[x1, . . . , xm, f

(ρ2)
1 , . . . , f

(ρ2)
n−m−1, N

G
Gρ2 (δρ2)][x

−1
1 ].

Hence applying the SAGBI/Divide-by-x1 algorithm to the set

{x1, . . . , xm, f
(ρ2)
1 , . . . , f

(ρ2)
n−m−1, N

G
Gρ2 (δρ2), N

G
m+1, . . . , N

G
n }

shall yield a SAGBI basis for F[V ]G.

Proof. Since Gr
ρ2+1 acts non-trivially on all xi besides xn it is a Nakajima sub-

group. Hence

F[V ]G ⊂ F[V ]G
r
ρ2+1 = F[x1, . . . , xn−1, N

G
Gρ2 (xn)].

In particular the minimal possible xn degree for an element in F[V ]G is deg(NG
Gρ2 (xn)) =
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|Gr
ρ2+1|. Thus were we to show that

LMxn(δρ2) = xα1xn

for some α ∈ N then NG
Gρ2 (δρ2) ∈ F[V ]G will have minimal positive degree in xn

and lead coefficient a power of x1. The result would then follow from Proposition

3.1.12 and Proposition 3.1.13.

By construction δρ1 ∈ F[V ]G
ρ1 is such that

LMxn(δρ1) = x1xn and δρ1 · (σ − 1) ∈ F[x1, . . . , xm] ⊂ F[V ]G

for all σ ∈ G. We use this as a base of induction to show that each δj ∈ F[V ]G
j

satisfies LMxn(δj) = x
αj
1 xn and that δj · (σ − 1) ∈ F[x1, . . . , xm] for all σ ∈ G.

Recall that

δj+1 = gcd(δj ·∆j+1, f
(j)
ij
·∆j+1)︸ ︷︷ ︸

∈F[x1]

−1
[
δj (f

(j)
ij
·∆j+1)︸ ︷︷ ︸
∈F[x1]

−f (j)
ij

(δj ·∆j+1)︸ ︷︷ ︸
∈F[x1,...,xm]

]
.

since the f
(j)
ij

are p-polynomials in xm+1, . . . , xn−1. In particular both f
(j)
ij
·∆j+1

and δj ·∆j+1 are invariant under Gj+1 and so δj+1 ∈ F[V ]G
j+1

. By induction we

see LMxn(δj+1) = x
αj+1

1 xn. Furthermore for an arbitrary σ ∈ G and ∆ := σ − 1

δj+1·∆ = gcd(δj ·∆j+1, f
(j)
ij
·∆j+1)−1︸ ︷︷ ︸

∈F[x1]

[
(δj ·∆)︸ ︷︷ ︸
∈F[x1,...,xm]

(f
(j)
ij
·∆j+1)︸ ︷︷ ︸
∈F[x1]

− (f
(j)
ij
·∆)︸ ︷︷ ︸

∈F[x1]

(δj ·∆j+1)︸ ︷︷ ︸
∈F[x1,...,xm]

]

and so δj+1 ·∆ ∈ F[x1, . . . , xm]. Thus by induction for each j we have δj ∈ F[V ]G
j

and at each stage their lead monomials in xn are LMxn(δj) = x
αj
1 xn. In particular

this holds for δρ2 and thus the result follows.

We have now procured generators for the invariant field of an arbitrary el-

ementary abelian hook group, and thence a method of procuring a SAGBI ba-

sis. We note that, for instance, all representations with socle-type (2, 1, 1) and

(1, 2, 1) are hook groups and thus this process directly aids our efforts with the

four-dimensional representations.
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3.5.5 Cohen-Macaulayness in Hook Groups

Since a group must be generated by bireflections to have a Cohen-Macaulay

invariant ring it follows that hook groups, consisting entirely of bireflections, are of

interest in this area. Whilst all three-dimensional Zrp-representations necessarily

have Cohen-Macaulay invariants – as either hyperplane groups, Nakajima groups

or with codimension 2 socle – those in higher dimensions have no such assurance.

From Section 2.2 we may associate a socle tabloid to any given representa-

tion, a combinatorial generalisation object encoding the socle- and dual-type.

Unfortunately this section is devoted to illustrating the following.

Theorem 3.5.2. Let Zrp ∼= G ≤ GL(V ). Then whether or not F[V ]G is Cohen-

Macaulay is not discernible from the socle tabloid of G alone.

By Section 2.5.2 the image of any Zrp-representation with socle-type (1, 2, 1)

and dual-type (2, 1, 1) exists up to conjugacy in the image of the homomorphism

σ : (F3,+)→ GL4(F), σ(c1, c2, c3) =

 1 2c1 2c2 c2
1 + c3

0 1 0 c1

0 0 1 0
0 0 0 1

 .
We consider groups of the form

G :=

〈
σ(1, 0, 0) =

 1 2 0 1
0 1 0 1
0 0 1 0
0 0 0 1

 , σ(c1, c2, 0) =

 1 2c1 2c2 c2
1

0 1 0 c1

0 0 1 0
0 0 0 1

〉

for c2 6= 0. It is important here to distinguish between the cases where cp1 = c1

or otherwise.

Case 1: cp1 = c1

We may easily generalise this case as follows. Consider a representation of the

form

G := 〈σ1 := σ(1, 0, 0), σ(0, c1, 0), . . . , σ(0, cr−1, 0)〉 ∼= Zrp.
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In particular the subgroup H := 〈σ(0, c1, 0), . . . , σ(0, cr−1, 0)〉 is Nakajima and

thus F[V ]H = F[x1, x2, x3, N
H
4 ]. Denote NH

4 =
∑r−1

i=0 γix
pi

4 x
pr−1−pi
2 . Since

x1x
pi

4 · (σ1 − 1) = x1(2xp
i

3 − x
pi

1 ) = (2xp
i+1

3 − xp
i−1

1 x2
3) · (σ1 − 1)

we construct the invariant

F := R

(
NH

4 ,

r−1∑
i=0

γi(2x
pi+1
3 − xp

i−1
1 x2

3)xp
r−1−pi

2 , σ1

)

= x1N
H
4 −

r−1∑
i=0

γi(2x
pi+1
3 − xp

i−1
1 x2

3)xp
r−1−pi

2 ∈ F[V ]G

which has minimal x4-degree in F[V ]G. Thus it follows that applying the SAGBI/Divide-

by-x1 algorithm to the set {x1, x2, N
G
3 , N

G
4 , F} shall yield a SAGBI basis.

Proposition 3.5.3. Let Zrp ∼= G ≤ GL(V ) and F ∈ F[V ]G be given as above.

Then F[V ]G = F[x1, x2, N
G
3 , N

G
4 , F ].

Whilst one might wish to apply the SAGBI/Divide-By-x1 algorithm here the

resulting relation is far from clean, soon growing expensive in both time and pencil

lead. We instead adapt a proof that the invariant ring of the indecomposable 3-

dimensional cyclic module is a hyperplane. Despite the difference in rank and

dimension the proof is almost identical to that given in [12, Section 4.10.2] as

the action of σ1 on F[V ]H is the action of a 3× 3 Jordan block on a polynomial

algebra, albeit ill-graded.

Since F[V ]G ⊂ F[V ]H = F[x1, x2, x3, N
H
4 ] we informally refer to a G-invariant’s

NH
4 -degree. Hence any invariant in F[V ]G shall have x4-degree of the form dpr−1

for d ∈ N0.

We begin the proof by showing that any invariant with small enough NH
4

degree may be written as a polynomial in {x1, x2, N
G
3 , F}.

Lemma 3.5.4. Let f ∈ F[V ]G have x4-degree jpr−1 < pr. Write

f =

j∑
i=0

αi(N
H
4 )i for αi ∈ F[x1, x2, x3, F ]

such that degx4(αi(N
H
4 )i) < jpr−1 for each i < j. Then f ∈ F[x1, x2, N

G
3 , F ].
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Proof. We prove by induction on j where

f = α0 ∈ F[x1, x2, x3, F ]G = F[x1, x2, N
G
3 , F ]

acts as a base of induction. For j > 0 denote ∆ := σ1 − 1 ∈ FG so that

f ·∆ =

j∑
i=0

(αi ·∆)(NH
4 )i + (αi · σ1)

(
(NH

4 )i ·∆
)

= 0.

Since our action is upper-triangular and NH
4 is a p-polynomial in x4 we have

degx4((N
H
4 )j ·∆) < degx4((N

H
4 )j). We assumed that this was the only term of our

expression of f which achieves this degree in x4 and so αj ·∆ = 0. Consequently

αj ∈ F[V ]G.

Alternatively we rewrite f ·∆ to acquire

f ·∆ = (αj ·∆)
(
(NH

4 )j · σ1

)
+ αj

(
(NH

4 )j ·∆
)

+ (αj−1 ·∆)(NH
4 )j−1 + . . .

= jαj(N
H
4 )j−1(NH

4 ·∆) + (αj−1 ·∆)(NH
4 )j−1 + (lower x4 order terms) = 0

and so αj(N
H
4 ·∆) = (−j−1αj−1) ·∆. Thus

αj ∈ (F[x1, x2, x3, F ]) ·∆ ⊂ x1F[x1, x2, x3, F ]

since F ∈ F[V ]G and x3 · ∆ = x1. So we write αj = x1α̃j for some α̃j ∈
F[x1, x2, x3, F ]. We also, for convenience, write F̃ = F − x1N

H
4 ∈ F[x1, x2, x3].

Then

αj(N
H
4 )j = α̃j(x1N

H
4 )(NH

4 )j−1 = α̃j(F − F̃ )(NH
4 )j−1

and so

f = (α̃j(F − F̃ ) + αj−1)(NH
4 )j−1 +

j−1∑
i=0

αi(N
H
4 )i

and thus the result follows by applying the induction hypothesis.

What remains is to examine those whose x4-degree meets or exceeds NG
4 .

Since NG
4 is monic we may reduce this case by straight-forward ‘division’.

Lemma 3.5.5. If f ∈ F[V ]G is of the form f = fQN
G
4 + fR for degx4(fR) <

degx4(N
G
4 ) then fQ, fR ∈ F[V ]G.
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Proof. Let τ ∈ G. Then f = f · τ = (fQ · τ)NG
4 + (fR · τ). Since our action is

upper-triangular degx4(fR) = degx4(fR ·τ). Then by the uniqueness of remainders

fR = fR · τ and thus fQ = fQ · τ .

Hence we hereafter write our invariants in the form f = fQN
G
4 + fR. Using

Lemma 3.5.4 the remainder may be written

fR =

p−1∑
i=0

fR,i(N
H
4 )i, fR,i ∈ F[x1, x2, x3].

These coefficients are of interest for the following reason.

Lemma 3.5.6. Let f = fQN
G
4 +

∑p−1
i=0 fR,i(N

H
4 )i be as above. Then xi1

∣∣ fR,i.
Proof. By Lemma 3.5.5 we know fR is invariant and thus

fR = fR·σ1 =

p−1∑
i=0

(fR,i·σ1)
(
(NH

4 )i · σ1

)
=

p−1∑
i=0

(fR,i·σ1)
i∑

j=0

(
i

j

)
(NH

4 )j
(
NH

4 ·∆
)i−j

.

We compare coefficients of powers of NH
4 in the above equation to that in fR

itself. For a fixed j we have

fR,j =

p−1∑
i=j

(
i

j

)(
NH

4 ·∆
)i−j

(fR,i · σ1).

Rearranging this and acting by σ−1
1 we acquire

(j+1)(NH
4 ·(σ−1

1 −1))fR,j+1 = fR,j ·(1−σ−1
1 )+

p−1∑
i=j+2

(
i

j

)(
(NH

4 ·∆)i−j · σ−1
1

)
fR,i.

(3.2)

Since x1, x2 are invariant under σ1 and x3 · σ−1 = −x1 it follows that

F[x1, x2, x3] · σ−1
1 ⊂ x1F[x1, x2, x3].

Hence if fR,j is divisible by xk1 then xk+1
1

∣∣ fR,j · (σ−1
1 − 1). Coupling this with an

induction-reminiscent assumption and (3.2) we see that

xk1
∣∣ fR,j and xk+1

1

∣∣ fR,i ∀i = j + 2, . . . , p− 1 =⇒ xk+1
1

∣∣ fR,j+1. (3.3)



CHAPTER 3. INVARIANT THEORY 153

Using this and proceeding by induction on t shows that xt1
∣∣ fR,t and xt+1

1

∣∣ fR,i
for all t+ 1 < i < p, thus providing the result.

For t = 0 we take (3.2) with j = p− 2

(p− 1)
(
NH

4 · (σ−1
1 − 1)

)
fR,p−1 = fR,p−2(1− σ−1

1 )

whose right hand side is divisible by x1. However NH
4 · (σ−1

1 − 1) is not, having

lead monomial xp
r−1

3 . Thus it follows that x1

∣∣ fR,p−1 .

Applying implication (3.3) to this with k = 0 and j = p− 3 yields x1

∣∣ fR,p−2.

Continuing to apply (3.3) for decreasing values of k eventually yields x1

∣∣ fR,i for

all i = 1, . . . , p− 1. This acts as our base of induction.

Now assume xt−1
1

∣∣ fR,t−1 and xt1
∣∣ fR,i for all i = t + 1, . . . , p − 1 for some

value of t.

� Applying (3.3) with k = t− 1, j = t− 1 yields xt1
∣∣ fR,t.

� Applying (3.3) with k = t for j from p − 3 down to t + 1 (in that order)

yields xt+1
1

∣∣ fR,j.
Thence the result follows by induction.

With these lemmas in place we are now equipped to prove Proposition 3.5.3.

Proof of Proposition 3.5.3. Given f ∈ F[V ]G write it in the form f = fQN
G
4 + fR

for degx4(fR) < pr, where we view elements of F[V ]G ⊂ F[V ]H as polynomials in

NH
4 . Our proposed generators are not exempt from this and so we write

F = x1N
H
4 + F̃ , F̃ ∈ F[x1, x2, x3].

By Lemma 3.5.6 we may write fR =
∑

i f̃R,i(x1N
H
4 )i and so we may nontrivially

divide fR by F . Thus we write fR = f̃QF + f̃R where degx4(f̃R) = 0. Utilising

the same arguments as Lemma 3.5.5 indicate that f̃Q, f̃R ∈ F[V ]G.

So we have

f = fQN
G
4 + f̃QF + f̃R, f̃R ∈ F[x1, x2, x3]G = F[x1, x2, N

G
3 ].

All that remains to show is that fQ and f̃Q belong to F[x1, x2, N
G
3 , N

G
4 , F ].
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If degx4(f̃Q) = 0 then f̃Q ∈ F[x1, x2, x3]G = F[x1, x2, N
G
3 ] as required. Other-

wise apply the same deconstruction of f to f̃Q to acquire f̃Q =
˜̃
fQF +

˜̃
fR. Then

degx4(
˜̃
fQ) < degx4(f̃Q). A simple induction argument then yields what we desire.

The same argument may be applied to fQ: If degx4(fQ) = 0 then the result

holds. Otherwise deconstruct fQ = f ′QN
G
4 + f̃Q

′
F + f̃R

′
. For this we have shown

that f̃Q
′
, f̃R

′
∈ F[x1, x2, N

G
3 , F ] and degx4(f

′
Q) < degx4(fQ) from which the result

follows by induction.

We have shown that fQ, f̃Q, f̃R ∈ F[x1, x2, N
G
3 , N

G
4 , F ] and thus so must f .

Our aim was to determine the invariants of the groupG = 〈σ(1, 0, 0), σ(c1, c2, 0)〉
with cp1 = c1. This being the case we may instead writeG = 〈σ(1, 0, 0), σ(0, c2, 0)〉.
Thus the invariant theory of G is covered by Proposition 3.5.3 and it consequently

has Cohen-Macaulay invariants.

It would be remiss of us to include this example and Theorem 3.5.2 if the

cp1 6= c1 case were to have the same fate.

Case 2: cp1 6= c1

Let Z2
p
∼= G ≤ GL(V ) be of the form

〈
σ1 =

 1 2 0 1
0 1 0 1
0 0 1 0
0 0 0 1

 , σ2 =

 1 2c1 2c2 c2
1

0 1 0 c1

0 0 1 0
0 0 0 1

〉

for which c2 6= 0 and cp1 6= c1. We show that F[V ]G is not Cohen-Macaulay. For

convenience define δ := x2
3 − x1x4 ∈ F[V ]σ1 . Then

F1 := R(Nσ1
3 , δ, σ2) ∈ F[V ]G

is an invariant with degree 1 in x4. Thus F[V ]G[x−1
1 ] = F[x1, x2, N

G
3 , F1][x−1

1 ]

and so applying the SAGBI/Divide-by-x1 algorithm to {x1, x2, N
G
3 , N

G
4 , F1} shall

yield a SAGBI basis.

For convenience denote H = 〈σ1〉. We enlist the aid of the invariant

F2 := NG
H (δ) = x2p

3 − x
p
1x

p
4 − (c2x1x2)p−1(x2

3 − x1x4).
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This has lead term x2p
3 and thus we consider the h.s.o.p {x1, x2, F2, N

G
4 } for F[V ]G.

One may easily verify that

F1F
p−1
2

2 − c2x2N
G
3 ∈ x

p−1
1 F[V ]G.

Then in the image of the quotient F[V ]G/(x1, x2)F[V ]G yields F1F
p−1
2

2 = 0. We

then use this to show that F2 is a zero divisor in F[V ]G/(x1, x2)F[V ]G and thus

{x1, x2, F2} is not a regular sequence. Since it is a partial h.s.o.p for F[V ]G it

would then follow by Lemma 3.1.11 that F[V ]G is not Cohen-Macaulay.

We need only show that F1F
p−3
2

2 is not in the ideal. This requires the following

slightly technical lemmas.

Lemma 3.5.7. Let m = δa1(NH
3 )a2(NH

4 )a3 for a1 < p and deg(m) < p2.

1. If a3 > 0 then LM(m · (σ2 − 1)) = x
2a1+p(a2+1)
3 x

p(a3−1)
4 ,

2. If a3 = 0 and a1 > 0 then LM(m · (σ2 − 1)) = x1x2x
2(a1−1)+pa2
3 ,

3. If a3 = a1 = 0 then LM(m · (σ2 − 1)) = xp1x
p(a2−1)
3 .

Proof. Note that

m · (σ2 − 1) = (δ · σ2)a1(NH
3 · σ2)a2(NH

4 · σ2)a3 − δa1(NH
3 )a2(NH

4 )a3

=
∑

i=0,...,a1
j=0,...,a2
k=0,...,a3

(i,j,k)6=(a1,a2,a3)

(
a1
i

)(
a2
j

)(
a3
k

)
δi(δ ·∆)a1−i(NH

3 )j(NH
3 ·∆)a2−j(NH

4 )k(NH
4 ·∆)a3−k.

The largest term possible in the format of the summand above would be for

(i, j, k) = (a1, a2, a3) which is, alas, absent. Hence the process of determining the

largest term possible is a game of damage limitation, in choosing which of i, j or

k to reduce by 1 in order to minimise the drop in term order.

Note that LM(δ · ∆) = x1x2, LM(NH
3 · ∆) = xp1 and LM(NH

4 · ∆) = xp3.

Hence if a3 6= 0 the best case is to examine (i, j, k) = (a1, a2, a3 − 1) and thus

LM(m · (σ2 − 1)) = LM(δa1Na2
3 Na3−1

4 (NH
4 ·∆))

= x2a1
3 xpa23 x

p(a3−1)
4 xp3 = x

2a1+p(a2+1)
3 x

p(a3−1)
4 .
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Otherwise if a3 = 0 but a1 6= 0 then the next best case is to take (i, j, k) =

(a1 − 1, a2, 0) to acquire

LM(m · (σ2 − 1)) = LM(δa1−1(δ ·∆)Na2
3 ) = x

2(a1−1)
3 x1x2x

pa2
3 = x1x2x

2(a1−1)+pa2
3 .

Finally if a1 = a3 = 0 then our only choice is to take (i, j, k) = (0, a2 − 1, 0) with

lead monomial

LM(m · (σ2 − 1)) = LM(Na2−1
3 (NH

3 ·∆)) = xp1x
p(a2−1)
3 .

Lemma 3.5.8. Let G and F1, F2 be as above. Then F1F
p−3
2

2 /∈ (x1, x2)F[V ]G.

Proof. Note that LM(F1F
p−3
2

2 ) = x2x
p(p−2)
3 . Hence if F1F

p−3
2

2 ∈ (x1, x2)F[V ]G

then there must exist an invariant f ∈ F[V ]G with lead term x
p(p−2)
3 . We prove

that no such element exists.

Since F[V ]G ⊂ F[V ]H = F[x1, x2, N
H
3 , N

H
4 , δ] any invariant of G may be writ-

ten in terms of these given generators. The only relation governing these allows

us to ensure that any power of δ of at least p may be rewritten in other terms.

Suppose f ∈ F[V ]G has lead term x
p(p−2)
3 . Then we may write an expres-

sion for f in the generators of F[V ]H with (NH
3 )p−2 as a ‘lead term’. Observe

that LM((NH
3 )p−2 · (σ2 − 1)) = xp1x

p(p−3)
3 . Lemma 3.5.7 tells us, however, that

there exists no other monomial in F[x1, x2, N
H
3 , N

H
4 , δ] which yields the same lead

monomial when acted upon by σ2 − 1.

Moreover since each monomial yields a different lead term under this action

no sum of monomials in these elements could yield this lead term either. As such

no polynomial in F[V ]H can cancel the terms we demand. Hence (NH
2 )p−2 cannot

be the ‘lead term’ of an invariant under G. The result then follows.

It thus follows from this that F[V ]G is non-Cohen-Macaulay: since F1F
p−3
2

2 /∈
(x1, x2)F[V ]G and F1F

p−1
2

2 ∈ (x1, x2)F[V ]G we see that x1, x2, F2, whilst being part

of an h.s.o.p, do not form a regular sequence, thus violating the Cohen-Macaulay

property.
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Conclusion

This section dealt with the invariant fields of hook groups, remarkable for their

property of being entirely populated by bireflections. It is known that if a rep-

resentation’s invariant ring is to be Cohen-Macaulay it must be generated by

bireflections. Whilst we have demonstrated that any potential converse relation

is fickle, these examples may be of use in helping determine a sufficient require-

ment.

3.6 Invariants of Modular Four-Dimensional Zrp-
Representations

In this section we collate our efforts toward the invariants of 4-dimensional modu-

lar Zrp-representations. We restrict our focus to rank 2 although we make explicit

some of the techniques which extend easily to further ranks. We borrow heavily

from Section 2.7 in which we parameterised all four-dimensional modular Zrp-
representations.

Here we determine which 4-dimensional modular representations of Z2
p have

Cohen-Macaulay invariant rings and in such cases provide generating sets in the

form of SAGBI bases. In each non-Cohen-Macaulay case we provide generators

for the localised invariant ring and thence sets upon which one can apply the

SAGBI/Divide-By-x1 algorithm to procure a SAGBI basis.

3.6.1 Representation Theory Recap

For ease of translation from Section 2.7 we recap the notion of a socle tabloid.

If P ≤ GL(V ) is a modular p-group representation, by Proposition 2.2.2 we

may construct a basis for V which conforms to the socle series of V and whose

dual conforms to the socle series of V ∗, up to some permutation. Given such a

basis we construct the socle tabloid of P (or V ) as the tabloid containing j in row

i for every v in the basis with strict inclusions v ∈ Soci(V ) and v∗ ∈ Socj(V
∗).

Proposition 2.2.5 tells us that this tabloid is irrespective of basis chosen.

In Section 2.7.4 we assigned a single homomorphism σδ : (Fd,+) → GL4(F)

for each valid socle tabloid δ in dimension 4. Collectively the images of these
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homomorphisms contain the images of all four-dimensional Zrp representations

up to conjugacy.

As in Section 2.7.4 we omit any representations with trivial free summands

since their invariants reduce to a lower-dimensional problem.

3.6.2 Invariants in Socle-Length 2

Representations with socle-type (1, 3) are Nakajima and thus their invariant rings

are polynomial and known. Those representations with socle-type (3, 1) are hy-

perplane representations and thus their invariants are dealt with both in [8] and

Section 3.2.

Those which remain have socle-type (2, 2) and so socle tabloid 2 2
1 1 . Since

these have a codimension 2 socle their invariants must be Cohen-Macaulay. An

incomplete treatise on these exists within Section 3.4 although not particularly

systematically. We focus on those representation with rank 2.

Recall from earlier sections the notation

C :=

[
I2 C
0 I2

]
, R(f1, f2, σ) := gcd(f1 ·∆, f2 ·∆)−1

∣∣∣∣ f1 f1 ·∆
f2 f2 ·∆

∣∣∣∣
for f, g ∈ F[V ], σ ∈ G and ∆ := σ − 1. We shall find use in the element

δ := R
(
x3, x4, I2

)
= x2x3 − x1x4.

Proposition 3.6.1. Let Z2
p
∼= H ≤ GL(V ) have socle tabloid 2 2

1 1 . Then H is

conjugate to G where G is one of the following:

1.

〈
1 0
0 0

,
0 0
0 1

〉
, in which case F[V ]G = F[x1, x2, N

G
3 , N

G
4 ].

2.

〈
σ1 :=

1 0
0 1

, σ2 :=
α 0
0 0

〉
for αp 6= α. Then

F[V ]G = F[x1, x2, N
G
3 , N

G
4 ][R(N

〈σ1〉
3 , N

〈σ1〉
4 , σ2)]

3.

〈
1 0
0 1

,
α 0
0 α

〉
for αp 6= α. Then V = 2V2 and thus

F[V ]G = F[x1, x2, N
G
3 , N

G
4 ][δ].
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4.

〈
σ1 :=

1 0
0 1

, σ2 :=
α 0
0 β

〉
for αp 6= α, βp 6= β and α 6= β. Then

F[V ]G = F[x1, x2, N
G
3 , N

G
4 ][R(N

〈σ1〉
3 , δ, σ2),R(N

〈σ1〉
4 , δ, σ2)].

5.

〈
σ1 :=

1 0
0 1

, σ2 :=
α 1
0 α

〉
for αp 6= α. Then

F[V ]G = F[x1, x2, N
G
4 , R1 := R(N

〈σ1〉
3 , δ, σ2), R2].

where R2 is acquired by subducting the tête-à-tête difference NG
3 −R

p
1.

Furthermore F[V ]H is a complete intersection.

Proof. Two matrices C and D are equivalent only if D = A1CA
−1
2 for some

A1, A2 ∈ GL2(F).

Any representation with socle tabloid 2 2
1 1 must contain an element C for

which det(C) 6= 0, lest the dimension of Soc(V ) or Soc(V ∗) rise. We thus choose

our basis such that our first generator is I2 and our second generator is chosen

up to similarity of its corner matrix.

We then take our second generator D such that D is in Jordan normal form.

The possibilities here yield cases 1 – 5.

Case 1, in which D is singular with eigenvalue in Fp, is immediate from the

Nakajima property and Lemma 3.1.6.

Case 2, in which D is singular with eigenvalue outside of Fp, has a nontrivial

Nakajima subgroup and its invariant ring follows immediately from Proposition

3.4.6.

Case 3, in which D has repeated eigenvalues, is the vector invariant case and

thus follows from Proposition 3.4.9.

The remaining cases – non-repeating eigenvalues, and a 2× 2 Jordan Block –

require more work.

Since δ is invariant under σ1 := I2 we have use of the invariantR(N
〈σ1〉
3 , δ, σ2).

By construction this has degree 1 in x4 and so by Proposition 3.4.8 applying the

SAGBI/Divide-by-x1 algorithm to the set {x1, x2, N
G
3 , N

G
4 ,R(N

〈σ1〉
3 , δ, σ2)} shall

yield a SAGBI basis for F[V ]G.
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For case 4 we apply the algorithm to the extended set

B4 := {x1, x2, N
G
3 , N

G
4 ,R(N

〈σ1〉
3 , δ, σ2),R(N

〈σ1〉
4 , δ, σ2)}.

Note that (up to choice of coefficient)

R1 := R(N
〈σ1〉
3 , δ, σ2) = (β − α)x2(xp3 − x

p−1
1 x3) + (β − βp)xp−1

1 (x2x3 − x1x4)

R2 := R(N
〈σ1〉
4 , δ, σ2) = (β − α)x1(xp4 − x

p−1
2 x4) + (α− αp)xp−1

2 (x2x3 − x1x4).

Hence one may observe the relations

Rp
1 =

(β − βp)p

α− β
xp

2−1
1 R2 +

(β − βp)p − (β − αp)
β − α

x
p(p−1)
1 xp−1

2 R1 + (β − α)pxp2N
G
3 ,

(3.4)

Rp
2 =

(α− αp)p

β − α
xp

2−1
2 R1 +

(α− αp)p − (α− βp)
α− β

xp−1
1 x

p(p−1)
2 R2 + (β − α)pxp1N

G
4 .

(3.5)

Subducting the tête-à-tête difference (β − α)−pRp
1 − x

p
2N

G
3 yields relation (3.4).

Subducting the tête-à-tête difference (α − αp)−pRp
2 − (β − α)−1R1x

p2−1
2 yields

relation (3.5). Any other tête-à-tête is equivalent to a combination of these and

so subduct to zero. Thus by Proposition 3.1.13 B4 is a SAGBI basis for F[V ]G.

Finally in case 5 we begin with the set consisting of x1, x2,

NG
3 = xp

2

3 − x
p(p−1)
1 xp3 − (αp − α)p−1x

p(p−1)
1 (xp3 − x

p−1
1 x3)

NG
4 = xp

2

4 − x
p(p−1)
2 xp4 − ((αp − α)xp2 − x1x

p−1
2 + xp1)p−1(xp4 − x

p−1
2 x4)

R1 := R(N
〈σ1〉
3 , δ, σ2) = (αp − α)xp−2

1 (x2x3 − x1x4) + xp3 − x
p−1
1 x3.

Preempting the initial subduction of this set we define

R2 := xp+1
2 x3 − x1

(
xp2x3

αp − α
+ xp2x4

)
+
x2

1x
p
4 + xp1x2x3 − xp+1

1 x4

αp − α
∈ F[V ]G.

Then the first subduction yields the relation

NG
3 −R

p
1 = (αp−α)px

p(p−2)
1 xp2R1 +(αp−α)p+1x

(p+1)(p−2)
1 R2 +(αp−α)p−1x

p(p−1)
1 R1.

Thus by introducing R2 to our set NG
3 is redundant and can be removed. Hence

we continue with the set {x1, x2, N
G
4 , R1, R2}. The only tête-à-tête arising from
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this set yields the rather unpleasant expression

Rp
2 − x

p(p+1)
2 R1 = (α− αp)xp−2

1 xp
2

2 R2 +
xp1x

p2

2 R1

(α− αp)p
+
x

2(p−1)
1 x

p(p−1)
2 R2

(αp − α)p−1
+

x2p
1 N

G
4

(αp − α)p

+ x
2(p−1)
1

(
xp2 +

xp1 − x1x
p−1
2

αp − α

)p−1

R2 +
xp

2

1 x
p
2R1

(αp − α)p
− xp

2+p−2
1 R2

(αp − α)p−1
.

Verifying this is a matter of computation, but it yields the end of the algorithm

and thus the confirmation of the result.

3.6.3 Socle-Type (2,1,1) Invariants

In this section we calculate SAGBI bases for the invariant rings for each modular

representation of Z2
p with socle-type (2, 1, 1). The only case to examine are those

representations with socle tabloid
3 2
2
1

.

Recall the polynomial δ2 := x1x3 − x2
2 from the study of socle-type (1, 1, 1)

representations. Since this action sits within our own here, δ2 ought to be equally

useful.

Proposition 3.6.2. Let Z2
p
∼= H ≤ GL(V ) have socle tabloid

3 2
2
1

. Then H is

conjugate to one of the following.

� G =

〈
σ1 :=

 1 0 0 0
0 1 2 1
0 0 1 1
0 0 0 1

 , σ2 :=

 1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

〉 in which case

F[V ]G = F[x1, x2, x3]〈σ1〉[N
〈σ2〉
4 ] = F[x1, δ2, N

〈σ1〉
2 , N

〈σ1〉
3 , N

〈σ2〉
4 ].

� G =

〈 1 0 0 0
0 1 2 1
0 0 1 1
0 0 0 1

 ,
 1 0 0 1

0 1 2c c2

0 0 1 c
0 0 0 1

〉 in which case

F[V ]G = F[x1, δ2, N
G
3 , N

G
4 , F1, F2]

where F1 = xp2−x
p−1
1 ((cp− c)x4 +x2) is generated as in Theorem 3.3.4 and

F2 :=
δp2 + F 2

1

2(cp − c)xp−1
1

= xp1x
p
3 − x

2p
2 + (xp2 − x

p−1
1 ((cp − c)x4 + x2))2
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Proof. As per Section 2.7 our representation may be written in the form

〈 1 0 0 0
0 1 2 1
0 0 1 1
0 0 0 1

 ,
 1 0 0 1

0 1 2c c2

0 0 1 c
0 0 0 1

〉

for some c ∈ F. If cp = c then we are in case 1. Any socle-type (m, 1, . . . , 1)

representation G generated by W ≤ (Fn−1,+) which can be written W = {c+d
∣∣

c ∈ W1, d ∈ W2} for

W1 = {c ∈ W
∣∣ cn−m+1 = · · · = cn−1 = 0},

W2 = {d ∈ W
∣∣ d1 = · · · = dn−m = 0}

then satisfies

F[V ]G = F[x1, . . . , xn+m−1]σ1n−m+1 (W1)[N
σ(W2)
n−m+2, . . . , N

σ(W2)
n ].

Thus the problem reduces to examining a socle-type 1n−m+1 representation. In

this case the action of 〈σ1〉 is of a 3-dimensional cyclic representation, the invari-

ants of which are well known (see for instance [12] Theorem 4.10.1).

Case 2, in which cp 6= c, requires more work. We recall Theorem 3.3.4: The

maximal minors Γ[1, 2, 3
∣∣ 1, 2, 3], Γ[1, 2, 4

∣∣ 1, 2, 3] and Γ[1, 2, 5
∣∣ 1, 2, 3] of the

matrix

Γ :=


1 c x2/x1
1 cp xp2/xp1
1 cp

2

xp
2

2
/xp

2

1

0 0 δ/x21
0 1 x4/x1


yield, when their denominators are cleared, the invariants

f1 = (cp − c)xp
2

2 − (cp
2 − c)xp

2−p
1 xp2 + (cp − c)pxp

2−1
1 x2 = (cp − c)NG

2

f2 = (cp − c)δ

f3 = −xp2 + xp−1
1 ((cp − c)x4 + x2) = −F1.

Thus applying the SAGBI/Divide-By-x1 algorithm to the set {x1, N
G
2 , N

G
3 , N

G
4 , δ, F1}

shall yield a SAGBI basis for F[V ]G.
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Observe that

F p
1 −NG

2 = (cp − c)p−1x
p(p−1)
1 (F1 − (cp − c)NG

4 )

and thus we may remove NG
2 from consideration. The only remaining tête-à-

tête in the set yields the difference f 2
1 +δp. This difference has lead term xp−1

1 xp2x4

which we cannot cancel with our current elements. Hence we define F2 from this

process as in the statement.

With the subsequent set {x1, N
G
3 , N

G
4 , δ, F1, F2} the only remaining nontrivial

tête-à-tête arising from this subducts to

X := F p
2 + F p

1N
G
4 +

F p+1
1

(cp − c)p
− cp

2 − c
(cp − c)p

xp−1
1 F p−1

1 F2 +
xp−1

1 δ(p2+1)/2

cp − c

with LT (X) =
xp1x

p2

3

2(cp−c)p . By replacing NG
3 with x−p1 X we acquire our SAGBI basis

and thus the result follows.

3.6.4 Socle-Type (1,2,1) Invariants

Recall from Section 2.7.4 that representations with socle-type (1, 2, 1) may have

either dual-type (1, 2, 1) or (2, 1, 1). We consider these separately.

Case 1: Dual-type (1, 2, 1)

Recall from Section 2.7.4 that Z2
p-representations with both socle-type and dual-

type (1, 2, 1) can exist for p = 2 and thus have their own specialised homomor-

phism. However we opt to distinguish between the p = 2 and p > 2 case by

electing different computationally convenient forms.

Proposition 3.6.3. Let Z2
p
∼= H ≤ GL(V ) have socle tabloid

3
2 2
1

. Then H is

equivalent to one of the following:

1. G =

〈 1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,
 1 0 1 0

0 1 0 1
0 0 1 0
0 0 0 1

〉 for p = 2. Then

F[V ]G = F[x1, N
G
2 , N

G
3 , N

G
4 , δ, F ]
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where δ := x2x3 + x1x4 and F := (δ2 +NG
2 N

G
3 )/x1.

2. G =

〈 1 2 0 1
0 1 0 1
0 0 1 0
0 0 0 1

 ,
 1 2c1 2c2 c2

1 + c2
2

0 1 0 c1

0 0 1 c2

0 0 0 1

〉 for p > 2, c2 6= 0. Then

F[V ]G = F[x1, N
G
2 , N

G
4 , δ, f1, f2]

for the invariants

δ := x2
3 + x2

2 − x1x4, f1 := xp3 − x
p−1
1

(
x3 +

cp1 − c1

c2

x2

)
,

f2 :=
1

2xp−1
1

[
δp − f 2

1 − (NG
2 )2 − 2xp−1

1 δ(p+1)/2
]

In both cases the given generating set is a SAGBI basis and F[V ]G is a complete

intersection.

Proof. The equivalences follow from the classification in Section 2.7.4.

If p = 2 then we arrive in case 1. By augmenting Theorem 3.5.1 by including

the requisite norms and applying the SAGBI/Divide-by-x1 algorithm to the set

{x1, N
G
2 , N

G
3 , N

G
4 , δ} ⊂ F[V ]G we acquire a SAGBI basis. Since

NG
2 = x2

2 + x1x2, NG
3 = x2

3 + x1x3, δ = x2x3 + x1x4

the only tête-à-tête in this set yields difference δ2 −NG
2 N

G
3 . We then take

F := x−1
1 (δ2 +NG

2 N
G
3 ) = x2x

2
3 + x2

2x3 + x1(x2
4 + x2x3).

to add to our set. The remaining nontrivial tête-à-tête difference in this set

eventually subducts to

x−2
1

(
F 2 +NG

2 N
G
3 (NG

3 +NG
2 ) + x1F (NG

3 +NG
2 + δ)

)
= x4

4 + L.O.T.s.

Replacing NG
4 with this yields a SAGBI basis from which the result follows.

Now suppose p > 2 and define δ as in the statement. Since LT (δ) = x2
3 and

f1 ∈ F[x1, x2, x3]G has minimal degree degx3(f1) = p, by Theorem 3.5.1 if we

apply the SAGBI/Divide-by-x1 algorithm to the set {x1, N
G
2 , N

G
4 , δ, f1} we shall
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acquire a SAGBI basis for F[V ]G.

The sole nontrivial tête-à-tête in our set is LT (δp) = LT (f 2
1 ), subducting

the difference of which yields our construction for f2. Subducting the remaining

tête-à-tête difference – as detailed in appendix C – reduces to an invariant with

lead term of the form xp1x
p2

4 . Factoring out the xp1 from this yields an invariant

with lead term xp
2

4 with which we can replace NG
4 thus effectively terminating

the process.

Case 2: Dual-Type (2, 1, 1)

It remains to examine the Z2
p-representations with socle-type (1, 2, 1) and dual-

type (2, 1, 1). Fortunately the graft has already been undertaken in Section 3.5.5.

Proposition 3.6.4. Let Z2
p
∼= G ≤ GL(V ) have socle tabloid

3
2 1
1

. Then up to

conjugacy G =

〈 1 2 0 1
0 1 0 1
0 0 1 0
0 0 0 1

 ,
 1 2c1 2c2 c2

1

0 1 0 c1

0 0 1 0
0 0 0 1

〉.

� If cp1 = c1 then we may take c1 = 0. If we then define

F := x1N
〈σ(0,c2,0)〉
4 −

[
(2xp+1

3 − xp−1
1 x2

3)− cp−1
2 xp−1

2 x2
3

]
then

F[V ]G = F[x1, x2, N
G
3 , N

G
4 , F ]

is a complete intersection and the given generating set is a SAGBI basis.

� If cp1 6= c1 then F[V ]G is not Cohen-Macaulay, as shown in Section 3.5.5.

Defining δ = x2
3−x1x4, applying the SAGBI/Divide-By-x1 algorithm to the

set

{x1, x2, N
G
3 , N

G
4 ,R(N

σ(1,0,0)
2 , δ, σ(c1, c2, 0))}

yields a SAGBI basis for F[V ]G.

Proof. By Section 2.5.2 any Zrp-representation with socle-type (1, 2, 1) and dual-
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type (2, 1, 1) exists up to equivalence in the image of the homomorphism

σ : (F3,+)→ GL4(F), σ(c1, c2, c3) =

 1 2c1 2c2 c2
1 + c3

0 1 0 c1

0 0 1 0
0 0 0 1

 .
Then any Z2

p-representation is of the form G = 〈σ(1, 0, 0), σ(c1, c2, 0)〉 up to equiv-

alence. If cp1 = c1 then the invariants of G come under the purview of Proposition

3.5.3. Otherwise if cp1 6= c1 the result is a reiteration of Section 3.5.5.

3.6.5 Socle-Type (1,1,1,1) Invariants

Representations with socle-type (1, 1, 1, 1) have images, up to conjugacy, within

the image of σ14 : (F3,+)→ GL(V ) where

σ14(c1, c2, c3) =

 1 3c1 3(c2
1 + c2) c3

1 + 3c1c2 + c3

0 1 2c1 c2
1 + c2

0 0 1 c1

0 0 0 1

 .
Since there must exist an element σ14(c) in such representations with c1 6= 0 the

group cannot be generated by bireflections, violating the conditions of Lemma

3.1.10. Thus we do not have Cohen-Macaulay invariant rings. However we may

always, up to conjugacy, take this element to be σ14(1, 0, 0).

Recall from Section 3.3.2 the following constructions. Define δ1 := x2 and

δ` := x`+1x
`−1
1 −B`(δ1, . . . , δ`−1, 0)

where Bm(c) are the exponential Bell polynomials. Explicitly we shall use

δ1 = x2, δ2 = x1x3 − x2
2, δ3 = x2

1x4 + 2x3
2 − 3x1x2x3.

Given a representation G = 〈σ14(1, 0, 0), σ14(c1, c2, c3)〉 and α = (α1, α2, α3) ∈ N3
0
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for which
∑
αi = 2, construct the matrix

Γα :=



1 c1 δ1/x1
...

1 cp
α1−1

1 (δ1/x1)p
α1−1

0 c2 δ2/x
2
1

...

0 cp
α2−1

2 (δ2/x
2
1)p

α2−1

0 c3 δ3/x
3
1

...

0 cp
α3−1

3 (δ3/x
3
1)p

α3−1

1 cp
α1

1 (δ1/x1)p
α1

0 cp
α2

2 (δ2/x
2
1)p

α2

0 cp
α3

3 (δ3/x
3
1)p

α3



.

From this we construct f̃α,i := Γ[1, 2, i + 2|1, 2, 3] ∈ F[V ]G[x−1
1 ] and thence clear

denominators to acquire fα,i for i = 1, 2, 3.

Proposition 3.6.5. Let Z2
p
∼= H ≤ GL(V ) have socle-type (1, 1, 1, 1). Then H

is conjugate to

〈σ14(1, 0, 0), σ14(c1, c2, c3)〉

for c 6= (γ, 0, 0) for any γ ∈ Fp.

� If cp1 6= c1 we let α = (2, 0, 0). Then applying the SAGBI/Divide-By-x1

algorithm to the set

{x1, N
G
2 , N

G
3 , N

G
4 , fα,2, fα,3}

shall yield a SAGBI basis for F[V ]G.

� If cp1 = c1 and c2 6= 0 then take c1 = 0. We take α = (1, 1, 0). Then applying

the SAGBI/Divide-By-x1 algorithm to the set

{x1, N
G
2 , N

G
3 , N

G
4 , fα,2 = c2N

G(δ2), fα,3 = c2δ3 − c3x1δ2}

shall yield a SAGBI basis for F[V ]G.

� If cp1 = c1, c2 = 0 and c3 6= 0 than we take c1 = 0. We take α = (1, 0, 1).
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Then applying the SAGBI/Divide-By-x1 algorithm to the set

{x1, N
G
2 , N

G
3 , N

G
4 , fα,2 = c3δ2, fα,3 = NG(δ3)}

shall yield a SAGBI basis for F[V ]G.

These results are corollaries of Theorem 3.3.4. All one need verify is the

proposed structures for fα,2 and fα,3.

Conclusion

This section culminates the work of the document into examining the invariants

of all modular Z2
p-representations. A variety of directions lay beyond this work:

One may wish to determine the non-C-M invariant rings, extend to rank 3 rep-

resentations, or jump to 5-dimensional representations in rank 2. Some of these

cases have already been partially examined in this work and in the literature.

Alas we conclude here.

3.7 Conclusion of Invariant Theory

Here we conclude the document with some thoughts as to the work on invariants

we have procured. We examine where this work may assist in open problems and

the further questions this work raises.

3.7.1 Cohen-Macaulayness in Dimension 4

The progenitor of this document [11] classified all 3-dimensional modular rep-

resentations of Zrp. Every such representation has a Cohen-Macaulay invariant

ring, something that fails to hold for dimension 4.

In order for a modular representation to have a Cohen-Macaulay invariant

ring it must be generated by bireflections. The extreme case of this for which

dim(V G) = dim(V )− 2 is sufficient to ensure Cohen-Macaulay. The representa-

tions with socle-type (2, 2) and (2, 1, 1) all possess this feature, whilst those with

socle-type (3, 1) and (1, 3) have polynomial invariant ring. Socle-type (1, 1, 1, 1)

representations never have Cohen-Macaulay invariants.
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It is socle-type (1, 2, 1) which remains outstanding. Section 3.5.5 illustrates

that examples therein exist even in rank 2 with and without the Cohen-Macaulay

property. We would like to know under what conditions such representations have

Cohen-Macaulay invariant rings. Since the only non-Cohen-Macaulay case given

exists under the socle tabloid
3
2 1
1

, that is dual-type (2, 1, 1), perhaps are those

with tabloid
3
2 2
1

more well-behaved? Since the latter have a full set of recovery

functions perhaps this may be explored further.

Section 3.5 focused on hook groups for this reason; Since hook groups con-

sist entirely of bireflections we’d like to know when exactly these have Cohen-

Macaulay invariant rings, (1, 2, 1) acting as the smallest uncertain prototype.

3.7.2 Ideal (m, 1, . . . , 1) Field Generators

In Section 3.3.2 we provide a construction for invariant field generators for rep-

resentations with socle-type (m, 1, . . . , 1). Furthermore we provide extensions to

this upon which one may apply the SAGBI/Divide-by-x1 algorithm to acquire a

SAGBI basis for the invariant ring. To ensure that this proceeds smoothly we

would desire an initial set with elements of minimal degree and with lead terms

which shall ultimately appear in the SAGBI basis.

Using recovery functions we constructed a matrix and a nonnegative integer

sequence used to acquire minors existing in the invariant field. In general the

largest integer chosen dictates how large the degree of our generators become.

Our method affords us no room for movement in these integers.

In [11], by use of the Plücker relations, we may lessen the degrees in the three-

dimensional case. We do not know to what extent this may be generalised. Indeed

their work focused on the ‘generic case’ whereas in Section 3.3.2 we are more spe-

cific. How or whether this generalises to arbitrary socle-type (m, 1, . . . , 1) is not

understood and yet is most desirable for computation and further understanding.

3.7.3 Symmetric Power Invariants

Given a two-dimensional Zrp-representation on V2 we consider the symmetric pow-

ers Symmm(V2). These exists in our framework as the socle-type 1n representa-
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tions with image of the form

〈
σ1n(c, 0, . . . , 0)

∣∣ c ∈ W〉
for some W ≤ (F,+) and σ1n as defined in Section 2.4. The invariants of the

symmetric square case were dealt with in [11] and shown to be hypersurfaces.

The cyclic case – i.e where W = Fp – is particularly notable, since the inde-

composable representations are all of this form. Their invariant rings, after being

conjectured in [27], were shown to be have SAGBI bases generated by norms,

transfers and integral (i.e. characteristic-independent) elements in [29].

One might hope that extension into arbitrarily ranked elementary abelian

p-group symmetric powers we might acquire a similar result, say generation by

relative norms, relative transfers and integral invariants. To this end [17] provides

a degree bound of |G|−dim(V ) above which such constructions suffice, and below

which we might expect only integral invariants to exist. This is not, however, the

case.

In dimension n = 4 for W = Fp2 we already see examples with SAGBI bases

with lead terms not acquirable from these constructions alone. For instance when

p = 5 there exists an element with lead term x3
2x

18
3 . If H := σ14(F5, 0, . . . , 0) then

we may construct such an invariant in the form TrGH
(
(NH

4 )3 · TrH(x3
3x

4
4)
)
/x1 but

one can show through exhaustive calculation that such a lead term is unobtainable

through relative norms and relative transfers alone.

Since this lead term does not appear for p = 7 however we cannot consider

this an integral invariant either. This case has its own elusive lead terms, for

instance, x5
2x

40
3 .

The author has yet to find a situation in which including elements of the

form TrGH((NH
4 )i,TrH(xj3x

k
4))/x1 does not complete the SAGBI basis in rank 2.

The cyclic calculations utilise the structural properties of the symmetric powers

explored in [2] and [19]. Alas these decompositions no longer necessarily hold

in the elementary abelian p-group case. We believe this goes some way toward

explaining this irregularity. Naturally more careful examination is required before

conclusions can be drawn.
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Appendix A

Incongruent Two-Dimensional

Subspaces of Sym3(F)

We prove the following result which is of use classifying the modular Zrp-representations

with dual-type (1, 3, 2). We work over an algebraically closed field F = F of char-

acteristic p > 2.

Define Symm(F) denotes the set of all m ×m symmetric matrices over F. A

subspace S ≤ Symm(F) is called degenerate if ker(S) := ∩M∈S ker(M) 6= {0}.
Let GL3(F) act on Symm(F) by congruence.

Lemma A.1. Any nondegenerate two-dimensional subspace of Sym3(F) is GL3(F)-

congruent to a space generated by one of the following:

S1 :=


 1 0 0

0 0 0
0 0 0

 ,
 0 0 0

0 1 0
0 0 1

 , S2 :=


 1 0 0

0 0 0
0 0 0

 ,
 0 0 1

0 1 0
1 0 0


S3 :=


 1 0 0

0 1 0
0 0 0

 ,
 1 0 0

0 0 0
0 0 1

 , S4 :=


 1 0 0

0 1 0
0 0 0

 ,
 1 0 1

0 0 0
1 0 0


S5 :=


 1 0 1

0 1 0
1 0 0

 ,
 0 1 0

1 0 0
0 0 0

 , S6 :=


 0 1 0

1 0 0
0 0 0

 ,
 0 0 0

0 0 1
0 1 0


Proof. Suppose our subspace S ≤ Sym3(F) contains an element of rank 1. Up to

173
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congruence we may choose our basis to be

D1 :=

 1 0 0
0 0 0
0 0 0

 , A :=

 0 a12 a13

a12 a22 a23

a13 a23 a33

 .
Furthermore we can ensure that the submatrix A′ :=

[
a22 a23

a23 a33

]
is diagonal

with 0 and 1 entries. This cannot have rank 0 lest we acquire a degenerate case.

If rank(A′) = 2 then up to congruence we have A′ = I2. Thence −1 0 0
a12 0 1
a13 1 0

T  0 a12 a13

a12 1 0
a13 0 1

 −1 0 0
a12 0 1
a13 1 0

 =

 −a2
12 − a2

13 0 0
0 1 0
0 0 1


and, by observing that this doesn’t alter D1, we acquire the orbit of S1.

If instead rank(A′) = 1 we may take A′ =

[
1 0
0 0

]
. Then a13 6= 0 to ensure

non-degeneracy. By observing that the congruence action 1 0 0
0 1 0
0 −a12

a13
1
a13

T  0 a12 a13

a12 1 0
a13 0 0

 1 0 0
0 1 0
0 −a12

a13
1
a13

 =

 0 0 1
0 1 0
1 0 0


does not alter D1 we thus acquire the orbit of S2.

Now consider the case where our subspace contains no element of rank 1.

Given two elements of rank 3 an F-linear combination exists of rank 2 (since

p > 2), and thus we can ensure a basis of the form

D2 :=

 1 0 0
0 1 0
0 0 0

 , A :=

 a11 a12 a13

a12 a22 a23

a13 a23 a33

 .
Once again we can diagonalise the block diagonal area of A not covered by D2.

This leaves only a33 and so we can ensure that this entry is either 0 or 1.

Case 1: If a33 6= 0 then by using the congruence matrix

 −1 0 0
0 1 0
a13
a33
−a23
a33
− 1√

a33





APPENDIX A. TWO-DIMENSIONAL SUBSPACES OF SYM3(F) 175

we can choose basis

D2 =

 1 0 0
0 1 0
0 0 0

 , A =

 a11 a12 0
a12 a22 0
0 0 1

 .
Thence to preserve D2 we can choose A′ =

[
a11 a12

a12 a22

]
up to orthogonal congru-

ence. Since our subspace contains no rank 1 elements A′ is nonzero. Furthermore

by Theorem 27 of [1] two symmetric matrices are orthogonally congruent if and

only if they are similar (when p > 2 and F = F). Yet further, since

det(A′ + αI2)− det(A′) = α(tr(A′) + α)

we can always add multiples of D2 to A to ensure A′ has rank 1.

If A′ is diagonalisable then we acquire the case

S3 :=


 1 0 0

0 1 0
0 0 0

 ,
 1 0 0

0 0 0
0 0 1

 .

Otherwise A′ is similar to a matrix of the form

[
1

√
−1√

−1 −1

]
. This is, the

reader may agree, aesthetically unpleasant. By noting that 1 0 1
0 0

√
−1

0 1 0

T  1 0 0
0 1 0
0 0 0

 1 0 1
0 0

√
−1

0 1 0

 =

 1 0 1
0 0 0
1 0 0


 1 0 1

0 0
√
−1

0 1 0

T  1
√
−1 0√

−1 −1 0
0 0 −1

 1 0 1
0 0

√
−1

0 1 0

 =

 1 0 0
0 1 0
0 0 0


we instead acquire the S4 case.

Case 2: If a33 = 0 then since we care only for non-degenerate orbits one of

a13 and a23 is nonzero. By permuting basis and scaling A we can take a23 = 1.

Assuming that a13 6= ±
√
−1 we may take the matrix E defined as a13 a13

√
−1 1

1
√
−1 −a13

(a213−1)(a22−a11)−4a12a13
2(a213+1)

− 1 −
√
−1

(a213−1)(a11−a22−2)+4(a12a13−1)

2(a213+1)

a13(a22−a11)+a12(a213−1)

a213+1


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under which

a2
13a22 − 2a12a13 + a11

2(a2
13 + 1)2

ETD2E −
1

2(a2
13 + 1)

ETAE =

 1 0 0
0 1 0
0 0 0


1

a2
13 + 1

ETD2E =

 1
√
−1 0√

−1 −1 0
0 0 1

 .
and thus this case is equivalent to S4.

If instead a13 = ±
√
−1 but a11 6= a22 ± 2a12

√
−1 then taking E to be

1

8

 4a13 −8a13 0
−4 −8 0

−10a12a13 + 3(a11 − a22) 16a12a13 − 4(a11 − a22) −16a12a13 + 8(a11 − a22)


we acquire

ETD2E =

 0 1 0
1 0 0
0 0 0

 , ET (A− (a11 − 2a12a13)D2)E

a22 − a11 + 2a12a13

=

 1 0 1
0 1 0
1 0 0


thus yielding S5.

Finally if a13 = ±
√
−1 and a11 = a22 ± 2a12

√
−1 by taking

E :=
1√
2

 0 ±1 ±1
0

√
−1 −

√
−1

−
√
−1 ∓a12 ∓a12


we then acquire

ETD2E =

 0 0 0
0 0 1
0 1 0

 , ET (A− a22D2)E =

 0 1 0
1 0 0
0 0 0


thus yielding S6. The result then follows from straight-forward verification that

none of these six cases are congruent.



Appendix B

Plücker Relations and

Determinant Combinatorics

In this section we examine some consequences of the well-known Plücker relations

and their applications to hyperplane invariants examined in Section 3.2.

For an m ∈ N denote by m the ordered sequence 1, . . . ,m. If a sequence S has

entries in m we write S ⊂ m. We denote by Si the ith element of the sequence

and by S \ Si the sequence acquired by removing the ith term from S.

For an n × m matrix M and sequences R ⊂ n and C ⊂ m of the same

length, we denote by M [R
∣∣ C] the determinant of the matrix formed from the

rows and columns of M indexed by R and C respectively. Similarly we denote

by M{R
∣∣ C} the determinant of the matrix formed by removing the rows and

columns from M indexed by R and C respectively.

We utilise the Plücker relations in the following form.

Lemma B.1 (Plücker Relations). Let M be a n × m matrix with n > m. Let

R, S ⊂ n be sequences of length m− 1 and m+ 1 respectively. Then

m+1∑
i=1

M [R, Si
∣∣ m]M [S \ Si

∣∣ m] = 0.

Using this we posit the following, which the author suspects exists elsewhere

buried unknown, deep within some combinatorist’s archives.

Lemma B.2. Let M = [mi,j] be an n × r matrix with n > r. Let R, S ⊂ n be

177
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sequences of length r − 1 and 1 ≤ c1 < c2 ≤ r be integers. Then

M [R
∣∣ r \ c1]M [S

∣∣ r \ c2]−M [R
∣∣ r \ c2]M [S

∣∣ r \ c1]

= (−1)r
r−1∑
i=1

(−1)iM [R, Si
∣∣ r]M [S \ Si

∣∣ r \ {c1, c2}].

Proof. For the sake of the page width we adopt the notation

S{i1,...,is} := S \ {Si1 , . . . , Sis}.

The proof is a matter of expanding the right hand side of the proposed formula

with the Laplace expansion, applying the Plücker relations to the fallout and

simplifying to obtain the left hand side.

Expanding the minors M
[
R, Si

∣∣ r] along columns c1 and c2 on the right hand

side of the proposed equation we acquire

M
[
R, Sk

∣∣ r] = (−1)r+c2M
[
R
∣∣ r{c2}]mSk,c2 +

r−1∑
j=1

(−1)j+c2M
[
R{j}, Sk

∣∣ r{c2}]mRj ,c2

= (−1)r+c2mSk,c2

r−1∑
j=1

(−1)j+c1M
[
R{j}

∣∣ r{c1,c2}]mRj ,c1

+
r−1∑
j=1

(−1)j+c2mRj ,c2

(
(−1)r+c1−1M

[
R{j}

∣∣ r{c1,c2}]mSk,c1

+

(
j−1∑
i=1

−
r−1∑
i=j+1

)
(−1)i+c1M

[
R{i,j}, Sk

∣∣ r{c1,c2}]mRi,c1

)
.

Thus the right hand side of our proposed equation becomes

r−1∑
k=1

(−1)r+kM
[
S{k}

∣∣ r{c1,c2}]M[R, Sk ∣∣ r]
=

r−1∑
k=1

r−1∑
j=1

j−1∑
i=1

(−1)r+c1+c2+i+j+kmRj ,c2mRi,c1M [S{k}
∣∣ r{c1,c2}]M [R{i,j}, Sk

∣∣ r{c1,c2}]
−

r−1∑
k=1

r−1∑
j=1

r−1∑
i=j+1

(−1)r+c1+c2+i+j+kmRj ,c2mRi,c1M
[
S{k}

∣∣ r{c1,c2}]M[R{i,j}, Sk ∣∣ r{c1,c2}]
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+
r−1∑
k=1

r−1∑
j=1

(−1)c1+c2+j+kmRj ,c1mSk,c2M [S{k}
∣∣ r{c1,c2}]M [R{j}

∣∣ r{c1,c2}]
−

r−1∑
k=1

r−1∑
j=1

(−1)c1+c2+j+kmRj ,c2mSk,c1M [S{k}
∣∣ r{c1,c2}]M [R{j}

∣∣ r{c1,c2}].
Applying the Plücker relations as in Lemma B.1 to the matrix constructed by

removing columns c1 and c2 from M with the sequences R{i,j} and S we acquire

r−1∑
k=1

(−1)kM
[
S{k}

∣∣ r{c1,c2}]M[R{i,j}, Sk ∣∣ r{c1,c2}] = 0.

Thus the right-hand side of our proposed equation continues to reduce:

r−1∑
j=1

j−1∑
i=1

(−1)r+c1+c2+i+jmRj ,c2mRi,c1

r−1∑
k=1

(−1)kM [S{k}
∣∣ r{c1,c2}]M [R{i,j}, Sk

∣∣ r{c1,c2}]︸ ︷︷ ︸
=0

−
r−1∑
j=1

r−1∑
i=j+1

(−1)r+c1+c2+i+jmRj ,c2mRi,c1

r−1∑
k=1

(−1)kM
[
S{k}

∣∣ r{c1,c2}]M[R{i,j}, Sk ∣∣ r{c1,c2}]︸ ︷︷ ︸
=0

+
r−1∑
k=1

r−1∑
j=1

(−1)c1+c2+j+k
(
mRj ,c1mSk,c2 −mRj ,c2mSk,c1

)
M [S{k}

∣∣ r{c1,c2}]M [R{j}
∣∣ r{c1,c2}]

=
r−1∑
k=1

r−1∑
j=1

(−1)c1+c2+j+k
(
mRj ,c1mSk,c2 −mRj ,c2mSk,c1

)
M [S{k}

∣∣ r{c1,c2}]M [R{j}
∣∣ r{c1,c2}]

=

(
r−1∑
j=1

(−1)j+c1mRj ,c1M [R{j}
∣∣ r{c1,c2}])( r−1∑

k=1

(−1)k+c2mSk,c2M [S{k}
∣∣ r{c1,c2}])

−

(
r−1∑
j=1

(−1)j+c2mRj ,c2M [R{j}
∣∣ r{c1,c2}])( r−1∑

k=1

(−1)k+c1mSk,c1M [S{k}
∣∣ r{c1,c2}])

=
(
M
[
R
∣∣ r{c2}]) (−M[S ∣∣ r{c1}])− (M[R ∣∣ r{c1}]) (−M[S ∣∣ r{c2}])

= M
[
R
∣∣ r{c1}]M[S ∣∣ r{c2}]−M[R ∣∣ r{c2}]M[S ∣∣ r{c1}]

as required.

Whilst this result in its full generality is useful in the text we shall, on occasion,

only require the following corollary which would surprise the author greatly were
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it to turn out to be original.

Corollary B.3. Let A be an n × n matrix (n ≥ 3) and 1 ≤ r1 < r2 ≤ n and

1 ≤ c1 < c2 ≤ n. Then

det(A)A{r1, r2|c1, c2} = A{r1|c1}A{r2|c2} − A{r1|c2}A{r2|c1} (B.1)

Proof. Apply Lemma B.2 in the case r = n, and R = r \ r1 and S = r \ r2.



Appendix C

Subduction Calculations for

Socle-Type (1, 2, 1), Rank 2

Let F = F have characteristic p > 2 and define a the rank 2 matrix group

Z2
p
∼= G =

〈 1 2 0 1
0 1 0 1
0 0 1 0
0 0 0 1

 ,
 1 2c1 2c2 c2

1 + c2
2

0 1 0 c1

0 0 1 c2

0 0 0 1

〉

for c2 6= 0 as in Proposition 3.6.3. Consider the set {x1, N
G
2 , N

G
4 , δ, f1, f2} where

δ := x2
3 + x2

2 − x1x4, f1 := xp3 − x
p−1
1

(
x3 +

cp1 − c1

c2

x2

)
,

f2 :=
1

2xp−1
1

[
δp − f 2

1 − (NG
2 )2 − 2xp−1

1 δ(p+1)/2
]
.

Since LT (δ) = x2
3 and f1 ∈ F[x1, x2, x3]G has minimal degree degx3(f1) = p,

by Theorem 3.5.1 if we apply the SAGBI/Divide-by-x1 algorithm to the set

{x1, N
G
2 , N

G
4 , δ, f1} we shall acquire a SAGBI basis for F[V ]G. Here we show

that all tête-à-tête differences arising from this set subduct to zero and thus it

serves as a SAGBI basis for F[V ]G.

One may observe that the tête-à-tête difference δp − f 2
1 naturally gives rise

to the construction of f2. The only remaining tête-à-tête difference is given by

either
cp2f

p
2 + (cp1 − c1)pNG

2 f
p
1 if cp1 6= c1, or

fp2 + (NG
2 )2δ

p(p−1)
2 if cp1 = c1.

181
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We undertake each of these cases together denoting for the sake of brevity

f̂1 :=
cp1 − c1

c2

f1 + cp−1
2 NG

2 , f̂2 := f2 + δ(p+1)/2.

Lemma C.1. The invariant

F := cp2f
p
2 + (cp1 − c1)pNG

2 f
p
1 − c

p
2

[
δp − (NG

2 )2
] p+1

2
+ cp2δ

p(p+1)
2 − cp

2

2 (NG
2 )p+1

+ xp−1
1 c2p−1

2

(p+1)/2∑
i=1

(−1)i+
p+1
2

(p+1
2

i

)
δif̂2

p+1−2i
(f̂1

2
+ f 2

1 )i−1

+ f̂2

(p−1)/2∑
i=0

(−1)i+
p+1
2 f̂1

2i
fp−1−2i

1 + NG
2 f̂2

(p−1)/2∑
i=1

(−1)i+1f̂1

2i−1
fp−1−2i

1



= cp2f̂2

p
− cp2NG

2 f̂1

p
− cp2

[
δp − (NG

2 )2
] p+1

2
+
xp−1

1 c2p−1
2

f̂1

2
+ f 2

1

[(
δ(f̂1

2
+ f 2

1 )− f̂2

2
) p+1

2

+ f̂2

(
(−1)

p−1
2 f̂2

p
+ (−1)

p+1
2 fp+1

1 − f̂1

p+1
+ (−1)

p+1
2 f̂1

p
NG

2 + fp−1
1 f̂1N

G
2

)]
,

(C.1)

satisfies LM(F ) = xp1x
p2

4 .

Remark. The latter version of the relation is acquired from the former by liberal

application of the binomial theorem and the well-known relation

α∑
i=0

X iY α−i =
Xα+1 − Y α+1

X − Y
.

We posit both forms since the first is more indicative of the subduction we would

undertake, yet the latter is far more straightforward to manipulate. Should this

relation hold replacing NG
4 with x−p1 F in our proposed set effectively terminates

the algorithm, from which the result shall then follow. What remains is to prove

the relation.

Proof of Lemma C.1. Denoting by L.O.T.s any term below xp1x
p2

4 in the graded

reverse lexicographic order,

[δp−(NG
2 )2](p+1)/2−δp(p+1)/2 = x

p(p+1)
3 +(c2x1)p−1xp+1

2 x
p(p−1)
3 −(x2p

3 +x2p
2 )

p+1
2 +L.O.T.s



APPENDIX C. SUBDUCTIONS IN SOCLE-TYPE (1, 2, 1) 183

and thus the x1-free terms in (C.1) amount to

cp2f̂2

p
− cp2NG

2 f̂1

p
− cp2

[
δp − (NG

2 )2
] p+1

2

=
[
cp2x

p2+p
3 + cp

2

2 x
p2+p
2 + (cp

2

1 − c
p
1)xp2x

p2

3 − 1
2
cp2x

p
1x

p2

4

]
− (cp2x

p
2 − c

2p−1
2 xp−1

1 x2)
[

(cp1−c1)p

cp2
xp

2

3 + cp
2−p

2 xp
2

2

]
− cp2

[
x2p

3 + 2cp−1
2 xp−1

1 xp+1
2

] p+1
2

+ L.O.T.s

= +c2p−1
2 xp−1

1

[
cp

2

1 −c
p
1

cp2
x2x

p2

3 + cp
2−p

2 xp
2+1

2 − xp+1
2 xp

2−p
3

]
− 1

2
cp2x

p
1x

p2

4 + L.O.T.s.

We then show that the bracketed terms in (C.1) cancel the bracketed terms given

above by showing that

1

f̂1

2
+ f 2

1

[
f̂2

(
(−1)

p−1
2 f̂2

p
+ (−1)

p+1
2 fp+1

1 − f̂1

p+1
+ (−1)

p+1
2 f̂1

p
NG

2 + fp−1
1 f̂1N

G
2

)
+
(
δ(f̂1

2
+ f 2

1 )− f̂2

2
) p+1

2

]
= − cp

2

1 −c
p
1

cp2
x2x

p2

3 − c
p2−p
2 xp

2+1
2 + xp+1

2 xp
2−p

3 + L.O.T.s

= x2

(
xp−1

3 x2 − f̂1

)p
+ L.O.T.s

where hereafter L.O.T.S refers to any monomial below x1x
p2

4 .

As a warning we compel the reader to verify that no x1x
p2

4 term can possibly

appear in above expression, as such terms may interfere we the desired lead term

of F .

Firstly we note that f̂2 = xp+1
3 + x2f̂1, allowing us to write

δ(f̂1

2
+ f 2

1 )− f̂2

2
= x2

3(f̂1 − x2x
p−1
3 )2 + L.O.T.s

and

f̂2

p
= fp+1

1 +NG
2 f̂1

p
+ L.O.T.s.

Using these we simplify thus:

1

f̂1

2
+ f 2

1

[
f̂2

(
(−1)

p−1
2 f̂2

p
+ (−1)

p+1
2 fp+1

1 − f̂1

p+1
+ (−1)

p+1
2 f̂1

p
NG

2 + fp−1
1 f̂1N

G
2

)
+
(
δ(f̂1

2
+ f 2

1 )− f̂2

2
) p+1

2

]
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=
1

f̂1

2
+ f 2

1

[
f̂1(xp+1

3 + x2f̂1)
(
xp

2−p
3 xp2 − f̂1

p
)

+ xp+1
3 (f̂1 − x2x

p−1
3 )p+1

]
+ L.O.T.s

=
1

f̂1

2
+ f 2

1

[
x2

(
f̂1

2
+ x2p

3

)(
xp−1

3 x2 − f̂1

)p]
+ L.O.T.s

= x2

(
xp−1

3 x2 − f̂1

)p
+ L.O.T.s

Thus the bracketed terms of (C.1) have the desired form, F has the desired lead

term, our set forms a SAGBI basis and thus the result follows.
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1968, pp. 11

[27] R. J. Shank, S.A.G.B.I. Bases for Rings of Formal Modular Seminvariants,

Comment. Math. Helv. 73 (1998), pp. 548-565

[28] D. E. Taylor, The Geometry of the Classical Groups, Sigma Series in Pure

Mathematics, 9, Heldermann Verlag, Berlin, 1992

[29] D. L. Wehlau, Invariants For The Modular Cyclic Group of Prime Order

via Classical Invariant Theory, J. European Math. Soc. 15 (3) (2013), pp.

775-803


