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Exa
t Complex Arithmeti
 in an ImaginaryRadix SystemAlexander Kaganovsky14 July, 1999



Abstra
tThis paper investigates an exa
t arithmeti
 based on the single-
omponentrepresentation of 
omplex numbers by sequen
es of signed digits written toimaginary base ri. Algorithms for the four basi
 arithmeti
 operations inthis representation are des
ribed and analyzed. The algorithms are to anunexpe
ted extent s
ar
ely di�erent from their exa
t real equivalents, whi
hsigni�
antly speeds up exa
t 
omplex number manipulations.



1 Introdu
tionThe 
omplex numbers originated from the desire for a symboli
 representa-tion for the solutions of su
h equations as x2 + 1 = 0, otherwise irredu
ibleover R. In modern terminology, we say that the �eld C of 
omplex numbersis a �nite algebrai
 extension of R of degree 2, C = R �p�1�, whi
h by mere
oin
iden
e also happens to be the algebrai
 
losure of R (see e.g. [1℄). Thelatter fa
t is pre
isely the famous Fundamental Theorem of Algebra, and theex
eption rather than the rule. As well as algebrai
ally 
losed, C also turnsout to be 
omplete with respe
t to the norm that extends the norm j � j onR, whi
h makes it the 
onvenient number system, as it is, in whi
h to study
al
ulus and analysis.Histori
ally speaking, the de�nition of the 
omplex numbers 
ame beforethe rigorous de�nition of the real numbers in terms of Cau
hy sequen
es. Inan apparent attempt to put things in logi
al order, it be
ame 
onventionalto dis
uss 
omplex numbers in terms of the real number pairs used to rep-resent them. Following this mathemati
al tradition, in most modern digital
omputers, 
omplex numbers are also represented as pairs of real numbers,and arithmeti
 operations on 
omplex numbers are developed in terms of the
orresponding operations on reals. The need to maintain separate representa-tions for the real and imaginary parts of 
omplex numbers makes them mu
hmore awkward to 
ompute than the reals. For instan
e, 
omplex addition orsubtra
tion involves two real additions or subtra
tions, while multipli
ationof two 
omplex numbers involves four real multipli
ations, a real addition,and a real subtra
tion:(a + ib) (
+ id) = (a
� bd) + i (b
 + ad) :If multipli
ation is a mu
h slower operation than addition, the above formula
an be improved upon by using the relation(a + ib) (
+ id) = (a
� bd) + i [(a + b) (
+ d)� a
� bd℄ ;whi
h involves only three real multipli
ations (a
, bd, (a + 
) (b + d)), tworeal additions and three real subtra
tions [2℄. Complex division in this rep-resentation, however, is inevitably even more \
omplex":a+ ib
+ id = a
 + bd
2 + d2 + ib
� ad
2 + d2 :In this report, we introdu
e a method of performing in�nite pre
isionarithmeti
 on 
omplex numbers that does not involve separating the 
omplexnumbers into their real and imaginary parts. This is a
hieved by using the1



positional representation of 
omplex numbers by lazy in�nite sequen
es ofreal digits written to a 
omplex base. We show that the four basi
 arithmeti
operations in this notation 
an be performed similarly to exa
t real arithmeti
in base r2, with the ex
eption of the normalization pro
edure.1.1 In�nite pre
ision arithmeti
It is well-known that the use of 
oating-point arithmeti
 for real number
omputations 
an sometimes lead to results that are highly ina

urate oreven 
ompletely meaningless. The following sequen
e (due to Muller [3℄):xk+1 = 111� (1130� 3000=xk�1)=xk; x0 = 11=2; x1 = 61=11;provides an unsettling glimpse of su
h round-o� anomalies, whi
h persist evenon multiple pre
ision: in exa
t arithmeti
 xn is a monotoni
ally in
reasingsequen
e that 
onverges to 6, yet in 
oating point it rapidly 
onverges to 100after only 14 divisions and 12 subtra
tions. Represented as pairs of reals,
omplex numbers inherit all round-o�, over- and under-
ow misbehavioursof real 
oating-point arithmeti
, and matters be
ome even worse as round-o�errors 
an obs
ure the singularities of 
omplex analyti
 fun
tions [4℄.However, lest one's faith in 
omputer arithmeti
 be 
ompletely under-mined, a number of alternatives to 
oating-point arithmeti
 have been sug-gested, the main three being rational arithmeti
, interval arithmeti
 and in�-nite pre
ision or exa
t real arithmeti
. The �rst two methods are not entirelysatisfa
tory: interval arithmeti
 does not produ
e exa
t results and tends tobe overly pessimisti
 in measuring errors, while rational arithmeti
 is not
losed under many operations of interest (e.g., square root), and eventuallybe
omes very slow and ineÆ
ient, as an extended sequen
e of 
omputationsmay result in very large numerators and denominators.Exa
t real arithmeti
, on the other hand, represents numbers as in�niteobje
ts, so that mathemati
al operations on the set of number representa-tions faithfully represent the 
orresponding operations on real numbers. The
hief approa
hes to exa
t real arithmeti
 in
lude the fun
tional approa
h[5, 6℄, the lazy sequen
e approa
h, formulated in terms of both redundantsigned-digit sequen
es [5, 6, 7℄ and 
ontinued fra
tions [8℄, and also a re-
ent blend of the two [9℄. The forth
oming dis
ussion of redundant radix-risigned-digit sequen
es is also somewhat in parallel with my earlier paper [10℄on exa
t real arithmeti
.
2



1.2 Uni�ed representation of 
omplex numbersOn a

ount of the 
omplexity of even the four basi
 arithmeti
 operations,several proposals have been made, some as early as in 1960's, for a more
on
ise, single-
omponent representation of the 
omplex numbers, whi
h al-low 
omplex arithmeti
 to be done in a uni�ed manner, relieving the pro-grammer of the burden of treating the real and imaginary parts separately[11, 12, 13, 14℄. The essen
e of these proposals is to 
hoose the radix to bea 
omplex or an imaginary number, and then use sequen
es of real digits toexpress the 
omplex quantity as a weighted sum of powers of that radix. Theproposals have so far been only applied to �nite systems.In this paper, we investigate the use of the number ri as the radix of anin�nite positional weighted system. For this system, we assume a positionalnotation z0:z1z2 � � � zn � � � = 1Xk=0 zk � (ri)�k ;where the weights asso
iated with position k 2 N0 are (ri)�k:k : 0 1 2 3 4 5 6 � � �(ri)�k : 1 �r�1i �r�2 r�3i r�4 �r�5i �r�6 � � �As 
an be seen from the above, the even-numbered positions in this ex-pansion all have real weights, while the odd-numbered positions all haveimaginary weights. The real weights are related to ea
h other as in negativeradix (�r2) ; and so are the imaginary ones after fa
toring out the 
ommonri (see Figures 1, 2). k : 0 2 4 6 � � �(ri)�k : 1 �r�2 r�4 �r�6 � � �Figure 1: Even-numbered positionsk : 1 3 5 � � �(ri)�k : �r�2 r�4 �r�6 � � � � riFigure 2: Odd-numbered positions (after fa
toring out ri)3



For example, let r = 10 and the number z be represented in radix 10i bythe following expansion: z = 19 : 36 23 40Then z = 19� 36 � 10�1 i� 23 � 10�2 + 40 � 10�3 i= 18:77� 3:56 iThus, in order to express a 
omplex number z = x + iy in this format,we �rst write its real part x as an expansion in radix negative r2, then wewrite a radix (�r2) expansion of ry, and �nally we interleave the two partsto obtain a single-
omponent expansion.Negative-radix systems have been extensively des
ribed in the literature[15, 16, 17, 18℄, and the rules for addition, negation, multipli
ation and divi-sion of �nite numbers in these systems 
an be obtained by almost straight-forward modi�
ation of the standard rules. At least one 
omputer has beenbuilt based on su
h a system [19℄. However, the only advantage of negative-radix number systems seems to reside in the fa
t that all �nite real numbers,whether positive or negative, 
an be represented in these systems without aseparate sign digit, thus obviating the need for spe
ial treatment of negativenumbers [16℄.1.3 Redundant signed-digit representationsEven though the idea of absorbing the sign into the number representationmay have a moderate pra
ti
al advantage in �xed-size-format number sys-tems, where only a �nite pre
ision is available for representing numbers, the
hangeover from �nite to in�nite renders this method indistinguishable fromthe 
onventional positive-radix method.Indeed, it is well-known that in order for even the four basi
 operations ofarithmeti
 to be 
omputable on-line in a radix-r number system, the latterhas to exhibit redundan
y [20, 7℄. The most 
ommonly used radix-r redun-dant number system is the so-
alled symmetri
 signed-digit system, based ona digit set S� = ��; : : : ; 1; 0; 1; : : : ; �	 ;where x denotes �x, 1 � � � r � 1 and � � r=2. What makes the systemredundant is the last 
ondition, whi
h allows ea
h digit to assume more thanr values. 4



The use of a symmetri
al signed-digit set blurs the distin
tion betweenpositive- and negative-radix number systems and allows us to 
ir
umventthe diÆ
ulties of 
oping with alternating signs in negative-radix expansions.Indeed, if we have a signed-digit expansion in a radix r > 0,x = 1Xk=0 xkr�k; �� � xk � �;we 
an easily transform it into the 
orresponding negative-radix expansionx = 1Xk=0 x0k (�r)�k ; �� � x0k � �;where x0k = (�1)k xk; k 2 N0 ;and vi
e versa.Now let us 
onsider a signed-digit radix-ri expansion1Xk=0 zk � (ri)�k (1)of a 
omplex number z = x+ iy withzk 2 Z; jzkj � �; � 2 �r22 ; r2 � 1� : (2)It is 
lear that only a subset of the 
omplex numbers 
an be represented bysu
h sequen
es; namely, the numbers z = x + iy withjxj � � r2r2 � 1 ; jyj � � rr2 � 1 : (3)Note that the representation (1) of a 
omplex number z = x + iy isasymmetri
al with respe
t to x and y be
ause of the presen
e of the fa
tor1=r in the expansion of y:x = z0 � z2r�2 + z4r�4 + : : : ;y = 1r ��z1 + z3r�2 � z5r�4 + : : : � : (4)This brings up the question: How 
an we represent all 
omplex numbersin the form (1)? The standard solution to this problem is to s
ale any 
omplexnumber onto the above range (3). The s
aling 
ould in prin
iple be appliedseparately to the real and imaginary parts of the 
omplex number, but thearithmeti
 operations be
ome mu
h simpler when the real and imaginaryparts share a 
ommon exponent [21℄. 5



1.4 Exponent representationThe exponent representation of 
omplex numbers is similar to the 
ommonlyused 
oating-point representation of real numbers and 
onsists of two mainparts: the exponent E 2 Z, and the mantissa M , whi
h is a sequen
e ofintegers (zn)1n=0 2 Z. . The 
omplex number z, represented by the pair(E;M), has the value z = BE � 1Xn=0 zn (ri)�n ; (5)where B is the base of the exponent (usually a positive integer).It is easy to show that all 
omplex numbers 
an be represented in aradix-ri system as an expansion of the form (5), where all zn are in the range(2). Note that for the time being, we are interested primarily in the generalproperties of this system, and do not 
on
ern ourselves with the questions of
omputability or e�e
tive 
onvergen
e of the series in (5). Indeed, let Z 2 Cbe an arbitrary 
omplex number, Z = X + iY , X; Y 2 R. We aim to �ndan exponent E 2 Z and two numbers x; y 2 R satisfying 
ondition (3) su
hthat Z = BE � (x + iy) : (6)From (6) and (3), we �nd thatBE � r2 � 1�r2 jXj ; BE � r2 � 1�r jY j ;and therefore, BE � max�r2 � 1�r2 jXj ; r2 � 1�r jY j� : (7)The best value of E in (7) is the minimal one, be
ause it 
orresponds to thelargest possible values of x and y in (6) that satisfy (3). Thus, we 
hoose theexponent E = �logB max�r2 � 1�r2 jXj ; r2 � 1�r jY j�� :2 Redundant radix-ri exponent representa-tion of 
omplex numbersThe main de
ision to be made regarding the exponent representation is the
hoi
e of base B. The 
hoi
e partially depends on the way numbers are6



generated in the system, and the usual pra
ti
e is to 
hoose the exponentbase to be the same as the main radix. We 
an assume that most of the
omplex data will be fed into the system in the 
onventional form, withthe real and imaginary parts separately represented in real radix r0, wherer0 is either r or r2. Leaving negative bases su
h as (�r) or (�r2) out of
onsideration, we have only two pra
ti
able 
hoi
es for the exponent base: rand r2. In either 
ase, the real number pairs �rst have to be 
onverted to(�r2), and then interleaved to obtain a radix-ri expansion (
onversion fromand to radix-ri is dis
ussed in Se
tion 4). The parti
ular 
hoi
e depends onhow the trade-o� between addition and 
onversion is to be made| as we shallsee, exponent base r simpli�es 
onversion at the expense of addition, whiler2 streamlines addition to the detriment of 
onversion. We naturally regardaddition as more important than 
onversion; after all, 
onversion shouldonly be performed twi
e | on
e at the beginning and on
e at the end of a
omputation. Taking the aforesaid into a

ount, we have 
hosen r2 to be theexponent base.De�nition 1 We de�ne a 
omputable exa
t 
omplex number z as a quadru-ple (R; �; E;M), where R 2 N, R > 4 is a perfe
t square (R = r2), and thebase of the signed exponent E 2 Z, the range parameter � is an integer withR=2 < � < R � 1, and the mantissa M is an e�e
tively given sequen
e ofnumbers (zn)n2N0 2 Z su
h thatjznj � Cn; n 2 N ; (8)where C > 0 is a 
onstant 
ommon to all 
omplex numbers in a system. Thevalue of z = (R; �; E; (zn)n2N0 ) is taken asz = RE � 1Xn=0 zn(ri)�n:The 
onvergen
e 
riterion (8) is somewhat arbitrary and only requiredto ensure e�e
tive 
onvergen
e of the sequen
e; an error message 
ould beprodu
ed at run-time if the sequen
e were found to violate (8).If the mantissa entries z0; z1; z2; : : : ; zn; : : :are digits in radix r2 in the range [��; �℄, they represent mantissa in thedomain ��� r2r2 � 1 ; � r2r2 � 1�� ��� rr2 � 1 ; � rr2 � 1� ; (9)7



and the 
orresponding number (R; �; E;M) is said to be normalized.For brevity and ease of reading, we shall not always distinguish between anumber z, its representation (R; �; E;M), and its expansion (5). Unless oth-erwise stated, we shall also assume that r and � are 
onstant and sometimesuse the notation (E;M) instead of (R; �; E;M).3 Basi
 Arithmeti
 OperationsIn this se
tion, we introdu
e the algorithms for 
arrying out addition, sub-tra
tion, multipli
ation and division of exa
t 
omplex numbers representedby in�nite sequen
es of signed digits in radix ri. The algorithms are unex-pe
tedly similar to their real 
ounterparts | where they di�er is the nor-malization pro
edure. This leads us to believe that the algorithms for thebasi
 arithmeti
 operations remain un
hanged in any radix, whether a realor 
omplex number, as long as there is a way of normalizing sequen
es ofdigits written to that radix.3.1 NormalizationNormalization, in the 
ontext of radix-r redundant signed-digit positionalweighted systems, refers to the pro
ess of restoring the individual digits ofan e�e
tively given sequen
e (an)n2N0 2 Z, to the 
anoni
al range [��; �℄,where � is an integral range parameter between r=2 and r � 1. By this ismeant the �nding of a normalized sequen
e, (a0n)n2N 2 [��; �℄ su
h that1Xn=0 a0nr�n = 1Xn=0 anr�n:Note that the �rst digit, a00, of thus normalized sequen
e may generally re-main unbounded.Similarly, a 
anoni
al representation for the mantissa of a 
omplex num-ber z written to base ri is a sequen
e(z0; z1; z2; � � � ; zn; � � � )ri ;where jznj < � for all n 2 N0 , ex
ept perhaps n = 0 and 1 (� is now a positiveinteger between R=2 and R � 1, R = r2).Let (zi)i2N0 be an unnormalized mantissa of a 
omplex number z = rE �1Pi=0 zi (ri)�i. Re
alling that1Xi=0 zi (ri)�i = 1Xk=0 (�1)k z2kR�k + i � 1r 1Xk=0 (�1)k+1 z2k+1R�k;8



the problem of ri-normalizing (zn)n2N0 is tantamount to normalizing tworadix-R sequen
es (xn)n2N0 and (yn)n2N0 , wherexn = (�1)n z2n; yn = (�1)n+1 z2n+1: (10)On
e the sequen
es (xn)n2N0 and (yn)n2N0 have been normalized in radix R,we 
an on
e again alternate their signs in a

ordan
e with (10), and 
ombinethem into ba
k into a single sequen
e zn.Normalization of radix-R sequen
es has been dis
ussed in great detail in[10℄ and is summarized below.3.1.1 Normalization of radix-R sequen
esLet us �rst 
onsider a sequen
e (an)n2N0 with janj � R+ �� 1, n 2 N0 , andshow how to obtain a new sequen
e (a0n)n2N0 su
h that1Xn=0 a0nR�n = 1Xn=0 anR�n; (11)and ja0nj � �; n 2 N : (12)To a
hieve this, we �rst repeatedly divide an by R for all n 2 N0 :an = dnR +mn; jmnj < R; sgn(mn) = sgn(dn):We then have:1Xn=0 anR�n = 1Xn=0 (dnR +mn)R�n = 1Xn=0 dnR�n+1 + 1Xn=0mnR�n= (a0 + d1) + 1Xn=1 (mn + dn+1)R�n: (13)The 
ondition janj � R + � � 1 implies jdnj � 1 and jmnj � R � 1 for alln 2 N0 ; thus, ja0 + d1j � ja0j+ 1; jmn + dn+1j � R:The sequen
e (a0 + d1; m1 + d2; m2 + d3; � � � )9



is almost the one we are looking for, ex
ept its elements are bounded inabsolute value by R, instead of �. To �nd a sequen
e bounded by �, weslightly 
hange the parameters dn and mn:d0n = � dn; if jmnj < �dn + sgn (mn) ; if jmnj � �m0n = � mn; if jmnj < �mn � sgn (mn) �R; if jmnj � � (14)Now the sequen
ea00 = a0 + d01; a0n = m0n + d0n+1 (n 2 N) (15)satis�es both normalization 
onditions (11) and (12).To verify that the �rst 
ondition holds true, we note that an = d0nR+m0n,and similarly to (13), arrive at1Xn=0 a0nR�n = (a0 + d01) + 1Xn=1 �m0n + d0n+1�R�n = 1Xn=0 anR�n:To verify the se
ond normalization 
ondition, we note that jd0nj � 1 for alln 2 N0 , so if jmnj < �, then m0n = mn, jm0nj < �, and ja0nj = ��m0n + d0n+1�� � �,while if jmnj � �, then m0n = mn � sgn (mn) � R, 1 � jm0nj � R � �, andja0nj = ��m0n + d0n+1�� � R � � + 1. Now sin
e we require r � 2, or R � 4, wehave R� �+ 1 � �:Thus we 
on
lude thata0 � 1 � a00 � a0 + 1; ja0nj � �; n 2 N :In this manner, we have 
onstru
ted a fun
tion f : Z2 � ZN0 ! ZN0 |whi
h will be hereinafter referred to as redu
e | that assigns to any triple�R; �; (an)n2N0� the sequen
e (a0i)i2N0 2 Z, 
al
ulated a

ording to formulae(14) and (15). Evaluation of this fun
tion 
an be performed totally in parallel(Figure 3).Before we 
onsider a more general 
ase janj � M; n 2 N0 , where M > 0is an arbitrary positive integer, it is pertinent to note that the 
onditionjanj � R + � � 1 was introdu
ed for the sake of (12), and is not relevantto the de�nition of redu
e. We 
an apply redu
e(R,�) to any sequen
e(an)n2N0 for whi
h the series P1n=0 anR�n is 
onvergent, and the resultingsequen
e (a0n)n2N0 will still satisfy the �rst normalization 
ondition (11).10



a0a0d1a00
a1m1d2a01

a2m2d3a02
a3m3d4a03

� � �� � �� � �� � �
? �������?

? �������?
? �������?

? �������?
������������

������������
������������

������������Figure 3: Totally parallel normalizationLet us show that if janj � M for all n 2 N0 , mantissa (an)n2N0 
an benormalized in a �nite number of steps. Indeed, applying redu
e on
e, weshall obtain a sequen
e (a0n)n2N0 , satisfying the following 
ondition:ja0nj = ��m0n + d0n+1�� � jm0nj+ ��d0n+1�� � �� 1 + �MR �+ 1;or ja0nj � M1 def= �MR �+ �:Applying redu
e again, we get another sequen
e (a00n)n2N0 , satisfyingja00nj �M2 def= �M1R � + �;et
. The sequen
e M;M1;M2; : : : is a sequen
e of de
reasing natural num-bers, and if M = mnRn + : : : +m1R +m0, the algorithm will terminate inat most n+ 1 steps.More spe
i�
ally, we 
an prove that if for some k 2 N a sequen
e (an)n2N0satis�es janj � Rk+�� 1 for all n 2 N , it 
an be fully normalized by redu
ein at most k steps. This enables us to determine the number of times k onehas to apply redu
e in order to fully normalize a given sequen
e (an)n2N0with janj �M , n 2 N ; namely,k = min fn 2 N jM � Rn + �� 1g :Solving the inequality M � Rn + �� 1 for n 2 N , we �nd thatn � logR (M � �+ 1) ;and, therefore, k = dlogR (M � �+ 1)e : (16)11



3.1.2 Normalization of radix-ri sequen
esWe have shown that normalization of a radix-ri sequen
e is performed throughnormalizing its even and odd subsequen
es (10) in radix r2. On
e the sub-sequen
es have been r2-normalized, all that remains for us to do is alternatetheir signs and 
ombine them ba
k into a single sequen
e zn. The 
omplexanalogue of redu
e will be referred to as 
redu
e.3.2 Addition and Subtra
tion3.2.1 Addition of two 
omplex numbersLet z = (Ez; (z0; z1; � � � ; zn; � � � )ri) and w = (Ew; (w0; w1; � � � ; wn; � � � )ri) bethe two normalized 
omplex numbers to be added. If Ez = Ew, the pro
edurefor addition is very straightforward: the digits of the two sequen
es are addedand the resulting sequen
e(z0 + w0; z1 + w1; � � � ; zn + wn; � � � )riis then normalized. The normalization 
an be done in a single pass, sin
ejzn + wnj � jznj+ jwnj � 2� � R + �� 1:If the exponents of z and w are not equal, the mantissa of one of theoperands has to be adjusted to make them equal. The shift has to be tothe right to avoid the loss of the most signi�
ant digits | therefore, it isthe mantissa of the addend with the smaller exponent that is shifted. Sin
eaddition is a 
ommutative operation, we 
an assume that e = Ez � Ew > 0without loss of generality. The details of the radix alignment are as follows:w = REz � (w00; w01; : : : ; w0n; : : : )ri ;where(w0n)n2N0 = 8>><>>: (0; � � � ; 0| {z }2e zeros ; w0; � � � ; wn; � � � )ri; if e � 0mod2(0; � � � ; 0| {z }2e zeros ;�w0; � � � ;�wn; � � � )ri; if e � 1mod2 (17)The mantissa in (17) is left un
hanged if the number of right shifts isdivisible by 4, and negated otherwise. That su
h is the 
ase is explainedby the fa
t that two right-shifts are equivalent to dividing the mantissa by(�r2) = �R, while four right-shifts are equivalent to dividing it by r4 = R2:RE � (w0; � � � ; wn; � � � )ri = RE+1 � (0; 0;�w0; � � � ;�wn; � � � )ri= RE+2 � (0; 0; 0; 0; w0; � � � ; wn; � � � )ri:12



3.2.2 Addition of several 
omplex numbersThe above addition algorithm 
an be readily modi�ed to operate with n
omplex numbers, where n > 2. The pro
edure is essentially the same |all n numbers are aligned to mat
h the one with the largest exponent, theirmantissas are added digit by digit, and the resulting sequen
e | normalizedby applying 
redu
e k times, wherek = dlogR (n�� �+ 1)eis 
al
ulated from (16) with M = n � �.Note that this is 
onsiderably more eÆ
ient than adding the n numberspairwise using (n� 1) nested additions, as shown in [10℄.3.2.3 Subtra
tionSubtra
tion of a radix-ri sequen
e is 
arried out in the regular way | bynegating the minuend and adding the result to the subtrahend:�Ez; (zn)n2N0�ri � �Ew; (wn)n2N0�ri = �Ez; (zn)n2N0�ri + �� �Ew; (wn)n2N0�ri� ;where � �Ew; (wn)n2N0�ri = �Ew; (�wn)n2N0�ri :3.3 Multipli
ationComplex multipli
ation in radix ri is also a very straightforward modi�
ationof radix-r multipli
ation dis
ussed in [10℄, and is performed by multiplyingthe formal series and renormalizing the result. If z = REz � 1Pk=0 zk(ri)�k andw = REw � 1Pm=0wm(ri)�m are the normalized numbers to be multiplied, weform their Cau
hy produ
t11Xk=0 uk(ri)�k = 1Xk=0  kXm=0 zmwk�m! (ri)�k;1The Cau
hy produ
t 1Pk=0uk (ri)�k 
onverges to zw as long as both series 1Pi=0 zi (ri)�iand 1Pj=0wj (ri)�j are absolutely 
onvergent (Mertens' theorem | see e.g. [22℄)13



where uk = � kPm=0 zmwk�m�, and pro
eed to ri-normalize the uk in groups ofn rows ea
h.Spe
i�
ally, if (zn)n2N0 and (wn)n2N0 are 
anoni
al representations of zand w, then jznj � � and jwnj � �, hen
ejunj � �2 � (n+ 1) :We want to �nd the result in the formu = zw = rEu � 1Xm=0 u0m (ri)�m ;where ju0mj � � for all m 2 N0 . The sequen
e un 
annot be normalizeddire
tly, be
ause it is generally unbounded. The way out is to re
ursivelynormalize small bounded portions of (um)m2N0 , as shown in Figures 4 and 5.z0w0 z0w1z1w0 � � �� � �. . . z0wN�1z1wN�2...zN�1w0 z0wNz1wN�1...zN�1w1zNw0
z0wN+1z1wN...zN�1w2zNw1zN+1w0

z0wN+2z1wN+1...zN�1w3zNw2zN+1w1zN+2w0
� � �� � �. . .� � �� � �� � �� � �. . .

z0w2N�1z1w2N�2...zN�1wNzNwN�1zN+1wN�2zN+2wN�3...z2N�1w0
z0w2Nz1w2N�1...zN�1wN+1zNwNzN+1wN�1zN+2wN�2...z2N�1w1z2Nw0Figure 4: Multipli
ation | before normalizingu00 u01 � � � u0;N�1 u0N u0;N+1zN+1w0 u0;N+2zN+1w1zN+2w0 � � �� � �� � �. . . u0;2N�1zN+1wN�2zN+2wN�3...z2N�1w0
u0;2NzN+1wN�1zN+2wN�2...z2N�1w1z2Nw0Figure 5: Multipli
ation | after normalizing �rst (N + 1) lines14



Normalization of �rst (N + 1) lines in Figure 4 takesk (N) = �logR ��2 (N + 1)� �+ 1��appli
ations of 
redu
e and yields a normalized sequen
e whose �rst Ndigits give the �rst N digits of the produ
t zw (Figure 5). Adding anotherN lines and renormalizing in k (N) appli
ations of 
redu
e produ
es anothersequen
e whose �rst N digits are then taken to be the next N digits of theprodu
t, and the algorithm pro
eeds re
ursively with the series 1Pn=0un (ri)�n,
omputing the result in blo
ks of N digits.Although the algorithm works 
orre
tly with any value of N 2 N , ourmain 
on
ern is to minimize the time and spa
e requirements. The opti-mal value of N normally depends on the number of required pre
ision digits,whi
h is generally unknown in advan
e. The values of N for whi
h k (N) = 2are 
learly inadequate, resulting in an unne
essarily large number of opera-tions, but any of the numbersNm = max fn 2 N j k (N) � mg ; m � 3appear to be equally suitable for the value ofN (in terms of operation 
ounts).The m in Nm is the number of normalizations to be performed at ea
h stepof the algorithm, and minimizing normalization is important to redu
e thespa
e requirements (the larger the m the more spa
e is required to hold theintermediate results). In our implementation, we have used N = N3 (e.g.N = N3 = 228 for r = 10 and � = 51). For a more detailed 
omplexityanalysis, see [10℄.3.4 Radix-ri divisionIn radix-r systems, signed-digit division of real numbers is usually performedusing the method originally due to Robertson [23℄. The substan
e of thealgorithm lies with an iterative pro
ess that produ
es one digit of the quotientper 
y
le a

ording to the following re
urren
e equation similar to the paper-and-pen
il method: Pn+1 = r (Pn � qnD) ; n 2 N0 ; (18)where P0 = N , Pn is the 
urrent partial remainder, Pn+1 is the next partialremainder, and qn is the quotient digit inferred from Pn and D. It is easy tosee that Pn = rn �N � �q0 + q1r�1 + : : :+ qn�1r�n+1�D� ; n 2 N ;15



and so imposing an upper bound on the value of jPnj ensures 
onvergen
e ofthe algorithm, provided that sele
tion of the quotient digit qn results in thenext partial remainder Pn+1 adhering to the same allowed range as Pn.The existing signed-digit division algorithms primarily di�er in their se-le
tion of quotient digits, restri
tion of the range of the possible values ofthe divisor, dividend and partial remainders and, �nally, normalization te
h-niques. Usually, sele
tion fun
tions make a guess about qn based on theinspe
tion of several most signi�
ant digits of Pn and D. Even though this
ould result in some quotient digits qn being wrong, the redundan
y allowsre
overy from wrong guesses by taking an appropriate 
orre
tion step in thenext quotient digit.If the �rst most signi�
ant digit d0 of the divisor is large enough | theexa
t range depends on the parti
ular division method used | the usualsele
tion fun
tion is qn = �����pn0d0 ����� � sgn�pn0d0 � ;where pn0 is the �rst most signi�
ant digit of the n-th partial remainder Pn.Thus, for example, the �rst most signi�
ant digit of the quotient is 
al
ulatedas q0 = �����n0d0 ����� � sgn�n0d0� :If z 2 C is the dividend and w 2 C , w 6= 0 the divisor, the algorithmfor radix-ri system 
an be obtained from the real one by using a re
urren
erelation similar to (18):Pn+1 = ri � (Pn � qnw) ; n 2 N0 ;where P0 = z and (qn)n2N0 are the digits of the quotient Q = z=w. In perfe
tanalogy with the real 
ase, we infer thatPn = (ri)n �z � �q0 + q1 (ri)�1 + : : :+ qn�1 (ri)�n+1�w� ; n 2 N ;and so if Q is 
orre
t to n radix-ri digits, we have��z � �q0 + q1 (ri)�1 + : : :+ qn�1 (ri)�n+1�w�� � jPnjrn :If qn were sele
ted in su
h a way that Pn stayed bounded, the above relationwould guarantee 
onvergen
e of the algorithm.16



On the digit level, let z and w be represented by the following radix-risequen
es:z = (z0; z1; � � � ; zn; � � � )ri ; w = (w0; w1; � � � ; wn; � � � )ri ,where w is appropriately s
aled so that either w0 6= 0 or w1 6= 0. To gain animpression of how to 
hoose the digit sele
tion fun
tion, we observe thatPn+1 = ri � (pn0 � qnw0; pn1 � qnw1; � � � ; pnk � qnwk; � � � )ri= �pn1 � qnw1; �r2 (pn0 � qnw0) + pn2 � qnw2; pn3 � qnw3; � � � �ri :The algorithm will 
onverge only if the elements of Pn stay bounded for alln 2 N , whi
h 
an be a
hieved if qn are sele
ted in su
h a way that bothpn1 � qnw1 and �r2 (pn0 � qnw0) + pn2 � qnw2 remain relatively small. It isonly these two elements that may present a problem, sin
e the rest of thesequen
e 
an be normalized in the usual way.Remembering thatzw = (Re z)(Rew) + (Im z)(Imw)(Rew)2 + (Imw)2 + i � (Im z)(Rew)� (Re z)(Imw)(Rew)2 + (Imw)2 ; (19)it is 
lear that we have to look at two digits at a time, and useqn = �����pn0w0 + pn1w1=r2w20 + w21=r2 ����� � sgn�pn0w0 + pn1w1=r2w20 + w21=r2 �= �����r2pn0w0 + pn1w1r2w20 + w21 ����� � sgn�r2pn0w0 + pn1w1r2w20 + w21 �as the digit sele
tion fun
tion. This seemingly 
omplex formula is deriveddire
tly from (19), remembering thatRe(z0 + z1(ri)�1 + : : :+ zn(ri)�n + : : : ) = z0 � z2r�2 + z4r�4 + : : :Im(z0 + z1(ri)�1 + : : :+ zn(ri)�n + : : : ) = 1r ��z1 + z3r�2 � z5r�4 + : : : � :The 
omplete division normalization pro
edures require more sophisti-
ated reasoning and are beyond the s
ope of this paper (see e.g. [24℄).4 Conversion to and from single-
omponentrepresentationAs demonstrated earlier, the single-
omponent representation of 
omplexnumbers possesses some speed advantages in exe
uting multipli
ation and17



division. However, in order for any number system to be of interest from the
omputer arithmeti
 standpoint, there must also be an eÆ
ient algorithmi
pro
edure for 
onverting numbers into the new form, as well as de
odingthem ba
k into 
onventional form. In this se
tion, we present the 
ompletealgorithms for the 
onstru
tor fun
tion for 
reating a 
omplex number fromits real and imaginary parts, and the sele
tor fun
tion for extra
ting realor imaginary parts of 
omplex values. Other useful fun
tions, su
h as thosefor repla
ing real or imaginary parts of a 
omplex number while leaving theother part untou
hed, 
an be worked out in the same way.4.1 The 
onstru
tor fun
tionAs mentioned above, we shall assume that the real and imaginary parts of a
omplex number z are given by their respe
tive radix-r signed-digit exponentrepresentations x = rEx � 1Xn=0 xnr�n;y = rEy � 1Xn=0 ynr�n;where Ex; Ey 2 Z and jxnj ; jynj � �1 (�1 2 [r=2; r � 1℄) for all n 2 N0 . Inorder to 
ompute a radix-ri exponent signed-digit representation of z = x+iy,we have to 
onvert both x and y to radix r2, having appropriately alignedthe radix points. More pre
isely, we have to �nd an E 2 Z and sequen
es(x0n)n2N0 and (y0n)n2N0 su
h thatx = r2E � 1Xn=0 x0n �r2��n ;y = r2E�1 � 1Xn=0 y0n �r2��n ;whi
h, a

ording to (4), will then give usz = x + iy = RE � (x00;�y00;�x01; y01; x02;�y02; : : : )ri : (20)The radix alignment is performed as follows:
18



1) if Ex > Ey and Ex � 0mod2, then we setE = Ex=2x = r2E � (x0; x1; � � � ; xn; � � � )ry = r2E�1 �0� 0; 0; � � � ; 0| {z }Ex�Ey�1 zeros; y0; y1; � � � ; yn; � � �1Ar ;where Ex � Ey � 1 = (2E � 1)� Ey � 0;2) if Ex > Ey + 1 and Ex � 1mod2, thenE = (Ex � 1)=2x = r2E � (rx0 + x1; x2; � � � ; xn; � � � )ry = r2E�1 �0� 0; 0; � � � ; 0| {z }Ex�Ey�2 zeros; y0; y1; � � � ; yn; � � �1Ar ;where (2E � 1)� Ey = Ex � Ey � 2 � 0;3) if Ex = Ey + 1 and Ex � 1mod2 (and therefore, Ey � 0mod2), thenE = (Ex � 1)=2x = r2E � (rx0 + x1; x2; � � � ; xn; � � � )ry = r2E�1 � (ry0 + y1; y2; � � � ; yn; � � � )r ;4) if Ex � Ey and Ey � 0mod2, thenE = Ey=2x = r2E �0�0; 0; � � � ; 0| {z }Ey�Ex zeros; x0; x1; � � � ; xn; � � �1Ary = r2E�1 � (ry0 + y1; y2; � � � ; yn; � � � )r ;5) if Ex � Ey and Ey � 1mod2, thenE = (Ey + 1)=2x = r2E �0� 0; 0; � � � ; 0| {z }Ey�Ex+1 zeros; x0; x1; � � � ; xn; � � �1Ary = r2E�1 � (y0; y1; � � � ; yn; � � � )r :All that now remains for us to do is 
onvert the aligned sequen
es toradix r2 (
onversion from radix r to radix r2 is rather straightforward), andalternate the signs of the weighted fa
tors in a

ordan
e with (20).19



Example 1 Find a representation of z = 1234:5+ i � 9:876 in radix 10i. Wehave: x = 1:2345 � 103 = 103 � (1; 2; 3; 4; 5)10y = 9:876 � 100 = 100 � (9; 8; 7; 6)10After aligning the de
imal points (here Ex = 3, Ey = 0, therefore, E =(Ex � 1)=2 = 1): x = 102 � (12; 3; 4; 5)10y = 101 � (0; 9; 8; 7; 6)10In radix r2 = 100: x = 102 � (12; 34; 50)100y = 101 � (0; 98; 76)100Finally, using (20), we �ndz = 1001 � (12; 0;�34; 98; 50;�76)ri:Example 2 Find a representation of z = 9:876+ i � 1234:5 in radix 10i. Wehave: x = 9:876 � 100 = 100 � (9; 8; 7; 6)10y = 1:2345 � 103 = 103 � (1; 2; 3; 4; 5)10After aligning the de
imal points (here Ex = 0, Ey = 3, therefore, E =(Ey + 1)=2 = 2): x = 104 � (0; 0; 0; 0; 9; 8; 7; 6)10y = 103 � (1; 2; 3; 4; 5)10In radix r2 = 100: x = 104 � (0; 0; 9; 87; 60)100y = 103 � (1; 23; 45)100Using (20), we obtain a representation of zz = 1002 � (0;�1; 0; 23; 9;�45;�87; 0; 60)ri:20



4.2 The sele
tor fun
tionsThe two sele
tor fun
tions, Re and Im, are needed to extra
t the real andimaginary parts of 
omplex values, respe
tively. The algorithms for the eval-uation of the sele
tor fun
tions are essentially the inverse of those for the
onstru
tor fun
tion: given a radix-ri expansionz = RE � (z0 + z1(ri)�1 + z2(ri)�2 + : : :+ zn(ri)�n + : : : );the real and imaginary parts 
an be found as follows:Re z = r2E � 1Xn=0 xn �r2��n ;Im z = r2E�1 � 1Xn=0 yn �r2��n ;where xn = (�1)nz2n; yn = (�1)n+1z2n+1:These expansions of Re z and Im z are in radix r2; 
onversion from radixr2 to radix r is 
an be performed with trivial e�ort.5 Con
lusionsWe have introdu
ed the redundant radix ri representation of exa
t 
omplexnumbers, and dis
ussed the algorithms for the four basi
 arithmeti
 opera-tions. The algorithms are to an unexpe
ted extent similar to their exa
t real
ounterparts, whi
h makes the theoreti
al 
omplexity of operations on exa
t
omplex numbers 
omparable with that of the 
orresponding operations onexa
t reals. The author's implementation of the algorithms in the fun
tionalprogramming language Miranda2 shows a 
lear speed advantage over 
on-ventional methods in exe
uting multipli
ation and division, and equivalentperforman
e in addition and subtra
tion.The author does not know of any other implementations of exa
t 
omplexarithmeti
 based upon an imaginary radix, and there are a number of possibledire
tions for ulterior resear
h. Of these, we are most interested in:� EÆ
ien
y aspe
ts of implementations. The 
omplexity issues 
on
ern-ing operations on exa
t numbers for the most part remain unresolved.2MirandaTM is a trademark of Resear
h Software Limited21



Some measurements have revealed that exa
t arithmeti
 performs 50to 100 times slower than hardware 
oating point [25℄. It is generallydoubtful that exa
t real or 
omplex arithmeti
 will ever perform on
urrent ar
hite
tures as speedily as 
oating point whi
h was designedto mat
h the underlying hardware, although one 
an think of variousways to optimize the existing implementations.� Elementary fun
tion evaluation. The evaluation of elementary fun
-tions in positional radix systems is a very 
umbersome pro
ess, be-
ause there are no obvious on-line digit-by-digit algorithms that areboth simple and eÆ
ient. Almost the only 
ommonly used elementaryfun
tion that 
an be evaluated iteratively with little additional over-head beyond that of the basi
 arithmeti
 operations is the square rootfun
tion. In radix-r systems, square root 
an be 
omputed using asimple pseudo-division algorithm that produ
es n digits of the result inn 
y
les, at a rate of one digit per 
y
le. Sin
e the only essential di�er-en
e between square root and division is in the re
urren
e relation andthe digit sele
tion fun
tion, we may reasonably expe
t to �nd a sim-ilar square-rooting algorithm for 
omplex numbers. Generally, whereradix-r algorithms exist for the evaluation of elementary fun
tions of areal variable, we may also expe
t to �nd their radix-ri equivalents.Many 
omplex elementary fun
tions, su
h as the exponential, hyper-boli
 and trigonometri
 fun
tions seem to be unrelated inside the do-mains of their real restri
tion, but going to the 
omplex plane revealsthat these fun
tions are in fa
t all intimately 
onne
ted. For example,an algorithm that 
ould 
ompute the exponent of a radix-ri sequen
eof digits would also 
ompute the trigonometri
 fun
tions:
os z = eiz + e�iz2 ; sin z = eiz � e�iz2i ;as well as the hyperboli
 fun
tions
osh z = 
os iz; sinh z = �i sin iz:A
knowledgementsSupport for this resear
h was provided by EPSRC Grant Ref. GR/L03279.The author wishes to express his sin
ere and deep gratitude to ProfessorDavid Turner for his many suggestions and valuable 
omments 
on
erningthe exposition of these ideas. 22



A Miranda 
ode for exa
t 
omplex arithmeti
FILE: 
omplex.m----------------/* Copyright (C) Alexander Kaganovsky 1995-1999. All rights reserved. */%export 
omplex m
 re im 
add 
sub 
mul 
div show
%in
lude "input.m" || input validation fun
tions%in
lude "real.m" || exa
t real arithmeti
 pa
kageabstype 
omplexwith m
 :: real -> real -> 
omplexre, im :: 
omplex -> real
add, 
sub, 
mul, 
div :: 
omplex -> 
omplex -> 
omplexshow
 :: num -> num -> 
omplex -> [
har℄show
omplex :: 
omplex -> [
har℄
omplex == (num,[num℄)real == (num,[num℄)expo (e,m) = eman (e,m) = m||----------------------------------------------------------------------|||| Conversion fun
tions (base 10 to 100) ||||----------------------------------------------------------------------||
m10to100 :: [num℄ -> [num℄
m10to100 [℄ = [℄
m10to100 (a:x)= (10*a+(hd x)) : 
m10to100 (tl x), if x ~= [℄= 10*a : 
m10to100 x, otherwise|| 
man10to100 is the same as 
m10to100, ex
ept it doesn't 
onvert|| the first element of the list
man10to100 (a:x) = a:
m10to100 x
man10to100 [℄ = [℄||----------------------------------------------------------------------|||| Conversion fun
tions (base 100 to base 10) ||||----------------------------------------------------------------------||23




m100to10 :: [num℄ -> [num℄
m100to10 [℄ = [℄
m100to10 (a:x)= a0 : a1 : 
m100to10 xwhere(a0,a1) = divrem a 10
man100to10 (a:x) = a:
m100to10 x
man100to10 [℄ = [℄||----------------------------------------------------------------------|||| m
 
onverts two exa
t reals (base 10) to a single-
omponent |||| 
omplex format (base 10i) ||||----------------------------------------------------------------------||m
 (ex,mx) (ey,my)= (ez, mz)wheremz = alternate (
man10to100 mx') (
man10to100 my')(ez,mx',my')= (ex div 2, mx, in
 (ex-ey-1) my), if (ex > ey) &(ex mod 2 = 0)= ((ex-1) div 2, de
 mx, in
 (ex-ey-2) my), if (ex > ey+1) &(ex mod 2 = 1)= ((ex-1) div 2, de
 mx, de
 my), if (ex = ey+1) &(ex mod 2 = 1)= (ey div 2, in
 (ey-ex) mx, de
 my), if (ex <= ey) &(ey mod 2 = 0)= ((ey+1) div 2, in
 (ey-ex+1) mx, my), otherwise|| de
 adjusts the mantissa of a radix-10 number to 
ompensate for a de
 of|| (subtra
tion of one from) its exponent by multiplying the mantissa by 10de
 :: [num℄ -> [num℄de
 [℄ = [℄de
 [a℄ = [10*a℄de
 (a:x) = (10*a+(hd x)):(tl x)|| in
 adjusts the mantissa of a radix-10 number to 
ompensate for an|| in
rease of its exponent by n. It does so by dividing the mantissa|| by 10^(-n), i.e. adding n leading zerosin
 :: num -> [num℄ -> [num℄in
 0 x = x 24



in
 n x = zeros n ++ xzeros n = rep n 0||----------------------------------------------------------------------|||| re returns the real part (represented in base 10) of a 
omplex |||| number (base 10i), im - the imaginary part of same ||||----------------------------------------------------------------------||re (e,x) = 
an (2*e, 
man100to10 (even x))im (e,x) = 
an (2*e-1, 
man100to10 (odd x))||----------------------------------------------------------------------|||| alternate (x0,x1,...) (y0,y1,...) = (x0,-y0,-x1,y1,x2,-y2,...) ||||----------------------------------------------------------------------||alternate :: [num℄ -> [num℄ -> [num℄alternate [℄ [℄ = [℄alternate [℄ [y0℄ = [0,-y0℄alternate [℄ [y0,y1℄ = [0,-y0,0,y1℄alternate [x0℄ [℄ = [x0℄alternate [x0℄ [y0℄ = [x0,-y0℄alternate [x0℄ [y0,y1℄ = [x0,-y0,0,y1℄alternate [x0℄ (y0:y1:ys) = [x0,-y0,0,y1℄ ++ alternate [0℄ ysalternate [x0,x1℄ [℄ = [x0,0,-x1℄alternate [x0,x1℄ [y0℄ = [x0,-y0,-x1℄alternate (x0:x1:xs) [y0℄ = [x0,-y0,-x1,0℄ ++ alternate xs [0℄alternate (x0:x1:xs) (y0:y1:ys)= [x0,-y0,-x1,y1℄ ++ alternate xs ys||---------------------------------------------------------------------|||| even (z0,z1,z2,...) = (z0,-z2,z4,...) |||| odd (z0,z1,z2,...) = (-z1,z3,-z5,...) ||||---------------------------------------------------------------------||even z = skipevenodd 0 1 zodd z = skipevenodd 1 (-1) zskipevenodd :: num -> num -> [num℄ -> [num℄skipevenodd 
ounter sign (z0:z)= (sign*z0):(skipevenodd 1 (-sign) z), if 
ounter mod 2 = 0= skipevenodd 0 sign z, otherwiseskipevenodd 
ounter sign [℄ = [℄25



||---------------------------------------------------------------------|||| Complex normalization fun
tions ||||---------------------------------------------------------------------||
redu
e z = alternate (redu
e (even z)) (redu
e (odd z))

an (e,m)= (e,m), if m=[℄= (e,
redu
e m), otherwise||---------------------------------------------------------------------|||| Complex addition ||||---------------------------------------------------------------------||
add (ez,mz) (ew,mw)= 

an (ez,m), if ez >= ew= 
add (ew,mw) (ez,mz), otherwisewherem = add mz mw, if ez = ew= add mz (zeros (2*(ez-ew)) ++ mw), if (ez-ew) mod 2 = 0= add mz (zeros (2*(ez-ew)) ++ (map neg mw)), otherwiseadd (a:x) (b:y) = a+b : add x yadd x [℄ = xadd [℄ y = y||---------------------------------------------------------------------|||| Complex subtra
tion ||||---------------------------------------------------------------------||
sub (ez,mz) (ew,mw) = 
add (ez,mz) (ew, negate mw)||---------------------------------------------------------------------|||| Complex multipli
ation ||||---------------------------------------------------------------------||
mul z w= 

an (e,m)wheree = expo z + expo wm = mantissa_mult (man z) (man w)mantissa_mult zs ws= [℄, if zs=[℄ \/ ws=[℄= mult_redu
e 
ross_produ
ts_list, otherwise26



where
ross_produ
ts_list = [map (* t) ws | t<-zs℄mult_redu
e z = [℄, if z=[[℄℄= take 228 blo
k ++mult_redu
e (drop 228 blo
k:drop 229 z), otherwisewhereblo
k = (
redu
e.
redu
e.diag_add.take 229) zdiag_add (a:b:x)= [℄, if a=[℄= a!0 : diag_add (add (tl a) b : x), otherwisediag_add [a℄ = adiag_add [℄ = [℄||----------------------------------------------------------------------|||| Complex division ||||----------------------------------------------------------------------||
div z w= (

an.kill_zeros 4) (exponent, repdiv (man z))whereexponent = expo z - expo divisordivisor = norm_divisor (kill_all_zeros w)w0:ws = man divisorrepdiv z= [℄, if z=[℄= nextdigit:quotient, otherwisewherenextdigit = guess (z!0) ((z!1) div 10) w0 ((ws!0) div 10)quotient = repdiv (
redu
e (times_ri m))m = add z (map (*(-nextdigit)) (w0:ws))guess z0 z1 w0 w1 = fst (divrem (z0*w0+z1*w1) (w0*w0+w1*w1))|| kill zeroskill_zeros n (e,m)= kill_zeros (n-2) (e-1,map neg (tl (tl m))), if (tl m)~=[℄ & m!0=0 &m!1=0= (e,m), otherwisekill_all_zeros = kill_zeros (-1)add_leading_zero (e,m) = (e,0:m)27



|| normalize the divisornorm_divisor (e,m)= error "attempt to divide by zero", if m=[℄= norm_divisor (e-1,map neg ((times_ri.times_ri) m)),if (abs (m!0) < 10000) & (abs (m!1) < 10000)= (e,m), otherwise|| times_ri multiplies a list by 10itimes_ri [℄ = [℄times_ri [0℄ = [℄times_ri [z0℄ = [0,-100*z0℄times_ri [z0,z1℄ = [z1,-100*z0℄times_ri [z0,z1,z2℄ = [z1,z2-100*z0℄times_ri (z0:z1:z) = z1:((hd z)-100*z0):(tl z)||----------------------------------------------------------------------|||| The output fun
tion: "show
 nr ni z" prints (nr) radix-10 digits of |||| the real part and (ni) radix-10 digits of the imaginary part of z |||| Requires the "st" fun
tion from the exa
t real arithmeti
 pa
kage ||||----------------------------------------------------------------------||show
 nr ni z= (st nr (re z)) ++ " + i * " ++ (st ni (im z))|| show only 10 digits by defaultshow
omplex z = show
 10 10 z

28
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