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Abstract

This paper investigates an exact arithmetic based on the single-component
representation of complex numbers by sequences of signed digits written to
imaginary base ri. Algorithms for the four basic arithmetic operations in
this representation are described and analyzed. The algorithms are to an
unexpected extent scarcely different from their exact real equivalents, which
significantly speeds up exact complex number manipulations.



1 Introduction

The complex numbers originated from the desire for a symbolic representa-
tion for the solutions of such equations as z? + 1 = 0, otherwise irreducible
over R. In modern terminology, we say that the field C of complex numbers
is a finite algebraic extension of R of degree 2, C = R (v/=1), which by mere
coincidence also happens to be the algebraic closure of R (see e.g. [1]). The
latter fact is precisely the famous Fundamental Theorem of Algebra, and the
exception rather than the rule. As well as algebraically closed, C also turns
out to be complete with respect to the norm that extends the norm |-| on
R, which makes it the convenient number system, as it is, in which to study
calculus and analysis.

Historically speaking, the definition of the complex numbers came before
the rigorous definition of the real numbers in terms of Cauchy sequences. In
an apparent attempt to put things in logical order, it became conventional
to discuss complex numbers in terms of the real number pairs used to rep-
resent them. Following this mathematical tradition, in most modern digital
computers, complex numbers are also represented as pairs of real numbers,
and arithmetic operations on complex numbers are developed in terms of the
corresponding operations on reals. The need to maintain separate representa-
tions for the real and imaginary parts of complex numbers makes them much
more awkward to compute than the reals. For instance, complex addition or
subtraction involves two real additions or subtractions, while multiplication
of two complex numbers involves four real multiplications, a real addition,
and a real subtraction:

(a+1b) (c +id) = (ac — bd) + i (bc + ad).

If multiplication is a much slower operation than addition, the above formula
can be improved upon by using the relation

(a+1b) (c+id) = (ac — bd) +i[(a +b) (c+ d) — ac — bd],

which involves only three real multiplications (ac, bd, (a + ¢) (b+d)), two
real additions and three real subtractions [2]. Complex division in this rep-
resentation, however, is inevitably even more “complex”:

a+ib_ac+bd+,bc—ad
c+id E+d Etd

In this report, we introduce a method of performing infinite precision
arithmetic on complex numbers that does not involve separating the complex
numbers into their real and imaginary parts. This is achieved by using the



positional representation of complex numbers by lazy infinite sequences of
real digits written to a complex base. We show that the four basic arithmetic
operations in this notation can be performed similarly to exact real arithmetic
in base r2, with the exception of the normalization procedure.

1.1 Infinite precision arithmetic

It is well-known that the use of floating-point arithmetic for real number
computations can sometimes lead to results that are highly inaccurate or
even completely meaningless. The following sequence (due to Muller [3]):

Tpp1 = 111 — (1130 — 3000/zy,_1) /zp, @ = 11/2, a1 = 61/11,

provides an unsettling glimpse of such round-off anomalies, which persist even
on multiple precision: in exact arithmetic x, is a monotonically increasing
sequence that converges to 6, yet in floating point it rapidly converges to 100
after only 14 divisions and 12 subtractions. Represented as pairs of reals,
complex numbers inherit all round-off, over- and under-flow misbehaviours
of real floating-point arithmetic, and matters become even worse as round-off
errors can obscure the singularities of complex analytic functions [4].

However, lest one’s faith in computer arithmetic be completely under-
mined, a number of alternatives to floating-point arithmetic have been sug-
gested, the main three being rational arithmetic, interval arithmetic and infi-
nite precision or exact real arithmetic. The first two methods are not entirely
satisfactory: interval arithmetic does not produce exact results and tends to
be overly pessimistic in measuring errors, while rational arithmetic is not
closed under many operations of interest (e.g., square root), and eventually
becomes very slow and inefficient, as an extended sequence of computations
may result in very large numerators and denominators.

Exact real arithmetic, on the other hand, represents numbers as infinite
objects, so that mathematical operations on the set of number representa-
tions faithfully represent the corresponding operations on real numbers. The
chief approaches to exact real arithmetic include the functional approach
[5, 6], the lazy sequence approach, formulated in terms of both redundant
signed-digit sequences [5, 6, 7] and continued fractions [8], and also a re-
cent blend of the two [9]. The forthcoming discussion of redundant radix-ri
signed-digit sequences is also somewhat in parallel with my earlier paper [10]
on exact real arithmetic.



1.2 Unified representation of complex numbers

On account of the complexity of even the four basic arithmetic operations,
several proposals have been made, some as early as in 1960’s, for a more
concise, single-component representation of the complex numbers, which al-
low complex arithmetic to be done in a unified manner, relieving the pro-
grammer of the burden of treating the real and imaginary parts separately
[11, 12, 13, 14]. The essence of these proposals is to choose the radix to be
a complex or an imaginary number, and then use sequences of real digits to
express the complex quantity as a weighted sum of powers of that radix. The
proposals have so far been only applied to finite systems.

In this paper, we investigate the use of the number ri as the radix of an
infinite positional weighted system. For this system, we assume a positional
notation

2+ (ri) 7",
0

o
20.2122**2p =
k:

where the weights associated with position k € Ny are (ri)™":

As can be seen from the above, the even-numbered positions in this ex-
pansion all have real weights, while the odd-numbered positions all have
imaginary weights. The real weights are related to each other as in negative
radix (—r?), and so are the imaginary ones after factoring out the common
ri (see Figures 1, 2).

(i)t ot oS

Figure 2: Odd-numbered positions (after factoring out ri)



For example, let » = 10 and the number z be represented in radix 10z by
the following expansion:

z=19.36 23 40
Then

2=19-36-10""7i—23-1072+40-10724
= 18.77 — 3.56%

Thus, in order to express a complex number z = x + ¢y in this format,
we first write its real part # as an expansion in radix negative r2, then we
write a radix (—r?) expansion of 7y, and finally we interleave the two parts
to obtain a single-component expansion.

Negative-radix systems have been extensively described in the literature
[15, 16, 17, 18], and the rules for addition, negation, multiplication and divi-
sion of finite numbers in these systems can be obtained by almost straight-
forward modification of the standard rules. At least one computer has been
built based on such a system [19]. However, the only advantage of negative-
radix number systems seems to reside in the fact that all finite real numbers,
whether positive or negative, can be represented in these systems without a
separate sign digit, thus obviating the need for special treatment of negative
numbers [16].

1.3 Redundant signed-digit representations

Even though the idea of absorbing the sign into the number representation
may have a moderate practical advantage in fixed-size-format number sys-
tems, where only a finite precision is available for representing numbers, the
changeover from finite to infinite renders this method indistinguishable from
the conventional positive-radix method.

Indeed, it is well-known that in order for even the four basic operations of
arithmetic to be computable on-line in a radix-r number system, the latter
has to exhibit redundancy [20, 7]. The most commonly used radix-r redun-
dant number system is the so-called symmetric signed-digit system, based on
a digit set

S,={p,...,1,0,1,...,p},

where T denotes —z, 1 < p < r —1 and p > r/2. What makes the system
redundant is the last condition, which allows each digit to assume more than
r values.



The use of a symmetrical signed-digit set blurs the distinction between
positive- and negative-radix number systems and allows us to circumvent
the difficulties of coping with alternating signs in negative-radix expansions.
Indeed, if we have a signed-digit expansion in a radix r > 0,

o0
=Y awF —p <@ <p,
k=0
we can easily transform it into the corresponding negative-radix expansion
o0
r=3 2 (-r) ", —p <l <p.
k=0

where
T, = (—1)k Tr, k € Ny,

and vice versa.
Now let us consider a signed-digit radix-rz expansion

o0

2+ (ri) " (1)

of a complex number z = x + iy with
2
2, € 7, |zk|§p,p€[§,r2—1}. (2)

It is clear that only a subset of the complex numbers can be represented by
such sequences; namely, the numbers z = x + iy with
2

. 3
r2 —1’ r?2 —1 3)
Note that the representation (1) of a complex number z = x + iy is

asymmetrical with respect to x and y because of the presence of the factor
1/r in the expansion of y:

2] < p lyl <p

x:zo—22r72+z4r74+...,
1
). (4)

y=- (=21 + 23072 — 251~
This brings up the question: How can we represent all complex numbers
in the form (1)?7 The standard solution to this problem is to scale any complex
number onto the above range (3). The scaling could in principle be applied
separately to the real and imaginary parts of the complex number, but the
arithmetic operations become much simpler when the real and imaginary
parts share a common exponent [21].



1.4 Exponent representation

The exponent representation of complex numbers is similar to the commonly
used floating-point representation of real numbers and consists of two main
parts: the exponent E € 7Z, and the mantissa M, which is a sequence of
integers (z,),—, € Z. . The complex number z, represented by the pair
(E, M), has the value

z2=B"-Y "z (ri) ", (5)

where B is the base of the exponent (usually a positive integer).

It is easy to show that all complex numbers can be represented in a
radix-ri system as an expansion of the form (5), where all z,, are in the range
(2). Note that for the time being, we are interested primarily in the general
properties of this system, and do not concern ourselves with the questions of
computability or effective convergence of the series in (5). Indeed, let Z € C
be an arbitrary complex number, 7 = X +1¢Y, X, Y € R. We aim to find
an exponent F € Z and two numbers z,y € R satisfying condition (3) such
that

7 = BY . (v +1y). (6)
From (6) and (3), we find that
2 1 2 _ 1
B >~ x|, BP > v,
pr pr
and therefore,
2 _ 1 2 _ 1
BF > max <T —|x], - |Y|> . (7)
pr pr

The best value of E in (7) is the minimal one, because it corresponds to the
largest possible values of z and y in (6) that satisfy (3). Thus, we choose the

exponent
2 1 2 1
E:%%mw( —Ix], - uﬂw
pr pr

2 Redundant radix-r: exponent representa-
tion of complex numbers

The main decision to be made regarding the exponent representation is the
choice of base B. The choice partially depends on the way numbers are

6



generated in the system, and the usual practice is to choose the exponent
base to be the same as the main radix. We can assume that most of the
complex data will be fed into the system in the conventional form, with
the real and imaginary parts separately represented in real radix ', where
' is either r or r%. Leaving negative bases such as (—r) or (—r?) out of
consideration, we have only two practicable choices for the exponent base: r
and r?. In either case, the real number pairs first have to be converted to
(—r?), and then interleaved to obtain a radix-ri expansion (conversion from
and to radix-ri is discussed in Section 4). The particular choice depends on
how the trade-off between addition and conversion is to be made — as we shall
see, exponent base r simplifies conversion at the expense of addition, while
r? streamlines addition to the detriment of conversion. We naturally regard
addition as more important than conversion; after all, conversion should
only be performed twice — once at the beginning and once at the end of a
computation. Taking the aforesaid into account, we have chosen r2 to be the
exponent base.

Definition 1 We define a computable exact complexr number z as a quadru-
ple (R,p, E, M), where R € N, R > 4 is a perfect square (R = r?), and the
base of the signed exponent E € Z, the range parameter p is an integer with
R/2 < p < R — 1, and the mantissa M is an effectively given sequence of
numbers (zy)nen, € Z such that

|z < Cn, n €N, (8)

where C' > 0 is a constant common to all complex numbers in a system. The
value of z = (R, p, E, (2n)nen, ) 18 taken as

o0

z=R". Zzn(m')_".

n=0

The convergence criterion (8) is somewhat arbitrary and only required
to ensure effective convergence of the sequence; an error message could be
produced at run-time if the sequence were found to violate (8).

If the mantissa entries

203y R1y Ry e e R0y .-

are digits in radix r? in the range [—p, p], they represent mantissa in the
domain
2 2

r r y r r (9)
pr2—1’pr2—1 pr2—1’pr2—1 ’




and the corresponding number (R, p, E, M) is said to be normalized.

For brevity and ease of reading, we shall not always distinguish between a
number z, its representation (R, p, F, M), and its expansion (5). Unless oth-
erwise stated, we shall also assume that r and p are constant and sometimes
use the notation (E, M) instead of (R, p, E, M).

3 Basic Arithmetic Operations

In this section, we introduce the algorithms for carrying out addition, sub-
traction, multiplication and division of exact complex numbers represented
by infinite sequences of signed digits in radix ri. The algorithms are unex-
pectedly similar to their real counterparts — where they differ is the nor-
malization procedure. This leads us to believe that the algorithms for the
basic arithmetic operations remain unchanged in any radix, whether a real
or complex number, as long as there is a way of normalizing sequences of
digits written to that radix.

3.1 Normalization

Normalization, in the context of radix-r redundant signed-digit positional
weighted systems, refers to the process of restoring the individual digits of
an effectively given sequence (ay,),cy, € Z, to the canonical range [—p, pl,
where p is an integral range parameter between r/2 and r — 1. By this is

meant the finding of a normalized sequence, (ay,), .y € [—p, p] such that

o.@] o.@]
I ..—n __ —n
E a,r " = apr~".

Note that the first digit, ag, of thus normalized sequence may generally re-
main unbounded.

Similarly, a canonical representation for the mantissa of a complex num-
ber z written to base 7 is a sequence

(207217227"' 7ZTL7"')M‘7

where |z,| < p for all n € Ny, except perhaps n = 0 and 1 (p is now a positive
integer between R/2 and R — 1, R = r?).
E

Let (z;);cy, be an unnormalized mantissa of a complex number z = r* -
o0

S 2 (ri) ", Recalling that

=0

i | .
)T =) (D) e R i 2> (=) R,

r

oo oo o0

1=0 k



is tantamount to normalizing two
where

the problem of ri-normalizing (zy),,cy,

radix-R sequences (75),cy, a0d (Yn),en, »

Tn = (—1)" 200, Yo = (_1)n+1 Zom+1- (10)

Once the sequences (), cy, and (Yn),cy, have been normalized in radix R,
we can once again alternate their signs in accordance with (10), and combine
them into back into a single sequence z,.

Normalization of radix-R sequences has been discussed in great detail in
[10] and is summarized below.

3.1.1 Normalization of radix-R sequences

Let us first consider a sequence (ay), cy, With [a,| < R+p—1,1n € Ny, and
show how to obtain a new sequence (a,),cy, Such that

i a,R7" = i anR7", (11)
n=0 n=0

and
la,| < p, n €N (12)
To achieve this, we first repeatedly divide a,, by R for all n € Ny:
an, = dpyR+my, |m,| <R, sgn(m,)=sgn(d,).

We then have:

S = 3 ) B = 3 S
n=0 n=0 n=0 n=0
= (a0 +d)+ Y (my+dui) R (13)
n=1

The condition |a,| < R+ p — 1 implies |d,| < 1 and |m,| < R —1 for all
n € Ny; thus,

|a0+d1|§ |a0|+17 |mn+dn+1| SR
The sequence

(ag+d1,m1+d2,m2+d3,---)



is almost the one we are looking for, except its elements are bounded in
absolute value by R, instead of p. To find a sequence bounded by p, we
slightly change the parameters d,, and m,,:

g = d, if |my| <p
" | dy+sgn(my), if |mu|>p

A if |m,| <p
M = { my, —sgn (my,) - R, if |m,| > p (14)
Now the sequence
ag=ao+dy, a,=m,+d, . (n€N) (15)

satisfies both normalization conditions (11) and (12).
To verify that the first condition holds true, we note that a, = d,, R+ m,,,
and similarly to (13), arrive at

Z a,R7" = (ap + d}) + Z (mi, +d, ) R" = Z anR7".
n=0 n=1 n=0

To verify the second normalization condition, we note that |d],| < 1 for all

n € Ny, so if [m,| < p, then m!, = my,, |m,,| < p, and |al,| = |m], + d}, ;| < p,
while if |m,| > p, then m] = m, —sgn(m,) - R, 1 < |m!| < R— p, and
|al,| = |m}, +d}, ;| < R—p+1. Now since we require r > 2, or R > 4, we
have

R—p+1<p.

Thus we conclude that
ap—1<ay<ag+1, la,|<p, neN

In this manner, we have constructed a function f : Z? x ZY — ZN —
which will be hereinafter referred to as reduce — that assigns to any triple
(R, p, (an) ey, ) the sequence (af),.y, € Z, calculated according to formulae
(14) and (15). Evaluation of this function can be performed totally in parallel
(Figure 3).

Before we consider a more general case |a,| < M, n € Ny, where M >0
is an arbitrary positive integer, it is pertinent to note that the condition
lan] < R+ p — 1 was introduced for the sake of (12), and is not relevant
to the definition of reduce. We can apply reduce(R,p) to any sequence
(an)pen, for which the series Y " a, R~ is convergent, and the resulting
sequence (ay,), oy, Will still satisfy the first normalization condition (11).

n

10



ao my Mo ms / .-
dy ds ds dy -

Figure 3: Totally parallel normalization

Let us show that if |a,| < M for all n € Ny, mantissa (a,),cy, can be
normalized in a finite number of steps. Indeed, applying reduce once, we
shall obtain a sequence (ay,), .y, satisfying the following condition:

! / ! / ! M

or

de M
|ay,| < My =) {EJ +p.
n

Applying reduce again, we get another sequence (an)neNO, satisfying

d M
|ay, | < M, =) LfJ + P,

etc. The sequence M, My, Ms, ... is a sequence of decreasing natural num-
bers, and if M = m,R" + ...+ m;R + myg, the algorithm will terminate in
at most n + 1 steps.

More specifically, we can prove that if for some k£ € N a sequence (an)nGNO
satisfies |a,| < RF+p—1 for all n € N, it can be fully normalized by reduce
in at most k steps. This enables us to determine the number of times & one

has to apply reduce in order to fully normalize a given sequence (a,,)

with |a,| < M, n € N; namely, e
k=min{ne N | M <R'+p—1}.
Solving the inequality M < R™ + p — 1 for n € N, we find that
n>logp (M —p+1),
and, therefore,
k= Nlog (M — p+1)]. (16)

11



3.1.2 Normalization of radix-ri sequences

We have shown that normalization of a radix-r¢ sequence is performed through
normalizing its even and odd subsequences (10) in radix r2. Once the sub-
sequences have been r2-normalized, all that remains for us to do is alternate
their signs and combine them back into a single sequence z,. The complex
analogue of reduce will be referred to as creduce.

3.2 Addition and Subtraction
3.2.1 Addition of two complex numbers

Let 2z = (Ez; (Z07 Rly" " ylmy """ )”) and w = (Ew; (U)(), Wy, ==y Wny ot )rz) be
the two normalized complex numbers to be added. If E, = F,,, the procedure
for addition is very straightforward: the digits of the two sequences are added
and the resulting sequence

(ZO+’LUO, Zl+’LU1,"' ) Zn+wna"')m'
is then normalized. The normalization can be done in a single pass, since
|20 + wa| < 2] + wa| <20 < R+p— 1.

If the exponents of z and w are not equal, the mantissa of one of the
operands has to be adjusted to make them equal. The shift has to be to
the right to avoid the loss of the most significant digits — therefore, it is
the mantissa of the addend with the smaller exponent that is shifted. Since
addition is a commutative operation, we can assume that e = E, — E,, > 0
without loss of generality. The details of the radix alignment are as follows:

E. i ! i
w=R" - (wy,wy, ..., Wy,...).:
where
(0,-++,0, wo, *+*, Wy, =+ )pg, if e =0mod?2
——
! 2e zeros
w = . 17
(Wn)ner (0,-++,0,—wg, -+, =Wy, )i, if e=1mod2 (17)
N—_——
2e zeros

The mantissa in (17) is left unchanged if the number of right shifts is
divisible by 4, and negated otherwise. That such is the case is explained
by the fact that two right-shifts are equivalent to dividing the mantissa by
(—r?) = —R, while four right-shifts are equivalent to dividing it by r* = R%:

RE - (U)[),"' ana"')ri :RE+1 . (ana_wﬂa"' J_wn;"')ri

:RE+2'(07070707w07"' 7wn;"')ri-

12



3.2.2 Addition of several complex numbers

The above addition algorithm can be readily modified to operate with n
complex numbers, where n > 2. The procedure is essentially the same —
all n numbers are aligned to match the one with the largest exponent, their
mantissas are added digit by digit, and the resulting sequence — normalized
by applying creduce k times, where

k= [logg (np = p+1)]

is calculated from (16) with M =n - p.
Note that this is considerably more efficient than adding the n numbers
pairwise using (n — 1) nested additions, as shown in [10].

3.2.3 Subtraction

Subtraction of a radix-ri sequence is carried out in the regular way — by
negating the minuend and adding the result to the subtrahend:

(Eza (zn)nENo)ri - (Ewa (wn)nENo)m' = (Eza (Zn)nENo)ri + (_ (Eu“ (wn)neNo)ri) J

where

o (Ewa (wn)nENo)ri - (Ew’ (_wn)neNO)” .

3.3 Multiplication

Complex multiplication in radix ri is also a very straightforward modification
of radix-r multiplication discussed in [10], and is performed by multiplying

o
the formal series and renormalizing the result. If 2 = R - 3" 2 (ri) % and
k=0

o0
w = RP - Y w,(ri)™™ are the normalized numbers to be multiplied, we
m=0

form their Cauchy product!

Zuk(m’)fk = Z ( mek:m> (ri) ",

k=0

o0 o0 .
IThe Cauchy product 3 wuy (i) ™* converges to zw as long as both series S z; (ri) ™
k=0 =0

o0 .
and Y wj (ri)"’ are absolutely convergent (Mertens’ theorem — see e.g. [22])
=0

13



k

where u;, = ( > zmwkm>, and proceed to ri-normalize the u; in groups of
m=0
n rows each.

Specifically, if (2,),cy, and (wn),cx,
and w, then |z,| < p and |w,| < p, hence

are canonical representations of z

fun] < p* - (n+1).

We want to find the result in the form
o0
u=zw=rb. Zu;n (ri) ™,
m=0

where |ul | < p for all m € Ny. The sequence wu, cannot be normalized
directly, because it is generally unbounded. The way out is to recursively
normalize small bounded portions of (u,,) as shown in Figures 4 and 5.

meNy?

oWy ZoWi ZOWN-1| 20WN Z0WN41 20WN42 20W2N -1 20WaN
21 Wy ZIWN-2 | ZA1WN-1 Z21WN Z21WN41 Z1WoN—2 | Z1W2N-1
EN—-1Wo | EN-1W1 EN-1W2 ZN-1W3 EN-1WN | EN-1WN+1

ZNWp ZNW1 ZNW2 ZNWN -1 ENWN
ZN4+1Wo ZN+1W1 © EN+1WN -2 EN+1WN-1
ZN42Wo * ANF2WN_3| EN+2WN -2

ZN—-1Wo | ZaN-1W1

22N Wo

Figure 4: Multiplication — before normalizing

Upo Uo1 Uo,N -1 UoN Uo,N+1 UO,N42 Up 2N -1 Uo 2N
ZN+1Wo ZN+1W1 * ENF1IWN -2 ZN+1WN -1
ZN+2Wo © ZN42WN -3 EN+2WN -2

ZIN-1Wo | Z2N—-1W1

Z2N Wy

Figure 5: Multiplication — after normalizing first (N + 1) lines

14



Normalization of first (N 4 1) lines in Figure 4 takes
k(N)=[logg (P> (N+1)—p+1)]

applications of creduce and yields a normalized sequence whose first N

digits give the first N digits of the product zw (Figure 5). Adding another

N lines and renormalizing in k (N) applications of creduce produces another

sequence whose first N digits are then taken to be the next N digits of the
o0

product, and the algorithm proceeds recursively with the series > wu, (ri)™",
n=0

computing the result in blocks of N digits.

Although the algorithm works correctly with any value of N € N, our
main concern is to minimize the time and space requirements. The opti-
mal value of N normally depends on the number of required precision digits,
which is generally unknown in advance. The values of N for which k£ (N) = 2
are clearly inadequate, resulting in an unnecessarily large number of opera-
tions, but any of the numbers

Np=max{neN |[k(N)<m}, m>3

appear to be equally suitable for the value of N (in terms of operation counts).
The m in N,, is the number of normalizations to be performed at each step
of the algorithm, and minimizing normalization is important to reduce the
space requirements (the larger the m the more space is required to hold the
intermediate results). In our implementation, we have used N = N3 (e.g.
N = N3 = 228 for r = 10 and p = 51). For a more detailed complexity
analysis, see [10].

3.4 Radix-r: division

In radix-r systems, signed-digit division of real numbers is usually performed
using the method originally due to Robertson [23]. The substance of the
algorithm lies with an iterative process that produces one digit of the quotient
per cycle according to the following recurrence equation similar to the paper-
and-pencil method:

Py =1 (P, —q.D), n €Ny, (18)

where Py = N, P, is the current partial remainder, P, is the next partial
remainder, and ¢, is the quotient digit inferred from P, and D. It is easy to
see that

Po=r"[N—=(g+aqr " +...4¢ r")D], neN
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and so imposing an upper bound on the value of |P,| ensures convergence of
the algorithm, provided that selection of the quotient digit ¢, results in the
next partial remainder P, ; adhering to the same allowed range as P,.

The existing signed-digit division algorithms primarily differ in their se-
lection of quotient digits, restriction of the range of the possible values of
the divisor, dividend and partial remainders and, finally, normalization tech-
niques. Usually, selection functions make a guess about ¢, based on the
inspection of several most significant digits of P,, and D. Even though this
could result in some quotient digits ¢, being wrong, the redundancy allows
recovery from wrong guesses by taking an appropriate correction step in the
next quotient digit.

If the first most significant digit dy of the divisor is large enough — the
exact range depends on the particular division method used — the usual

selection function is
q e . Sgn @
" do ’

where p,,o is the first most significant digit of the n-th partial remainder P,.
Thus, for example, the first most significant digit of the quotient is calculated

as
= [|20] | . sgn (20

If 2 € C is the dividend and w € C, w # 0 the divisor, the algorithm
for radix-r2 system can be obtained from the real one by using a recurrence
relation similar to (18):

Pno
do

Py =ri-(P,— quw), n € Ny,

where Py = 2z and (gn),,cy, are the digits of the quotient @ = z/w. In perfect
analogy with the real case, we infer that

Po=(ri)"[z— (@+a (ri) ™ 4. 4 ur (ri)_n+1) w], n €N,
and so if () is correct to n radix-r¢ digits, we have

2= (g0 + @ (r) "+ ...+ g () ") w| < |f:|

If g, were selected in such a way that P, stayed bounded, the above relation
would guarantee convergence of the algorithm.
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On the digit level, let z and w be represented by the following radix-r:
sequences:

Z:(ZOa 21, "'azna"')rz” w:(w0v wlv"'awn"")rw

where w is appropriately scaled so that either wy # 0 or w; # 0. To gain an
impression of how to choose the digit selection function, we observe that

Pn+1 =7re- (pn(] — GnWo, Pn1l — GunWi1, - 5 Pnk — qnWg, - - - )ri

= (pnl — gpWi, _TQ (pn(] - QTLwO) +pn2 — W2, Pp3 — qrW3, - - )m’ .

The algorithm will converge only if the elements of P, stay bounded for all
n € N, which can be achieved if ¢, are selected in such a way that both
Pr1 — @uwy and —1% (puo — ¢uwo) + Ppa — @uwo Temain relatively small. Tt is
only these two elements that may present a problem, since the rest of the
sequence can be normalized in the usual way.
Remembering that
z  (Rez)(Rew) + (Imz)(Imw) . (Imz)(Rew)— (Rez)(Imw)

0= Rewp+(moy 0T (Rewp+(muwp 0 )

it is clear that we have to look at two digits at a time, and use

ProWo + Ppiwi /12
n = - 8gn

wg + w?/r?
— . sgn *ProWo + P11
r2wi + w?

as the digit selection function. This seemingly complex formula is derived
directly from (19), remembering that

ProWo + Priwy /12
wg + w?/r?

72 DnoWo + Pr1wy
r2wg + w?

Re(zo 4+ z1(ri) ™ ..+ 2o(ri) ™" ... =20 —zr 2+ ar L

% (—21+zr 2=zt +..0) .

Im(zo + 21 (i) .o 2y (rd) " +..0)
The complete division normalization procedures require more sophisti-

cated reasoning and are beyond the scope of this paper (see e.g. [24]).

4 Conversion to and from single-component
representation

As demonstrated earlier, the single-component representation of complex
numbers possesses some speed advantages in executing multiplication and
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division. However, in order for any number system to be of interest from the
computer arithmetic standpoint, there must also be an efficient algorithmic
procedure for converting numbers into the new form, as well as decoding
them back into conventional form. In this section, we present the complete
algorithms for the constructor function for creating a complex number from
its real and imaginary parts, and the selector function for extracting real
or imaginary parts of complex values. Other useful functions, such as those
for replacing real or imaginary parts of a complex number while leaving the
other part untouched, can be worked out in the same way.

4.1 The constructor function

As mentioned above, we shall assume that the real and imaginary parts of a
complex number z are given by their respective radix-r signed-digit exponent
representations

o0
x=rb. E Tpr ",
n=0

00

. 2 2: —-n

y_ry_ ynr )
n=0

where E,, E, € Z and |z,|,|yn| < p1 (p1 € [r/2,r—1]) for all n € Ny. In
order to compute a radix-ri exponent signed-digit representation of z = x+1iy,
we have to convert both x and y to radix r2, having appropriately aligned
the radix points. More precisely, we have to find an F € Z and sequences

(@7 nen, a0d (Y))pen, Such that

o0
_ . 2F i 2\ 1"
r=r 5 xn(r) ,
n=0

which, according to (4), will then give us
z=x+iy=R" - (x, —yo, =2\, U1, T, —Yny- -+ ), - (20)

The radix alignment is performed as follows:
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1) if E, > E, and E, = 0mod 2, then we set

E=E,/2

x:r2E.(x0,xl,... ,xn,...)r

yZTQE_l' 0707"'707y07y17“'7yn7"' )
—_————

Ey—FEy—1 zeros

where E, — F, —1=(2E —1) — E, > 0;
2) if £, > E,+ 1 and E, = 1 mod2, then

E= (B, —1)/2

x:TQE-(T$o+$1,$2,"' ,xm...)r

yZTQE_l' 0707"'707y07y17“'7yn7"' )
————

Ey—FEy—2 zeros

where (2E —1) - E,=FE, — E, —2 > 0;
3)if B, = B, + 1 and E, = 1mod2 (and therefore, £, = 0 mod 2), then

E=(E. —1)/2

I‘ZTQE-(Tl’o-Fl'l,xQ,"' al‘na"')r
_ 2E—1

y=r '(Ty0+ylay27"'7yn7“')r’

4) if B, < E, and F, = 0mod 2, then

E=E,/2

:EZTQE' 0,0,"‘,0,1’0,1‘1,"‘,1‘72,"'
————
Ey—FE; zeros r

y:r2E71'(Ty0+ylay27"' Jyna"')ra

5) if B, < E, and E, = 1 mod2, then

E=(E,+1)/2

l‘:TQE' 0,0,"‘,0,fo,fl,"',fn,"‘
—_——

Ey—FEx+1 zeros
_ .2E—-1
y=r '(yﬂayla"'ayna"')r'

All that now remains for us to do is convert the aligned sequences to
radix r? (conversion from radix r to radix r? is rather straightforward), and
alternate the signs of the weighted factors in accordance with (20).
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Example 1 Find a representation of z = 1234.541-9.876 in radiz 10i. We
have:

r=1.2345-10° = 10 - (1,2,3,4,5)10
y = 9.876-10° = 10°- (9,8,7,6) 10

After aligning the decimal points (here E, = 3, E, = 0, therefore, E =
(Ex - 1)/2 = 1)"

r=10%-(12,3,4,5)
y =10'-(0,9,8,7,6)10

In radiz r? = 100:

x =107+ (12,34,50) 100
y = 10" - (0,98, 76) 100

Finally, using (20), we find
2 =100" - (12,0, —34, 98, 50, —76),..

Example 2 Find a representation of z = 9.876 +14-1234.5 in radiz 10i. We
have:

r=29.876-10" =10 - (9,8,7,6)10
y =1.2345-10* = 10%- (1,2,3,4,5)10

After aligning the decimal points (here E, = 0, E, = 3, therefore, E =
(B, +1)/2=2):

r=10*-(0,0,0,0,9,8,7,6)1
Yy = 103 ' (]-7 27 3747 5)10

In radiz r*> = 100:

r =10"-(0,0,9,87,60)100
y = 10" (1,23,45)100

Using (20), we obtain a representation of z

z=100%-(0,—1,0,23,9, —45, —87,0, 60),;.
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4.2 The selector functions

The two selector functions, Re and Im, are needed to extract the real and
imaginary parts of complex values, respectively. The algorithms for the eval-
uation of the selector functions are essentially the inverse of those for the
constructor function: given a radix-r7 expansion

z=RF (z4+2(ri)) ™ + 2(ri) 2+ ()T L),

the real and imaginary parts can be found as follows:

(o)
Rez =r?F. an (r2)_n,
n=0
o0

Imz =r2F-1. Zyn (7“2)_”,

n=0

where
Ty = (_l)nZQna Yn = (_1)n+1Z2n+1-

These expansions of Re z and Im z are in radix r2; conversion from radix
r? to radix r is can be performed with trivial effort.

5 Conclusions

We have introduced the redundant radix r representation of exact complex
numbers, and discussed the algorithms for the four basic arithmetic opera-
tions. The algorithms are to an unexpected extent similar to their exact real
counterparts, which makes the theoretical complexity of operations on exact
complex numbers comparable with that of the corresponding operations on
exact reals. The author’s implementation of the algorithms in the functional
programming language Miranda? shows a clear speed advantage over con-
ventional methods in executing multiplication and division, and equivalent
performance in addition and subtraction.

The author does not know of any other implementations of exact complex
arithmetic based upon an imaginary radix, and there are a number of possible
directions for ulterior research. Of these, we are most interested in:

e Efficiency aspects of implementations. The complexity issues concern-
ing operations on exact numbers for the most part remain unresolved.

2Miranda™ is a trademark of Research Software Limited
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Some measurements have revealed that exact arithmetic performs 50
to 100 times slower than hardware floating point [25]. It is generally
doubtful that exact real or complex arithmetic will ever perform on
current architectures as speedily as floating point which was designed
to match the underlying hardware, although one can think of various
ways to optimize the existing implementations.

e Elementary function evaluation. The evaluation of elementary func-
tions in positional radix systems is a very cumbersome process, be-
cause there are no obvious on-line digit-by-digit algorithms that are
both simple and efficient. Almost the only commonly used elementary
function that can be evaluated iteratively with little additional over-
head beyond that of the basic arithmetic operations is the square root
function. In radix-r systems, square root can be computed using a
simple pseudo-division algorithm that produces n digits of the result in
n cycles, at a rate of one digit per cycle. Since the only essential differ-
ence between square root and division is in the recurrence relation and
the digit selection function, we may reasonably expect to find a sim-
ilar square-rooting algorithm for complex numbers. Generally, where
radix-r algorithms exist for the evaluation of elementary functions of a
real variable, we may also expect to find their radix-ri equivalents.

Many complex elementary functions, such as the exponential, hyper-
bolic and trigonometric functions seem to be unrelated inside the do-
mains of their real restriction, but going to the complex plane reveals
that these functions are in fact all intimately connected. For example,
an algorithm that could compute the exponent of a radix-r: sequence
of digits would also compute the trigonometric functions:

6iz + e—iz eiz _ 6—iz
cosz = ———, sing=———+
2 2
as well as the hyperbolic functions
cosh z = cosiz, sinhz = —isiniz.
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A Miranda code for exact complex arithmetic

FILE: complex.m

/* Copyright (C) Alexander Kaganovsky 1995-1999. All rights reserved.

hexport complex mc re im cadd csub cmul cdiv showc

%include "input.m" || input validation functions
hinclude "real.m" || exact real arithmetic package

abstype complex

with mc :: real -> real -> complex
re, im :: complex -> real
cadd, csub, cmul, cdiv :: complex -> complex —-> complex
showc :: num -> num -> complex -> [char]
showcomplex :: complex -> [char]
complex == (num, [num])
real == (num, [num])

expo (e,m) = e
man (e,m) = m

cm10to100 :: [num] -> [num]

cm10t0100 [1 = []

cm10to0100 (a:x)
= (10*a+(hd x)) : cml0tol00 (tl x), if x 7= []
= 10*%a : cm10to100 x, otherwise

|| cman10to100 is the same as cml0tol00, except it doesn’t convert
|| the first element of the list

cmanlOtol100 (a:x) = a:cmlOtol00 x

cmanl0to100 [] = []

*/



cm100to10 :: [num] -> [num]
cm100to10 [1 = []
cm100to10 (a:x)
= a0 : al : cm100tol0 x
where
(a0,al) = divrem a 10

cmanl100tol0 (a:x) = a:cm100tol0 x

cman100to10 [1 = []

mc converts two exact reals (base 10) to a single-component
complex format (base 10i)

mc (ex,mx) (ey,my)
= (ez, mz)
where
mz = alternate (cman10tol00 mx’) (cmanl0to100 my’)
(ez,mx’ ,my’)
= (ex div 2, mx, inc (ex-ey-1) my), if (ex > ey) &
(ex mod 2 = 0)
((ex-1) div 2, dec mx, inc (ex-ey-2) my), if (ex > ey+1l) &
(ex mod 2 = 1)

= ((ex-1) div 2, dec mx, dec my), if (ex = ey+l) &
(ex mod 2 = 1)
= (ey div 2, inc (ey-ex) mx, dec my), if (ex <= ey) &
(ey mod 2 = 0)
= ((ey+1) div 2, inc (ey-ex+1) mx, my), otherwise

|| dec adjusts the mantissa of a radix-10 number to compensate for a dec of
|| (subtraction of one from) its exponent by multiplying the mantissa by 10
dec :: [num] -> [num]

dec [1 = []

dec [a] = [10*a]

dec (a:x) = (10*a+(hd x)):(tl x)

|| inc adjusts the mantissa of a radix-10 number to compensate for an
|| increase of its exponent by n. It does so by dividing the mantissa
|l by 10°(-n), i.e. adding n leading zeros

inc :: num -> [num] -> [num]

inc 0 x = x
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inc n x =
zZeros n =

|| re returns the real part (represented in base 10) of a complex

zZeros n ++ x

repn O

|| number (base 10i), im - the imaginary part of same

re (e,x) =
im (e,x) =

alternate ::

alternate
alternate
alternate
alternate
alternate
alternate
alternate
alternate
alternate
alternate
alternate

|| even (z0,z1,z2,...)
|| odd (z0,z1,z2,...)

even z = skipevenodd 0O
skipevenodd 1

odd =z

skipevenodd ::

can (2*xe, cmanl00tol0 (even x))
can (2xe-1, cmani100tol1l0 (odd x))

1 00 =11

[num] -> [num] -> [num]

(1 [yo] = [0,-yo0]

(1 [yo,yi] =

[0,-y0,0,y1]

[x0] [1 = [x0]
[x0] [y0] = [x0,-y0]

[x0] [yO,y1]

= [x0,-y0,0,y1]

[x0] (y0O:yl:ys) = [x0,-y0,0,yl] ++ alternate [0] ys

[x0,x1] [ =

[x0,0,-x1]

[x0,x1] [y0] = [x0,-y0,-x1]

(x0:x1:xs) [yo] = [x0,-y0,-x1,0] ++ alternate xs

(x0:x1:x8) (yO:yl:ys)
= [x0,-y0,-x1,y1] ++ alternate xs ys

= (z0,-z2,z4,...)

= (-z1,z3,-z5, ...
1 =z
(-1) =z

num -> num -> [num] -> [num]

skipevenodd counter sign (z0:z)

= (sign*z0): (skipevenodd 1 (-sign) z),
= skipevenodd O sign z,

skipevenodd counter sign [] = []
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creduce z = alternate (reduce (even z)) (reduce (odd z))
ccan (e,m)

= (e,m), if m=[]
= (e,creduce m), otherwise

cadd (ez,mz) (ew,mw)

= ccan (ez,m), if ez >= ew
= cadd (ew,mw) (ez,mz), otherwise
where
m = add mz mw, if ez = ew
= add mz (zeros (2x(ez-ew)) ++ mw), if (ez-ew) mod 2 = 0
= add mz (zeros (2*(ez-ew)) ++ (map neg mw)), otherwise

add (a:x) (b:y) = atb : add x y
add x [1 = x
add [1 y

I
<

cmul z w
= ccan (e,m)
where
e = expo z + expo w
m = mantissa_mult (man z) (man w)
mantissa_mult zs ws
= [1, if zs=[1 \/ ws=[]

= mult_reduce cross_products_list, otherwise
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where

cross_products_list = [map (* t) ws | t<-zs]

mult_reduce z = [],
= take 228 block ++

mult_reduce (drop 228 block:drop 229 z), otherwise

where

block = (creduce.creduce.diag_add.take 229) z

diag_add (a:b:x)

= [,

= al0 : diag_add (add (t1l a) b :
diag_add [a] = a
diag_add [1 = []

cdiv z w

if a=[]
x), otherwise

= (ccan.kill_zeros 4) (exponent, repdiv (man z))

where

exponent = expo z - expo divisor

divisor = norm_divisor (kill_all_zeros w)
wO:ws = man divisor

repdiv z
=[], if z=[]
= nextdigit:quotient, otherwise
where

nextdigit = guess (z!0) ((z!1l) div 10) w0 ((ws!0) div 10)

quotient = repdiv (creduce (times_ri m))
m = add z (map (*(-nextdigit)) (wO:ws))

guess z0 z1 w0 wil = fst (divrem (zO*wO+zl*wl) (wO*wO+wl*wl))

|| kill zeros
kill_zeros n (e,m)

= kill_zeros (n-2) (e-1,map neg (tl (t1 m))), if (t1 m)~=[] & m!'0=0 &

= (e,m),
kill_all_zeros = kill_zeros (-1)

add_leading_zero (e,m) = (e,0:m)
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| | normalize the divisor
norm_divisor (e,m)
= error "attempt to divide by zero", if m=[]
norm_divisor (e-1,map neg ((times_ri.times_ri) m)),
if (abs (m!0) < 10000) & (abs (m!1) < 10000)
(e,m), otherwise

|| times_ri multiplies a list by 10i

times_ri [] = []

times_ri [0] = []

times_ri [z0] = [0,-100%z0]

times_ri [z0,z1] = [z1,-100%z0]

times_ri [z0,z1,z2] = [z1,z2-100%z0]

times_ri (z0:z1l:z) = z1:((hd z)-100%z0) : (t1l z)

|
|| The output function: "showc nr ni z" prints (nr) radix-10 digits of ||
|| the real part and (ni) radix-10 digits of the imaginary part of z |l
|| Requires the "st" function from the exact real arithmetic package |l

showc nr ni z
= (st nr (re 2)) ++ " + 1 *x " ++ (st ni (im z))

|| show only 10 digits by default
showcomplex z = showc 10 10 z
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