
Howe, Jacob M. (1999) Proof Search in Lax Logic. Technical report.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21801/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21801/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Proof Search in Lax Logic

Jacob M. Howe

Computing Laboratory
University of Kent, Canterbury, CT2 8NF, UK

J.M.Howe@ukc.ac.uk

Abstract. A Gentzen sequent calculus for Lax Logic is presented, the proofs
in which naturally correspond in a 1–1 way with the normal natural deductions
for the logic. The propositional fragment of this calculus is then used a basis for
another calculus, one which uses a history mechanism in order to give a decision
procedure for propositional Lax Logic.

1 Introduction and Background

Proof search can be used with either of two meanings. It can either be used to mean
the search for all proofs of a formula (proof enumeration), or to mean the search for
a yes/no answer to a query (theorem proving). This paper describes two newsequent
calculi for Lax Logic. One calculus is for proof enumeration for quantified Lax Logic,
the other calculus is for theorem proving in propositional Lax Logic.

Lax Logic is an intuitionistic modal logic with a single modality(�, somehow). This
modality is unusual in that it has properties both of necessity and of possibility. The
modality can be thought of as expressing correctness up to a constraint, abstracting
away from the detail (hence the choice of name, Lax Logic). A formula�P can be read
as “for some constraintc, formulaP holds underc”. The modality is axiomatised by
three axioms:�R : S � �S�M : � � S � �S�F : (S � T) � (�S � �T)
Lax logic has recently been investigated by Fairtlough, Mendler & Walton ([Men93],
[FM94], [FM97], [FMW97], [FW97]) and by Benton, Bierman & de Paiva([BBdP98]).

Curry ([Cur52]) introduced the logic to illustrate cut-elimination in the presence of
modalities. The logic was rediscovered by Mendler, who developed the logic for ab-
stract reasoning about constraints in hardware verification ([Men93]). The timing con-
straints that need to be satisfied in a circuit can be abstracted away as instances of
the modality and reasoned about separately from the logical analysis of the circuit. In
[Men93], [FM94], [FM97], the proof theory and semantics of Lax Logicare developed,
giving Gentzen calculi, natural deduction calculi and Kripke semantics for thelogic as
well as giving details of the logic’s use as a tool for hardware verification.

Lax Logic has also been observed ([BBdP98]) as the type system for Moggi’s compu-
tational lambda-calculus (see [Mog89]). In [BBdP98] the correspondencebetween the
natural deduction presentation of Lax Logic (there called computational logic) and the
computational lambda calculus is given, along with some proof theoreticresults on the
logic.

In [FMW97] the ability of Lax Logic to give an abstract expression of constraints is
utilised to give a proof theoretic semantics for constraint logic programming languages.
The constraints to be satisfied can be abstracted away as modalities and the query can be
reasoned about logically. The constraints can then be analysed separately. The logic is
used to give proofs of queries. These proofs give the constraints tobe satisfied. This ap-
proach is an extension to constraint logic programming of the view [MNPS91] of logic
programming as backwards proof search in constructive logic. In essence, this approach
takes normal natural deduction as the proof theoretic semantic for logic programming.
Normal natural deductions are then the proof theoretic semantics for constraint logic
programming.

Natural deduction has a pragmatic drawback. In searching backwards for the proof of a
formula, it is not always obvious which rule to apply. For instance in� ` P � Q � ` P� ` Q (�")
it is not obvious from the conclusion that we should apply(�"). Even when this rule
has been decided upon, whatP should be is hard to decide. Cut-free Gentzen sequent
calculus systems ([Gen69]) are much better from this point of view. Whena principal
formula has been chosen, the rules which can be applied to it are restricted. When
the rule has also been chosen, the rule application is deterministic. The application of
logical rules is directed by the syntax of the principal formula. Structural rules can
usually be built into the sequent system. In such a system, when a principal formula
has been chosen, the next rule application is determined exactly by the syntax of that
formula. All logical rules of the sequent calculus are introduction rules(on the left or
on the right).

There are well known translations ([Pra65]) between normal natural deductions and
sequent proofs. Therefore we can search for proofs in sequent calculus systems and
then translate the resulting proofs to normal natural deductions. Thedrawback here is
that many sequent proofs translate to the same normal natural deduction. Hence when
one is trying to enumerate all proofs of a formula, the same proof is found again and
again.

This gives one motivation for ‘permutation-free’ sequent calculi (introduced in [Her95],
[Her96] for Intuitionistic Logic). These are sequent calculi system for logics (enabling
syntax directed proof search) whose proofs can be translated in a 1–1 way with the
normal natural deductions for the logic. Permutation-free calculi have the advantages of
a sequent calculus system, whilst reflecting the structure of normal natural deductions.

The first calculus described in this paper, PFLAX, is a proof enumeration calculus for
first-order quantified Lax Logic. PFLAX is a permutation-free calculus for Lax Logic –

its proofs naturally correspond in a 1–1 way with the normal natural deductions for the
logic. This calculus is a suitable calculus for proof search in relation to constraint logic
programming.

For many applications of logics a simple provable/unprovable answer will do. In this
case we are interested in the quickest way of getting this answer (and in its correctness).
Propositional logics are usually decidable and therefore we are interestedin finding
decision procedures, in particular we would like quick decision procedures.

The contraction rule is a major obstacle to finding decision procedures for non-classical
logics. Duplication of a formula means that on backwards proof search the sequents are
becoming more complicated, not less. We have no obvious way of seeing thatwe should
terminate the search. Leaving contraction out usually leaves an incomplete calculus.
One can either try and find a calculus that duplicates resources in a more subtleway
or study the nature of non-terminating backwards search to see where one canstop the
search.

The second calculus, PFLAXHist, is a theorem proving calculus for propositional Lax
Logic. This calculus uses a technique for detecting loops using a history mechanism,
building on work of Heuerdinget al ([HSZ96], [Heu98], [How97]). It uses the proposi-
tional fragment of PFLAX as the basis calculus to which a history mechanismis added
to give a decision procedure for propositional Lax Logic. This technique is general and
maybe applied to many propositional logics. A decision procedure for propositional
Lax Logic is interesting in relation to Lax Logic’s application in hardware verification.
We know of no other decision procedure for propositional Lax Logic.

2 Natural Deduction

The permutation-free calculus developed in this paper is a sequent calculus the proofs
in which naturally correspond in a 1–1 way to normal natural deductions. In this section
we discuss natural deduction for Lax Logic.

A natural deduction calculus for Lax Logic, taken directly from [BBdP98] (with rules
for quantifiers and falsum added), can be seen in Figure 1.

Normal natural deductions are the objects of interest, so we look at the normalisation
steps. Again these are taken from [BBdP98], with the extra cases for? and9" added.
As the reduction rules for the intuitionistic connectives are standard, we do not include
them here, concentrating instead on those involving the modality.

First the�-reduction:

–
....P�P (�I) [P]....�Q�Q (�") ;[P]....�Q

Now we give the commuting conversions (orc-reductions) involving the modality:

–

....�P [P]....�Q�Q (�") [Q]....�R�R (�") ;�P [P]....�Q [Q]....�R�R (�")�R (�")
–

....P _Q [P]....�R [Q]....�R�R (_") [R]....�S�S (�") ;P _Q [P]....�R [R]....�S�S (�") [Q]....�R [R]....�S�S (�")�S (_")�; P ` P (ax) � ` > (>) � ` ?� ` P (?)�; P ` Q� ` P � Q (�I) � ` P � Q � ` P� ` Q (�")� ` P � ` Q� ` P ^Q (^I) � ` P ^Q� ` P (^"1) � ` P ^Q� ` Q (^"2)� ` P� ` P _Q (_I1) � ` Q� ` P _Q (_I2)� ` P _Q �; P ` R �;Q ` R� ` R (_")� ` P� ` �P (�I) � ` �P �; P ` �Q� ` �Q (�")� ` P [u=x]� ` 8xP (8I)y � ` 8xP� ` P [t=x] (8")� ` P [t=x]� ` 9xP (9I) � ` 9xP �; P [u=x] ` R� ` R (9")yy u not free in�
Fig. 1: Sequent style presentation of natural deduction for Lax Logic

– ?�P (?") [P]....�Q�Q (�") ; ?�Q (?")
–

....9xP [P [u=x]]....�Q�Q (9") [Q]....�R�R (�") ;9xP [P [u=x]]....�Q [Q]....�R�R (�")�R (9")
Definition 1 A natural deduction is said to be in�; c-normal form when no�-reductions
and noc-reductions are applicable.

We give a presentation of a restricted version of natural deduction for LaxLogic. In
this calculus, the only deductions are those that are in�; c-normal form. This calculus
has two kinds of ‘sequents’, differentiated by their consequence relations, � and��.
Rules are applicable only when the premisses have a certain consequence relation. The
conclusions have a fixed consequence relation. Thus those deductions thatare valid are
of a restricted form. This calculus, which we call NLAX, is given (with the proof terms
given in the next section) in Figure 2.

Proposition 1 The calculusNLAX only allows deductions to which no�-reductions
and noc-reductions are applicable. Moreover, it allows all�; c-normal deductions.

3 Term Assignment

In this section we give a term assignment system for NLAX. The term system is not
only needed for the proofs given later in the paper, but also extremely useful in many
applications of constructive logics. In [Mog89] Moggi gave a�-calculus, which he
called thecomputational�-calculus. As is shown in [BBdP98], this calculus naturally
matches Lax Logic. More about the computational�-calculus and Lax Logic (there
called computational logic) can be found in [BBdP98].

We give this term system in a syntax we prefer – an abstract syntax with explicit con-
structors. We could give a translation of Moggi’s terms to ours. Proof terms for unre-
stricted natural deduction for Lax Logic and a translation of Moggi’s terms to ours (and
vice versa) can be found in [How98a].

We are interested in the ‘real’ proofs for Lax Logic – the normal natural deductions.
We now restrict the terms that can be built, in order that they match our restricted
natural deduction calculus NLAX, giving us proof objects. (That is, no reductions will
be applicable at the term level; the term reductions match the�- andc-reductions given

earlier). The proof terms come in two syntactic categories,A andN. V is the category
of variables (proofs), U is the category of variables (individuals), and T the category of
terms. The extra constructoran(A) matches the(M) rule of NLAX.

A ::= var(V) j ap(A;N) j fst(A) j snd(A) j apn(A; T)
N ::= � j efq(A) j an(A) j �V:N j pr(N;N) j i(N) j j(N)wn(A; V:N; V:N) j smhi(N) j smhe(A; V:N)�U:N j prq(T;N) j ee(A;U:V:N)
NLAX together with proof annotations for normal terms can be seen in Figure 2.�; x : P � var(x) : P (ax) � �A : P� ��an(A) : P (M)� ��� : > (>) � �A : ?� ��efq(A) : P (?")�; x : P ��N : Q� ���x:N : P � Q (�I) � �A : P � Q � ��N : P� � ap(A;N) : Q (�")� ��N1 : P � ��N2 : Q� ��pr(N1; N2) : P ^Q (^I)� �A : P ^Q� � fst(A) : P (^"1) � �A : P ^Q� � snd(A) : Q (^"2)� ��N : P� ��i(N) : P _Q (_I1) � ��N : Q� ��j(N) : P _Q (_I2)� �A : P _Q �; x1 : P ��N1 : R �; x2 : Q��N2 : R� ��wn(A;x1:N1; x2:N2) : R (_")� ��N : P� ��smhi(N) : �P (�I) � �A : �P �; x : P ��N : �Q� ��smhe(A;x:N) : �Q (�")� ��N : P [u=x]� ���u:N : 8xP (8I)y � �A : 8xP� � apn(A; t) : P [t=x] (8")� ��N : P [t=x]� ��prq(t;N) : 9xP (9I) � �A : 9xP �; x : P [u=x] ��N : R� ��ee(A;u:x:N) : R (9")yy u not free in�

Fig. 2: NLAX with proof annotations

4 Sequent Calculus

In this section we present a new Gentzen sequent calculus for Lax Logic, PFLAX.
The proofs allowed by PFLAX naturally correspond in a 1–1 way to normalnatural
deductions for Lax Logic – i.e. the proofs of NLAX. First we remind the reader of the
sequent calculus as presented in [FM97] and [BBdP98]. This can be seen in Figure 3.

In fact, our presentation is slightly different from both those cited.The calculus in
[BBdP98] has no structural rules, that is, the contexts are sets. [FM97] have both weak-
ening and contraction on both the left and the right, plus exchange. Here the only struc-
tural rule we consider (or need) is contraction on the left. The contextsin our presenta-
tion are multisets. We leave all discussion of cut until later.�; P) P (ax) �; P; P) R�; P) R (C)�) > (>) �;?) P (?)�; P) Q�) P � Q (�R) �) P �;Q) R�; P � Q) R (�L)�) P �) Q�) P ^Q (^R) �; P) R�; P ^Q) R (^L1) �;Q) R�; P ^Q) R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P) R �;Q) R�; P _Q) R (_L)�) P�) �P (�R) �; P) �R�; �P) �R (�L)�) P [y=x]�) 8xP (8R)y �; P [t=x]) R�; 8xP) R (8L)�) P [t=x]�) 9xP (9R) �; P [y=x]) R�; 9xP) R (9L)yy y not free in�

Fig. 3: Sequent Calculus for Lax Logic

We now present a new sequent calculus which we call PFLAX (‘permutation-free’
Lax Logic). This calculus extends the permutation-free calculus MJ ([Her95],[Her96],
where the calculus is called LJT, and [DP98],[DP99]) for Intuitionistic Logic to a cal-
culus for Lax Logic. Like MJ this calculus has two forms of judgment,�) R and� Q�! R. The first looks like the usual kind of sequent; however, only right rules and
contraction are applicable to this kind of sequent in backwards proof search.By back-
wards proof search we mean proof search starting from the root. The second kind of
sequent has a formula (on the left) in a privileged position called thestoup(following
[Gir91]). The formula in the stoup is always principal in the conclusion of an inference
rule. Left rules are only applicable to stoup sequents. PFLAX is displayed in Figure 4.

� P�! P (ax) �; P P�! R�; P) R (C)�) > (>) � ?�! P (?)�; P) Q�) P � Q (�R) �) P � Q�! R� P�Q�! R (�L)�) P �) Q�) P ^Q (^R) � P�! R� P^Q�! R (^L1) � Q�! R� P^Q�! R (^L2)�) P�) P _Q (_R1) �) Q�) P _Q (_R2) �; P) R �;Q) R� P_Q�! R (_L)�) P�) �P (�R) �; P) �R� �P�! �R (�L)�) P [y=x]�) 8xP (8R)y � P [t=x]�! R� 8xP�! R (8L)�) P [t=x]�) 9xP (9R) �; P [y=x]) R� 9xP�! R (9L)yy y not free in�
Fig. 4: The Sequent Calculus PFLAX

The stoup is a form of focusing: the formula in the stoup is alwaysprincipal in the
premiss unless it is a disjunction or a somehow formula. One might ask why we do not
formulate the(�L) rule as follows� P�! �R� �P�! �R (�L)
To answer this, we point out that the resulting calculus would not thenmatch normal
natural deductions in the manner we would like. Also consider proofs ofthe sequent�� (P ^Q)) �(Q ^ P).
5 Term Assignment for Sequent Calculus

We give a term assignment system for PFLAX; these terms, together withthose from
section 3, will be used to prove the main results on PFLAX. This we getby extending
that given in [Her95], [DP96], [DP98]. The term calculus has two syntactic categories,
M andMs. V is the category of variables (proofs), U is the category of variables (indi-
viduals) and T is the category of terms .

M ::= � j (V ;Ms) j �V:M j pair(M;M) j inl(M) j inr(M)

smhr(M) j �U:M j pairq(T;M)
Ms::= [] j ae j (M :: Ms) j p(Ms) j q(Ms) j when(V:M; V:M)smhl(V:M) j apq(T;Ms) j spl(U:V:M)
These terms can easily be typed by PFLAX, as seen in Figure 5.� P�! [] : P (ax) �; x : P P�!Ms : R�; x : P) (x;Ms) : R (C)�) � : > (>) � ?�! ae : ? (?)�; x : P)M : Q�) �x:M : P � Q (�R) �)M : P � Q�!Ms : R� P�Q�! (M :: Ms) : R (�L)�)M1 : P �)M2 : Q�) pair(M1;M2) : P ^Q (^R)� P�!Ms : R� P^Q�! p(Ms) : R (^L1) � Q�!Ms : R� P^Q�! q(Ms) : R (^L2)�)M : P�) inl(M) : P _Q (_R1) �)M : Q�) inr(M) : P _Q (_R2)�; x1 : P)M1 : R �; x2 : Q)M2 : R� P_Q�! when(x1:M1; x2:M2) : R (_L)�)M : P�) smhr(M) : �P (�R) �; x : P)M : �R� �P�! smhl(x:M) : �R (�L)�)M : P [u=x]�) �u:M : 8xP (8R)y � P [t=x]�! Ms : R� 8xP�! apq(t;Ms) : R (8L)�)M : P [t=x]�) pairq(T;M) : 9xP (9R) �; P [u=x])M : R� 9xP�! spl(u:x:M) : R (9L)yy y not free in�

Fig. 5: The Sequent Calculus PFLAX, with Term Assignment

6 Equivalence of the Calculi

Having presented the calculi for Lax Logic, we now prove that they have the properties
we claim. We prove the equivalence of the term calculi and soundness and adequacy for
PFLAX. These results prove the desired correspondence.

The full details of these proofs are rather repetitive: therefore we onlygive the proofs
for the�; � fragment of Lax Logic. The remainder of the calculus is Intuitionistic Logic
as presented in [DP96]. The details of the proofs extended to the rest ofthe calculus can
be found there.

We start by giving pairs of functions that define translations between the term assign-
ment systems for natural deduction and sequent calculus.

Sequent Calculus! Natural Deduction:� : M ! N �0 : A �Ms ! N�(x;Ms)=�0(var(x);Ms) �0(A; [])=an(A)�(�x:M)=�x:�(M) �0(A; (M :: Ms))=�0(ap(A; �(M));Ms)�(smhr(M))=smhi(�(M)) �0(A; smhl(x:Ms))=smhe(A; x:�(M))
Natural Deduction! Sequent Calculus: : N ! M 0 : A �Ms ! M (an(A))= 0(A; []) 0(var(x);Ms)=(x;Ms) (�x:N)=�x: (N) 0(ap(A;N);Ms)= 0(A; ((N) :: Ms)) (smhe(A; x:N))= 0(A; smhl(x: (N))) (smhi(N))=smhr((N))
We prove two lemmas showing the equivalence of the term calculi, that is, the transla-
tions from one system to the other are 1–1.

Lemma 1 i) (�(M)) = M ; ii) (�0(A;Ms)) = 0(A;Ms)
PROOF: The proof is by simultaneous induction on the structure ofM andMs.
1. (x;Ms) (�(x;Ms)) = (�0(var(x);Ms)) def�

= 0(var(x);Ms) ind ii)
= (x;Ms) def 0

2. �x:M (�(�x:M)) = (�x:�(M)) def�
= �x: (�(M)) def
= �x:M ind i)

3. smhr(M) (�(smhr(M))) = (smhi(�(M))) def�
= smhr((�(M))) def
= smhr(M) ind i)

4. [] (�0(A; [])) = (an(A)) def�
= 0(A; []) def 0

5. (M :: Ms) (�0(A; (M :: Ms))) = (�0(ap(A; �(M));Ms)) def�0
= 0(ap(A; �(M));Ms) ind ii)
= 0(A; ((�(M)) :: Ms)) def 0
= 0(A; (M :: Ms)) ind i)

6. smhl(x:M) (�0(A; smhl(x:M))) = (smhe(A; x:�(M))) def�0
= 0(A; smhl(x: (�(M)))) def
= 0(A; smhl(x:M)) ind i)�

Lemma 2 i) �((N)) = N ; ii) �(0(A;Ms)) = �0(A;Ms)
PROOF: By simultaneous induction on the structure ofN andA.

1. an(A)�((an(A)) = �(0(A; [])) def
= �0(A; []) ind ii)
= an(A) def�0

2. �x:N�((�x:N)) = �(�x: (N)) def
= �x:�((N)) def�
= �x:N ind i)

3. smhi(N)�((smhi(N))) = �(smhr((N))) def
= smhi(�((N))) def�
= smhi(N) ind i)

4. smhe(A; x:N)�((smhe(A; x:N))) = �(0(A; smhl(x: (N)))) def
= �0(A; smhl(x: (N))) ind ii)
= smhe(A; x:�((N))) def�0
= smhe(A; x:N) ind i)

5. var(x)�(0(var(x);Ms)) = �(x;Ms) def 0
= �0(var(x);Ms) def�

6. ap(A;N)�(0(ap(A;N);Ms)) = �(0(A; ((N) :: Ms))) def 0
= �0(A; ((N) :: Ms)) ind ii)
= �0(ap(A; �((N)));Ms) def�0
= �0(ap(A;N);Ms) ind i)�

The following two theorems prove soundness and adequacy theorems. These show that
the translations respect provability, that is, no sequent (and hence its associated term)
can be proved in one system, but not its translation in the other.

Theorem 1 (SOUNDNESS) The following rules are admissible:�)M : R� ���(M) : R i) � �A : P � P�!Ms : R� ���0(A;Ms) : R ii)
PROOF: By simultaneous induction on the structure ofM andMs.
1. (x;Ms) We have a derivation ending in:�; x : P P�!Ms : R�; x : P) (x;Ms) : R (C)

So we have: x : P � var(x) : P �; x : P P�!Ms : R� ���0(var(x);Ms) : R ii)
and we know that�0(var(x);Ms) = �(x;Ms)

2. �x:M We have a derivation ending in�; x : P)M : Q�) �x:M : P � Q (�R)
whence �; x : P)M : Q�; x : P ���(M) : Q i)� ���x:�(M) : P � Q (�I)
and we know that�x:�(M) = �(�x:M)

3. smhr(M) We have a derivation ending as follows�)M : P�) smhr(M) : �P (�R)
whence �)M : P� ���(M) : P i)� ��smhi(�(M)) : �P (�I)
and we know thatsmhi(�(M)) = �(smhr(M))

4. [] We have a deduction and a derivation:� �A : P � P�! [] : P (ax)
From the deduction, we obtain:� �A : P� ��an(A) : P (M)
the required results follows sincean(A) = �0(A; [])

5. (M :: Ms) We have a derivation ending in�)M : P � Q�!Ms : R� P�Q�! (M :: Ms) : R (�L)
whence � �A : P � Q �)M : P� ���(M) : P i)� � ap(A; �(M)) : Q (�") � Q�!Ms : R� ���0(ap(A; �(M));Ms) : R ii)
and we know that�0(ap(A; �(M));Ms) = �0(A; (M :: Ms))

6. smhl(x:Ms) We have a derivation ending�; x : P)M : �Q� �P�! smhl(x:M) : �Q (�L)
whence � �A : �P �; x : P)M : �Q�; x : P ���(M) : �Q i)� ��smhe(A; x:�(M)) : �Q (�")
and we know thatsmhe(A; x:�(M)) = �0(A; smhl(x:M))�

Theorem 2 (ADEQUACY) The following rules are admissible:� ��N : R�) (N) : R i) � �A : P � P�!Ms : R�) 0(A;Ms) : R ii)
PROOF: By simultaneous induction on the structure ofA andN .

1. an(A) We have a deduction ending� �A : P� ��an(A) : P (M)
hence we have � �A : P � P�! [] : P�) 0(A; []) : P ii)
and we know that 0(A; []) = (an(A))

2. �x:N We have a deduction ending�; x : P ��N : Q� ���x:N : P � Q (�I)
whence �; x : P ��N : Q�; x : P) (N) : Q i)�) �x: (N) : P � Q (�R)
and we know that�x: (N) = (�x:N)

3. smhe(A; x:N) We have a deduction ending in� �A : �P �; x : P ��N : �Q� ��smhe(A; x:N) : �Q (�")
whence � �A : �P �; x : P ��N : �Q�; x : P) (N) : �Q i)� �P�! smhl(x: (N)) : �Q (�L)�) 0(A; smhl(x: (N))) : �Q ii)
and we know that 0(A; smhl(x: (N))) = (smhe(A; x:N))

4. smhi(N) We have a deduction ending in� ��N : P� ��smhi(N) : �P (�I)
whence � ��N : P�) (N) : P i)�) smhr((N)) : �P (�R)
and we know thatsmhr((N)) = (smhi(N))

5. var(x) We can extend to �; x : P P�!Ms : R�; x : P) (x;Ms) : R (C)
and we know that(x;Ms) = 0(var(x);Ms)

6. ap(A;N) We have a deduction ending in� �A : P � Q � �N : P� � ap(A;N) : Q (�")
whence � �A : P � Q � ��N : P�) (N) : P i) � Q�!Ms : R� P�Q�! ((N) :: Ms) : R (�L)�) 0(A; ((N) :: Ms)) : R ii)
and we know that 0(A; ((N) :: Ms)) = 0(ap(A;N);Ms)

�
Since the term systems are in 1–1 correspondence (from lemma 1 and lemma 2)and
the translation preserve provability (theorem 1 and theorem 2), the 1–1correspondence
between PFLAX and NLAX has been established. This is stated in the following theo-
rem.

Theorem 3 The normal natural deductions of Lax Logic (the proofs ofNLAX) are in
1–1 correspondence to the proofs ofPFLAX.

PROOF: Immediate from theorems 1 and 2 and lemmas 1 and 2.�
Since natural deduction is sound and complete, PFLAX must also be.

Corollary 1 The calculusPFLAX is sound and complete.

6.1 Cut Elimination

We now discuss cut for PFLAX. In the usual sequent calculus, cut may be formulated
as follows: �) P �; P) Q�) Q (cut)
In PFLAX, the two judgment forms lead to the following four cut rules:� Q�! P � P�! R� Q�! R (cut1) �) P �; P Q�! R� Q�! R (cut2)�) P � P�! R�) R (cut3) �) P �; P) R�) R (cut4)
We call PFLAX extended with the four cut rules PFLAXcut. We can give reduction
rules for PFLAXcut and prove the weak cut elimination theorem for the logic. We can
also prove strong normalisation for the term system associated with the logic, hence
strong cut-elimination. As these results are not directly relevant to the work presented
in this paper, the details have been omitted. These details and proofs can befound in
[How98a], [How98b].

Theorem 4 The rules(cut1); (cut2); (cut3); (cut4) are admissible inPFLAX.

Theorem 5 The cut reduction system forPFLAX strongly normalises.

7 Lax Logic and Constraint Logic Programming

In [FMW97] and [Wal97], quantified Lax Logic is used to give a logical analysis of
constraint logic programming. Lax Logic is used to separate the logicalanalysis of
provability and the satisfiability of constraints. Here we summarisetheir approach.

Constraint logic programs consist of clauses, CLP clauses, which are closed formulae
of the form: 8x1:::xn:S � H
whereH is an atomA(x1; :::; xn) andS is a formula according to the following gram-
mar:

S::= > j A j S _ S j S ^ S j9V:S
These clauses can contain constraints. An example of a constraint logic program clause
is 8s:s � 5 � A(s)
Queries (goal formulae) are also formulae ofS. Queries contain no constraints.

Lax Logic is used to separate the constraints from the logical parts of the programs.
This is done by a simple procedure: replace all occurrences of constraints inS by >
and modalise the head. For example:8s:s � 5 � A(s) becomes 8s:> � �A(s)
The constraint can be encoded as a special kind of lambda term.

The result of this abstraction is called a Lax Logic program clause (LLP clause). These
have the form: 8x1:::xn:S � �H
whereS andH are as for constraint logic program clauses (except that no constraints
are allowed inS). Note the constraint program clauses and Lax Logic program clauses
are part of the same logic (quantified Lax Logic) and so programs with LLPclauses and
constraint-free CLP clauses can be reasoned about together.

If we want to answer a queryQ from a program containing LLP clauses, then we try to
prove formula�Q, meaning thatQ is proved up to the satisfaction of some, as yet un-
specified, constraints. This is done using the natural deduction calculusgiven in Figure
6.

For any query, we get one or many proofs from the program by using theLLP calcu-
lus. This gives us different solutions up to the satisfaction of constraints. What these
constraints are differs for each proof. Using the proof term system forthe LLP cal-
culus, together with the lambda term (in a different system) encoding the abstracted
constraints, the actual constraints to be satisfied can be calculated and then solved using
suitable machinery.

�) > (>I) �) �> (�>I)�) P �) Q�) P ^Q (^I) �) �P �) �Q�) �(P ^Q) (�^I)�) P�) P _Q (_I1) �) Q�) P _Q (_I2)�) �P�) �(P _Q) (�_I1) �) �Q�) �(P _Q) (�_I2)�) P [t=x]�) 9x:P (9I) �) �P [t=x]�) �9x:P (�9I)�; P � �A) �P�; P � �A) �A (� �")�; P � A) P�; P � A) A (�"1)�; P � A) �P�; P � A) �A (� �"2)
Fig. 6: Proof search calculus for LLP

For every query, we are interested in all of the proofs of this query, that is, every normal
natural deduction of the query. The LLP calculus generates proof terms, butthese need
to be translated to normal proof terms.

As discussed in the introduction, permutation-free calculi, such as PFLAX, are partic-
ularly well suited for the enumeration of all proofs. Also, these calculigive a proof
theoretic justification of the form taken by backchaining calculi used for proof search.
PFLAX has an advantage over LLP in that it directly generates exactly all the normal
natural deduction proofs for any given query. The drawback in using PFLAX is that,
even for the fragment of Lax Logic used for constraint logic programming, it does not
allow goal-directed proof search. However, despite there being no obvious correspon-
dence between LLP and PFLAX, we consider PFLAX to be a suitable calculus forproof
search in the context of constraint logic programming.

8 Deciding Lax Logic

It is useful and interesting to have a decision procedure for any logic. This section de-
scribes a decision procedure for propositional Lax Logic. To the best ofour knowledge,
no decision procedure for propositional Lax Logic has been presented before.

The calculus presented uses a history mechanism to ensure termination of backwards
proof search. These history mechanism were introduced in [HSZ96] (see also [Heu98]).
The refined history mechanism used here can be found in [How97] (see also [How96],
[How98b]). The history mechanism provides a general method for turning a propo-

� P�! P ;H (ax) �; P P�! D;H�; P) D;H (C)�) >;H (>) � ?�! D;H (?)�; P) Q; fQg�) P � Q;H (�R1) if P =2 ��) Q; (Q;H)�) P � Q;H (�R2) if P 2 � andQ =2 H�; P) ?; f?g�) :P ;H (:R1) if P =2 ��) ?; (?;H)�) :P ;H (:R2) if P 2 � and? =2 H�) P ; (P;H) � Q�! D;H� P�Q�! D : H (�L) if P =2 H�) P ; (P;H)� :P�! D;H (:L) if D =2 H�) P ; (P;H) �) Q; (Q;H)�) P ^Q;H (^R) if P;Q =2 H� P�! D;H� P^Q�! D;H (^L1) � Q�! D;H� P^Q�! D;H (^L2)�) P ; (P;H)�) P _Q;H (_R1) if P =2 H �) Q; (Q;H)�) P _Q;H (_R2) if Q =2 H�; P) D; fDg �;Q) D; fDg� P_Q�! D;H (_L) if P =2 � andQ =2 ��) P ; (P;H)�) �P ;H (�R) if P =2 H�; P) �R; f�Rg� �P�! �R;H (�L) if P =2 �D is either an atom,?, disjunction or a modal formula.
Where the history has been extended we have parenthesised(P;H) for emphasis.

Fig. 7: The calculus PFLAXHist (Scottish)

sitional sequent calculus into a decision procedure. Notice that we use thecalculus
PFLAX as the base for the history calculus since it gives a more efficient implementa-
tion, but we could have instead used a more usual sequent calculus for Lax Logic as the
base.

The decision procedure given here uses a history mechanism. Another approach to de-
ciding propositional logics is by the use of ‘contraction-free’ sequent calculi, such as the
one for propositional Intuitionistic Logic given in [Dyc92], [Hud93]. If such a decision
procedure for Lax Logic could be found, we would expect it to be faster than one in-
volving a history mechanism. An investigation of contraction-free calculi for Lax Logic
can be found in [AF96]. Unfortunately, this investigation did not succeed in finding a
contraction-free calculus. We believe that a contraction-free calculus for Lax Logic can-
not be found, as (for arbitraryn) examples requiring an entire formula in a sequent to be
contractedn times in a proof can be constructed. Consider, as an example, the sequentB � (�A � C) � �A; �B; �A � C) C
where�A � C needs to duplicated in its entirety in order to prove the sequent.

9 History Mechanisms

Firstly we discuss the general idea of calculi with history mechanisms, then we give the
specifics for the history calculus for PFLAX.

9.1 Deciding Propositional Logics Using History Mechanisms

One approach to finding a decision procedure for a propositional logicis to place con-
ditions on the sequent calculus to ensure termination of search. It is elegant to be able
to build the content of these conditions into the sequent calculus itself. This is how we
develop the calculus for theorem proving in this section. The techniquefor doing this is
quite general and can be applied to many sequent calculi.

In order to ensure termination of backward proof search, we need to check that the same
sequent (modulo number of occurrences of formulae of the same type) does not appear
again on a branch, that is, proof search does not loop. We need a mechanical way to
detect such loops.

One way to do this is to add ahistoryto a sequent. The history is the set of all sequents
to have occurred so far on a branch of a proof tree. After each backwards inference the
new sequent (without its history) is checked to see whether it is a member of this set.
If it is we have looping and backtrack. If not the new history is the extension of the old
history by the old sequent (without the history component), and wetry to prove the new
sequent, and so on. Unfortunately, this method is space inefficient as it requires long
lists of sequents to be stored by the computer, and all of this list has to be checked at

each stage. When the sequents are stored, far more information than necessary iskept.
Efficiency would be improved by cutting down the amount of storage andchecking
needed to prevent looping.

The basis of the reduced history is the realisation (as in [HSZ96]) thatone need only
store goal formulae in order to loop-check. For the calculi dealt with in this paper, the
context cannot decrease; once a formula is in the context it will be in thecontext of
all sequents above it in the proof tree. We say that the calculus hasincreasing context.
For two sequents to be the same they need to have the same context (up tomultiple
occurrences of formulae). Therefore we may empty the history every time the context
is (properly) extended. All we need store in the history are goal formulae. If we have a
sequent whose goal is already in the history, then we have the same goal and the same
context as another sequent, that is, a loop.

There are two slightly different approaches to doing this. There is thestraightforward
extension of the calculus described in [HSZ96] (which we call the ‘Swisshistory’; more
on this loop-checking method can be found in [Heu98]). There is also related work on
histories for Intuitionistic Logic by Gabbay in [Gab91]. The other approach involves
storing slightly more formulae in the history, but which for some calculi detects loops
more quickly. This we describe as the ‘Scottish history’ ([How96], [How97]); it can in
many cases be more efficient than the Swiss method. In this paper we give a history
calculus for Lax Logic using the Scottish history as we believe this to be the better
method for intuitionistic logics ([How97]).

One of the great attractions of this approach is its generality. The history mechanism
can be attached to a great number of calculi to give decision procedures. A number of
applications can be found in [How98b].

9.2 PFLAXHist
This section gives a history calculus for propositional Lax Logic. It uses the calculus
PFLAX as a base to build the calculus, as this calculus has already reduced the search
space to a certain extent. PFLAX has the increasing context required for theapplication
of the history mechanism. However, the more usual formulation couldhave been used
instead. PFLAXHist can be seen in Figure 7.

We give explicit rules for negation (which are just special cases of the rules for implica-
tion) for the sake of completeness of connectives. There are two rules for(�R). These
correspond to the two cases where the new formula,P , is or is not in the context. As
noted above, this is very important for history mechanism. Also noticethat the number
of formulae in the history is at most equal to the length of the formula we check for
provability.

A sequent is matched against the conclusions of right rules until the goalformula is
either a propositional variable, falsum, or a disjunction (note that disjunction is not
covered in [HSZ96], and requires special treatment). This has been ensured by the re-
striction on goal formulae given in the calculus. A formula from the context is then

picked and matched against the left rules of the calculus. The Scottish calculuskeeps
a complete record of goal formulae between context extensions. At each of theplaces
where the history might be extended, the new goal is checked against the history. If it is
in the history, then there is a loop.

There are other places where the rules are restricted to prevent looping. The left rules
have side conditions to ensure that the context is increasing. For the (�R) rule (which
attempts to extend the context) there are two cases corresponding to when the context
is and when it is not extended. Something similar is happening in the left rules. Take(_L) as an example. In both premisses of the rule a formula may be added to context. If
both contexts really are extended, then we can continue building the proof tree. If one
or both contexts are not extended then the sequent,S, with the non-extended context,
will be the same as some sequent at a lesser height in the proof tree – thereis a loop
(which we describe as a trivial loop). This is easy to see: since the context and the goal
of S are the same as that of the conclusion, the conclusion is the same as the premissS.

What does a history sequent say? What, in logical terms, is the meaning of asequent
with a history field? Take, for example, the G3Hist sequentS = �) R;H. This says
that for every proof ofS, if P 2 H, then no sequent of the form�) P ;H0 appears
aboveS in the proof tree ofS.

It is now demonstrated that PFLAXHist is equivalent to PFLAX, in terms of prov-
ability. The equivalence is proved via an intermediate calculus PFLAXD. The calculus
PFLAXD is the calculus PFLAX where the rule(C) is restricted so that it is only ap-
plicable when the goal formula is an atom, a disjunction, falsum or a modal formula.

Proposition 2 The calculusPFLAX is equivalent to the calculusPFLAXD. That is,
sequent�) G is provable inPFLAX iff �) G is provable inPFLAXD.

The following lemma is needed in the proof of theorem 6.

Lemma 3 (CONTRACTION) The following rules are admissible inPFLAXHist:�; P; P) R�; P) R (C) �; P; P Q�! R�; P Q�! R (C)
PROOF: By simultaneous induction on the heights of derivations of premisses.�
The equivalence proof below, although long, has a simple structure. Analgorithm to
turn a PFLAX proof tree into a PFLAXHist proof tree is described in detail. A simple
induction argument shows that the algorithm terminates, proving theresult.

Theorem 6 The calculiPFLAX andPFLAXHist are equivalent. That is, sequent�) G
is provable inPFLAX iff sequent�) G; fGg is provable inPFLAXHist.
PROOF: From Proposition 2 we know that it is enough to show that PFLAXD is equiv-
alent to PFLAXHist.

It is trivial that any sequent provable in PFLAXHist is provable in PFLAXD. (Simply
drop the history part of the sequent and use contraction above instances of (�R2)). We
prove the converse.

Take any proof tree for sequent�) G in PFLAXD. By definition this proof tree is
finite. That is, all branches of the tree end with an occurrence of(ax) or (?), with
all branches having a finite number of nodes (there is also no infinite branching at any
node). Using a proof tree for a sequent�) G in PFLAXD we construct a proof tree
for the sequent�) G; fGg in PFLAXHist. Essentially we take a PFLAXD proof tree
and give a recipe for ‘snipping out’ the loops: removing the sequents that form the loop.
Or, looking at it in another way we shall show that failure due to the history mechanism
only occurs when there is a loop.

Take any PFLAXD proof tree withn > 0 nodes. We take this proof tree and use the
following construction to give a PFLAXHist proof tree.

The following construction takes a PFLAXD proof tree and builds a PFLAXHist proof
tree from the root up. For simplicity we ignore negation, although this can easily be
added. In this construction we use ‘hybrid trees’. A hybrid tree is a fragment of PFLAXHist
proof tree with all branches that do not have(ax) or (?) leaves ending with PFLAXD
proof trees. These PFLAXD proof trees have roots which can be obtained by backwards
application of a PFLAXD rule to the top history sequent (ignoring its history). We anal-
yse each case of a topmost history sequent with non-history premiss(es) resulting from
application of rule(R) in the sequent tree.

– The root of the PFLAXD tree. We change (non-history) sequent�) G to history
sequent�) G; fGg.

– (R) is one of(ax), (C), (?), (>), (^L1), (^L2), i.e. a rule which in PFLAXHist
has no side conditions. The premiss(es) are changed by adding the appropriate
history. They become the history sequents obtained by applying (backwards) the
PFLAXHist rule to the original conclusion.
For example, if the situation we are analysing is:� P�! D� P^Q�! D;H (^L1)
Then we change this part of the hybrid tree to:� P�! D;H� P^Q�! D;H (^L1)
We have an extended PFLAXHist proof tree fragment with PFLAXD proof tree(s)
as premiss(es).

– (R) is (�R). If the context is extended, simply add the history as appropriate. Ifthe
context is not extended, and the new goal is not in the history, again simply extend
the history as appropriate. If the new goal is in the history, there is a loop, and here

the history mechanism prevents looping. If the history mechanism condition is not
met, then we know that below the conclusion, the hybrid tree has the form:�) G�) P � G;H (�R2)

....�) G;H0
whereG 2 H0 andH0 � H. The history is not reset at any point in this fragment.
This can easily be seen to contain the loop which is the reason for the side condi-
tions not being met. The new hybrid tree is obtained by removing fromthe previous
hybrid tree all the sequents from, but not including, the sequent�) G;H0 up to
and including the sequent�) P � G;H. We can now apply (backwards) the next
backwards inference to the first of these sequents. We now know how to proceed.

– (R) is (�L). If the side condition is satisfied, then simply add the histories as appro-
priate. If the side condition is not satisfied, then we know that below the conclusion
the hybrid tree has the form:�) P � Q�! R� P�Q�! R;H (�L)

....�) P ;H0
whereP 2 H0 andH0 � H. The new hybrid tree is obtained by removing
from the previous hybrid tree all the sequents from, but not including, the sequent�) P ;H0 up to and including the sequent�) P . We now know how to proceed.

– (R) is (^R). If the side conditions are satisfied, then simply add the histories asap-
propriate. Consider the case when the side conditions are not met. Suppose, without
loss of generality, thatP 2 H. We know that below the conclusion the hybrid tree
has the form: �) P �) Q�) P ^Q;H (^R)

....�) P ;H0
whereH0 � H. The new hybrid tree is obtained by removing from the previous
hybrid tree all the sequents from, but not including,�) P ;H0 up to and including�) P . We now know how to proceed.

– (R) is (�R). If the side condition is satisfied, then simply add the appropriate his-
tory. If the side condition is not satisfies, then we know that below the conclusion
the hybrid tree has form: �) P�) �P ;H (�R)

....�) P ;H0

whereP 2 H0 andH0 � H. The new hybrid tree is obtained by removing from
the previous hybrid tree all sequent from, but not including�) P ;H up to and
including�) P . We then know how to proceed.

– (R) is (�L). If the side condition is satisfied, then simply add the appropriate his-
tory. If the side condition is not satisfied, then we know that below the conclusion
the hybrid tree has form: �; P) �R� �P�! �R;H (�L)

....�) �R;H
whereP 2 � . The new hybrid tree is obtained from the old by removing from the
old hybrid tree all sequent from, but not including�) �R;H, up to and including� �P�! �R;H. The premiss can be obtained by contraction. We now know how to
proceed.

– (R) is (_L). If the side conditions are satisfied, then we simply add then appropriate
histories. Suppose that one of the side conditions is not satisfied. Without loss of
generality we suppose thatP 2 � . We know that below the conclusion the hybrid
tree has the form: �; P) D �;Q) D� P_Q�! D;H (_L)

....�) D;H
The new hybrid tree is obtained from the old by removing from the old hybrid tree

all sequents from, but not including�) D;H, up to and including� P_Q�! D;H.
The entire subtree above above�;Q) D is also removed. The premiss is obtained
by contraction. We now know how to proceed. IfP;Q 2 � the we have a choice as
to which branch to follow.

– (R) is (_R1). If the side condition is satisfied, then we simply add the appropriate
history. If the side condition is not satisfied, then we know that below the conclusion
the hybrid tree has form: �) P�) P _Q;H (_R1)

....�) P ;H0
whereP 2 H0 andH0 � H. The new hybrid tree is obtained from the old hy-
brid tree by removing all sequents from, but not including,�) P ;H0, up to and
including�) P . We now know how to proceed.

– (R) is (_R2). Similar to above.

Given that the number of sequents without a history in a hybrid tree is finite and every
step described above strictly decreases the number of sequents without a history, this
process is terminating.�

We have shown that PFLAXHist is sound and complete. For us to prove that it is a
decision procedure, we need to prove that it is also terminating, that is, backwards proof
search in the calculus ends in success or failure after a finite number of steps.This is
proved in the theorem below.

Theorem 7 Backwards proof search in the calculusPFLAXHist is terminating.

PROOF: We associate with every sequent a quintuple of natural numbers. With asequent
without a stoup,�) R;H, we associate:W = (k � n; k �m; 1; 0; r)
With a sequent with a stoup,� P�! R;H, we associate:W = (k � n; k �m; 0; s; r)
Here,k is the number of elements in thesetof subformulae of(�;R); n is the number
of elements in thesetof elements of� ; m is the number of elements inH; r is the size
of goal formulaR ands is the size of the stoup formulaP . (Notice that although� is a
multiset, we count its elements as a set). These quintuples are lexicographically ordered
from the left.

By inspection we see that for every inference ruleW is lower for the premisses than for
the conclusion. Consider as an example,(�L):�) P ; (P;H) � Q�! D;H� P�Q�! D;H (�L) if P =2 H
The conclusion hasW = (k � n; k � m; 0; s1 + s2 + 1; r). The left premiss hasW 0 = (k0 � n; k0 � (m + 1); 1; 0; s1) (wherek0 � k). ThereforeW 0 < W . The right
premiss hasW 00 = (k � n; k �m; 0; s2; r). ThereforeW 00 < W . The weights of both
premisses are less than the weight of the conclusion.

Hence backward proof search is terminating.�
When implementing a theorem prover, knowledge of the invertibility of the inference
rules can be useful. This information is given in the following proposition.

Proposition 3 The following inference rules ofPFLAXHist are invertible: (�R1),(�R2), (:R1), (:R2), (�L), (:L), (^R), (_L), (�L). The following inference rules
of PFLAXHist are not invertible:(C), (^L1), (^L2), (_R1), (_R2), (�R).
10 Conclusion and Future Work

This paper has presented two proof search calculi for Lax Logic. The first, PFLAX,
is a sequent calculus for first-order quantified Lax Logic. The proofs allowed by this

calculus naturally correspond in a 1–1 to the normal natural deductions for first-order
quantified Lax Logic. The calculus is well suited for enumerating, withoutredundancy,
all proofs in the logic. This makes the calculus useful in contexts whereproof search is
for normal natural deductions, such as in (constraint) logic programming.

The second calculus, PFLAXHist builds on the propositional fragment of the first cal-
culus to give a decision procedure for propositional Lax Logic. A decision procedure
for propositional Lax Logic has not been given before. The calculus adds a history
mechanism to the propositional calculus to prevent looping. The technique of adding a
history mechanism is general and may be applied to a wide range of sequent calculi for
propositional logics. Decision procedures are obviously useful in relation to any appli-
cation that a propositional logic may have. Propositional Lax Logic has been used in
hardware verification and PFLAXHist could be used in this area.

Acknowledgements I would like to thank Roy Dyckhoff for his helpful advice during
many useful and interesting discussions. This work has, in part, been supported by
EPSRC grant GR/MO8769.

References

[AF96] A. Avellone and M. Ferrari. Almost Duplication-freeTableau Calculi for Propo-
sitional Lax Logics. Springer Lecture Notes in Artificial Intelligence, 1071:48–64,
1996. Proceedings of TABLEAUX’96.

[BBdP98] P. N. Benton, G. M. Bierman, and V. de Paiva. Computational Types from a Logical
Perspective.Journal of Functional Programming, 8(2):177–193, 1998.

[Cur52] H. B. Curry. The Elimination Theorem When Modality is Present.Journal of Sym-
bolic Logic, 17(4):249–65, 1952.

[DP96] R. Dyckhoff and L. Pinto. A Permutation-free SequentCalculus for Intuitionistic
Logic. Technical Report CS/96/9, University of St Andrews,1996.

[DP98] R. Dyckhoff and L. Pinto. Cut Elimination and a Permutation-free Sequent Calculus
for Intuitionistic Logic. Studia Logic, 60:107–118, 1998.

[DP99] R. Dyckhoff and L. Pinto. Permutability of Proofs in Intuitionistic Sequent Calculi.
Theoretical Computer Science, 212(1-2):141–155, 1999.

[Dyc92] R. Dyckhoff. Contraction-Free Sequent Calculi forIntuitionistic Logic. Journal of
Symbolic Logic, 57(3):795–807, 1992.

[FM94] M. Fairtlough and M. Mendler. An Intuitionistic Modal Logic with Applications to
the Formal Verification of Hardware. InComputer Science Logic, pages 354–68.
Springer, 1994.

[FM97] M. Fairtlough and M. Mendler. Propositional Lax Logic. Information and Computa-
tion, 137(1), 1997.

[FMW97] M. Fairtlough, M. Mendler, and M. Walton. First-order Lax Logic as a Framework for
Constraint Logic Programming. Technical Report MIPS-9714, University of Passau,
1997.

[FW97] M. Fairtlough and M. Walton. Quantified Lax Logic. Technical Report CS-97-11,
University of Sheffield, 1997.

[Gab91] D. Gabbay. Algorithmic Proof with Diminishing Resources, part 1.Springer Lecture
Notes in Computer Science, 533:156–173, 1991.

[Gen69] G. Gentzen.The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam,
1969. Edited M. E. Szabo.

[Gir91] J.-Y. Girard. A New Constructive Logic: Classical Logic. Mathematical Structures in
Computer Science, 1:255–296, 1991.

[Her95] H. Herbelin. A�-calculus Structure Isomorphic to Gentzen-style Sequent Calculus
Structure. In L Pacholski and J Tiuryn, editors,Proceedings of the 1994 workshop
Computer Science Logic, volume 933 ofSpringer Lecture Notes in Computer Science,
pages 61–75, 1995.

[Her96] H. Herbelin. A�-calculus Structure Isomorphic to Sequent Calculus Structure. Un-
published, 1996.

[Heu98] A. Heuerding.Sequent Calculi for Proof Search in Some Modal Logics. PhD thesis,
Universität Bern, 1998.

[How96] J. M. Howe. Theorem Proving and Partial Proof Searchfor Intuitionistic Propositional
Logic Using a Permutation-free Calculus with Loop Checking. Technical Report
CS/96/12, University of St Andews, 1996.

[How97] J. M. Howe. Two Loop Detection Mechanisms: a Comparison.Springer Lecture Notes
in Artificial Intelligence, 1227:188–200, 1997. Proceedings of TABLEAUX’97.

[How98a] J. M. Howe. A Permutation-free Calculus for Lax Logic. Technical Report CS/98/1,
University of St Andrews, 1998.

[How98b] J. M. Howe.Proof Search Issues in Some Non-Classical Logics. PhD thesis, Univer-
sity of St Andrews, 1998. Available as Technical Report CS/99/1 and electronically
from http://www-theory.dcs.st-and.ac.uk/�jacob.

[HSZ96] A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient Loop-Check for Backward
Proof Search in Some Non-classical Propositional Logics.Springer Lecture Notes in
Artificial Intelligence, 933:61–75, 1996. Proceeding of TABLEAUX’96.

[Hud93] J. Hudelmaier. An O(n log n)-space Decision Procedure for Intuitionistic Proposi-
tional Logic. Journal of Logic and Computation, 3(1):63–75, 1993.

[Men93] M. Mendler.A Modal Logic for Handling Behavioural Constraints in Formal Hard-
ware Verification. PhD thesis, University of Edinburgh, 1993. ECS-LFCS-93-255.

[MNPS91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform Proofs as a Foundation
for Logic Programming.Annals of Pure and Applied Logic, 51(1-2):125–157, 1991.

[Mog89] E. Moggi. Computational Lambda-Calculus and Monads. InProceedings of Logic in
Computer Science ’89, pages 14–23, 1989.

[Pra65] D. Prawitz. Natural Deduction, volume 3 of Stockholm Studies in Philosophy.
Almqvist & Wiksell, Stockholm, 1965.

[Wal97] M. Walton. Abstraction and Constraints: Two Sides of the Same Coin. Technical
Report CS-97-18, University of Sheffield, 1997.

