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Proof Search in Lax Logic

Jacob M. Howe

Computing Laboratory
University of Kent, Canterbury, CT2 8NF, UK
J. M Howe@kc. ac. uk

Abstract. A Gentzen sequent calculus for Lax Logic is presented, toefpr
in which naturally correspond in a 1-1 way with the normalunait deductions
for the logic. The propositional fragment of this calculsghen used a basis for
another calculus, one which uses a history mechanism im todgve a decision
procedure for propositional Lax Logic.

1 Introduction and Background

Proof search can be used with either of two meanings. It can either be used to mean
the search for all proofs of a formula (proof enumeration), or to mearséfarch for

a yes/no answer to a query (theorem proving). This paper describes twsegesnt
calculi for Lax Logic. One calculus is for proof enumeration for quantifiea Logic,

the other calculus is for theorem proving in propositional Lax Logic.

Lax Logic is an intuitionistic modal logic with a single modality, somehow This
modality is unusual in that it has properties both of necessity and ailglity. The
modality can be thought of as expressing correctness up to a constramgcéibg
away from the detail (hence the choice of name, Lax Logic). A form#aan be read
as “for some constraint, formula P holds undek”. The modality is axiomatised by

three axioms:

oR: §SDoS

oM :0058 D oS

oF : (SDT)D (oS Do)
Lax logic has recently been investigated by Fairtlough, Mendler & Waltore({88],
[FM94], [FM97], [FMW97], [FW97]) and by Benton, Bierman & de Pa{B8BdP98]).

Curry ([Cur52]) introduced the logic to illustrate cut-elimiratiin the presence of
modalities. The logic was rediscovered by Mendler, who developed the flogab-

stract reasoning about constraints in hardware verification ([Men933tifiting con-
straints that need to be satisfied in a circuit can be abstracted away as instances of
the modality and reasoned about separately from the logical analysis of¢hé.dn
[Men93], [FM94], [FM97], the proof theory and semantics of Lax Logjie developed,

giving Gentzen calculi, natural deduction calculi and Kripke semantics fdotie as

well as giving details of the logic’s use as a tool for hardware verificatio



Lax Logic has also been observed ([BBdP98]) as the type system for Idaggnpu-
tational lambda-calculus (see [Mog89]). In [BBdP98] the correspondegivecen the
natural deduction presentation of Lax Logic (there called computationia) lagd the
computational lambda calculus is given, along with some proof theaesidts on the
logic.

In [FMW97] the ability of Lax Logic to give an abstract expression ofstoaints is
utilised to give a proof theoretic semantics for constraint logigpamming languages.
The constraints to be satisfied can be abstracted away as modalities and yreaquer
reasoned about logically. The constraints can then be analysed separatebgithe |
used to give proofs of queries. These proofs give the constraibtsgatisfied. This ap-
proach is an extension to constraint logic programming of the vielN®891] of logic
programming as backwards proof search in constructive logic. In esserscapitoach
takes normal natural deduction as the proof theoretic semantic for loggegmming.
Normal natural deductions are then the proof theoretic semantics foraionsbgic
programming.

Natural deduction has a pragmatic drawback. In searching backwards footifepa
formula, it is not always obvious which rule to apply. For instance in

I'tP>Q I'FP

it is not obvious from the conclusion that we should apfy ). Even when this rule
has been decided upon, whtshould be is hard to decide. Cut-free Gentzen sequent
calculus systems ([Gen69]) are much better from this point of view. Véhgrincipal
formula has been chosen, the rules which can be applied to it are restricteth. Wh
the rule has also been chosen, the rule application is deterministic. Pheatipn of
logical rules is directed by the syntax of the principal formula. Stmattrules can
usually be built into the sequent system. In such a system, when @gaiifiormula

has been chosen, the next rule application is determined exactly by tlae ®frihat
formula. All logical rules of the sequent calculus are introduction r(desthe left or

on the right).

There are well known translations ([Pra65]) between normal natural dedsctind
sequent proofs. Therefore we can search for proofs in sequent calculus systdm
then translate the resulting proofs to normal natural deductionsdiidveback here is
that many sequent proofs translate to the same normal natural deductioee When
one is trying to enumerate all proofs of a formula, the same proafusd again and
again.

This gives one motivation for ‘permutation-free’ sequent calculi Gdtrced in [Her95],
[Her96] for Intuitionistic Logic). These are sequent calculi systenidgics (enabling
syntax directed proof search) whose proofs can be translated in a 1-1 watheit
normal natural deductions for the logic. Permutation-free calculi Hevadvantages of
a sequent calculus system, whilst reflecting the structure of normahhdeductions.

The first calculus described in this paper, PFLAX, is a proof enumeraticnlasal for
first-order quantified Lax Logic. PFLAX is a permutation-free calculud fix Logic —



its proofs naturally correspond in a 1-1 way with the normal naturalctéghs for the
logic. This calculus is a suitable calculus for proof search in relationtistcaint logic
programming.

For many applications of logics a simple provable/unprovable answkdaviln this
case we are interested in the quickest way of getting this answer (and irrésto@ss).
Propositional logics are usually decidable and therefore we are inteliestiediing
decision procedures, in particular we would like quick decision procedures

The contraction rule is a major obstacle to finding decision procedurasfoclassical
logics. Duplication of a formula means that on backwards proof searcletiuests are
becoming more complicated, not less. We have no obvious way of seeinggishbuld
terminate the search. Leaving contraction out usually leaves an incompletdusal
One can either try and find a calculus that duplicates resources in a moresaptle
or study the nature of non-terminating backwards search to see where ostegane
search.

The second calculus, PFLA¥?, is a theorem proving calculus for propositional Lax
Logic. This calculus uses a technique for detecting loops using a yistechanism,
building on work of Heuerdingt al ((HSZ96], [Heu98], [How97]). It uses the proposi-
tional fragment of PFLAX as the basis calculus to which a history mechagiagded

to give a decision procedure for propositional Lax Logic. This tealig general and
maybe applied to many propositional logics. A decision procedure fgpgsitional
Lax Logic is interesting in relation to Lax Logic’s application in hardevaerification.
We know of no other decision procedure for propositional Lax Logic.

2 Natural Deduction

The permutation-free calculus developed in this paper is a sequent calellpobfs
in which naturally correspond in a 1-1 way to normal natural deductiarikid section
we discuss natural deduction for Lax Logic.

A natural deduction calculus for Lax Logic, taken directly from [BBdP98iiwules
for quantifiers and falsum added), can be seen in Figure 1.

Normal natural deductions are the objects of interest, so we look at thealisation
steps. Again these are taken from [BBdP98], with the extra casels émdd. added.
As the reduction rules for the intuitionistic connectives are stanaedio not include
them here, concentrating instead on those involving the modality.

First theg-reduction:
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Fig. 1. Sequent style presentation of natural deduction for Lax Logic
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Definition 1 A natural deductionis said to be jf c-normal form when ng3-reductions
and noc-reductions are applicable.

We give a presentation of a restricted version of natural deduction folLbgic. In
this calculus, the only deductions are those that arg innormal form. This calculus
has two kinds of ‘sequents’, differentiated by their consequence relatioaad >t>.
Rules are applicable only when the premisses have a certain consequence. iEfegio
conclusions have a fixed consequence relation. Thus those deducticarthalid are
of a restricted form. This calculus, which we call NLAX, is given (witte tbroof terms
given in the next section) in Figure 2.

Proposition 1 The calculusNLAX only allows deductions to which ngreductions
and noc-reductions are applicable. Moreover, it allows @l c-normal deductions.

3 Term Assignment

In this section we give a term assignment system for NLAX. The terrtesyss not
only needed for the proofs given later in the paper, but also extremelylusehany
applications of constructive logics. In [Mog89] Moggi gave\aalculus, which he
called thecomputational\-calculus As is shown in [BBdP98], this calculus naturally
matches Lax Logic. More about the computationatalculus and Lax Logic (there
called computational logic) can be found in [BBdP98].

We give this term system in a syntax we prefer — an abstract syntax witiciexpn-
structors. We could give a translation of Moggi's terms to oursoPterms for unre-
stricted natural deduction for Lax Logic and a translation of Moggis&eto ours (and
vice versa) can be found in [How98a].

We are interested in the ‘real’ proofs for Lax Logic — the normal natuedlugtions.
We now restrict the terms that can be built, in order that they match otricted
natural deduction calculus NLAX, giving us proof objects. (That is,eductions will
be applicable at the term level; the term reductions matci¥tlaadc-reductions given



earlier). The proof terms come in two syntactic categodeandN. V is the category
of variables (proofs), U is the category of variables (individuals), &the category of
terms. The extra constructen(A) matches thé ) rule of NLAX.

A=

var(V) | ap(4,N) | fst(A) | snd(A) | apn(A,T)

* | efq(A) | an(A) | AV.N [ pr(N,N) [i(N) | j(N)
wn(A,V.N,V.N) | smhi(N) | smhe(A,V.N)
AU.N | prq(T,N) | ee(A,U.V.N)

NLAX together with proof annotations for normal terms can be seen inr€igu

(az) I'>A:P
I'z: P>wvar(z): P I'>>an(A) : P
I'>A:L
Tt () Toserg(ay: p )
Izc:PpobN:Q I's>A:P>Q I'tbN:P
ToaN P50 O > ap(A,N):Q
I'>eNi:P I'DbNy:Q
I'opr(Niy, N2): PAQ
'sA:PAQ (Ae) 'sA:PAQ
' fst(A): P " I'>snd(A):Q
IeN:P I'o>N:Q
I'>>i(N): PV Q I'>>j(N): PVQ
I'>A:PVvQ ILxzi:PobNi:R TINz2:QD>N2: R v2)
I'sbwn(A,z1.Ni,z2.N2) : R ‘
I'tbN: P I'>A:oP INzx:PD>N:oQ
T oo smhi(N) 0P °%) I o> smhe(A,z.N) : oQ
I' >N : Plu/z] I'> A:VaP
I'bAu.N : VP (V2)t I' > apn(A,t) : Plt/x] (V)
I' >N : Plt/x] I'>A:3z2P I,z:Plu/z]>N: R
I oprq(t,N) : 3zP (30) I' >pee(A,u.xz.N): R

(M)

()

(A1)

(Ae2)

(VT—2)

(o)

(31

T uw not free inI”

Fig. 2: NLAX with proof annotations



4 Sequent Calculus

In this section we present a new Gentzen sequent calculus for Lax Logic, PFLAX
The proofs allowed by PFLAX naturally correspond in a 1-1 way to noma#lral
deductions for Lax Logic —i.e. the proofs of NLAX. First we remitne treader of the
sequent calculus as presented in [FM97] and [BBAP98]. This can be seeniia Bigu

In fact, our presentation is slightly different from both those cit€de calculus in
[BBAP98] has no structural rules, that is, the contexts are sets. THW&e both weak-
ening and contraction on both the left and the right, plus exchange. keomty struc-
tural rule we consider (or need) is contraction on the left. The conixisr presenta-
tion are multisets. We leave all discussion of cut until later.

IP,P=R
rP=p () rpor @
F:>T(T) F,J_:>P(J')
'P=qQ I's>P I'Q=R
TSPo5g OF) IR EY
I'sP I'sQ IP=R Q=R
IT=PAQ (Az) HPAQéR(MJ HPAQéR(Mﬁ
r=p r=aq I'P=R IQ=R
FjPVQ(Wm FiPVQOmJ ILPVQ=R (Ve)
I'=>P (or) RP:M%@)
I'=oP “® ToP=oR " °
I' = Ply/x] I Plt/z] = R
T =vap R nijR(”
I' = Plt/x] I'Ply/z] = R .
= 3zP % E%PéR(L”
1y not free inI”

Fig. 3: Sequent Calculus for Lax Logic

We now present a new sequent calculus which we call PFLAX (‘permutatési-fr
Lax Logic). This calculus extends the permutation-free calculus MJ ([b)¢§t8r96],
where the calculus is called LJT, and [DP98],[DP99]) for Intuititinitogic to a cal-
culus for Lax Logic. Like MJ this calculus has two forms of judgmdnit= R and

I' 25 R. The first looks like the usual kind of sequent; however, onlytrigkes and
contraction are applicable to this kind of sequent in backwards proof sé&rdiack-
wards proof search we mean proof search starting from the root. The seioohdfk
sequent has a formula (on the left) in a privileged position calledthep(following
[Gir91]). The formula in the stoup is always principal in the cosan of an inference
rule. Left rules are only applicable to stoup sequents. PFLAX is display Figure 4.
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Fig.4: The Sequent Calculus PFLAX

The stoup is a form of focusing: the formula in the stoup is alwayscipal in the
premiss unless it is a disjunction or a somehow formula. One mighihag we do not
formulate thg(o ) rule as follows

Fi)OR
— (oc)
I' — oR

To answer this, we point out that the resulting calculus would not thatth normal
natural deductions in the manner we would like. Also consider prootketequent
00 (PAQ) = o(Q A P).

5 Term Assignment for Sequent Calculus

We give a term assignment system for PFLAX; these terms, togethetivaiie from
section 3, will be used to prove the main results on PFLAX. This wébgetxtending
that given in [Her95], [DP96], [DP98]. The term calculus has two syitaettegories,
M andMs. V is the category of variables (proofs), U is the category of varialihes-(
viduals) and T is the category of terms .

M::=
x| (V;Ms) | AV.M | pair(M, M) | inl(M) | inr(M)



smhr(M) | \U.M | pairq(T, M)

Ms::=
[1]ae| (M Ms)|p(Ms)|q(Ms)|when(V.M,V.M)

smhl(V.M) | apq(T, M s) | spl(U.V.M)

These terms can easily be typed by PFLAX, as seen in Figure 5.

— (a2) F,a::PLMs:R ©)
FL[]:P INz:P= (zx;Ms): R
- —) )
F:>*:T(T) I Sae: L
INe:P=M:Q I'=s>M:P Fi)Ms:R(D)
: (Or) PoQ c
I'=sX.M:PD>Q Ir = (M: Ms):R
F:>M1:P F:>M2:Q
- (AR)
I' = pair(My, M) : PAQ
P . Q .
%(A“) %(,\Q)
I' — p(Ms): R I — q(Ms): R
I'=M:P I'=M:Q
(VRl) (VR2)

I'=inl(M): PV Q I'=inr(M): PVQ
F,iL'l:P:>M1:R F,Z'QZQ:>M2:R
F%when(xl.Ml,xQ.Mz):R
I''x:P = M:oR

(Ve)

I'=>M:P (or)
(owr) oP £
I' = smhr(M) : oP I' — smhl(z.M) : oR
Plt/z
I'= M : Plu/x] r v R ve)
=l vap ORI pwer apq(t,Ms) : R
. I''Plu/z]= M : R

I' = pairq(T,M) : 3zP r 5 spl(u.x.M) : R

1y not free inI”

Fig. 5: The Sequent Calculus PFLAX, with Term Assignment

6 Equivalence of the Calculi

Having presented the calculi for Lax Logic, we now prove that they Haw@toperties
we claim. We prove the equivalence of the term calculi and soundness and agiequac
PFLAX. These results prove the desired correspondence.



The full details of these proofs are rather repetitive: therefore we gimbythe proofs
fortheD, o fragment of Lax Logic. The remainder of the calculus is Intuitionistgic
as presented in [DP96]. The details of the proofs extended to the ithst odilculus can
be found there.

We start by giving pairs of functions that define translations betweeetim assign-
ment systems for natural deduction and sequent calculus.

Sequent Calculus— Natural Deduction:

6:M — N 0 :AxMs—N
0(x; M s)=0"(var(x), Ms) 6 (A,[])=an(A)
O(A\x.M)=Az.0(M) 0" (A, (M :: Ms))=0"(ap(A,0(M)), Ms)

O(smhr(M))=smhi(0(M)) ¢' (A, smhl(x.Ms))=smhe(A,z.0(M))

Natural Deduction — Sequent Calculus:

b:N-=M WA x Ms = M
Y(an(A4))=¢'(4,]]) V' (var(x), Ms)=(z; Ms)
Y(Az.N)=Az.4)(N) Y'(ap(A,N), Ms)=p'(A, ((N) :: Ms))
P(smhe(A, z.N))=y' (A, smhl(z.4)(N)))

P (smhi(N))=smhr((N))

We prove two lemmas showing the equivalence of the term calculi, th&ieigransla-
tions from one system to the other are 1-1.

Lemmal i)y (0(M)) = M;ii) (60'(A, Ms)) = ¢'(A, Ms)

PROOF The proof is by simultaneous induction on the structurdfoénd M s.

1. (x; Ms)

Y(0(z; Ms)) = (0 (var(z), Ms)) deff
= (var(z), Ms) indii)
= (z; Ms) defy)’

2. .M

Y(O(Az.M)) = p(Az.0(M)) defd
= Az (6(M)) defy
=Xe.M ind i)

3. smhr(M)
Y(@(smhr(M))) = (smhi(0(M))) defd
= smhr(y(6(M))) defy)
= smhr(M) ind i)
4. ]

P(0'(A,[]) =¢(an(A)) defd

=¢'(A,[]) defy’



5. (M :: Ms)

Y(0'(A, (M :: Ms))) = (6 (ap(A,6(M)), Ms)) defo’
= (ap(A,0(M)), Ms) indii)
='(A, (Y(0(M)) = Ms)) defy’
='(A, (M :: Ms)) ind i)

6. smhl(x.M)
(0" (A, smhi(x.M))) =1(smhe(A, x.0(M))) defo’
='(A, smhl(z.p(6(M)))) defr)
=/ (A, smhi(z.M)) ind i)

Lemma 2 i)8((N)) = N;ii) 0y (A, Ms)) = 6'(A, Ms)

PROOF. By simultaneous induction on the structureMdfand A.

1. an(A)
0(¢(an(A)) = 0(¥'(A,[])) defy
=0'(A,[]) indii)
=an(A) defo’
2. \z.N
0(¥(Az.N)) = 0(Az.y)(N)) defy
= \x. 9(¢( )) defé
= \x. ind i)
3. smhi(N)

(¢ (smhi(N))) = 0(smhr((N))) defy
= smhi(8(¢(N))) defd
= smhi(N) ind i)
4. smhe(A,z.N)
O(p(smhe(A,z.N))) =0 (A, smhl(z.p(N)))) defy
=6'(A, smhl(zp(N))) indii)
)

=smhe(A,z.0((N) defo’
=smhe(A,xz.N) ind i)
5. var(z)
(' (var(z), M s)) =6(x; Ms) defy’
=0 (var(z), Ms) deff
6. ap(A,N)

(0 (ap(4, N), Ms)) = 00/ (4, ($(N) = Ms))) defy
=0"(A, (Y(N) : Ms)) ind ii)
= 0/ (ap(4, B((N))), M) deff’
=60 (ap(A,N), M s) ind i)

The following two theorems prove soundness and adequacy theoreme.shoegthat
the translations respect provability, that is, no sequent (and hencedsiated term)
can be proved in one system, but not its translation in the other.



Theorem 1 (SOUNDNESS The following rules are admissible:

r=M:R , TIpA:P FLMS:R%)
I'>>60(M): R I'c>0'(A,Ms) : R

PROOF By simultaneous induction on the structureddfand M/ s.

1. (z; M s) We have a derivation ending in:

Iz:P-2 Ms:R
I'z:P=(z;Ms): R

(@)

So we have:
z: Pp>var(z): P F,x:PLMs:R
I' >0’ (var(z), Ms) : R
and we know that’ (var(z), M s) = 6(x; Ms)
2. \z.M We have a derivation ending in
ec:P=>M:Q
I'=s>Xe.M:PD>Q

ii)

(Or)

whence
Ie:P=M:Q

Ix:Po6(M):Q
I'epdz6(M):PDQ

and we know thahz.6(M) = §(\x. M)
3. smhr(M) We have a derivation ending as follows

i)
(D7)

I'=>M:P (o)
I' = smhr(M) : oP R

whence
I'=>M:P i)
I'ce>0(M): P
I’ o>smhi(0(M)) : oP
and we know thatmhi(0(M)) = 8(smhr(M))
4. [] We have a deduction and a derivation:

(oz)

————— (a2)
I'>A:P r —J]:P
From the deduction, we obtain:
I'>A:P
—_— (M
I'an(A): P (M)

the required results follows sine&(A) = 6'(A,[])



5. (M :: Ms) We have a derivation ending in

I'sM:P I % Ms:R
(Dc)

r'=%o:mMs):R

whence
I'= M: P z)
I'>A:PD>Q I'tbf6(M):P
I ap(do00):Q )
I'o0'(ap(A,0(M)),Ms) : R

F&MSZR .
i7)

and we know tha#’ (ap(A,0(M)), Ms) = 6'(A, (M :: Ms))
6. smhl(z.M s) We have a derivation ending

I'x:P= M:oQ
r=b smhl(z.M) : o

(o)

whence
I'x:P= M:oQ

I'>A:oP Ix:Po0(M):oQ
I' obsmhe(A, z.0(M)) : oQ

and we know thatmhe(A, z.0(M)) = §'(A, smhl(z.M))

(o)

Theorem 2 (ADEQUACY) The following rules are admissible:

LoeN:R_ I'>A:P FLMS:RM)
I'=s¢y(N): R I'=s¢'(A,Ms): R

PROOF By simultaneous induction on the structuredandN.

1. an(A) We have a deduction ending

I'>A:P

I'an(A): P (M)

hence we have
rsA:p r-%q):p
I'=¢'(AQ]): P

and we know that)'(A,[]) = ¥ (an(A))

ii)



2. Az.N We have a deduction ending

Iz : PN :Q
I'cbAx.N:PDQ

(21)
whence
Iz: PN :Q
Iz:P=¢y(N):Q
I'=s X e ypy(N):PDQ

and we know thahz.¢)(N) = ¢(Az.N)
. smhe(A, z.N) We have a deduction ending in

I'>A:oP Iyx:PD>N:oQ
I >>smhe(A,z.N) : oQ

i)

(Or)

(oc)
whence

I'z:PpN:oQ .

Tz P o o) o0 ")

r'sA:oP 125 smhl(xz.4p(N)) : oQ
I' = ¢'(A, smhl(z4p(N))) : 0Q

and we know that)' (A, smhl(z.¢)(N))) = ¢ (smhe(A,z.N))
. smhi(IN') We have a deduction ending in
I'pbN: P

I' >>smhi(N) : oP

(oz)

whence
I'>>N: P

To o) P
TS smhr(@(N)) P %)

and we know thagmhr()(N)) = ¢ (smhi(N))
. var(z) We can extend to

Iz:P-2 Ms:R
I''z:P=(z;Ms): R
and we know thatz; M s) = ¢’ (var(z), M s)
. ap(A, N) We have a deduction ending in
I's>A:P>Q I'>N:P
I'>ap(A,N):Q

(@)

L
ii)

whence
I'>bN: P i)
Ir=¢®N):P"” % Ms:R
I's>A:P>Q FIEC}?(’(/}(N):ZMS)ZR”
27

I'=¢'(A,((N) : Ms)): R
and we know that)' (A, (¢ (N) :: Ms)) =4’ (ap(A, N), Ms)



Since the term systems are in 1-1 correspondence (from lemma 1 and lenama 2)
the translation preserve provability (theorem 1 and theorem 2), thedrrdspondence
between PFLAX and NLAX has been established. This is stated in the folijoveo-
rem.

Theorem 3 The normal natural deductions of Lax Logic (the proofd\dfAX) are in
1-1 correspondence to the proofsPFLAX.

ProOOE Immediate from theorems 1 and 2 and lemmas 1 arlli 2.

Since natural deduction is sound and complete, PFLAX must also be.

Corollary 1 The calculu®FLAX is sound and complete.

6.1 Cut Elimination

We now discuss cut for PFLAX. In the usual sequent calculus, cut may beifated
as follows:
I's>P IP=Q

I'=qQ

(cut)
In PFLAX, the two judgment forms lead to the following four cutesi

r%pe rne r=p rp-%R
r%e r<%e

(cuts)

I'sP IP=R
'SR

r=p Ir %R
I'=R

(cuts) (cuty)

We call PFLAX extended with the four cut rules PFLAX. We can give reduction
rules for PFLAX%* and prove the weak cut elimination theorem for the logic. We can
also prove strong normalisation for the term system associated veittogfic, hence
strong cut-elimination. As these results are not directly relevaritaavork presented

in this paper, the details have been omitted. These details and proofs @mbdan
[How98a], [How98Db].

Theorem 4 The rules(cuty ), (cuts), (cuts), (cuts) are admissible iPFLAX.

Theorem 5 The cut reduction system f®FLAX strongly normalises.



7 Lax Logic and Constraint Logic Programming

In [FMW97] and [Wal97], quantified Lax Logic is used to give a logical gs& of
constraint logic programming. Lax Logic is used to separate the logitalysis of
provability and the satisfiability of constraints. Here we summadtiee& approach.

Constraint logic programs consist of clauses, CLP clauses, which aegdimsnulae
of the form:
Vei..z,.5 D H

whereH is an atomA(z, ..., z,,) andS is a formula according to the following gram-
mar:

S.:=
TI|A|SVS|SAS|TV.S

These clauses can contain constraints. An example of a constraint lograprolause
is
Vs.s > 5D A(s)

Queries (goal formulae) are also formulaeSofQueries contain no constraints.

Lax Logic is used to separate the constraints from the logical partsegbribgrams.
This is done by a simple procedure: replace all occurrences of constraifiteynr
and modalise the head. For example:

Vs.s > 5D A(s) becomes Vs. T D oA(s)
The constraint can be encoded as a special kind of lambda term.

The result of this abstraction is called a Lax Logic program clause (LLPe)alhese
have the form:
Vzi..0,.5 D oH

whereS and H are as for constraint logic program clauses (except that no constraints
are allowed inS). Note the constraint program clauses and Lax Logic program clauses
are part of the same logic (quantified Lax Logic) and so programs withdlduses and
constraint-free CLP clauses can be reasoned about together.

If we want to answer a quer§ from a program containing LLP clauses, then we try to
prove formulae@, meaning that) is proved up to the satisfaction of some, as yet un-
specified, constraints. This is done using the natural deduction calgivérsin Figure

6.

For any query, we get one or many proofs from the program by usingltRecalcu-
lus. This gives us different solutions up to the satisfaction of taimds. What these
constraints are differs for each proof. Using the proof term systenthioLLP cal-
culus, together with the lambda term (in a different system) encodm@listracted
constraints, the actual constraints to be satisfied can be calculated and teerusihg
suitable machinery.



=T (Tz) TSoT (oT1)
or e T e
F’;;Pl\;? (V1) Fi;PSQ (Vz,)
oo va) % (0Vzs)
e e TR e

I''PD>oA=oP
I''P D oA = oA
P>A=P
TPoAsa o)
P> A= oP

T PoAsod 20

(Do)

Fig. 6: Proof search calculus for LLP

For every query, we are interested in all of the proofs of this queayjshevery normal
natural deduction of the query. The LLP calculus generates proof termbdsat need
to be translated to normal proof terms.

As discussed in the introduction, permutation-free calculi, such ag\RF&re partic-
ularly well suited for the enumeration of all proofs. Also, these calgivie a proof
theoretic justification of the form taken by backchaining calculi used foofsearch.
PFLAX has an advantage over LLP in that it directly generates exactly all tireahor
natural deduction proofs for any given query. The drawback in usingARFE that,
even for the fragment of Lax Logic used for constraint logic prograngyit does not
allow goal-directed proof search. However, despite there being no abeaespon-
dence between LLP and PFLAX, we consider PFLAX to be a suitable calculpsfof
search in the context of constraint logic programming.

8 Deciding Lax Logic

It is useful and interesting to have a decision procedure for any logis.Section de-
scribes a decision procedure for propositional Lax Logic. To the besirdinowledge,
no decision procedure for propositional Lax Logic has been presentedbefor

The calculus presented uses a history mechanism to ensure termination waldsck
proof search. These history mechanism were introduced in [HSZ96] (sej¢laig98]).
The refined history mechanism used here can be found in [How97] (see aia®@H
[How98b]). The history mechanism provides a general method forrtgraipropo-



(@) LPSDH
r =2 p.u I'P=D;H
(L)

(@)

I'=T;H (M I = Dy
LP=Q{@ _  ipgr

F=>PDQ;’H
I'=Q;(QH) _
T=PoQH (Dro) fPerandQ ¢ H
IP= 1;{l} _
Toopn (R0 TPETD
= Li(LH) .
To-PH (-r2) fPeTrandl ¢
Q
I'sP;(P,H) I = D;H _
(pxz (Dr) fP¢H
I' =¥ D:H
I'= P;(P,H _
% (-=z) fDgH
I == D;H
I= P (PH) I'=Q(QH) _
T=>PAQH (Ar) IfP,Q¢H
r % p;u r-%pwu
o (Ne) oo (Ac)
I' — DiH I' — D;H
I'= P;(P,H = Q0.1 .
o e )(VRz) ifQ¢H

TSphvon VR) TPER  Fopuo

I'P = D;{D} I,Q= D;{D .
{P}; @ { }(Vg) if P¢ I'and@ ¢ I
2% p;u
I' = P;(P,H)
I'=>oP;H
I''P = oR; {oR
;’{O}(OE) if P¢r

I 25 oRr U

(or) fP¢H

D is either an atom/, disjunction or a modal formula.
Where the history has been extended we have parenthégts@éf for emphasis.

Fig. 7: The calculus PFLAX %t (Scottish)



sitional sequent calculus into a decision procedure. Notice that we usmlitidus
PFLAX as the base for the history calculus since it gives a more effigiggiementa-
tion, but we could have instead used a more usual sequent calculus foogaxds the
base.

The decision procedure given here uses a history mechanism. Anotheaelppoale-
ciding propositional logics is by the use of ‘contraction-free’ sequaattuli, such as the

one for propositional Intuitionistic Logic given in [Dyc92K[d93]. If such a decision
procedure for Lax Logic could be found, we would expect it to be fasi@n bne in-
volving a history mechanism. An investigation of contraction-free deflcuLax Logic

can be found in [AF96]. Unfortunately, this investigation did netceed in finding a
contraction-free calculus. We believe that a contraction-free calculusforhgic can-

not be found, as (for arbitrany) examples requiring an entire formula in a sequent to be
contracted: times in a proof can be constructed. Consider, as an example, the sequent

B> (0ADC)DoA,0B,0cADC=C

whereoA O (' needs to duplicated in its entirety in order to prove the sequent.

9 History Mechanisms

Firstly we discuss the general idea of calculi with history mechanidmas,we give the
specifics for the history calculus for PFLAX.

9.1 Deciding Propositional Logics Using History Mechanisms

One approach to finding a decision procedure for a propositional ieg¢ricplace con-
ditions on the sequent calculus to ensure termination of search. It srélegbe able
to build the content of these conditions into the sequent calculu§ it$es is how we
develop the calculus for theorem proving in this section. The techriayqukoing this is
quite general and can be applied to many sequent calculi.

In order to ensure termination of backward proof search, we need to checketlsattie
sequent (modulo number of occurrences of formulae of the same type) dagspear

again on a branch, that is, proof search does not loop. We need a mechanical way to
detect such loops.

One way to do this is to addrastoryto a sequent. The history is the set of all sequents
to have occurred so far on a branch of a proof tree. After each backwards infeérence t
new sequent (without its history) is checked to see whether it is a merhbigs cet.

If it is we have looping and backtrack. If not the new history is thielsion of the old
history by the old sequent (without the history component), anttyi® prove the new
sequent, and so on. Unfortunately, this method is space inefficient asiitegdpng
lists of sequents to be stored by the computer, and all of this listcthbe thecked at



each stage. When the sequents are stored, far more information than necdssaty is
Efficiency would be improved by cutting down the amount of storage cmatking
needed to prevent looping.

The basis of the reduced history is the realisation (as in [HSZ96])tateed only
store goal formulae in order to loop-check. For the calculi dealt withis paper, the
context cannot decrease; once a formula is in the context it will be icdh&ext of
all sequents above it in the proof tree. We say that the calculumb@sasing context
For two sequents to be the same they need to have the same contexinfufiipbe
occurrences of formulae). Therefore we may empty the history every tieneothtext
is (properly) extended. All we need store in the history are goal iden If we have a
sequent whose goal is already in the history, then we have the same dahkasame
context as another sequent, that is, a loop.

There are two slightly different approaches to doing this. There istifagghtforward
extension of the calculus described in [HSZ96] (which we call the ‘Shissry’; more
on this loop-checking method can be found in [Heu98]). There is alseetelabrk on
histories for Intuitionistic Logic by Gabbay in [Gab91]. The ettapproach involves
storing slightly more formulae in the history, but which fons® calculi detects loops
more quickly. This we describe as the ‘Scottish history’ ([How3Bpbw97]); it can in
many cases be more efficient than the Swiss method. In this paper we gis®gy hi
calculus for Lax Logic using the Scottish history as we believe thibd the better
method for intuitionistic logics ([How97]).

One of the great attractions of this approach is its generality. Therpistechanism
can be attached to a great number of calculi to give decision procedures. A number o
applications can be found in [How98b].

9.2 PFLAXHist

This section gives a history calculus for propositional Lax Logic.sksuthe calculus
PFLAX as a base to build the calculus, as this calculus has already reduced tre sear
space to a certain extent. PFLAX has the increasing context required fapplieation

of the history mechanism. However, the more usual formulation doaNeé been used
instead. PFLAX'*** can be seen in Figure 7.

We give explicit rules for negation (which are just special cases of {ee far implica-
tion) for the sake of completeness of connectives. There are two rulésfor. These
correspond to the two cases where the new formRlas or is not in the context. As
noted above, this is very important for history mechanism. Also nditiaethe number
of formulae in the history is at most equal to the length of the fdamve check for
provability.

A sequent is matched against the conclusions of right rules until thefgealla is
either a propositional variable, falsum, or a disjunction (note tligtigction is not
covered in [HSZ96], and requires special treatment). This has been ensuredrby th
striction on goal formulae given in the calculus. A formula from thateat is then



picked and matched against the left rules of the calculus. The Scottish calegips
a complete record of goal formulae between context extensions. At each phtes
where the history might be extended, the new goal is checked againgstibwy Hf it is
in the history, then there is a loop.

There are other places where the rules are restricted to prevent loopaméefTtules
have side conditions to ensure that the context is increasing. €6pth) rule (which
attempts to extend the context) there are two cases corresponding toheheomtext
is and when it is not extended. Something similar is happening in theulek. Take
(V) as an example. In both premisses of the rule a formula may be added trtctinte
both contexts really are extended, then we can continue building tloé tpee. If one
or both contexts are not extended then the sequgmnjth the non-extended context,
will be the same as some sequent at a lesser height in the proof tree isthdoop
(which we describe as a trivial loop). This is easy to see: since the d¢@rtdxthe goal
of S are the same as that of the conclusion, the conclusion is the same asrthsssr.

What does a history sequent say? What, in logical terms, is the meaningggiiant
with a history field? Take, for example, the &3' sequentS = I' = R;H. This says
that for every proof ofS, if P € 7, then no sequent of the forfii = P;H' appears
aboves in the proof tree of5.

It is now demonstrated that PFLAX®! is equivalent to PFLAX, in terms of prov-
ability. The equivalence is proved via an intermediate calculus PPLAThe calculus
PFLAXP is the calculus PFLAX where the ru(€) is restricted so that it is only ap-
plicable when the goal formula is an atom, a disjunction, falsum or@atformula.

Proposition 2 The calculusPFLAX is equivalent to the calculuBFLAXP. That is,
sequenf” = G is provable inPFLAX iff I = G is provable inPFLAX? .

The following lemma is needed in the proof of theorem 6.
Lemma 3 (CONTRACTION) The following rules are admissible PFLAXst;

nePP-%R

IP,P=>R
rne-%eR

I'P=R

() (@)

PROOF By simultaneous induction on the heights of derivations of prezsiii

The equivalence proof below, although long, has a simple structuralgamithm to
turn a PFLAX proof tree into a PFLAXs! proof tree is described in detail. A simple
induction argument shows that the algorithm terminates, provingethet.

Theorem 6 The calculiPFLAX andPFLAX st are equivalent. That is, sequefit= G
is provable inPFLAX iff sequentl” = G; {G} is provable inPFLAX#st,

PROOF. From Proposition 2 we know that it is enough to show that PFEAX equiv-
alent to PFLAXT#st,



It is trivial that any sequent provable in PFLAX®? is provable in PFLAX’. (Simply
drop the history part of the sequent and use contraction above instdrceg.g). We
prove the converse.

Take any proof tree for sequeft= G in PFLAX”. By definition this proof tree is
finite. That is, all branches of the tree end with an occurrenc@®f or (L), with
all branches having a finite number of nodes (there is also no infirdreching at any
node). Using a proof tree for a sequdnts G in PFLAXP we construct a proof tree
for the sequent” = G; {G} in PFLAXHist Essentially we take a PFLAX proof tree
and give a recipe for ‘snipping out’ the loops: removing the secuiat form the loop.
Or, looking at it in another way we shall show that failure due to tséony mechanism
only occurs when there is a loop.

Take any PFLAX proof tree withn > 0 nodes. We take this proof tree and use the
following construction to give a PFLAX!** proof tree.

The following construction takes a PFLAXproof tree and builds a PFLAX** proof

tree from the root up. For simplicity we ignore negation, altHotigs can easily be
added. In this construction we use ‘hybrid trees’. A hybrid tree iagrhent of PFLAX! st
proof tree with all branches that do not hawe) or (L) leaves ending with PFLAX
proof trees. These PFLAX proof trees have roots which can be obtained by backwards
application of a PFLAX rule to the top history sequent (ignoring its history). We anal-
yse each case of a topmost history sequent with non-history premissgaiing from
application of rulg R) in the sequent tree.

— The root of the PFLAX tree. We change (non-history) sequént> G to history
sequent” = G;{G}.

— (R) is one of(az), (C), (L), (T), (Az,), (Az,), i.e. a rule which in PFLAX st
has no side conditions. The premiss(es) are changed by adding the régtprop
history. They become the history sequents obtained by applying (lzadkjthe
PFLAX#st rule to the original conclusion.

For example, if the situation we are analysing is:

r2p
rY p.u

(/\El)

Then we change this part of the hybrid tree to:

r-2 opmu

rY p.u

(/\El)

We have an extended PFLAX®® proof tree fragment with PFLAX proof tree(s)
as premiss(es).

— (R)is (Dr). Ifthe context is extended, simply add the history as appropriatee If
context is not extended, and the new goal is not in the history, agapiysextend
the history as appropriate. If the new goal is in the history, theegdop, and here



the history mechanism prevents looping. If the history mechanismiton is not
met, then we know that below the conclusion, the hybrid tree has the for

=G
I'=>PD>G;H (Or.)

F:>C;H'

whereG € H' and#H' C H. The history is not reset at any point in this fragment.
This can easily be seen to contain the loop which is the reason for the side co
tions not being met. The new hybrid tree is obtained by removing fh@previous
hybrid tree all the sequents from, but not including, the seqiiest G; H' up to
and including the sequeft= P D G;H.We can now apply (backwards) the next
backwards inference to the first of these sequents. We now know howdegqato

— (R)is (D). Ifthe side condition is satisfied, then simply add the histories poap
priate. If the side condition is not satisfied, then we know that beth@xbnclusion
the hybrid tree has the form:

F:PJH%R(

FIEC})R;H

Dr)

F:>.P;’H'

whereP ¢ H' and#' C #H. The new hybrid tree is obtained by removing
from the previous hybrid tree all the sequents from, but not inolydhe sequent
I' = P;H' upto and including the sequeht=- P. We now know how to proceed.
— (R) is (Ar). If the side conditions are satisfied, then simply add the historiap-as
propriate. Consider the case when the side conditions are not meb&uyppthout
loss of generality, thaP € 7. We know that below the conclusion the hybrid tree
has the form:
I'sP I'=>q@

[=PAQGH (A%)

F:>P;7-['

where ' C H. The new hybrid tree is obtained by removing from the previous
hybrid tree all the sequents from, but not includifige P; H' up to and including
I' = P. We now know how to proceed.

— (R) is (o). If the side condition is satisfied, then simply add the appropriate h
tory. If the side condition is not satisfies, then we know that belmsvdonclusion
the hybrid tree has form:

I'=P (or)
I'= oP;H

F:>P;H'



whereP € H' andH' C . The new hybrid tree is obtained by removing from
the previous hybrid tree all sequent from, but not including> P;# up to and
including” = P. We then know how to proceed.

— (R) is (o). If the side condition is satisfied, then simply add the appropriate h
tory. If the side condition is not satisfied, then we know that belwsvdonclusion

the hybrid tree has form:
I''P = oR

oP (O’C)
I' — oR;H

I'= oR;H

whereP € I'. The new hybrid tree is obtained from the old by removing from the
old hybrid tree all sequent from, but not includihg=- oR; H, up to and including

r°5 oR;H. The premiss can be obtained by contraction. We now know how to
proceed.

— (R)is (V). Ifthe side conditions are satisfied, then we simply add then appttepri
histories. Suppose that one of the side conditions is not sati¥figdout loss of
generality we suppose th&t € I'. We know that below the conclusion the hybrid

tree has the form:
I'P=D Q=D

(Ve)
r2e D;H
I'=> .D; H
The new hybrid tree is obtained from the old by removing from ttiehglbrid tree

all sequents from, but not including = D;H, up to and including” e D;H.

The entire subtree above abaVg) = D is also removed. The premiss is obtained
by contraction. We now know how to proceedHAfq € I" the we have a choice as
to which branch to follow.

— (R) is (Vx,). If the side condition is satisfied, then we simply add the appragpriat
history. If the side condition is not satisfied, then we know that\lwehe conclusion
the hybrid tree has form:

I'= P
FSPvoH VR

F:>P;H'

whereP € H' andH' C H. The new hybrid tree is obtained from the old hy-
brid tree by removing all sequents from, but not includifigs P; H', up to and
includingl” = P. We now know how to proceed.

— (R) is (Vr,). Similar to above.

Given that the number of sequents without a history in a hybrid g&aite and every
step described above strictly decreases the number of sequents withotory Hiss
process is terminatindll



We have shown that PFLAX*? is sound and complete. For us to prove that it is a
decision procedure, we need to prove that it is also terminating, thaidkwards proof
search in the calculus ends in success or failure after a finite number of Bhépss
proved in the theorem below.

Theorem 7 Backwards proof search in the calculBELAXH 5t is terminating.

PROOF. We associate with every sequent a quintuple of natural numbers. B&tineent
without a stoup]” = R;H, we associate:

W=(k-n,k—m,1,0,7)
With a sequent with a stoupp, il R;H, we associate:
W =(k—n,k—m,0,s,r)

Here,k is the number of elements in tisetof subformulae of I', R); n is the number
of elements in theetof elements of ’; m is the number of elements #; r is the size
of goal formulaR ands is the size of the stoup formula. (Notice that althougli is a

multiset, we count its elements as a set). These quintuples are lexibaigpordered
from the left.

By inspection we see that for every inference fidlés lower for the premisses than for
the conclusion. Consider as an exampie, ):

I'=P;(P,H) -2 D

FIEC)?D;’H

(Op)ifP¢H

The conclusion ha$V = (k — n,k — m,0,s; + s2 + 1,r). The left premiss has
W= (k' —n,k' — (m+1),1,0,s1) (wherek' < k). ThereforelV’ < W. The right
premiss ha$V'' = (k — n,k —m,0, s, 7). Thereford¥'' < W. The weights of both
premisses are less than the weight of the conclusion.

Hence backward proof search is terminatillg.

When implementing a theorem prover, knowledge of the invertibilitthe inference
rules can be useful. This information is given in the following msigon.

Proposition 3 The following inference rules oPFLAXPst are invertible: (Ox,),

(Ora): (7r1), ((ra2) (O2), (7). (AR), (Vz), (or). The following inference rules
of PFLAX! st are not invertible:(C), (Az,), (Az,), (Vr,), (VR,), (oR).

10 Conclusion and Future Work

This paper has presented two proof search calculi for Lax Logic. The firstARFL
is a sequent calculus for first-order quantified Lax Logic. The proofsvalioby this



calculus naturally correspond in a 1-1 to the normal natural deductiofiissisorder
quantified Lax Logic. The calculus is well suited for enumerating, witmedtindancy,
all proofs in the logic. This makes the calculus useful in contexts whieraf search is
for normal natural deductions, such as in (constraint) logic prograigumi

The second calculus, PFLAX*! builds on the propositional fragment of the first cal-
culus to give a decision procedure for propositional Lax Logic. A denigirocedure
for propositional Lax Logic has not been given before. The calculus addst@yh
mechanism to the propositional calculus to prevent looping. The tgaebrf adding a
history mechanism is general and may be applied to a wide range of sequeritfoalcul
propositional logics. Decision procedures are obviously useful atiogl to any appli-
cation that a propositional logic may have. Propositional Lax Logi lheen used in
hardware verification and PFLAX*? could be used in this area.
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