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Abstract

This paper gives a formal description of — at least a part of — the type
system of Aldor, the extension language of the computer algebra system
AXIOM. In the process of doing this a critique of the design of the system
emerges.
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1 Introduction

The computer algebra system AXIOM and its precursor Scratchpad are unusual
among computer algebra systems in that they are strongly typed, so that any
errors in the types of expressions or programs are caught prior to the programs
being executed. In order to give types to the basic objects of mathematics it is
necessary to develop an expressive and flexible system of types. In this paper
we examine the programming language Aldor[WBD'94], which has grown out
of AXIOM as a compiled ‘extension language’,! that is a language in which to
write libraries for AXIOM or indeed other computer algebra systems such as
Maple.

One might argue that most users of computer algebra systems prefer the
freedom provided by an interpreted and weakly typed language. While this is
the case for small-scale experimental use, a compiled language promises users
efficiency, whilst as it is strongly typed it can assure users that their programs
are free of potential type errors; both these properties are desirable for library
code which will in general be substantial and executed repeatedly.

As was said earlier, Aldor has a very complicated and expressive type system
in order to render the types appearing in a computer implementation of basic
mathematics. This requirement represents a substantial challenge, and it is
interesting for instance to observe that the motivating example for an extension
of the C++ type system described in [BR95] comes from computer algebra.
Among other things, the type system of Aldor includes so-called dependent
types, types as values, a rich system for abstract datatypes — provided by so-
called domains and categories — and overloading. These and other features of
the Aldor type system are discussed in section 2.

The Aldor User Guide [WBD94] gives an informal description of the Aldor
type system. In this paper we will try to give a formal description of at least part
of the type system of Aldor. A formal description gives a clear and unambiguous
description of the types of the language; this can provide a foundation for the

IIn the past Aldor has also been known as AXIOM-XL and Af.



implementor as well as allowing general properties of the type system to be
studied.

This formal description is a first step of the project described in [PT98],
namely of incorporating a logic into Aldor. This is done by using the so-called
‘propositions as types’ or Curry-Howard correspondence, [How80], under which
logical propositions are encoded as types of a functional programming language.
This encoding will be made possible in Aldor by making a modification to allow
type expressions as well as ordinary expressions to be evaluated.

The formal description will be given by a typing relation of the form I' ¢ : T
which is read as “in context I' term ¢ has type T”; this relationship will be
defined by a set of type inference rules.

It is important to realise that — lacking a good description of the type system
— the basis for our formal description is the compiler itself. Any questions about
the type system have been resolved by experimenting with simple programs to
see which ones are rejected by the compiler because of typing errors. Of course,
this has its limitations.

Two central questions that arise are

e How much of Aldor do we try to formalise?
We do not attempt to give a formal description of the entire type system
of Aldor. Instead, we only describe what we consider to be the “core” of
the Aldor type system, which includes the essential features but excludes
some of the more baroque ones. The latter may be features that we want
to exclude because they do not seem interesting (they can be seen as
‘syntactic sugar’, for instance) or are too ad hoc, or features that we have
to disregard in order to keep things simple enough to formalise. Ideally,
the core of the Aldor type system we describe should be a “small” type
system, in the sense that it is built by combining of a small number of
orthogonal primitives for constructing types.

It will always remains a point of discussion whether we should include
more or less of the Aldor type system in the formal description. At several
places we will point out constructions that are possible in Aldor which we
have not included in our formal description and we collect together a list
of these in Section 16.

e Does the formalisation describe Aldor as it is, or as we’d want it to be?
There are several cases where the type system of Aldor (or rather, the im-
plementation of the type system in the compiler) behaves strangely. Here
one can ask if, instead of giving very complex rules that exactly describe
this, it would not be more useful to propose simpler, more sensible, typing
rules that result in a “cleaner” type system. At several places we will point
out where our formalisation does not accurately describe the behaviour of
the Aldor compiler; we collect these points in Section 18.

In experimenting with simple programs we came across a number of bugs
in the compiler, and across cases where the compiler behaved strangely, either
accepting seemingly ill-typed programs or rejecting seemingly well-typed ones.

1.1 Related Work

There has been a lot of interest in programming languages with types-as-values
in the 1980’s, see, for instance, [DD85, MR86, LB88]. Recently there has been
renewed interest in languages with dependent types, as evidenced by [Aug98,
DTP99].



There has been a lot of work in type theory that is relevant here. Related to
the dependent types of Aldor is the work on so-called constructive type theo-
ries, such as the constructive type theories of Martin-Lof [MLT79] or the Calculus
of Constructions [CH88]. One useful notion here is that of Pure Type System
(PTS) [Bar93], which provides a general framework for giving compact charac-
terizations of many type systems with function types and dependent types, and
makes it easy to compare such systems.

Related to the module system of Aldor (as provided by its domains and
categories) is the work on different variants of “sum types” for describing mod-
ules e.g. in the setting of the functional programming languages Standard ML
(SML) [MTHM97, Mac86, Rus98].

More closely related to Aldor itself, [San95] proposes a type system for com-
puter algebra which is based on Aldor. The focus of Santas’ paper is on the
module system. The type system described does not include type-as-values or
dependent types. Finally, the type system of Aldor has been investigated using
the categorical notion of a sketch, [Tou98].
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2 Introduction to the Aldor type system

Before giving a formal description of the type system, this section gives an infor-
mal introduction of the main features of the Aldor type system and illustrates
these with some simple examples. Subsequent sections will give a more detailed
explanation of these features.

Aldor is not a functional language, but an imperative one. However, Aldor
does have a complete functional language as a sub-language (which, for instance,
includes higher-order functions). In the formal description here we will limit
ourselves to this functional sub-language of Aldor, i.e. we disregard any of the
imperative features of Aldor. The functional sub-language of Aldor does in
fact contain all the interesting type constructions of Aldor; one can view the
imperative features in a similar way to those of SML, with the proviso that
SML’s type system is made more complex by the interaction of reference types
and parametric polymorphism.

Aldor provides many of types familiar from other programming languages,
such as function types, product types, record types, union types and so on, with
the usual terms of these types: functions, products, records, for instance. For
example, the fragment of Aldor program below defines a function double and
a record rr:

double : Integer -> Integer
== (n:Integer) : Integer +-> n+n ;

rr : Record (i:Integer, j:Boolean)
== [i==4,j==true];



But, in Aldor these familiar constructs can be more complicated than in most
other languages. This is mainly due to the two of the features discussed below:
dependent types and types as values. These and other aspects of the language
are examined informally now.

Dependent Types

Aldor allows so-called dependent types. Omne of the standard examples of a
dependent type is the type Vector (n) of, say, floating point vectors of length n.
This is called a dependent type, because it depends on the — in this case, integer
— value n.

Functions can have dependent types, in which the type of a function result
depends upon the value of a parameter. An example is a function

vectorSum : (n:Integer) -> Vector(n) -> Float

which takes as arguments an integer n and a vector of type Vector(n), i.e. a
vector of length n, and returns the sum of that vector. The result of a function
application, say

vectorSum(34)

has the type Vector (34) -> Float because its argument has the value 34.
Another example of a function with a dependent type is the append function
for vectors:

append : (n:Integer,m:Integer,Vector(n),Vector(m)) -> Vector(n+m)

There are two important points about dependent types: first, following the
Curry-Howard isomorphism — better known as “propositions as types” — a type
system with dependent types is powerful enough to express predicates with
universal quantification [How80]. Dependent types are commonly used in this
way in so-called constructive type theories, such as Martin-Lof’s Type Theory
[ML79, Tho91] or the Calculus of Constructions [CH88]. Second, there is a well-
known price to be paid for dependent types (see [MR86, Aug98] for instance),
namely that type checking of programs will involve executing parts of programs.
This will be discussed in Section 14.

The Aldor type system contains a second form of type dependence, in this
case between the fields of records. As an example consider

rec : Record (n:Integer, v:Vector(n))
== [ n==3, v==vec3 ];

which defines a record containing two fields; the first, n, is an integer, whilst the
second is a vector whose length is n. These types can express predicates with
existential quantification

Dependent functions and records support universal and existential quantifi-
cation, and so it should be possible to represent any proposition of first-order
logic by means of an Aldor type. This is not possible in the current implemen-
tation since there is no evaluation of type expressions, so that, for example, the
types Vec(5) and Vec(2+3) are seen as different types. Our aim, discussed in
[PT98], is to rectify this anomaly. type system should be powerful enought to
represent an



Types as values

Most programming languages enforce a strict separation between a collection of
terms — or values — and a collection of types. But Aldor treats types as terms
like any other: a type such as Integer->Integer can be manipulated in the
same way as any ordinary expression like 3+4. In particular,

e Just as other terms have types, so do the types themselves: there is
a special constant Type that is “the type of all types”. For example,
Boolean : Type and indeed Type : Type.

e Any construction that is possible with terms is also possible with types.
This means that types can be passed as arguments to a function, or re-
turned as the result of a function. For example, the function

List : Type -> Type

takes a type as input and produces a type as output. Applying the function
List to the type Integer produces a type List(Integer), the type of
lists of integers.

Type can also be used as components of records. For example, the record

tt : Record (t:Type, b:Boolean)
== [t==Integer,b==truel;

has a field whose value is a type.

Of a language such as Aldor it is often said that types are treated as “first-
class citizens” (as opposed to most other languages, where types are only second-
class citizens).

To fully exploit the idea of types-as-values dependent types are effectively
indispensable. Combining types-as-values and dependent types, we can make
the polymorphic (or generic) functions that exists in functional programming
languages like ML or Haskell. For example, a polymorphic function reverse
that reverses a list with elements of an arbitrary type could be typed as follows

reverse : (T:Type) List(T) -> List(T)

A difference with functional programming languages like ML or Haskell is that
in Aldor such polymorphic functions like reverse have to be given explicit type
parameters, whereas in modern functional languages these type parameters are
inferred by the compiler, using so-called Hindley-Milner type inference [Mil78].

The fact that types can be used as values greatly increases the expressive
power of the language. But, as mentioned before, there is a price to be paid for
the associated dependent types (see e.g. [MR&6]).

Domains and Categories.

Aldor provides a rich system for abstract datatypes, called domains, and for the
types of datatypes called categories. Categories effectively describe the interface
or signatures of abstract datatypes. The domains and categories of Aldor make
it possible to model the rich universe of mathematical structures that arise in
computer algebra, e.g. of rings, fields, etc., as well as the relationships between
them, e.g. every field is also a ring.

An example of a category is



Ring : Category == with {+ : (%,%) -> %;
* 0 (%0 > %;
1 %
0: %1%

which describes the interface of rings, i.e. the operations that any type % has to
provide in order for it to be a ring. It is then possible in Aldor to write so-called
generic (or polymorphic) algorithms, e.g. a summation algorithm that works for
arbitrary rings:

sum : (R:Ring) List(R) -> R

Note that this provides a further example of a dependent type in use: the type
of the result of applying sum to R, namely List(R) -> R, depends on the ring
R.

Overloading

Aldor allow overloading, so that the same name can be used more than once,
provided any resulting ambiguity can be resolved by the type system. So the
same name can only be used to refer to terms of different types. The standard
example of overloading is the use of + as a binary operator for different types,
e.g. both +: (Integer,Integer)->Integer and +: (Real,Real)->Real.

Subtyping

Aldor provides a form of subtyping. The most interesting source of subtyping
are the categories, where subtyping captures the notion of an interface being
subsumed by a richer interface

For example, the category Monoid

Monoid : Category == with {* : (%,%) -> % }

is a supertype of Ring, capturing the intuitive idea that every ring is also a
multiplicative monoid. This means that a ring can be used in any context
where a monoid is expected.

In fact, Aldor distinguishes three forms of subtyping: in addition to “sub-
typing” between types, there are also so-called “courtesy conversions” between
types and there is also a notion of “type satisfaction”. These will be discussed
in Section 15.

Multiple Values

Finally, one of the more puzzling features of the Aldor type system is the notion
of multiple value. A multiple value is essentially a sequence of terms (1, ..., ),
which are very similar to n-ary products, or cross products in Aldor terminology.
Indeed, the notation of a multiple value and a cross product is exactly the same,
and there exist courtesy conversions (see Section 15) from multiple values to
cross products and back. It is not clear to us why Aldor provides both multiple
values and cross products. We have left out multiple values from the formal
description of Aldor given here.



3 The formal description of the Aldor type sys-
tem

As mentioned in the previous section, in the formal description of the Aldor
type system we ignore all imperative features of Aldor, and only describe a
purely functional sub-language of Aldor. So we do not consider the statements
of Aldor, e.g. assignments, for-loops, etc. In particular this means that whenever
we talk about “variables” these are never variables in the sense of imperative
programming — i.e. memory locations — but always variables in the sense of
“formal parameters”.

3.1 Typing relations
The typing relation is formally described by typing judgements of the form

I'+t:T.

The judgement I' ¢ : T is read as “term ¢ has type T in context I"”. Here the
context I is the list of all the variable declarations, type definitions, etc., that
are in scope. Simple examples of typing judgements are:

I' + true:Boolean
I' + +:(Integer,Integer)->Integer
If ' - ¢ : T then we say that ¢ and T are well-formed expressions (a well-
formed term and type expression, respectively) in context I'. To define I" F

t : T we need an auxiliary judgement I' + ok, which means “context I is
well-formed”.

REMARK 3.1 (TERMINOLOGY) Our terminology is different from that used in
the Aldor User Guide [WBD"94]: what we call “terms” are called “values”
there.

We use “terms” rather than “values” because “values” is often reserved for
those expressions that are “evaluated” in some sense. For example, 3+4 and 7
are both terms, but usually only 7 is considered to be a value.

A similar distinction can be applied to terms which represent types. O

3.2 The Aldor universe

In our discussion of Aldor we will distinguish six kinds of expressions:
e terms,
o lypes,
e domains,

e categories,

abstract datatypes (ADT’s),
e packages.

Below we explain their intuitive meanings and the basic relations between them.

The coarsest distinction between different kinds of expressions one can make
in Aldor is between terms and types. But, since types are values, and the types



themselves also are terms, so that types C terms. And the type of all types —
Type — is itself a type, so Type € types. Similarly, the type of all categories —
Category — is a type, so Category € type.

We distinguish the following subsets of terms and types, called domains and
categories, that are of special interest:

e domains C terms.
Domains can either be abstract datatypes (ADT’s) or packages.

Packages are collections of definitions, which can include definitions of
functions, types, or any other terms. These definitions are called the
exports of a package. We can think of packages as libraries and also, by
analogy with SML, as structures.

Like packages, ADT’s are collections of definitions, but an ADT includes
a distinguished definition of a type. The other definitions will typically be
operations on that type. To take the standard example, an ADT Stack for
stacks would define a representation type for stacks, and implementation
of the stack operations for that particular representation.

e categories C types.
Categories are the types of domains. Basically a category describes the
interface of a domain, i.e. it lists the exports with their types, like the
example of the category Ring on page 6. Again by analogy with SML,
categories are like SML signatures.

Just as there is a type of all types, there is a type of all categories, which
is called Category.

The domains that are abstract datatypes play an important role in Aldor.
Although strictly speaking these ADT’s are terms and not types, types are
introduced when ADTs are named. (Aldor type naming is done in exactly the
same way as for any other value; it is therefore quite possible to introduce
‘anonymous’ ADTs, even if they are only of curiosity value.)

For example, if we have the abstract datatype Stack mentioned above, then
the name Stack is then not only used to refer to this whole collection of defini-
tions that make up the ADT, but is also used as the name of the (abstract) type
introduced by the ADT. The fact that the name of an domain is used as a type
means that there is an implicit projection by means of naming from abstract
datatypes to types, indicated by the dotted arrow in Figure 1.

All this leads to the view of the Aldor universe given in Figure 1.

3.3 A grammar for a subset of Aldor

The grammar given in Figure 2 defines some of the raw syntax of Aldor terms.
To define the set of raw terms Term it also defines a set of type tuples Type Tuple.
There are two points to note about the grammar given in Figure 2.

e The square brackets [...] are not part of the syntax, but indicate an op-

tional inclusion. E.g. packages can be of the form add{z; : Ty==t1;...; 2z, :
Tn==tyn}, of the form add{x1==t1;...;x,==t,}, or any combination of the
two.

e This distinction between terms ¢ and types T is not a distinction that can
be made formal at this stage. To tell which terms are types we have to
refer to the typing relation: a term T is a type (in a context I) if and only
if - T : Type (or in a context, I' = T : Type). Still, it is useful to suggest



. Type
* Cat egory

Domains Categories

Packages

Figure 1: The Aldor universe

the distinction between terms and types already here. Throughout this
report we will stick to the convention that lowercase letters range over
arbitrary terms and uppercase letters range over types (or, in some cases,
names for types).

REMARK 3.2 (DOMAIN VS (ABSTRACT DATA)TYPE) The Aldor User Guide [WBD194]
is sometimes a bit sloppy in its use of the terminology, particularly when it comes
to domains and (abstract data)types.

e domain vs abstract datatype. The notions of abstract datatype and domain
are often identified, although a domain can also be a package. More often
that not “domain” should be taken to mean “abstract datatype”.

e domain vs type. A more serious cause of confusion is that “domain” and
“type” are often treated as synonyms.

All user defined types in Aldor will typically be introduced by means
of abstract datatype definitions. One can go even further and take the
viewpoint that all the primitives types provided by Aldor are also abstract
data types, with the difference that the definition of the primitive types
cannot be given inside the language itself. In this view all types originate
from abstract datatypes, so that the set of (names of) abstract datatypes
is isomorphic to the set of types. Indeed, all primitive types are declared as
abstract datatypes in the library file . .. /lib/libaxllib/lang.as that provides
an interface for all language-defined types.

This seems to explain why in the User Guide the terms ‘type’ and ‘domain’
are almost used interchangeably. (Strictly speaking it is only the domains
that are abstract datatypes than can be viewed as types, but we already
pointed out above that the terms domain and abstract datatype are often
treated as if they were synonyms.)
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t,T € Term
=

| (1 :Thy.oyapn 2 Ty) s TH->

| t1(t2)

| (t1,--.,tn)

| record
| union

variable

abstraction

application

multiple value, or tuple, or cross product
record

union

| bracket | explode | apply | case  operations on records/unions

| Type

| Category
| T->T >
| Cross

| Record

| Union

| "2y, xy

| Tuple T

| add{xl [C T1]==t1;

| add{Rep==>T;

xy [ Th]==ty;

| with{z; :

T € TypleTuple
n= ([zy 2T, ..

Ty;..5xn : T}

S lxn Th)

.ol Ty]==t,} package

the type of all types

the type of all categories
function type

cross product type
record type

union type

enumeration type

tuple type

oo xp Thl==t,} ADT

projection from package/ADT

category

type tuple

Figure 2: A grammar for a subset of the Aldor terms
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The remainder of this report

The sections that follow give the formal description of the type system for
each individual language construct of Aldor. These sections roughly follow
the same format: we give the raw syntax, specified by a piece of context-free
grammar, the typing rules, which impose restrictions on the raw syntax to
yield the “well-types” syntax, and some examples. We will discuss the typing
rules to point out any peculiarities, to point out any differences between our
formal description and Aldor as it is actually implemented by the compiler, and
to suggest possible improvements or simplifications of the typing rules (which
would however increase the difference between our formal description and Aldor
as it is implemented by the compiler).

4 Contexts

Typing depends on a context containing declarations and definitions. A context
defines the set of names that are currently in scope. Contexts may include
declarations of variables? like

x : Integer
and definitions of constants, such as
x : Integer ==

Note that because types are values, a declaration of a variable can be a decla-
ration a type-variable, e.g.

X : Type
and a definition of a constant can be the definition of a type-constant e.g.
TT : Type == Integer -> Integer

Definitions can be of two forms, namely of the form z : T==t, i.e. with an explicit
type, or of the form z==t, i.e. without an explicit type.

Aldor also allows a definition to be preceded by the keyword define, which
is intended to make the value of a definition ‘visible’ to its context, [WBD*94],
p113, but it is not clear in practice that this is indeed the behaviour of the Aldor
compiler. This is discussed in further detail in Sections 7 and 14.

Aldor allows overloading: The same name can be defined more than once,
provided the types resolve any ambiguity. For example, the definitions below
give two meanings to x, one to x as an Integer and one to x as a Boolean:

x : Integer == b5;
X : Boolean == true;

An important consequence of overloading is that terms can have more that one
type. For instance, in the context above x has both type Integer and type
Boolean. As a consequence b is not a function from contexts and terms to
types, but is really a relation.

Finally, contexts can contain import’s, e.g. import from Integer, which
cause a whole set of names in a domain (or library) to be imported into the
current scope. The rules concerning such import-statements will be given in
subsection 7 when we consider domains. Other aspects of the import mechanism
are discussed in Sections 7.1.2 and 16.

2N.B. Recall that we disregard all the imperative features of Aldor, and only consider
the functional part of Aldor. So when we talk about variables these are never variables in
the sense of imperative programming — i.e. memory locations — but always variables in the
mathematical sense of ‘fixed but arbitrary values’.

12



Raw Syntax

The grammar below defines the raw syntax of Aldor-contexts:

I' € Context := € the empty context
| Tz :T declaration
| 'z : T==t “typed” definition
| I'; z==t “untyped” definition

Contexts can also contain import statements, but these involve domains and
will be treated in Section 7.

Typing Rules: well-formedness of contexts

Contexts will have to be well-formed — written I" - ok —, meaning that all the
terms occurring in them are well-formed, and that each constant definition has
the type that is declared for it, and that any overloading in the context does
not introduce ambiguities.

Rules for the well-formedness of contexts are:

€ ok

et ok

I'tok T'bFT:Type (z:T)¢Tl
I';z:TFok

declaration ok

I'tok TI'kt:T (z:T)¢T
Iz :T==tF ok

typed definition ok

I'tok T'rt:T TWt:T (v:T)¢l

untyped definition ok
I';x==t - ok

Some points to note here

e The premiss (x : T') ¢ I' is shorthand for saying that I" does not already
contain a declaration or definition for x of type T. Multiple declarations or
definitions of x are only allowed if the types of these x’s are all different.
(Note that here the notion of equality of types plays a role. More on that
in 14.)

e The notation I' '+ ¢ : T is used as shorthand for ‘T is the only type
derivable for the term ¢ in the context I' (up to type equality)’. This is a
premiss of a definition without an explicit type.

Such a definition, which has the form xz==t, is only allowed if there is only
one possible type for ¢ in the particular context I'. If £ has more than one
type in I" due to overloading then one of these types has to be explicitly
given in the definition, which will then be of the form z : T==t.

e It would be nice to consider only definitions of the form z : T==t in the
formalisation here, and just treat definitions of the form x==t as short-
hand or syntactic sugar. However, it turns out that there are differences
between the two forms of definitions with regards to equality, (which will
be discussed in Section 14).

13



We have the obvious rules for using declarations and definitions in the context:

Iiz:T; I ok

z:T:I'"+2:T

I'iz:T==t;I" F ok

iz :T==t;I"+2:T

I'kt:T Tz==t;I"F ok
iz==t;I"+2:T

use declaration

use typed definition

use untyped definition

All the typing rules we introduce in this report will require that contexts are well-
formed. Because it is annoying to always have to include this premiss explicitly

‘from now on we implicitly assume that all contexts are well-formed. ‘

The scope rules of Aldor are quite complex: the whole of Chapter 8 in
the manual is dedicated to them. On the other hand, the scope mechanism
is largely independent of type issues; once scopes are delimited, type checking
is done within those scopes. The mechanisms do interact, for example, when
default arguments are present, but we do not treat that feature of Aldor in this
document.

Differences with the Aldor compiler

The Aldor compiler does not behave exactly as prescribed by the rules for con-
texts given above:

e Sometimes the Aldor compiler is more strict than necessary, and does not
accept contexts which are well-formed by the rules above. For example,
the Aldor compiler rejects

y : Integer == 5;
y == Boolean;

e Sometimes the Aldor compiler accepts ambiguous contexts which are not
well-formed by the rules above. For example, the Aldor compiler allows

x == b;
x : Integer == T7;

This should be rejected, as it clearly introduces an ambiguity. So this is
really an bug in the Aldor compiler (or in the Aldor language.)

e Contrary to what one would expect, typed and untyped definitions are
treated differently by the Aldor compiler. Replacing one by the other
in the examples above leads to different behaviour of the compiler; in
particular, the Aldor compiler accepts

y : Integer == 5;
y : Type == Boolean;

and rejects

x : Integer == 5;
x : Integer == 7;

To summarise, the anomalies discussed here arise from untyped declarations
(such as x == t) rather than typed ones (like x: T == t).
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5 Types and Type Tuples

5.1 Type

As mentioned earlier, the types themselves also have types. Namely, there is a
type of all types, written Type. The syntax and typing rule are simple.

Raw Syntax

t,T € Term = ...
| Type the type of all types

Typing Rules

———— Type form
I' - Type : Type P
5.2 Type Tuples
Type tuples can be sequences of types
(T, ..., Ty) ,

sequences of declarations

(1 : T, oy 2 Th)
or any combination of the two, e.g.

(1 :Ty,Ta, 23 : T3,...).

Type tuples serve as a common building block for several type constructions,
such as function types, cross products, record types, and union types. For
example, function types are of the form

T->...

with T a type tuple.
There are two — quite different — reasons for having declarations x : T in
type tuples. Firstly, they make it possible to have dependencies, e.g.

(X : Type,z : X)
Secondly, they introduce names, which is essential in record types, e.g.
Record(x : Integer,y : Integer)

Names are also used for the so-called keyword argument style, where arguments
to a function are named (see Section 6).

Raw Syntax
t,T € Term == ...
| Tuple Type the type of all type tuples
T ¢ TypleTuple := (D1,...,Dy)

D = T|z:T
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Typing Rules

I'+T; : Type
r+(T,...,T,) : Tuple Type

non-dependent, type tuple intro

I'izy Ty .m0 =T : Type

dependent type tuple intro
't (xy:T,...,zn: Ty) : Tuple Type

Some things to note here

In our formalisation, type tuples with names for only some of the fields like
(T, 22 : To) are treated as syntactic sugar, by inserting dummy names.

N.B. Type tuples are not types, i.e. they cannot have inhabitants, and not
occur to the right-hand side of “:” in a typing judgement. However, there
are courtesy conversions from type tuples to cross products — which are
types — and back, as described in Section 15. This effectively makes type
tuples into types.

The Aldor compiler does not appear to insist that the z; are distinct in a
type tuple, but it seems safer to insist that they are.

Aldor allows even more complicated expressions as type tuples than those
described here. Type tuples can also contain definitions of the form z :
T==t. These definitions are used for default arguments of functions and
default values of fields in records.

We will not try to formalise this sort of definition, since default values can
be dealt with as ‘syntactic sugar’ which is removed prior to type analysis.

Aldor in fact treats Tuple Type as an instance of the general Tuple con-
struction, which will be discussed in section 9. However, doing this causes
serious complications — discussed below — so we prefer to describe Tuple
Type here separately.

The main question about type tuples is in how far they are treated as
first-class citizens. Do type tuples only occur as subexpressions of larger
expressions, or can they also occur as expressions on their own, passed
around as parameters, etc.? And a related question is whether Tuple
Type is a first-class type, i.e. whether Tuple Type:Type.

The Aldor compiler, in keeping with the spirit of the types-as-values ap-
proach, treats Tuple Type as an ordinary type and (hence) type tuples
as first-class citizens. Our formalisation does not. Below we discuss our
reasons for not doing this.

Type tuples are a useful building block for several type constructions. For
example, an n-ary function type is of type (T1,...,7,) — ..., and an
n-ary cross product is of type Cross(Ty,...,T,). Treating type tuples as
first-class citizens makes it possible to give very compact descriptions for
these constructions. For instance, in Aldor the type constructor Cross
can be typed as follows

Cross : Tuple Type -> Type
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However, treating type tuples as first-class citizens in this way has serious
disadvantages.

Having type tuples as first-class citizens and having Tuple Type as a first-
class type, would mean that type tuples can be passed around as argu-
ments, and that we can have variables X : Tuple Type. But then there
can be records r : Record X for which we do not statically know their
fields, and functions f : X->Integer for which we do not statically know
their arity.

On the other hand, the only kind of functions we can write over types
such as these will be unable to analyse the type tuples at all, so they will
resemble the ‘parametric polymorphic’ functions of languages like SML
and Haskell. We therefore do not deal with this aspect of type tuples in
this treatment.

6 Functions

There are several kinds of functions in Aldor:
e simple unary functions, e.g. f : Integer ->Integer.
e n-ary functions, e.g. binaryf : (Integer,Integer) ->Integer
e dependent functions, e.g. fdep : (R:Ring) ->(R ->R).
e n-ary dependent functions, e.g. f2dep : (R:Ring,x:R) ->R.?

e functions can have default arguments, e.g. fdefault: (n:Integer==0)
->Integer.

There are also functions which return so-called “multiple values”, but as men-
tioned before we do not consider multiple values in our formalisation.
Expressions are formed in a number of ways, most of which are variants of
function or operator application. The typing rules for function application are
therefore central to explaining the typing of computations in the functional (or
equivalently applicative) subset of Aldor.
There are several ways of passing arguments to functions in applications:

e normal arguments, e.g. £(5) or binaryf(3,8),
e arguments by keyword, e.g. £2dep (R==Integer,x==0),
e default arguments, e.g. fdefault ().

We will not consider default arguments in the formal description, but we will
consider keyword arguments. These may seem a bit baroque to include in
the formalisation, but other type constructions, notably records and unions,
crucially depend on this.

6.1 Simple function types S->T

First we consider the simplest form of functions, namely unary functions with
types of the form T ->T,.

3Note that here not only the type of the output depends on an input, but also the type of
the second input depends on first input.
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Raw Syntax

t,T € Term === ...
| (z : Th) : To+->t abstraction
| t1(t2) application
| Ty ->T, function type
Typing Rules
'S, T:Type

function type formation

I'- S->T : Type

I'\{z},z:S+t:T
't ((z:8S):T+->t): S->T

function intro

r-f:8>T TI'tks:S
't f(s):T

function elim

Some examples

double : Integer -> Integer

== (n:Integer) : Integer +-> n+n ;

eight : Integer

== double 4;

Discussion

The local (bound) variable z : S in a lambda abstraction hides any other
occurrences of  in the context. Hence the I'\ {z} in the introduction rule
above.

Functions are first-class citizens, so higher-order functions — functions that
have other functions as input or output — can be formed.

The usual notation for functions in definitions is £(x:S) :T == t, which
we treat as syntactic sugar for

f : S->T == (x:8):T +-> t

In Aldor function definitions can be recursive, but in our formalisation
not. Allowing this would not be difficult, for this we would have to include
f:S->T itself in the context when type-checking the body of f.

In defining a (recursive) function, fac say, the identifier being defined can
be used in an overloaded fashion, as in the example

fac (b:Boolean) : Boolean == "b;

if fac(fac(n=0))
then 1
else (nx(fac (n-1)));

fac (n:Integer) : Integer

where fac is used over both booleans and integers in the recursive defini-
tion of fac over Integer.
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6.2 Dependent function types (z : S)->T

Now we consider unary functions with types of the form (z : S)->T. Such
functions can be dependent types, where T' depends on z.

Raw Syntax

t,T € Term = ...
| (x: T1)->T> dependent function type

Typing Rules

I'+S:Type I'\{z},z:SH+T:Type
I't(xz:8)->T : Type

dependent function formation

''\{z},z:S+t:T

dependent function intro
I't((z:8S):T+->t) : (x: S)->T

'cf:(x:8)->T TI'tks:S

dependent function elim
't f(s): T[x :=s]

The notation T[z := s] is used for the result of substituting s for every free
occurrence of z in T

Some examples

polyIld : (T:Type) -> (T -> T)
== (T:Type) : T->T
+-> (x:T) : T +—> x;

idIntArrowInt : (Integer -> Integer) -> (Integer -> Integer)
== polyIld (Integer->Integer);

Discussion

e Note that now there can be bound variables in types! Substitution in types
is needed: T'[z := s] denotes T with all free occurrences of x replaced by
s.

e We can now build parametric polymorphic functions as in system F, and
similar to those in modern functional programming languages like ML or
Haskell, but with explicit polymorphism, i.e. polymorphic functions get
explicit type parameters.

e The core of the Aldor type system, containing only Type : Type and the
rules for functions above can be described as the Pure Type System (PTS)
[Bar93], namely the PTS with the specification

S = {Type}, A = {Type : Type}, R = {(Type, Type)}

(except that in Aldor we do not have (-equality for types — more on
that in Section 15). Note that any PTS can be mapped into the PTS
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above, so that this PTS is as expressive as any other PTS, including for
instance the Calculus of Constructions [CH88] or the Extended Calculus
of Constructions [Luo89].

e The Aldor compiler has problems with dependent types as first-class citi-
zens, and crashes if we pass these as arguments to functions. This seems
to be a bug.

6.3 N-ary functions

Aldor allows n-ary functions, i.e. functions that get more than one argument
at once. Such functions can also have dependent types. Here the notion of
type tuple is used: n-ary functions have types of the form T ->T', where

is a type tuple. This means these types are of the form (Si,...,S,)->T or
(1 : S1y...,2y : Sp)->T. We only consider the latter form, and treat the
former as a special case.

Raw Syntax
t,T € Term == .
| (1 : T, ... 2y : T,,) : T+->t n-ary abstraction
| t(t1, ... tn) n-ary application
| T1->T n-ary (dependent) function type
Typing Rules
Let § = (z1: S1,-.-,@n = Sp), and in the rules and subsequent discussion we

assume that all the x; are distinct.

FI—?:Tuple Type
F\{azl,...,mn},?l—T:Type

Fl—?—>T:Type
F\{ml,...,wn},?l—t:T
I+3S :T+>t: 5->T

n-ary function type formation

n-ary function intro

Tk f:8->T
't s;:Si[zy :=s1,...,2i-1 :=s;_1] forall 1 <i<n

n-ary function elim
' f(sty. oy 8n) : T[x1 := S1,...,%n 1= Sp]

Some examples

polyCompose (S:Type, T:Type, U:Type, £:T->U, g:S->T)
S->U
== (x:8) : U +-> (f (g x));

quadruple : Integer -> Integer
== polyCompose (Integer,Integer,Integer,double,double) ;
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Discussion

6.4

The context I' \ {z1,...,2,}, T contains a type tuple T. The meaning
is the obvious one, namely the context I'\ {z1,...,2,} extended with all
the declarations in S.

If we identify the type tuple (S) with the type S, we get the rules for
unary functions as a special case of these rules.

Although in practice n-ary functions are very useful, they do not funda-
mentally increase the power of the type system. We could have omitted
them in the formal description here, and treat them as syntactic sugar.

In fact, an n-ary function type (z1 : Si,...,%, : Sp)->T could almost be
treated as syntactic sugar for Cross(zy : S1,...,x, : Sp)->T. However,
in the former type T can depend on the z;, in the latter it cannot.

Is the (s1,...,8,) in the elimination rule “a multiple value”? Yes, this
seems to be the case, as we can pass a cross product to a function as
argument. See cross products (Section 10).

There are also hybrid forms of keyword argument and normal arguments.
We ignore these.

The Aldor compiler allows the same variable name to occur more than
once in the domain of an n-ary function type. E.g. it accepts

tt : Type == (x:Integer,x:Boolean) -> Integer

We see no substantial need for this and so our formalisation does not allow
this.

We could introduce some syntax for auxiliary judgements of the form
I'-7%: ? to simplify the typing rules, e.g. to
r-f:2:8>T I+%:38
I'-f%:T7 :=7]

function elim

However, to avoid possible confusion about the status of type tuples ?
and term tuples ¥ here we do not do this.

Keyword arguments

For applications of functions with types of the form (z1 : Si,..., 2, : Sp)=>T
the so-called keyword argument style can be used. Such an application is of the
form f(zj,==sj,,...,2z;,==s;,). Here the parameters do not have be given in
any particular order, but the labels tell which is which.

Raw Syntax

t,T € Term =

= t(xy==t,...,x,==t,) application with keyword argument
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Typing Rules

't fi(xy:S1,...,2n: Sp)->T
I'ts;: Si[wy == s1,...,2-1 := s;_1] for all 4

keyword argument
't f(z1==51,...,2,==8y) : T[T1 :=$1,...,Tpn := Sy

Keyword arguments play an import role later in the description of records and
unions.

7 Domains
There are two kinds of domains, packages and abstract datatypes (ADT’s).
e Packages are of the form
add{z; : T1==t1;...; 2y, : T,==t,}

So a package consists of a collection of definitions. By default, the names
defined in a package are called its exports; it is possible explicitly to control
the exports of a package.

e ADT’s are of the form
add{Rep==>T;x1 : T1==t1;...; 2y : Tp==t,}
so every ADT provides a distinguished type Rep as export.
The types of domains — called categories — are of the form
with{zy : Th;...; 2, : Tn}

and are expressions of type Category.

The types 7T; in domains are optional and can be left out. This causes
some complications, as components of the form x == t and of the form x:T
== t are treated differently*. These differences start playing a role when there
are dependencies between the components of a domain. For this we make a
distinction between

e (simple) packages, where none of the ¢; or T; depends on an z;,
e dependent packages, where some of the ¢; or T; do depend on other z;’s,
and a further distinction for dependent packages between

e type-dependent packages, where some t; : T; depend on the type of other
ZL”]"S,

e definition-dependent packages, where some t; : T; depend on the definition
and on the type of other z;’s.

Below we start with the simplest form of package and then introduce further
complexities in stages.

4namely, they are treated differently with regard to equality; see Section 14.
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7.1 Packages
7.1.1 Simple packages, no dependencies

The simplest form of domain is a package. This is essentially just a record.

Raw Syntax
t,T € Term == ...
| add{x; : Ty==ty;...;2, : T,==t,} package
| z;8z projection from package
| with{zy : Th;...; 2y : T} category (type of a package)

Typing Rules

I'-T; : Type all pairs x; : T; distinct in I

category form
I'+with{z, : Th;...;2, : T} : Category

I'+t;:T; all pairs x; : T; distinct in I’
't add{zy : Th==tp;...;zn : Tp==t,} :with{zy : Th;...; 2, : Tp}

package intro

'z :with{z; : T1;...;2, : Ty}
I'tz;8z:T;

package elim

Some examples
c : Category

== with {zero:Integer; one:Integer};

p : with {zero:Integer; one:Integer}
== add {zero:Integer==0, one:Integer==1};

project : Integer == zero$p + one$p ;

Discussion
e Variables can be overloaded in a package, provided — as usual — they have
distinct types. Hence the premiss “all pairs x; : T; distinct in I above.

This restriction does not seem to apply to category expressions; for exam-
ple the Aldor compiler accepts

ttt : Category == with {zero : Integer; zero : Integer}

However, it seems better not to allow this.

e In the elimination rule, the package we project from has be a variable —
i.e. a package name- it cannot be an add-expression. (Note that this is
already enforced by the grammar for terms.)

e Aldor accepts domains and categories written with “” instead of “;”,
e.g. of the form add{z, : Ty==ty,...,z, : T,==t,}. However, the typing
behaves weirdly, and it is not clear what the intended meaning of such
domains and categories might be.
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e Note that packages are essentially records. (However, when we take the im-
perative features of Aldor into account then there are differences between
packages and records. For records the fields can be updated imperatively,
for packages not.)

e There is subtyping on categories, which will be discussed in Section 15.

e There is more syntax for domains and categories, which we ignore. For
instance, there are domain-extensions of the form

d add{xy : Th\==t1;...; 2y : Tp==tn}

where d is the name of a domain. According to the Aldor User Guide such
domains can be regarded as shorthand for the domain that includes both
the definitions contained in d and the z;.

Similarly, we ignore category extensions of the form
cwith{z, : Th;...;2n : T}
and category joins of the form
join(cy,...,cpn)
which can also be regarded as syntactic sugar.

7.1.2 The import statement

The import-statement provides an alternative to the explicit projections of the
form z;$p. By import-ing a domain p into the context, we can refer to its
components as x; instead of z;$p (provided this does not introduce ambiguities).

Raw Syntax

I' € Context = .
| I'; import from d domain import

Typing Rules

I'd:with{...}
I';import from dF ok

F"diwith{...l‘i:Ti...} (l‘lTl)QF
x; not import-ed from another package in I"; I’

I';import from d;I"F x; : T;

import

Example

p : with {zero:Integer; one:Integer}
== add {zero:Integer==0, one:Integer==1};

import from p;

project’ : Integer == zero + one ;
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e If the contexts imports two or more packages that have x as an export,
then the resulting x is overloaded and any use of the symbol x will be
disambiguated by type. If any two of the definitions have the same type
then we have to use explicit projections of the form x$p to tell which one
we mean.

7.1.3 Simple dependent packages

The rule for package introduction given earlier does not allow for dependencies
between the different components. The slightly more complicated introduction
rule below allows the ¢; to refer to earlier x;:

iz 2Ty 2 T Ht T
I't add{zy : Ti==t1;...;2y : Tp==t,} s with{zy : T1;...;2n : Tn}

package intro

Using this rule it is possible to make packages where some components are
defined in terms of other components. For example,

dp : with{x:Integer; y:Integer}
== add {x:Integer == 5; y:Integer == x};

Note that we only have a weak form of dependency here:

e To check that y:Integer == x is well-typed, only the type of x — i.e.
Integer has to be visible. The definition of x —i.e. 5 — is not needed.

e Also, no dependency shows up between the types of the fields of the pack-
age, i.e. in with{x : Integer;y : Integer}.

e The typing rule does not allow mutual dependencies, but Aldor actually
does allow this.

This form of (weak) dependency is found in a number of existing languages,
such as SML; what are usually termed ‘dependent types’ are discussed in the
next subsection.

7.1.4 Dependent Packages and Dependent Categories
An example of a truly dependent package is
add{X:Type == Integer; x:X == 5}

Note that here we have a stronger form of dependency than in the earlier ex-
ample above:

e To check that x:X == 5 is well-typed the definition of X — Integer — is
needed. Just knowing the type of X — Type — is not enough.

e The dependency shows up between the types of the fields of the package,
which would be with{X : Type;x : X}.

However, there are three “anomalies” with such dependent packages in Aldor:

e The Aldor compiler does not accept the dependent package above. We
have to write it as follows instead
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add{X == Integer; x:X == 5}

So the two ways of writing fields - X == t and X : T == t — are not
equivalent; we have to use the former for the definition of X to be “visible”.
(The presence or not of the modifier define appears to have no effect in
this context.)

The dependent package works fine now. For example:
d == add{X == Integer; x:X == 5};

projX : Type == X$d;
projx : X$d == x$d

import from d;
projX2 : Type == X;
projx2 : X == x;

There is a further problem when it comes to typing dependent packages:
The Aldor compiler does not accept

with{X: Type;x: X}
as the type of
add{X == Integer;x: X == 5}

(even though it does accept with{ X:Type; x:X } as well-formed cat-
egory). To type the dependent package above, the definition of X in its
type has to be expanded

add{X == Integer; x:X == 5} : with{x:Integer == 5}

But now the X-field of the domain will not be visible as an export.

The types for add{X == Integer; x:X == 5} discussed so far represent
two extremes of generality; it might be supposed that there is an interme-
diate candidate, but none of the following types is accepted by the Aldor
compiler as a valid type for add{X == Integer; x:X == 5}:

with{X:Type == Integer; x:X}
with{X:Type == Integer; x:Integer}
with{X == Integer; x:X}

with{X == Integer; x:Integer}

The typing of dependent packages as discussed in the previous point has
some undesirable consequences. As soon as we give an explicit type to a

dependent package, some of the fields (namely the ones that other fields
depend on) are no longer visible as exports.

For example, if we define
d == add{X == Integer; x:X == b}
then we can access both d$X and d$x, but if we define

d’ == add{X == Integer; x:X == b} : with{x:Integer == 5}
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then we can not access the X-field of the domain d’. So in the definition
of 4’ above X == Integer is essentially just a (local) macro.

The problem with the invisibility of certain fields only occurs as soon an explicit
type is given to a dependent domain. This happens in the definition of d’ above,
but not in the definition of d. However, it also happens as soon a dependent
package such as d is passed as a argument to a function: such a function will
have to declare a parameter of type with{x : Integer} (we cannot pass d to
a function expecting a parameter of type with{X : Type;x : X}) ) and in the
function we do not have access to any X-field.

All this means that dependent domains are not really usable as first-class
citizens; we could reinterpret this to say that Aldor does not have first-class
modules. Still, if we want to treat libraries as dependent packages this is not a
problem.

Raw Syntax
t,T € Term == ...
| add{D;;...; D,} dependent package
D = z==t|z:T==
Typing Rules
for all D; of the form x;==t; : I';Dy,...,D;_1 Ft;: T for some T

for all Dz of the form T : Ti==ti : F, Dl, N Di—l H tl : Tz
All z; : T; distinct in the context I

I+ add{Dl, . ,Dn} : With{l‘i : Ti* | D, =ux;: Ti==ti}

where T} is short for T;[z;—1 = t;_1] ... [z1 = t1]

I'z:with{...;z; : T;==t;;...}
I'tz;8z:T;

dependent package elim

'vtd:with{...z;:T;...} (z:T;)¢T
x; not import-ed from another package in I'; I

I';import from d;I"F z; : T;

dependent import

dependent
package
intro

The requirement in the first rule that all z; : T; distinct in the context I" is to
ensure unique typing of each x; in the context I'. Formally we have to ensure
that T # T for any pair z; : T;(==t;) and =z; : Tj(==t;) where z; and z; are
the same name.

Discussion

e The elimination and import rule above are identical to those given earlier,
for non-dependent packages. Here the fact that any dependencies get
“expanded away” in the introduction rule is an advantage. If one were to
allow the typing

d : with{X:Type; x:X} == add{X == Integer; x:X == 5}
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then projecting the x-field of d would require a substitution (as in the
elimination rules given below) as x$d:X$d and not x$d:X>.

e The Aldor compiler has problems with dependent packages and crashes
when these become complicated. This seems to be a bug.

As long as we don’t give an explicit type to a dependent domain its x;==t;

fields as well as its x;

: Ty==t; fields are accessible:

F;D"ti:Ti

I';z==add{D;x;==t;; D'}, I"" + z;$z : T}

dependent package elim1

where T7* is short for T;[z;—1 := z;_182] ... [z1 := 21 82].

I;z==add{D;x; : Ty==t;; D'}, " z;$x : T}

dependent package elim2

Some examples

First, a dependent package without explicit type

dependentPackage == add { X ==

projX
projx
projx2 :

projfl :
projf2 :

X
f

: Type ==

: X$dependentPackage ==

Integer ==

X$dependentPackage ->
Integer —>

import from dependentPackage;

importX
importx

importx2 :

importfl :
importf2 :

: Type == X;
: X == X ;
Integer == x ;
X >X

Integer -> Integer

Integer ;

: X ==
: X -

b

> X == (n:X):X +-> (n+1) };

X$dependentPackage ;
x$dependentPackage ;
x$dependentPackage ;

X$dependentPackage == f$dependentPackage ;
Integer == f$dependentPackage ;

f$dependentPackage ;
f$dependentPackage ;

Note that X$dependentPackage or X and Integer are really treated as equal.
Now, a dependent package for which we give an explicit type

typedDependentPackage :

projz

== add{Z

z :

with{z:Integer}

Integer ;
7 == 0};

: Integer == z$typedDependentPackage;

import from typedDependentPackage;

importz :

Integer == z

5Similarly, the notion of subtyping would become more complicated.
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The Aldor compiler rejects any use of Z$typedDependentPackage or Z here.
So the definition Z == Integer is effectively nothing but a macro local to the
body of the package, which get expanded away as soon as we leave this scope.

7.1.5 Dependent Categories

Aldor allows the formation of dependent categories :

I'izy Ty .21 T H T : Type
I'+with{z, : Th;...;2, : Ty} : Category

dependent category form

For instance, this rule allows the formation of
with{x:Type; y:x}

But Aldor does not allow such dependent categories to be used as types of the
dependent domains discussed in the previous section! So, it seems that there is
little point in allowing dependent categories.

7.2 Abstract Data Types

Abstract data types are like packages, but they contain a definition of a type
Rep, which gives the representation type for the abstract type introduced by the
ADT.

Raw Syntax
t,T € Term == ...
| add{Rep==>T; x; : T1==t1;...; ¢y : T,==t,} an ADT
| 2$d projection from ADT
| % | Rep special type variables
| rep | per special term variables
| with{zy : T;...; 2y : T} category (type of ADT)

The special type variable % is used to refer to the abstract type introduced by
an ADT, and Rep is used to refer to the concrete representation. The special
term variables per and rep are used to refer to the functions that map concrete
values to abstract values and vice versa.

Note that the only way of telling that a category with{zy : T1;...;2n : Tn}
is the type of an ADT as opposed to the type of a package is that the special
type variable % is used in the Tj. 6

6This is unfortunate — for example in the elimination rules below it is not explicit that
these apply to abstract data types and not to packages; it is therefore possible that it intro-
duces inaccuracies into our formalisation. It might well be better to introduce some syntactic
distinction between them, writing withspr{...} for an implementation of an abstract data
type.
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Typing Rules

In the rules which follow X is used to range over names of abstract data types
and not arbitrary expressions denoting ADTs.

I';% : Type - T; : Type

ADT-category-form
I'+with{z, : Ty;...;2, : T, } : Category

I'+-T:Type [I';Rep==T,% :Type,per:T->%,rep: %->TF t;:T;
I' + add{Rep==>T;x; : T;==t;} : with{z, : Th;...;2y : Ty}

ADT intro

'k X twith{zy : T1;...;20 : Tn}
I'; import from X;I"+ X : Type

ADT eliml - ADT is a type

' X swith{zy : T1;...;2, : Ty}
I';import from X;I"+ ;88X : T;[% = X]

ADT elim?2

I'+ X :with{zy : T;...;zn : T} 2; not import-ed from another package in I'; I

I';import from X; I+ z; : Ty[% := X]

ADT elim3

Some examples
adtType : Category
==with { x : % } ;

adt : adtType
== add { Rep ==> Integer ; x : % == per 0 } ;

projx : adt == dep$adt

import from adt;
importx : adt ==

Discussion

e The stipulation that X has to be a name refers back to the discussion in
Section 3.

e Note that all the elimination rules insist that an adt X is explicitly im-
ported, even the one for explicit projection of the from z;$X; This is done
because X is needed in the type, i.e. in T;[% := X].

e There are three names for types that play a role inside an adt (and not
two, as you'd expect), namely

— %, the abstract type
— the concrete type, or representation type, e.g. Integer

— Rep, another name for the concrete type

Rep==>T is both a (local) macro , defining Rep as abbreviation for T, and
declares the T" as the concrete representation type.
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e We can have untyped instead of typed definitions in ADT’s. This does
not make any difference.

e We could consider more complicated form of ADT’s, with more depen-
dencies than just on %.

8 Categories and category tuples

8.1 Category
Category is the type of all categories, just like Type is the type of all types.

Raw Syntax

t,T € Term == ...
| Category the type of all categories

Typing Rules

Category form
I' - Category : Type

Category is in fact a subtype of Type— more on that in Section 15.

8.2 Category Tuples

Just like we can make type tuples of the form (z : Ty,...,z, : T,,) we can make
category tuples of the form (z : Ty,...,z, : T,). We do not include these in the
formalisation however, as it is not clear if these can be used for anything”.

9 Tuples

Tuples in Aldor are homogeneous products of arbitrary length. (So one can
think of them as lists.) For example

tt : Tuple Integer == (1,2,3) ;

ttl : Tuple Integer == (1,2,3,4,5) ;

tt2 : Integer == element(tt,2) ;

Raw Syntax

t,T € Term ==

|(t1,..., t,) n-tuple
| Tuple T tuple type
| length
| element

7One place where they are used is for the “joins” of categories mentioned earlier, but these
are excluded from the formal description.
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Typing Rules

I'+T : Type

tuple formation
I't- Tuple T : Type

'tt;:T
't (t1,...,t,) : Tuple T

tuple intro

'+ Tuple T : Type

tuple elim1
I' - length : Tuple T->SinglelInteger

'+ Tuple T : Type
tuple elim2

I'+ element : (Tuple T, SingleInteger)->T

e Note that length and element above are heavily overloaded functions.
Because these functions exists for all possible tuple types, they are very
similar to implicitly parametric polymorphic functions as in Haskell or
ML.

e Aldor considers Tuple Type as just another instance of this general Tuple-
construction.

As far as simple type tuples of the form (77,...,T},) : Tuple Type are
concerned this is not a problem: the introduction rule for these simple
type tuples is just an instance of the general introduction rule above.

However, for type tuples of the form (z; : T1,..., 2, : T,) this is dubious.
Aldor allows (z : T) : Type so that type tuples (z1 : T1,..., 2, : Ty) can
still be regarded as instances as tuples of the form (t1,...,¢,). However,
the rule for dependent type tuples has to be more complicated than the one
above to allow for dependencies. Also, there are problems with allowing
type tuples as first-class citizens, as already discussed in Section 5.

10 Cross Products

Cross products in Aldor are heterogeneous products of a fixed arity. For example

pp : Cross (Integer,Boolean) == (4,true);
Raw Syntax
t, T € Term == ...
(t1,-.-,tn) cross product

|
| Cross(Th,...,T,) cross product type

There seems to be no way to refer to the components of a cross product. There is
no syntax such ¢.i for the i-th component of a cross product ¢. This causes some
problems and appears to add to the case for rationalising the various different
sorts of ‘products’ and ‘tuples’ that the language contains.
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Typing Rules

'+ (Dy,...,D,) : Tuple Type
I'+Cross(Dy,...,D,) : Type

cross form

Fl—tj :Tj
't (t1,...,tn) : Cross(Ty,...,Ty)

non-dependent cross intro

Ik tj 2Tj[$1 = tl,...,ﬂjj_l = t]'_l]
't (t1,...,tn) : Cross(zy : Th,...,xn : Ty)

dependent cross intro

There are not really any elimination rules for cross products. The two ways to
get at at the individual components of a cross product are described below®.

1. An n-ary cross product of type Cross(Si,...,S,) as an argument to an
n-ary function of type (Si,...,S,)->...

'k f:(S,...,8,)>T TIFs:Cross(Si,...,S)
't f(s): T

n-ary function elim

Note that the function f here is not a dependent function! Because we
cannot refer to the components of the cross product s it is not clear how
a typing rule could be given for a dependently typed function f. If s is of
the form (s, ..., sy,) this is not a problem, but if s is a variable, the result
of a function application, etc, it is.

2. An n-ary cross product ¢ can be taken apart into its components by a
‘multiple definition’ of the form

(T1,...,2p)==
This means the syntax for context has to be extended:

I' € Context ::=
| I'; (21, . ..,2n)==mv multiple value definition

The rules for these definitions are given below.

I'tok T'kt:Cross(Th,...,Ty) (x; :T3) € T
I (xy,...,2,)==t F ok
I'tt:Cross(Th,...,Ty)
Ty (2., xn)==t; " - z; . T}

typed definition ok

8Both actually rely on the courtesy conversion of a cross product to a multiple value. But,
as we have excluded multiple values for our description of Aldor, we ignore this.
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Discussion

e The Aldor compiler allows dependent cross product types, e.g.

11

X : Type == Cross(X:Type,x:X)

but it is not clear if/how we can write dependent cross products, i.e.
inhabitants of such a type. For this reason we have excluded dependent
cross product types from the formal description.

The Aldor compiler in fact treats Cross as a function of type
Cross : Tuple Type -> Type

In the formalisation we choose not to do so, for two reasons. First, there
are problems with treating type tuples as first-class citizens, already dis-
cussed in Section 5.2. Second, our formalisation only allows cross product
types of the form Cross(T4,...,T,), and excludes dependent cross prod-
uct types of the form Cross(zy : Th,. .., %, : Ty), as mentioned above.

Records

Records in Aldor work pretty much as one would expect, except that they may
be dependent.

RecordType : Type == Record(i:Integer, j:Boolean)

rr

: Record(i:Integer, j:Boolean)
== [i==4,j==true];

Raw Syntax
t,T € Term == ...
| Record(Ty,...,T,) record type
| bracket | record  record introduction
| apply field access
| explode record elimination
record and bracket are synonyms. bracket(ti,...,t,) can be written as
Ct1,...,tn]. apply(t, x;) can be written as t.x;.
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Typing Rules

't (z :Th,...,z,:T,) : Tuple Type
record form

I' + Record(zy : T, ..., xn : T)) : Type

I'F RecordT : Type

record introl
I+ bracket : T—>Record?

I' F RecordT : Type

record intro2
'+ record: ?—>Record?

I'F RecordT : Type

record eliml
I' - explode : RecordT ->T

't r:Record(zy : Th,...,2n : Tp)
record elim2

I't apply(r,z;) : Ti[z; :=r.xq, ..., Ti—1 = rTy_1]

e Here type tuples are useful!l E.g. note that the formation rule above
allows for dependent records. The introduction rules rely on the keyword
argument style for function application.

e Note that record, bracket, explode, and apply are heavily overloaded
functions. Maybe it would be better not to do so in the formalisation?

e Using an enumeration type 'z;’, apply can be regarded as a function

I'+Record(zy : Th,...,zn : Ty) : Type

't apply : (Record(xy : Ty, ..., xpn : Ty), x;")->T;

and apply(r, z;) can then be seen as a normal application, as explained in
the Aldor User Guide (pages 146-147). However, this is only correct for
non-dependent records; For dependent records a substitution is needed in
the result type T;.

e There are two more operations on records: set! and dispose (see pages
146-147 of the Aldor User Guide). We don’t consider these as they are
imperative operations. (What is interesting about these operations is that
they show that records are not values, but rather references to values.)

e The Aldor compiler rejects untyped definitions of records
t == record(i==4,j==5);
but will accept a definition of the form
t == record(i:Integer==4,j:Integer==5);
e Some or all the z; in a type Record(z; : T4, ..., 2z, : T),) can be omitted. In

that case the corresponding apply’s are missing. So degenerated records
such as Record(Ty,T») are allowed in Aldor. Because all the apply’s are
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missing, this is effectively the same as Cross(T},75)?. Still, if T} and T
are equal, then Aldor rejects Record(Ty,T5).

e Again, the Aldor compiler treats Record as a function of type Tuple Type->Type.
In the formalisation we choose not to do this, for the same reasons as for
Cross and Enumeration.

12 Unions

Union types provide disjoint union, also known as variants. For example,

Int0rBool : Type = Union (left:Boolean, right:Integer);

leftBool : Union (left:Boolean, right:Integer) == [left==truel;
rightInt : Union (left:Boolean, right:Integer) == [right==5];
Raw Syntax
t, T € Term == ...
| UnionT union type
| bracket | union union introduction
| case union test
| apply union elimination
union and bracket are synonyms. bracket(ty, ..., t,) can be written as [t1,...,t,].

apply(t, z;) can be written as t.x;.

Typing Rules

I' - T; : Tuple Type
union form

I' - Union(xy : Th,...,x, : Tp) : Type

I't Union(z; : T4, ...,x, : T3,) : Type

union introl
I' - bracket : (z; : Ti)—>Union?

I' - Union(xy : Th,...,x, : Tp) : Type
I' - union: (z; : Ti)—>UnionT

union intro2

I't Union(z; : T4,...,2, : T3,) : Type
union elim1

I'F case: (Union?, 'z;')->Boolean

I' - Union(xy : Th,...,2, : Tp) : Type

union elim2
I't apply: (UnionT\, 'z;,")->T;

e Note that record, bracket, apply, and case are heavily overloaded func-
tions. Especially the first three, as these are also used for records. (And
again, maybe it would be better not to do so in the formalisation?)

9at least, as far as the functional sublanguage of Aldor is concerned; if imperative operations
are taken into account, there are differences, as the components of a record can be imperatively
updated.
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e The rules for union types are not type-safe. The culprit is the elimination
of union types (as usual). For example, if we define

x : Union (left:Boolean, right:Integer) == union(right==5);
there is nothing preventing us from considering x as a left-injection, as in
unsafeProjection : Boolean == apply(x,left)

So it’s left up to the user to check — using the function case — that the
correct component is extracted from a variant.

e There are two more operations on unions: set! and dispose (see p.
147/148 of the Aldor User Guide). We don’t consider these as these are
really only interesting in imperative setting. What is interesting about
these operations is that they show that records are not values, but rather
references to values.

13 Enumeration

Enumeration types in Aldor consist of a fixed collection of symbolic values. For
example

Colour : Type == ’red,green,blue’;
x: Colour == red;
Raw Syntax
t,T € Term == ..
| "2y, .. 2y
| Enumeration’

Typing Rules

enumeration form

I'F'zy,...,2," : Type

p enumeration intro

'z, ... 2,
e Aldor in fact regards 'z, ..., x," as shorthand for
Enumeration(z; : Type,...,Z, : Type)

Here Enumeration takes an arbitrary type tuple as argument, i.e.
Enumeration : Tuple Type -> Type

We choose not to do this in the formalisation. In addition to the prob-
lems with treating type tuples as first-class citizens, already discussed in
Section 5.2, it is not clear what the meaning would be of Enumeration
applied to a type tuple that is not of the form (z1 : Type,...,z, : Type).
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e The Aldor compiler behaves strangely if we have overlapping enumeration
types. This seems to be a bug. It would be better to disallow any overlap
between enumeration types.

e How do clashes between enumerations and variables work? Eg. what if
one of the z; is also used as a variable?

e A difficulty with enumeration types is that in a “typeless” definition of
the form z==x; it may not be clear hard to tell that z; is an element on an
enumeration type, and which enumeration type. The import statement is
used to declare enumeration types.

Timport from 'my,...,z; " ok
untyped definition ok

I';import from 'zy,...,z';I";z==x; F ok

n’ 7

The formalisation of the type system is surprisingly tricky here.

14 Equality

The type expressions in Aldor are complicated enough for equality of types to
be non-trivial. There are different places where the notion of equality between
types plays a role, and we can distinguish different notions of equalities between
types. These are discussed below.

Notions of Equality
Different sources of equalities between types are

o a-equality.
There are bound variables in types, so there is a notion of a-equality of
types, i.e. equality up to renaming of bound variables. For example, types
(n:Integer)->Vector(n)->Integer and (m: Integer)->Vector (m)->Integer
can be regarded as equal.

Related to a-equality is the case of vacuous dependency: one would expect
that the types S -> T and (x:S) -> T would be equal in the case that x
is not free in the result type T.

o §-equality.
We can define names for types, so there is a notion of d-equality, i.e.
equality up to (un)folding of definitions. For example, if we define XX
: Type == Integer then the types XX and Integer can be regarded as
equal.

o [(3-equality.
Because types can contain lambda abstractions and applications in types
there can be (-redices in type expressions. For example, the type Integer
and the type ((X:Type) : Type+->X) (Integer) — the identity function on
types applied to the type Integer — can be regarded as equal.

In the same way one can consider n-equality as well as S-equality.
e Finally, because there are dependent types, types can have arbitrary terms
as subexpressions. So any notion of equality for such sub-expressions

induces a notion of equality on types. For example, because 3+4 and 7 are
equal the types Vector (3+4) and Vector (7) can be regarded as equal.
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It should be clear that a notion of equality that includes the equalities discussed
under the last point above will quickly become undecidable. For instance, de-
pendent types can contain diverging sub-expressions. In fact, just incorporating
B-equality would be enough to make equality undecidable. The general problem
with the last two notions of equality above is that type checking, which is done
at compile time, becomes entangled with evaluation, e.g. of 3+4 to 7, which by
definition is done at run time. This is a well-known problem with dependent
types, discussed for instance in [MR86].

Uses of Equality
There are several places where the type system depends on the notion of equality

for types :

(i) Any inference rule where the same type occurs more than once in the
premisses relies implicitly on a notion of equality. The most obvious place
where this occurs is in the application rule

I'r-f:8>T TItks:S
't f(s):T

function elim

Here the type S of the argument s has to be equal to the domain of f.

(ii) Less obvious than in the typing rule above, any inference rule where a
type is required to of a particular form in one of the premisses also relies
on a notion of equality, For example, in

I'+T : Type
I' - Tuple T : Type

type of T is required to be equal to Type. And, in the application rule
again, the type of f is required to be equal to something of the form S->T'.

(iii) Finally, overloading depends on equality — or rather, inequality — of types.
Eg. the rule
I'tok T'kt:T —~(IFzx:T)
Iyx==t: T ¢ ok

requires that I" does not contain any definition or declaration of an x of
type T, nor of a type equal to T.

Ideally, in the formal description we would want to deal with equality by in-
cluding a conversion rule of the form

r't:T (T,T')€R
r+t:T

conversion

where R is the equality relation on types. Intuitively, this rule states that we are
only interested in the typing relation up to the notion of equality R on types.
10

Unfortunately, this is not how equality is dealt with by the Aldor compiler.
It turns out that the compiler uses several notions of equality, and uses different
notion of equality in different places. An accurate description of Aldor can
therefore not be given by including a single conversion rule as discussed above;

10Note that once d-equality is included, the notion of equality R will depend on the context
I', so we should really write (T, 7') € Rp or I' - (T,T") € R.
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Instead equality would have to be build into any typing rule that relies on
equality, e.g.
'f:8>T TItks:S (S5,8)€eR
I'f(s):T
where R is the notion of equality used in this particular case.

We will not attempt to give an accurate description of equality in Aldor in
this way: it would be very hard to do and not be very useful, since this is an
aspect of the Aldor type system that we want to change anyway. Instead, we
will make an inventory of the different notions of equality used in Aldor and
give a rough indication of which notion of equality is used where.

Of the notions of equality listed earlier, the Aldor compiler only ever uses a-
and J-equality with some restrictions. In light of the difficulties that arise with
the other notions of equality this is not surprising.

14.1 «a-equality

Nearly everywhere the Aldor compiler treats a-equal types as being equal. So,
in the formal description we could consider including

t =4 t'
'ett)eR

a-conv

There are only two case where the Aldor compiler does not work modulo a-
equality:

e In a definition of a (dependently typed) function of the form
f @ (x:8)->T == (x:8):T +> t

the compiler insists that the same variable name x is used in the body
(x:8) : T+->t of the definition as in the type (x:S)->.

e The Aldor compiler does not always spot a-equality when checking for
ambiguous overloading (as discussed under (iii) above). When the types
involved become complicated the compiler may fail to spot that the same
constant is defined twice for a-equal types, as for example Id in the defi-
nitions below:

Id(X:Type,x:X) : X == x;
I4(Y:Type,y:Y) : Y == y;

It is interesting to note that when it comes to applications (as discussed
under (i) above) then Aldor has no problems in spotting that the types
(X:Type,x:X)->X and (Y:Type,y:Y)->Y are equal. So different algo-
rithms for deciding equality for types are used when in comes to (i) and

(ii).

14.2 JH-equality

Aldor treats typed definitions (of the form x:T==t) and untyped definitions (of
the form x==t differently when it comes to definitional equality. It seems that
we do not have §-equality for the former but that we do have §-equality for the
latter, albeit in a limited form. This explains to some extent why typed and
untyped definitions are treated differently in packages, as discussed in Section 7.
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14.2.1 Definitions of the form x : T ==

The Aldor compiler does not use d-equality for these definitions. So we do not

have
I'; X :Type==T;T""Ft: X

I'')X :Type==T;I'"+t:T

6 unfold

nor vice versa.

The only exception seems to be definitions of categories. Here the Aldor
compiler does use d-equality. This seems to contradict the Aldor User Guide,
where on page 113/114 it is said that the define keyword has to be included,
so that we have a definition of the form define x : T == t, in order for to
have d-conversion for definitions of categories. We have

I';x: Category==d;I" +t:zx
I';z: Category==d; "' +t:d

d category unfold

but we do not have the reverse, i.e.

I';z : Category==d; "' -t :d

& category fold
I';z:Category==d;I" Ft:2

So the notion of equality that Aldor uses is not always symmetric!
All this suggests that as far as definitions of the form x : T == t are con-
cerned, we only have

(z : Category==d) € I
TF(z,dcR

0 category unfold

14.2.2 Definitions of the form x ==

It seems that in most cases the Aldor compiler works modulo d-equality as far
as these definitions are concerned. So

(x==t) e I
I'k(z,t) €R
(x==t) e I
't (tz) eR

0 untyped unfold

0 untyped fold

The exception is that Aldor seems to ignore these equalities when it comes to
spotting ambiguous overloading. For example, the Aldor compiler accepts the
following definitions

XX == Integer;
five : Integer == 5;
five : XX == 6;

and does not complain that this overloading of five is ambiguous. (Here again,
Aldor is better as spotting equality when it comes to (i) and (iii); when it comes
to applications the compiler treats XX and Integer as equal.)
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15 Subtyping, Courtesy Conversions, Satisfac-
tion
Subtyping is a relation < on types that comes with a so-called subsumption rule

r-t:T T<T
r+t: 7

subsumption

There are two — quite different! — possible semantics of subsumption:

e apply some coercion function.
Maybe we have to apply some coercion function to convert a term of type
T to type T'. For example, many languages treat the integers as a subtype
of the reals, and here typically a coercion function has to be applied to
convert integers to some floating-point format.

e do nothing.
It may be the case that we don’t have to do anything to a convert a term
t of type T to get a term of type T'. Here one can think of subtyping
between Ring and Monoid.

Note the similarity with the subsumption rule above and the conversion rule
given on page 39. It might be hard to tell the two apart. The intuition behind
them is quite different though, and the semantics of type conversion has to be
“do nothing”.

In nice type systems < subsumes the notion of equality for types R, and
R will even be equal to < N >. (In Aldor this is not true: e.g. there are
courtesy conversions from cross products to multiple values and back, but these
are different types.)

Aldor has 3 notions of “subtyping”, which will be described in the subsections
below, namely

e subtyping , 'FSCT
e courtesy conversions , I' S < opvert T'

e satisfaction , ' S <;0: T

It is not really clear what the differences between these three notions, and in how
far we have to distinguish these notions in the formal description here. They
may have different semantics, but that is not really an issue in the (syntactic)
description of the type system.
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15.1 Courtesy Conversions

We write I' F S < pnyert T for “there is a courtesy conversion from S to 7.
The Aldor User Guide (p. 84) lists the following rules for courtesy conversions:

I'+Cross(T,...,T) <convert Tuple T

I+ CI‘OSS(T) Zconvert T

I'-T <ionvert Tuple T

I'FT <i.onvert Cross T

I'bt:T TFT <convert T
t:T

<conver¢-Subsumption

e As the name suggests, the semantics of < ,pyert-Subsumption involves
coercion functions.

e Aldor does not provide any “congruence” rules to lift < onyert t0 more
complicated type expressions (like it does for C). (Because of this, there is
no need to include a reflexivity rule for <.onyert; The only use of reflexivity
of <convert would be in the subsumption rule, and there it’s obviously not
really needed.)

e In addition to courtesy conversions, Aldor also has “primitive conversions”
and “conversion functions” (see p. 84-85 of the Aldor User Guide).

e There are also courtesy conversions between multiple values and tuples/cross
products

I'=(T,...,T) <convert Tuple T

't (Th,...,T,) <convert Cross(Th,...,T,)

I'+Cross(Ty,...,Ty) <convert (Th,---,Th)

but, as we do not consider multiple values, we ignore these. Observe that
the last two courtesy conversions effectively render cross products and
multiple values equivalent.
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15.2 Subtyping

We write I' S C T for S is a subtype of T in context I'. The Aldor User
Guide (p. 83) lists the following rules for subtyping;:

m>n pi,...,pm permutes 1,...,m

C-width
I'with{zy : Th;.. .52, : T} Cwith{zy, : Tp,5...52p

m - L Dm
reScS T+TCT
F"Sl—>T1;T1—>T2

C-->

I'+t:T T©+FTCT
r+t: T

C-subsumption

Note that in the reordering of the items in a signature according to the
permutation pi,...,py it is assumed that the permuted signature is still
valid; that this is not always the case is a consequence of type dependency.

The semantics of C-subsumption is “do nothing”: as explained in the
Aldor User Guide (p. 83), if T'C T then they share an underlying “base
domain” and their elements have the same representation.

According to the manual, the rules C-width and C-->are bi-implications,
e.g.

Si>ThCTh—>T, = SSCSHATICET,
Of course, if the rules above are the only rules for subtyping then this is
clearly true.

Observe that this is a limited notion of ‘width’ subtyping. It is not possible
to subtype on a particular field — that is to allow z; : T} to replace z; : T;
where T; C T} — in moving from subtype to supertype; this is known as
‘depth’ subtyping. Subtyping on fields of records is also not permitted.
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15.3 Satisfaction

We write I' F S <ot T for S satisfies T in context I'. The Aldor User Guide
(p. 86) lists the following rules for satisfaction:

I'F S : Category
res Ssat Type

I' - Category <4t Type

I'-add{...}:S Sisthe type of a category or a domain
I' S <sat Type

I'-SCT

T A~ Ejgsat
'S <sat T

r-s Sconvert T
I'-S<suT

Sconvert:> Ssat

I'Ft:T TFT <30T
r+t: 7

<sat-subsumption

e Note that satisfaction subsumes the courtesy conversions.
e The User Guide also gives a rule

I'+T :Type

I'ET <sat ()

It is not clear what is the intended meaning of the type () here.

e There are also satisfactions involving Exit:

I'+T : Type

I'FExit <gut T

e The User Guide gives the rule
I'+ Cadd{D}: S
I'F S <54t Category

The judgement ‘I" - Cadd{D} : S’ is intended to formalise ‘S is the type
of a category (in the context I')’, but isn’t Category the only possible
type of a category?

e The User Guide gives the rule
I' Swith{D}:T
I'-T <s4t Type

together with
I' T <54t Category

I'-T <s4t Type
but again, isn’t Category the only possible type of a category?
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16 Omissions

The formalisation of the Aldor type system outlined in this report has deliber-
ately omitted various aspects of the system. As was argued in the introduction,
this is for a variety of reasons, but principally because our aim is to formalise
what is — at least from a type-theoretic point of view — the essence of Aldor.
The remainder of this section surveys aspects which are covered either partially
or not at all.

Aldor is an imperative language, with a functional core, much in the mould
of Standard ML [MTHM97]. We have confined our attention to the functional
subset in this report, but that is an inessential restriction. (Readers might doubt
this because references cause subtle problems for the type system of SML, but
this is due to the interaction of references and parametric polymorphism, which
is absent from Aldor.)

We have not, on the whole, discussed questions about the scope of definitions,
since these are largely orthogonal to type checking and inference. They do
interfere when default argument values are allowed, and also when type checking
(mutually) recursive definitions. However, once scopes are resolved the type
checking issues are relatively straightforward. Scopes are also controlled by
means of import and export statements; we have only covered the fundamentals
of the import mechanism. Post facto extensions also affect scopes of packages;
again these are not covered here.

A related difficulty comes with arguments passed to functions by keyword.
These break the usual property that functions are independent of the names of
their bound variables (the property of a-conversion), and so break the property
that the interface of a function is entirely specified by its type.

For example, we would normally treat the definitions

id(n : Integer) : Integer == n ;
and
id(m : Integer) : Integer == m ;

as defining the same (identity) function over integer. However, with keyword
arguments, the application

id(n == T7)

is a well-formed application of the first definition of id but not of the second.
As was said earlier, in order to apply the function id we need to know not only
the types of the arguments but also their names, and so the latter information
forms part of the interface to the function.

Aldor contains a plethora of notions of ‘product’ or ‘tuple’ types. We have,
in particular, not covered multiple values. As was discussed in the body of the
report, we have also chosen to treat record formation and related operations
as primitives, rather than as applications of functions to type tuples; this is
discussed again in Section 18.

Because of their nature, Aldor macros are independent of the type system.
Observe, however, that the treatment of ADTs does not treat rep and per as
macros but instead uses a scoping mechanism to type check their application.

Much of the description of Aldor in the manual involves defining many dif-
ferent sorts of expression; as was remarked earlier many of these operations are
variants of function application, which is covered in detail in this report.

Categories can be built in a structured way, either by extension using with
or by putting together two signatures with join. A suitable expansion prior to
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type checking means that we do not deal with these forms; on the other hand,
this expansion approach precludes our dealing with variables which range over
categories; rather we assume that definitions can be fully expanded whenever
that proves to be necessary.

In examining dependencies between fields of a package we have not allowed
for mutual dependencies in our rules; this can be accommodated by standard
means. Dependencies between the fields of a Cross product are also allowed by
Aldor; it is by no means clear how these constructions are used.

17 Aldor compiler errors

At various points in the report we have noted what appear to be errors in the
version 1.1.10b of the Aldor compiler; it might be that these have been fixed
in later releases, or that indeed they are ‘features’ rather than errors. We list
them here, giving links back into the body of the report where appropriate.

e The compiler does not always treat ambiguous definitions in the same
way; this was discussed in Section 4, page 14.

e The compiler has problems with dependent types as first-class citizens, as
noted in Section 6.2, page 20.

e The compiler has problems with dependent packages and crashes when
these become complicated; see Section 7.1.4, page 28.

e The compiler behaves strangely if we have overlapping enumeration types;
see Section 13, page 38.

Other aspects of the language implementation are less serious than these, but
certainly contravene the description of the language in the User Guide, [WBD"94].

e The keyword define is supposed to make a definition (of a category)
transparent ([WBD7'94], p113); in fact it appears to have no effect on
the way in which the definition is interpreted. There are also important
differences between the two definition forms x == t and x:T == t which
are not apparent from [WBD"94].

e The compiler can crash when the same name is used for two fields in a
(dependent) record; it is not clear whether this is intended or not, but it
is not, a feature that would be put to heavy use by the average user.

18 Recommendations

In the light of examining the language and its type system we have come to
various conclusions about how its design might be improved. A number of these
suggestions would simplify the language; others would combine features and a
third class suggests extending the language in various natural ways.

Type tuples

One can wonder if Aldor does not go a bit too far in treating everything as
first-class citizens.

For example, Aldor treats Record (and similarly Cross, Enumeration, Union,
etc.) as a first-class citizen, namely as a function of type

Record : Tuple Type->Type
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This requires type tuples to be treated as first-class citizens, so that the can be
passed as arguments to a function such as Record. On the one hand, this very
compact typing of Record is very appealing. But on the other hand it causes
some problems.

The most serious problem is that if type tuples are first-class citizens, then
we can have variables X:Tuple Type, and hence record types Record X of which
the fields cannot be known at compile time.

Another problem is that the typing of Record above is somewhat impre-
cise, as it does not impose any restrictions on the kind of type tuples that
Record can get as an argument. Recall that type tuples can be of the form
(Ty,...,Ty), or of the form (z1 : Th,...,z, : Ty), or any combination of the
two. The typing of Record above leaves open the question whether Record can
for instance be applied to (Integer,Integer), and, if so, what the meaning of
Record(Integer,Integer) might be, as this record type does not contain any
field names.

Because of these problems in the formalisation we have chosen to treat
Record(z : Th, ...,z : Ty) as a primitive term construction, and not the appli-
cation of a function of Record to the type tuple (z : T, ...,z : Tp)-

Similarly, one could wonder if there are not more places where construc-
tions should be regarded as primitives rather than as applications, for instance
record.

Over-generality

The Aldor compiler allows a number of things which do not seem to make sense.
For instance, the compiler does not complain if we give it a package without
definitions or even names for fields,

sillyPackage == add {x:Integer;y:Integer} ;
anotherSillyPackage == add {Integer;Integer} ;

or cross product types with definitions for fields,

sillyCrossProduct : Type
== Cross (Integer,x:Integer==7);

packages written with , instead of ;
sillyPackage == add {x:Integer,y:Integer} ;

and many more. These are all things that could — and should — be detected
already at the parsing stage by the compiler, i.e. before typing is considered.
The fact that it is not maybe because the — very general — notion of type tuple
is used here.

Definition forms

We suggest that there should be one form of definition, namely a transparent
definition. Specifically, given the definition

x : T ==

both the type T and the value t of the name x should be visible within its scope.
Note that normally there are contexts in which it is sensible to reveal only the
type of a name; the presence of dependent types in Aldor makes it necessary to
have access to the value more often than in other languages.

This being said, there is still an opaque definition mechanism, namely the
ADT mechanism, and this can be used when abstraction is wanted.

48



Product and tuple types

Aldor contains various different notions of ‘container’ type: multiple values,
cross products, tuples, lists and records. It should be possible to rationalise
these into a number of different constructions with different purposes.

e Lists — or tuples in Aldor-speak — can be used to form homogeneous finite
collections of values.

e Cross products can be used to form heterogeneous combinations of fixed
size; records provide a named variant of these.

Macros

Macros can be removed from the language. The advantage of such a move would
be to bring all of the language under the type checker; this is not currently the
case because macro expansion takes place before type checking.
Macros are ostensibly used to support the ADT implementation, but we
have shown in Section 7.2 that this can be done without using macros.
Another use suggested by [WBD*94], Section 12.4, is the use of a particular
macro definition like

1i? x ==> (not empty? x and empty? rest x)

over more than one type. This effectively mimics parametric polymorphism
using macros; it can be replaced by a function in which the type of the list is
passed in as an explicit parameter

1i? (T:Type,x:List(T)) : Boolean == (not empty? x and empty? rest x)

and this definition is now susceptible to type checking when it is used.

Dependent types

As we have argued elsewhere, [PT98], the dependent types of Aldor should be
implemented in such a way that type expressions are evaluated, equating, for
instance, vectors of length 2+3 and vectors of length 5. This modification is a
focus of current work at the University of Kent; further details are available at

http://www.cs.ukc.ac.uk/people/staff/sjt/Atypical/

The more general aspect of equality in Aldor is examined next.

Equality

It should be possible to simplify the treatment of equality in Aldor, which
Section 14 shows is currently tricky. We would argue that there should be
a single notion of equality in Aldor, under which values — including types —
are evaluated before being compared for identity of their fully-evaluated (or
‘normal’) forms.

This works, except for the treatment of abstract data types. Consider the
definition

newType : Type = add { ... }

This definition has two purposes: it is definitive in that it defines the value
of newType but it is also generative in generating a new type named newType.
The language Modula-3 adopts a similar approach to types, and there is an
illuminating discussion of the rationale for this, ‘How the types got their identity’,
in Section 8.1 of [Nel91].
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Subtyping

It should be possible to define a single notion of subtyping. If the system
of ‘container’ types is simplified then this should make courtesy conversions
substantially simpler. Once this is achieved, it will be possible to define a single
notion of (width and depth) subtyping as alluded to in Section 15.

Additional features
Some obvious things are missing from Aldor, notably

e mutually abstract datatypes, in which the carrier types of two or more
ADTs are mutually visible, and

e algebraic datatypes as in modern functional languages like SML and Haskell.

Miscellaneous points

Finally there are some miscellaneous points.

Lumping together packages and ADT’s as one big collection of so-called
domains is less than ideal. It would be better to leave out the packages and
take ADTs equivalent to domains; alternatively one could treat packages as
modules, a collection of entities quite separate from ADTs.

As noted in Section 12, the elimination rule for unions is type unsafe in that
it is possible to treat a value of one ‘variant’ as if it belongs to another of a
different type.

It should be possible to clarify the mechanism of keyword arguments and
default values within the type system.

It would align Aldor with other functional languages if function application
were made left associative.

19 Conclusions

The report has covered the essence of the Aldor type system and has shown
that it can be explained by means of a compact set of type inference rules. A
side-effect of the activity has been to point out some difficulties with the design
of the type system, as well as some potential bugs in the implementation.
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