
The Type System of AldorErik Poll and Simon ThompsonJuly 1999Abstra
tThis paper gives a formal des
ription of { at least a part of { the typesystem of Aldor, the extension language of the
omputer algebra systemAXIOM. In the pro
ess of doing this a
ritique of the design of the systememerges.Contents1 Introdu
tion 21.1 Related Work . 32 Introdu
tion to the Aldor type system 43 The formal des
ription of the Aldor type system 83.1 Typing relations . 83.2 The Aldor universe . 83.3 A grammar for a subset of Aldor 94 Contexts 125 Types and Type Tuples 155.1 Type . 155.2 Type Tuples . 156 Fun
tions 176.1 Simple fun
tion types S->T . 176.2 Dependent fun
tion types (x : S)->T 196.3 N-ary fun
tions . 206.4 Keyword arguments . 217 Domains 227.1 Pa
kages . 237.2 Abstra
t Data Types . 298 Categories and
ategory tuples 318.1 Category . 318.2 Category Tuples . 319 Tuples 3110 Cross Produ
ts 3211 Re
ords 341

12 Unions 3613 Enumeration 3714 Equality 3814.1 �-equality . 4014.2 Æ-equality . 4015 Subtyping, Courtesy Conversions, Satisfa
tion 4215.1 Courtesy Conversions . 4315.2 Subtyping . 4415.3 Satisfa
tion . 4516 Omissions 4617 Aldor
ompiler errors 4718 Re
ommendations 4719 Con
lusions 501 Introdu
tionThe
omputer algebra system AXIOM and its pre
ursor S
rat
hpad are unusualamong
omputer algebra systems in that they are strongly typed, so that anyerrors in the types of expressions or programs are
aught prior to the programsbeing exe
uted. In order to give types to the basi
 obje
ts of mathemati
s it isne
essary to develop an expressive and
exible system of types. In this paperwe examine the programming language Aldor[WBD+94℄, whi
h has grown outof AXIOM as a
ompiled `extension language',1 that is a language in whi
h towrite libraries for AXIOM or indeed other
omputer algebra systems su
h asMaple.One might argue that most users of
omputer algebra systems prefer thefreedom provided by an interpreted and weakly typed language. While this isthe
ase for small-s
ale experimental use, a
ompiled language promises userseÆ
ien
y, whilst as it is strongly typed it
an assure users that their programsare free of potential type errors; both these properties are desirable for library
ode whi
h will in general be substantial and exe
uted repeatedly.As was said earlier, Aldor has a very
ompli
ated and expressive type systemin order to render the types appearing in a
omputer implementation of basi
mathemati
s. This requirement represents a substantial
hallenge, and it isinteresting for instan
e to observe that the motivating example for an extensionof the C++ type system des
ribed in [BR95℄
omes from
omputer algebra.Among other things, the type system of Aldor in
ludes so-
alled dependenttypes, types as values, a ri
h system for abstra
t datatypes { provided by so-
alled domains and
ategories { and overloading. These and other features ofthe Aldor type system are dis
ussed in se
tion 2.The Aldor User Guide [WBD+94℄ gives an informal des
ription of the Aldortype system. In this paper we will try to give a formal des
ription of at least partof the type system of Aldor. A formal des
ription gives a
lear and unambiguousdes
ription of the types of the language; this
an provide a foundation for the1In the past Aldor has also been known as AXIOM-XL and A℄.2

implementor as well as allowing general properties of the type system to bestudied.This formal des
ription is a �rst step of the proje
t des
ribed in [PT98℄,namely of in
orporating a logi
 into Aldor. This is done by using the so-
alled`propositions as types' or Curry-Howard
orresponden
e, [How80℄, under whi
hlogi
al propositions are en
oded as types of a fun
tional programming language.This en
oding will be made possible in Aldor by making a modi�
ation to allowtype expressions as well as ordinary expressions to be evaluated.The formal des
ription will be given by a typing relation of the form � ` t : Twhi
h is read as \in
ontext � term t has type T"; this relationship will bede�ned by a set of type inferen
e rules.It is important to realise that { la
king a good des
ription of the type system{ the basis for our formal des
ription is the
ompiler itself. Any questions aboutthe type system have been resolved by experimenting with simple programs tosee whi
h ones are reje
ted by the
ompiler be
ause of typing errors. Of
ourse,this has its limitations.Two
entral questions that arise are� How mu
h of Aldor do we try to formalise?We do not attempt to give a formal des
ription of the entire type systemof Aldor. Instead, we only des
ribe what we
onsider to be the \
ore" ofthe Aldor type system, whi
h in
ludes the essential features but ex
ludessome of the more baroque ones. The latter may be features that we wantto ex
lude be
ause they do not seem interesting (they
an be seen as`synta
ti
 sugar', for instan
e) or are too ad ho
, or features that we haveto disregard in order to keep things simple enough to formalise. Ideally,the
ore of the Aldor type system we des
ribe should be a \small" typesystem, in the sense that it is built by
ombining of a small number oforthogonal primitives for
onstru
ting types.It will always remains a point of dis
ussion whether we should in
ludemore or less of the Aldor type system in the formal des
ription. At severalpla
es we will point out
onstru
tions that are possible in Aldor whi
h wehave not in
luded in our formal des
ription and we
olle
t together a listof these in Se
tion 16.� Does the formalisation des
ribe Aldor as it is, or as we'd want it to be?There are several
ases where the type system of Aldor (or rather, the im-plementation of the type system in the
ompiler) behaves strangely. Hereone
an ask if, instead of giving very
omplex rules that exa
tly des
ribethis, it would not be more useful to propose simpler, more sensible, typingrules that result in a \
leaner" type system. At several pla
es we will pointout where our formalisation does not a

urately des
ribe the behaviour ofthe Aldor
ompiler; we
olle
t these points in Se
tion 18.In experimenting with simple programs we
ame a
ross a number of bugsin the
ompiler, and a
ross
ases where the
ompiler behaved strangely, eithera

epting seemingly ill-typed programs or reje
ting seemingly well-typed ones.1.1 Related WorkThere has been a lot of interest in programming languages with types-as-valuesin the 1980's, see, for instan
e, [DD85, MR86, LB88℄. Re
ently there has beenrenewed interest in languages with dependent types, as eviden
ed by [Aug98,DTP99℄. 3

There has been a lot of work in type theory that is relevant here. Related tothe dependent types of Aldor is the work on so-
alled
onstru
tive type theo-ries, su
h as the
onstru
tive type theories of Martin-L�of [ML79℄ or the Cal
ulusof Constru
tions [CH88℄. One useful notion here is that of Pure Type System(PTS) [Bar93℄, whi
h provides a general framework for giving
ompa
t
hara
-terizations of many type systems with fun
tion types and dependent types, andmakes it easy to
ompare su
h systems.Related to the module system of Aldor (as provided by its domains and
ategories) is the work on di�erent variants of \sum types" for des
ribing mod-ules e.g. in the setting of the fun
tional programming languages Standard ML(SML) [MTHM97, Ma
86, Rus98℄.More
losely related to Aldor itself, [San95℄ proposes a type system for
om-puter algebra whi
h is based on Aldor. The fo
us of Santas' paper is on themodule system. The type system des
ribed does not in
lude type-as-values ordependent types. Finally, the type system of Aldor has been investigated usingthe
ategori
al notion of a sket
h, [Tou98℄.A
knowledgementsWe are grateful to NAG, and Mike Dewar in parti
ular, for granting us a

essto the Aldor sour
e
ode, Version 1.1.10b. Martin Dunstan has helped us tounderstand some of the intri
ate details of the internals of the Aldor sour
e
ode, and Chris Ryder's work [Ryd98℄ on understanding the me
hani
s of type
he
king in Aldor was most useful. Stephen Watt answered a number of queriesabout typing in Aldor as well as listening patiently to our ideas about how itmight be modi�ed.2 Introdu
tion to the Aldor type systemBefore giving a formal des
ription of the type system, this se
tion gives an infor-mal introdu
tion of the main features of the Aldor type system and illustratesthese with some simple examples. Subsequent se
tions will give a more detailedexplanation of these features.Aldor is not a fun
tional language, but an imperative one. However, Aldordoes have a
omplete fun
tional language as a sub-language (whi
h, for instan
e,in
ludes higher-order fun
tions). In the formal des
ription here we will limitourselves to this fun
tional sub-language of Aldor, i.e. we disregard any of theimperative features of Aldor. The fun
tional sub-language of Aldor does infa
t
ontain all the interesting type
onstru
tions of Aldor; one
an view theimperative features in a similar way to those of SML, with the proviso thatSML's type system is made more
omplex by the intera
tion of referen
e typesand parametri
 polymorphism.Aldor provides many of types familiar from other programming languages,su
h as fun
tion types, produ
t types, re
ord types, union types and so on, withthe usual terms of these types: fun
tions, produ
ts, re
ords, for instan
e. Forexample, the fragment of Aldor program below de�nes a fun
tion double anda re
ord rr:double : Integer -> Integer== (n:Integer) : Integer +-> n+n ;rr : Re
ord (i:Integer, j:Boolean)== [i==4,j==true℄; 4

But, in Aldor these familiar
onstru
ts
an be more
ompli
ated than in mostother languages. This is mainly due to the two of the features dis
ussed below:dependent types and types as values. These and other aspe
ts of the languageare examined informally now.Dependent TypesAldor allows so-
alled dependent types. One of the standard examples of adependent type is the type Ve
tor(n) of, say,
oating point ve
tors of length n.This is
alled a dependent type, be
ause it depends on the { in this
ase, integer{ value n.Fun
tions
an have dependent types, in whi
h the type of a fun
tion resultdepends upon the value of a parameter. An example is a fun
tionve
torSum : (n:Integer) -> Ve
tor(n) -> Floatwhi
h takes as arguments an integer n and a ve
tor of type Ve
tor(n), i.e. ave
tor of length n, and returns the sum of that ve
tor. The result of a fun
tionappli
ation, sayve
torSum(34)has the type Ve
tor(34) -> Float be
ause its argument has the value 34.Another example of a fun
tion with a dependent type is the append fun
tionfor ve
tors:append : (n:Integer,m:Integer,Ve
tor(n),Ve
tor(m)) -> Ve
tor(n+m)There are two important points about dependent types: �rst, following theCurry-Howard isomorphism { better known as \propositions as types" { a typesystem with dependent types is powerful enough to express predi
ates withuniversal quanti�
ation [How80℄. Dependent types are
ommonly used in thisway in so-
alled
onstru
tive type theories, su
h as Martin-L�of's Type Theory[ML79, Tho91℄ or the Cal
ulus of Constru
tions [CH88℄. Se
ond, there is a well-known pri
e to be paid for dependent types (see [MR86, Aug98℄ for instan
e),namely that type
he
king of programs will involve exe
uting parts of programs.This will be dis
ussed in Se
tion 14.The Aldor type system
ontains a se
ond form of type dependen
e, in this
ase between the �elds of re
ords. As an example
onsiderre
 : Re
ord (n:Integer, v:Ve
tor(n))== [n==3, v==ve
3 ℄;whi
h de�nes a re
ord
ontaining two �elds; the �rst, n, is an integer, whilst these
ond is a ve
tor whose length is n. These types
an express predi
ates withexistential quanti�
ationDependent fun
tions and re
ords support universal and existential quanti�-
ation, and so it should be possible to represent any proposition of �rst-orderlogi
 by means of an Aldor type. This is not possible in the
urrent implemen-tation sin
e there is no evaluation of type expressions, so that, for example, thetypes Ve
(5) and Ve
(2+3) are seen as di�erent types. Our aim, dis
ussed in[PT98℄, is to re
tify this anomaly. type system should be powerful enought torepresent an
5

Types as valuesMost programming languages enfor
e a stri
t separation between a
olle
tion ofterms { or values { and a
olle
tion of types. But Aldor treats types as termslike any other: a type su
h as Integer->Integer
an be manipulated in thesame way as any ordinary expression like 3+4. In parti
ular,� Just as other terms have types, so do the types themselves: there isa spe
ial
onstant Type that is \the type of all types". For example,Boolean : Type and indeed Type : Type.� Any
onstru
tion that is possible with terms is also possible with types.This means that types
an be passed as arguments to a fun
tion, or re-turned as the result of a fun
tion. For example, the fun
tionList : Type -> Typetakes a type as input and produ
es a type as output. Applying the fun
tionList to the type Integer produ
es a type List(Integer), the type oflists of integers.Type
an also be used as
omponents of re
ords. For example, the re
ordtt : Re
ord (t:Type, b:Boolean)== [t==Integer,b==true℄;has a field whose value is a type.Of a language su
h as Aldor it is often said that types are treated as \�rst-
lass
itizens" (as opposed to most other languages, where types are only se
ond-
lass
itizens).To fully exploit the idea of types-as-values dependent types are e�e
tivelyindispensable. Combining types-as-values and dependent types, we
an makethe polymorphi
 (or generi
) fun
tions that exists in fun
tional programminglanguages like ML or Haskell. For example, a polymorphi
 fun
tion reversethat reverses a list with elements of an arbitrary type
ould be typed as followsreverse : (T:Type) List(T) -> List(T)A di�eren
e with fun
tional programming languages like ML or Haskell is thatin Aldor su
h polymorphi
 fun
tions like reverse have to be given expli
it typeparameters, whereas in modern fun
tional languages these type parameters areinferred by the
ompiler, using so-
alled Hindley-Milner type inferen
e [Mil78℄.The fa
t that types
an be used as values greatly in
reases the expressivepower of the language. But, as mentioned before, there is a pri
e to be paid forthe asso
iated dependent types (see e.g. [MR86℄).Domains and Categories.Aldor provides a ri
h system for abstra
t datatypes,
alled domains, and for thetypes of datatypes
alled
ategories. Categories e�e
tively des
ribe the interfa
eor signatures of abstra
t datatypes. The domains and
ategories of Aldor makeit possible to model the ri
h universe of mathemati
al stru
tures that arise in
omputer algebra, e.g. of rings, �elds, et
., as well as the relationships betweenthem, e.g. every �eld is also a ring.An example of a
ategory is 6

Ring : Category == with {+ : (%,%) -> %;* : (%,%) -> %;1 : %;0 : % }whi
h des
ribes the interfa
e of rings, i.e. the operations that any type % has toprovide in order for it to be a ring. It is then possible in Aldor to write so-
alledgeneri
 (or polymorphi
) algorithms, e.g. a summation algorithm that works forarbitrary rings:sum : (R:Ring) List(R) -> RNote that this provides a further example of a dependent type in use: the typeof the result of applying sum to R, namely List(R) -> R, depends on the ringR.OverloadingAldor allow overloading, so that the same name
an be used more than on
e,provided any resulting ambiguity
an be resolved by the type system. So thesame name
an only be used to refer to terms of di�erent types. The standardexample of overloading is the use of + as a binary operator for di�erent types,e.g. both +:(Integer,Integer)->Integer and +:(Real,Real)->Real.SubtypingAldor provides a form of subtyping. The most interesting sour
e of subtypingare the
ategories, where subtyping
aptures the notion of an interfa
e beingsubsumed by a ri
her interfa
eFor example, the
ategory MonoidMonoid : Category == with {* : (%,%) -> % }is a supertype of Ring,
apturing the intuitive idea that every ring is also amultipli
ative monoid. This means that a ring
an be used in any
ontextwhere a monoid is expe
ted.In fa
t, Aldor distinguishes three forms of subtyping: in addition to \sub-typing" between types, there are also so-
alled \
ourtesy
onversions" betweentypes and there is also a notion of \type satisfa
tion". These will be dis
ussedin Se
tion 15.Multiple ValuesFinally, one of the more puzzling features of the Aldor type system is the notionof multiple value. A multiple value is essentially a sequen
e of terms (t1; : : : ; tn),whi
h are very similar to n-ary produ
ts, or
ross produ
ts in Aldor terminology.Indeed, the notation of a multiple value and a
ross produ
t is exa
tly the same,and there exist
ourtesy
onversions (see Se
tion 15) from multiple values to
ross produ
ts and ba
k. It is not
lear to us why Aldor provides both multiplevalues and
ross produ
ts. We have left out multiple values from the formaldes
ription of Aldor given here.
7

3 The formal des
ription of the Aldor type sys-temAs mentioned in the previous se
tion, in the formal des
ription of the Aldortype system we ignore all imperative features of Aldor, and only des
ribe apurely fun
tional sub-language of Aldor. So we do not
onsider the statementsof Aldor, e.g. assignments, for-loops, et
. In parti
ular this means that wheneverwe talk about \variables" these are never variables in the sense of imperativeprogramming { i.e. memory lo
ations { but always variables in the sense of\formal parameters".3.1 Typing relationsThe typing relation is formally des
ribed by typing judgements of the form� ` t : T:The judgement � ` t : T is read as \term t has type T in
ontext �". Here the
ontext � is the list of all the variable de
larations, type de�nitions, et
., thatare in s
ope. Simple examples of typing judgements are:� ` true : Boolean� ` + : (Integer; Integer)->IntegerIf � ` t : T then we say that t and T are well-formed expressions (a well-formed term and type expression, respe
tively) in
ontext � . To de�ne � `t : T we need an auxiliary judgement � ` ok, whi
h means \
ontext � iswell-formed".Remark 3.1 (Terminology) Our terminology is di�erent from that used inthe Aldor User Guide [WBD+94℄: what we
all \terms" are
alled \values"there.We use \terms" rather than \values" be
ause \values" is often reserved forthose expressions that are \evaluated" in some sense. For example, 3+4 and 7are both terms, but usually only 7 is
onsidered to be a value.A similar distin
tion
an be applied to terms whi
h represent types. ut3.2 The Aldor universeIn our dis
ussion of Aldor we will distinguish six kinds of expressions:� terms,� types,� domains,�
ategories,� abstra
t datatypes (ADT's),� pa
kages.Below we explain their intuitive meanings and the basi
 relations between them.The
oarsest distin
tion between di�erent kinds of expressions one
an makein Aldor is between terms and types. But, sin
e types are values, and the types8

themselves also are terms, so that types � terms. And the type of all types {Type { is itself a type, so Type 2 types. Similarly, the type of all
ategories {Category { is a type, so Category 2 type.We distinguish the following subsets of terms and types,
alled domains and
ategories, that are of spe
ial interest:� domains � terms.Domains
an either be abstra
t datatypes (ADT's) or pa
kages.Pa
kages are
olle
tions of de�nitions, whi
h
an in
lude de�nitions offun
tions, types, or any other terms. These de�nitions are
alled theexports of a pa
kage. We
an think of pa
kages as libraries and also, byanalogy with SML, as stru
tures.Like pa
kages, ADT's are
olle
tions of de�nitions, but an ADT in
ludesa distinguished de�nition of a type. The other de�nitions will typi
ally beoperations on that type. To take the standard example, an ADT Sta
k forsta
ks would de�ne a representation type for sta
ks, and implementationof the sta
k operations for that parti
ular representation.�
ategories � types.Categories are the types of domains. Basi
ally a
ategory des
ribes theinterfa
e of a domain, i.e. it lists the exports with their types, like theexample of the
ategory Ring on page 6. Again by analogy with SML,
ategories are like SML signatures.Just as there is a type of all types, there is a type of all
ategories, whi
his
alled Category.The domains that are abstra
t datatypes play an important role in Aldor.Although stri
tly speaking these ADT's are terms and not types, types areintrodu
ed when ADTs are named. (Aldor type naming is done in exa
tly thesame way as for any other value; it is therefore quite possible to introdu
e`anonymous' ADTs, even if they are only of
uriosity value.)For example, if we have the abstra
t datatype Sta
k mentioned above, thenthe name Sta
k is then not only used to refer to this whole
olle
tion of de�ni-tions that make up the ADT, but is also used as the name of the (abstra
t) typeintrodu
ed by the ADT. The fa
t that the name of an domain is used as a typemeans that there is an impli
it proje
tion by means of naming from abstra
tdatatypes to types, indi
ated by the dotted arrow in Figure 1.All this leads to the view of the Aldor universe given in Figure 1.3.3 A grammar for a subset of AldorThe grammar given in Figure 2 de�nes some of the raw syntax of Aldor terms.To de�ne the set of raw terms Term it also de�nes a set of type tuples TypeTuple.There are two points to note about the grammar given in Figure 2.� The square bra
kets [: : :℄ are not part of the syntax, but indi
ate an op-tional in
lusion. E.g. pa
kages
an be of the form addfx1 : T1==t1; : : : ;xn :Tn==tng, of the form addfx1==t1; : : : ;xn==tng, or any
ombination of thetwo.� This distin
tion between terms t and types T is not a distin
tion that
anbe made formal at this stage. To tell whi
h terms are types we have torefer to the typing relation: a term T is a type (in a
ontext �) if and onlyif ` T : Type (or in a
ontext, � ` T : Type). Still, it is useful to suggest9

Types

Adt’s

Packages

Domains

Terms

Adt’s

Categories

Type

Category

.

.

Figure 1: The Aldor universethe distin
tion between terms and types already here. Throughout thisreport we will sti
k to the
onvention that lower
ase letters range overarbitrary terms and upper
ase letters range over types (or, in some
ases,names for types).Remark 3.2 (domain vs (abstra
t data)type) The Aldor User Guide [WBD+94℄is sometimes a bit sloppy in its use of the terminology, parti
ularly when it
omesto domains and (abstra
t data)types.� domain vs abstra
t datatype. The notions of abstra
t datatype and domainare often identi�ed, although a domain
an also be a pa
kage. More oftenthat not \domain" should be taken to mean \abstra
t datatype".� domain vs type. A more serious
ause of
onfusion is that \domain" and\type" are often treated as synonyms.All user de�ned types in Aldor will typi
ally be introdu
ed by meansof abstra
t datatype de�nitions. One
an go even further and take theviewpoint that all the primitives types provided by Aldor are also abstra
tdata types, with the di�eren
e that the de�nition of the primitive types
annot be given inside the language itself. In this view all types originatefrom abstra
t datatypes, so that the set of (names of) abstra
t datatypesis isomorphi
 to the set of types. Indeed, all primitive types are de
lared asabstra
t datatypes in the library �le . . . /lib/libaxllib/lang.as that providesan interfa
e for all language-de�ned types.This seems to explain why in the User Guide the terms `type' and `domain'are almost used inter
hangeably. (Stri
tly speaking it is only the domainsthat are abstra
t datatypes than
an be viewed as types, but we alreadypointed out above that the terms domain and abstra
t datatype are oftentreated as if they were synonyms.)10

t; T 2 Term::= x variablej (x1 : T1; : : : ; xn : Tn) : T+->t abstra
tionj t1(t2) appli
ationj (t1; : : : ; tn) multiple value, or tuple, or
ross produ
tj re
ord re
ordj union unionj bra
ket j explode j apply j
ase operations on re
ords/unionsj Type the type of all typesj Category the type of all
ategoriesj �!T 1->�!T 2 fun
tion typej Cross�!T
ross produ
t typej Re
ord�!T re
ord typej Union�!T union typej 0x1; : : : ; xn0 enumeration typej Tuple T tuple typej addfx1[: T1℄==t1; : : : ;xn[: Tn℄==tng pa
kagej addfRep==>T ;x1[: T1℄==t1; : : : ;xn[: Tn℄==tng ADTj xi$x proje
tion from pa
kage/ADTj withfx1 : T1; : : : ;xn : Tng
ategory�!T 2 TypleTuple::= ([x1 :℄T1; : : : ; [xn :℄Tn) type tupleFigure 2: A grammar for a subset of the Aldor terms

11

The remainder of this reportThe se
tions that follow give the formal des
ription of the type system forea
h individual language
onstru
t of Aldor. These se
tions roughly followthe same format: we give the raw syntax, spe
i�ed by a pie
e of
ontext-freegrammar, the typing rules, whi
h impose restri
tions on the raw syntax toyield the \well-types" syntax, and some examples. We will dis
uss the typingrules to point out any pe
uliarities, to point out any di�eren
es between ourformal des
ription and Aldor as it is a
tually implemented by the
ompiler, andto suggest possible improvements or simpli�
ations of the typing rules (whi
hwould however in
rease the di�eren
e between our formal des
ription and Aldoras it is implemented by the
ompiler).4 ContextsTyping depends on a
ontext
ontaining de
larations and de�nitions. A
ontextde�nes the set of names that are
urrently in s
ope. Contexts may in
ludede
larations of variables2 likex : Integerand de�nitions of
onstants, su
h asx : Integer == 5Note that be
ause types are values, a de
laration of a variable
an be a de
la-ration a type-variable, e.g.X : Typeand a de�nition of a
onstant
an be the de�nition of a type-
onstant e.g.TT : Type == Integer -> IntegerDe�nitions
an be of two forms, namely of the form x : T==t, i.e. with an expli
ittype, or of the form x==t, i.e. without an expli
it type.Aldor also allows a de�nition to be pre
eded by the keyword define, whi
his intended to make the value of a de�nition `visible' to its
ontext, [WBD+94℄,p113, but it is not
lear in pra
ti
e that this is indeed the behaviour of the Aldor
ompiler. This is dis
ussed in further detail in Se
tions 7 and 14.Aldor allows overloading: The same name
an be de�ned more than on
e,provided the types resolve any ambiguity. For example, the de�nitions belowgive two meanings to x, one to x as an Integer and one to x as a Boolean:x : Integer == 5;x : Boolean == true;An important
onsequen
e of overloading is that terms
an have more that onetype. For instan
e, in the
ontext above x has both type Integer and typeBoolean. As a
onsequen
e ` is not a fun
tion from
ontexts and terms totypes, but is really a relation.Finally,
ontexts
an
ontain import's, e.g. import from Integer, whi
h
ause a whole set of names in a domain (or library) to be imported into the
urrent s
ope. The rules
on
erning su
h import-statements will be given insubse
tion 7 when we
onsider domains. Other aspe
ts of the import me
hanismare dis
ussed in Se
tions 7.1.2 and 16.2N.B. Re
all that we disregard all the imperative features of Aldor, and only
onsiderthe fun
tional part of Aldor. So when we talk about variables these are never variables inthe sense of imperative programming { i.e. memory lo
ations { but always variables in themathemati
al sense of `�xed but arbitrary values'.12

Raw SyntaxThe grammar below de�nes the raw syntax of Aldor-
ontexts:� 2 Context ::= � the empty
ontextj � ;x : T de
larationj � ;x : T==t \typed" de�nitionj � ;x==t \untyped" de�nitionContexts
an also
ontain import statements, but these involve domains andwill be treated in Se
tion 7.Typing Rules: well-formedness of
ontextsContexts will have to be well-formed { written � ` ok {, meaning that all theterms o

urring in them are well-formed, and that ea
h
onstant de�nition hasthe type that is de
lared for it, and that any overloading in the
ontext doesnot introdu
e ambiguities.Rules for the well-formedness of
ontexts are:� ok� ` ok� ` ok � ` T : Type (x : T) 62 � de
laration ok� ;x : T ` ok� ` ok � ` t : T (x : T) 62 � typed de�nition ok� ;x : T==t ` ok� ` ok � ` t : T � !` t : T (x : T) 62 � untyped de�nition ok� ;x==t ` okSome points to note here� The premiss (x : T) 62 � is shorthand for saying that � does not already
ontain a de
laration or de�nition for x of type T. Multiple de
larations orde�nitions of x are only allowed if the types of these x's are all di�erent.(Note that here the notion of equality of types plays a role. More on thatin 14.)� The notation � !` t : T is used as shorthand for `T is the only typederivable for the term t in the
ontext � (up to type equality)'. This is apremiss of a de�nition without an expli
it type.Su
h a de�nition, whi
h has the form x==t, is only allowed if there is onlyone possible type for t in the parti
ular
ontext � . If t has more than onetype in � due to overloading then one of these types has to be expli
itlygiven in the de�nition, whi
h will then be of the form x : T==t.� It would be ni
e to
onsider only de�nitions of the form x : T==t in theformalisation here, and just treat de�nitions of the form x==t as short-hand or synta
ti
 sugar. However, it turns out that there are di�eren
esbetween the two forms of de�nitions with regards to equality, (whi
h willbe dis
ussed in Se
tion 14). 13

We have the obvious rules for using de
larations and de�nitions in the
ontext:� ;x : T ;� 0 ` ok use de
laration� ;x : T ;� 0 ` x : T� ;x : T==t;� 0 ` ok use typed de�nition� ;x : T==t;� 0 ` x : T� ` t : T � ;x==t;� 0 ` ok use untyped de�nition� ;x==t;� 0 ` x : TAll the typing rules we introdu
e in this report will require that
ontexts are well-formed. Be
ause it is annoying to always have to in
lude this premiss expli
itlyfrom now on we impli
itly assume that all
ontexts are well-formed.The s
ope rules of Aldor are quite
omplex: the whole of Chapter 8 inthe manual is dedi
ated to them. On the other hand, the s
ope me
hanismis largely independent of type issues; on
e s
opes are delimited, type
he
kingis done within those s
opes. The me
hanisms do intera
t, for example, whendefault arguments are present, but we do not treat that feature of Aldor in thisdo
ument.Di�eren
es with the Aldor
ompilerThe Aldor
ompiler does not behave exa
tly as pres
ribed by the rules for
on-texts given above:� Sometimes the Aldor
ompiler is more stri
t than ne
essary, and does nota

ept
ontexts whi
h are well-formed by the rules above. For example,the Aldor
ompiler reje
tsy : Integer == 5;y == Boolean;� Sometimes the Aldor
ompiler a

epts ambiguous
ontexts whi
h are notwell-formed by the rules above. For example, the Aldor
ompiler allowsx == 5;x : Integer == 7;This should be reje
ted, as it
learly introdu
es an ambiguity. So this isreally an bug in the Aldor
ompiler (or in the Aldor language.)� Contrary to what one would expe
t, typed and untyped de�nitions aretreated di�erently by the Aldor
ompiler. Repla
ing one by the otherin the examples above leads to di�erent behaviour of the
ompiler; inparti
ular, the Aldor
ompiler a

eptsy : Integer == 5;y : Type == Boolean;and reje
tsx : Integer == 5;x : Integer == 7;To summarise, the anomalies dis
ussed here arise from untyped de
larations(su
h as x == t) rather than typed ones (like x:T == t).14

5 Types and Type Tuples5.1 TypeAs mentioned earlier, the types themselves also have types. Namely, there is atype of all types, written Type. The syntax and typing rule are simple.Raw Syntax t; T 2 Term ::= : : :j Type the type of all typesTyping Rules Type form� ` Type : Type5.2 Type TuplesType tuples
an be sequen
es of types(T1; : : : ; Tn) ;sequen
es of de
larations (x1 : T1; : : : ; xn : Tn) ;or any
ombination of the two, e.g.(x1 : T1; T2; x3 : T3; : : :):Type tuples serve as a
ommon building blo
k for several type
onstru
tions,su
h as fun
tion types,
ross produ
ts, re
ord types, and union types. Forexample, fun
tion types are of the form�!T -> : : :with �!T a type tuple.There are two { quite di�erent { reasons for having de
larations x : T intype tuples. Firstly, they make it possible to have dependen
ies, e.g.(X : Type; x : X)Se
ondly, they introdu
e names, whi
h is essential in re
ord types, e.g.Re
ord(x : Integer; y : Integer)Names are also used for the so-
alled keyword argument style, where argumentsto a fun
tion are named (see Se
tion 6).Raw Syntaxt; T 2 Term ::= : : :j Tuple Type the type of all type tuples�!T 2 TypleTuple ::= (D1; : : : ; Dn)D ::= T j x : T15

Typing Rules� ` Ti : Type non-dependent type tuple intro� ` (T1; : : : ; Tn) : Tuple Type� ;x1 : T1; : : : ;xj�1 : Tj�1 ` Tj : Type dependent type tuple intro� ` (x1 : T1; : : : ; xn : Tn) : Tuple TypeSome things to note here� In our formalisation, type tuples with names for only some of the �elds like(T1; x2 : T2) are treated as synta
ti
 sugar, by inserting dummy names.� N.B. Type tuples are not types, i.e. they
annot have inhabitants, and noto

ur to the right-hand side of \:" in a typing judgement. However, thereare
ourtesy
onversions from type tuples to
ross produ
ts { whi
h aretypes { and ba
k, as des
ribed in Se
tion 15. This e�e
tively makes typetuples into types.� The Aldor
ompiler does not appear to insist that the xi are distin
t in atype tuple, but it seems safer to insist that they are.� Aldor allows even more
ompli
ated expressions as type tuples than thosedes
ribed here. Type tuples
an also
ontain de�nitions of the form x :T==t. These de�nitions are used for default arguments of fun
tions anddefault values of �elds in re
ords.We will not try to formalise this sort of de�nition, sin
e default values
anbe dealt with as `synta
ti
 sugar' whi
h is removed prior to type analysis.� Aldor in fa
t treats Tuple Type as an instan
e of the general Tuple
on-stru
tion, whi
h will be dis
ussed in se
tion 9. However, doing this
ausesserious
ompli
ations { dis
ussed below { so we prefer to des
ribe TupleType here separately.� The main question about type tuples is in how far they are treated as�rst-
lass
itizens. Do type tuples only o

ur as subexpressions of largerexpressions, or
an they also o

ur as expressions on their own, passedaround as parameters, et
.? And a related question is whether TupleType is a �rst-
lass type, i.e. whether Tuple Type:Type.The Aldor
ompiler, in keeping with the spirit of the types-as-values ap-proa
h, treats Tuple Type as an ordinary type and (hen
e) type tuplesas �rst-
lass
itizens. Our formalisation does not. Below we dis
uss ourreasons for not doing this.Type tuples are a useful building blo
k for several type
onstru
tions. Forexample, an n-ary fun
tion type is of type (T1; : : : ; Tn) ! : : :, and ann-ary
ross produ
t is of type Cross(T1; : : : ; Tn). Treating type tuples as�rst-
lass
itizens makes it possible to give very
ompa
t des
riptions forthese
onstru
tions. For instan
e, in Aldor the type
onstru
tor Cross
an be typed as followsCross : Tuple Type -> Type 16

However, treating type tuples as �rst-
lass
itizens in this way has seriousdisadvantages.Having type tuples as �rst-
lass
itizens and having Tuple Type as a �rst-
lass type, would mean that type tuples
an be passed around as argu-ments, and that we
an have variables X : Tuple Type. But then there
an be re
ords r : Re
ord X for whi
h we do not stati
ally know their�elds, and fun
tions f : X->Integer for whi
h we do not stati
ally knowtheir arity.On the other hand, the only kind of fun
tions we
an write over typessu
h as these will be unable to analyse the type tuples at all, so they willresemble the `parametri
 polymorphi
' fun
tions of languages like SMLand Haskell. We therefore do not deal with this aspe
t of type tuples inthis treatment.6 Fun
tionsThere are several kinds of fun
tions in Aldor:� simple unary fun
tions, e.g. f : Integer ->Integer.� n-ary fun
tions, e.g. binaryf : (Integer,Integer) ->Integer� dependent fun
tions, e.g. fdep : (R:Ring) ->(R ->R).� n-ary dependent fun
tions, e.g. f2dep : (R:Ring,x:R) ->R. 3� fun
tions
an have default arguments, e.g. fdefault:(n:Integer==0)->Integer.There are also fun
tions whi
h return so-
alled \multiple values", but as men-tioned before we do not
onsider multiple values in our formalisation.Expressions are formed in a number of ways, most of whi
h are variants offun
tion or operator appli
ation. The typing rules for fun
tion appli
ation aretherefore
entral to explaining the typing of
omputations in the fun
tional (orequivalently appli
ative) subset of Aldor.There are several ways of passing arguments to fun
tions in appli
ations:� normal arguments, e.g. f(5) or binaryf(3,8),� arguments by keyword, e.g. f2dep(R==Integer,x==0),� default arguments, e.g. fdefault().We will not
onsider default arguments in the formal des
ription, but we will
onsider keyword arguments. These may seem a bit baroque to in
lude inthe formalisation, but other type
onstru
tions, notably re
ords and unions,
ru
ially depend on this.6.1 Simple fun
tion types S->TFirst we
onsider the simplest form of fun
tions, namely unary fun
tions withtypes of the form T1->Tn.3Note that here not only the type of the output depends on an input, but also the type ofthe se
ond input depends on �rst input. 17

Raw Syntaxt; T 2 Term ::= : : :j (x : T1) : T2+->t abstra
tionj t1(t2) appli
ationj T1->T2 fun
tion typeTyping Rules � ` S; T : Type fun
tion type formation� ` S->T : Type� n fxg; x : S ` t : T fun
tion intro� ` ((x : S) : T+->t) : S->T� ` f : S->T � ` s : S fun
tion elim� ` f(s) : TSome examplesdouble : Integer -> Integer== (n:Integer) : Integer +-> n+n ;eight : Integer== double 4;Dis
ussion� The lo
al (bound) variable x : S in a lambda abstra
tion hides any othero

urren
es of x in the
ontext. Hen
e the � nfxg in the introdu
tion ruleabove.� Fun
tions are �rst-
lass
itizens, so higher-order fun
tions { fun
tions thathave other fun
tions as input or output {
an be formed.� The usual notation for fun
tions in de�nitions is f(x:S) :T == t, whi
hwe treat as synta
ti
 sugar forf : S->T == (x:S):T +-> t� In Aldor fun
tion de�nitions
an be re
ursive, but in our formalisationnot. Allowing this would not be diÆ
ult, for this we would have to in
ludef:S->T itself in the
ontext when type-
he
king the body of f.� In de�ning a (re
ursive) fun
tion, fa
 say, the identi�er being de�ned
anbe used in an overloaded fashion, as in the examplefa
 (b:Boolean) : Boolean == ~b;fa
 (n:Integer) : Integer == if fa
(fa
(n=0))then 1else (n*(fa
 (n-1)));where fa
 is used over both booleans and integers in the re
ursive de�ni-tion of fa
 over Integer. 18

6.2 Dependent fun
tion types (x : S)->TNow we
onsider unary fun
tions with types of the form (x : S)->T . Su
hfun
tions
an be dependent types, where T depends on x.Raw Syntaxt; T 2 Term ::= : : :j (x : T1)->T2 dependent fun
tion typeTyping Rules� ` S : Type � n fxg; x : S ` T : Type dependent fun
tion formation� ` (x : S)->T : Type� n fxg; x : S ` t : T dependent fun
tion intro� ` ((x : S) : T+->t) : (x : S)->T� ` f : (x : S)->T � ` s : S dependent fun
tion elim� ` f(s) : T [x := s℄The notation T [x := s℄ is used for the result of substituting s for every freeo

urren
e of x in T .Some examplespolyId : (T:Type) -> (T -> T)== (T:Type) : T->T+-> (x:T) : T +-> x;idIntArrowInt : (Integer -> Integer) -> (Integer -> Integer)== polyId (Integer->Integer);Dis
ussion� Note that now there
an be bound variables in types! Substitution in typesis needed: T [x := s℄ denotes T with all free o

urren
es of x repla
ed bys.� We
an now build parametri
 polymorphi
 fun
tions as in system F, andsimilar to those in modern fun
tional programming languages like ML orHaskell, but with expli
it polymorphism, i.e. polymorphi
 fun
tions getexpli
it type parameters.� The
ore of the Aldor type system,
ontaining only Type : Type and therules for fun
tions above
an be des
ribed as the Pure Type System (PTS)[Bar93℄, namely the PTS with the spe
i�
ationS = fTypeg; A = fType : Typeg; R = f(Type; Type)g(ex
ept that in Aldor we do not have �-equality for types { more onthat in Se
tion 15). Note that any PTS
an be mapped into the PTS19

above, so that this PTS is as expressive as any other PTS, in
luding forinstan
e the Cal
ulus of Constru
tions [CH88℄ or the Extended Cal
ulusof Constru
tions [Luo89℄.� The Aldor
ompiler has problems with dependent types as �rst-
lass
iti-zens, and
rashes if we pass these as arguments to fun
tions. This seemsto be a bug.6.3 N-ary fun
tionsAldor allows n-ary fun
tions, i.e. fun
tions that get more than one argumentat on
e. Su
h fun
tions
an also have dependent types. Here the notion oftype tuple is used: n-ary fun
tions have types of the form �!T ->T , where �!Tis a type tuple. This means these types are of the form (S1; : : : ; Sn)->T or(x1 : S1; : : : ; xn : Sn)->T . We only
onsider the latter form, and treat theformer as a spe
ial
ase.Raw Syntaxt; T 2 Term ::= : : :j (x1 : T1; : : : ; xn : Tn) : T+->t n-ary abstra
tionj t(t1; : : : ; tn) n-ary appli
ationj �!T 1->T n-ary (dependent) fun
tion typeTyping RulesLet �!S � (x1 : S1; : : : ; xn : Sn), and in the rules and subsequent dis
ussion weassume that all the xi are distin
t.� ` �!S : Tuple Type� n fx1; : : : ; xng;�!S ` T : Type n-ary fun
tion type formation� ` �!S ->T : Type� n fx1; : : : ; xng;�!S ` t : T n-ary fun
tion intro� ` �!S : T+->t : �!S ->T� ` f : �!S ->T� ` si : Si[x1 := s1; : : : ; xi�1 := si�1℄ for all 1 � i � n n-ary fun
tion elim� ` f(s1; : : : ; sn) : T [x1 := s1; : : : ; xn := sn℄Some examplespolyCompose (S:Type, T:Type, U:Type, f:T->U, g:S->T): S->U== (x:S) : U +-> (f (g x));quadruple : Integer -> Integer== polyCompose (Integer,Integer,Integer,double,double) ;
20

Dis
ussion� The
ontext � n fx1; : : : ; xng;�!S
ontains a type tuple �!S . The meaningis the obvious one, namely the
ontext � n fx1; : : : ; xng extended with allthe de
larations in �!S .� If we identify the type tuple (S) with the type S, we get the rules forunary fun
tions as a spe
ial
ase of these rules.� Although in pra
ti
e n-ary fun
tions are very useful, they do not funda-mentally in
rease the power of the type system. We
ould have omittedthem in the formal des
ription here, and treat them as synta
ti
 sugar.In fa
t, an n-ary fun
tion type (x1 : S1; : : : ; xn : Sn)->T
ould almost betreated as synta
ti
 sugar for Cross(x1 : S1; : : : ; xn : Sn)->T . However,in the former type T
an depend on the xi, in the latter it
annot.� Is the (s1; : : : ; sn) in the elimination rule \a multiple value"? Yes, thisseems to be the
ase, as we
an pass a
ross produ
t to a fun
tion asargument. See
ross produ
ts (Se
tion 10).� There are also hybrid forms of keyword argument and normal arguments.We ignore these.� The Aldor
ompiler allows the same variable name to o

ur more thanon
e in the domain of an n-ary fun
tion type. E.g. it a

eptstt : Type == (x:Integer,x:Boolean) -> IntegerWe see no substantial need for this and so our formalisation does not allowthis.� We
ould introdu
e some syntax for auxiliary judgements of the form� ` �!s : �!S to simplify the typing rules, e.g. to� ` f : ��!x : S->T � ` �!s : �!S fun
tion elim� ` f�!s : T [�!x := �!s ℄However, to avoid possible
onfusion about the status of type tuples �!Sand term tuples �!s here we do not do this.6.4 Keyword argumentsFor appli
ations of fun
tions with types of the form (x1 : S1; : : : ; xn : Sn)->Tthe so-
alled keyword argument style
an be used. Su
h an appli
ation is of theform f(xj1==sj1 ; : : : ; xjn==sjn). Here the parameters do not have be given inany parti
ular order, but the labels tell whi
h is whi
h.Raw Syntaxt; T 2 Term ::= : : := t(x1==t1; : : : ; xn==tn) appli
ation with keyword argument
21

Typing Rules� ` f : (x1 : S1; : : : ; xn : Sn)->T� ` si : Si[x1 := s1; : : : ; xi�1 := si�1℄ for all i keyword argument� ` f(x1==s1; : : : ; xn==sn) : T [x1 := s1; : : : ; xn := sn℄Keyword arguments play an import role later in the des
ription of re
ords andunions.7 DomainsThere are two kinds of domains, pa
kages and abstra
t datatypes (ADT's).� Pa
kages are of the formaddfx1 : T1==t1; : : : ;xn : Tn==tngSo a pa
kage
onsists of a
olle
tion of de�nitions. By default, the namesde�ned in a pa
kage are
alled its exports; it is possible expli
itly to
ontrolthe exports of a pa
kage.� ADT's are of the formaddfRep==>T ;x1 : T1==t1; : : : ;xn : Tn==tngso every ADT provides a distinguished type Rep as export.The types of domains {
alled
ategories { are of the formwithfx1 : T1; : : : ;xn : Tngand are expressions of type Category.The types Ti in domains are optional and
an be left out. This
ausessome
ompli
ations, as
omponents of the form x == t and of the form x:T== t are treated di�erently4. These di�eren
es start playing a role when thereare dependen
ies between the
omponents of a domain. For this we make adistin
tion between� (simple) pa
kages, where none of the ti or Ti depends on an xj ,� dependent pa
kages, where some of the ti or Ti do depend on other xj 's,and a further distin
tion for dependent pa
kages between� type-dependent pa
kages, where some ti : Ti depend on the type of otherxj 's,� de�nition-dependent pa
kages, where some ti : Ti depend on the de�nitionand on the type of other xj 's.Below we start with the simplest form of pa
kage and then introdu
e further
omplexities in stages.4namely, they are treated di�erently with regard to equality; see Se
tion 14.22

7.1 Pa
kages7.1.1 Simple pa
kages, no dependen
iesThe simplest form of domain is a pa
kage. This is essentially just a re
ord.Raw Syntaxt; T 2 Term ::= : : :j addfx1 : T1==t1; : : : ;xn : Tn==tng pa
kagej xi$x proje
tion from pa
kagej withfx1 : T1; : : : ;xn : Tng
ategory (type of a pa
kage)Typing Rules� ` Ti : Type all pairs xi : Ti distin
t in �
ategory form� ` withfx1 : T1; : : : ;xn : Tng : Category� ` ti : Ti all pairs xi : Ti distin
t in � pa
kage intro� ` addfx1 : T1==tn; : : : ;xn : Tn==tng : withfx1 : T1; : : : ;xn : Tng� ` x : withfx1 : T1; : : : ;xn : Tng pa
kage elim� ` xi$x : TiSome examples
 : Category== with {zero:Integer; one:Integer};p : with {zero:Integer; one:Integer}== add {zero:Integer==0, one:Integer==1};proje
t : Integer == zero$p + one$p ;Dis
ussion� Variables
an be overloaded in a pa
kage, provided { as usual { they havedistin
t types. Hen
e the premiss \all pairs xi : Ti distin
t in �" above.This restri
tion does not seem to apply to
ategory expressions; for exam-ple the Aldor
ompiler a

eptsttt : Category == with {zero : Integer; zero : Integer}However, it seems better not to allow this.� In the elimination rule, the pa
kage we proje
t from has be a variable {i.e. a pa
kage name{ it
annot be an add-expression. (Note that this isalready enfor
ed by the grammar for terms.)� Aldor a

epts domains and
ategories written with \," instead of \;",e.g. of the form addfx1 : T1==t1; : : : ; xn : Tn==tng. However, the typingbehaves weirdly, and it is not
lear what the intended meaning of su
hdomains and
ategories might be.23

� Note that pa
kages are essentially re
ords. (However, when we take the im-perative features of Aldor into a

ount then there are di�eren
es betweenpa
kages and re
ords. For re
ords the �elds
an be updated imperatively,for pa
kages not.)� There is subtyping on
ategories, whi
h will be dis
ussed in Se
tion 15.� There is more syntax for domains and
ategories, whi
h we ignore. Forinstan
e, there are domain-extensions of the formd addfx1 : T1==t1; : : : ;xn : Tn==tngwhere d is the name of a domain. A

ording to the Aldor User Guide su
hdomains
an be regarded as shorthand for the domain that in
ludes boththe de�nitions
ontained in d and the xi.Similarly, we ignore
ategory extensions of the form
 withfx1 : T1; : : : ;xn : Tngand
ategory joins of the formjoin(
1; : : : ;
n)whi
h
an also be regarded as synta
ti
 sugar.7.1.2 The import statementThe import-statement provides an alternative to the expli
it proje
tions of theform xi$p. By import-ing a domain p into the
ontext, we
an refer to its
omponents as xi instead of xi$p (provided this does not introdu
e ambiguities).Raw Syntax� 2 Context ::= : : :j � ; import from d domain importTyping Rules� ` d : withf : : : g� ; import from d ` ok� ` d : withf : : : xi : Ti : : : g (xi : Ti) 62 �xi not import-ed from another pa
kage in � ;� 0 import� ; import from d;� 0 ` xi : TiExamplep : with {zero:Integer; one:Integer}== add {zero:Integer==0, one:Integer==1};import from p;proje
t' : Integer == zero + one ;24

� If the
ontexts imports two or more pa
kages that have x as an export,then the resulting x is overloaded and any use of the symbol x will bedisambiguated by type. If any two of the de�nitions have the same typethen we have to use expli
it proje
tions of the form x$p to tell whi
h onewe mean.7.1.3 Simple dependent pa
kagesThe rule for pa
kage introdu
tion given earlier does not allow for dependen
iesbetween the di�erent
omponents. The slightly more
ompli
ated introdu
tionrule below allows the ti to refer to earlier xj :� ;x1 : T1; : : : ;xi�1 : Ti�1 ` ti : Ti pa
kage intro� ` addfx1 : T1==t1; : : : ;xn : Tn==tng : withfx1 : T1; : : : ;xn : TngUsing this rule it is possible to make pa
kages where some
omponents arede�ned in terms of other
omponents. For example,dp : with{x:Integer; y:Integer}== add {x:Integer == 5; y:Integer == x};Note that we only have a weak form of dependen
y here:� To
he
k that y:Integer == x is well-typed, only the type of x { i.e.Integer has to be visible. The de�nition of x { i.e. 5 { is not needed.� Also, no dependen
y shows up between the types of the �elds of the pa
k-age, i.e. in withfx : Integer; y : Integerg.� The typing rule does not allow mutual dependen
ies, but Aldor a
tuallydoes allow this.This form of (weak) dependen
y is found in a number of existing languages,su
h as SML; what are usually termed `dependent types' are dis
ussed in thenext subse
tion.7.1.4 Dependent Pa
kages and Dependent CategoriesAn example of a truly dependent pa
kage isadd{X:Type == Integer; x:X == 5}Note that here we have a stronger form of dependen
y than in the earlier ex-ample above:� To
he
k that x:X == 5 is well-typed the de�nition of X { Integer { isneeded. Just knowing the type of X { Type { is not enough.� The dependen
y shows up between the types of the �elds of the pa
kage,whi
h would be withfX : Type; x : Xg.However, there are three \anomalies" with su
h dependent pa
kages in Aldor:� The Aldor
ompiler does not a

ept the dependent pa
kage above. Wehave to write it as follows instead25

add{X == Integer; x:X == 5}So the two ways of writing �elds { X == t and X : T == t { are notequivalent; we have to use the former for the de�nition of X to be \visible".(The presen
e or not of the modi�er define appears to have no e�e
t inthis
ontext.)The dependent pa
kage works �ne now. For example:d == add{X == Integer; x:X == 5};projX : Type == X$d;projx : X$d == x$dimport from d;projX2 : Type == X;projx2 : X == x;� There is a further problem when it
omes to typing dependent pa
kages:The Aldor
ompiler does not a

eptwithfX : Type; x : Xgas the type of addfX == Integer; x : X == 5g(even though it does a

ept withf X:Type; x:X g as well-formed
at-egory). To type the dependent pa
kage above, the de�nition of X in itstype has to be expandedadd{X == Integer; x:X == 5} : with{x:Integer == 5}But now the X-�eld of the domain will not be visible as an export.The types for addfX == Integer; x:X == 5g dis
ussed so far representtwo extremes of generality; it might be supposed that there is an interme-diate
andidate, but none of the following types is a

epted by the Aldor
ompiler as a valid type for addfX == Integer; x:X == 5g:with{X:Type == Integer; x:X}with{X:Type == Integer; x:Integer}with{X == Integer; x:X}with{X == Integer; x:Integer}� The typing of dependent pa
kages as dis
ussed in the previous point hassome undesirable
onsequen
es. As soon as we give an expli
it type to adependent pa
kage, some of the �elds (namely the ones that other �eldsdepend on) are no longer visible as exports.For example, if we de�ned == add{X == Integer; x:X == 5}then we
an a

ess both d$X and d$x, but if we de�ned' == add{X == Integer; x:X == 5} : with{x:Integer == 5}26

then we
an not a

ess the X-�eld of the domain d'. So in the de�nitionof d' above X == Integer is essentially just a (lo
al) ma
ro.The problem with the invisibility of
ertain �elds only o

urs as soon an expli
ittype is given to a dependent domain. This happens in the de�nition of d' above,but not in the de�nition of d. However, it also happens as soon a dependentpa
kage su
h as d is passed as a argument to a fun
tion: su
h a fun
tion willhave to de
lare a parameter of type withfx : Integerg (we
annot pass d toa fun
tion expe
ting a parameter of type withfX : Type; x : Xg)) and in thefun
tion we do not have a

ess to any X-�eld.All this means that dependent domains are not really usable as �rst-
lass
itizens; we
ould reinterpret this to say that Aldor does not have �rst-
lassmodules. Still, if we want to treat libraries as dependent pa
kages this is not aproblem.Raw Syntaxt; T 2 Term ::= : : :j addfD1; : : : ;Dng dependent pa
kageD ::= x==t j x : T==tTyping Rulesfor all Di of the form xi==ti : � ;D1; : : : ; Di�1 ` ti : T for some Tfor all Di of the form xi : Ti==ti : � ;D1; : : : ; Di�1 ` ti : TiAll xi : Ti distin
t in the
ontext � dependentpa
kageintro� ` addfD1; : : : ; Dng : withfxi : T �i j Di � xi : Ti==tigwhere T �i is short for Ti[xi�1 := ti�1℄ : : : [x1 := t1℄� ` x : withf : : : ;xi : Ti==ti; : : : g dependent pa
kage elim� ` xi$x : Ti� ` d : withf : : : xi : Ti : : : g (x : Ti) 62 �xi not import-ed from another pa
kage in � ;� 0 dependent import� ; import from d;� 0 ` xi : TiThe requirement in the �rst rule that all xi : Ti distin
t in the
ontext � is toensure unique typing of ea
h xi in the
ontext � . Formally we have to ensurethat T �i 6= T �j for any pair xi : Ti(==ti) and xj : Tj(==tj) where xi and xj arethe same name.Dis
ussion� The elimination and import rule above are identi
al to those given earlier,for non-dependent pa
kages. Here the fa
t that any dependen
ies get\expanded away" in the introdu
tion rule is an advantage. If one were toallow the typingd : with{X:Type; x:X} == add{X == Integer; x:X == 5}27

then proje
ting the x-�eld of d would require a substitution (as in theelimination rules given below) as x$d:X$d and not x$d:X5.� The Aldor
ompiler has problems with dependent pa
kages and
rasheswhen these be
ome
ompli
ated. This seems to be a bug.As long as we don't give an expli
it type to a dependent domain its xi==ti�elds as well as its xi : Ti==ti �elds are a

essible:� ;D ` ti : Ti dependent pa
kage elim1� ;x==addfD;xi==ti;D0g; � 0 ` xi$x : T �i� ;D ` ti : Ti dependent pa
kage elim2� ;x==addfD;xi : Ti==ti;D0g; � 0 ` xi$x : T �iwhere T �i is short for Ti[xi�1 := xi�1$x℄ : : : [x1 := x1$x℄.Some examplesFirst, a dependent pa
kage without expli
it typedependentPa
kage == add { X == Integer ;x : X == 0 ;f : X -> X == (n:X):X +-> (n+1) };projX : Type == X$dependentPa
kage ;projx : X$dependentPa
kage == x$dependentPa
kage ;projx2 : Integer == x$dependentPa
kage ;projf1 : X$dependentPa
kage -> X$dependentPa
kage == f$dependentPa
kage ;projf2 : Integer -> Integer == f$dependentPa
kage ;import from dependentPa
kage;importX : Type == X;importx : X == x ;importx2 : Integer == x ;importf1 : X -> X == f$dependentPa
kage ;importf2 : Integer -> Integer == f$dependentPa
kage ;Note that X$dependentPa
kage or X and Integer are really treated as equal.Now, a dependent pa
kage for whi
h we give an expli
it typetypedDependentPa
kage : with{z:Integer}== add{Z == Integer ;z : Z == 0};projz : Integer == z$typedDependentPa
kage;import from typedDependentPa
kage;importz : Integer == z5Similarly, the notion of subtyping would be
ome more
ompli
ated.28

The Aldor
ompiler reje
ts any use of Z$typedDependentPa
kage or Z here.So the de�nition Z == Integer is e�e
tively nothing but a ma
ro lo
al to thebody of the pa
kage, whi
h get expanded away as soon as we leave this s
ope.7.1.5 Dependent CategoriesAldor allows the formation of dependent
ategories :� ;x1 : T1; : : : ;xi�1 : Ti�1 ` Ti : Type dependent
ategory form� ` withfx1 : T1; : : : ;xn : Tng : CategoryFor instan
e, this rule allows the formation ofwith{x:Type; y:x}But Aldor does not allow su
h dependent
ategories to be used as types of thedependent domains dis
ussed in the previous se
tion! So, it seems that there islittle point in allowing dependent
ategories.7.2 Abstra
t Data TypesAbstra
t data types are like pa
kages, but they
ontain a de�nition of a typeRep, whi
h gives the representation type for the abstra
t type introdu
ed by theADT.Raw Syntaxt; T 2 Term ::= : : :j addfRep==>T ;x1 : T1==t1; : : : ;xn : Tn==tng an ADTj x$d proje
tion from ADTj % j Rep spe
ial type variablesj rep j per spe
ial term variablesj withfx1 : T1; : : : ;xn : Tng
ategory (type of ADT)The spe
ial type variable % is used to refer to the abstra
t type introdu
ed byan ADT, and Rep is used to refer to the
on
rete representation. The spe
ialterm variables per and rep are used to refer to the fun
tions that map
on
retevalues to abstra
t values and vi
e versa.Note that the only way of telling that a
ategory withfx1 : T1; : : : ;xn : Tngis the type of an ADT as opposed to the type of a pa
kage is that the spe
ialtype variable % is used in the Ti. 66This is unfortunate { for example in the elimination rules below it is not expli
it thatthese apply to abstra
t data types and not to pa
kages; it is therefore possible that it intro-du
es ina

ura
ies into our formalisation. It might well be better to introdu
e some synta
ti
distin
tion between them, writing withADT f : : : g for an implementation of an abstra
t datatype.
29

Typing RulesIn the rules whi
h follow X is used to range over names of abstra
t data typesand not arbitrary expressions denoting ADTs.� ; % : Type ` Ti : Type ADT-
ategory-form� ` withfx1 : T1; : : : ;xn : Tng : Category� ` T : Type � ; Rep==T;% : Type; per : T->%; rep : %->T ` ti : Ti ADT intro� ` addfRep==>T ;xi : Ti==tig : withfx1 : T1; : : : ;xn : Tng� ` X : withfx1 : T1; : : : ;xn : Tng ADT elim1 - ADT is a type� ; import from X ;� 0 ` X : Type� ` X : withfx1 : T1; : : : ;xn : Tng ADT elim2� ; import from X ;� 0 ` xi$X : Ti[% := X ℄� ` X : withfx1 : T1; : : : ;xn : Tng xi not import-ed from another pa
kage in � ;� 0 ADT elim3� ; import from X ;� 0 ` xi : Ti[% := X ℄Some examplesadtType : Category== with { x : % } ;adt : adtType== add { Rep ==> Integer ; x : % == per 0 } ;projx : adt == dep$adtimport from adt;importx : adt == xDis
ussion� The stipulation that X has to be a name refers ba
k to the dis
ussion inSe
tion 3.� Note that all the elimination rules insist that an adt X is expli
itly im-ported, even the one for expli
it proje
tion of the from xi$X ; This is donebe
ause X is needed in the type, i.e. in Ti[% := X ℄.� There are three names for types that play a role inside an adt (and nottwo, as you'd expe
t), namely{ %, the abstra
t type{ the
on
rete type, or representation type, e.g. Integer{ Rep, another name for the
on
rete typeRep==>T is both a (lo
al) ma
ro , de�ning Rep as abbreviation for T , andde
lares the T as the
on
rete representation type.30

� We
an have untyped instead of typed de�nitions in ADT's. This doesnot make any di�eren
e.� We
ould
onsider more
ompli
ated form of ADT's, with more depen-den
ies than just on %.8 Categories and
ategory tuples8.1 CategoryCategory is the type of all
ategories, just like Type is the type of all types.Raw Syntaxt; T 2 Term ::= : : :j Category the type of all
ategoriesTyping Rules Category form� ` Category : TypeCategory is in fa
t a subtype of Type{ more on that in Se
tion 15.8.2 Category TuplesJust like we
an make type tuples of the form (x : T1; : : : ; xn : Tn) we
an make
ategory tuples of the form (x : T1; : : : ; xn : Tn). We do not in
lude these in theformalisation however, as it is not
lear if these
an be used for anything7.9 TuplesTuples in Aldor are homogeneous produ
ts of arbitrary length. (So one
anthink of them as lists.) For examplett : Tuple Integer == (1,2,3) ;tt1 : Tuple Integer == (1,2,3,4,5) ;tt2 : Integer == element(tt,2) ;Raw Syntax t; T 2 Term ::= : : :j (t1; : : : ; tn) n-tuplej Tuple T tuple typej lengthj element7One pla
e where they are used is for the \joins" of
ategories mentioned earlier, but theseare ex
luded from the formal des
ription. 31

Typing Rules� ` T : Type tuple formation� ` Tuple T : Type� ` ti : T tuple intro� ` (t1; : : : ; tn) : Tuple T� ` Tuple T : Type tuple elim1� ` length : Tuple T->SingleInteger� ` Tuple T : Type tuple elim2� ` element : (Tuple T; SingleInteger)->T� Note that length and element above are heavily overloaded fun
tions.Be
ause these fun
tions exists for all possible tuple types, they are verysimilar to impli
itly parametri
 polymorphi
 fun
tions as in Haskell orML.� Aldor
onsiders Tuple Type as just another instan
e of this general Tuple-
onstru
tion.As far as simple type tuples of the form (T1; : : : ; Tn) : Tuple Type are
on
erned this is not a problem: the introdu
tion rule for these simpletype tuples is just an instan
e of the general introdu
tion rule above.However, for type tuples of the form (x1 : T1; : : : ; xn : Tn) this is dubious.Aldor allows (x : T) : Type so that type tuples (x1 : T1; : : : ; xn : Tn)
anstill be regarded as instan
es as tuples of the form (t1; : : : ; tn). However,the rule for dependent type tuples has to be more
ompli
ated than the oneabove to allow for dependen
ies. Also, there are problems with allowingtype tuples as �rst-
lass
itizens, as already dis
ussed in Se
tion 5.10 Cross Produ
tsCross produ
ts in Aldor are heterogeneous produ
ts of a �xed arity. For examplepp : Cross (Integer,Boolean) == (4,true);Raw Syntaxt; T 2 Term ::= : : :j (t1; : : : ; tn)
ross produ
tj Cross(T1; : : : ; Tn)
ross produ
t typeThere seems to be no way to refer to the
omponents of a
ross produ
t. There isno syntax su
h t:i for the i-th
omponent of a
ross produ
t t. This
auses someproblems and appears to add to the
ase for rationalising the various di�erentsorts of `produ
ts' and `tuples' that the language
ontains.
32

Typing Rules� ` (D1; : : : ; Dn) : Tuple Type
ross form� ` Cross(D1; : : : ; Dn) : Type� ` tj : Tj non-dependent
ross intro� ` (t1; : : : ; tn) : Cross(T1; : : : ; Tn)� ` tj : Tj [x1 := t1; : : : ; xj�1 := tj�1℄ dependent
ross intro� ` (t1; : : : ; tn) : Cross(x1 : T1; : : : ; xn : Tn)There are not really any elimination rules for
ross produ
ts. The two ways toget at at the individual
omponents of a
ross produ
t are des
ribed below8.1. An n-ary
ross produ
t of type Cross(S1; : : : ; Sn) as an argument to ann-ary fun
tion of type (S1; : : : ; Sn)-> : : :� ` f : (S1; : : : ; Sn)->T � ` s : Cross(S1; : : : ; Sn) n-ary fun
tion elim� ` f(s) : TNote that the fun
tion f here is not a dependent fun
tion! Be
ause we
annot refer to the
omponents of the
ross produ
t s it is not
lear howa typing rule
ould be given for a dependently typed fun
tion f . If s is ofthe form (s1; : : : ; sn) this is not a problem, but if s is a variable, the resultof a fun
tion appli
ation, et
, it is.2. An n-ary
ross produ
t t
an be taken apart into its
omponents by a`multiple de�nition' of the form(x1; : : : ; xn)==tThis means the syntax for
ontext has to be extended:� 2 Context ::= : : :j � ; (x1; : : : ; xn)==mv multiple value de�nitionThe rules for these de�nitions are given below.� ` ok � ` t : Cross(T1; : : : ; Tn) (xi : Ti) 62 � typed de�nition ok� ; (x1; : : : ; xn)==t ` ok� ` t : Cross(T1; : : : ; Tn)� ; (x1; : : : ; xn)==t;� 0 ` xi : Ti8Both a
tually rely on the
ourtesy
onversion of a
ross produ
t to a multiple value. But,as we have ex
luded multiple values for our des
ription of Aldor, we ignore this.
33

Dis
ussion� The Aldor
ompiler allows dependent
ross produ
t types, e.g.X : Type == Cross(X:Type,x:X)but it is not
lear if/how we
an write dependent
ross produ
ts, i.e.inhabitants of su
h a type. For this reason we have ex
luded dependent
ross produ
t types from the formal des
ription.� The Aldor
ompiler in fa
t treats Cross as a fun
tion of typeCross : Tuple Type -> TypeIn the formalisation we
hoose not to do so, for two reasons. First, thereare problems with treating type tuples as �rst-
lass
itizens, already dis-
ussed in Se
tion 5.2. Se
ond, our formalisation only allows
ross produ
ttypes of the form Cross(T1; : : : ; Tn), and ex
ludes dependent
ross prod-u
t types of the form Cross(x1 : T1; : : : ; xn : Tn), as mentioned above.11 Re
ordsRe
ords in Aldor work pretty mu
h as one would expe
t, ex
ept that they maybe dependent.Re
ordType : Type == Re
ord(i:Integer, j:Boolean)rr : Re
ord(i:Integer, j:Boolean)== [i==4,j==true℄;Raw Syntaxt; T 2 Term ::= : : :j Re
ord(T1; : : : ; Tn) re
ord typej bra
ket j re
ord re
ord introdu
tionj apply �eld a

essj explode re
ord eliminationre
ord and bra
ket are synonyms. bra
ket(t1; : : : ; tn)
an be written as[t1; : : : ; tn℄. apply(t; xi)
an be written as t.xi.

34

Typing Rules� ` (x1 : T1; : : : ; xn : Tn) : Tuple Type re
ord form� ` Re
ord(x1 : T1; : : : ; xn : Tn) : Type� ` Re
ord�!T : Type re
ord intro1� ` bra
ket : �!T ->Re
ord�!T� ` Re
ord�!T : Type re
ord intro2� ` re
ord : �!T ->Re
ord�!T� ` Re
ord�!T : Type re
ord elim1� ` explode : Re
ord�!T ->�!T� ` r : Re
ord(x1 : T1; : : : ; xn : Tn) re
ord elim2� ` apply(r; xi) : Ti[xi := r:x1; : : : ; xi�1 := r:xx�1℄� Here type tuples are useful! E.g. note that the formation rule aboveallows for dependent re
ords. The introdu
tion rules rely on the keywordargument style for fun
tion appli
ation.� Note that re
ord, bra
ket, explode, and apply are heavily overloadedfun
tions. Maybe it would be better not to do so in the formalisation?� Using an enumeration type 0xi0, apply
an be regarded as a fun
tion� ` Re
ord(x1 : T1; : : : ; xn : Tn) : Type� ` apply : (Re
ord(x1 : T1; : : : ; xn : Tn); 0xi0)->Tiand apply(r; xi)
an then be seen as a normal appli
ation, as explained inthe Aldor User Guide (pages 146{147). However, this is only
orre
t fornon-dependent re
ords; For dependent re
ords a substitution is needed inthe result type Ti.� There are two more operations on re
ords: set! and dispose (see pages146{147 of the Aldor User Guide). We don't
onsider these as they areimperative operations. (What is interesting about these operations is thatthey show that re
ords are not values, but rather referen
es to values.)� The Aldor
ompiler reje
ts untyped de�nitions of re
ordst == re
ord(i==4,j==5);but will a

ept a de�nition of the formt == re
ord(i:Integer==4,j:Integer==5);� Some or all the xi in a type Re
ord(x1 : T1; : : : ; xn : Tn)
an be omitted. Inthat
ase the
orresponding apply's are missing. So degenerated re
ordssu
h as Re
ord(T1; T2) are allowed in Aldor. Be
ause all the apply's are35

missing, this is e�e
tively the same as Cross(T1; T2)9. Still, if T1 and T2are equal, then Aldor reje
ts Re
ord(T1; T2).� Again, the Aldor
ompiler treats Re
ord as a fun
tion of type Tuple Type->Type.In the formalisation we
hoose not to do this, for the same reasons as forCross and Enumeration.12 UnionsUnion types provide disjoint union, also known as variants. For example,IntOrBool : Type = Union (left:Boolean, right:Integer);leftBool : Union (left:Boolean, right:Integer) == [left==true℄;rightInt : Union (left:Boolean, right:Integer) == [right==5℄;Raw Syntaxt; T 2 Term ::= : : :j Union�!T union typej bra
ket j union union introdu
tionj
ase union testj apply union eliminationunion and bra
ket are synonyms. bra
ket(t1; : : : ; tn)
an be written as [t1; : : : ; tn℄.apply(t; xi)
an be written as t.xi.Typing Rules � ` Ti : Tuple Type union form� ` Union(x1 : T1; : : : ; xn : Tn) : Type� ` Union(x1 : T1; : : : ; xn : Tn) : Type union intro1� ` bra
ket : (xi : Ti)->Union�!T� ` Union(x1 : T1; : : : ; xn : Tn) : Type union intro2� ` union : (xi : Ti)->Union�!T� ` Union(x1 : T1; : : : ; xn : Tn) : Type union elim1� `
ase : (Union�!T ; 0xi0)->Boolean� ` Union(x1 : T1; : : : ; xn : Tn) : Type union elim2� ` apply : (Union�!T ; 0xi0)->Ti� Note that re
ord, bra
ket, apply, and
ase are heavily overloaded fun
-tions. Espe
ially the �rst three, as these are also used for re
ords. (Andagain, maybe it would be better not to do so in the formalisation?)9at least, as far as the fun
tional sublanguage of Aldor is
on
erned; if imperative operationsare taken into a

ount, there are di�eren
es, as the
omponents of a re
ord
an be imperativelyupdated. 36

� The rules for union types are not type-safe. The
ulprit is the eliminationof union types (as usual). For example, if we de�nex : Union (left:Boolean, right:Integer) == union(right==5);there is nothing preventing us from
onsidering x as a left-inje
tion, as inunsafeProje
tion : Boolean == apply(x,left)So it's left up to the user to
he
k { using the fun
tion
ase { that the
orre
t
omponent is extra
ted from a variant.� There are two more operations on unions: set! and dispose (see p.147/148 of the Aldor User Guide). We don't
onsider these as these arereally only interesting in imperative setting. What is interesting aboutthese operations is that they show that re
ords are not values, but ratherreferen
es to values.13 EnumerationEnumeration types in Aldor
onsist of a �xed
olle
tion of symboli
 values. ForexampleColour : Type == 'red,green,blue';x: Colour == red;Raw Syntax t; T 2 Term ::= : : :j 0x1; : : : ; xn0j Enumeration�!TTyping Rules enumeration form� ` 0x1; : : : ; xn0 : Typeenumeration intro� ` xi : 0x1; : : : ; xn0� Aldor in fa
t regards 0x1; : : : ; xn0 as shorthand forEnumeration(x1 : Type; : : : ; xn : Type)Here Enumeration takes an arbitrary type tuple as argument, i.e.Enumeration : Tuple Type -> TypeWe
hoose not to do this in the formalisation. In addition to the prob-lems with treating type tuples as �rst-
lass
itizens, already dis
ussed inSe
tion 5.2, it is not
lear what the meaning would be of Enumerationapplied to a type tuple that is not of the form (x1 : Type; : : : ; xn : Type).37

� The Aldor
ompiler behaves strangely if we have overlapping enumerationtypes. This seems to be a bug. It would be better to disallow any overlapbetween enumeration types.� How do
lashes between enumerations and variables work? Eg. what ifone of the xi is also used as a variable?� A diÆ
ulty with enumeration types is that in a \typeless" de�nition ofthe form x==xi it may not be
lear hard to tell that xi is an element on anenumeration type, and whi
h enumeration type. The import statement isused to de
lare enumeration types.�import from 0x1; : : : ; x0n;� 0 ` ok untyped de�nition ok� ; import from 0x1; : : : ; x0n;� 0;x==xi ` okThe formalisation of the type system is surprisingly tri
ky here.14 EqualityThe type expressions in Aldor are
ompli
ated enough for equality of types tobe non-trivial. There are di�erent pla
es where the notion of equality betweentypes plays a role, and we
an distinguish di�erent notions of equalities betweentypes. These are dis
ussed below.Notions of EqualityDi�erent sour
es of equalities between types are� �-equality.There are bound variables in types, so there is a notion of �-equality oftypes, i.e. equality up to renaming of bound variables. For example, types(n:Integer)->Ve
tor(n)->Integer and (m:Integer)->Ve
tor(m)->Integer
an be regarded as equal.Related to �-equality is the
ase of va
uous dependen
y: one would expe
tthat the types S -> T and (x:S) -> T would be equal in the
ase that xis not free in the result type T.� Æ-equality.We
an de�ne names for types, so there is a notion of Æ-equality, i.e.equality up to (un)folding of de�nitions. For example, if we de�ne XX: Type == Integer then the types XX and Integer
an be regarded asequal.� �-equality.Be
ause types
an
ontain lambda abstra
tions and appli
ations in typesthere
an be �-redi
es in type expressions. For example, the type Integerand the type ((X:Type):Type+->X) (Integer) { the identity fun
tion ontypes applied to the type Integer {
an be regarded as equal.In the same way one
an
onsider �-equality as well as �-equality.� Finally, be
ause there are dependent types, types
an have arbitrary termsas subexpressions. So any notion of equality for su
h sub-expressionsindu
es a notion of equality on types. For example, be
ause 3+4 and 7 areequal the types Ve
tor(3+4) and Ve
tor(7)
an be regarded as equal.38

It should be
lear that a notion of equality that in
ludes the equalities dis
ussedunder the last point above will qui
kly be
ome unde
idable. For instan
e, de-pendent types
an
ontain diverging sub-expressions. In fa
t, just in
orporating�-equality would be enough to make equality unde
idable. The general problemwith the last two notions of equality above is that type
he
king, whi
h is doneat
ompile time, be
omes entangled with evaluation, e.g. of 3+4 to 7, whi
h byde�nition is done at run time. This is a well-known problem with dependenttypes, dis
ussed for instan
e in [MR86℄.Uses of EqualityThere are several pla
es where the type system depends on the notion of equalityfor types :(i) Any inferen
e rule where the same type o

urs more than on
e in thepremisses relies impli
itly on a notion of equality. The most obvious pla
ewhere this o

urs is in the appli
ation rule� ` f : S->T � ` s : S fun
tion elim� ` f(s) : THere the type S of the argument s has to be equal to the domain of f .(ii) Less obvious than in the typing rule above, any inferen
e rule where atype is required to of a parti
ular form in one of the premisses also relieson a notion of equality, For example, in� ` T : Type� ` Tuple T : Typetype of T is required to be equal to Type. And, in the appli
ation ruleagain, the type of f is required to be equal to something of the form S->T .(iii) Finally, overloading depends on equality { or rather, inequality { of types.Eg. the rule � ` ok � ` t : T :(� ` x : T)� ;x==t : T ` okrequires that � does not
ontain any de�nition or de
laration of an x oftype T , nor of a type equal to T .Ideally, in the formal des
ription we would want to deal with equality by in-
luding a
onversion rule of the form� ` t : T (T; T 0) 2 R
onversion� ` t : T 0where R is the equality relation on types. Intuitively, this rule states that we areonly interested in the typing relation up to the notion of equality R on types.10 Unfortunately, this is not how equality is dealt with by the Aldor
ompiler.It turns out that the
ompiler uses several notions of equality, and uses di�erentnotion of equality in di�erent pla
es. An a

urate des
ription of Aldor
antherefore not be given by in
luding a single
onversion rule as dis
ussed above;10Note that on
e Æ-equality is in
luded, the notion of equality R will depend on the
ontext� , so we should really write (T; T 0) 2 R� or � ` (T; T 0) 2 R.39

Instead equality would have to be build into any typing rule that relies onequality, e.g. � ` f : S->T � ` s : S0 (S; S0) 2 R� ` f(s) : Twhere R is the notion of equality used in this parti
ular
ase.We will not attempt to give an a

urate des
ription of equality in Aldor inthis way: it would be very hard to do and not be very useful, sin
e this is anaspe
t of the Aldor type system that we want to
hange anyway. Instead, wewill make an inventory of the di�erent notions of equality used in Aldor andgive a rough indi
ation of whi
h notion of equality is used where.Of the notions of equality listed earlier, the Aldor
ompiler only ever uses �-and Æ-equality with some restri
tions. In light of the diÆ
ulties that arise withthe other notions of equality this is not surprising.14.1 �-equalityNearly everywhere the Aldor
ompiler treats �-equal types as being equal. So,in the formal des
ription we
ould
onsider in
ludingt =� t0 �-
onv� ` (t; t0) 2 RThere are only two
ase where the Aldor
ompiler does not work modulo �-equality:� In a de�nition of a (dependently typed) fun
tion of the formf : (x:S)->T == (x:S):T +-> tthe
ompiler insists that the same variable name x is used in the body(x:S):T+->t of the de�nition as in the type (x:S)->.� The Aldor
ompiler does not always spot �-equality when
he
king forambiguous overloading (as dis
ussed under (iii) above). When the typesinvolved be
ome
ompli
ated the
ompiler may fail to spot that the same
onstant is de�ned twi
e for �-equal types, as for example Id in the de�-nitions below:Id(X:Type,x:X) : X == x;Id(Y:Type,y:Y) : Y == y;It is interesting to note that when it
omes to appli
ations (as dis
ussedunder (i) above) then Aldor has no problems in spotting that the types(X:Type,x:X)->X and (Y:Type,y:Y)->Y are equal. So di�erent algo-rithms for de
iding equality for types are used when in
omes to (i) and(iii).14.2 Æ-equalityAldor treats typed de�nitions (of the form x:T==t) and untyped de�nitions (ofthe form x==t di�erently when it
omes to de�nitional equality. It seems thatwe do not have Æ-equality for the former but that we do have Æ-equality for thelatter, albeit in a limited form. This explains to some extent why typed anduntyped de�nitions are treated di�erently in pa
kages, as dis
ussed in Se
tion 7.40

14.2.1 De�nitions of the form x : T == tThe Aldor
ompiler does not use Æ-equality for these de�nitions. So we do nothave � ;X : Type==T ;� 0 ` t : X Æ unfold� ;X : Type==T ;� 0 ` t : Tnor vi
e versa.The only ex
eption seems to be de�nitions of
ategories. Here the Aldor
ompiler does use Æ-equality. This seems to
ontradi
t the Aldor User Guide,where on page 113/114 it is said that the define keyword has to be in
luded,so that we have a de�nition of the form define x : T == t, in order for tohave Æ-
onversion for de�nitions of
ategories. We have� ;x : Category==d;� 0 ` t : x Æ
ategory unfold� ;x : Category==d;� 0 ` t : dbut we do not have the reverse, i.e.� ;x : Category==d;� 0 ` t : d Æ
ategory fold� ;x : Category==d;� 0 ` t : xSo the notion of equality that Aldor uses is not always symmetri
!All this suggests that as far as de�nitions of the form x : T == t are
on-
erned, we only have(x : Category==d) 2 � Æ
ategory unfold� ` (x; d) 2 R14.2.2 De�nitions of the form x == tIt seems that in most
ases the Aldor
ompiler works modulo Æ-equality as faras these de�nitions are
on
erned. So(x==t) 2 � Æ untyped unfold� ` (x; t) 2 R(x==t) 2 � Æ untyped fold� ` (t; x) 2 RThe ex
eption is that Aldor seems to ignore these equalities when it
omes tospotting ambiguous overloading. For example, the Aldor
ompiler a

epts thefollowing de�nitionsXX == Integer;five : Integer == 5;five : XX == 6;and does not
omplain that this overloading of five is ambiguous. (Here again,Aldor is better as spotting equality when it
omes to (i) and (iii); when it
omesto appli
ations the
ompiler treats XX and Integer as equal.)41

15 Subtyping, Courtesy Conversions, Satisfa
-tionSubtyping is a relation � on types that
omes with a so-
alled subsumption rule� ` t : T T � T 0 subsumption� ` t : T 0There are two { quite di�erent! { possible semanti
s of subsumption:� apply some
oer
ion fun
tion.Maybe we have to apply some
oer
ion fun
tion to
onvert a term of typeT to type T 0. For example, many languages treat the integers as a subtypeof the reals, and here typi
ally a
oer
ion fun
tion has to be applied to
onvert integers to some
oating-point format.� do nothing.It may be the
ase that we don't have to do anything to a
onvert a termt of type T to get a term of type T 0. Here one
an think of subtypingbetween Ring and Monoid.Note the similarity with the subsumption rule above and the
onversion rulegiven on page 39. It might be hard to tell the two apart. The intuition behindthem is quite di�erent though, and the semanti
s of type
onversion has to be\do nothing".In ni
e type systems � subsumes the notion of equality for types R, andR will even be equal to � \ �. (In Aldor this is not true: e.g. there are
ourtesy
onversions from
ross produ
ts to multiple values and ba
k, but theseare di�erent types.)Aldor has 3 notions of \subtyping", whi
h will be des
ribed in the subse
tionsbelow, namely� subtyping , � ` S v T�
ourtesy
onversions , � ` S �
onvert T� satisfa
tion , � ` S �sat TIt is not really
lear what the di�eren
es between these three notions, and in howfar we have to distinguish these notions in the formal des
ription here. Theymay have di�erent semanti
s, but that is not really an issue in the (synta
ti
)des
ription of the type system.

42

15.1 Courtesy ConversionsWe write � ` S �
onvert T for \there is a
ourtesy
onversion from S to T".The Aldor User Guide (p. 84) lists the following rules for
ourtesy
onversions:� ` Cross(T; : : : ; T) �
onvert Tuple T� ` Cross(T) �
onvert T� ` T �
onvert Tuple T� ` T �
onvert Cross T� ` t : T � ` T �
onvert T 0 �
onvert-subsumption� ` t : T 0� As the name suggests, the semanti
s of �
onvert-subsumption involves
oer
ion fun
tions.� Aldor does not provide any \
ongruen
e" rules to lift �
onvert to more
ompli
ated type expressions (like it does for v). (Be
ause of this, there isno need to in
lude a re
exivity rule for �
onvert; The only use of re
exivityof �
onvert would be in the subsumption rule, and there it's obviously notreally needed.)� In addition to
ourtesy
onversions, Aldor also has \primitive
onversions"and \
onversion fun
tions" (see p. 84-85 of the Aldor User Guide).� There are also
ourtesy
onversions between multiple values and tuples/
rossprodu
ts � ` (T; : : : ; T) �
onvert Tuple T� ` (T1; : : : ; Tn) �
onvert Cross(T1; : : : ; Tn)� ` Cross(T1; : : : ; Tn) �
onvert (T1; : : : ; Tn)but, as we do not
onsider multiple values, we ignore these. Observe thatthe last two
ourtesy
onversions e�e
tively render
ross produ
ts andmultiple values equivalent.

43

15.2 SubtypingWe write � ` S v T for S is a subtype of T in
ontext � . The Aldor UserGuide (p. 83) lists the following rules for subtyping:m � n p1; : : : ; pm permutes 1; : : : ;m v-width� ` withfx1 : T1; : : : ;xn : Tng v withfxp1 : Tp1 ; : : : ;xpm : Tpmg� ` S2 v S1 � ` T1 v T2 v-->� ` S1->T1 v T1->T2� ` t : T � ` T v T 0 v-subsumption� ` t : T 0� Note that in the reordering of the items in a signature a

ording to thepermutation p1; : : : ; pm it is assumed that the permuted signature is stillvalid; that this is not always the
ase is a
onsequen
e of type dependen
y.� The semanti
s of v-subsumption is \do nothing": as explained in theAldor User Guide (p. 83), if T v T 0 then they share an underlying \basedomain" and their elements have the same representation.� A

ording to the manual, the rules v-width and v-->are bi-impli
ations,e.g. S1->T1 v T1->T2) S2 v S1 ^ T1 v T2Of
ourse, if the rules above are the only rules for subtyping then this is
learly true.� Observe that this is a limited notion of `width' subtyping. It is not possibleto subtype on a parti
ular �eld { that is to allow xi : T 0i to repla
e xi : Ti,where Ti v T 0i { in moving from subtype to supertype; this is known as`depth' subtyping. Subtyping on �elds of re
ords is also not permitted.

44

15.3 Satisfa
tionWe write � ` S �sat T for S satis�es T in
ontext � . The Aldor User Guide(p. 86) lists the following rules for satisfa
tion:� ` S : Category� ` S �sat Type� ` Category�sat Type� ` addf : : : g : S S is the type of a
ategory or a domain� ` S �sat Type� ` S v T v)�sat� ` S �sat T� ` S �
onvert T �
onvert)�sat� ` S �sat T� ` t : T � ` T �sat T 0 �sat-subsumption� ` t : T 0� Note that satisfa
tion subsumes the
ourtesy
onversions.� The User Guide also gives a rule� ` T : Type� ` T �sat ()It is not
lear what is the intended meaning of the type () here.� There are also satisfa
tions involving Exit:� ` T : Type� ` Exit �sat T� The User Guide gives the rule� ` CaddfDg : S� ` S �sat CategoryThe judgement `� ` CaddfDg : S' is intended to formalise `S is the typeof a
ategory (in the
ontext �)', but isn't Category the only possibletype of a
ategory?� The User Guide gives the rule� ` SwithfDg : T� ` T �sat Typetogether with � ` T �sat Category� ` T �sat Typebut again, isn't Category the only possible type of a
ategory?45

16 OmissionsThe formalisation of the Aldor type system outlined in this report has deliber-ately omitted various aspe
ts of the system. As was argued in the introdu
tion,this is for a variety of reasons, but prin
ipally be
ause our aim is to formalisewhat is { at least from a type-theoreti
 point of view { the essen
e of Aldor.The remainder of this se
tion surveys aspe
ts whi
h are
overed either partiallyor not at all.Aldor is an imperative language, with a fun
tional
ore, mu
h in the mouldof Standard ML [MTHM97℄. We have
on�ned our attention to the fun
tionalsubset in this report, but that is an inessential restri
tion. (Readers might doubtthis be
ause referen
es
ause subtle problems for the type system of SML, butthis is due to the intera
tion of referen
es and parametri
 polymorphism, whi
his absent from Aldor.)We have not, on the whole, dis
ussed questions about the s
ope of de�nitions,sin
e these are largely orthogonal to type
he
king and inferen
e. They dointerfere when default argument values are allowed, and also when type
he
king(mutually) re
ursive de�nitions. However, on
e s
opes are resolved the type
he
king issues are relatively straightforward. S
opes are also
ontrolled bymeans of import and export statements; we have only
overed the fundamentalsof the import me
hanism. Post fa
to extensions also a�e
t s
opes of pa
kages;again these are not
overed here.A related diÆ
ulty
omes with arguments passed to fun
tions by keyword.These break the usual property that fun
tions are independent of the names oftheir bound variables (the property of �-
onversion), and so break the propertythat the interfa
e of a fun
tion is entirely spe
i�ed by its type.For example, we would normally treat the de�nitionsid(n : Integer) : Integer == n ;andid(m : Integer) : Integer == m ;as de�ning the same (identity) fun
tion over integer. However, with keywordarguments, the appli
ationid(n == 7)is a well-formed appli
ation of the �rst de�nition of id but not of the se
ond.As was said earlier, in order to apply the fun
tion id we need to know not onlythe types of the arguments but also their names, and so the latter informationforms part of the interfa
e to the fun
tion.Aldor
ontains a plethora of notions of `produ
t' or `tuple' types. We have,in parti
ular, not
overed multiple values. As was dis
ussed in the body of thereport, we have also
hosen to treat re
ord formation and related operationsas primitives, rather than as appli
ations of fun
tions to type tuples; this isdis
ussed again in Se
tion 18.Be
ause of their nature, Aldor ma
ros are independent of the type system.Observe, however, that the treatment of ADTs does not treat rep and per asma
ros but instead uses a s
oping me
hanism to type
he
k their appli
ation.Mu
h of the des
ription of Aldor in the manual involves de�ning many dif-ferent sorts of expression; as was remarked earlier many of these operations arevariants of fun
tion appli
ation, whi
h is
overed in detail in this report.Categories
an be built in a stru
tured way, either by extension using withor by putting together two signatures with join. A suitable expansion prior to46

type
he
king means that we do not deal with these forms; on the other hand,this expansion approa
h pre
ludes our dealing with variables whi
h range over
ategories; rather we assume that de�nitions
an be fully expanded wheneverthat proves to be ne
essary.In examining dependen
ies between �elds of a pa
kage we have not allowedfor mutual dependen
ies in our rules; this
an be a

ommodated by standardmeans. Dependen
ies between the �elds of a Cross produ
t are also allowed byAldor; it is by no means
lear how these
onstru
tions are used.17 Aldor
ompiler errorsAt various points in the report we have noted what appear to be errors in theversion 1.1.10b of the Aldor
ompiler; it might be that these have been �xedin later releases, or that indeed they are `features' rather than errors. We listthem here, giving links ba
k into the body of the report where appropriate.� The
ompiler does not always treat ambiguous de�nitions in the sameway; this was dis
ussed in Se
tion 4, page 14.� The
ompiler has problems with dependent types as �rst-
lass
itizens, asnoted in Se
tion 6.2, page 20.� The
ompiler has problems with dependent pa
kages and
rashes whenthese be
ome
ompli
ated; see Se
tion 7.1.4, page 28.� The
ompiler behaves strangely if we have overlapping enumeration types;see Se
tion 13, page 38.Other aspe
ts of the language implementation are less serious than these, but
ertainly
ontravene the des
ription of the language in the User Guide, [WBD+94℄.� The keyword define is supposed to make a de�nition (of a
ategory)transparent ([WBD+94℄, p113); in fa
t it appears to have no e�e
t onthe way in whi
h the de�nition is interpreted. There are also importantdi�eren
es between the two de�nition forms x == t and x:T == t whi
hare not apparent from [WBD+94℄.� The
ompiler
an
rash when the same name is used for two �elds in a(dependent) re
ord; it is not
lear whether this is intended or not, but itis not a feature that would be put to heavy use by the average user.18 Re
ommendationsIn the light of examining the language and its type system we have
ome tovarious
on
lusions about how its design might be improved. A number of thesesuggestions would simplify the language; others would
ombine features and athird
lass suggests extending the language in various natural ways.Type tuplesOne
an wonder if Aldor does not go a bit too far in treating everything as�rst-
lass
itizens.For example, Aldor treats Re
ord (and similarly Cross, Enumeration, Union,et
.) as a �rst-
lass
itizen, namely as a fun
tion of typeRe
ord : Tuple Type->Type47

This requires type tuples to be treated as �rst-
lass
itizens, so that the
an bepassed as arguments to a fun
tion su
h as Re
ord. On the one hand, this very
ompa
t typing of Re
ord is very appealing. But on the other hand it
ausessome problems.The most serious problem is that if type tuples are �rst-
lass
itizens, thenwe
an have variables X:Tuple Type, and hen
e re
ord types Re
ord X of whi
hthe �elds
annot be known at
ompile time.Another problem is that the typing of Re
ord above is somewhat impre-
ise, as it does not impose any restri
tions on the kind of type tuples thatRe
ord
an get as an argument. Re
all that type tuples
an be of the form(T1; : : : ; Tn), or of the form (x1 : T1; : : : ; xn : Tn), or any
ombination of thetwo. The typing of Re
ord above leaves open the question whether Re
ord
anfor instan
e be applied to (Integer,Integer), and, if so, what the meaning ofRe
ord(Integer,Integer) might be, as this re
ord type does not
ontain any�eld names.Be
ause of these problems in the formalisation we have
hosen to treatRe
ord(x : T1; : : : ; xn : Tn) as a primitive term
onstru
tion, and not the appli-
ation of a fun
tion of Re
ord to the type tuple (x : T1; : : : ; xn : Tn).Similarly, one
ould wonder if there are not more pla
es where
onstru
-tions should be regarded as primitives rather than as appli
ations, for instan
ere
ord.Over-generalityThe Aldor
ompiler allows a number of things whi
h do not seem to make sense.For instan
e, the
ompiler does not
omplain if we give it a pa
kage withoutde�nitions or even names for �elds,sillyPa
kage == add {x:Integer;y:Integer} ;anotherSillyPa
kage == add {Integer;Integer} ;or
ross produ
t types with de�nitions for �elds,sillyCrossProdu
t : Type== Cross (Integer,x:Integer==7);pa
kages written with , instead of ;sillyPa
kage == add {x:Integer,y:Integer} ;and many more. These are all things that
ould { and should { be dete
tedalready at the parsing stage by the
ompiler, i.e. before typing is
onsidered.The fa
t that it is not maybe be
ause the { very general { notion of type tupleis used here.De�nition formsWe suggest that there should be one form of de�nition, namely a transparentde�nition. Spe
i�
ally, given the de�nitionx : T == tboth the type T and the value t of the name x should be visible within its s
ope.Note that normally there are
ontexts in whi
h it is sensible to reveal only thetype of a name; the presen
e of dependent types in Aldor makes it ne
essary tohave a

ess to the value more often than in other languages.This being said, there is still an opaque de�nition me
hanism, namely theADT me
hanism, and this
an be used when abstra
tion is wanted.48

Produ
t and tuple typesAldor
ontains various di�erent notions of `
ontainer' type: multiple values,
ross produ
ts, tuples, lists and re
ords. It should be possible to rationalisethese into a number of di�erent
onstru
tions with di�erent purposes.� Lists { or tuples in Aldor-speak {
an be used to form homogeneous �nite
olle
tions of values.� Cross produ
ts
an be used to form heterogeneous
ombinations of �xedsize; re
ords provide a named variant of these.Ma
rosMa
ros
an be removed from the language. The advantage of su
h a move wouldbe to bring all of the language under the type
he
ker; this is not
urrently the
ase be
ause ma
ro expansion takes pla
e before type
he
king.Ma
ros are ostensibly used to support the ADT implementation, but wehave shown in Se
tion 7.2 that this
an be done without using ma
ros.Another use suggested by [WBD+94℄, Se
tion 12.4, is the use of a parti
ularma
ro de�nition likeli? x ==> (not empty? x and empty? rest x)over more than one type. This e�e
tively mimi
s parametri
 polymorphismusing ma
ros; it
an be repla
ed by a fun
tion in whi
h the type of the list ispassed in as an expli
it parameterli? (T:Type,x:List(T)) : Boolean == (not empty? x and empty? rest x)and this de�nition is now sus
eptible to type
he
king when it is used.Dependent typesAs we have argued elsewhere, [PT98℄, the dependent types of Aldor should beimplemented in su
h a way that type expressions are evaluated, equating, forinstan
e, ve
tors of length 2+3 and ve
tors of length 5. This modi�
ation is afo
us of
urrent work at the University of Kent; further details are available athttp://www.
s.uk
.a
.uk/people/staff/sjt/Atypi
al/The more general aspe
t of equality in Aldor is examined next.EqualityIt should be possible to simplify the treatment of equality in Aldor, whi
hSe
tion 14 shows is
urrently tri
ky. We would argue that there should bea single notion of equality in Aldor, under whi
h values { in
luding types {are evaluated before being
ompared for identity of their fully-evaluated (or`normal') forms.This works, ex
ept for the treatment of abstra
t data types. Consider thede�nitionnewType : Type = add f ... gThis de�nition has two purposes: it is de�nitive in that it de�nes the valueof newType but it is also generative in generating a new type named newType.The language Modula-3 adopts a similar approa
h to types, and there is anilluminating dis
ussion of the rationale for this, `How the types got their identity',in Se
tion 8.1 of [Nel91℄. 49

SubtypingIt should be possible to de�ne a single notion of subtyping. If the systemof `
ontainer' types is simpli�ed then this should make
ourtesy
onversionssubstantially simpler. On
e this is a
hieved, it will be possible to de�ne a singlenotion of (width and depth) subtyping as alluded to in Se
tion 15.Additional featuresSome obvious things are missing from Aldor, notably� mutually abstra
t datatypes, in whi
h the
arrier types of two or moreADTs are mutually visible, and� algebrai
 datatypes as in modern fun
tional languages like SML and Haskell.Mis
ellaneous pointsFinally there are some mis
ellaneous points.Lumping together pa
kages and ADT's as one big
olle
tion of so-
alleddomains is less than ideal. It would be better to leave out the pa
kages andtake ADTs equivalent to domains; alternatively one
ould treat pa
kages asmodules, a
olle
tion of entities quite separate from ADTs.As noted in Se
tion 12, the elimination rule for unions is type unsafe in thatit is possible to treat a value of one `variant' as if it belongs to another of adi�erent type.It should be possible to
larify the me
hanism of keyword arguments anddefault values within the type system.It would align Aldor with other fun
tional languages if fun
tion appli
ationwere made left asso
iative.19 Con
lusionsThe report has
overed the essen
e of the Aldor type system and has shownthat it
an be explained by means of a
ompa
t set of type inferen
e rules. Aside-e�e
t of the a
tivity has been to point out some diÆ
ulties with the designof the type system, as well as some potential bugs in the implementation.Referen
es[Aug98℄ Lennart Augustsson. Cayenne { a language with dependent types. ACMPress, 1998.[Bar93℄ Henk Barendregt. Lambda
al
uli with types. In Samson Abramskyet al., editors, Handbook of Logi
 and Computer S
ien
e, Volume 2. OxfordUniversity Press, 1993.[BR95℄ Gerald Baumgartner and Vin
ent F. Russo. Signatures: A language exten-sion for improving type abstra
tion and subtype polymorphism in C++.Software{Pra
ti
e & Experien
e, 25(8):863{889, 1995.[CH88℄ Thierry Coquand and G�erard Huet. The Cal
ulus of Constru
tions. In-formation and Computation, 76:95{120, 1988.[DD85℄ James Donahue and Alan Demers. Data types are values. ACM TOPLAS,7(3):426{445, 1985.[DTP99℄ Pro
eedings of the Workshop on Dependent Types in Programming.http://www.md.
halmers.se/Cs/Resear
h/Semanti
s/APPSEM/dtp99/pro
eedings.html,1999. 50

[How80℄ William A. Howard. The formulae-as-types notion of
onstru
tion. InJonathan P. Seldin and J. Roger Hindley, editors, To H. B. Curry: Essayson
ombinatory logi
, lambda
al
ulus and formalism. A
ademi
 Press,1980. A reprint of an unpublished manus
ript from 1969.[LB88℄ Butler Lampson and Rod Burstall. Pebble, a kernel language for modulesand abstra
t data types. Information and Computation, 76, 1988.[Luo89℄ Zhaohui Luo. ECC, the Extended Cal
ulus of Constru
tions. In Logi
 inComputer S
ien
e, pages 386{395. IEEE, 1989.[Ma
86℄ David Ma
Queen. Using dependent types to express modular stru
ture.In Pro
eedings of the 13th ACM Symposium on Prin
iples of ProgrammingLanguages. ACM Press, 1986.[Mil78℄ Robin Milner. A theory of type polymorphism in programming. Journalof Computer and System S
ien
es, 17, 1978.[ML79℄ P. Martin-L�of. Constru
tive Mathemati
s and Computer Programming.In Logi
, Methodology and Philosophy of S
ien
e, volume VI, pages 153{175. North Holland, 1979.[MR86℄ Albert R. Meyer and Mark B. Reinhold. `type` is not a type: Preliminaryreport. In POPL, pages 287{295. ACM, 1986.[MTHM97℄ Robin Milner, Mads Tofte, Robert Harper, and David Ma
Queen. TheDe�nition of Standard ML. MIT Press, revised edition, 1997.[Nel91℄ Greg Nelson, editor. Systems Programming with Modula-3. Prenti
e Hall,1991.[PT98℄ Erik Poll and Simon Thompson. Adding the axioms to Axiom: Towards asystem of automated reasoning in Aldor. In Cal
ulemus and Types work-shop, July 1998. Also as Te
hni
al Report 6-98, Computing Laboratory,University of Kent.[Rus98℄ Claudio Russo. Types for Modules. PhD thesis, University of Edinburgh,1998.[Ryd98℄ Chris Ryder. Report on the Aldor
ompiler. Computing Laboratory,University of Kent, 1998.[San95℄ Philip S. Santas. A type system for
omputer algebra. Journal of Symboli
Computation, 19(1{3):79{110, 1995.[Tho91℄ Simon Thompson. Type Theory and Fun
tional Programming. Interna-tional Computer S
ien
e Series. Addison-Wesley, 1991.[Tou98℄ E. Touratier. Etude de typage dans le syst�ee de
al
ul s
ienti�que Aldor.PhD thesis, Universit�e de Limoges, 1998.[WBD+94℄ S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, J.M. Steinba
hS.C. Morrison, and R.S. Sutor. AXIOM Library Compiler User Guide.The Numeri
al Algorithms Group (NAG) Ltd., 1994.

51

