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Abstract

This thesis is concerned with parameter redundancy in statistical ecology models.

If it is not possible to estimate all the parameters, a model is termed parameter re-

dundant. Parameter redundancy commonly occurs when parameters are confounded

in the model so that the model could be reparameterised in terms of a smaller number

of parameters. In principle, it is possible to use symbolic algebra to determine whether

or not all the parameters of a certain ecological model can be estimated using classical

methods of statistical inference.

We examine a variety of different ecological models: We begin by exploring mod-

els based on marking a number of animals and observing the same animals at future

time points. These observations can either be when the animal is marked and then

recovered dead in mark-recovery modelling, or when the animal is marked and then

recaptured alive in capture-recapture modelling. We also explore capture-recapture-

recovery models where both dead recoveries and alive recaptures can be observed in

the same study. We go on to explore occupancy models which are used to obtain

estimates of the probability of presence, or absence, for living species by the use of

repeated detection surveys, where these models have the advantage that individuals

are not required to be marked. A variety of different occupancy models are examined

included the addition of season-dependent parameters, group-dependent parameters

and species-dependent, along with other models.

We investigate parameter redundancy by deriving general results for a variety of

different models where the model’s parameter dependencies can be relaxed suited to

different studies. We also analyse how the results change for specific data sets and how

sparse data influence whether or not a model is parameter redundant using procedures

written in Maple. This theory on parameter redundancy is vital for the correct use of

these ecological models so that valid statistical inference can be made.
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Chapter 1

Introduction

Statistical ecology is a widely developing field and the amount of research being

undertaken on this subject is steadily increasing. This is because there is an increasing

demand to study data collected on wild animals in order to make predictions about

a species’ future. The state of current statistical ecology research is reviewed in King

(2014). We might for example be interested in animal migration rates, or how animals

change location over time, or how population abundance might fluctuate in the future.

These issues are important to many observers with an ever-growing need to protect,

restore and manage wildlife species across the world. It is paramount that we moni-

tor the underlying species’ demographic parameters so that we can apply the correct

management programs and if necessary animals can be conserved. An example of this

in Great Britain is the decline in cod stocks in the Atlantic Ocean over the last couple

of decades, which continues to be reported in the national press; how the government

is monitoring these cod stocks is discussed in Birt et al. (2009).

Appropriate inferences are based on fitting probability models, of which there is

a wide range to choose from. A potential problem when model fitting is parameter

redundancy, which occurs when parameters are confounded in the model so that the

model could be reparameterised in terms of a smaller number of parameters. Two ex-

amples of this include instances where the last recapture and survival parameters are

confounded in the fully time-dependent capture-recapture Cormack-Jolly-Seber model

(Cormack, 1964, Jolly, 1965, and Seber, 1965), and where there is age-dependent sur-

vival probability and a constant recovery probability in the Seber mark-recovery model

(Seber, 1971). This is a problem we need to avoid as it makes inference impossible

for some model parameters, and obtaining accurate estimates of parameters of key

ecological importance is the main reason for using these models. This can be overcome

1



INTRODUCTION 2

by the use of parameter constraints or by combining with other models or data sets;

this however is not always obvious or possible to do in practice.

Parameter redundancy can be caused, or be made worse, due to sparse data which

may arise from small sample sizes with small probabilities of detection. It is also

helpful from a design perspective to be able to ascertain how rich the data set needs

to be to avoid parameter redundancy. The topics considered in this thesis will help

experimenters in two ways; firstly to consider which models for analysis where every

parameter is in theory estimable in the model after they collected their data; and sec-

ondly to give approximate sample sizes so that full inference from the model can be

made without sparse data set being an issue.

As a final example of the motivation for this thesis, we quote Professor Kenneth

H. Pollock, who was the honorary speaker at the EURING Analytical Meeting 2013

in Athens, Georgia, USA. He described, “This more theoretical work [on parameter

redundancy], I think, [is] incredibly important”.

1.1 Introduction to parameter redundancy

This section provides a background on detecting parameter redundancy but only

touches upon the actual theory and method; Chapter 2 illustrates how parameter re-

dundancy is determined in practice and gives formal definitions.

We begin our introduction by considering parameter identifiability. A formal

definition of parameter identifiability can be found in Silvey (1975) as well as in Catch-

pole and Morgan (1997) where they define a model’s parameters to be identifiable if,

“no two values of the parameters give the same probability distribution for the data”.

A model is non-identifiable if different sets of parameter values result in the same value

of the likelihood. In essence, non-identifiability can occur when a model is written as

a function of too many parameters, i.e. when the model is overparameterised. Silvey

(1975) mentions that the problems with identifiability in model set-up is more of an

‘irritant’ rather than a particular problem, though we believe however that identifiabil-

ity is far more than an irritant as the problems of identifiability could mean statistical

inference may be unobtainable or incorrect for certain analyses. We expand on how

inference for some parameters can be unobtainable in Chapter 2.

One of the early references in the analysis of identifiability is Koopmans et al.
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(1950) in which they examine whether a system of linear simultaneous equations, un-

der some parameter constraints, is identifiable. The majority of the early work in this

area take their applications from econometrics, such as in Reiersøl (1950) and Fisher

(1959, 1961, 1963). Rothenberg (1971) advances methods by focusing on the infor-

mation matrix to identify model identifiability rather than examining special features

of particular models, which is what the earlier research does. Rothenberg (1971) is

also the first to consider a general method for detecting identifiability rather than con-

sidering individual models. The methods in Rothenberg (1971) form the basis of the

methodology explored in this thesis.

One area of research in which identifiability analysis has been viewed in depth is in

compartment modelling. This includes compartment modelling of biological systems

in Bellman and Åmström (1970) and Godfrey et al. (1982), in microbial batch growth

processes in Evans and Chappell (2000), as well as in general non-linear compartment

models in Walter and Pronzato (1996) and Chappell and Gunn (1998). Many of these

uses of model identifiability analysis, as well as how a model’s identifiability can be

found in practice, can be seen in Bekker et al. (1994). Chis et al. (2011) further

compares the methods of investigating parameter identifiability in the analysis of com-

partmental modelling. Cole et al. (2010) also shows how compartmental models can

be considered under a more general framework, which includes any model that has an

explicit expression. An illustrative example demonstrates how the method works for a

complex linear compartmental model as seen in Audoly et al. (1998).

While there is a wide range of literature on the identifiability of compartment

models, there are also other areas where identifiability has been explored. These in-

clude latent models in Goodman (1974) and van Wieringen (2005), moment structural

models in Shapiro (1986), electrochemistry in Berthier et al. (1996), sludge respiration

biokinetic models in Dochain et al. (1995), and naive Bayesian networks in Whiley and

Titterington (2002). It is clear to see from the breadth of applications that identifia-

bility analysis is important in many areas of statistics.

Identifiability of model parameters can be split into global and local identifiability.

A model which is globally identifiable is one which is identifiable for every value in

the parameter space, where a model which is locally identifiable is only identifiable

for some of the areas of the parameter space. By definition, a globally identifiable

model is also a locally identifiable model, but a locally identifiable model is not neces-

sarily a globally identifiable model. In ecological models, local identifiability can occur
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when there are two alternative solutions for the parameter values. An example occurs

in Royle and Link (2006) when they specify the probability of an incorrect detection

to be greater than a half so that the complement of that probability does not give

an alternative solution. In this thesis, we mainly check whether a model’s parameters

are locally identifiable, which means they are only identifiable for some areas of the

parameter space. Ecological models tend to be non-identifiable on boundary values

such as when probabilities are equal to zero or one. Non-identifiability can also occur

where there are flat ridges in likelihood surface, such as demonstrated in mark-recovery

models in Catchpole and Morgan (1994, Section 3) and Catchpole and Morgan (1997,

Example 3). It is further possible to make a locally identifiable model into a globally

identifiable model by redefining the parameter space using parameter constraints, such

as by constraining probabilities to be greater than zero and less than one.

The starting points for work on parameter redundancy is in Catchpole et al.

(1996) and Catchpole and Morgan (1997). Parameter redundancy arises when the

likelihood has flat ridges so that there is not a unique maximum likelihood parameter

estimate, as proved in Catchpole and Morgan (1997, Theorem 2). This relates to the

previous theory on identifiability and it can be shown that a model which is locally

non-identifiable is also parameter redundant, as stated in Catchpole and Morgan (1997,

Theorem 4). Catchpole and Morgan (1997) provides a symbolic method for detecting

parameter redundancy in exponential family models, building on the work of Catch-

pole et al. (1996). Catchpole and Morgan (1997, Theorem 1) shows how to identify if

a model is parameter redundant or not and further advances in Catchpole et al. (1998)

demonstrate how we can identify which parameters and parameter combinations can

be explicitly estimated in a parameter redundant model.

The research in this field has been significantly helped by the increase of computa-

tional power. A symbolic approach has commonly been used to determine whether a

model is parameter redundant by obtaining the symbolic rank of its derivative matrix,

arising from differentiating the model’s terms in its specification with respect to its

parameters. A symbolic algebra software package such as Maple can be used to per-

form the symbolic algebra to obtain a model’s parameter redundancy. Catchpole et al.

(2002) developed Maple procedures for detecting parameter redundancy, and these are

the basis for the procedures we use in this thesis. Bailey et al. (2010) state that the

symbolic approach is the, “gold standard,” among methods for obtaining parameter

redundancy results.
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However, while the symbolic approach is the preferred one for obtaining parameter

redundancy, this approach may not be computationally feasible to obtain results in

Maple for more complex models. A numerical approach was explored in Viallefont

et al. (1998) but these were found to generally be unreliable, as discussed in Gimenez

et al. (2004). A joint hybrid symbolic-numerical method was developed in Choquet

and Cole (2012) which combines both symbolic and numerical approaches. The devel-

opment of this hybrid symbolic-numerical approach has allowed results to be found for

more complex models than was possible before. A more detailed appraisal of different

symbolic and numerical methods will be shown in Section 2.5.

Cole et al. (2010) extends this earlier work on parameter redundancy and gives a

variety of examples of how parameter redundancy can be obtained in practice. Cole

et al. (2010) provides a general framework and extends the methodology from Catch-

pole and Morgan (1997) for models which are not exponential family models. It also

deals with finding parameter redundancy results in more complex models where other

methods have previously failed. This is shown in Cole and Morgan (2010a) and Cole

(2012) where Jiang et al. (2007) and Hunter and Caswell (2009) had failed to obtain

results respectively. We display Tables 1.1a and 1.1b which list all of the models in

ecology where parameter redundancy has been investigated. As the tables show, pa-

rameter redundancy is a hot topic of current research in statistical ecology and papers

are continually being published on it. These recent papers include a wider range of

more technical methods to deal with parameter redundancy such as in Cole et al.

(2010) and Choquet and Cole (2012), as well as giving different parameter redundancy

results for specific families of models such as in Cole et al. (2012) and Hubbard et al.

(2014). It is for this reason that we write this thesis, to build on the past work in this

developing field in statistical ecology.

1.2 Thesis structure

This thesis consists of five core chapters with an introductory chapter and a con-

cluding chapter. Each core chapter relates to a different set of ecological models sum-

marised in Tables 1.1a and 1.1b.

Chapter 2 examines parameter redundancy in mark-recovery models, where our

work on parameter redundancy is based on the models shown in Seber (1970, 1971).

We use mark-recovery models to demonstrate parameter redundancy theory and meth-
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Table 1.1a: The different ecological models that have been examined for parameter
redundancy, up to December 2014 (Table 1)

Model Summary of model References

Mark-recovery Provides survival estimates of Chapter 2,

models animals where they are Catchpole and Morgan (1996),

recovered dead Catchpole and Morgan (1997),

Catchpole et al. (1998),

Catchpole and Morgan (2001),

and Cole et al. (2012)

Tag return Age-dependent models which Jiang et al. (2007),

models for fish provide estimates for and Cole and Morgan (2010a)

mortality mortality rates of fish

Ring-recovery A ring-recovery model examining Cole and Freeman (2012)

models with age juvenile and adult animals where

uncertainty the number of juveniles is uncertain

Age-dependent Mixture models with McCrea et al. (2013)

mark-recovery mark-recovery data on animals

mixture models with unknown ages when marked

Capture-recapture Generates survival estimates of Chapter 3,

models animals from recapture occasions Catchpole and Morgan (1997),

Catchpole and Morgan (2001),

Catchpole et al. (2002),

and Hubbard et al. (2014)

Capture-recapture Capture-recapture models Pledger et al. (2003),

mixture which have different and Yu et al. (2014)

models classes of sub-populations

Jolly-Seber A capture-recapture model Matechou (2010), and

and stop-over which allows for uncertainty Matechou and Cole:

models in site arrival time Work in progress

Multi-state Capture-recapture models where Gimenez et al. (2003),

capture-recapture animals are in multiple states, e.g. Hunter and Caswell (2009),

models breeding and non-breeding animals and Cole (2012)

ods that will be used throughout this thesis. This includes how to find if a model is

parameter redundant or not, and how to obtain what parameters we can estimate if

the model is parameter redundant. We give further theory including how we generalise

results which have more years of marking or recovery, and how we can use different

symbolic and numerical methods to obtain parameter redundancy. We use these meth-

ods to examine mark-recovery models and identify models which are not parameter
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Table 1.1b: The different ecological models that have been examined for parameter
redundancy, up to December 2014 (Table 2)

Model Summary of model References

Multi-site Capture-recapture models where Cole et al. (2014)

capture-recapture animals return to sites with

and memory models memory of previous sites they visited

Capture-recapture Generates survival estimates Chapter 4,

-recovery models from records of alive recapture and Hubbard et al. (2014)

and dead recovery of animals

Covariate Models where covariates are used Cole and Morgan (2010b)

models e.g. weather survival dependency

Occupancy Generates occupancy estimates Chapter 5,

models from multiple survey detections and Hubbard et al. (2015)

Multiple-states An occupancy model with more Section 6.1

occupancy than a single presence state

models

The two-species An occupancy model with two Section 6.3

interaction model interacting species

The Royle-Nichols An occupancy model used to obtain Section 6.4

occupancy model estimates of animal abundance

Integrated Models for combining different Cole and McCrea (2012)

population independent data sets leading to

modelling one overall likelihood

Models with Modelling individual random Cole and Choquet (2012)

individual effects with the purpose of

random effects making some parameters estimable

redundant. There is also an extension which considers mark-recovery models where

there is a different set of survival parameters when the animal is a juvenile. The results

listed in Chapter 2 have been published in Cole et al. (2012).

Chapter 3 considers capture-recapture models where we examine the parameter re-

dundancy in models originating from Cormack (1964), Jolly (1965) and Seber (1965).

We consider a simplified model to begin with and then investigate models using the

probabilities of individual animal capture possibilities as a base for parameter redun-

dancy analysis. We explore a variety of models where survival and recapture probabil-

ities can be either age- and/or time-dependent. We investigate parameter redundancy
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by providing a simpler set of probability combinations, and show we can also con-

sider a capture-recapture model with a different set of juvenile survival parameters in

the same manner. We then illustrate parameter redundancy where not every possible

capture-history is observed by using an example data set of European dippers from

Marzolin (1988). Some of the work in Chapter 3 has been published in Hubbard et al.

(2014).

Chapter 4 expands the previous work on mark-recovery and capture-recapture

models by considering both dead recoveries and live recaptures in the same capture-

recapture-recovery model, where our work is based on the models shown in Burn-

ham (1993), Catchpole et al. (1998) and King and Brooks (2003). Capture-recapture-

recovery models considering both age- and/or time-dependent parameters are consid-

ered, as well as examining models with a different set of juvenile survival parameters.

Parameter redundancy where not all of the recapture/recovery possibilities are ob-

served is examined by exploring a data set on Great Cormorants from Hènaux et al.

(2007). We also consider an extension of this model which considers the probability of

fidelity, i.e. the probability of not emigrating, as an additional parameter, where our

work is based on the model demonstrated in Burnham (1993). We illustrate some pa-

rameter redundancy results in this fidelity model using a data set of mountain chicken

frogs. Some of this work in Chapter 4 has been published in Hubbard et al. (2014).

Chapter 5 considers occupancy models which concentrate on achieving parameter

estimates for the probability of species presence or absence at particular locations.

These models can be used where marking individuals, such as in the models of Chap-

ters 2, 3 and 4, is more problematic. The basic occupancy model with only one

detection survey can be extended by increasing the number of surveys and seasons,

and by further considering multiple location sites, where we examine the parameter

redundancy in models originating from MacKenzie et al. (2002, 2003). We give pa-

rameter redundancy results for the case where all of the possible occupancy-histories

are observed. The case where not all of the possible occupancy-histories are observed

is then considered in examples on house finches from MacKenzie et al. (2006) and

amphibian breeding from Gould et al. (2012). We then conclude with an analysis on

how approximately rich the data set needs to be so that the occupancy models used

are not parameter redundant. Some of this work in Chapter 5 will be published in

Hubbard et al. (2015) which is work in progress.
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The final chapter, Chapter 6, considers parameter redundancy for various model

extensions of the occupancy models shown in Chapter 5. This includes the addition of

multiple states (such as in MacKenzie et al., 2009), the extension to a multiple number

of species (such as in MacKenzie et al., 2004), and estimation of animal abundance

in the Royle-Nichols occupancy model (such as in Royle and Nichols, 2003). Param-

eter redundancy results are illustrated for a data set of green frogs in Maryland from

MacKenzie et al. (2009), a data set on amphibian breeding from Gould et al. (2012),

and data sets on woodthrush and catbirds from Fiske et al. (2014) respectively.

The symbolic algebra used to investigate parameter redundancy can be executed

in a symbolic algebra package such as Maple or Mathematica. We use Maple 18 in

the thesis as it follows on from earlier work on parameter redundancy in Maple from

Catchpole and Morgan (1997), Catchpole et al. (2002) and Cole et al. (2010). We

provide an electronic supplementary appendix of Maple files to supplement the work

in this thesis. The list of the Maple files given as supplementary material can be found

before this introductory chapter. For some of the examples given in the thesis, the

words “[See electronic appendix exampleX.Y.mw]” indicates that there is an electronic

appendix Maple file to supplement that example. These files give further insight into

the examples and provide the Maple code to show how the parameter redundancy

results were obtained.



Chapter 2

Mark-Recovery Models with

Parameter Redundancy

Examples

2.1 Mark-recovery models

The first type of models we consider for parameter redundancy analysis are mark-

recovery models, sometimes called ring-recovery or band-recovery models depending

on the study. A mark-recovery study would typically begin with the marking of ani-

mals by placing unique identifiers on them, for example attaching a small individually

numbered metal or plastic tag to the leg of each bird. These identifiers are then recov-

ered from dead animals and the data are collated on some time scale, typically yearly.

A mark-recovery model can then be used to estimate survival probabilities.

Mark-recovery models originate from Haldane (1955) and Chapman and Robson

(1960). Seber (1970, 1971) then formalised the previous work to create a model that

used parameters to measure the recovery reporting rates and the survival probabilities

during particular time periods. This is the basic model we consider in this chapter.

Examples of the use of mark-recovery models can be found in Brownie et al. (1985),

Krementz et al. (1997) and Seber (2002). This methodology was especially popular

in the early 1980’s, as demonstrated in Anderson and Burnham (1980), Nichols et al.

(1982), Pollock and Raveling (1982), White (1983), Conroy and Williams (1984) and

Anderson et al. (1985), to name a few. Lakhani and Newton (1983) consider a model

where the survival probabilities vary with age, rather than time as explored in the pa-

pers above and we consider age-dependence parameters in our models later on in this

10
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Table 2.1: A d-array representation of data from a mark-recovery study of lapwings
from Catchpole et al. (1999)

Year of Number of Year of recovery
ringing birds ringed 1964 1965 1966 1967 1968 1969 1970 1971 1972

1963 1147 13 4 1 2 1 0 0 1 0
1964 1285 16 4 3 0 1 1 0 0
1965 1106 11 1 1 1 0 2 1
1966 1615 10 4 2 1 1 1
1967 1618 11 1 5 0 0
1968 2120 9 5 4 0
1969 2003 11 9 4
1970 1963 8 4
1971 2463 4

chapter. This work was further extended to incorporate different first year post-release

survival probabilities, which is a common occurrence in many bird species, for exam-

ple in Morgan and Freeman (1989), Freeman and Morgan (1990, 1992) and Catchpole

et al. (1999). Unknown ages can also be incorporated in the model as a development

of mixture modelling, such as in McCrea et al. (2013), but here we only consider

age-dependence for animals marked as young. The main paper that this chapter will

regularly refer to is Cole et al. (2012), which has all the mark-recovery parameter re-

dundancy results given in this chapter.

The general form of data for a mark-recovery study can be represented as a d-

array of all the animal recovery possibilities. A d-array presents the numbers of an-

imals which have been recovered during certain recovery occasions over the course of

the study. Each row represents different occasions of marking and each column repre-

sents different recovery occasions. Data in mark-recovery studies are usually displayed

as a d-array for example in Catchpole et al. (1996, 1999) and Catchpole and Morgan

(1997). We give an example of a d-array in Table 2.1 for a study of lapwings (Vanel-

lus vanellus) ringed as nestlings, given in Catchpole et al. (1999) and Cole et al. (2012).

Let φi,j represent the probability that an animal of age i−1 at time j survives until

time j+1, given that the animal has survived for all its years of life before year j since

the animal was marked. For example, the parameter φ2,3 would indicate an animal’s

survival probability in its second year of life during the third year of the study. We

consider age-dependency in the models of this thesis when animals are known to be of



MARK-RECOVERY MODELS AND EXAMPLES 12

age 0 when they marked. Further let λi,j represent the probability that an animal of

age i − 1 is recovered dead in the jth year of the study. We refer to survival and re-

covery probabilities on a yearly scale in this chapter, however this does not necessarily

have to be the case.

Let Ni,j denote the number of animals marked in year i and recovered in year j

for i = 1, . . . , n1 and j = 1, . . . , n2, where n1 is the number of years of marking, and

n2 is the number of years of recovery. In this model, n1 ≤ n2 as there are at least

as many years of recovery as years of marking, however frequently in mark-recovery

studies the number of years of marking and recovery are the same so that n1 = n2.

The probability an animal was marked in year i and recovered dead in year j is

Pi,j =

(
j−1∏
k=i

φk−i+1,k

)
(1− φj−i+1,j) · λj−i+1,j . (2.1)

This shows that the animal has survived every year since it was marked up to year j

where the animal does not survive the year and is then recovered dead. The probabil-

ities Pi,j can be summarised in a matrix, P, known as its p-array. This p-array gives

the probability of each recovery possibility corresponding to the d-array, and is given

as

P =


(1− φ1,1)λ1,1 φ1,1(1− φ2,2)λ2,2 φ1,1φ2,2(1− φ3,3)λ3,3 · · ·

0 (1− φ1,2)λ1,2 φ1,2(1− φ2,3)λ2,3 · · ·
0 0 (1− φ1,3)λ1,3 · · ·
...

...
...

. . .

 ,
P will be of upper-triangular form as all of the terms in the entries where i > j will be

equal to zero as it is impossible to be recovered before being marked. This matrix is

a complete summary of the mark-recovery model and it is sufficient to use just these

terms to check for parameter redundancy as shown in Catchpole and Morgan (1997).

Observe that if there is at least one animal recovery in every year of the study for the

animals marked in year i, then we do not need to consider the possibility that not all

of the animals are recovered dead during the study for the animals marked in year i

as
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Pr(An animal marked in year i is not recovered dead in the study)

=

1−
n2∑
j=i

Pr(An animal marked in year i is recovered dead in the study)


=

1−
n2∑
j=i

Pi,j

 .

This result is due to the summation of all of the probabilities of possible animal re-

covery occasions being equal to one minus the probability of the animal not being

recovered, as all probabilities added up must be equal to one. For this to occur, ev-

ery year of the study must have at least one animal recovery or the result does not hold.

If we let Ri denote the number of animals marked in year i, then the likelihood for

the mark-recovery model can be expressed as

L ∝
n1∏
i=1


n2∏
j=i

P
Ni,j

i,j

1−
n2∑
j=i

Pi,j

Ri−
∑n2

j=iNi,j

 . (2.2)

An advantage of this mark-recovery model is that it is sufficiently flexible to allow

the parameters to change in their dependencies. For example, survival and recovery

probabilities that depend on age or time may be unrealistic so that these assumptions

can be relaxed. We will use the same model notation that has been previously used

in Catchpole and Morgan (1996) and Catchpole et al. (1996) where a model can be

expressed as ‘y/z’, where y denotes the survival probabilities and z denotes the recovery

probabilities. The probabilities of survival and recovery can then have four different

alternatives:

• ‘C’ = All the probabilities are equal regardless of time of marking and age of

animal, e.g. there is a constant survival probability φ throughout the study.

• ‘T’ = The probabilities depend on the year only, e.g. there is a different survival

probability φj for each year j.

• ‘A’ = The probabilities depend on the age of the animal only, e.g. there is a

different survival probability φi for when the animal is in its ith year of life.

• ‘A,T’ = The probabilities depend on the age of the animal as well as the time the

animal is recovered, e.g. there are different survival probabilities φi,j dependent
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on when the animal is in its ith year of life and is recovered in year j.

Various models have been used in the past for statistical inference, such as the

A/C model in Seber (1971) and Catchpole and Morgan (1991), models which are age-

dependent in Catchpole et al. (1996) and McCrea et al. (2013), and the models C/T,

T/C and T/A in Freeman and Morgan (1992). We can generate the p-array for these

mark-recovery models using the Maple procedure ringmod which is shown in the elec-

tronic supplementary appendix Maple files for this chapter.

We note that a slightly different parameterisation can be used specifically for tag-

return models, that are more commonly used in America to describe fisheries data.

This parameterisation is considered in Amstrup et al. (2005, Chapter 6), and is cred-

ited as the Brownie model (Brownie et al., 1985), in which they reparameterise the

model by setting fi,j = (1 − φi,j)λi,j . As we show later in Theorem 2.3, the parame-

terisation does not affect the model’s parameter redundancy results.

The mark-recovery models of this chapter make assumptions to maintain the flexi-

ble nature and simplicity of use of these models. Violation of any of these assumptions

may generate incorrect inference based on the model.

1. Marking does not affect the animal’s survival probability. We do not want a

situation where the marking of an animal makes it more likely to die compared

to an animal which has not been marked, if we are obtaining inference about

the entire animal population. An example of this assumption being violated and

biased estimates coming out of the analysis is in the banding of penguins in

Saraux et al. (2011), where they state that banded animals have a survival rate

of 16% lower than animals which have not been banded. The consequence of this

is that parameter estimates may not be truly representative of the underlying

population values.

2. The discrete time period between recovery occasions needs to be same during the

study. As we are working on a discrete time period this generally means yearly

intervals, and these time periods have to remain at yearly intervals throughout

the study.

3. Marked animals are of known age 0 when we mark them in the study, if an age-

dependent model is considered. This assumption has been relaxed for animals of
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unknown ages in McCrea et al. (2013) but such flexibility does increase model

complexity.

4. The animals die and are recovered independently of each other.

5. Technological and/or human errors in the data are not considered, or at least

are considered to be of negligible value. This includes issues such as incorrect

individual identification or incorrect data input into computers.

6. The animals recovered dead in year j are assumed to have died in year j. Late

reporting of recoveries could happen in practice, but this is assumed not to hap-

pen or at least be of a negligible amount.

We now identify how we can obtain the parameter redundancy of a particular

model by using the mark-recovery model as defined earlier as a basis for our examples.

This chapter will include how parameter redundancy can be obtained, and how the

results may be generalised for larger models of the same structure such as by additional

year of animal recovery. We then view various different parameter redundancy issues

in Sections 2.4 to 2.8, and conclude by displaying general results for mark-recovery

models in Sections 2.9 and 2.10.

2.2 What is parameter redundancy and how can it be

detected?

We begin with a definition of identifiability and show how this links to parameter

redundancy. Let M(θ) be the function that defines a model containing the parame-

ters of interest θ. Consider two different parameter sets θ1 and θ2. We then define

parameter identifiability as in Definition 2.1 below.

Definition 2.1. A statistical model, M(θ), containing the parameters θ, is parameter

identifiable if there is a one-to-one mapping where M(θ1) = M(θ2) means that θ1 = θ2

for all θ1 and θ2 in the parameter space.

We now give the definition of when a model is parameter redundant, as given in

Definition 2.2.
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Definition 2.2. A model is parameter redundant if the parameter vector θ, of dimen-

sion t, can be replaced by a vector β, of dimension q < t, such that the model can be

expressed in terms of β alone. (Catchpole et al., 1996, Definition 1)

The link between the two definitions is that if a model is parameter redundant,

the model is also parameter non-identifiable, as in both cases different parameter

values give the same model. This is shown in Catchpole and Morgan (1997) and Cole

et al. (2010) as if you can write the model using fewer parameters, the model is pa-

rameter redundant and is also parameter non-identifiable. If a model is not parameter

redundant, then all the parameters in the model can be estimated in principle. The

cause of parameter redundancy and parameter non-identifiability is due to the overpa-

rameterisation of the model, as shown for the mark-recovery model given in Example

2.2. Note that parameter identifiability is different from model identifiability, as model

non-identifiability is where different models result in the same value of the likelihood,

rather than different parameters resulting in the same value of the likelihood. We deal

solely with analysis into parameter redundancy, and therefore analysis into parameter

identifiability, in this thesis.

There may also be parameter redundancy where the data set is incomplete, such

as where Ni,j = 0 in mark-recovery models, but for now we work with the assumption

that the data set is ‘perfect’ and every recovery possibility is seen at least once in a data

set (see Section 2.6 for more details). A parameter redundant model is an undesirable

feature as we ideally want to be able to estimate every parameter in the model. For

example in a mark-recovery model, if you cannot estimate any of the survival probabil-

ities for the animals in the study, then it would be a poor model to base inference from

as one of the major objectives of using that model is the ability to estimate survival

probabilities for the animals in the study.

To investigate parameter redundancy of a particular model, we need a unique rep-

resentation of that model. We use the term exhaustive summary to define a vector

of parameter combinations that uniquely defines the structure of the model. This is a

term borrowed from the work on identifiability in compartment modelling from Walter

and Lecourtier (1982). Definition 2.3 defines an exhaustive summary, κ, as

Definition 2.3. A parameter vector κ(θ) is an exhaustive summary if knowledge of

κ(θ) uniquely determines M(θ). (Cole et al., 2010, Definition 4)
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In classical statistical inference, an example for what M(θ) could be is the model

likelihood function, though it alternatively could be a suitable probability distribution

or a series of differential equations (Cole et al., 2010, Example 2). For mark-recovery

models, the vector of the non-zero terms in the model’s p-array is an exhaustive sum-

mary as it uniquely defines the model. We work with other exhaustive summaries in

later chapters and we typically use the natural logarithm of each non-zero term as logs

are generally easier to differentiate. Discussion of other exhaustive summary forms can

be found in Section 2.4.

Example 2.1 - The mark-recovery T/A model: [See electronic appendix example2.1.mw]

This example will take the form of a mark-recovery model where survival probabili-

ties are only time-dependent and recovery probabilities are only age-dependent. In its

matrix form this model for three years of marking and recovery can be given by the

Maple code

P := ringmod(2,3,3,3);

# Inputs: (y,z,n1,n2);

# y = survival probability; z = recovery probability;

# for y and z: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T;

# n1 = number of years of marking; n2 = number of years of recovery.

The Maple procedure ringmod returns the p-array as

P =


(1− φ1)λ1 φ1(1− φ2)λ2 φ1φ2(1− φ3)λ3

0 (1− φ2)λ1 φ2(1− φ3)λ2
0 0 (1− φ3)λ1

 .
This can be used as an exhaustive summary by using only the non-zero terms in P, as

obtained by using the Maple procedure Matvec,

kappa := Matvec(P);

# Matvec(P) gives a vector of all non-zero exhaustive

# summary terms from the matrix P.

κ =



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

(1− φ2)λ1
φ2(1− φ3)λ2
(1− φ3)λ1


.
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This gives us an exhaustive summary we can use to check the model for parameter

redundancy.

If a model is parameter redundant then not all the parameters can be estimated.

However, while some of the original parameters themselves may not be estimable, some

combinations of these parameters will still be able to be obtained. We define these as

the estimable parameter combinations in the model and we can determine how

many estimable parameter combinations we can find in a model from Theorem 2.1. We

firstly define some terminology, beginning with parameter deficiency in Definition

2.4 below.

Definition 2.4. The parameter deficiency of a model gives the difference between

how many parameters there are in the model and the number of estimable parameter

combinations that can actually be obtained.

We give Theorem 2.1 later which shows how a model’s parameter deficiency can

be obtained. If the number of parameters is equal to the number of the estimable

parameter combinations, then all of the original parameters can be estimated and the

model is not parameter redundant. When the number of estimable parameters is equal

to the number of parameters in the model, it is said to be full rank.

Let the parameter set of κ containing the p parameters in the model be denoted

by θ. From the exhaustive summary κ, we can construct the derivative matrix as

in Definition 2.5 as

Definition 2.5. The derivative matrix of a model, where κj is the jth element of the

exhaustive summary κ for j = 1, . . . , r, and θi is the ith parameter in the parameter

set θ for i = 1, . . . , p, is defined as

D =

[
∂κ

∂θ

]
=



∂κ1
∂θ1

∂κ2
∂θ1

· · · ∂κr
∂θ1

∂κ1
∂θ2

∂κ2
∂θ2

· · · ∂κr
∂θ2

...
...

. . .
...

∂κ1
∂θp

∂κ2
∂θp

· · · ∂κr
∂θp


.
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This definition leads to Theorem 2.1 to determine if a model is parameter redun-

dant or not.

Theorem 2.1. a. (i) If D has rank equal to p then the model is full rank.

a. (ii) If the rank of D is equal to q < p, then the model is parameter redundant. There

are q estimable parameters and the model has parameter deficiency d = p− q.
b. If the model is parameter redundant the estimable parameters can be determined by

solving α(θ)TD(θ) = 0, which has d solutions, labelled αj(θ) for j = 1, . . . , d, with

individual entries αij(θ). Any αij(θ) which are zero for all d solutions correspond to

a parameter, θi, which is estimable. The solutions of the system of linear first-order

partial differential equations (PDEs),

p∑
i=1

αij
∂ψ

∂θi
= 0,

for j = 1, . . . , d (with ψ an arbitrary function), form the set of estimable parameters.

Parameterised in terms of the estimable parameters, the model is full rank. (Cole et al.,

2010, Theorem 2)

Part a. of Theorem 2.1 shows how to check whether a model is parameter redun-

dant or not. Part b. of Theorem 2.1 shows how a set of estimable parameters can

be found, if the original model is parameter redundant. Catchpole et al. (1998) use

the same method of solving partial differential equations in exponential family models.

Chappell and Gunn (1998) and Evans and Chappell (2000) also use this same method

for finding estimable parameter combinations in compartment models. We show how

we can use Theorem 2.1 to identify if a model is parameter redundant or not by revis-

iting Example 2.1 below.

Example 2.1 revisited: [See electronic appendix example2.1.mw] We can first list the

parameter set of the T/A mark-recovery model by the Maple procedure parsproc as

theta := parsproc(kappa);

# parsproc(P) gives a vector of all parameters in exhaustive summary kappa.

θ = [φ1, φ2, φ3, λ1, λ2, λ3]
T .

The derivative matrix of the exhaustive summary given its parameters can then be

found by the Maple procedure Dmat as
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DD := Dmat(kappa,theta);

# Dmat(kappa,theta) generates the derivative matrix of the exhaustive

# summary, kappa, differentiated by all of the parameters, theta.

DD =

[
∂κ

∂θ

]
=



−λ1 (1− φ2)λ2 φ2(1− φ3)λ3 0 0 0

0 −φ1λ2 φ1(1− φ3)λ3 −λ1 (1− φ3)λ2 0

0 0 −φ1φ2λ3 0 −φ2λ2 −λ1
(1− φ1) 0 0 (1− φ2) 0 (1− φ3)

0 φ1(1− φ2) 0 0 φ2(1− φ3) 0

0 0 φ1φ2(1− φ3) 0 0 0


.

Note that we use DD to represent a model’s derivative matrix as D is a protected

variable in Maple. We can find the symbolic rank of this matrix using the built in

Rank function in Maple, as well as finding the parameter deficiency using the built

in Dimension function. For this derivative matrix we find that the matrix rank and

model parameter deficiency are equal to

r := Rank(DD); d := Dimension(theta)-r;

r := 6,d := 0.

The output shows the model rank for the T/A mark-recovery model is equal to 6.

We then see that the parameter deficiency of the model is equal to 0 as the number of

parameters in the model is 6 so that d = p− q = 0. By part a.(i) of Theorem 2.1 the

model is full rank and it is theoretically possible to estimate all of the parameters.

We now consider another mark-recovery model in Example 2.2 and identify if that

model is parameter redundant or not.

Example 2.2 - The mark-recovery T/T model: [See electronic appendix example2.2.mw]

This is a similar example to Example 2.1 but now the recovery probabilities are time-

dependent rather than age-dependent. For three years of marking and recovery we

can check whether the model is parameter redundant using the same Maple code as

Example 2.1:

P := ringmod(2,2,3,3);

kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta);

r := Rank(DD); d := Dimension(theta)-r;
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The output from Maple shows that the model’s p-array is given as

P =


(1− φ1)λ1 φ1(1− φ2)λ2 φ1φ2(1− φ3)λ3

0 (1− φ2)λ2 φ2(1− φ3)λ3
0 0 (1− φ3)λ3

 .
The exhaustive summary used for parameter redundancy analysis is

κ =



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

(1− φ2)λ2
φ2(1− φ3)λ3
(1− φ3)λ3


,

with model parameters θ = [φ1, φ2, φ3, λ1, λ2, λ3]
T and derivative matrix

DD =

[
∂κ

∂θ

]
=



−λ1 (1− φ2)λ2 φ2(1− φ3)λ3 0 0 0

0 −φ1λ2 φ1(1− φ3)λ3 −λ2 (1− φ3)λ3 0

0 0 −φ1φ2λ3 0 −φ2λ3 −λ3
(1− φ1) 0 0 0 0 0

0 φ1(1− φ2) 0 (1− φ2) 0 0

0 0 φ1φ2(1− φ3) 0 φ2(1− φ3) (1− φ3)


.

The rank and parameter deficiency of the model are equal to

r := 5,d := 1.

This derivative matrix only has rank 5 and is therefore not full rank as there are 6

parameters in the model. This then means, by part a.(ii) of Theorem 2.1, that there

are only 5 estimable parameters in the model. To find a set of estimable parameter

combinations, we have to use part b. of Theorem 2.1.

To find all of the estimable parameters we need to solve

α(θ)TD(θ) = 0, (2.3)

to obtain the d non-zero solutions denoted as αj(θ)T , with individual entries αij(θ).

This can be done by the Maple procedure below:
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alpha := Estpars(DD,theta);

# Estpars(DD,theta) generates the alpha vector as well as the

# estimable parameters given derivative matrix DD with parameters theta.

The code Estpars gives three separate outputs: The first output gives the α vector

as defined in Theorem 2.1:

α =
[

0 0 (1− φ3)/λ3 0 0 1
]
.

If αij(θ) = 0, then the corresponding parameter θi can be estimated. As θ =

[φ1, φ2, φ3, λ1, λ2, λ3]
T , this shows we can estimate the parameters φ1, φ2, λ1 and λ2,

but we cannot estimate the parameters φ3 and λ3 individually. The second output in

Estpars gives the system of linear first-order Lagrange partial differential equations

p∑
i=1

αij
∂ψ

∂θi
= 0, (2.4)

for the j = 1, . . . , d solutions from which the estimable parameter combinations can

be obtained. As there is only one solution in this case, there is only a single partial

differential equation to solve here,

∂

∂φ3
· (1− φ3)

λ3
+

∂

∂λ3
· 1 = 0.

The final output in the Maple code Estpars gives the estimable parameter combina-

tions. This displays the final result that we estimate the parameters φ1, φ2, λ1 and λ2

explicitly as well as the estimable parameter combination (1 − φ3)λ3. If we consider

the model where s = (1− φ3)λ3, then the mark-recovery model given as

Ps =


(1− φ1)λ1 φ1(1− φ2)λ2 φ1φ2s

0 (1− φ2)λ2 φ2s

0 0 s

 ,
is not parameter redundant so that all the parameters φ1, φ2, λ1, λ2 and s can be es-

timated. Therefore the final result is that the T/T model with three years of marking

and recovery has a parameter deficiency of d = 1 and the estimable parameters are

φ1, φ2, λ1, λ2 and (1− φ3)λ3.

The symbolic method detailed in this section to find the parameter deficiency

applies to any model with a defined exhaustive summary. Similar Maple procedures

are used throughout this thesis. We now show how these parameter redundancy results
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for any model can be generalised for any number of years of marking and recovery in

the next section.

2.3 Methods for finding general parameter redundancy

results

Theorem 2.1 shows how we can identify if a model is parameter redundant or not

for a certain number of years of marking and recovery. However it is not possible to

use the Maple procedures to find the parameter redundancy for general n1 and n2

values. For example, the mark-recovery T/T model has a parameter deficiency of 1

when n1 = n2 = 4, but a parameter deficiency of 2 when n1 = 3 and n2 = 4. We can

use the methods given in Catchpole and Morgan (1997, Theorem 6) and Cole et al.

(2010, Theorem 8) to obtain more general results for models with both age- and time-

dependent parameters. Observe that these methods can be used in different statistical

models, and not just mark-recovery models, as we shall see throughout this thesis. We

propose three different methods of parameter redundancy proof below.

Method 1: Extension theorem

The standard extension theorem is a way of proving that a model is not param-

eter redundant for all models of a given structure, given the original simpler model for

lower values of n1 and n2 is not parameter redundant. The extension theorem is given

in Catchpole and Morgan (1997, Theorem 6) and Cole et al. (2010, Theorem 3) and is

given below.

We consider an exhaustive summary κ1(θ1) with parameters θ1 and with derivative

matrix D1(θ1) = [∂κ1/∂θ1]. Consider an extended exhaustive summary κ = [κ1,κ2]

where κ2 are the new terms when the model is extended. For example if we consider

a mark-recovery model with n1 = n2 = 3, then if we extend to consider an extra year

of recoveries, then κ2 would be equal to the new terms from the fourth recovery year

which are terms not in the original exhaustive summary. This model is extended by the

addition of extra parameters θ2 to give us κ(θ′) = [κ1(θ1),κ2(θ
′)] with θ′ = [θ1,θ2].

The derivative matrix of the extended model is now equal to

D =

[
D1(θ1) D2,1(θ1)

0 D2,2(θ2)

]
,
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with D2,1(θ1) = [∂κ2/∂θ1] and D2,2(θ2) = [∂κ2/∂θ2]. Then the following extension

theorem of Theorem 2.2 then applies:

Theorem 2.2. If the original model is full rank (i.e. D1 is full rank) and D2,2 is full

rank, then the extended model is full rank also. (Cole et al., 2010, Theorem 3)

Theorem 2.2 is proved in Catchpole and Morgan (1997). Observe that if there is

only one new parameter in the extended parameter set θ2, then D2,2 will always be full

rank as D2,2 would be a row vector which has matrix rank of 1. This means that as

there is only one parameter in θ2, the theorem still applies as D1 and D2,2 are both full

rank. This can be seen if the mark-recovery T/C model is considered. If we extend the

model by an additional year of recoveries, the extended part of the exhaustive summary

contains only the one new parameter φi parameter in the extended parameter set θ2

as the recovery probabilities are constant and there is only one survival probability

for each separate year of recovery. The parameter redundancy result for the mark-

recovery T/C model can then be proved by the extension theorem. Furthermore, if

the extended part has no new parameters then the derivative matrix is equal to

D =
[

D1(θ1) D2,1(θ1)
]
,

which is always full rank if D1(θ1) is full rank. We call these two cases as being

trivially proved by the extension theorem as stated in Catchpole and Morgan (1997,

Remark 7). We revisit Example 2.1 below where we use Theorem 2.2 to prove that

the mark-recovery T/A model is always full rank for all values of n1 ≥ 3 and n2 ≥ 3.

Example 2.1 revisited: [See electronic appendix example2.1.mw] We have shown in

Section 2.2 that the model is not parameter redundant when n1 = n2 = 3. Using the

extension theorem, we can now prove the model is not parameter redundant for every

n1, n2 ≥ 3. Here the original exhaustive summary is equal to

κ1 =



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

(1− φ2)λ1
φ2(1− φ3)λ2
(1− φ3)λ1


,
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with parameters θ1 = [φ1, φ2, φ3, λ1, λ2, λ3]
T . The derivative matrix D1(θ1) =

[∂κ1/∂θ1] was shown earlier to be full rank on page 19. As the derivative matrix is

full rank, we can use the extension theorem to prove the model is full rank for any

n1, n2 ≥ 3. We extend this model first by adding one year of recovery to the original

model. The exhaustive summary is then κ(θ′) = [κ1(θ1),κ2(θ
′)], with the parameter

set equal to θ′ = [θ1,θ2]. The extended part of the model, κ2, is given by

κ2 =


φ1φ2φ3(1− φ4)λ4
φ2φ3(1− φ3)λ3
φ3(1− φ4)λ2

 ,
with new parameters θ2 = [φ4, λ4]

T . The extension theorem states that if D1 and

D2,2 = [∂κ2/∂θ2] are full rank, then the extended model for any larger values of n2 is

also full rank. If we construct D2,2 we find that

D2,2 =

[
∂κ2

∂θ2

]
=

[
−φ1φ2φ3λ4 −φ2φ3λ3 −φ3λ2

φ1φ2φ3(1− φ4) 0 0

]
,

which has rank 2. This is full rank as there are 2 new parameters in θ2, which means

that if we extend the number of recoveries, the model is still full rank.

If we then extend for an extra year of marking the only term in the extended

exhaustive summary is κ2 = (1 − φ4)λ1. As there are no new parameters in this ex-

haustive summary from the original unextended model when n2 = 4, an extension of

the number years of marking is trivially full rank.

This therefore proves that the model is not parameter redundant for all values of

n1, n2 ≥ 3.

Method 2: Reparameterisation theorem

The extension theorem does not work for every model as the original model may

not be full rank to begin with. Cole et al. (2010, Remark 1) states that, “If the original

model is not full rank, we first need to find a reparameterisation of the model that is

full rank. Then Theorem 2.2 [the extension theorem] can be applied to the reparame-

terised model, so that deficiency of the general model can be determined.” In essence,

the key of this method is to find a reparameterisation of the existing parameters so

that the number of new parameters is equal to the rank of the derivative matrix of
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the reparameterised model. The method is called the reparameterisation theorem

and is given below.

Define a reparameterisation, s, as one where the exhaustive summary parame-

terised in terms of s, κ(s), contains fewer parameters than the exhaustive summary

containing the original parameters κ(θ). Let the derivative matrix of the reparame-

terised exhaustive summary be denoted as Ds = [∂κ(s)/∂s] and as usual let p be the

number of original parameters in the model. Then Theorem 2.3 applies to show how

we can reparameterise a model to work out its general parameter deficiency.

Theorem 2.3. Let rank(Ds) = rs, and ps = dim(s). Then the following hold:

a. (i) If rs = ps, s is a reduced-form exhaustive summary. The result of Theorem 2.1

can then be applied to s, to examine model parametric structure.

a. (ii) If rs < ps, then s is not a reduced-form exhaustive summary. A reduced-form

exhaustive summary may be found by first solving αTDs = 0 and then solving the

appropriate partial differential equations as in Theorem 2.1.

b. If rank(∂s/∂θ) = ps, the number of estimable parameters is equal to rs. If rs = p,

then the model in terms of θ is full rank. If rs < p the model in terms of θ is parameter

redundant. (Cole et al., 2010, Theorem 8)

Theorem 2.3 is proved in Cole et al. (2010). The purpose of this reparameteri-

sation theorem is that by rewriting κ(θ) in terms of the reparameterisation s, this

reparameterised exhaustive summary, κ(s), is then structurally simpler than κ(θ). An

ideal reparameterisation is where the derivative matrix, Ds = [∂κ(s)/∂s], is full rank

as rank(∂s/∂θ) = dim(s). An ideal reparameterisation is also one which naturally

extends for larger models. This means that if we extend the original model in terms

of its reparameterised parameters s, then the extended part of the model will contain

additional parameters of a similar pattern from the ones given in s: This can be more

clearly seen in Example 2.3 below.

The result of rewriting the exhaustive summary in terms of s can mean that the

derivative matrix Ds for the reparameterised exhaustive summary κ(s) can be compu-

tationally simpler to obtain than the original derivative matrix D for the exhaustive

summary κ(θ). Cole et al. (2010) shows how this can be done for complex models.

There are instances where the use of a reparameterisation to obtain a simpler derivative

matrix has meant parameter redundancy analysis can be performed in complex models
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where it otherwise would be computationally infeasible to do so: This can be seen in

Cole and Morgan (2010a) and Cole (2012) to overcome the complexity in obtaining

the model’s derivative matrices seen in the papers Jiang et al. (2007) and Hunter and

Caswell (2009) respectively.

We require a reparameterisation so that the rank of the reparameterised derivative

matrix Ds is the same as the number of parameters in the reparameterisation s. If

the reparameterised derivative matrix Ds is full rank, we can then use the extension

theorem of Theorem 2.2 to create general results for the reparameterised exhaustive

summary κ(s). As the extension theorem can only be used on full rank models, if

the reparameterised derivative matrix Ds is not full rank, we require a further repa-

rameterisation so that the reparameterised derivative matrix is then full rank. It is

effectively a two-step procedure where a reparameterisation is found so its derivative

matrix is full rank, and then the extension theorem of Theorem 2.2 is used to obtain

a model’s general parameter redundancy result. This will be demonstrated using the

A/T mark-recovery model in Example 2.3 below.

Example 2.3 - The mark-recovery A/T model: [See electronic appendix example2.3.mw]

Consider the A/T mark-recovery model where the survival probabilities are only age-

dependent and recovery probabilities are only time-dependent. We can use the repa-

rameterisation theorem of Theorem 2.3 to prove the model is parameter redundant

with a parameter deficiency of 1 for all values of n1, n2 ≥ 3. The model’s p-array for

three years of marking and recovery is given as

P := ringmod(3,2,3,3);

P =


(1− φ1)λ1 φ1(1− φ2)λ2 φ1φ2(1− φ3)λ3

0 (1− φ1)λ2 φ1(1− φ2)λ3
0 0 (1− φ1)λ3

 .
We can then find its exhaustive summary, parameter set and derivative matrix as

detailed in Section 2.2 by the code

kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta);

r := Rank(DD); d := Dimension(theta)-r;
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This generates the exhaustive summary

κ =



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

(1− φ1)λ2
φ1(1− φ2)λ3
(1− φ1)λ3


,

and the parameters θ = [φ1, φ2, φ3, λ1, λ2, λ3]
T with derivative matrix given as

DD =

[
∂κ

∂θ

]
=



−λ1 (1− φ2)λ2 φ2(1− φ3)λ3 −λ2 (1− φ2)λ3 −λ3
0 −φ1λ2 φ1(1− φ3)λ3 0 φ1λ3 0

0 0 −φ1φ2λ3 0 0 0

(1− φ1) 0 0 0 0 0

0 φ1(1− φ2) 0 (1− φ1) 0 0

0 0 φ1φ2(1− φ3) 0 φ1(1− φ2) (1− φ1)


.

The rank and parameter deficiency of the model are

r := 5,d := 1.

As we have shown this model is parameter redundant, we need to use the repa-

rameterisation theorem before we can use the extension theorem to determine the

parameter deficiency for general values of n1 and n2. A possible reparameterisation of

the model s can be

s =



s1

s2

s3

s4

s5


=



(1− φ1)λ1
(1− φ1)λ2
(1− φ1)λ3

φ1(1− φ2)/(1− φ1)
φ2(1− φ3)/(1− φ2)


.

The original model can then be defined in terms of only reparameterised parameters
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as

κ(s) =



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

(1− φ1)λ2
φ1(1− φ2)λ3
(1− φ1)λ3


=



s1

s2s4

s3s4s5

s2

s3s5

s3


,

which has the parameter set s = [s1, s2, s3, s4, s5]
T . The derivative matrix, Ds, can

then be formed as

Ds =

[
∂κ(s)

∂s

]
=



1 0 0 0 0 0

0 s4 0 1 0 0

0 0 s4s5 0 s4 1

0 s2 s3s5 0 s3 0

0 0 s3s4 0 0 0


,

which is full rank 5 as there are now 5 parameters in the model. This reparameterised

model therefore is not parameter redundant and full rank. To complete the proof for

this model for all n1, n2 ≥ 3, we then use the standard extension theorem of Theorem

2.2 on this reparameterised model. If we add a year of recoveries to the model, we

have the new parameters t1 = (1 − φ1)λ4 and t2 = φ3(1 − φ4)/(1 − φ3). These are

natural extensions of the reparameterisation given before in s. The extended part of

the exhaustive summary when adding a year of recoveries is equal to

κ2 =


s4s5t1t2

s4s5t1

s4t1

 .
Obtaining D2,2 by differentiating κ2 by θ2 = [t1, t2]

T , we get

D2,2 =

[
∂κ2

∂θ2

]
=

[
s4s5t2 s4s5 s4

s4s5t1 0 0

]
,

which is full rank 2. Therefore, it is possible to extend by adding extra years of re-

coveries. Also observe that the model is trivially full rank if we extend the number

years of marking, as the only non-zero term being added from n1 = 3 to n1 = 4 (while

keeping n2 = 4) is t1 with no new parameters being added. Therefore, we have shown

that the extended reparameterised model is not parameter redundant. As we have

reparameterised the model using one fewer parameter than the number of parameters
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in the original parameter set, the final parameter deficiency for the A/T mark-recovery

model is then d = 1 for all values of n1, n2 ≥ 3.

One point to make regarding this method is that there can be more than one

reparameterisation. In this A/T mark-recovery model, we could have instead repa-

rameterised the model by setting

s =



s1

s2

s3

s4

s5


=



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

λ2/λ1

λ3/λ2


.

We would then get this reparameterised exhaustive summary,

κ(s) =



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

(1− φ1)λ2
φ1(1− φ2)λ3
(1− φ1)λ3


=



s1

s2

s3

s1s4

s2s5

s1s4s5


.

This alternative reparameterisation would work in the same way as the previous

reparameterisation and it would achieve exactly the same parameter deficiency result,

a result stated in Cole et al. (2010). This is also shown in the Maple electronic sup-

plementary file example2.3.mw.

The obvious disadvantage of this approach is that the reparameterisations may not

be of any use to us. Take for example the A/T mark-recovery model; it is possible

to estimate the products (1 − φ1)λi for i = 1, . . . , n2 and φj(1 − φj+1)/(1 − φj) for

j = 1, . . . , n2− 1. However, we can never explicitly determine what φi or λi is individ-

ually for any i, which is what we were hoping to make inference from using the model.

You could suggest that these reparameterisations in this example are not very helpful

to us and having parameter estimates for s serve little purpose in our analysis. This is

not always the case however, and obtaining these estimable parameter combinations

could be meaningful when say formulating suitable linear constraints for a model.
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Method 3: Exhaustive terms

This method is for when the number of parameters exceeds the actual number of

exhaustive summary terms in a model. Where this occurs, the rank of the derivative

matrix equals the number of exhaustive summary terms and therefore the parameter

deficiency is equal to the number of parameters minus the number of exhaustive sum-

mary terms in the model. This method is mentioned in Cole et al. (2012) as well as

shown below in Example 2.4.

Example 2.4 - The mark-recovery A,T/C model: We demonstrate this method by using

a mark-recovery model where the survival probabilities are age- and time-dependent

and the recovery probabilities are constant. The p-array for this model for three years

of marking and recovery is given as

P =


(1− φ1,1)λ φ1,1(1− φ2,2)λ φ1,1φ2,2(1− φ3,3)λ

0 (1− φ1,2)λ φ1,2(1− φ2,3)λ
0 0 (1− φ1,3)λ

 ,
with parameter set θ = [φ1,1, φ1,2, φ1,3, φ2,2, φ2,3, φ3,3, λ]T . There are only 6 exhaustive

summary terms in the model with 7 different parameters. The rank of the derivative

matrix is equal to the number of exhaustive summary terms in the model which is 6.

This means that the parameter deficiency is equal to the number of parameters minus

the number of the exhaustive summary terms, which equals d = 7 − 6 = 1. This can

be seen as being the case generally in the mark-recovery A,T/C model for any n1 and

n2, as there are n1n2− 1
2n

2
1 + 1

2n1 exhaustive summary terms and n1n2− 1
2n

2
1 + 1

2n1 +1

parameters in the model, so the parameter deficiency will always be d = 1 for all values

of n1, n2 ≥ 2. The estimable parameters will then be every entry given in the model’s

p-array.

2.4 Choices of exhaustive summary

An exhaustive summary was defined in Definition 2.3 as being a unique represen-

tation of the model in question. However, there is more than one possible exhaustive

summary for any given model. Cole et al. (2010) discusses the choices of exhaustive

summary and gives examples of derivative matrices. We demonstrate several alterna-

tive exhaustive summaries here using the mark-recovery T/A example as an illustrative

example.
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Example 2.1 revisited: [See electronic appendix example2.1.mw] Consider the T/A

mark-recovery model where n1 = n2 = 3. One of the most natural exhaustive sum-

maries of mark-recovery models is the vector of all the non-zero terms in the p-array,

which here has the form

κa =



(1− φ1)λ1
φ1(1− φ2)λ2
φ1φ2(1− φ3)λ3

(1− φ2)λ1
φ2(1− φ3)λ2
(1− φ3)λ1


,

with parameters θa = [φ1, φ2, φ3, λ1, λ2, λ3]
T . This generates the derivative matrix

Da =

[
∂κa
∂θa

]
=



−λ1 (1− φ2)λ2 φ2(1− φ3)λ3 0 0 0

0 −φ1λ2 φ1(1− φ3)λ3 −λ1 (1− φ3)λ2 0

0 0 −φ1φ2λ3 0 −φ2λ2 −λ1
(1− φ1) 0 0 (1− φ2) 0 (1− φ3)

0 φ1(1− φ2) 0 0 φ2(1− φ3) 0

0 0 φ1φ2(1− φ3) 0 0 0


,

which has full rank 6 so the model is not parameter redundant. An alternative exhaus-

tive summary can be formed by using the logvector form of this exhaustive summary

as

κb =



ln{(1− φ1)λ1}
ln{φ1(1− φ2)λ2}

ln{φ1φ2(1− φ3)λ3}
ln{(1− φ2)λ1}

ln{φ2(1− φ3)λ2}
ln{(1− φ3)λ1}


,

with the same parameter set θb = θa. This generates the derivative matrix

Db =

[
∂κb
∂θb

]
=



− 1
(1−φ1)

1
φ1

1
φ1

0 0 0

0 − 1
(1−φ2)

1
φ2

− 1
(1−φ2)

1
φ2

0

0 0 − 1
(1−φ3) 0 − 1

(1−φ3) −
1

(1−φ3)
1
λ1

0 0 1
λ1

0 1
λ1

0 1
λ2

0 0 1
λ2

0

0 0 1
λ3

0 0 0


,

which also has full rank 6. This has computational complexity benefits as Db is struc-
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turally simpler than Da therefore requiring less computational memory to calculate the

rank due to ease of differentiating log terms. We can also reparameterise the original

model say by making si,j =
∏j−1
k=1 φk(1− φj)λi (with

∏0
k=1 φk = 1) to give us another

alternative exhaustive summary:

κc =



s1,1

s2,2

s3,3

s1,2

s2,3

s1,3


,

with θc = [s1,1, s1,2, s1,3, s2,2, s2,3, s3,3]
T . This generates the derivative matrix

Dc =

[
∂κc
∂θc

]
=



1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0


,

which again has full rank 6. The rank of the derivative matrix becomes very easy to

compute in this example, however a different set of reparameterisations s is needed for

each different example. A fourth option is to use the product-multinomial mean of the

model as detailed further in Catchpole and Morgan (1997). This exhaustive summary

includes the number of animals marked in year i as Fi, but this is known and is therefore

not a parameter to be estimated. The model has the form Fipi,j and Fi(1−
∑n2

j=1 pi,j),

where pi,j are the terms in P from Section 2.2 and the Fi(1−
∑n2

j=1 pi,j) terms relate

to the probability that an animal is never recovered dead given the animal was marked
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in year i. This then equates to the exhaustive summary

κd =



F1(1− φ1)λ1
F1φ1(1− φ2)λ2
F1φ1φ2(1− φ3)λ3

F1{1− (1− φ1)λ1 − φ1(1− φ2)λ2 − φ1φ2(1− φ3)λ3}
F2(1− φ2)λ1
F2φ2(1− φ3)λ2

F2{1− (1− φ2)λ1 − φ2(1− φ3)λ2}F3(1− φ3)λ1
F3{1− (1− φ3)λ1}


,

with θd = [φ1, φ2, φ3, λ1, λ2, λ3]
T . This generates the derivative matrix

Dd =

[
∂κd
∂θd

]
=



−F1λ1 F1(1− φ2)λ2 . . . 0 0

0 −F1φ1λ2 . . . 0 0

0 0 . . . −F3λ1 F3λ1

F1(1− φ1) 0 . . . F3(1− φ3) −F3(1− φ3)
0 F1φ1(1− φ2) . . . 0 0

0 0 . . . 0 0


,

which again has full rank 6. Catchpole and Morgan (1997) did note that the probability

of animals never recovered did not need to be included as exhaustive summary terms.

A fifth option here to note that the derivative matrix can be appropriately scaled by

using a matrix with the parameters on the diagonal and zeros otherwise, as suggested
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in Catchpole and Morgan (2001) so that the derivative matrix is equal to

De = diag(θb) ·
[
∂κb
∂θb

]

=



φ1 0 0 0 0 0

0 φ2 0 0 0 0

0 0 φ3 0 0 0

0 0 0 λ1 0 0

0 0 0 0 λ2 0

0 0 0 0 0 λ3


·



− 1
(1−φ1)

1
φ1

. . . 0 0

0 − 1
(1−φ2) . . . 1

φ2
0

0 0 . . . − 1
(1−φ3) −

1
(1−φ3)

1
λ1

0 . . . 0 1
λ1

0 1
λ2

. . . 1
λ2

0

0 0 . . . 0 0



=



−φ1
(1−φ1) 1 1 0 0 0

0 −φ2
(1−φ2) 1 −φ2

(1−φ2) 1 0

0 0 −φ3
(1−φ3) 0 −φ3

(1−φ3)
−φ3

(1−φ3)

1 0 0 1 0 1

0 1 0 0 1 0

0 0 1 0 0 0


,

which again has full rank 6. This derivative matrix is computationally simpler than the

other derivative matrices in this section apart from the result from reparameterisation

given in κc. What can be noted though however, is that all the different versions of

the exhaustive summary and derivative matrix give exactly the same model rank and

parameter deficiency.

In this thesis we frequently use the κa form or κb logvector form in this thesis.

The logvector form exhaustive summary tends to give simpler derivative terms and is

therefore quicker computationally to find the rank of the derivative matrix.

2.5 Non-symbolic methods for obtaining parameter re-

dundancy

The symbolic methods for obtaining parameter redundancy have been implemented

successfully in Maple for many model examples, such as in Catchpole and Morgan

(1997), Catchpole et al. (2002), Gimenez et al. (2004) and Cole et al. (2010, 2012).

There are however situations where this symbolic approach fails where it is not compu-

tationally feasible to use the method for complex problems as the computer runs out of

memory attempting to find the rank of the derivative matrix. As the rank of a matrix

in Maple is found by performing Gaussian elimination on the rows, if the number of
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matrix terms are large and algebraically complex, Gaussian elimination may fail due

to a lack of computational memory. Examples of this include Jiang et al. (2007) and

Hunter and Caswell (2009). Reparameterisation may be used to solve these computa-

tional problems, as in Cole and Morgan (2010a) and Cole (2012) which helps proceed

with the computational complexity which occurs in Jiang et al. (2007) and Hunter

and Caswell (2009) respectively. Reparameterisations may not however be straightfor-

ward to implement or automatic to find, so different non-symbolic methods have to be

explored in these cases. For some situations, numerical methods can be easier to im-

plement than the symbolic methods, such as shown in Viallefont et al. (1998). It does

however suffer from unreliability in some situations and using numerical methods alone

can lead to incorrect conclusions regarding parameter redundancy, such as shown in

Cole and Morgan (2010a) for the conclusions from Jiang et al. (2007). A full appraisal

of methods to obtain parameter deficiencies at that time can be seen in Gimenez et al.

(2004). Gimenez et al. (2004) shows the weaknesses in numerical methods and why

symbolic methods are strongly preferred if they are feasible.

More recent work has been on combining numerical and symbolic methods to make

a method of obtaining parameter redundancy which incorporates positive elements of

both numerical and symbolic approaches. This development of a hybrid symbolic-

numerical approach has cumulated in Choquet and Cole (2012). Let θ be the pa-

rameter set of the model and D(θ) be the derivative matrix of an exhaustive summary

with respect to the parameters θ. The hybrid symbolic-numerical approach is given in

Definition 2.6 below.

Definition 2.6. The hybrid symbolic-numerical algorithm is as follows:

Step 1: Determine the exact computation of D(θ) using the symbolic method.

Step 2: Evaluate D(θ) at θ = θ*, where θ* are randomly chosen numerical values.

Step 3: Find the rank of D(θ*).

Step 4: Solve αij(θ*)TD(θ*) = 0, where αij(θ*) ≈ 0 corresponds to when parameter θi

can be estimated.

(Choquet and Cole, 2012, Chapter 4)

For step 4, how close αij(θ*) is to zero depends on the criteria as discussed in Cho-

quet and Cole (2012) which includes the accuracy of the computer precision, but as a
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rough criterion anything which is lower than 1× 10−8 is deemed to be approximately

equal to zero. This hybrid symbolic-numerical algorithm is used in Choquet and Cole

(2012) to illustrate examples where the symbolic approach fails to calculate the param-

eter deficiency while the hybrid symbolic-numerical approach succeeds. It also shows

in the examples the accuracy of the results as they match the results achieved by using

the symbolic approach. The benefit of using the hybrid symbolic-numerical approach is

the efficiency of the calculations which reduces computational complexity and time to

perform the procedures. However, the hybrid symbolic-numerical approach occasion-

ally can specify some starting parameter values which are on boundary values, which

then may lead to the incorrect rank and parameter deficiency of the model being given.

It is for that reason why it is better to use the pure symbolic approach as that gives

us an exact answer for the matrix rank and a model’s parameter deficiency, if the

rank of the derivative matrix is computationally simple. When a derivative matrix’s

rank becomes computationally infeasible to calculate, we will then use this hybrid

symbolic-numerical approach to obtain solutions. We overcome this issue of starting

values being on boundary values by using five different starting points to confirm the

method obtains the correct matrix rank. An example of how the hybrid symbolic-

numerical algorithm is given in Example 2.2 below.

Example 2.2 revisited: [See electronic appendix example2.2.mw] We revisit the mark-

recovery T/T model with 3 years of marking and recovery. We demonstrate that the

same parameter redundancy results from Section 2.2 can be obtained using the hybrid

symbolic-numerical approach using the Maple procedure Formnum. This code gives us

the model rank and parameter deficiency as well as α for five different starting values

of θ*. We use five different starting points to confirm the method obtains the correct

rank and parameter deficiency as occasionally one of the random starting points can

be on or near a boundary which may then produce the incorrect rank and parameter

deficiency. We pick the minimum value in the first column of computer output as the

model rank and the maximum value in the second column as the parameter deficiency.

P := ringmod(2,2,3,3):

kappa := Matvec(P):

theta := parsproc(kappa):

DD := Dmat(kappa,theta):

hybrid := Formnum(DD,theta);

# Formnum(DD,theta) with DD as the derivative matrix and theta as the

# parameters. obtains the rank, deficiency and alpha using the
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# hybrid symbolic-numerical algorithm from Choquet and Cole, 2012.

hybrid :=



5 1



1.360175... x 10−12

4.773049... x 10−11

0.610871

9.316751... x 10−13

4.665910... x 10−11

0.791729



5 1



1.611903... x 10−13

2.210770... x 10−12

−0.729689

1.498786... x 10−13

1.245950... x 10−12

−0.683779


...

...
...

5 1



2.963504... x 10−11

−6.214586... x 10−11

−0.350553

9.309317... x 10−11

−3.353169... x 10−11

−0.936543





.

The output hybrid gives the model rank in the first column, the parameter deficiency

in the second column, and the values given in the vector α in the third column, where

there are five rows in hybrid as we perform the hybrid symbolic-numerical approach

using five different sets of starting values. This shows again that the model rank is equal

to 5 with a parameter deficiency of 1. We can further see what estimable parameters

are in the model by viewing α in the procedure Formnum. For each running of the

Formnum code, a different set of α values will be generated as the starting points each

time will be different, but all of the rows show that the first, second, fourth and fifth

values of α are approximately equal to zero; we can therefore estimate the parameters

φ1, φ2, λ1 and λ2. As the third and sixth values of α are not approximately equal to

zero, this shows it is not possible to estimate the third and sixth parameters in the

parameter set, which are the parameters φ3 and λ3. These results coincide with the

results previously found on page 2.5. Note that the Maple procedures presented later

in this thesis omit the α estimates from the third column; this adjusted procedure is

given as the Maple procedure Formnum2.
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2.6 Intrinsic and extrinsic parameter redundancy

We define two different scenarios when we consider parameter redundancy in this

thesis:

• Intrinsic Parameter Redundancy: This considers the model given we have

‘perfect’ data where at least one observation of each possible exhaustive summary

term is observed. In intrinsic parameter redundancy we are identifying param-

eter redundancy issues in the model itself rather than model being parameter

redundant due to a lack of data.

• Extrinsic Parameter Redundancy: This considers the model given we have

‘imperfect’ data, which means some of the possible exhaustive summary terms

were not observed during the study. In particular this is considered in more com-

plex models when it is unrealistic in practice to record every possible exhaustive

summary term. We say data sets are ‘sparse’ if there are only a few distinct ex-

haustive summary terms, compared to ‘rich’ data sets which includes a majority

of the distinct exhaustive summary terms in the model. We can illustrate this

by revisiting Example 2.3 below where all of the possible exhaustive summary

terms are not observed during a study.

Example 2.3 revisited: [See electronic appendix example2.3.mw] This is a case where

you cannot immediately identify the parameter redundancy of the model with imper-

fect data. Consider a A/T mark-recovery model with 3 years of marking and 4 years

of recovery where its p-array is given by

P =


(1− φ1)λ1 φ1(1− φ2)λ2 φ1φ2(1− φ3)λ3 φ1φ2φ3(1− φ4)λ4

0 (1− φ1)λ2 φ1(1− φ2)λ3 φ1φ2(1− φ3)λ4
0 0 (1− φ1)λ3 φ1(1− φ2)λ4

 .
Suppose we record these observations presented as a d-array:

17 2 0 0

0 0 0 0

0 0 12 1

 .
This data is typical of a real-life study where the probability of dead recoveries becomes

close to zero for a small number of years after marking, and we suppose that none of

the animals which were marked during the second year of the study were recovered.

There was also at least one animal not recovered dead for each year of marking so we
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need to consider these possibilities as exhaustive summary terms as well. In practice,

it is important to consider the probabilities for the animals which have never been

recovered and these need to be included in the exhaustive summary.

If we have perfect data it can be shown that the parameter deficiency of this model

is equal to one as shown in the Maple file example2.3.mw. If we exclude the possible

exhaustive summary terms which have zero observations, the exhaustive summary for

this data set now turns out to be equal to

κ =



(1− φ1)λ1
φ1(1− φ2)λ2
(1− φ1)λ3
φ1(1− φ2)λ4

1− {(1− φ1)λ1 + φ1(1− φ2)λ2 + φ1φ2(1− φ3)λ3 + φ1φ2φ3(1− φ4)λ4}
1− {(1− φ1)λ2 + φ1(1− φ2)λ3 + φ1φ2(1− φ3)λ4}

1− {(1− φ1)λ3 + φ1(1− φ2)λ4}


,

where the last three exhaustive summary terms refer to the probabilities that animals

are not recovered during the study for animals marked in the first, second and third

years respectively. If the methods from Section 2.2 are used to obtain the parameter

redundancy for this model, the Maple file example2.3.mw gives us the result

r := 6,d := 2.

The parameter deficiency of the model has now increased from one to two. So for

this particular data set, there is one fewer estimable parameter combination than if we

had all the possible exhaustive summary terms observed in this study. This results in

some of the inference for the model parameters being lost due to the sparseness of the

data set observed.

The issue of extrinsic parameter redundancy is regularly demonstrated in this thesis

along with numerous real life data sets to show parameter deficiencies for different eco-

logical models. In practice, this is the more important form of parameter redundancy

as you rarely get perfect data sets, though examining intrinsic parameter redundancy

is useful when suggesting a model to use for analysis.
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2.7 The PLUR decomposition and near parameter redun-

dancy

When a model is not parameter redundant it means that in theory we can estimate

all the parameters. However, a model is not necessarily full rank for all values in the

parameter space and is only locally identifiable. In statistical ecology a model may be

full rank so that all the parameters can be theoretically estimated, but at boundary

values, such as survival probabilities being equal to zero or one, the model is parameter

redundant. In practice we observe that generally this will not be the case but these

values are possible, such as in the capture-recapture Soay sheep study of Catchpole

et al. (2000) where the recapture probabilities are approximately equal to one. We

term such parameter values where the model is not full rank as being on boundary

values and more discussion on boundary estimation in mark-recovery models can be

found in Catchpole and Morgan (1994) and Catchpole et al. (1996). This is similar to

having flat ridges in the likelihood space for particular parameter values, such as shown

in Catchpole and Morgan (1997, Example 3) where a mark-recovery model becomes

parameter redundant if all the first year survival probabilities are the same regardless

of year ringed. This problem has also been seen in identifiability analysis in Shapiro

and Browne (1983) where they consider a point in the parameter space where their

model becomes non-identifiable.

Cole et al. (2010) shows how these boundary values can be determined by using a

matrix decomposition of the derivative matrix. This is the (modified) PLUR matrix

decomposition of the derivative matrix, which in this context proves extremely useful

to find out a list of parameter conditions which makes the model not full rank. The

PLUR decomposition in Cole et al. (2010) can be derived from Corless and Jeffrey

(1997), which is the same representation of a matrix as in the Turing factorisation of

a matrix from Turing (1948). This decomposition can be used to identify areas of the

parameter space where the model will not be full rank. Cole et al. (2010) define the

PLUR decomposition as follows in Theorem 2.4.

Theorem 2.4. For a full rank model, write [the derivative matrix] D = PLUR, where

P is a permutation matrix, L is a lower triangular matrix with ones on the diagonal,

U is an upper triangular matrix and R is a matrix in reduced echelon form. The model

is parameter redundant at θ if and only if Det(U) = 0 at a point θ and R is defined

at θ. (Cole et al., 2010, Theorem 4)
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Note that if one of L, U or R are not defined at θ, then a further PLUR decompo-

sition of D evaluated at θ is required as shown in Cole et al. (2010, Remark 2). This

is shown in Example 2.1 below where L and U are not defined when λ1 = 0: This

problem is dealt with in this case by letting λ1 = 0 in the exhaustive summary and

then by calculating a further the PLUR decomposition on that exhaustive summary.

The Maple code for finding the PLUR decomposition is using the built in

LUDecomposition function within Maple. The procedure finds the determinant of the

matrix U. This determinant can be solved to get the solutions where det(U) = 0, and

these solutions would cause parameter redundancy in the model for those parameters

values. Example 2.1 below demonstrates the use of a PLUR decomposition to examine

the boundary values for a mark-recovery T/A model.

Example 2.1 revisited: [See electronic appendix example2.1.mw] Consider again the

mark-recovery T/A model for 3 years of marking and recovery. The exhaustive sum-

mary, derivative matrix and parameter set are as given in Section 2.2. To find the

PLUR decomposition of U, the following Maple code can be used:

(pp,ll,uu,rr) := LUDecomposition(DD,output=[‘P’,‘L’,‘U1’,‘R’])

# LUDecomposition is an built in function with DD as the derivative matrix.

P := pp; L := ll; U := uu; R := rr;

DetU := Determinant(uu);

This output of this code gives the following matrices

P = R =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

L =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

− (1−φ1)
λ1

− (1−φ1)(1−φ2)
φ1λ1

− (1−φ1)(1−φ3)
φ1φ2λ1

1 0 0

0 − (1−φ2)
λ2

− (1−φ2)(1−φ3)
φ2λ2

φ1λ1
(1−2φ1)λ2 1 0

0 0 − (1−φ3)
λ3

0 − (1−2φ1)λ2
(2−3φ1)λ3 1


,



MARK-RECOVERY MODELS AND EXAMPLES 43

U =



−λ1 φ̄2λ2 φ2φ̄3λ3 0 0 0

0 −φ1λ2 φ1φ̄3λ3 −λ1 φ̄3λ2 0

0 0 −φ1φ2λ3 0 −φ2λ2 −λ1

0 0 0 − (1−2φ1)φ̄2

φ1
− φ̄1φ2φ̄3λ2

φ1λ1
− (1−φ1−φ1φ2)φ̄3

φ1φ2

0 0 0 0 (2−3φ1)φ2φ̄3

(1−2φ1) − (3φ1φ2−φ1−φ2)φ̄3λ1

(1−2φ1)φ2λ2

0 0 0 0 0 (φ1−φ2)φ̄3λ1

(2−3φ1)φ2λ3


,

where φ̄i = 1− φi. The determinant of U when simplified is equal to

DetU = φ1φ2λ
2
1λ2(1− φ2)(1− φ3)2(φ1 − φ2).

Therefore when φ1φ2λ
2
1λ2(1−φ2)(1−φ3)2(φ1−φ2) = 0, the model is parament redun-

dant for that set of parameters values. It is then possible in general to use the Maple

function solve to find the solutions where the determinant of U is equal to zero. Many

of these trivial solutions are on boundary values when probabilities are either zero or

one so we effectively exclude these solutions from our analysis. One possible solution

however is that the determinant of U is equal to zero when φ1 = φ2. This shows that

if the first and second year survival probabilities are the same, the model is parameter

redundant. This is true if you observe the model

Ps =


(1− φ1)λ1 φ1(1− φ1)λ2 φ21(1− φ3)λ3

0 (1− φ1)λ1 φ1(1− φ3)λ2
0 0 (1− φ3)λ1

 ,
where φ1 = φ2. If we now obtain this model’s parameter deficiency, it is equal to one

and the model is not full rank anymore. Therefore by using the PLUR decomposition,

we have found a region in the interior of the parameter space where the model becomes

parameter redundant, which is when φ1 = φ2.

The above example shows that for certain parameter values meaningful inference

cannot be achieved. A similar case to this was seen in Catchpole et al. (2001) where

they consider a mark-recovery model with different first-year survival and recovery

probabilities. There are efforts made to avoid considering boundary values in our re-

sults for this thesis. Note that the PLUR decomposition methodology can also be used

with the extension theorem to obtain general results, as shown in Cole et al. (2010).

We can further use this PLUR decomposition to illustrate when models may be-

come near parameter redundant. This is when it is possible for a full rank model

to behave as though it is a parameter redundant model in practice when a parameter
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is very close to one of its boundary values. Near parameter redundancy is defined as

in Definition 2.7 below.

Definition 2.7. A near parameter redundant model is one that is formally full rank,

but might be classed as parameter redundant by an inevitably-imprecise numerical

method, because the model is very similar to a model that is parameter redundant

for a particular data set. (Cole et al., 2010, pp.21)

If a full rank model is parameter redundant at θ= θ‘, the model may be near

parameter redundant for parameter estimates close to θ= θ‘. Non-symbolic methods

such as detailed in Section 2.5 can be used to show this near parameter redundancy

as the solutions which arise are numerically similar to a parameter redundant model.

A near parameter redundant model can give poor estimates for parameters as a con-

sequence of small eigenvalues in the Hessian matrix at the maximum likelihood, as

stated in Catchpole et al. (2001).

Example 2.1 revisited: If we continue to use the mark-recovery T/A model for 3 years

of marking and recovery, we found that using the PLUR matrix decomposition, we

obtained

DetU = φ1φ2λ
2
1λ2(1− φ2)(1− φ3)2(φ1 − φ2).

This means that the model is near parameter redundant when φ1 ≈ φ2, as well as

when some of the parameters are estimated as near the boundary values of zero or

one. In practice, this means that if φ1 ≈ φ2 statistical inference may be incorrect for

some of the parameter estimates obtained from the model.

This concept of near parameter redundancy has been studied before in Catchpole

et al. (2001), Nasution et al. (2004) and Bailey et al. (2010). Catchpole et al. (2001)

has a full discussion of near parameter redundancy and ways this affects inference, and

also gives suggestions as to how this problem can be tackled in practice when it arises

from data analysis. In these cases the numerical methods and the hybrid symbolic-

numerical method of Choquet and Cole (2012) are advantageous as they identify this

near parameter redundancy in the model unlike the pure symbolic methods. We will

not consider near parameter redundancy in this thesis but it is something to consider

when examining actual data sets when these problems of near parameter redundancy

can appear.
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2.8 Detecting parameter redundancy in models with co-

variates

One way of decreasing the parameter deficiency of a model, or even removing pa-

rameter redundancy altogether, is through the use of covariates. Covariates can be

used when an additional variable affects the probabilities of survival or recovery: An

example of this is where weather covariates affect the survival probabilities of the an-

imals in a study such as in North and Morgan (1979), Tilling and Sterne (1999) and

Brown (2010). Cole and Morgan (2010b) examined the effects of parameter redun-

dancy when covariates are incorporated into the model. The reason why covariates

are effective can be seen returning to the mark-recovery A/T model of Example 2.3.

Example 2.3 revisited: [See electronic appendix example2.3.mw] We can incorporate

covariates into the mark-recovery A/T model by introducing a weather effect for the

recovery probabilities. The original mark-recovery A/T model with 3 years of marking

and recovery has rank 5 and a parameter deficiency of 1. Suppose that the reporting

probability is now equal to

λj =
1

1 + exp(α+ βxj)
,

for parameters α and β, where xj is a given time-dependent weather covariate for year

j. This logistic form is used to ensure the probability remains bounded between zero

and one. The model’s parameter set has now changed from θ = [φ1, φ2, φ3, λ1, λ2, λ3]
T

to being θcov = [φ1, φ2, φ3, α, β]T , i.e. we have turned a 6 parameter model into a 5

parameter model. The p-array of the model with these covariates is given as

Pcov =


(1−φ1)

1+exp(α+βx1)
φ1(1−φ2)

1+exp(α+βx2)
φ1φ2(1−φ3)

1+exp(α+βx3)

0 (1−φ1)
1+exp(α+βx2)

φ1(1−φ2)
1+exp(α+βx3)

0 0 (1−φ1)
1+exp(α+βx3)

 .

If we now find the derivative matrix of this model with respect to the new parameter
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set θcov, we obtain

Dcov =



−1
1+exp(α+βx1)

(1−φ2)
1+exp(α+βx2)

. . . −1
1+exp(α+βx3)

0 −φ1
1+exp(α+βx2)

. . . 0

0 0 . . . 0

−(1−φ1)exp(α+βx1)
{1+exp(α+βx1)}2

−φ1(1−φ2)exp(α+βx2)
{1+exp(α+βx2)}2 . . . −(1−φ1)exp(α+βx3)

{1+exp(α+βx3)}2

−(1−φ1)x1exp(α+βx1)
{1+exp(α+βx1)}2

−φ1(1−φ2)x2exp(α+βx2)
{1+exp(α+βx2)}2 . . . −(1−φ1)x3exp(α+βx3)

{1+exp(α+βx3)}2


,

which has a rank of 5 and is full rank. Therefore, we can eliminate the parameter

redundancy in this model if we have time-dependent covariates.

This covariate information may not be useable for every model and adding covari-

ates does not always result in a full rank model: An example of this is in the A/A

mark-recovery model when examined using an age-dependent covariate instead of a

time-dependent covariate (though there generally does not tend to be any useful age-

dependent covariates in practice). In practice, it can be useful to include covariates to

avoid parameter redundancy, but the reparameterised parameters now offer different

ecological conclusions from the original parameters in the model, i.e. in Example 2.3

above, we have gone from estimating the recovery probabilities λ1, λ2 and λ3, to esti-

mating the parameters α and β. The addition of covariates can eliminate parameter

redundancy in the model, but the covariate information should be relevant to the con-

text of the model. The use of unnecessary covariates may provide poor estimates for

the model parameters as increasing the complexity of the model means there is less

information in the data per parameter than before.

Cole and Morgan (2010b) have examined the effects of covariates in ecological

models and they proved that the number of estimable parameters in the model with

covariates is equal to min(pc, q), where pc is the number of parameters in the covariate

model and q is the number of estimable parameters in the model without covariates.

We can see this in Example 2.3 previously as pc = 5 in the covariate model and q = 6 in

the original model, so the number of estimable parameters in the model with covariates

is 5. Covariates and their effect on parameter redundancy is further explored in Cole

and Morgan (2010b).
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2.9 Intrinsic mark-recovery model results

In this section we present intrinsic parameter redundancy results for the mark-

recovery y/z models as specified in Section 2.1. These parameter redundancy results

listed in Table 2.2 have been presented in Cole et al. (2012, Table 1). The results in

Table 2.2 are for the 16 possible mark-recovery y/z models where y and z can either

be constant (C), time-dependent (T), age-dependent (A) or age- and time-dependent

(A,T). The second column of Table 2.2 refers to the rank of the model, which is the

number of estimable parameters in the model. The third column refers to the pa-

rameter deficiency of the model where it is parameter redundant when d > 0. There

are n1 years of release and n2 years of recovery, where n2 ≥ 2 with n2 ≥ n1. The

T/A model only has its listed rank and parameter deficiency when n1 ≥ 3 where the

model has a parameter deficiency of 1 when n1 = 2. The fourth column refers to the

method of proof used from Section 2.3 to obtain the parameter redundancy result,

and the final column then gives the estimable parameter combinations which uses the

method of solving partial differentiation equations as detailed in Section 2.2. The

results of Table 2.2 assumes that perfect data are recorded with at least one animal

being observed dead at each possible recovery occasion, i.e. all Ni,j values are non-zero.

The letter ‘E’ in Table 2.2 is used to denote the number of terms in the model’s

p-array as it is of upper triangular form with Pi,j = 0 for all i > j, as it is impossible

to have recoveries on animals which have not been marked in the first place. Note that

as
n∑
i=1

i =
n(n+ 1)

2
,

it can be shown that the number of terms in an p-array is equal to

E = n1n2 −
n1∑
i=1

(i− 1)

= n1n2 −

(
n1∑
i=1

i−
n1∑
i=1

1

)

= n1n2 −
((

n1(n1 + 1)

2

)
− n1

)
= n1n2 −

(
n21
2

+
n1
2
− n1

)
= n1n2 −

1

2
n21 +

1

2
n1.
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Table 2.2: Intrinsic parameter redundancies and estimable parameter combinations for mark-recovery y/z models

Model Rank Deficiency Method Estimable Parameter Combinations

C/C 2 0 Extension φ, λ

C/T n2 + 1 0 Extension φ, {λi}i = 1, . . . , n2

C/A n2 1 Reparameterisation
{
φi−1(1− φ)λi

}
i = 1, . . . , n2

C/A,T E 1 Exhaustive terms {Pi,j}i = 1, . . . , n1
j = i, . . . , n2

T/C n2 + 1 0 Extension {φi}i = 1, . . . , n2
, λ

T/T n1 + n2 − 1 n2 − n1 + 1 Reparameterisation
{φi}i = 1, . . . , n1 − 1, {λi}i = 1, . . . , n1 − 1, φn1(1− φn1)λn1 ;

if n2 > n1 also: {φi(1− φi+1)λi+1}i = n1 + 1, . . . , n2 − 1

T/A* 2n2 0 Extension {φi}i = 1, . . . , n2
, {λi}i = 1, . . . , n2

T/A,T E n2 Exhaustive terms {Pi,j}i = 1, . . . , n1
j = i, . . . , n2

A/C n2 1 Reparameterisation
{∏i−1

k=1 φk(1− φi)λ
}

i = 1, . . . , n2

A/T 2n2 − 1 1 Reparameterisation {P1,j}j = 1, . . . , n2
,
{

λi
λi−1

}
i = 2, . . . , n2

A/A n2 n2 Reparameterisation
{∏i−1

k=1 φk(1− φi)λi
}

i = 1, . . . , n2

A/A,T E n2 Exhaustive terms {Pi,j}i = 1, . . . , n1
j = i, . . . , n2

A,T/C E 1 Exhaustive terms {Pi,j}i = 1, . . . , n1
j = i, . . . , n2

A,T/T E n2 Exhaustive terms {Pi,j}i = 1, . . . , n1
j = i, . . . , n2

A,T/A E n2 Exhaustive terms {Pi,j}i = 1, . . . , n1
j = i, . . . , n2

A,T/A,T E E Exhaustive terms {Pi,j}i = 1, . . . , n1
j = i, . . . , n2

* = only valid for n1 ≥ 3: The rank is 2n2 − 1 and parameter deficiency is 1 when n1 = 2,

as proved by the exhaustive terms method with estimable parameters {Pi,j}i = 1, 2
j = i, . . . , n2

;

E = n1n2 − 1
2n

2
1 + 1

2n1.
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We can see that some models are full rank but most of the more complex models

are parameter redundant. The majority of the parameter redundancy above comes

from when a certain set of parameters are age- and time-dependent due to the ex-

haustive terms in the model. This is because if one set of parameters is age- and

time-dependent, say for the recovery probabilities, there is a different λi,j parameter

for each exhaustive summary term. Even if survival probabilities are then constant,

there are more parameters than data points in the study meaning there is parameter

redundancy in the model. Cole et al. (2012) analyses some extrinsic parameter results

given that we only have a certain number of values on each diagonal of the model’s

p-array, but we will not quote any of these results in this thesis. Note that tag-return

models, which are used in America to describe fisheries data (as discussed in Brownie

et al., 1985), have the same parameter redundancy results as above. This is due to

the reparameterisation theorem of Theorem 2.3 as there is a direct reparameterisation

between tag-return models and the mark-recovery models explored in Table 2.2.

2.10 Intrinsic mark-recovery models with juvenile sur-

vival probabilities

It is possible to explore a variation of this model which includes a set of juvenile

survival probabilities. This is often the case in some bird species where they may

have a lower survival rate in the first year of life compared to when the animal is of

adult age. Some examples where this has been considered for mark-recovery models

are in Morgan and Freeman (1989), Freeman and Morgan (1990, 1992) and Catchpole

et al. (1999). We can also extend this idea for having different survival probabilities

when the animal is a juvenile for several years rather then in just its first year of life.

Mead et al. (1979) and North and Morgan (1979) provide examples in which survival

probabilities of herons are age-specific for the first two or three years of life, but are

constant for older birds.

We let J denote the number of years where the animal is a juvenile where the

animal is an adult in year J + 1 and beyond. We can show that the probability for a

single recovery occasion where an animal was marked in year i and recovered dead in
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year j is equal to

Pi,j =



(
j−1∏
k=i

φk−i+1,k

)
(1− φj−1+1,j)λj−i+1,j if j ≤ J,(

J∏
k=i

φk−i+1,k

)(
j−1∏

k=J+1

φk−i+1,k

)
(1− φj−1+1,j)λj−i+1,j if j > J,

(2.5)

where
∏0
k=i φk−i+1,k = 1. The first possibility corresponds to when the animal is

recovered dead as a juvenile and the second possibility is when the animal is recovered

dead as an adult. Note that we do not have to consider the case where the animal is

not recovered dead as

Pr(An animal is not recovered dead in the study) =

1−
n2∑
j=i

Pi,j

 ,

which allows us to exclude these terms from the exhaustive summary. We use a similar

notation to the y/z mark-recovery models where the mark-recovery models with ju-

venile survival probabilities are denoted as xJ/y/z, where x denotes juvenile survival

probability for J years, y denotes adult survival probability, and z denotes recovery

probability with the options given previously. This is slightly different from the no-

tation used previously in Catchpole and Morgan (1996), Catchpole et al. (1996) and

Cole et al. (2012). The options for different models includes the following:

• The juvenile survival probabilities can be either constant (C) with φj for j =

1, . . . , J and then have separate adult survival probabilities, or be time-dependent

(T) with φi,j for i = 1, . . . , n1 and j = i, . . . , J and then have separate adult

survival probabilities.

• The adult survival probabilities have the same options as before as either be-

ing constant (C), time-dependent (T), age-dependent (A), or age- and time-

dependent (A,T).

• The recovery probabilities have many different options as the parameters can be

either being constant (C), time-dependent (T), age-dependent (A), age-dependent

for the first J years of life with separate constant adult recovery (A1:J+1), age-

and time-dependent for the first J years of life with separate time-dependent

adult recovery (A1:J+1,T), or fully age- and time-dependent (A,T).

The examples of models used in the past for inference include the T1/A/C model in

Morgan and Freeman (1989), the T1/A/T, C1/A/T and C1/C/T models in Freeman
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and Morgan (1990) as well as Freeman and Morgan (1992), the C1/C/T and T1/C/C

models in Catchpole and Morgan (1996), and TJ/C/T models in McCrea et al. (2013).

The methodology to allow for different parameter dependencies is quite general here

and allows for a wide scope of candidate models to be considered; for example age-

dependent adult survival probabilities which have different dependencies from juvenile

survival probabilities may not be considered in most realistic studies. We give an ex-

ample below of how the intrinsic parameter deficiency can be found for the T1/C/A

mark-recovery model using the Maple procedure ringmodJ.

Example 2.5 - The mark-recovery T1/C/A1:2,T model: [See electronic appendix

example2.5.mw] This illustrative example obtains the intrinsic parameter redundancy

for a T1/C/A1:2,T mark-recovery model where animals are marked at age 0 and are

considered to have different time-dependent first-year survival probabilities with con-

stant adult survival probability after their first year of life, along with age- and time-

dependent recovery probabilities in the first year and then time-dependent recovery

probabilities from the second year onwards. The model rank and parameter deficiency

for a model with four years of marking and recovery can be obtained by the following

code:

P := ringmodJ(2,1,1,5,4,4);

# Inputs: (x,J,y,z,n1,n2);

# x = juvenile survival probability;

# J = number of years that the animal is a juvenile for;

# y = adult survival probability; z = recovery probability;

# for x and y: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T (x can only be C or T);

# for z: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A_{1:J+1}, ‘5’=A_{1:J+1},T, ‘6’=A,T;

# n1 = number of years of marking; n2 = number of years of recovery.

Maple returns the p-array as given by

P =


(1− φ1,1)λ1,1 φ1,1(1− φa)λa,2 φ1,1φa(1− φa)λa,3 φ1,1φ

2
a(1− φa)λa,4

0 (1− φ1,2)λ1,2 φ1,2(1− φa)λa,3 φ1,2φa(1− φa)λa,4
0 0 (1− φ1,3)λ1,3 φ1,3(1− φa)λa,4
0 0 0 (1− φ1,4)λ1,4

 ,

where φa denotes a constant adult survival probability and λa,j denotes a time-dependent

recovery probability where age-dependence is not considered as the animal is not a ju-

venile at that point. From this p-array, we can then find the parameter deficiency of

the model in the way described in Section 2.2,
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kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta):

r := Rank(DD); d := Dimension(theta)-r;

The model’s exhaustive summary is

κ =



(1− φ1,1)λ1,1
φ1,1(1− φa)λa,2
φ1,1φa(1− φa)λa,3
φ1,1φ

2
a(1− φa)λa,4

(1− φ1,2)λ1,2
φ1,2(1− φa)λa,3
φ1,2φa(1− φa)λa,4

(1− φ1,3)λ1,3
φ1,3(1− φa)λa,4
(1− φ1,4)λ1,4



,

with parameters θ = [φa, φ1,1, φ1,2, φ1,3, φ1,4, λ1,1, λ1,2, λ1,3, λ1,4, λa,2, λa,3, λa,4]
T .

The derivative matrix is given in the Maple file example2.5.mw only to save space.

This derivative matrix has the model rank and parameter deficiency

r := 9,d := 3.

Therefore, the T1/C/A1:2,T mark-recovery model with four years of marking and

recovery has a model rank of 9 and a parameter deficiency of 3.

Due to the increasing complexity of the parameters involved, we first introduce

a ‘B’ term. This term is used to calculate the number of adult survival parameters

as these probabilities are when the animal is of at least age (J + 1). If we did not

consider B in our analyses, the number of parameters would be incorrectly calculated

as there could be less than E survival parameters in the model. An example of this

would be the model containing constant juvenile survival parameters and age- and

time-dependent adult survival parameters. The B term can be obtained by adjusting

our E term so that n1 is now equal to (n1 − J) and n2 is now equal to (n2 − J), as
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shown below:

E −B = (n1 − J)(n2 − J)− 1

2
(n1 − J)2 +

1

2
(n1 − J)

= n1n2 − Jn2 − Jn1 + J2 − 1

2
n21 + Jn1 −

1

2
J2 +

1

2
n1 −

1

2
J

= n1n2 −
1

2
n21 +

1

2
n1 − Jn2 +

1

2
J2 − 1

2
J

= E − Jn2 +
1

2
J2 − 1

2
J

= E − 1

2
J(2n2 − J + 1)

=⇒ B =
1

2
J(2n2 − J + 1).

We further define a ‘G’ term which is also an adjustment for the number of survival

parameters in the model, which distinguishes between two cases where the matrix either

has the property n2 < n1 + J (i.e. the model’s matrix is, or is quite close to being, a

square matrix) or the property where n2 ≥ n1 + J . The G term when the p-array has

the property n1 ≤ n2 + J is

G =

n2−n1−1∑
i=1

i =
(n2 − n1 − 1)2 + (n2 − n1 − 1)

2
=

(n2 − n1 − 1)(n2 − n1)
2

,

using the summation of the first n integers formula. The G term when the p-array has

the property n1 ≥ n2 + J is

G =

n2−n1−1∑
i=1

i−
n2−n1−J∑

i=1

i =
1

2
(J − 1) (2n2 − J − 2n1) .

Note that when n1 = n2 then G = 0. There are simpler results when J = 1 as B = n2

and G = 0 for all values of n1 and n2 (as G = 1
2(n2 − n1 − 1)2 + (n2 − n1 − 1) = 0

if n1 = n2 or n1 = n2 − 1, and G = 1
2 (J − 1) (2n2 − J − 2n1) = 0 for n1 ≥ n2 + 1

if J = 1). This is why we give Table 2.3a for when J = 1 as the results are simpler,

along with the more complex cases when J > 1 in Tables 2.3b and 2.3c.

We show three tables for mark-recovery models with juvenile survival probabilities:

Table 2.3a is for the intrinsic parameter redundancy results when J = 1 and Tables

2.3b and 2.3c are for the intrinsic parameter redundancy results for a general J where

1 ≤ J < n2. In the tables, the first column denotes the model with the notation xJ/y/z

as described previously. The model rank and parameter deficiency are then given in

columns two and three respectively. The values of n1 and n2 where the validity of the
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parameter redundancy results are correct are given in the fourth and fifth columns of

all the tables as the results do not always hold for all models when there are small

values of n1 and n2. The method of proof is given in the fifth column of Table 2.3a

and the sixth column of Tables 2.3b and 2.3c. All the results assume there are perfect

data observed with at least one animal recovered dead at each recovery occasion for

each year of marking. These results are given in the supplementary material of Cole

et al. (2012, Table 1). Cole et al. (2012) also considers some extrinsic parameter results

given that we only have a certain number of values on each diagonal of the matrix P,

but we will not quote any of these results in this thesis.

Table 2.4 further shows the estimable parameter combinations for all the xJ/y/z

mark-recovery models that are parameter redundant. These estimable parameter com-

binations form the basis of a reparameterisation theorem proof which proves the results

for general n1 and n2 values. This is given in the supplementary material of Cole et al.

(2012, Table 2).

2.11 Discussion

We have begun this thesis with a chapter giving some examples of how parame-

ter redundancy can be obtained for ecological models, using the mark-recovery model

as a base model. Every result in this thesis begins with a suitable exhaustive sum-

mary which we find the derivative matrix from, and we then calculate the rank of

that matrix, either by using the symbolic method of Cole et al. (2010) or the hybrid

symbolic-numerical method of Choquet and Cole (2012). If the rank is equal to the

number of parameters in the model, the model is full rank and all of its parameters are

in theory estimable. If the rank is less than the number of parameters then the model

is parameter redundant. If a model is parameter redundant, then it can be due to the

model itself (intrinsic parameter redundancy) and/or due to the sparseness of data ob-

served (extrinsic parameter redundancy). Considering extrinsic parameter redundancy

in this thesis is important as it is almost impossible to achieve perfect data for complex

models in long studies. We have shown how the parameter deficiency results can be

generalised using the extension theorem of Catchpole and Morgan (1997) given in The-

orem 2.2, or the reparameterisation theorem of Cole et al. (2010) given in Theorem 2.3.
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Table 2.3a: Intrinsic parameter redundancies for mark-recovery x1/y/z models where
animals are considered as juveniles for a single year

Validity
Model Model Rank Deficiency n1 ≥ n2 ≥ Method

C1/C/C 3 0 2 3 1
C1/C/T n2 + 2 0 2 3 1
C1/C/A n2 2 2 2 2
C1/C/A1:2 3 1 2 3 2
C1/C/A1:2,T n1 + n2 1 2 3 2
C1/C/A,T E 2 2 2 3
C1/T/C n2 + 1 0 2 3 1
C1/T/T n1 + n2 n2 − n1 2 3 2
C1/T/A 2n2 − 1 1 3 4 2
C1/T/A1:2 n2 + 1 1 2 3 2
C1/T/A1:2,T min(n1 + 2n2 − 3, 2n1 + n2 − 2) max(2, n2 − n1 + 1) 2 2 2
C1/T/A,T E n2 2 2 3
C1/A/z Identical to A/z models: See Table 2.2
C1/A,T/C E − n1 + 1 1 2 2 3
C1/A,T/T E n2 − n1 + 1 2 2 3
C1/A,T/A E − n1 + 1 n2 2 2 3
C1/A,T/A1:2 E − n1 + 1 2 2 2 3
C1/A,T/A1:2,T E n2 2 2 3
C1/A,T/A,T E E − n1 + 1 2 2 3
T1/C/C n1 + 2 0 2 3 1
T1/C/T n1 + n2 + 1 0 3 4 1
T1/C/A n1 + n2 1 2 3 2
T1/C/A1:2 n1 + 3 0 2 3 1
T1/C/A1:2,T min(2n1 + n2 − 2, n1 + 2n2 − 3) max(2, n1 − n2 + 3) 2 2 2
T1/C/A,T E n1 + 1 2 2 3
T1/T/C n1 + n2 0 2 2 1
T1/T/T min(n1 + 2n2 − 3, 2n1 + n2 − 2) max(2, n2 − n1 + 1) 2 2 2
T1/T/A n1 + 2n2 − 1 0 4 5 1
T1/T/A1:2 n1 + n2 + 1 0 3 4 1
T1/T/A1:2,T min(n1 + 2n2 − 3, 2n1 + n2 − 2) max(n1 + 1, n2) 2 2 2
T1/T/A,T E n1 + n2 − 1 2 2 3
T1/A/C n1 + n2 0 2 2 1
T1/A/T n1 + 2n2 − 1 0 4 5 1
T1/A/A n1 + n2 n2 − 1 2 3 2
T1/A/A1:2 n1 + n2 1 3 4 2
T1/A/A1:2,T min(n1 + 3n2 − 6, 2n1 + 2n2 − 5) max(n1 − n2 + 4, 3) 2 2 2
T1/A/A,T E n1 + n2 − 1 2 2 3
T1/A,T/z Identical to A,T/z models: See Table 2.2

Method 1 = Extension, Method 2 = Reparameterisation, Method 3 = Exhaustive terms;
E = n1n2 − 1

2n
2
1 + 1

2n1.
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Table 2.3b: Intrinsic parameter redundancies for mark-recovery CJ/y/z models for a general number of juvenile years J

Validity
Model Model Rank Parameter Deficiency n1 ≥ n2 ≥ Method

CJ/C/C J + 2 0 J + 1 J + 2 1
CJ/C/T n2 + J + 1 0 J + 1 J + 2 1
CJ/C/A n2 J + 1 J + 1 J + 1 2
CJ/C/A1:J+1 J + 2 J J + 1 J + 2 2
CJ/C/A1:J+1,T n1 +B − J + 1−G J J + 1 J + 2 2
CJ/C/A,T E J + 1 J + 1 J + 1 3
CJ/T/C n2 + 1 0 J + 1 J + 2 1
CJ/T/T min(2n2, n1 + n2 + J − 1) max(0, n2 − n1 − J + 1) J + 1 J + 2 1*
CJ/T/A 2n2 − J J J + 3 J + 3 2
CJ/T/A1:J+1 n2 + 1 J J + 1 J + 2 2

CJ/T/A1:J+1,T

{
B + n1 + n2 − 2J − 1−G n2 < n1 + J
B + 2n1 − J − 1−G n2 ≥ n1 + J

{
J + 1 n2 < n1 + J
n2 − n1 + 1 n2 ≥ n1 + J

J + 1 J + 1 2

CJ/T/A,T E n2 J + 1 J + 1 3
CJ/A/z Identical to A/z models: See Table 2.2
CJ/A,T/C E − n1 + n2 −B + J +G 1 J + 1 J + 1 2

CJ/A,T/T


E J = 1
E − n1 + 2n2 −B + J − 1 +G J > 1, n2 < n1 + J
E + n2 −B + 2J − 2 +G J > 1, n2 ≥ n1 + J


n2 − n1 + 1 J = 1
1 J > 1, n2 < n1 + J
n2 − n1 − J + 2 J > 1, n2 ≥ n1 + J

J + 1 J + 1 2

CJ/A,T/A E − n1 + n2 −B + J +G n2 J + 1 J + 1 2
CJ/A,T/A1:J+1 E − n1 + n2 −B + J +G J + 1 J + 1 J + 1 2
CJ/A,T/A1:J+1,T E n2 J + 1 J + 1 3
CJ/A,T/A,T E E − n1 + n2 −B + J +G J + 1 J + 1 3

Method 1 = Extension, Method 2 = Reparameterisation, Method 3 = Exhaustive terms;
*Proof is the extension theorem if d = 0 when n2 > n1 + J − 1 and the reparameterisation theorem if d > 0;

E = n1n2 − 1
2n

2
1 + 1

2n1;B = 1
2J(2n2 − J + 1);

G = 1
2 [(n2 − n1 − 1)2 + (n2 − n1 − 1) when n2 ≤ n1 + J , and G = 1

2 (J − 1) (2n2 − J − 2n1) otherwise.
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Table 2.3c: Intrinsic parameter redundancies for mark-recovery TJ/y/z models for a general number of juvenile years J

Validity
Model Model Rank Parameter Deficiency n1 ≥ n2 ≥ Method

TJ/C/C n1 − n2 + 2 +B −G 0 J + 1 J + 2 1
TJ/C/T n1 +B + 1−G 0 J + 2 2J + 2 1
TJ/C/A n1 +B −G 1 J + 2 2J + 2 2
TJ/C/A1:J+1 n1 − n2 +B + J + 2−G 0 2J 2J + 1 1

TJ/C/A1:J+1,T

{
n1 + n2 +B − 2J − 1−G n2 < n1 + J
2n1 +B − J − 1−G n2 ≥ n1 + J

{
n1 − 2n2 +B + J + 2−G n2 < n1 + J
B − n2 + 2−G n2 ≥ n1 + J

J + 1 J + 1 2

TJ/C/A,T E n1 − n2 +B + 1−G J + 1 J + 1 3
TJ/T/C n1 +B − J + 1−G 0 J + 1 J + 2 1

TJ/T/T

{
n1 + n2 +B − 2J − 1−G n2 < n1 + J
2n1 +B − J − 1−G n2 ≥ n1 + J

{
J + 1 n2 < n1 + J
n2 − n1 + 1 n2 ≥ n1 + J

J + 1 J + 1 2

TJ/T/A n1 + n2 +B − J −G 0 J + 3 2J + 3 1
TJ/T/A1:J+1 n1 +B + 1−G 0 2J + 1 2J + 2 1

TJ/T/A1:J+1,T

{
n1 + n2 +B − 2J − 1−G n2 < n1 + J
2n1 +B − J − 1−G n2 ≥ n1 + J

{
n1 − n2 +B + 1−G n2 < n1 + J
B − J + 1−G n2 ≥ n1 + J

J + 1 J + 1 2

TJ/T/A,T E n1 +B − J −G J + 1 J + 1 3
TJ/A/C n1 +B − J + 1−G 0 J + 1 J + 2 1
TJ/A/T n1 + n2 +B − J −G 0 J + 3 2J + 3 1
TJ/A/A n1 +B −G n2 − J J + 1 2J + 1 2
TJ/A/A1:J+1 n1 +B −G 1 2J + 1 2J + 2 2

TJ/A/A1:J+1,T

{
n1 + 2n2 +B − 3J − 3−G n2 < n1 + J
2n1 + n2 +B − 2J − 3−G n2 ≥ n1 + J

{
n1 − 2n2 +B + J + 3−G n2 < n1 + J
B − n2 + 3−G n2 ≥ n1 + J

2J + 2 2J + 3 2

TJ/A/A,T E n1 +B + J −G J + 1 J + 1 3
TJ/A,T/z Identical to A,T/z models: See Table 2.2

Method 1 = Extension, Method 2 = Reparameterisation, Method 3 = Exhaustive terms;
E = n1n2 − 1

2n
2
1 + 1

2n1;B = 1
2J(2n2 − J + 1);

G = 1
2 [(n2 − n1 − 1)2 + (n2 − n1 − 1) when n2 ≤ n1 + J , and G = 1

2 (J − 1) (2n2 − J − 2n1) otherwise.
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Table 2.4: Estimable parameter combinations for mark-recovery xJ/y/z models

Model Estimable Parameter Combinations

CJ/C/A {
∏i−1
k=1 φk(1− φi)λi}i = 1, . . . , J , {

∏J
k=1 φkφ

i−J+1
a (1− φa)λi}i = J + 1, . . . , n2

CJ/C/A1:J+1 φa,
(∏J

i=1 φi

)
λa, {

∏i−1
k=1 φk(1− φi)λi}i = 1, . . . , J

CJ/C/A1:J+1,T φa, {Pi,i+j−1}i = 1, . . . , n1 − j + 1
j = 1, . . . , J

, {
∏J
k=1 φkλa,i}i = J + 1, . . . , n2

CJ/T/T only for n2 > n1 + J − 1 : {φi}i = 1, . . . , n1 + J − 1, {λi}i = 1, . . . , n1 + J − 1, {Pi,j}i = 1, . . . , n1
j = n1 + J, . . . , n2

CJ/T/A {φi}i = J + 1, . . . , n2
, {
∏J
k=1 φkλi}i = J + 1, . . . , n2

, {
∏i−1
k=1 φk(1− φi)λi}i = 1, . . . , J

CJ/T/A1:J+1 {φi}i = J + 1, . . . , n2
,
∏J
k=1 φkλa, {

∏i−1
k=1 φk(1− φi)λi}i = 1, . . . , J

CJ/T/A1:J+1,T
{φi}i = J + 1, . . . ,min(n2 − 1, n1), {Pi,i+j−1}i = 1, . . . , n1 − j + 1

j = 1, . . . , J
,{
∏J
k=1 φkλa,i}i = J + 1, . . . ,min(n2 − 1, n1),{∏J

k=1 φk
∏i−1
k=min(n2,n1+1) φk(1− φi)λa,i

}
i = min(n2, n1 + 1), . . . , n2

CJ/A,T/C {
∏i−1
k=1 φk(1− φi)λ}i = 1, . . . , J , {Pi,j}i = J + 1, . . . , n1

j = i, . . . , n2

CJ/A,T/T [J = 1] {Pi,j}i = 2, . . . , n1
j = n1 + 1, . . . , n2

, {(1− φ1)λi}i = 1, . . . , n1
,
{

1−Pi,j

(1−φ1)λj

}
i = 2, . . . , n1
j = i, . . . , n1

CJ/A,T/T [J > 1] {(1− φ1)λi}i = 1, . . . , n1
,
{∏i

k=1(1−φk)
1−φ1

}
i = 2, . . . , J

,
{

1−Pi,j

(1−φ1)λj

}
i = J + 1, . . . , n1
j = i, . . . , n1

CJ/A,T/A {
∏i−1
k=1 φk(1− φi)λi}i = 1, . . . , J , {

∏J
k=1 φk

∏j−1
k=J+1 φk,k(1− φj,j)λj}j = J + 1, . . . , n2

,
{

Pi,j

P1,j−1

}
i = J + 1, . . . , n1
j = i, . . . , n2

CJ/A,T/A1:J+1 {
∏i−1
k=1 φk(1− φi)λi}i = 1, . . . , J , {Pi,j}i = 1, . . . , n1

j = J + 1, . . . , n2

TJ/C/A {φi,j}i = 1, . . . , J
j = i, . . . , n2

, {λi}i = 1, . . . , J
,
{
φi−J−1a (1− φa)λi

}
i = J + 1, . . . , n2

TJ/C/A1:J+1,T {Pi,j}i = 1, . . . , n1
j = i, . . . , i + J − 1

, {
∏J
k=1 φk,kφ

i−J−1
a (1− φa)λa,i}i = J + 1, . . . , n2

,
{

(
∏J

k=1 φk,i+k)

(
∏J

k=1 φk,k)φ
i
a

}
i = 1, . . . , J

TJ/T/T {Pi,j}i = 1, . . . , n1
j = i, . . . ,min(i + J + 2, n2)

TJ/T/A1:J+1,T {Pi,j}i = 1, . . . , n1
j = i, . . . , i + J − 1

, {P1,j}j = J + 1, . . . , n2
,

{ ∏J
k=1 φk,k+j∏J

k=1 φk,k
∏j

k=1 φk+J

}
j = 1, . . . ,min(n2 − J − 1, n1 − J)

TJ/A/A {φi,j}i = 1, . . . , n1
j = i, . . . , J

, {λi}i = 1, . . . , J , {
∏i−1
k=J+1 φk(1− φi)λi}i = J + 1, . . . , n2

TJ/A/A1:J+1 {φi,j}i = j, . . . , J
j = 1, . . . , n1

, {λi}i = 1, . . . , J , {
∏i−1
k=J+1 φk(1− φi)λa}i = J + 1, . . . , n2

TJ/A/A1:J+1,T {Pi,j}i = j, . . . , J
j = 1, . . . , n1

, {P1,j}j = J + 1, . . . , n2
,
{

Pi,i+J

P1,i+J−1

}
i = 2, . . . , n2 − J

,

{
λa,iλa,i+2

λ2a,i+1

}
i = J + 1, . . . ,min(n2 − 2, n1 − 1)
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Analysis of parameter redundancy is required so that the correct inference can be

made from such studies. Determining which mark-recovery models are not intrinsically

parameter redundant is important when fitting a candidate model to the data as there

may be issues fitting a parameter redundant model to the data observed. These issues

may mean that inference for some parameters is not obtained, or potentially estimates

are incorrect giving wrong conclusions from the model. We explore parameter redun-

dancy in mark-recovery models in Table 2.2 and see that a large number of complex

models are in fact intrinsically parameter redundant. A similar conclusion is obtained

from mark-recovery models with different juvenile survival probabilities given in Tables

2.3a, 2.3b and 2.3c. The exact rank or parameter deficiency of a parameter redundant

mark-recovery model may also itself be of academic interest. An objective of this work

done in this thesis is so a study designer can check our intrinsic parameter redundancy

results, and therefore select candidate models so that these models can estimate all

of the parameters they require. For y/z mark-recovery models for instance, they may

select the T/A mark-recovery model to be a candidate model for their study over a

parameter redundant model such as the T/T mark-recovery model. There are other

considerations in model selection such as goodness of fit and parameter standard er-

rors, but we believe the parameter redundancy status of a model is also important to

consider when selecting a model to use.

We now finish exploring mark-recovery models and use the methods demonstrated

in this chapter to explore capture-recapture studies in Chapter 3.



Chapter 3

Capture-Recapture Models

3.1 Capture-recapture background

We now investigate a different ecological model in this chapter by exploring capture-

recapture models. The purpose of capture-recapture studies is to mark animals at

one time point and then to attempt to recapture them alive at future time points, this

providing information on animal survival. These marking and recapture occasions can

be repeated to give information on survival patterns of animals over long periods of

time. Capture-recapture models are different from mark-recovery models as we are

recapturing animals alive instead of recovering animals when they have died.

Capture-recapture methods date back as far as Laplace (1786), where they were

used to estimate the population size of France, and the first time they were used in

an ecological study was in Petersen (1896) to estimate plaice populations. Capture-

recapture methods can be distinguished as either being closed or open. In closed

capture-recapture models the number of individuals does not change over time, where

these changes could be a consequence of either immigration or emigration, or due to the

recruitment or death of individuals. Developments in closed capture-recapture models

can be traced back to the Schnabel census in Schnabel (1938) and the Petersen-Lincoln

and Chapman estimators described in Lincoln (1930) and Chapman (1951) respectively

which can be used to provide estimates of animal abundance. We however only ex-

plore open capture-recapture models in this chapter as it allows us to mark additional

animals over time, i.e. the marked population does not remain constant during the

length of the study. A set of models to estimate survival probabilities for this open

population case came from Jolly (1965) and Seber (1965) to develop Jolly-Seber mod-

els. This was extended in Cormack (1964) to obtain Cormack-Jolly-Seber models,

60
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which are the Jolly-Seber models conditional on first capturing of individuals. The

importance of these models is due to the model’s flexibility as shown by the amount

of occasions the model has been used in ecological studies over the last few decades.

Review of capture-recapture developments can also be found in Williams et al. (2002)

and Amstrup et al. (2005).

Here we review the Cormack-Jolly-Seber model as it is an important development

in capture-recapture modelling and links to the capture-recapture models we exam-

ine later in this chapter for parameter redundancy. Suppose there are k capture and

recapture occasions during a capture-recapture study. There are two types of pa-

rameters in the model, survival parameters and recapture parameters. The survival

parameters are denoted as φj which is the probability an animal who is alive at cap-

ture occasion j survives until the (j + 1)th capture occasion, for all j = 1, . . . , k. In

capture-recapture studies, the survival probabilities denote an animal’s apparent sur-

vival, where in mark-recovery studies, the survival probabilities denote an animal’s

real survival. The difference between the two terms is that the apparent survival of an

animal may be affected by the emigration of that animals from the study area, while

the real survival of an animal is not dependent on the animal emigrating or not.

The recapture parameters are denoted as pj which is the probability that the animal

will be recaptured at capture occasion j given the animal is still alive at that point, for

all j = 2, . . . , k+ 1 (we usually denote the first recapture point as j = 2 as the animals

are marked at the first capture point but cannot be recaptured then). To construct a

likelihood we consider the probability a marked animal is not seen alive again after it

was last seen at capture occasion j, denoted by χj . It can be shown that χj satisfies

the recurrence equation

1− χj
φj

= 1− χj+1 + χj+1pj+1, (3.1)

where χk = 1. χ is a recursive equation because we are not sure if the animal has

survived or not for all the years of the study since it was last recaptured at capture

occasion j. The data is summarised in the model with aj denoting the number of

previously marked animals recaptured at capture occasion j for all j = 2, . . . , k + 1,

cj denoting the number of previously marked animals recaptured for the last time at

capture occasion j for all j = 1, . . . , k (with c1 denoting when an animal which was

marked at the beginning of the study and is not recaptured again in the study) and

vj denoting the number of previously marked animals known to be alive after capture
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occasion j for all j = 1, . . . , k. The likelihood is then given in Cormack (1964) as

L =

k−1∏
j=1

φ
vj

j p
aj+1

j+1 χ
cj
j (1− pj+1)

vj−aj+1 . (3.2)

Since the Cormack-Jolly-Seber model was developed in the 1960’s, many variants

of this model have been widely used. One example of such a variant is the inclusion

of age-dependent parameters or parameters dependent on other characteristics such as

sex or breeding pattern, such as discussed in Williams et al. (2002). Another variant is

to factor in location parameters as they may affect recapture probabilities; the theory

behind the model including location parameters is shown in Arnason (1972). Other

examples where capture-recapture modelling has been used includes Seber (1986),

Pollock et al. (1990), Pollock (2000) and Lindberg (2012). Lebreton et al. (1992) in

particular is a widely referenced paper which explores a variety of different capture-

recapture models in statistical ecology. These models can be fitted to data using the

software packages MARK and SURGE (which has now been superseded by M-SURGE and

E-SURGE), which are Microsoft Windows programs that provide parameter estimates

for a variety of different capture-recapture models including the Cormack-Jolly-Seber

model. More detailed information on the programs MARK and SURGE can be seen in

Cooch and White (2014) and Cooch et al. (1997) respectively. A poster by McCrea

and Morgan (2008), which was presented at the first ISEC (International Statistical

Ecology Conference), shows the many developments in capture-recapture methodology

over time and displays the wide range of capture-recapture methods and analysis in use.

An important question that needs to be asked is whether this capture-recapture

methodology is still applicable today? J. Andrew Royle stated in Sundvolen, Norway

at the third ISEC conference in 2012 that, “Capture-recapture is ubiquitous in ecology

- probably the number 1 statistical method.” He further mentioned that, “Capture-

recapture is more important than ever,” showing how important this model still is in

modern ecological studies in deriving estimates of abundance and survival probabilities.

It is for this reason that we examine parameter redundancy in capture-recapture studies

and why it is necessary for these models to continued to be used in practice.
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3.2 Capture-recapture models for m-array data

The section considers a certain formulation of the model as a base for further

work on capture-recapture modelling. We explored how a d-array can be presented

to represent mark-recovery data in Section 2.1. We can now present the data of a

capture-recapture study as an m-array but we instead have alive recaptures rather

than dead recoveries as entries in the array. The Cormack-Jolly-Seber model of Cor-

mack (1964), Jolly (1965) and Seber (1965) can be presented as an m-array if we

consider re-marking of animals each time they are captured. This re-marking usually

does not involve changing of an animal’s mark, instead an animal is just a re-release

into the population so the animal can be recaptured again at a future time point.

An example of how data can be presented as an m-array is given in Table 3.1,

which is extracted from Lebreton et al. (1992) for data of female Greater Flamingoes

(Phoenicopterus ruber) between 1982 and 1986. For data presented as an m-array, a

number of animals are released at capture occasion i, denoted as Ri, and then pos-

sibly recaptured at capture occasion j given they were released at capture occasion

i. We do not generally list the animals that were never recaptured in an m-array as

the number of animals never recaptured is equal to the number of animals released

minus the number of animals we do recapture during the study, but we do it here for

illustrative purposes. We can see from the m-array of Table 3.1 that of the 32 animals

released at the first capture occasion, 27 animals were recaptured at the first recapture

occasion, 4 animals were recaptured at the second recapture occasion, and therefore a

single animal was never recaptured at all. We generally re-release animals in capture-

recapture studies so that they can observed again, and this happens in this study as

the 27 animals that were recaptured at capture occasion 2 were re-released in R2 so

they could be recaptured again. In this case the re-releasing process is simply a way

of representing recapturing the animal a multiple number of times during the study

and not an actual physical act of re-marking or re-releasing the individuals in the study.

Let the number of capture and recapture occasions in a capture-recapture study

to be equal to T . Some care must be taken over the clarity of the model due to the

notations used as there actually are T−1 different first-capture occasions because there

are no new animal captures in the final recapture occasion of the study. Furthermore,

there are only T − 1 recapture occasions as it is not possible to recapture at the first

capture occasion in the study as that capture occasion is the first occasion where ani-

mals are marked. We continue to let φj which is the probability an animal who is alive
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Table 3.1: An m-array representation of data from a capture-recapture study of female
Greater Flamingoes from Lebreton et al. (1992)

Year of Number of Year of next recapture Never
release flamingoes released 1983 1984 1985 1986 1987 recaptured

1982 R1 = 32 27 4 0 0 0 1
1983 R2 = 80 57 7 3 4 9
1984 R3 = 112 58 18 4 32
1985 R4 = 132 109 13 10
1986 R5 = 211 169 42

at capture occasion j survives until the (j+1)th capture occasion, for all j = 1, . . . , T ,

and pj denote the probability that an animal is recaptured alive at capture occasion

j, for all j = 2, . . . , T + 1 (i.e. j = 1 would represent a capture occasion of only

first-captures and no possible recaptures are not possible). We demonstrate what the

probability of a recapture possibility of an animal is in Example 3.1.

Example 3.1: Consider an animal which has been marked and released at the second

capture occasion i = 2, and is next recaptured at the fifth capture occasion in the

study j = 5. We know that the animal has survived until the fifth capture occasion

during the study, while the animal was not recaptured during the third and fourth

capture occasions during the study. The probability of this, denoted as P2,5, is given

by

P2,5 = φ2(1− p3)φ3(1− p4)φ4p5.

We can show that the probability an animal is marked at capture occasion i and

is next recaptured at recapture occasion j, as denoted by Pi,j , can be expressed as

Pi,j =

(
j−1∏
m=i

φm

)(
j−1∏

m=i+1

(1− pm)

)
pj , (3.3)

where
∏i
m=i+1(1 − pm) = 1 for the case that an animal is recaptured at the first re-

capture occasion after first-capture. All of the possible capture-recapture probabilities

can be expressed as the model’s p-array in the matrix P, which has the terms Pi,j for

the diagonal and upper diagonal terms where i ≥ j and 0 otherwise, such as for T = 3
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in the matrix below.

P =


P1,2 P1,3 P1,4

0 P2,3 P2,4

0 0 P3,4

 =


φ1p2 φ1φ2(1− p2)p3 φ1φ2φ3(1− p2)(1− p3)p4

0 φ2p3 φ2φ3(1− p3)p4
0 0 φ3p4

 .
The probability of a captured animal not being recaptured at all during the study

is given as

Pr(A marked animal is not recaptured in the study) =

1−
T+1∑
j=i+1

Pi,j

 ,

for any release occasion i. If we let Ni,j denote the number of animals released at

capture occasion i, for all i = 1, . . . , T and recaptured at recapture occasion j for all

j = 2, . . . , T + 1, and further let Ri denote the number of animals captured at capture

occasion i, for all i = 1, . . . , T , then in a similar way to the mark-recovery model in

Equation (2.2), the likelihood can be expressed as

L =
T∏
i=1


T+1∏
j=i+1

P
Ni,j

i,j

1−
T+1∑
j=i+1

Pi,j

Ri−
∑T+1

j=i+1Ni,j

. (3.4)

Catchpole and Morgan (1997) show that we only need to consider the Pi,j terms as

an exhaustive summary as long as all recaptures occur, i.e. Ni,j > 0 for all i and j.

This means we do not have to consider the terms where the animals are not recaptured

during the study in an exhaustive summary.

We note that this likelihood in Equation (3.4) is the same as the previous Cormack-

Jolly-Seber likelihood in Equation (3.2). This can be seen as the
∏T−1
i=1

(
1−

∑T+1
j=i+1 Pi,j

)
term in Equation (3.4) is equivalent to

∏T−1
j=1 χ

cj
j term in Equation (3.2) as this de-

notes the number of animals where are never recaptured, and the remaining terms in

Equation (3.4) are equivalent to the
∏T
j=i Pi,j term in Equation (3.2) as they are equal

to the possible capture-histories that can be observed.

We can also vary the parameter dependencies in this model by considering constant

parameters instead of time-dependent ones for both survival and recapture parameters.

We follow a similar notation to mark-recovery models and denote the model as y/z

where y refers to the survival parameters and z refers to the recapture parameters,

and these can be either constant (C) or time-dependent (T). The Cormack-Jolly-Seber
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model is the model where both survival and recapture parameters are time-dependent,

and we show this in Example 3.2 below.

Example 3.2 - The m-array capture-recapture T/T model: [See electronic appendix

example3.2.mw] The m-array with a total of three capture and recapture occasions,

with time-dependent survival and recapture probabilities, can be generated by the

Maple code

P := capmodmarray(2,2,3);

# Inputs: (y,z,T);

# y = survival probability; z = recapture probability;

# for y and z: ‘1’=constant probabilities and ‘2’=time-dependent;

# T = number of capture and recapture occasions in the study.

Maple returns the p-array probabilities as

P =


φ1p2 φ1φ2(1− p2)p3 φ1φ2φ3(1− p2)(1− p3)p4

0 φ2p3 φ2φ3(1− p3)p4
0 0 φ3p4

 .
From this p-array, we can then find the parameter deficiency of the model as described

in Section 2.2:

kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta);

r := Rank(DD); d := Dimension(theta)-r;

The exhaustive summary is

κ =



φ1p2

φ1φ2(1− p2)p3
φ1φ2φ3(1− p2)(1− p3)p4

φ2p3

φ2φ3(1− p3)p4
φ3p4


,
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with parameters θ = [p2, p3, p4, φ1, φ2, φ3]
T and derivative matrix

DD =

[
∂κ

∂θ

]
=



φ1 −φ1φ2p3 −φ1φ2φ3(1− p3)p4 0 0 0

0 φ1φ2(1− p2) −φ1φ2φ3(1− p2)p4 φ2 −φ2φ3p4 0

0 0 φ1φ2φ3(1− p2)(1− p3) 0 φ2φ3(1− p3) φ3

p2 φ2(1− p2)p3 φ2φ3(1− p2)(1− p3)p4 0 0 0

0 φ1(1− p2)p3 φ1φ3(1− p2)(1− p3)p4 p3 φ3(1− p3)p4 0

0 0 φ1φ2(1− p2)(1− p3)p4 0 φ2(1− p3)p4 p4


.

The model rank and parameter deficiency of the model are equal to

r := 5,d := 1.

This shows that in this case the T/T capture-recapture model has 5 estimable pa-

rameter combinations and a parameter deficiency of 1.

We obtain the following general intrinsic results for capture-recapture models:

• The C/C model which has both constant survival and recapture probabilities is

not parameter redundant and we can estimate both parameters φ and p. This

can be proved for a general T trivially by using the extension theorem of Theorem

2.2.

• The C/T and T/C models are also not parameter redundant and all the T + 1

different parameters in the model can be estimated in both cases. This can also

be proved for a general T by the extension theorem of Theorem 2.2.

• The T/T model has a parameter deficiency of 1 with 2T −1 estimable parameter

combinations in the model. The proof of this result is by using the reparam-

eterisation theorem of Theorem 2.3. The original parameters φj and pj+1 are

estimable for j = 1, . . . , T − 1, but the parameters φT and pT+1 are confounded

as the product φT pT+1. This result is well known as this time-dependent case is

a representation of the Cormack-Jolly-Seber which has this confounding of the

final survival and recapture parameters, e.g. as shown in Lebreton et al. (1992,

Table 3) where they can only estimate φ1, p2 and φ2p3 for a T = 2 study.

We now explore a link between these results and the mark-recovery results of Table

2.2 using a transformation in the next section.
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3.3 A transformation between capture-recapture models

for m-array data and mark-recovery models for d-

array data

When performing the analyses of Sections 2.9 and 3.2, we notice the strong links

between the results for y/z capture-recapture models and Table 2.2 for y/z mark-

recovery models. If you put both sets of results along side each other, you see that

the capture-recapture y/z model has the exactly the same model rank and parameter

deficiency as the z/y mark-recovery model. This suggests that there is a reparameter-

isation which equates mark-recovery and m-array capture-recapture models. Lebreton

et al. (1995) notice this link between capture-recapture and mark-recovery models and

the appropriate transformation is listed in the appendix of their paper. Below we

demonstrate how a reparameterisation relates between the two models, and then show

in Example 3.3 how such a transformation can be performed.

• Transforming a capture-recapture y/C model to a mark-recovery C/y model: Let

p = (1− φ).

• Transforming a capture-recapture y/T model to a mark-recovery T/y model: Let

pi+1 = (1− φi) for all i = 1, . . . , k.

• Transforming a capture-recapture C/z model to a mark-recovery z/C model: Let

φ = λ for when the animal is recaptured during the capture occasion immediately

after the animal has been captured. Further let φ = 1 for when the animal is

recaptured at any future capture occasion. We can then obtain the result that

the iteration λ = 1 × 1 × · · · × φ∗ applies for when the animal is recaptured at

capture occasion j given that it was first-captured at capture occasion i.

• Transforming a capture-recapture T/z model to a mark-recovery z/T model: Let

φ∗i = λi for when the animal is recaptured during the capture occasion imme-

diately after the animal has been captured. Further let φ
′
j = λj/λj−1 for when

the animal is recaptured at any future capture occasion. We can then obtain

the result that the iteration λj = φ
′
jφ
′
j−1φ

′
j−2. . . φ

′
i+2φ

′
i+1φ

∗
i applies for when the

animal is recaptured at capture occasion j given that it was first-captured at

capture occasion i.

Example 3.3: This reparameterisation can used for example to convert the capture-

recapture C/T model into a mark-recovery T/C model for T = 3. By applying the
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transformation pi = (1− φi−1) and (1− pi) = φi−1 for all i = 2, . . . , T + 1, as well the

transformation where φ = λ for the first φ in an expression and then φ = 1 for the

remaining φ’s in the expression (e.g. φ3 = λ× 1× 1 = λ) , we get

P =


φp2 φ2(1− p2)p3 φ3(1− p2)(1− p3)p4
0 φp3 φ2(1− p3)p4
0 0 φp4



→


(1− φ1)λ φ1(1− φ2)λ φ1φ2(1− φ3)λ

0 (1− φ2)λ φ2(1− φ3)λ
0 0 (1− φ3)λ

 .
This shows how a capture-recapture model can be transformed into a mark-recovery

model.

This transformation is useful as a check as by the use of the reparameterisation

theorem of Theorem 2.3 we can deduce capture-recapture results from mark-recovery

results. It is also useful to show that the mark-recovery and capture-recapture models

have similarities between each other.

3.4 The capture-history formulation of capture-recapture

models and a simpler exhaustive summary

We now present an alternative formulation of capture-recapture models by listing

the individual capture-histories as a way of forming an exhaustive summary. A

capture-history is a way of presenting the recapture data from a single animal in the

study. This formulation using these capture-histories has the advantage of allowing

the consideration of age-dependent parameters, something which is not possible in the

m-array formulation of the capture-recapture model. It also allows us to more conve-

niently explore extrinsic parameter redundancy in Section 3.7.

Let n1 denote the number of first-capture occasions in the study and n2 denote

the number of recapture occasions in the study, where n1 ≤ n2 as there at least is as

many recapture occasions as there are first-capture occasions. We mark the animals

at age 0 if we consider an age-dependent model, and therefore do not consider the

animals that may live to a greater age than n2 and are alive at the conclusion of the

study. Frequently in capture-recapture studies, there are same number of T capture

and recapture occasions so that n1 = n2 = T − 1, but it is possible to have a study
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where n2 > n1. These capture and recapture occasions are usually annual but other

periods are possible. To allow age-dependency in our parameters we let φi,j represent

the probability that an animal of age i−1 at time j survives until time j+1, given that

the animal has survived up to that point since it was first-captured for i = 1, . . . , n2

and j = i, . . . , n2. We further let pi,j denote the probability that an animal of age i−1

is recaptured at capture occasion j (i.e. recapture occasion j − 1) for i = 2, . . . , n2 + 1

and j = i, . . . , n2 + 1.

The capture-history of an animal is a result of repeated observations recording

whether the animal was recaptured at each capture occasion. The notation that has

historically been used for capture-recapture data is the use of binary code to represent

these capture-histories. In a single capture-history, a ‘1’ indicates when the animal

was recaptured, and a ‘0’ indicates when the animal was not recaptured. A ‘1’ is also

used to represent the capture occasion when it was first-captured. Examples 3.4 and

3.5 below show how we can represent the probabilities of single capture-histories using

survival and recapture probabilities.

Example 3.4: The capture-history 1001011 is observed for a study where there are

T = 7 capture occasions. This indicates that the animal was first captured at the

beginning of the study, was not recaptured at capture occasions two, three and five,

but was recaptured at capture occasions four, six and seven. If we assume that survival

and recapture probabilities are known to be only time-dependent, this capture-history

has the probability

Pr(1001011) = φ1(1− p2)φ2(1− p3)φ3p4φ4(1− p5)φ5p6φ6p7.

Example 3.5: An alternative capture-history is 0100110 where there are still T = 7

capture occasions. This indicates that the animal was first captured at the second

capture occasion with there still being five possible occasions of recapture. If we assume

that survival and recapture probabilities are known to be only time-dependent, this

capture-history has the probability

Pr(0100110) = φ2(1− p3)φ3(1− p4)φ4p5φ5p6χ6,

where χ6 = (1− φ6) + φ6(1− p7) = 1− φ6p7. The term χ6 represents the probability

of not being recaptured at any further capture occasions after the sixth capture oc-
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casion, and gives the probability that the animal either did not survive up until the

seventh capture occasion given the animal was alive at the sixth capture occasion, or

the animal actually did survive but was not recaptured at capture occasion seven.

The probability of a particular capture-history can be generalised as given in Hub-

bard et al. (2014). Define χi,j as the probability an animal released at capture occasion

i is not recaptured again since capture occasion j to be

χi,j = (1− φi,j) + φi,j (1− pi+1,j+1)χi+1,j+1, (3.5)

with χi,n2 = 1 for all i. If we suppose an animal was first captured at capture occasion

a and was last recaptured at capture occasion b, then the probability of a particular

capture-history, hX , is given by

Pr(hX) =

[
b∏

k=a+1

φk−a,k−1 {δkpk−a+1,k + (1− δk)(1− pk−a+1,k)}

]
χb−a+1,b, (3.6)

where δk denotes the value taken by the capture-history at time k. If we let N be the

number of distinct capture-histories observed, then the likelihood is given by

L =
N∏
X=1

Pr(hX). (3.7)

A suitable exhaustive summary for the model can be generated containing all the

probabilities of the distinct capture-histories as separate exhaustive summary terms.

Table 3.2a shows all of the possible capture-histories for n1 = n2 = 1, 2, 3, 4, where the

probabilities of each capture-history are listed in Table 3.2b where it is assumed that

survival and recapture probabilities are both only time-dependent. Observe that it is

clear from Tables 3.2a and 3.2b that the number of possible capture-histories grows

large very quickly.

By using the formula for the sum of a geometric series, it can shown that there

are
∑n2

i=n2−n1+1 2i = 2n2+1− 2n2−n1+1 possible combinations of capture-history in this

capture-recapture model. For a large number of capture occasions, this raises a prob-

lem as Maple could encounter memory limitations. A simpler exhaustive summary of

the model is therefore required due to the large number of exhaustive summary terms

in the original model, so that we can generate general intrinsic parameter redundancy

results for capture-recapture models. We can then use the result from Cole et al.
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Table 3.2a: All the possible capture-histories in capture-recapture models in binary
notation

T = 2: T = 3: T = 4: T = 5:
n1 = n2 = 1 n1 = n2 = 2 n1 = n2 = 3 n1 = n2 = 4

11 011 0011 00011
10 111 0111 00111

101 0101 00101
010 1111 01111
110 1011 01011
100 1101 01101

1001 01001
0010 11111
0110 10111
0100 11011
1110 11101
1010 10011
1100 10101
1000 11001

10001
00010
00110
01110
01010
00100
01100
01000
11110
10110
11010
11100
10010
10100
11000
10000

(2010) that a reparameterised version of the model will still have the same parameter

deficiency of the original model as shown in Section 2.3.

In order to create a simpler exhaustive summary we use a method of proof specif-

ically designed to prove a reparameterisation which generates a sufficient exhaustive

summary. This is called the two-stage extension theorem and develops the stan-

dard extension theorem of Theorem 2.2 so we can find exhaustive summaries where

the exhaustive summary terms are simpler. Theorem 3.1 has been used in Cole and

Morgan (2010a), Cole (2012) and Hubbard et al. (2014).

In the standard extension theorem of Catchpole and Morgan (1997, Theorem 6)

and Cole et al. (2010, Theorem 3), we begin with exhaustive summary κS1 (θ1) (where

we denote S for the exhaustive summary using the standard extension theorem) which

has parameters θ1. Then we extend this model to give the exhaustive summary
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Table 3.2b: All the possible capture-history probabilities corresponding to Table 3.2a

T = 2: T = 3: T = 4: T = 5:
n1 = n2 = 1 n1 = n2 = 2 n1 = n2 = 3 n1 = n2 = 4

φ1p2 φ2p3 φ3p4 φ4p5
χ1 φ1p2φ2p3 φ2p3φ3p4 φ3p4φ4p5

φ1(1− p2)φ2p3 φ2(1− p3)φ3p4 φ3(1− p4)φ4p5
χ2 φ1p2φ2p3φ3p4 φ2p3φ3p4φ4p5

φ1p2χ2 φ1(1− p2)φ2p3φ3p4 φ2(1− p3)φ3p4φ4p5
χ1 φ1p2φ2(1− p3)φ3p4 φ2p3φ3(1− p4)φ4p5

φ1(1− p2)φ2(1− p3)φ3p4 φ2(1− p3)φ3(1− p4)φ4p5
χ3 φ1p2φ2p3φ3p4φ4p5

φ2p3χ3 φ1(1− p2)φ2p3φ3p4φ4p5
χ2 φ1p2φ2(1− p3)φ3p4φ4p5

φ1p2φ2p3χ3 φ1p2φ2p3φ3(1− p4)φ4p5
φ1(1− p2)φ2p3χ3 φ1(1− p2)φ2(1− p3)φ3p4φ4p5

φ1p2χ2 φ1(1− p2)φ2p3φ3(1− p4)φ4p5
χ1 φ1p2φ2(1− p3)φ3(1− p4)φ4p5

φ1(1− p2)φ2(1− p3)φ3(1− p4)φ4p5
χ4

φ3p4χ4

χ3

φ2p3φ3p4χ4

φ2(1− p3)φ3p4χ4

φ2p3φ3(1− p4)χ4

χ2

φ1p2φ2p3φ3p4χ4

φ1(1− p2)φ2p3φ3p4χ4

φ1p2φ2(1− p3)φ3p4χ4

φ1p2φ2p3χ3

φ1(1− p2)φ2(1− p3)φ3p4χ4

φ1(1− p2)φ2p3χ3

φ1p2χ2

χ1

χj = (1− φj) + φj(1− pj+1)χj+1 with χn2+1 = 1 for the time-dependent case.

κS(θ1,θ2) = [κS1 (θ1), κ
S
2 (θ1, θ2)]

T with parameters θS = [θ1,θ2]
T . If ∂κS1 (θ1)/∂θ1

is full rank and ∂κS2 (θ1,θ2)/∂θ2 is full rank, then ∂κS(θ1,θ2)/∂θ
S is also full rank.

In the two-stage extension theorem, we begin with exhaustive summary κO1 (θ1),

which can be partitioned as κO1 (θ1)=[κE1 (θ1,1), κ
E
2 (θ1,1, θ1,2)] with parameters

θ1 = [θ1,1, θ1,2]
T . This exhaustive summary is then extended to κO2 (θ1,1,θ1,2,θ2,2) =

[κE1 (θ1,1),κ
E
2 (θ1,1,θ1,2,θ2,2)], with parameters θ2 = [θ1,1,θ1,2,θ2,2]

T . Let

θE2 = [θ1,2,θ2,2]
T . Then we have the two-stage extension theorem of Theorem 3.1

below.

Theorem 3.1. If ∂κO1 (θ1)/∂θ1, ∂κE1 (θ1,1)/∂θ1,1, and ∂κE2 (θ1,1,θ1,2,θ2,2)/∂θ
E
2 are

all full rank, then κO2 (θ1,1,θ1,2,θ2,2) is also full rank.

The proof of Theorem 3.1 follows the same form as the standard extension theorem
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as stated in Hubbard et al. (2014). It can also be derived indirectly from Meyer (1973,

Theorem 4.2). This two-stage extension theorem is then used in Theorem 3.2 to prove

there is a simpler exhaustive summary than the exhaustive summary containing all

the capture-histories as individual exhaustive summary terms.

Theorem 3.2. A simpler exhaustive summary for the capture-recapture model consists

of the terms:

• si,j = φi,jpi+1,j+1 for all i = 1, . . . , n2 and j = i, . . . ,min(n1 + i− 1, n2),

• and ti,j = φi,j(1− pi+1,j+1) for all i = 1, . . . , n2 − 1 and j = i, . . . ,min(n1 + i−
1, n2 − 1).

The proof of Theorem 3.2 can be found in Appendix B.1 as well as in the sup-

plementary material of Hubbard et al. (2014). Theorem 3.2 is also given in Hubbard

et al. (2014, Theorem 1a.). We can code a Maple procedure in which all of the s and

t terms are generated using the simpler exhaustive summary of Theorem 3.2. These

s and t terms can then be used to examine the intrinsic parameter redundancy of

capture-recapture models. This also allows us to have constant (C), time-dependent

(T), age-dependent (A) and age- and time-dependent (A,T) options on both survival

and recapture parameters in the model. The Maple procedure for this can be seen in

Example 3.6 below.

Example 3.6 - The capture-recapture A,T/A,T intrinsic model: [See electronic ap-

pendix example3.6.mw] We can generate the simpler exhaustive summary terms using

Theorem 3.2 to obtain the intrinsic parameter deficiency for capture-recapture mod-

els. We illustrate this in a capture-recapture model with four capture and recapture

occasions which has both age- and time-dependency on the survival and recapture

parameters. Observe that we demonstrate this Maple procedure capmodintrinsic by

using an example which assumes age- and time-dependence is valid for the data, and

this assumption may not be applicable for all capture-recapture studies.

P := capmodintrinsic(4,4,4,4);

# Inputs: (y,z,n1,n2);

# y = survival probability; z = recapture probability;

# for y and z: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T;

# n1 = number of first-capture occasions;

# n2 = number of recapture occasions.
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Maple returns the matrix

P =



s1,4 s1,3 s1,2 s1,1

0 s2,4 s2,3 s2,2

0 0 s3,4 s3,3

0 0 0 s4,4

0 t1,3 t1,2 t1,1

0 0 t2,3 t2,2

0 0 0 t3,3


=



φ1,4p2,5 φ1,3p2,4 φ1,2p2,3 φ1,1p2,2

0 φ2,4p3,5 φ2,3p3,4 φ2,2p3,3

0 0 φ3,4p4,5 φ3,3p4,4

0 0 0 φ4,4p5,5

0 φ1,3(1− p2,4) φ1,2(1− p2,3) φ1,1(1− p2,2)
0 0 φ2,3(1− p3,4) φ2,2(1− p3,3)
0 0 0 φ3,3(1− p4,4)


.

The s and t terms are represented in the matrix form above for convenience, where

κ is given as the vector of all these non-zero terms in P. The parameter deficiency of

the model can then be found as described in Section 2.2.

kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta):

r := Rank(DD); d := Dimension(theta)-r;

The exhaustive summary is

κ =



φ1,4p2,5

φ1,3p2,4

φ1,2p2,3

φ1,1p2,2

φ2,4p3,5
...

φ2,2(1− p3,3)
φ3,3(1− p4,4)


,

with parameters θ = [φ1,1, φ1,2, φ1,3, φ1,4, φ2,2, φ2,3, φ2,4, φ3,3, φ3,4, φ4,4, p2,2, p2,3,

p2,4, p2,5, p3,3, p3,4, p3,5, p4,4, p4,5, p5,5]
T . The derivative matrix is given in the Maple

file example3.6.mw only to save space. This derivative matrix has the model rank and

parameter deficiency

r := 16,d := 4.

The A,T/A,T model with four first-capture occasions and four recapture occasions

has 16 estimable parameter combinations and a parameter deficiency of 4. It can
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be seen in Maple that the confounded parameters in the model are φ1,4p2,5, φ2,4p3,5,

φ3,4p4,5 and φ4,4p5,5 with every other parameter being in principle estimable.

We now generate general intrinsic parameter redundancy results listed in the next

section.

3.5 Intrinsic capture-recapture y/z model results

If we use the exhaustive summary of Theorem 3.2 along with the standard exten-

sion and reparameterisation theorems as described in Section 2.3, we can find general

intrinsic parameter redundancy results for capture-recapture models with any combi-

nation of age- and/or time-dependent parameters. This is shown in Table 3.3 where the

second column gives the rank of the derivative matrix, which is equal to the number of

estimable parameters in the model, and the third column refers to the parameter defi-

ciency where a model is parameter redundant when d > 0. There are n1 first-capture

occasions and n2 recapture occasions, where n2 ≥ 2 with n2 ≥ n1. The final column

refers to the method of proof used as described in Section 2.3.

Table 3.4 gives the estimable parameter combinations for each model, which uses

the method of solving a system of Lagrange partial differentiation equations as de-

tailed in Section 2.2. Any model using the reparameterisation theorem proof is based

on the reparameterisations given in Table 3.4. The results of Tables 3.3 and 3.4 assume

there are perfect data observed with at least one observation of each possible distinct

capture-history.

Table 3.3 shows that a high number of y/z capture-recapture models are not intrin-

sically parameter redundant. Furthermore, for all those that have a small parameter

deficiency, Table 3.4 shows that all the parameters can still be estimated apart from

the last set of survival and recapture parameters, i.e all the φi and pi+1 parameters

can be estimated for i = 1, . . . , n2 − 1. This is worth emphasising as even though

some of the models are parameter redundant, nearly all of the parameters can still be

estimated in the model in theory.
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Table 3.3: Intrinsic parameter redundancies for capture-recapture y/z models

Model Rank Deficiency Method of Proof

C/C 2 0 Extension Theorem

C/T n2 + 1 0 Extension Theorem

C/A n2 + 1 0 Extension Theorem

C/A,T E + 1 0 Extension Theorem

T/C n2 + 1 0 Extension Theorem

T/T 2n2 − 1 1 Reparameterisation

T/A 2n2 0 Extension Theorem

T/A,T E + n2 − 1 1 Reparameterisation

A/C n2 + 1 0 Extension Theorem

A/T 2n2 0 Extension Theorem

A/A 2n2 − 1 1 Reparameterisation

A/A,T E + n2 − 1 1 Reparameterisation

A,T/C E + 1 0 Extension Theorem

A,T/T E + n2 − 1 1 Reparameterisation

A,T/A E + n2 − 1 1 Reparameterisation

A,T/A,T 2E − n1 n1 Reparameterisation

E = n1n2 − 1
2n

2
1 + 1

2n1.

3.6 Capture-recapture models with juvenile survival prob-

abilities

A natural extension to the capture-recapture model is one which has different sur-

vival probabilities for when the animal is a juvenile. We viewed similar analyses to

these for mark-recovery models with a set of juvenile survival probabilities in Section

2.10. Such capture-recapture examples where a differentiation between juvenile and

adult survival probabilities has been made includes data on grey seals in Schwarz and

Stobo (2000) and on thrush in California in Gardalia et al. (2003).

Capture-recapture models which have juvenile survival probabilities where the an-

imal is a juvenile for J recapture occasions (for 1 ≤ J < n2 − 1) are denoted as

xJ/y/z, where xJ denotes whether the juvenile survival probabilities are constant or

time-dependent for J recapture occasions, y denotes the adult survival probabilities

and z denotes the recapture probabilities. If x is constant the model has the sur-

vival parameters φ1, φ2, . . . , φJ for each different occasion of first-capture i, and if x is

time-dependent, then the model has the survival parameters φi,1, φi,2, . . . , φi,J for each
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Table 3.4: Estimable parameter combinations for capture-recapture y/z models

Model Estimable Parameter Combinations

C/C φ, p

C/T φ, {pi}i = 2, . . . , n2 + 1

C/A φ, {pi}i = 2, . . . , n2 + 1

C/A,T φ, {pi,j}i = 2, . . . , n2 + 1
j = i, . . . ,min(n1 + i− 1, n2 + 1)

T/C {φi}i = 1, . . . , n2
, p

T/T {φi}i = 1, . . . , n2 − 1, {pi}i = 2, . . . , n2
, φn2pn2+1

T/A {φi}i = 1, . . . , n2
, {pi}i = 2, . . . , n2 + 1

T/A,T {φi}i = 1, . . . , n2 − 1, {pi,j}i = 2, . . . , n2
j = i, . . . ,min(n1 + i− 1, n2)

, {φn2pi+1,n2+1}i = n2 − n1 + 1, . . . , n2

A/C {φi}i = 1, . . . , n2
, p

A/T {φi}i = 1, . . . , n2
, {pi}i = 2, . . . , n2 + 1

A/A {φi}i = 1, . . . , n2 − 1, {pi}i = 2, . . . , n2
, φn2pn2+1

A/A,T {φi}i = 1, . . . , n2 − 1, φn2pn2+1,n2+1, {pi,j}i = 2, . . . , n2
j = i, . . . ,min(n1 + i− 1, n2)

A,T/C {φi,j}i = 1, . . . , n2
j = i, . . . ,min(n1 + i− 1, n2)

, p

A,T/T {φi,j}i = 1, . . . , n2 − 1
j = i, . . . ,min(n1 + i− 1, n2 − 1)

, {pi}i = 2, . . . , n2
, {φi,n2pn2+1}i = n2 − n1 + 1, . . . , n2

A,T/A {φi,j}i = 1, . . . , n2 − 1
j = i, . . . ,min(n1 + i− 1, n2 − 1)

, {pi}i = 2, . . . , n2
, φn2,n2pn2+1

A,T/A,T {φi,j}i = 1, . . . , n2 − 1
j = i, . . . ,min(n1 + i− 1, n2 − 1)

, {pi,j}i = 2, . . . , n2
j = i, . . . ,min(n1 + i− 1, n2)

,

{φi,n2pi+1,n2+1}i = n2 − n1 + 1, . . . , n2

different occasion of first-capture i where the parameters are also dependent on the

recapture occasion of the study the animal was recaptured at. Example 3.7 shows how

parameter redundancy can be examined in a capture-recapture model with separate

juvenile survival probabilities using the Maple procedure capmodJintrinsic.

Example 3.7 - The capture-recapture T1/C/A,T intrinsic model: [See electronic ap-

pendix example3.7.mw] Consider the T1/C/A,T model with time-dependent first occa-

sion survival probabilities, constant adult survival as well as age- and time-dependent

recapture probabilities, where there are four first-capture occasions and four recapture

occasions. Observe that we illustrate this Maple code by using an example which as-

sumes the age of the animals is known where this assumption may not be applicable

for all capture-recapture studies. We can find obtain a simpler exhaustive summary
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for the model by using the following Maple code:

P := capmodJintrinsic(2,1,1,4,4,4);

# Inputs: (x,J,y,z,n1,n2);

# x = juvenile survival probability; J = number of juvenile occasions;

# y = adult survival probability; z = recapture probability;

# for x, y and z: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T: x can only be C or T;

# n1 = number of first-capture occasions;

# n2 = number of recapture occasions.

Maple returns the matrix

P =



φ1,4p2,5 φ1,3p2,4 φ1,2p2,3 φ1,1p2,2

0 φap3,5 φap3,4 φap3,3

0 0 φap4,5 φap4,4

0 0 0 φap5,5

0 φ1,3(1− p2,4) φ1,2(1− p2,3) φ1,1(1− p2,2)
0 0 φa(1− p3,4) φa(1− p3,3)
0 0 0 φa(1− p4,4)


.

We alter the notation to display φa if the probability of adult survival is constant unlike

just φ in the previous y/z capture-recapture model. From this matrix P we can then

let κ be the vector of all the non-zero terms in matrix P. The parameter deficiency of

the model can then be found as described in Section 2.2.

kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta):

r := Rank(DD); d := Dimension(theta)-r;

The exhaustive summary is

κ =



φ1,4p2,5

φ1,3p2,4

φ1,2p2,3

φ1,1p2,2

φap3,5
...

φa(1− p3,3)
φa(1− p4,4)


,
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with parameters θ = [φa, φ1,1, φ1,2, φ1,3, φ1,4, p2,2, p2,3, p2,4, p2,5, p3,3, p3,4, p3,5, p4,4,

p4,5, p5,5]
T . The derivative matrix is given in the Maple file example3.7.mw only to

save space. This derivative matrix has the model rank and parameter deficiency

r := 14,d := 1.

The T1/C/A,T capture-recapture model where there are four first-capture occa-

sions and four recapture occasions has 14 estimable parameter combinations and a

parameter deficiency of 1.

We now provide two tables for capture-recapture models with juvenile survival

probabilities: Table 3.5a is for the intrinsic parameter redundancy results when J = 1

and Table 3.5b is for the intrinsic parameter redundancy results for a general J . Note

that the results from 3.5a can be deduced from Table 3.5b as B = n2 and G = 0 when

J = 1, except for a few cases where the models increase or decrease their model rank

and parameter deficiency by 1 if n2 > n1 when J = 1 (these are pointed out in Table

3.5a indicated by † and ‡). In Table 3.5a, the model rank and parameter deficiency are

then given in columns two and three respectively, with the final column referring to

the method of proof used as detailed in Section 2.3. Table 3.5b gives the model rank

and two different parameter deficiencies distinguishing between when n2 < n1 +J and

when n2 ≥ n1 +J . Most practical studies will have n2 < n1 +J as rarely will there be

a large difference between the number of first-capture and recapture occasions. There

are n1 first-capture occasions and n2 recapture occasions, where n2 ≥ 3 with n2 ≥ n1.
The results of Tables 3.5a and 3.5b assume there are perfect data observed with at

least one observation of each possible distinct capture-history.

As before, we give a list of estimable parameter combinations for different xJ/y/z

capture-recapture models, as given in Table 3.6. Any model using the reparameter-

isation theorem proof is based on the reparameterisations given in Table 3.6. The

estimable parameter combinations for the CJ/A/z models can be found in Table 3.4

as the models are identical to A/z models as both juvenile and adult survival proba-

bilities are then age-dependent. This is also the case for the TJ/A,T/z models as they

are identical to the A,T/z models as both juvenile and adult survival probabilities are

then age- and time-dependent.



CAPTURE-RECAPTURE MODELS 81

Table 3.5a: Intrinsic parameter redundancies for capture-recapture x1/y/z models with
first-year survival probabilities

Model Rank Deficiency Method

C1/C/C 3 0 Extension Theorem

C1/C/T n2 + 2 0 Extension Theorem

C1/C/A n2 + 2 0 Extension Theorem

C1/C/A,T E + 2 0 Extension Theorem

C1/T/C n2 + 1 0 Extension Theorem

C1/T/T † 2n2 0 Extension Theorem (for d = 0†)
C1/T/A 2n2 0 Extension Theorem

C1/T/A,T E + n2 − 1 1 Reparameterisation

C1/A/C n2 + 1 0 Identical to A/C model

C1/A/T 2n2 0 Identical to A/T model

C1/A/A 2n2 − 1 1 Identical to A/A model

C1/A/A,T E + n2 − 1 1 Identical to A/A,T model

C1/A,T/C E − n1 + 2 0 Extension Theorem

C1/A,T/T † E − n1 + n2 + 1 0 Extension Theorem (for d = 0†)
C1/A,T/A E − n1 + n2 1 Reparameterisation

C1/A,T/A,T † 2E − 2n1 + 2 n1 + 1 Reparameterisation

T1/C/C n1 + 2 0 Extension Theorem

T1/C/T n1 + n2 + 1 0 Extension Theorem

T1/C/A n1 + n2 + 1 0 Extension Theorem

T1/C/A,T ‡ E + n1 1 Reparameterisation (for d = 1‡)
T1/T/C n1 + n2 0 Extension Theorem

T1/T/T n1 + 2n2 − 2 1 Reparameterisation

T1/T/A n1 + 2n2 − 1 0 Extension Theorem

T1/T/A,T ‡ E + n1 + n2 − 3 2 Reparameterisation

T1/A/C n1 + n2 0 Extension Theorem

T1/A/T n1 + 2n2 − 1 0 Extension Theorem

T1/A/A n1 + 2n2 − 2 1 Reparameterisation

T1/A/A,T ‡ E + n1 + n2 − 3 2 Reparameterisation

T1/A,T/C E + 1 0 Identical to A,T/C model

T1/A,T/T E + n2 − 1 1 Identical to A,T/T model

T1/A,T/A E + n2 − 1 1 Identical to A,T/A model

T1/A,T/A,T 2E − n1 n1 Identical to A,T/A,T model

†: When n2 > n1 the rank decreases by 1 and the deficiency increases by 1;

‡: When n2 > n1 the rank increases by 1 and the deficiency decreases by 1;

E = n1n2 − 1
2n

2
1 + 1

2n1.
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Table 3.5b: Intrinsic parameter redundancies for capture-recapture xJ/y/z models for
a general number of juvenile years J

Model Rank Deficiency (1) Deficiency (2)

CJ/C/C J + 2 0 0

CJ/C/T n2 + J + 1 0 0

CJ/C/A n2 + J + 1 0 0

CJ/C/A,T E + J + 1 0 0

CJ/T/C n2 + 1 0 0

CJ/T/T 2n2 − 1 0 1

CJ/T/A 2n2 0 0

CJ/T/A,T E + n2 − 1 1 1

CJ/A/C n2 + 1 0 0

CJ/A/T 2n2 0 0

CJ/A/A 2n2 − 1 1 1

CJ/A/A,T E + n2 − 1 1 1

CJ/A,T/C E − n1 + n2 −B + J + 1 +G 0 0

CJ/A,T/T E − n1 + 2n2 −B + J +G− d 0 1

CJ/A,T/A E − n1 + 2n2 −B + J − 1 +G 1 1

CJ/A,T/A,T 2E − n1 + n2 −B + J +G− d n2 − J n1
TJ/C/C B + n1 − n2 + 2−G 0 0

TJ/C/T B + n1 + 1−G 0 0

TJ/C/A B + n1 + 1−G 0 0

TJ/C/A,T E + n1 − n2 +B + 1−G− d n1 − n2 + J 0

TJ/T/C B + n1 − J + 1−G 0 0

TJ/T/T B + n1 + n2 − J − 1−G 1 1

TJ/T/A B + n1 + n2 − J −G 0 0

TJ/T/A,T E + n1 +B − J −G− d n1 − n2 + J + 1 1

TJ/A/C B + n1 − J + 1−G 0 0

TJ/A/T B + n1 + n2 − J −G 0 0

TJ/A/A B + n1 + n2 − J − 1−G 1 1

TJ/A/A,T E + n1 +B − J −G− d n1 − n2 + J + 1 1

TJ/A,T/C E + 1 0 0

TJ/A,T/T E + n2 − 1 1 1

TJ/A,T/A E + n2 − 1 1 1

TJ/A,T/A,T 2E − n1 n1 n1

d in the rank column refers to the deficiency given in column 3 or 4;

Deficiency (1) is when n2 < n1 + J and Deficiency (2) is when n2 ≥ n1 + J ;

E = n1n2 − 1
2n

2
1 + 1

2n1; B = 1
2J(2n2 − J + 1);

G = 1
2 [(n2 − n1 − 1)2 + (n2 − n1 − 1)] when n2 < n1 + J and

G = 1
2(J − 1)(2n2 − J − 2n1) when n2 ≥ n1 + J .
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Table 3.6: Estimable parameter combinations for capture-recapture xJ/y/z models

Model Estimable Parameter Combinations

CJ/T/T {φi}i=1,...,n2−1, {pi}i=2,...,n2
, φn2pn2+1 (only for n2 ≥ n1 + J)

CJ/T/A,T {φi}i=1,...,n2−1, {pi,j}i = 2, . . . , n2
j = i, . . . ,min(n1 + i− 1, n2)

, {φn2pi,n2+1}i=max(n2−n1+2,J+2),...,n2+1

CJ/A,T/T {φi}i=1,...,J , {pi}i=2,...,n2
, {φi,j}i = J + 1, . . . , n2 − 1

j = i, . . . ,min(n1 + i− 1, n2 − 1)
, {φi,n2pn2+1}i=n2−n1+1,...,J (only for n2 ≥ n1 + J)

CJ/A,T/A {φi}i=1,...,J , {pi}i=2,...,n2
, φn2,n2pn2+1, {φi,j}i = J + 1, . . . , n2 − 1

j = i, . . . ,min(n1 + i− 1, n2 − 1)

CJ/A,T/A,T {φi}i=1,...,J , {φi,j}i = J + 1, . . . , n2 − 1
j = i, . . . ,min(n1 + i− 1, n2 − 1)

, {pi,j}i = 2, . . . , n2
j = i, . . . ,min(n1 + i− 1, n2)

, {φi,n2pi+1,n2+1}i=max(n2−n1+1,J+1),...,n2

TJ/C/A,T {φi,j}i = 1, . . . , J
j = i, . . . ,min(n1 + i− 1, n2 − 1)

, φa, {pi,j}i = 2, . . . , n2
j = i, . . . ,min(n1 + i− 1, n2)

, {φi,n2pi+1,n2+1}i=max(n2−n1+1,J),...,J

TJ/T/T
{φi,j}i = 1, . . . , J

j = i, . . . ,min(n1 + i− 1, n2 − 1)
, {φi}i=J+1,...,n2−1 , {pi}i=2,...,n2

, φn2pn2+1;

if n2 − n1 < J also: {φi,n2pn2+1}i=n2−n1+1,...,J

TJ/T/A,T
{φi,j}i = 1, . . . , J

j = i, . . . ,min(n1 + i− 1, n2 − 1)
, {φi}i=J+1,...,n2−1 , {pi,j}i = 2, . . . , n2

j = i, . . . ,min(n1 + i− 1, n2)
, {φn2pi,n2+1}i=J+2,...,n2+1 ;

if n2 − n1 < J also: {φi,n2pi+1,n2+1}i=n2−n1+1,...,J

TJ/A/A {φi,j}i = 1, . . . , J
j = i, . . . ,min(n1 + i− 1, n2)

, {φi}i=J+1,...,n2−1, {pi}i=2,...,n2
, φn2pn2+1

TJ/A/A,T
{φi,j}i = 1, . . . , J

j = i, . . . ,min(n1 + i− 1, n2 − 1)
, {φi}i=J+1,...,n2−1 , {pi,j}i = 2, . . . , n2

j = i, . . . ,min(n1 + i− 1, n2)
, φn2pn2+1,n2+1;

if n2 − n1 < J also: {φi,n2pi+1,n2+1}i=n2−n1+1,...,J

All other models have no parameter redundancy so all the parameters in those models can be estimated.
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We have now finished our discussion of intrinsic parameter redundancy in capture-

recapture models. We now proceed to examine extrinsic parameter redundancy results,

illustrated by a data set involving European dippers.

3.7 Extrinsic parameter redundancy: The dippers data

set

The issues of having imperfect data, which has been previously highlighted in Sec-

tion 2.6 for mark-recovery models, can also be an issue in capture-recapture models.

The large number of capture-histories in long studies means that unless the number of

animals in the study is also large, there are going to be many capture-histories which

are not observed during the survey. For example, if the probabilities of survival and

recapture are quite small, say φ = p = 0.2, then the probability of the capture-history

11111 is equal to Pr(11111) = 0.210 = 0.0000001, so that capture-history would very

likely be unobserved in a study. There may also be examples of say 30-year studies

where the animal’s life expectancy is much less than 30 years, so that the capture-

history ‘111...111’ is essentially an impossibility. The procedure given in this section

will produce an exhaustive summary from the observed capture-histories where the

usual parameter redundancy methods from the first chapter can be used to obtain

the rank of the derivative matrix and its parameter deficiency. The full procedure is

listed in the Maple file example3.8.mw and we will present a real data set on European

dippers to illustrate its use in practice.

Example 3.8 - Extrinsic parameter redundancy in the capture-recapture model - The

European dippers data set: [See electronic appendix example3.8.mw] We consider a

data set on European dippers in this example. The data were originally published

in Marzolin (1988) and then used in a number of practical applications such as in

Lebreton et al. (1992), Brooks et al. (2000) and Royle (2008). This data set involved

the capture and recapture of European dippers (Cinclus cinclus) collected for seven

years between 1981 and 1987 by Gilbert Marzolin in eastern France. The data set

consists of capturing and recapturing breeding adults each year between its breeding

period in early March and the 1st of June. There were a total of 294 animals captured

during the study for six recapture occasions, and a representation of the data can be

found in Table 3.7 as well as in Lebreton et al. (1992, Table 10).
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Table 3.7: Capture-histories from the dippers data set of Marzolin (1988)
Capture- Number of Number of Total number of
History males females animals

1111110 1 0 1
1111100 0 1 1
1111000 1 1 2
1101110 0 1 1
1100000 4 2 6
1010000 1 1 2
1000000 5 4 9
0111111 0 2 2
0111110 0 1 1
0111100 1 2 3
0111000 1 1 2
0110110 0 1 1
0110000 7 4 11
0100000 11 18 29
0011111 0 2 2
0011110 1 1 2
0011100 4 2 6
0011000 8 4 12
0010110 1 0 1
0010000 11 18 29
0001111 6 2 8
0001110 3 4 7
0001100 6 5 11
0001011 0 1 1
0001001 1 1 2
0001000 6 10 16
0000111 10 6 16
0000110 3 6 9
0000100 9 7 16
0000011 12 11 23
0000010 11 12 23

Totals: 124 131 255

All the other capture-histories were not observed.

This data set is quite sparse as there are only 31 distinct capture-histories recorded,

compared to the 126 distinct capture-histories there would be in a perfect data set.

Furthermore, there are only 24 distinct capture-histories recorded in the males-only

data set and only 29 distinct capture-histories recorded in the females-only data set.

To examine parameter redundancy in Maple we list all these capture-histories in a

matrix with each row being a different capture-history and each column representing

the capture occasion going from the first-capture occasion in the first column to the
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(n2 + 1)th capture occasion in the last column (as there is one capture occasion at the

beginning of the study where only first capturing takes place and no recaptures are

possible). We examine the data set by treating male and female animals separately

and we denote Pmale to be the matrix of all male capture-histories and Pfemale to

be the matrix of all female capture-histories. We also examine the combined data set

with both male and female capture-histories where we denote Pall to be the matrix of

all capture-histories regardless of gender. For example, the matrix of all male capture-

histories is given by

Pmale =



1 1 1 1 1 1 0

1 1 1 1 0 0 0

1 1 0 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 1 0


.

For the dippers data set Pmale is a 24 by 7 matrix, Pfemale is a 29 by 7 matrix and

Pall is a 31 by 7 matrix. We can then put the relevant matrix into the Maple procedure

supplied in example3.8.mw to obtain the final rank and parameter deficiency for this

particular data set. As an illustration of how this Maple procedure can be used to

obtain parameter redundancy results, consider the T/A capture-recapture model for

when viewing the males-only data set:

kappa := caprecaphistories(Pmale,2,3):

# Inputs: (Data,y,z); Data = Data of all capture-histories;

# y = survival probability; z = recapture probability;

# for y and z: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T.

theta := parsproc(kappa);

DD := Dmat(logvector(kappa),theta):

# Note: using the ‘logvector’ exhaustive summary to speed up computation.

hybrid := Formnum2(DD,theta);
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This gives the exhaustive summary as

κ =



φ1p2φ2p3φ3p4φ4p5φ5p6(1− φ6p7)
φ1p2φ2p3φ3p4(1− φ4 + φ4p̄5(1− φ5 + φ5p̄6(1− φ6p7)))

φ1p2(1− φ2 + φ2p̄3(1− φ3 + φ3p̄4(1− φ4 + φ4p̄5(1− φ5 + φ5p̄6(1− φ6p7))))
...

1− φ5 + φ5p̄2(1− φ6p3)
φ6p2

1− φ6p2


,

where p̄i = 1 − pi. The parameters in this model are θ = [φ1, φ2, φ3, φ4, φ5, φ6, p2,

p3, p4, p5, p6, p7]
T . The derivative matrix is given in the Maple file example3.8.mw

only to save space. We use the hybrid symbolic-numerical method of Section 2.5 to

find the model rank due to computational complexity of the derivative matrix. This

derivative matrix has the model rank and parameter deficiency as

r := 12,d := 0.

Therefore, only having these 24 distinct male capture-histories is still sufficient to

estimate every parameter in the T/A model for the males-only data. Observe that

Maple can have memory limitations which are alleviated by the use of logvector form

of the exhaustive summary and by using the hybrid symbolic-numerical method in-

stead of the pure symbolic method.

We can now show here the extrinsic parameter redundancy results for all of the

16 different possible y/z capture-recapture models for each of the three data sets of

the males-only data, the females-only data, and the combined data. Table 3.8 shows

these parameter deficiencies in columns three to five with the model rank in the second

column and the final column showing what the intrinsic parameter deficiency would

be when we observe perfect data.

We can see from Table 3.8 that for the majority of the simpler models the capture-

histories observed allow all the parameters to be estimated. We initially expected

that for such a sparse data set with a lower number of distinct capture-histories, more

models would be parameter redundant, and the models that were parameter redundant

would have had larger deficiencies. It is however hard in most cases to estimate all of

the parameters if one set of parameters are age- and time-dependent.
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Table 3.8: Extrinsic parameter redundancies for capture-recapture y/z models for the
dippers data set of Marzolin (1988)

Model Number of Parameter deficiency of
Parameters Males Females Combined Intrinsic

C/C 2 0 0 0 0
C/T 7 0 0 0 0
C/A 7 0 0 0 0
C/A,T 22 2 0 0 0
T/C 7 0 0 0 0
T/T 11 1 1 1 1
T/A 12 0 0 0 0
T/A,T 27 5 2 1 1
A/C 7 0 0 0 0
A/T 12 0 0 0 0
A/A 12 2 1 1 1
A/A,T 27 6 2 2 1
A,T/C 22 2 0 0 0
A,T/T 27 5 2 2 1
A,T/A 27 6 2 2 1
A,T/A,T 42 19 15 13 6

A further point arising from this analysis is whether we can list all the possible

capture-histories for certain n1 and n2 values as a double-check of our results in Table

3.3. Generating all the possible capture-histories is achievable using the procedure

fullhistcaprecap, which uses the combinat package in Maple. This code is shown

in Example 3.8 below.

Example 3.8 revisited: [See electronic appendix example3.8.mw] Consider a study with

n1 = 6 as the number of first-capture occasions and n2 = 8 as the number of recapture

occasions, examining the A,T/A,T capture-recapture model. We can obtain a matrix

of every possible distinct capture-history from the Maple code

Data := fullhistcaprecap(6,8):

# Inputs: (n1,n2);

# n1 = number of first-capture occasions;

# n2 = number of recapture occasions.
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This gives the Data matrix containing all the possible capture-histories as

Data =



1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 1 1
...

...
...

...
...

...
...

...
...

0 0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0 0


.

We can obtain the parameter redundancy of the capture-histories by the usual

methods from Section 2.2,

kappa := caprecaphistories(Data,4,4):

theta := parsproc(kappa):

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

The exhaustive summary, parameter set and derivative matrix are given in the Maple

file example3.8.mw only to save space. We use the hybrid symbolic-numerical method

of Section 2.5 to find the model rank due to computational complexity of the derivative

matrix. This derivative matrix has the model rank and parameter deficiency as

r := 60,d := 6.

This agrees with our previous results from Table 3.3 as the rank should be equal

to r = 2E − n1 = 2 × 33 − 6 = 60 and the parameter deficiency should be equal to

d = n1 = 6.

To end this chapter on parameter redundancy in capture-recapture models, we

generalise these extrinsic parameter redundancy results in the next section.
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3.8 An extrinsic sparseness statistic for capture-recapture

models

In this section we identify the possible capture-histories that a data set is likely to

have. This approach has been considered in the mark-recovery model in Cole et al.

(2012, Table 4) where they consider the extrinsic parameter deficiency of a model given

that they have a certain number of m diagonal values from the m-array that have been

observed. Consider a capture-recapture model with a medium probability of annual

survival with φ = 0.5 and a low probability of recapture with p = 0.2 for all parame-

ters. We show the probability of each possible capture-history of an animal that was

captured at the first-capture occasion in the second column of Table 3.9. We then

show how many animals we expect to observe with that capture-history if we mark

n = 10, n = 100 and n = 1000 animals at the first-capture occasion.

Table 3.9: Expected number of capture-histories for medium survival probabilities and
low recapture probabilities

Probability Expected number of animals recaptured if
Capture-history of capture-history n = 10 n = 100 n = 1000

1000 0.844 8 84 844
1100 0.086 0 8 86
1010 0.036 0 3 36
1001 0.016 0 1 16
1110 0.009 0 0 9
1101 0.004 0 0 4
1011 0.004 0 0 4
1111 0.001 0 0 1

If 100 animals were captured at the first-capture occasion and followed for three

recapture occasions, the capture-histories which we expect to see at least once are

1000, 1100, 1010 and 1000. It is seen from these capture-histories that we only expect

to see an animal at most on two capture occasions. If say 1000 animals were captured

in the first-capture occasions instead, we would then expect at least one occasion of

all eight distinct capture-histories to be observed during a study. While in practice

not all of the distinct capture-histories may actually be observed, we expect the data

to be typically close to the expected number of animals recaptured given in Table 3.9.

Note that we use the capture-histories we expect to see at least once for our analy-

ses, though a similar analysis could be done for example when we expect to see that
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capture-history at least twice.

Let us define a statistic, c, to indicate the difference between the time of the

first capture occasion and the last recapture occasion the animal was seen where

0 ≤ c < n2. Differences in the expected numbers of capture-histories observed varies

with the capture-recapture model specified and with the values of φ and p, but typi-

cally sparser data sets with lower numbers of distinct capture-histories will have lower

values of c. Suppose that we have all capture-histories with a difference of c between

an animal’s first capture and last recapture, we can then calculate the parameter defi-

ciency for only those particular capture-histories. Real data will never have this exact

pattern of capture-histories, but we would expect a data set which is very sparse and/or

has few recaptures per occasion to behave like a model with a low value of c.

We set n1 = n2 throughout this section; we have attempted to generalise results to

models where n2 > n1 but this fails to obtain consistent patterns for all of the capture-

recapture model possibilities. Table 3.10 shows the parameter deficiency of the model

given the number of recapture occasions, n2, and the maximum difference between

the number of occasions between first capture and last recapture, c. The parameter

deficiency of the model when c > 1 is given in the second column, with the parameter

deficiency of the model when c = 0 or c = 1 in the third column, as well as the intrin-

sic parameter deficiency in the final column. The results of Table 3.10 were generated

by the hybrid symbolic-numerical approach from Choquet and Cole (2012). We also

demonstrate how the parameter redundancy results are obtained in Example 3.9 below.

Example 3.9: Consider when the difference between first capture and last recapture

is a maximum of two recapture occasions, c = 2, for a model where there are four

first-capture occasions and four recapture occasions, n2 = 4. This means we only con-

sider the 14 capture-histories {11100, 10100, 11000, 10000, 01110, 01010, 01100, 01000,

00111, 00101, 00110, 00100, 00011, 00010}, and not the 16 capture-histories {11111,

11110, 11101, 11011, 10111, 11010, 10110, 11001, 10101, 10011, 10010, 10001, 01111,

01101, 01011, 01001} as all these capture-histories have either three or four recapture

occasions between first capture and last recapture. We can then see whether a certain

capture-recapture y/z model has parameter redundancy from Table 3.10. In this case

where c = 2 and n1 = n2 = 4, the models C/C, C/T, C/A, T/C, T/A, A/C and A/T

are all not parameter redundant. If we observe more capture-histories so that c = 3,

then the models C/A,T and A,T/C also become full rank. We do not believe that

a study will have the exact capture-histories listed where c = 2 but a data set will



CAPTURE-RECAPTURE MODELS 92

Table 3.10: Parameter redundancies for capture-recapture y/z models where there is
a maximum difference c between the number of occasions between first capture and
last recapture

Model Deficiency when c > 1 Deficiency when c = {0, 1} Intrinsic

C/C 0 1 0
C/T 0 1 0
C/A 0 1 0
C/A,T 1

2(n2 − c)(n2 − c− 1) 1
2(n2 − c+ 1)(n2 − c) + 1 0

T/C 0 1 0
T/T 1 n2 1
T/A 0 n2 0
T/A,T 1

2(n2 − c)(n2 − c− 1) + 1 1
2(n2 − c+ 2)(n2 − c+ 1) 1

A/C 0 1 0
A/T 0 n2 0
A/A n2 − c n2 1
A/A,T 1

2(n2 − c+ 1)(n2 − c) + 1 1
2(n2 − c+ 2)(n2 − c+ 1) 1

A,T/C 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − c+ 1)(n2 − c) + 1 0
A,T/T 1

2(n2 − c)(n2 − c− 1) + 1 1
2(n2 − c+ 2)(n2 − c+ 1) 1

A,T/A 1
2(n2 − c+ 1)(n2 − c) + 1 1

2(n2 − c+ 2)(n2 − c+ 1) 1
A,T/A,T (n2 − c)2 + n2 n22 n1

typically have very similar capture-histories to those given here.

The results of Table 3.10 show that simpler models of C/T, C/A, T/C, T/A, A/C

and A/T models have no parameter redundancy even when sparse data sets with low

values of c, say when c = 2 or 3, are considered. This is an desirable feature to observe

as it shows that generally quite sparse data sets have no parameter redundancy.

3.9 Discussion

This chapter began viewing capture-recapture models using m-arrays as a way of

representing the data. This however does not allow for age-dependent parameters so we

then used individual capture-histories as an alternative way of developing an exhaus-

tive summary for capture-recapture models. The analysis of these capture-histories

shows that the majority of capture-recapture models are not intrinsically parameter

redundant, which means that inference can be made on all of the parameters in the

model. The models that are parameter redundant have estimable parameter combina-

tions that only confound the last set of parameters for the last recapture occasion of the

study. The intrinsic parameter redundancy results such as in Tables 3.3, 3.5a and 3.5b
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provide the baseline context for the modelling of these ecological studies. However the

extrinsic procedures are possibly going to be the most widely used part of this chapter

because it is almost impossible to observe every distinct capture-history, especially for

a study with a large number of recapture occasions and a low probability of recapture.

To show how much the parameter deficiency changes when there is sparse data, we

considered a capture-recapture data set on European dippers from Marzolin (1988).

Table 3.8 shows extrinsic parameter redundancy results when observing an incomplete

data set. It shows that while sparse data sets can still be full rank for some simple

capture-recapture models, it can mean that there are large parameter deficiencies in

the more complex models, especially when age- and time-dependent parameters are

considered. We have also given tables that provide some indication of how sparseness

affects parameter deficiency by using a sparseness statistic c in Table 3.10.

The intrinsic parameter redundancy analyses of this chapter are applicable to cur-

rent research in this area of statistical ecology and our results are published in Hub-

bard et al. (2014). Some of our results have been identified in previous research, such

as in Lebreton et al. (1992, Table 3) where they consider the fully time-dependent

Cormack-Jolly-Seber model, and in Catchpole and Morgan (1997, Example 5) where

they consider parameter redundancy in a fully age-dependent model. However, a list

of various models with different parameter dependencies has never been compiled in

a single taxonomy. Pledger et al. (2003, Table 1) do create a list of independent es-

timable parameters for different Cormack-Jolly-Seber models, but they use simulation

as a method of generating results rather than the formal methodology of determining

parameter redundancy which is done in Yu et al. (2014). Further work in this area con-

sidering parameter redundancy analyses of different capture-recapture models includes

stop-over models, which are special cases of Jolly-Seber models from Jolly (1965) and

Seber (1965), where these have the advantage of relaxing the condition on marking

the animal to begin with so that there are unknown arrival times. These stop-over

models are discussed in Matechou et al. (2013) and the parameter redundancy of these

models considered in Matechou (2010). There are other capture-recapture models that

are yet to considered with regard to parameter redundancy, such as Pollock’s robust

capture-recapture model to deal with unequal catchability in Pollock (1982) (e.g. see

Bailey et al., 2004b, where this model has been used), and capture-recapture models

which account for trap effects such as in Pradel and Sanz-Aguilar (2012).

From a purely mathematical point of view, we believe that the proof of Theorem

3.2 in Appendix B.1 gives an attractive exhaustive summary only consisting of the
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reparameterised parameters s and t. In addition the two-stage extension theorem of

Theorem 3.1 is a novel addition to the original extension theorem from Catchpole and

Morgan (1997). It is flexible enough proof to allow for age- and time-dependence of all

parameters in the model. The relevant proofs could give important results for a wide

range of models, not just in ecology.

While the Cormack-Jolly-Seber capture-recapture model provides a basis for pa-

rameter estimation using live recaptures, it is worth discussing the assumptions made.

As in the mark-recovery model in Section 2.1, we list these assumptions here:

1. The animals are of known age 0 when we mark them in the study if an age-

dependent model is proposed. A different model for when ages are unknown is in

the form of a stop-over model which has been considered in Pledger et al. (2009)

and Matechou et al. (2013), and for parameter redundancy analysis in Matechou

(2010). Age-dependent mixture models which differentiate between age classes

are also considered in McCrea et al. (2013).

2. Technological and/or human errors are considered to be negligible. This includes

issues like incorrect individual identification and incorrect data input into com-

puters. Note that this is somewhat different from having missing observations;

we assume there are no incorrect observations but accommodate for missing ob-

servations. If this is not accounted for when incorrect observations are present,

it can be a source of parameter bias meaning inaccurate estimates are obtained.

Tag loss is a possible source of bias, which has been considered in McDonald

et al. (2003), as well as the misidentification of animals considered in Link et al.

(2010).

3. First capture does not affect the animal’s survival probability. This can appear in

capture-recapture studies when animals are either ‘trap-happy’ or ‘try-shy’ when

they are more or less likely to be recaptured again. The animals also die and are

recaptured independently of each other. This is similar to the assumptions from

mark-recovery models from Section 2.1.

4. No recovery of dead animals is included in this model.

The last point is one we explore further in the next chapter, where we integrate

both mark-recovery and capture-recapture models into one single model by allowing

the collection of both live recaptures and dead recoveries at the same time. This is the

capture-recapture-recovery model and is explored in Chapter 4.



Chapter 4

Capture-Recapture-Recovery

Models

4.1 Capture-recapture-recovery background

In Chapters 2 and 3 we considered parameter redundancy in mark-recovery and

capture-recapture models. In this chapter, we explore parameter redundancy in

capture-recapture-recovery models. These models can be used for studies where

data are collected on both live recaptures and dead recoveries, rather than just recap-

ture or recovery only data.

The first consideration of a capture-recapture-recovery model is by Mardekian and

McDonald (1981), where previously it was common to conduct two separate analyses

and compare results, such as in Anderson and Sterling (1974). However, this model was

somewhat restrictive as they only consider the last recapture point in the study, and

Barker (1995) notes that their method is only valid for a restrictive set of assumptions

regarding emigration from the study location. At the same time, a model incorporat-

ing tag returns of dead birds in the Jolly-Seber model (of Jolly, 1965, and Seber, 1965)

was explored in Buckland (1980, 1982). Buckland (1980, 1982) shows that integrating

this information on dead recoveries in a single model improves the accuracy of the sur-

vival estimates obtained by solely analysing capture-recapture Jolly-Seber experiments.

The capture-recapture-recovery model is sometimes credited to Burnham (1993).

In Burnham (1993), he shows how Cormack-Jolly-Seber capture-recapture data and

tag-return data can be integrated together to obtain a joint recapture-recovery model.

This allows us to use information on both the live recapturing and dead recovery of

95
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animals to improve survival estimate precision, rather than performing two separate

analyses for two different data sets. Burnham (1993) further mentions the problem of

parameter identifiability in fully time-dependent capture-recapture-recovery models,

which is something that is confirmed in our analysis in this chapter. Barker (1997)

extends the model of Burnham (1993) to allow the animal to be resighted alive multi-

ple times between live recapture occasions, as well as potentially resighting the animal

multiple times before it is recovered dead. The Barker (1997) model is a generalisa-

tion of the Burnham (1993) model under the special case of there being temporary

animal migration from the study location at random intervals, which also includes in-

formation of live animal resighting between recapture occasions. Both Burnham (1993)

and Barker (1997) models without dead recoveries are particular cases of the model

presented by Jolly (1965). This work was further extended by Catchpole et al. (1998,

2000) to generate a flexible model where age- and/or time-dependent parameters could

be considered. Both the Burnham (1993) and Barker (1997) models are special cases

of the model shown in Catchpole et al. (1998, 2000). Our capture-recapture-recovery

model given later in this chapter is based on this work of Catchpole et al. (1998, 2000).

A number of extensions to the capture-recapture-recovery models presented in

Burnham (1993), Barker (1997) and Catchpole et al. (1998, 2000) have been imple-

mented since. This includes the addition location parameters in King and Brooks

(2003), and the consideration of different breeding states such as in Kendall et al.

(2006), King (2012) and McCrea (2012). Some of the different applications of capture-

recapture-recovery models include on gadwalls in Colorado, USA in Szymczak and

Rexstad (1991), on herring gulls in Lebreton et al. (1995), and on Soay sheep in Lan-

grock and King (2013). Statistical inference can be executed in the software package

MARK, see Cooch and White (2014) for more information. Issues such as goodness of fit

and model comparison using these capture-recapture-recovery models have also been

explored in McCrea et al. (2012, 2013). As we can see by the wide range of literature

as well as the recent developments, capture-recapture-recovery models remain an im-

portant set of models to use in ecological research.

We begin this chapter by showing a capture-recapture-recovery model in Section

4.2 which uses the probabilities of individual life-histories as the basis for an exhaustive

summary. We extend this to obtain intrinsic parameter redundancy by the use of a

simpler exhaustive summary in Sections 4.4 and 4.5, as well as exploring some extrinsic

parameter redundancy results in Section 4.6. We then display an extension of this

model from Burnham (1993, Section 3.2) which estimates the probability of animal
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Table 4.1: A summary of the capture-recapture-recovery model probabilities for n1 =
n2 = 4 from McCrea et al. (2013)

Releases Recapture or recovery occasion Not seen again

R1 m1,2 d1,1 m1,3 d1,2 m1,4 d1,3 m1,5 d1,4 m1,∞
R2 m2,3 d2,2 m2,4 d2,3 m2,5 d2,4 m2,∞
R3 m3,4 d3,3 m3,5 d3,4 m3,∞
R4 m4,5 d4,4 m4,∞

emigration in Section 4.8 and derive parameter redundancy results for that model.

4.2 Life-histories and how they can form an exhaustive

summary

Table 4.1 provides one representation of the data that is observed in a capture-

recapture-recovery study (McCrea et al., 2013, and Burnham, 1993). Here Ri repre-

sents the number of marked animals released at capture occasion i, mi,j represents the

number of animals released at capture occasion i that are next recaptured at capture

occasion j, di,j represents the number of animals released at capture occasion i that are

recovered dead at recovery occasion j, and mi,∞ represents the number of animals last

seen at capture occasion i that were not recaptured alive or recovered dead during the

remainder of the study. Table 4.1 shows all of the possible recapture and recovery occa-

sions in a capture-recapture-recovery study with four recapture and recovery occasions.

We continue to let n1 denote the number of first-capture occasions in the study and

n2 denote the number of recapture/recovery occasions in the study, where n1 ≤ n2 must

hold as there at least as many first-capture occasions as there are recapture/recovery

occasions. Typically in capture-recapture-recovery studies there are T capture and

recapture occasions as well as T recovery occasions with n1 = n2 = T − 1. We assume

that the number of recapturing occasions is the same as the number of years when

an animal can be recovered dead. We also assume that an animal cannot both be

recaptured alive and recovered dead later in the same time period for this model.

Let us continue the notation from Chapters 2 and 3 to let φi,j denote the probabil-

ity that an animal the jth year in its ith year of life given that the animal has survived

up to that point, pi,j denote the probability that an animal of age i− 1 is recaptured

at capture occasion j, and λi,j denote the probability that an animal of age i − 1 is
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recovered dead in the jth year of the study. If we consider age-dependent parameters

in this model then the animals are marked at age 0.

As was the case in Section 3.4, we can create an exhaustive summary using the

probabilities of all the observed histories in a study. As these histories possibly contain

both recaptures and recoveries, we denote these as being life-histories rather than

simply capture-histories in this chapter. We can represent the life-histories as before

with a ‘1’ indicating an occasion when the animal was recaptured alive, but we now

let a ‘2’ denote an occasion when the animal was recovered dead. As before, the first

‘1’ is also used to represent the occasion when the animal was first-captured. A ‘0’ in

the life-history code indicates that the animal was neither recaptured or recovered at

that occasion. Several examples of life-histories and their probabilities are given below

in Examples 4.1 to 4.3.

Example 4.1: Consider the life-history 11100102 where an animal was first-captured at

the first capture occasion, recaptured alive during the second, third and sixth capture

occasions as well as being recovered dead at the eighth recovery occasion. If we assume

that all parameters are only time-dependent with no age-dependency, the probability

of this life-history is

Pr(11100102) = φ1p2φ2p3φ3(1− p4)φ4(1− p5)φ5p6φ6(1− p7)(1− φ7)λ7.

This is an example where the animal was recaptured alive multiple times before it was

recovered dead.

Example 4.2: Consider the life-history 00110200 where an animal was first-captured

at the third capture occasion, recaptured alive during the fourth recapture occasion

and was then recovered dead at the fifth recovery occasion. If we assume that all

parameters are only time-dependent, the probability of this life-history is

Pr(00110200) = φ3p4φ4(1− p5)(1− φ5)λ5.

We observe that after an animal is recovered dead the life-history will contain zeros

for the remaining of the history as it is impossible to be recaptured or recovered again

after the animal has been recovered dead.
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Example 4.3: Finally consider the life-history 00010110 where the animal was first-

captured at the fourth capture occasion, recaptured alive during the sixth and seventh

capture occasions, and was not recovered dead at all. If we assume that all parameters

are only time-dependent, the probability of this life-history is

Pr(00010110) = φ4(1− p5)φ5p6φ6p7χ7,

where χ7 = (1 − φ7)(1 − λ7) + φ7(1 − p8). This χ7 term represents the probability

of being uncertain about the animal after the seventh capture occasion, as the animal

may have died and not been recovered, or could be still alive but was not recaptured

alive.

The probability of a particular life-history can be generalised as given in Hubbard

et al. (2014). Let δk denotes the life-history of the animal at time k, where δk = 0

would denote no capture or recovery during recapture occasion k, δk = 1 would denote

an animal being recaptured alive during recapture occasion k, and δk = 2 would denote

an animal being recovered dead during recovery occasion k (which is before recapture

occasion k). Suppose an animal was first-captured at time a and was last recaptured

alive or recovered dead at time b, then the probability associated with a particular

life-history, hX , is

Pr(hX) =



b∏
k=a+1

φk−a,k−1 {δkpk−a+1,k + (1− δk)(1− pk−a+1,k)}χb−a+1,b if δb = 1,

b−1∏
k=a+1

φk−a,k−1 {δkpk−a+1,k + (1− δk)(1− pk−a+1,k)} if δb = 2,

×(1− φb−a,b−1)λb−a,b−1
(4.1)

where

χi,j = (1− φi,j)(1− λi,j) + φi,j(1− pi+1,j+1)χi+1,j+1, (4.2)

with χi,n2 = 1 for all i. An overall likelihood can be obtained as the product of the N

different capture-histories observed as

L =

N∏
X=1

Pr(hX). (4.3)

A suitable exhaustive summary for the capture-recapture-recovery model can be gener-

ated containing all the probabilities of the distant life-histories as separate exhaustive

summary terms.
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4.3 Links to other capture-recapture-recovery likelihoods

While we use the formulation of the model from Hubbard et al. (2014) to gener-

ate exhaustive summary terms, it is worth noting there are alternative forms of the

capture-recapture-recovery models in other literature. We begin by showing a capture-

recapture-recovery model considered in Catchpole et al. (1998). The model parameters

are the same as the ones defined in Section 4.2 for the survival, recapture and recovery

parameters, though they view the data in terms of cohort rather than age; this has

no change on the model if each animal is considered to be of age 0 when the animal

is marked at occasion i. The data matrices in the model are di,j as the number of

animals first-captured at capture occasion i which were found dead between recapture

occasions j and j+1, vi,j as the number of animals first-captured at capture occasion i

which were recaptured at recapture occasion j and not seen again (which also includes

when the animal was last seen when it was marked when i = j), wi,j as the number

of animals first-captured at capture occasion i which were recaptured at recapture

occasion j + 1, and zi,j as the number of animals first-captured at capture occasion i

which were not recaptured at recapture occasion j + 1 but were either recaptured or

recovered later on. If we let the probability of an animal aged i surviving recapture

occasion j be

αi,j =


0, for j < i,

1, for j = i,
j−1∏
s=i

φi,s, for i+ 1 ≤ j ≤ n2,

then the likelihood in Catchpole et al. (1998) is given by

L ∝
n1∏
i=1

n2−1∏
j=i

{αi,j(1− φi,j)λi,j}di,j

n2∏
j=i

{αi,jχi,j}vi,j

n2−1∏
j=i

p
wi,j

i+1,j+1 (1− pi+1,j+1)
zi,j

 ,
(4.4)

where

χi,j = (1− φi,j)(1− λi,j) + φi,j (1− pi+1,j+1)χi+1,j+1,

for all i = 1, . . . , n2 − 1 and j = i, . . . ,min(n1 + i− 1, n2 − 1) with χi,n2 = 1 for all i.

It was further shown in Catchpole et al. (2000) that the likelihood could be re-

expressed as:

L ∝
n1∏
i=1

n2−1∏
j=1

φ
wi,j+zi,j
i,j p

wi,j

i,j+1 (1− pc,j+1)
zi,j {(1− φi,j)λi,j}di,j

n2∏
j=1

χ
vi,j

i,j

 . (4.5)
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Observe that if dead recoveries are now not considered in the Catchpole et al.

(2000) likelihood, this reduces to the same Cormack-Jolly-Seber likelihood as shown

in Section 3.1 without cohort-dependence. If we do not consider dead recoveries by

setting di,j = 0 and λi,j = 0 for all i and j, we get

L ∝
n1∏
i=1


n2−1∏
j=1

φ
wi,j+zi,j
i,j p

wi,j

i,j+1 (1− pc,j+1)
zi,j

n2∏
j=1

χ
vi,j

i,j

 ,

with

χi,j = (1− φi,j) + φi,j (1− pi+1,j+1)χi+1,j+1.

Removing cohort-dependency then reduces the matrices vi,j , wi,j and zi,j to be

the vectors vj , wj and zj and leaves us with the likelihood

L ∝
n2−1∏
j=1

φ
wj+zj
j p

wj

j+1 (1− pc,j+1)
zj

n2∏
j=1

χ
vj

j ,

where

χj = (1− φj) + φj (1− pj+1)χj+1.

If we relabel the vectors wj and zj in terms of the vectors aj and cj as in the

Cormack-Jolly-Seber model, and by noting that

1− χj
φj

= 1− χj+1 + χj+1pj+1

1− χj
φj

= 1− (1− pj+1)χj+1

1− χj = φj − φj (1− pj+1)χj+1

χj = (1− φj)− φj (1− pj+1)χj+1,

we achieve the same time-dependent likelihood as before in Equation (3.2) where

L =

n2−1∏
j=1

φ
vj

j p
aj+1

j+1 χ
cj
j (1− pj+1)

(vj−aj+1),

and
1− χj
φj

= 1− χj+1 + χj+1pj+1,

with χn2 = 1. We can now see there are links between the Catchpole et al. (1998,

2000) likelihoods and the Cormack-Jolly-Seber capture-recapture likelihood of Cor-

mack (1964), Jolly (1965) and Seber (1965).
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There are alternative approaches to the creation of a capture-recapture-recovery

model such as using a sufficient statistics approach to build up a likelihood for the

model based on the work of King and Brooks (2003). We change the notations given

in King and Brooks (2003) as they consider differences in location as well as time- and

age-dependency in their model. They also further consider cohort-dependence but we

will not consider this in our form of the likelihood. The likelihood in King and Brooks

(2003) is complex so we will define each separate part of the likelihood to begin with

and then give the general form for the model.

The first term in the King and Brooks likelihood given in King and Brooks (2003,

Lemma 1) refers to the χ term, which is equal to

χ(i,j,k) =

{
1 (j = k),

1− φi,j
[
1− (1− pi+1,j+1)χ(i+1,j+1,k)

]
− (1− φi,j)λi,j (j < k),

where the animal was last seen at age j at time i and it will be age k if the animal

survives the end of the study. We have edited the formulae in King and Brooks (2003)

to eliminate migration effects by making ψ(r, s) = 0 for r 6= s and ψ(r, r) = 1 by not

having to consider summing over location r or s. We also would like the parameters to

be time-dependent, so the subscript i has been inserted into this form of the likelihood.

This can be seen to be the same as the Catchpole et al. (1998, 2000) χ term from earlier

as

χ(i,j,k) = 1− φi,j
[
1− (1− pi+1,j+1)χ(i+1,j+1,k)

]
− (1− φi,j)λi,j (for j < k)

= 1−
[
φi,j − φi,j (1− pi+1,j+1)χ(i+1,j+1,k)

]
− (1− φi,j)λi,j

= (1− φi,j) + φi,j (1− pi+1,j+1)χ(i+1,j+1,k) − (1− φi,j)λi,j

= (1− φi,j) (1− λi,j) + φi,j (1− pi+1,j+1)χ(i,j+1,k).

Let Q(i,k,j) given as in King and Brooks (2003, Lemma 2) be

Q(i,k,j) =

{
φi,k (j = k),

φi,j (1− pi+1,j+1) Q(i+1,k,j+1) (j < k),

where an animal at time i of age j is observed until age k. The element of the likelihood

which represents the probability of the animal being recaptured alive is given by

O(i,k,j) = pi+1,j+1Q(i,k,j).
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The element of the likelihood which represents the probability of the animal being

recovered dead is given in King and Brooks (2003, Lemma 3) to be

D(i,k,j) =

{
(1− φi,k)λi,k (j = k),

(1− φi,j)λi,j (1− pi,j) Q(i−1,k,j−1) (j < k).

If we let data matrices in the model be v(i,k,j) to denote the number of animals

that are last recaptured aged j at time i that will be aged k ≥ j at the end of the

study; n(i,k,j) to denote the number of animals that are last seen aged k are seen again

at age j + 1 at time i; and d(i,k,j) to denote the number of animals that are recovered

dead between age j and age j + 1 between time i and i + 1 that were last observed

alive at age k ≤ j; then the King and Brooks (2003) likelihood is equal to

L =

n2∏
i=1

 n2∏
j=0

n2∏
k=j

{χ(i,j,k)}v(i,j,k)

n2−1∏
k=0

n2−1∏
j=k

{D(i,k,j)}d(i,k,j)

×
n2−1∏
k=0

n2−1∏
j=k

{O(i,k,j)}n(i,k,j)

 . (4.6)

A further analysis of how the Catchpole et al. (1998, 2000) sufficient data matrices

compare with closed-location King and Brooks (2003) sufficient data matrices can also

be found in McCrea et al. (2010).

4.4 A simpler exhaustive summary for capture-recapture-

recovery models

We have previously given the general probability of a life-history in Equation (4.1).

However with this capture-recapture-recovery model, we again have a large number of

possible life-histories that can now be observed as shown in Table 4.2. This problem

is analogous to the issues we faced in Section 3.4 for the capture-recapture model.

What this does is present computational problems in finding the intrinsic parameter

redundancy of this model due to the large number of exhaustive summary terms. We

deal with this in a similar way to Section 3.4 by deriving an exhaustive summary which

is simpler than the exhaustive summary of all the life-histories as their probabilities.

This is given in Theorem 4.1 below.
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Table 4.2: All the possible life-histories in the capture-recapture-recovery model for
n1 = n2 ≤ 4

n1 = n2 = 1 n1 = n2 = 2 n1 = n2 = 3 n1 = n2 = 4

11 12 011 120 0011 1200 00011 00010 12000 01200
10 111 112 0111 1120 00111 00110 11200 01120

101 102 0101 1020 00101 01110 10200 01020
010 012 1111 1112 01111 01010 11120 01112
110 1011 1102 01011 00100 11020 01102
100 1101 1012 01101 01100 10120 01012

1001 1002 01001 01000 10020 01002
0010 0120 11111 11110 11112 00120
0110 0112 10111 10110 11102 00112
0100 0102 11011 11010 11012 00102
1110 0012 11101 11100 10112 00012
1010 10011 10010 11002
1100 10101 10100 10102
1000 11001 11000 10012

10001 10000 10002

Theorem 4.1. A simpler exhaustive summary for the capture-recapture-recovery model

consists of the terms:

• si,j = φi,jpi+1,j+1 for all i = 1, . . . , n2 and j = i, . . . ,min(n1 + i− 1, n2),

• ti,j = φi,j(1−pi+1,j+1) for all i = 1, . . . , n2−1 and j = i, . . . ,min(n1+i−1, n2−1),

• and ri,j = (1− φi,j)λi,j for all i = 1, . . . , n2 and j = i, . . . ,min(n1 + i− 1, n2).

The proof of Theorem 4.1 can be found in Appendix B.2 as well as in the supplemen-

tary material of Hubbard et al. (2014). The vector of all the s, t and r terms generates

a simpler exhaustive summary to obtain the status of intrinsic parameter redundancy

in capture-recapture-recovery models. The Maple procedure caprecovmodintrinsic

has been written to generate all the s, t and r terms. This is demonstrated in Example

4.4 below.

We extend previous notation used in Chapters 2 and 3 to capture-recapture-

recovery models with y/(z1; z2) where y denotes the survival probability, z1 denotes

the recapture probability and z2 denotes the recovery probability. As previously each

probability can be either constant (C), time-dependent (T), age-dependent (A), or
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age- and time-dependent (A,T). Therefore, there are 64 different possible capture-

recapture-recovery models with different parameter dependencies. As an example, we

explore the A/(A,T;T) model below.

Example 4.4 - The intrinsic capture-recapture-recovery A/(A,T;T) model: [See elec-

tronic appendix example4.4.mw] We can generate a list of simpler exhaustive summary

terms and obtain the intrinsic parameter redundancy results for the A/(A,T;T) model,

where there are age-dependent survival parameters, age- and time-dependent recapture

parameters, and time-dependent recovery parameters. This study has four occasions

of capture and recapture/recovery and the model’s intrinsic parameter redundancy can

be obtained using the Maple code below. Observe that we illustrate this Maple code

by using an example which assumes animals are of known age when marked, however

this assumption may not be applicable for all capture-recapture-recovery studies.

P := caprecovmodintrinsic(3,4,2,4,4);

# Inputs: (y,z1,z2,n1,n2);

# y = survival probability; z1 = recapture probability;

# z2 = recovery probability;

# for y, z1 and z2: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T;

# n1 = number of first-capture occasions;

# n2 = number of recapture/recovery occasions.

Maple returns the matrix as given below

P =



s1,4 s1,3 s1,2 s1,1

0 s2,4 s2,3 s2,2

0 0 s3,4 s3,3

0 0 0 s4,4

0 t1,3 t1,2 t1,1

0 0 t2,3 t2,2

0 0 0 t3,3

r1,4 r1,3 r1,2 r1,1

0 r2,4 r2,3 r2,2

0 0 r3,4 r3,3

0 0 0 r4,4



=



φ1p2,5 φ1p2,4 φ1p2,3 φ1p2,2

0 φ2p3,5 φ2p3,4 φ2p3,3

0 0 φ3p4,5 φ3p4,4

0 0 0 φ4p5,5

0 φ1(1− p2,4) φ1(1− p2,3) φ1(1− p2,2)
0 0 φ2(1− p3,4) φ2(1− p3,3)
0 0 0 φ3(1− p4,4)

(1− φ1)λ4 (1− φ1)λ3 (1− φ1)λ2 (1− φ1)λ1
0 (1− φ2)λ4 (1− φ2)λ3 (1− φ2)λ2
0 0 (1− φ3)λ4 (1− φ3)λ3
0 0 0 (1− φ4)λ4



.

The s, t and r terms are represented in the matrix form above for convenience in P.

The parameter deficiency of the model can be found as described in Section 2.2.
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kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta):

r := Rank(DD); d := Dimension(theta)-r;

If we denote κ as the exhaustive summary obtained from all the non-zero terms in the

matrix P, this is given as

κ =



φ1p2,5

φ1p2,4

φ1p2,3

φ1p2,2

φ2p3,5
...

(1− φ3)λ4
(1− φ3)λ3
(1− φ4)λ4



,

with the model’s parameters as θ = [φ1, φ2, φ3, φ4, p2,2, p2,3, p2,4, p2,5, p3,3, p3,4,

p3,5, p4,4, p4,5, p5,5, λ1, λ2, λ3, λ4]
T . The derivative matrix is given in the Maple file

example4.4.mw only to save space. This derivative matrix has the model rank and

parameter deficiency as

r := 18,d := 0.

This means the A/(A,T;T) intrinsic capture-recapture-recovery model with four

first-capture occasions and four recapture/recovery occasions is full rank and all of its

parameters can in theory be estimated. The extension theorem of Theorem 2.2 can

then be used to show that the A/(A,T;T) model is not parameter redundant for any

values of n1, n2 ≥ 2.

A similar procedure, caprecovmodJintrinsic, has been written where juvenile

survival probabilities are considered along with separate adult survival probabilities.

This follows on from work done on separate juvenile survival probabilities in mark-

recovery models in Section 2.10 and in capture-recapture models in Section 3.6. In

these models the juvenile animals are assumed to have separate survival probabilities

compared to the survival probabilities for the adult animals in the study so are mod-

elled using different parameters. We denote these capture-recapture-recovery models
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with juvenile survival probabilities, where the animal is a juvenile for J recapture

occasions (for 1 ≤ J < n2 − 1) as xJ/y/(z1; z2), where x denotes whether the juve-

nile survival probabilities are constant or time-dependent for J recapture occasions,

y denotes the adult survival probabilities, z1 denotes the recapture probabilities, and

z2 denotes the recovery probabilities. If x is constant, the model has the survival

parameters φ1, φ2, . . . , φJ for each of the J different recapture occasions, and if x is

time-dependent, then the model has the survival parameters φi,1, φi,2, . . . , φi,J for each

different occasion of first-capture i where the parameters are also dependent on an

animal’s recapture occasion. This is illustrated in Example 4.5 below.

Example 4.5 - The capture-recapture-recovery T1/A/(A,T;C) intrinsic model: [See

electronic appendix example4.5.mw] We can generate a list of simpler exhaustive sum-

mary terms and obtain the intrinsic parameter redundancy results for the T1/A/(A,T;C)

model, where there are time-dependent first-year survival parameters, age-dependent

adult survival parameters, age- and time-dependent recapture parameters, and con-

stant recovery parameters. This study has four occasions of first-capture and recap-

ture/recovery and the model’s intrinsic parameter redundancy can be obtained using

the Maple code below. Observe that we illustrate this Maple code by using an ex-

ample which assumes age-dependence is valid whereas this assumption may not be

realistically applicable for all capture-recapture-recovery studies, particularly for adult

age-dependent survival parameters.

P := caprecovmodJintrinsic(2,1,3,4,1,4,4);

# Inputs: (x,J,y,z1,z2,n1,n2);

# x = juvenile survival probability; J = number of juvenile occasions;

# y = adult survival probability; z1 = recapture probability;

# z2 = recovery probability;

# for x, y, z1 and z2: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T

# (x can only be C or T); n1 = number of first-capture occasions;

# n2 = number of recapture/recovery occasions.
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Maple returns the matrix as given below

P =



s1,4 s1,3 s1,2 s1,1

0 s2 s2 s2

0 0 s3 s3

0 0 0 s4

0 t1,3 t1,2 t1,1

0 0 t2 t2

0 0 0 t3

r1,4 r1,3 r1,2 r1,1

0 r2 r2 r2

0 0 r3 r3

0 0 0 r4



=



φ1,4p2,5 φ1,3p2,4 φ1,2p2,3 φ1,1p2,2

0 φ2p3,5 φ2p3,4 φ2p3,3

0 0 φ3p4,5 φ3p4,4

0 0 0 φ4p5,5

0 φ1,3(1− p2,4) φ1,2(1− p2,3) φ1,1(1− p2,2)
0 0 φ2(1− p3,4) φ2(1− p3,3)
0 0 0 φ3(1− p4,4)

(1− φ1,4)λ (1− φ1,3)λ (1− φ1,2)λ (1− φ1,1)λ
0 (1− φ2)λ (1− φ2)λ (1− φ2)λ
0 0 (1− φ3)λ (1− φ3)λ
0 0 0 (1− φ4)λ



.

The s, t and r terms are represented in the matrix form above for convenience in P.

The parameter deficiency of the model can be found as described in Section 2.2.

kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(kappa,theta):

r := Rank(DD); d := Dimension(theta)-r;

If we denote κ as the exhaustive summary obtained from all the non-zero terms in the

matrix P, this is given as

κ =



φ1,4p2,5

φ1,3p2,4

φ1,2p2,3

φ1,1p2,2

φ2p3,5
...

(1− φ3)λ
(1− φ3)λ
(1− φ4)λ



,

with the model’s parameters as θ = [φ1,1, φ1,2, φ1,3, φ1,4, φ2, φ3, φ4, p2,2, p2,3, p2,4,

p2,5, p3,3, p3,4, p3,5, p4,4, p4,5, p5,5, λ]T . The derivative matrix is given in the Maple

file example4.5.mw only to save space. This derivative matrix has the model rank and

parameter deficiency as
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r := 18,d := 0.

The T1/A/(A,T;C) intrinsic capture-recapture-recovery model with four first-capture

occasions and four recapture/recovery occasions is not parameter redundant and all

its parameters in theory can be estimated. The extension theorem of Theorem 2.2 can

then be used to show that the T1/A/(A,T;C) model is not parameter redundant for

any values of n1, n2 ≥ 3.

4.5 Intrinsic parameter redundancy results

In this section we present the intrinsic parameter redundancy results for the wide

range of capture-recapture-recovery models presented in the previous section. These

results are obtained using Theorem 3.2 to generate a simpler exhaustive summary and

then Maple code to find the rank of a model’s derivative matrix. A further result relat-

ing the parameter redundancy results for capture-recapture models from Section 3.5

to the results given here for capture-recapture-recovery models, is given in Theorem

4.2 below which shows a simpler method of proof for some of our results.

Theorem 4.2. If the capture-recapture y/z1 model is full rank, then the capture-

recapture-recovery y/(z1; z2) model with the same y and z1, for any z2, is also full

rank.

Proof. Consider the exhaustive summary for the capture-recapture-recovery y/(z1; z2)

model as consisting of two parts. The first part, κ1 consists of the terms si,j =

φi,jpi+1,j+1 for all i = 1, . . . , n2 and j = i, . . . ,min(n1 + i − 1, n2) and ti,j = φi,j(1 −
pi+1,j+1) for all i = 1, . . . , n2 − 1 and j = i, . . . ,min(n1 + i− 1, n2 − 1), such that

κ1 =



s1,1

s1,2

s2,2

s1,3
...

t1,1

t1,2

t2,2

t1,3
...



=



φ1,1p2,2

φ1,2p2,3

φ2,2p3,3

φ1,3p2,4
...

φ1,1(1− p2,2)
φ1,2(1− p2,3)
φ2,2(1− p3,3)
φ1,3(1− p2,4)

...



.
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The second part, κ2, consists of the terms ri,j = (1− φi,j)λi,j for all i = 1, . . . , n2

and j = i, . . . ,min(n1 + i− 1, n2), such that

κ2 =



r1,1

r1,2

r2,2

r1,3
...


=



(1− φ1,1)λ1,1
(1− φ1,2)λ1,2
(1− φ2,2)λ2,2
(1− φ1,3)λ1,3

...


.

Let the parameter vector θ1 consist of all the parameters φi,j and pi,j , and the

parameter vector θ2 consist of all the parameters λi,j . As the capture-recapture y/z1

model is full rank then D1 = [∂κ1/∂θ1] is full rank. The derivative matrix D2 =

[∂κ2/∂θ2] is equal to

D2 =

[
∂κ2

∂θ2

]
=



−φ1,1 0 0 0 · · ·
0 −φ1,2 0 0 · · ·
0 0 −φ2,2 0 · · ·
0 0 0 −φ1,3 · · ·
...

...
...

...
. . .


,

which consists of the terms −φi,j on the diagonal and 0 elsewhere. As long as all

φi,j are non-zero this will always be full rank. Then as D1 and D2 are full rank,

by the extension theorem the capture-recapture-recovery y/(z1; z2) model is then full

rank.

Theorem 4.2 can also be used to prove results about capture-recapture-recovery

models involving juvenile survival probabilities. It can be seen that if the capture-

recapture xJ/y/z1 capture-recapture model is full rank then the xJ/y/(z1; z2) capture-

recapture-recovery model is also full rank. This proof of this is extremely similar to

the proof given above where κ1 is full rank and κ2 is also be full rank as only the

parameters φi,j change but the derivative matrix will still consist of the terms −φi,j
on the diagonal and 0 elsewhere.

The general intrinsic parameter redundancy results are given in Tables 4.3a and

4.3b for different y/(z1; z2) capture-recapture-recovery models where the second col-

umn refers to the rank of the model, which is the number of estimable parameters,

and the third column refers to the parameter deficiency of the model where the model

is parameter redundant when d > 0. There are n1 first-capture occasions and n2 re-
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capture/recovery occasions, where n2 ≥ 2 with n2 ≥ n1. The final column refers to

the method of proof used as described in Section 2.3 or when the ‘full rank theorem’

of Theorem 4.2 is used. The results of Tables 4.3a and 4.3b assume that perfect data

are observed with at least one observation of each possible distinct life-history.

For parameter redundant models, we report which parameters are confounded and

not estimable in Table 4.4. This table only shows the confounded parameter combina-

tions so that all of the other parameters in the model are estimable, e.g. for the T/(T;T)

model the parameters φn2pn2+1 and (1 − φn2)λn2 are confounded, meaning that the

parameters φi, pi+1 and λi are all in theory estimable but only for i = 1, . . . , n2 − 1.

Any model which has results which have been proved using the reparameterisation

theorem is based on the confounded parameters given in Table 4.4.

Tables 4.3a and 4.3b show that a large proportion of the capture-recapture-recovery

models are not parameter redundant and all their parameters are estimable in theory

given perfect data. Table 4.4 further shows that for the models which are parameter

redundant, only the parameters that refer to the survival probability of the final recap-

ture occasion and the probabilities of recapture and recovery for the final occasion are

confounded. This is even true for the complex fully age- and time-dependent case where

only the parameters φi,n2 , pi+1,n2+1 and λi,n2 are confounded for i = n2−n1+1, . . . , n2.

Consequently, this means that all the parameters excluding the probabilities of sur-

vival until the final occasion’s recapture and the recapture and recovery probabilities

for the final recapture occasion are in theory estimable for a perfect data set.

The taxonomy of intrinsic parameter redundancy results is extended to capture-

recapture-recovery models where we now consider a different set of first-year survival

probabilities in Tables 4.5a, 4.5b and 4.5c. We denote these models as x1/y/(z1; z2),

where x1 denotes first occasion survival probabilities as being either constant or time-

dependent, y denotes adult survival probability, z1 denotes recapture probability and

z2 denotes recovery probability. We only consider one occasion of juvenile survival

probabilities in these tables though a model with more than one occasion of juve-

nile survival can be examined using the Maple code in the online supplementary file

example4.5.mw. The final column refers to the method of proof used as described in

Section 2.3 though the ‘full rank theorem’ of Theorem 4.2 can also be used as a method

of proof for some of the models as discussed previously. The results of Tables 4.5a,

4.5b and 4.5c assume that perfect data are observed with at least one observation of

each possible distinct life-history.
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Table 4.3a: Intrinsic parameter redundancies for capture-recapture-recovery y/(z1; z2)
models (Table 1)

Model Rank Deficiency Method of Proof

C/(C;C) 3 0 Full Rank Theorem
C/(C;T) n2 + 2 0 Full Rank Theorem
C/(C;A) n2 + 2 0 Full Rank Theorem
C/(C;A,T) E + 2 0 Full Rank Theorem
C/(T;C) n2 + 2 0 Full Rank Theorem
C/(T;T) 2n2 + 1 0 Full Rank Theorem
C/(T;A) 2n2 + 1 0 Full Rank Theorem
C/(T;A,T) E + n2 + 1 0 Full Rank Theorem
C/(A;C) n2 + 2 0 Full Rank Theorem
C/(A;T) 2n2 + 1 0 Full Rank Theorem
C/(A;A) 2n2 + 1 0 Full Rank Theorem
C/(A;A,T) E + n2 + 1 0 Full Rank Theorem
C/(A,T;C) E + 2 0 Full Rank Theorem
C/(A,T;T) E + n2 + 1 0 Full Rank Theorem
C/(A,T;A) E + n2 + 1 0 Full Rank Theorem
C/(A,T;A,T) 2E + 1 0 Full Rank Theorem
T/(C;C) n2 + 2 0 Full Rank Theorem
T/(C;T) 2n2 + 1 0 Full Rank Theorem
T/(C;A) 2n2 + 1 0 Full Rank Theorem
T/(C;A,T) E + n2 + 1 0 Full Rank Theorem
T/(T;C) 2n2 + 1 0 Extension Theorem
T/(T;T) 3n2 − 1 1 Reparameterisation
T/(T;A) 3n2 0 Extension Theorem
T/(T;A,T) E + 2n2 − 1 1 Reparameterisation
T/(A;C) 2n2 + 1 0 Full Rank Theorem
T/(A;T) 3n2 0 Full Rank Theorem
T/(A;A) 3n2 0 Full Rank Theorem
T/(A;A,T) E + 2n2 0 Full Rank Theorem
T/(A,T;C) E + n2 + 1 0 Extension Theorem
T/(A,T;T) E + 2n2 − 1 1 Reparameterisation
T/(A,T;A) E + 2n2 0 Extension Theorem
T/(A,T;A,T) 2E + n2 − 1 1 Reparameterisation

E = n1n2 − 1
2n

2
1 + 1

2n1.



CAPTURE-RECAPTURE-RECOVERY MODELS 113

Table 4.3b: Intrinsic parameter redundancies for capture-recapture-recovery y/(z1; z2)
models (Table 2)

Model Rank Deficiency Method of Proof

A/(C;C) n2 + 2 0 Full Rank Theorem
A/(C;T) 2n2 + 1 0 Full Rank Theorem
A/(C;A) 2n2 + 1 0 Full Rank Theorem
A/(C;A,T) E + n2 + 1 0 Full Rank Theorem
A/(T;C) 2n2 + 1 0 Full Rank Theorem
A/(T;T) 3n2 0 Full Rank Theorem
A/(T;A) 3n2 0 Full Rank Theorem
A/(T;A,T) E + 2n2 0 Full Rank Theorem
A/(A;C) 2n2 + 1 0 Extension Theorem
A/(A;T) 3n2 0 Extension Theorem
A/(A;A) 3n2 − 1 1 Reparameterisation
A/(A;A,T) E + 2n2 − 1 1 Reparameterisation
A/(A,T;C) E + n2 + 1 0 Extension Theorem
A/(A,T;T) E + 2n2 0 Extension Theorem
A/(A,T;A) E + 2n2 − 1 1 Reparameterisation
A/(A,T;A,T) 2E + n2 − 1 1 Reparameterisation
A,T/(C;C) E + 2 0 Full Rank Theorem
A,T/(C;T) E + n2 + 1 0 Full Rank Theorem
A,T/(C;A) E + n2 + 1 0 Full Rank Theorem
A,T/(C;A,T) 2E + 1 0 Full Rank Theorem
A,T/(T;C) E + n2 + 1 0 Extension Theorem
A,T/(T;T) E + 2n2 0 Extension Theorem
A,T/(T;A) E + 2n2 0 Extension Theorem
A,T/(T;A,T) 2E + n2 − 1 1 Reparameterisation
A,T/(A;C) E + n2 + 1 0 Extension Theorem
A,T/(A;T) E + 2n2 0 Extension Theorem
A,T/(A;A) E + 2n2 − 1 1 Reparameterisation
A,T/(A;A,T) 2E + n2 − 1 1 Reparameterisation
A,T/(A,T;C) 2E + 1 0 Extension Theorem
A,T/(A,T;T) 2E + n2 − 1 1 Reparameterisation
A,T/(A,T;A) 2E + n2 − 1 1 Reparameterisation
A,T/(A,T;A,T) 3E − n1 n1 Reparameterisation

E = n1n2 − 1
2n

2
1 + 1

2n1.
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Table 4.4: List of confounded parameter combinations for capture-recapture-recovery
y/(z1; z2) models

Model Confounded Parameters

T/(T;T) φn2pn2+1, (1− φn2)λn2

T/(T;A,T) φn2pn2+1, {(1− φn2)λi,n2}i = n2 − n1 + 1, . . . , n2

T/(A,T;T) {φn2pi+1,n2+1}i = n2 − n1 + 1, . . . , n2
, (1− φn2)λn2

T/(A,T;A,T) {φn2pi+1,n2+1}i = n2 − n1 + 1, . . . , n2
, {(1− φn2)λi,n2}i = n2 − n1 + 1, . . . , n2

A/(A;A) φn2pn2+1, (1− φn2)λn2

A/(A;A,T) φn2pn2+1, (1− φn2)λn2,n2

A/(A,T;A) φn2pn2+1,n2+1, (1− φn2)λn2

A/(A,T;A,T) φn2pn2+1,n2+1, (1− φn2)λn2,n2

A,T/(T;A,T) {φi,n2pn2+1}i = n2 − n1 + 1, . . . , n2
, {(1− φi,n2)λi,n2}i = n2 − n1 + 1, . . . , n2

A,T/(A;A) φn2,n2pn2+1, (1− φn2,n2)λn2

A,T/(A;A,T) φn2,n2pn2+1, (1− φn2,n2)λn2,n2

A,T/(A,T;T) {φi,n2pi+1,n2+1}i = n2 − n1 + 1, . . . , n2
, {(1− φi,n2)λn2}i = n2 − n1 + 1, . . . , n2

A,T/(A,T;A) φn2,n2pn2+1,n2+1, (1− φn2,n2)λn2

A,T/(A,T;A,T) {φi,n2pi+1,n2+1}i = n2 − n1 + 1, . . . , n2
, {(1− φi,n2)λi,n2}i = n2 − n1 + 1, . . . , n2

All other parameters not given in the table are estimable for each model.

All models not listed are not parameter redundant and all parameters are estimable.

4.6 Extrinsic parameter redundancy and the cormorants

data set

We obtained intrinsic parameter redundancy results in the previous section and

we now extend our analysis to view extrinsic parameter redundancy results in this

section. Parameter redundancy can be caused by imperfect data where not all of the

distinct life-histories are observed. In real examples, it is unlikely that every possible

life-history is observed, and the probability of recording life-histories such as ‘11111’ or

‘11112’ during a study may be extremely small if the survival and recapture/recovery

probabilities in the study are small, e.g. if φ = 0.2, p = 0.2 and λ = 0.2 for all survival

years and capture/recovery occasions, then the probability of the life-history 11111
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Table 4.5a: Intrinsic parameter redundancies for capture-recapture-recovery
x1/y/(z1; z2) models with first-year survival probabilities (Table 1)

Model Rank Deficiency Method of Proof

C1/C/(C;C) 4 0 Full Rank Theorem
C1/C/(C;T) n2 + 3 0 Full Rank Theorem
C1/C/(C;A) n2 + 3 0 Full Rank Theorem
C1/C/(C;A,T) E + 3 0 Full Rank Theorem
C1/C/(T;C) n2 + 3 0 Full Rank Theorem
C1/C/(T;T) 2n2 + 2 0 Full Rank Theorem
C1/C/(T;A) 2n2 + 2 0 Full Rank Theorem
C1/C/(T;A,T) E + n2 + 2 0 Full Rank Theorem
C1/C/(A;C) n2 + 3 0 Full Rank Theorem
C1/C/(A;T) 2n2 + 2 0 Full Rank Theorem
C1/C/(A;A) 2n2 + 2 0 Full Rank Theorem
C1/C/(A;A,T) E + n2 + 2 0 Full Rank Theorem
C1/C/(A,T;C) E + 3 0 Full Rank Theorem
C1/C/(A,T;T) E + n2 + 2 0 Full Rank Theorem
C1/C/(A,T;A) E + n2 + 2 0 Full Rank Theorem
C1/C/(A,T;A,T) 2E + 2 0 Full Rank Theorem
C1/T/(C;C) n2 + 3 0 Full Rank Theorem
C1/T/(C;T) 2n2 + 2 0 Full Rank Theorem
C1/T/(C;A) 2n2 + 2 0 Full Rank Theorem
C1/T/(C;A,T) E + n2 + 2 0 Full Rank Theorem
C1/T/(T;C) 2n2 + 1 0 Extension Theorem
C1/T/(T;T)† 3n2 0 Extension Theorem (d = 0†)
C1/T/(T;A) 3n2 0 Extension Theorem
C1/T/(T;A,T)† E + 2n2 0 Extension Theorem (d = 0†)
C1/T/(A;C) 2n2 + 1 0 Full Rank Theorem
C1/T/(A;T) 3n2 0 Full Rank Theorem
C1/T/(A;A) 3n2 0 Full Rank Theorem
C1/T/(A;A,T) E + 2n2 0 Full Rank Theorem
C1/T/(A,T;C) E + n2 + 1 0 Extension Theorem
C1/T/(A,T;T)† E + 2n2 0 Extension Theorem (d = 0†)
C1/T/(A,T;A) E + 2n2 0 Extension Theorem
C1/T/(A,T;A,T) 2E + n2 − 1 1 Reparameterisation
C1/A/(z1;z2) Identical to A/(z1;z2) models: See Table 4.3b

†: when n2 > n1, rank decreases by 1 and parameter deficiency increases by 1;
E = n1n2 − 1

2n
2
1 + 1

2n1.
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Table 4.5b: Intrinsic parameter redundancies for capture-recapture-recovery
x1/y/(z1; z2) models with first-year survival probabilities (Table 2)

Model Rank Deficiency Method of Proof

C1/A,T/(C;C) E + 2 0 Full Rank Theorem
C1/A,T/(C;T) E + n2 + 1 0 Full Rank Theorem
C1/A,T/(C;A) E + n2 + 1 0 Full Rank Theorem
C1/A,T/(C;A,T) 2E + 1 0 Full Rank Theorem
C1/A,T/(T;C) E + n2 + 1 0 Full Rank Theorem
C1/A,T/(T;T) E + 2n2 0 Full Rank Theorem
C1/A,T/(T;A) E + 2n2 0 Full Rank Theorem
C1/A,T/(T;A,T) 2E + n2 − 1 0 Full Rank Theorem
C1/A,T/(A;C) E − n1 + n2 + 2 0 Extension Theorem
C1/A,T/(A;T) E − n1 + 2n2 + 1 0 Extension Theorem
C1/A,T/(A;A) E − n1 + 2n2 1 Extension Theorem
C1/A,T/(A;A,T) 2E − n1 + n2 1 Reparameterisation
C1/A,T/(A,T;C) 2E − n1 + 1 0 Extension Theorem
C1/A,T/(A,T;T)† 2E − n1 + n2 + 1 0 Extension Theorem (d = 0†)
C1/A,T/(A,T;A) 2E − n1 + n2 1 Reparameterisation
C1/A,T/(A,T;A,T)† 3E − 2n1 + 2 n1 − 1 Reparameterisation
T1/C/(C;C) n1 + 3 0 Full Rank Theorem
T1/C/(C;T) n1 + n2 + 2 0 Full Rank Theorem
T1/C/(C;A) n1 + n2 + 2 0 Full Rank Theorem
T1/C/(C;A,T) E + n1 + 2 0 Full Rank Theorem
T1/C/(T;C) n1 + n2 + 2 0 Full Rank Theorem
T1/C/(T;T) n1 + 2n2 + 1 0 Full Rank Theorem
T1/C/(T;A) n1 + 2n2 + 1 0 Full Rank Theorem
T1/C/(T;A,T) E + n1 + n2 + 1 0 Full Rank Theorem
T1/C/(A;C) n1 + n2 + 2 0 Full Rank Theorem
T1/C/(A;T) n1 + 2n2 + 1 0 Full Rank Theorem
T1/C/(A;A) n1 + 2n2 + 1 0 Full Rank Theorem
T1/C/(A;A,T) E + n1 + n2 + 1 0 Full Rank Theorem
T1/C/(A,T;C) E + n1 + 2 0 Extension Theorem
T1/C/(A,T;T) E + n1 + n2 + 1 0 Extension Theorem
T1/C/(A,T;A) E + n1 + n2 + 1 0 Extension Theorem
T1/C/(A,T;A,T)‡ 2E + n1 1 Reparameterisation (d > 0‡)
†: when n2 > n1, rank decreases by 1 and parameter deficiency increases by 1;
‡: when n2 > n1, rank increases by 1 and parameter deficiency decreases by 1;

E = n1n2 − 1
2n

2
1 + 1

2n1.
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Table 4.5c: Intrinsic parameter redundancies for capture-recapture-recovery
x1/y/(z1; z2) models with first-year survival probabilities (Table 3)

Model Rank Deficiency Method of Proof

T1/T/(C;C) n1 + n2 + 1 0 Full Rank Theorem
T1/T/(C;T) n1 + 2n2 0 Full Rank Theorem
T1/T/(C;A) n1 + 2n2 0 Full Rank Theorem
T1/T/(C;A,T) E + n1 + n2 0 Full Rank Theorem
T1/T/(T;C) n1 + 2n2 0 Extension Theorem
T1/T/(T;T)† n1 + 3n2 − 1 0 Extension Theorem (d = 0†)
T1/T/(T;A) n1 + 3n2 − 1 0 Extension Theorem
T1/T/(T;A,T) E + n1 + 2n2 − 2 1 Reparameterisation
T1/T/(A;C) n1 + 2n2 0 Full Rank Theorem
T1/T/(A;T) n1 + 3n2 − 1 0 Full Rank Theorem
T1/T/(A;A) n1 + 3n2 − 1 0 Full Rank Theorem
T1/T/(A;A,T) E + n1 + 2n2 − 1 0 Full Rank Theorem
T1/T/(A,T;C) E + n1 + n2 0 Extension Theorem
T1/T/(A,T;T) E + n1 + 2n2 − 2 1 Reparameterisation
T1/T/(A,T;A) E + n1 + 2n2 − 1 0 Extension Theorem
T1/T/(A,T;A,T)‡ 2E + n1 + n2 − 3 2 Reparameterisation
T1/A/(C;C) n1 + n2 + 1 0 Full Rank Theorem
T1/A/(C;T) n1 + 2n2 0 Full Rank Theorem
T1/A/(C;A) n1 + 2n2 0 Full Rank Theorem
T1/A/(C;A,T) E + n1 + n2 0 Full Rank Theorem
T1/A/(T;C) n1 + 2n2 0 Full Rank Theorem
T1/A/(T;T) n1 + 3n2 − 1 0 Full Rank Theorem
T1/A/(T;A) n1 + 3n2 − 1 0 Full Rank Theorem
T1/A/(T;A,T) E + n1 + 2n2 − 1 0 Full Rank Theorem
T1/A/(A;C) n1 + 2n2 0 Extension Theorem
T1/A/(A;T) n1 + 3n2 − 1 0 Extension Theorem
T1/A/(A;A) n1 + 3n2 − 2 1 Reparameterisation
T1/A/(A;A,T) E + n1 + 2n2 − 2 1 Reparameterisation
T1/A/(A,T;C) E + n1 + n2 0 Extension Theorem
T1/A/(A,T;T) E + n1 + 2n2 − 1 0 Extension Theorem
T1/A/(A,T;A) E + n1 + 2n2 − 2 1 Reparameterisation
T1/A/(A,T;A,T)‡ 2E + n1 + n2 − 3 2 Reparameterisation
T1/A,T/(z1;z2) Identical to A,T/(z1;z2) models: See Table 4.3b

†: when n2 > n1, rank decreases by 1 and parameter deficiency increases by 1;
‡: when n2 > n1, rank increases by 1 and parameter deficiency decreases by 1;

E = n1n2 − 1
2n

2
1 + 1

2n1.
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is equal to 0.28 = 0.00000256 and the probability of the life-history 11112 is equal

to 0.8 × 0.27 = 0.00001024, both very small probabilities. This section is similar to

our analyses performed in Section 3.7 for capture-recapture models where we viewed

imperfect data sets and show how this affects parameter estimation for a variety of

different parameter dependent models. In Example 4.6 below we show how we can use

Maple code to obtain extrinsic parameter redundancy results.

Example 4.6 - Extrinsic parameter redundancy in the capture-recapture-recovery model:

[See electronic appendix example4.6.mw] Consider the A,T/(C;T) capture-recapture-

recovery model where the model has age- and time-dependent survival probabilities,

constant recapture probabilities, and time-dependent recovery probabilities for a study

where n1 = 2 and n2 = 3. Suppose we observed only the distinct life-histories 1200,

1002, 1111, 1100, 1110, 1001, 0102, 0111 and 0100. These life-histories are given in

the matrix Data with each row representing a different life-histories and each column

corresponding to each capture/recovery occasion during the study:

Data =



1 2 0 0

1 0 0 2

1 1 1 1

1 1 0 0

1 1 1 0

1 0 0 1

0 1 0 2

0 1 1 1

0 1 0 0



.

The Maple procedure caprecaprecovhistories converts the life-histories above into

the exhaustive terms given in κ below

kappa := caprecaprecovhistories(Data,4,1,2);

# Inputs: (Data,y,z1,z2); Data = Data of all life-histories;

# y = survival probability; z1 = recapture probability;

# z2 = recovery probability;

# for y, z1 and z2: ‘1’=C, ‘2’=T, ‘3’=A, ‘4’=A,T.
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This generates the model’s exhaustive summary as

κ =



(1− φ1,1)λ1
φ1,1(1− p)φ2,2(1− p)(1− φ3,3)λ3

φ1,1pφ2,2pφ3,3p

φ1,1p [(1− φ2,2)(1− λ2) + φ2,2(1− p) {(1− φ3,3)(1− λ3) + φ3,3(1− p)}]
φ1,1pφ2,2p {(1− φ3,3)(1− λ3) + φ3,3(1− p)}

φ1,1(1− p)φ2,2(1− p)φ3,3p
φ1,2(1− p)(1− φ2,3)λ3

φ1,2pφ2,3p

(1− φ1,2)(1− λ2) + φ1,2(1− p) {(1− φ2,3)(1− λ3) + φ2,3(1− p)}



.

The rank and parameter deficiency of the model can then be found as described in

Section 2.2:

theta := parsproc(kappa);

DD := Dmat(logvector(kappa),theta):

r := Rank(DD); d := Dimension(theta)-r;

The parameters in this model are θ = [φ1,1, φ1,2, φ2,2, φ2,3, φ3,3, p, λ1, λ2, λ3]
T . The

derivative matrix is given in the Maple file example4.6.mw only to save space. This

derivative matrix has the model rank and parameter deficiency as

r := 9,d := 0.

This shows that this small data set has no parameter redundancy, even if the

survival parameters are age- and time-dependent in the A,T/(C;T) capture-recapture-

recovery model.

Example 4.7 - The cormorants data set for the capture-recapture-recovery model: This

data set examines Great Cormorants (Phalacrocorax carbo sinensis) between 1981 and

1993 from Hènaux et al. (2007). Six different colonies were observed in the study

and recapture/recovery data were observed for each animal of each colony. The data

was formed through the observation of cormorants which were marked by the use of

coloured rings, and these cormorants were then observed using a strong telescope. The

data consists of 14,018 individual cormorant life-histories of which 1,939 cormorants

were recovered dead. The number of first-capture occasions and recapture/recovery

occasions is equal to twelve in this study.
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We consider three cases of colonies for our analysis: One case is where only the

life-histories of the cormorants from colony 3 are considered, another case is where only

the life-histories of the cormorants from colony 1 are considered, and a final case is

where all of the life-histories in every colony are considered. The colony 3 only data set

is very sparse and only has 121 distinct life-histories were observed out of a possible

12,282 distinct life-histories that a perfect data set would have. The colony 1 only

data has 465 distinct life-histories and the data for all of the colonies has 580 distinct

life-histories. More detail on the study design can be found in Hènaux et al. (2007).

The cormorant data are typically analysed using multi-site models, see for example

Borysiewicz (2008) and McCrea et al. (2010, 2012). We use our capture-recapture-

recovery models to analyse this data set for illustrative purposes only.

We examine the three different selections of colonies by analysing all of the different

parameter dependency possibilities and show how sparse data can affect the ability to

estimate parameters. This is a similar analysis to that of the Dippers data set of Mar-

zolin (1988) in Section 3.7. We use the Maple procedure caprecaprecovhistories

from Example 4.6 to generate these extrinsic parameter redundancy results shown in

Tables 4.6a and 4.6b. The second column in the following tables displays the num-

ber of parameters in model. If some of the model parameters do not appear at all,

they are excluded from the count of parameters so that these do not contribute to

the parameter deficiency. As there is no first-capture in the 11th capture occasion of

this study the parameters φ1,12, p2,13 and λ1,12, if the parameter dependencies are age-

and time-dependent, will not appear in any exhaustive summary terms. For colony 3,

this problem is extended where there is no first-capturing between the 8th and 11th

capture occasions of the study. This is taken into account as it changes the number

of parameters in some of the models and we use m to denote this in Tables 4.6a and

4.6b. The third column shows the parameter deficiency for the colony 3 only data set,

the fourth column for the colony 1 only data set, and the fifth column for the data set

that contains all colonies, as well as its intrinsic parameter redundancy shown in the

final column.

The colony 3 data set is extremely sparse and this results in most models being

parameter redundant. The other data sets though still have most models remaining

full rank, even with the relative sparseness of the data, e.g. for the colony 1 data set,

only 3.8% of the possible life-histories are observed in the data (465 out of the 12,282).

The exceptions are models where at least one parameter is age- and time-dependent

as it can be quite hard to estimate every parameter in these cases.



CAPTURE-RECAPTURE-RECOVERY MODELS 121

Table 4.6a: Extrinsic parameter redundancy results for capture-recapture-recovery
y/(z1; z2) models for the cormorants data set of Hènaux et al. (2007) (Table 1)

Model Number of Parameter deficiency of
parameters Colony 3 Colony 1 All colonies Intrinsic model

C/(C;C) 3 0 0 0 0
C/(C;T) 14 0 0 0 0
C/(C;A) 14 1 0 0 0
C/(C;A,T) 80−m 4 0 0 0
C/(T;C) 14 0 0 0 0
C/(T;T) 25 1 0 0 0
C/(T;A) 25 1 0 0 0
C/(T;A,T) 91−m 5 0 0 0
C/(A;C) 14 1 0 0 0
C/(A;T) 25 1 0 0 0
C/(A;A) 25 2 0 0 0
C/(A;A,T) 91−m 7 0 0 0
C/(A,T;C) 80 8 0 0 0
C/(A,T;T) 91 9 0 0 0
C/(A,T;A) 91 11 0 0 0
C/(A,T;A,T) 157−m 36 1 1 0
T/(C;C) 14 0 0 0 0
T/(C;T) 25 1 0 0 0
T/(C;A) 25 1 0 0 0
T/(C;A,T) 91−m 5 0 0 0
T/(T;C) 25 1 0 0 0
T/(T;T) 36 5 1 1 1
T/(T;A) 36 1 0 0 0
T/(T;A,T) 102−m 8 1 1 1
T/(A;C) 25 1 0 0 0
T/(A;T) 36 1 0 0 0
T/(A;A) 36 2 0 0 0
T/(A;A,T) 102−m 9 0 0 0
T/(A,T;C) 91−m 9 0 0 0
T/(A,T;T) 102−m 12 1 1 1
T/(A,T;A) 102−m 12 0 0 0
T/(A,T;A,T) 168− 2m 41 2 2 1

m = 10 for colony 3, m = 1 for colony 1 and all colonies, and m = 0 for intrinsic.
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Table 4.6b: Extrinsic parameter redundancy results for capture-recapture-recovery
y/(z1; z2) models for the cormorants data set of Hènaux et al. (2007) (Table 2)

Model Number of Parameter deficiency of
parameters Colony 3 Colony 1 all colonies Intrinsic model

A/(C;C) 14 1 0 0 0
A/(C;T) 25 1 0 0 0
A/(C;A) 25 2 0 0 0
A/(C;A,T) 91−m 8 0 0 0
A/(T;C) 25 1 0 0 0
A/(T;T) 36 1 0 0 0
A/(T;A) 36 2 0 0 0
A/(T;A,T) 102−m 9 0 0 0
A/(A;C) 25 2 0 0 0
A/(A;T) 36 2 0 0 0
A/(A;A) 36 6 2 2 1
A/(A;A,T) 102−m 13 2 2 1
A/(A,T;C) 91−m 12 0 0 0
A/(A,T;T) 102−m 13 0 0 0
A/(A,T;A) 102−m 17 1 1 1
A/(A,T;A,T) 168− 2m 43 2 2 1
A,T/(C;C) 80−m 3 0 0 0
A,T/(C;T) 91−m 5 0 0 0
A,T/(C;A) 91−m 7 0 0 0
A,T/(C;A,T) 157− 2m 42 10 6 0
A,T/(T;C) 91−m 6 0 0 0
A,T/(T;T) 102−m 9 0 0 0
A,T/(T;A) 102−m 10 1 1 0
A,T/(T;A,T) 168− 2m 48 12 8 1
A,T/(A;C) 91−m 8 0 0 0
A,T/(A;T) 102−m 10 0 0 0
A,T/(A;A) 102−m 12 1 1 1
A,T/(A;A,T) 168− 2m 49 12 8 1
A,T/(A,T;C) 157− 2m 41 7 6 0
A,T/(A,T;T) 168− 2m 46 8 7 1
A,T/(A,T;A) 168− 2m 46 8 7 1
A,T/(A,T;A,T) 234− 3m 96 32 28 12

m = 10 for colony 3, m = 1 for colony 1 and all colonies, and m = 0 for intrinsic.
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As is the case for the capture-recapture model, we have created the Maple proce-

dure fullhistcaprecaprecov to list all the life-histories for a complete data set to

check the intrinsic results from Tables 4.3a and 4.3b. This code is more complex than

the code for the capture-recapture model as while there is the extra possibility of being

recovered dead, there can only be a single ‘2’ observation in each life-history at most.

This Maple code allows the checking of intrinsic parameter redundancy results for the

capture-recapture-recovery model for certain n1 and n2 values. This is demonstrated

in Example 4.6 below.

Example 4.6 revisited: [See electronic appendix example4.6.mw] Consider a study

where there were five first-capture occasions and six recapture/recovery occasions

when we are viewing the A,T/(A;A) model for this example. All possible distinct

life-histories are generated using the Maple code

Data := fullhistcaprecaprecov(5,6);

# Inputs: (n1,n2);

# n1 = number of first-capture occasions;

# n2 = number of recapture/recovery occasions.

This code gives the matrix

Data =



1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 1 2

1 1 1 1 1 0 1

1 1 1 1 1 0 0

1 1 1 1 1 0 2

1 1 1 1 1 2 0
...

...
...

...
...

...
...


,

which contains all the possible distinct life-histories. The output from this code does

contain a number of rows which have zeros for every entry: This is due to using

the combinat package in Maple which means that not all rows are actually valid life-

histories, and we replace these with rows containing zeros for all its entries. This allows

us to easily exclude these invalid life-histories as these rows of zeros display the result

‘0’ when the Maple procedure caprecaprecovhistories is performed on these rows

and the rows do not contribute any exhaustive summary terms in κ. To obtain the
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final rank and parameter redundancy, we use the usual procedures of Section 2.2 as

given below:

kappa := caprecaprecovhistories(Data,4,3,3):

theta := parsproc(kappa):

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

The exhaustive summary, parameter set and derivative matrix are not given here to

save space but can be found in the Maple file example4.6.mw. We use the hybrid

symbolic-numerical method of Section 2.5 to find the model rank due to computa-

tional complexity of the derivative matrix. These life-histories have the model rank

and parameter deficiency as

r := 31,d := 1.

This agrees with the result from Table 4.3b where the rank is r = E + 2n2 − 1 =

20 + (2 × 6) − 1 = 31 and the parameter deficiency is d = 1. High values of n1 and

n2 can produce a computationally slow procedure though we have used the hybrid

symbolic-numerical approach of Choquet and Cole (2012) and the logvector form of

the exhaustive summary to speed up computation. Note that this code provides a

verification of the general results from Tables 4.3a and 4.3b and is not a proof of the

results.

4.7 An extrinsic sparseness statistic for capture-recapture-

recovery models

We extend our analysis of extrinsic parameter redundancy in capture-recapture-

recovery models by generalising which possible life-histories a practical data set may

have. This is similar to the analysis performed in Section 3.8 where we generalised

capture-recapture data sets. We define a statistic, c, to indicate the maximum dif-

ference between the first capture occasion and the last recapture/recovery occasion,

where 1 ≤ c < n2. If we suppose that we have all life-histories where the difference

between first capture and last recapture or recovery is equal to c, then we can calcu-

late the parameter deficiency only using the probabilities of those life-histories. This is

similar to the methodology in Section 3.8 apart from the fact we are also considering

the life-histories which are recovered dead up to c recovery occasions later as well as

live recaptures. Real data will rarely have this exact pattern of life-histories, but we
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would expect a data set which is sparse with a lower number of distinct life-histories

to behave like a model with a low value of c.

4.7a and 4.7b show the parameter deficiency of capture-recapture-recovery models,

given a certain number of recapture/recovery occasions n2, with a maximum difference

c between first capture occasion and the last recapture/recovery occasion. We consider

n1 = n2 only as consistent patterns for parameter deficiencies do not happen if this is

not the case. These results were generated by the hybrid symbolic-numerical approach

from Choquet and Cole (2012) to obtain a model’s parameter deficiency instead of the

pure symbolic method due to computational complexity. The parameter deficiency of

the model when c > 1 is shown in the second column, the parameter deficiency of the

model when c = 1 is shown in the third column, with the model’s intrinsic parameter

deficiency in the final column. We also demonstrate how the parameter redundancy

can be obtained in Example 4.8 below.

Example 4.8: Consider the case where the difference between first capture occasion

and last recapture/recovery occasion is a maximum of c = 2. A model with four

first-capture and recapture/recovery occasions with c = 2 has the life-histories {11100,

10100, 11000, 10000, 01110, 01010, 01100, 01000, 00111, 00101, 00110, 00100, 00011,

00010, 12000, 11200, 10200, 01200, 01120, 01020, 00120, 00112, 00102, 00012}, and

not the rest of the possible life-histories as they all have either three or four occasions

between first capture and last recapture/recovery. We can then check if a certain

capture-recapture-recovery model has parameter redundancy from Tables 4.7a and

4.7b. In this case where c = 2 and n1 = n2 = 4, a total of 19 different y/(z1; z2)

models are not parameter redundant. If we observe more life-histories so that c = 3,

then a further 11 y/(z1; z2) models also become full rank.

4.8 Fidelity in the capture-recapture-recovery model

The final sections in this chapter considers a capture-recapture-recovery model in-

volving additional parameters regarding an animal’s fidelity. Fidelity in this context

means the probability that an animal remains at the sample location during the study.

This in turn means the probability of animal fidelity is the complement of the proba-

bility that the animal emigrates. We only consider permanent emigration in this thesis

where the animal emigrates from the sample location with no probability of return to

the site, but an alternative model could be considered where there is some probability

of immigration back into the location. In our model, while it is possible to recover an
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Table 4.7a: Parameter redundancies for capture-recapture-recovery y/(z1; z2) models
where there is a maximum difference c between the number of occasions between first
capture and last recapture/recovery (Table 1)

Model Deficiency when c > 1 Deficiency when c = 1 Intrinsic

C/(C;C) 0 0 0

C/(C;T) 0 0 0

C/(C;A) 0 0 0

C/(C;A,T) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) 0

C/(T;C) 0 0 0

C/(T;T) 0 0 0

C/(T;A) 0 1 0

C/(T;A,T) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) 0

C/(A;C) 0 0 0

C/(A;T) 0 0 0

C/(A;A) n2 − c n2 − 1 0

C/(A;A,T) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

C/(A,T;C) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) 0

C/(A,T;T) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) 0

C/(A,T;A) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

C/(A,T;A,T) (n2 − c)2 (n2 − 1)2 + 1 0

T/(C;C) 0 0 0

T/(C;T) 0 0 0

T/(C;A) 0 0 0

T/(C;A,T) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) + 1 0

T/(T;C) 0 0 0

T/(T;T) 1 1 1

T/(T;A) 0 1 0

T/(T;A,T) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) 1

T/(A;C) 0 0 0

T/(A;T) 0 1 0

T/(A;A) n2 − c n2 − 1 0

T/(A;A,T) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

T/(A,T;C) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) + 1 0

T/(A,T;T) 1
2(n2 − c)(n2 − c− 1) + 1 1

2(n2 − 1)(n2 − 2) 1

T/(A,T;A) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

T/(A,T;A,T) n22 − 2n2c+ c2 + 1 n22 − n2 + 1 1
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Table 4.7b: Parameter redundancies for capture-recapture-recovery y/(z1; z2) models
where there is a maximum difference c between the number of occasions between first
capture and last recapture/recovery (Table 2)

Model Deficiency when c > 1 Deficiency when c = 1 Intrinsic

A/(C;C) 0 0 0

A/(C;T) 0 0 0

A/(C;A) n2 − c n2 − 1 0

A/(C;A,T) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) 0

A/(T;C) 0 1 0

A/(T;T) 0 1 0

A/(T;A) n2 − c n2 0

A/(T;A,T) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

A/(A;C) n2 − c n2 − 1 0

A/(A;T) n2 − c n2 − 1 0

A/(A;A) 2(n2 − c) 2n2 − 2 1

A/(A;A,T) 1
2(n2 − c+ 1)(n2 − c) + n2 − c 1

2n2(n2 − 1) 1

A/(A,T;C) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

A/(A,T;C) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

A/(A,T;A) 1
2(n2 − c+ 1)(n2 − c) + n2 − c+ 1 1

2n2(n2 − 1) + 1 1

A/(A,T;A,T) 3(n2 − c) + (n2 − c− 1)2 n22 − n2 + 1 1

A,T/(C;C) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) 0

A,T/(C;C) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) + 1 0

A,T/(C;A) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) 0

A,T/(C;A,T) (n2 − c)2 (n2 − 1)2 + 1 0

A,T/(T;C) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) + 1 0

A,T/(T;T) 1
2(n2 − c)(n2 − c− 1) 1

2(n2 − 1)(n2 − 2) + 1 0

A,T/(T;A) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

A,T/(T;A,T) n22 − 2n2c+ c2 + 1 n22 − n2 + 1 1

A,T/(A;C) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) 0

A,T/(A;T) 1
2(n2 − c+ 1)(n2 − c) 1

2n2(n2 − 1) + 1 0

A,T/(A;A) 1
2(n2 − c+ 1)(n2 − c) + n2 − c 1

2n2(n2 − 1) 1

A,T/(A;A,T) 3(n2 − c) + (n2 − c− 1)2 n22 − n2 + 1 1

A,T/(A,T;C) (n2 − c)2 (n2 − 1)2 + 1 0

A,T/(A,T;T) n22 − 2n2c+ c2 + 1 n22 − n2 + 1 1

A,T/(A,T;A) 3(n2 − c) + (n2 − c− 1)2 n22 − n2 + 1 1

A,T/(A,T;A,T) 3
2(n2 − c+ 1)(n2 − c) + c 1

23n2(n2 − 1) + 1 n1
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animal dead at any place, the animal must not have permanently emigrated to be able

to be recaptured alive. This adds complication to the model but allows us to estimate

animal fidelity probabilities, as well as animal survival probabilities. This fidelity

model is given in Burnham (1993, Section 3.2) and can be fit using the software pack-

age MARK can be seen in Cooch and White (2014, Chapter 9). Examples of the use of

fidelity models in statistical ecology include Webb et al. (2010) for white-tailed deer

and Collier et al. (2012) for white-winged doves in Texas.

We denote fidelity, Fj , as the probability that an animal remains in the sample

location (study area) during year j, for j = i, . . . , n2. It is important to distinguish

between apparent and real survival probabilities, as mentioned before in Section 3.1.

Previously in this thesis, we do not change notation between apparent and real sur-

vival probabilities and use the notation of φ for all survival parameters. However, this

distinction is made more clearly in this fidelity model due to an animal possibly emi-

grating from the study location. We if let φj denote the time-dependent probability of

apparent animal survival, conditional on the animal remaining in the study location,

and Sj denote the time-dependent real animal survival probability, then

Sj =
φj
Fj
, (4.7)

holds. If there is no permanent emigration then Fj = 1, so that Sj = φj , and the

parameters of apparent and real survival are the same as every animal remains in the

study location. If some of the animals emigrate during the study so that Fj < 1, while

it is still possible to recover these animals dead, it is not possible to recapture those

animals alive, so apparent and real survival parameters are then different. For the

fidelity model in this thesis, we use the real animal survival parameters Sj instead of

the apparent survival parameters as this is consistent with the notation from Burnham

(1993) and Cooch and White (2014).

We let n1 denote the number of first-capture occasions and n2 denote the number

of recapture occasions in the study where n1 ≤ n2. If we consider a study with yearly

intervals say, then there is one capture occasion and one recovery occasion per year.

Consequently, while there are still n2 recapture occasions during the study, there are

now n2 + 1 recovery occasions, as an animal can be recovered dead if the animal was

first-captured at the beginning of the study and recovered dead before the first re-

capture occasion, along with there being a recovery occasion after the final recapture

occasion in the study. While the previous model from Section 4.2 does not consider the
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possibility that we recapture the animal alive and recover the animal in consecutive

recapture and recovery occasions during a single year, we now include this possibility

in this model. The reason why this was not considered in the model of Section 4.2 is

because the data for the previous capture-recapture-recovery model generally does not

consider this as a possibility of being recorded, while data coming from the analyses

using fidelity models does include this possibility. We also assume that generally we

have no information from where the dead recovery was made, however this could be

factored into a different fidelity model where this information can give some indication

on whether those dead animals migrated or not.

The notation for the fidelity model used in Burnham (1993) and Cooch and White

(2014) uses a code of ‘1’ and ‘0’ values in pairs of observations. The pairs of numbers

represent if they recaptured the animal alive and if they recovered the animal dead

during a single recapture/recovery occasion. We however use a different notation here

to keep all of our notation consistent with the rest of this chapter. We still use ‘1’ to

denotes a live recapture and ‘2’ to represent a dead recovery, with ‘0’ to denote that

an animal is not recaptured or recovered at that occasion. We then introduce a ‘3’ to

denote an animal which was recaptured alive at recapture occasion j and recovered

dead between j and j + 1. This possibility of a ‘3’ entry is a special case in this model

which we did not consider in the previous model of Section 4.2, where both a live

recapture and dead recovery are possible simultaneously in a single time frame. Note

that our life-history notation is also the same as the binary representation of each pair

of numbers from the notation given in Burnham (1993) and Cooch and White (2014)

if the digits in each pair are switched, e.g. the probability of the life-history 10 10 10

11 has the same expression as our probability of the life-history 1113. In this fidelity

model, as in the previous models in this thesis, there are n2+1 digits in the life-history

code as we do not consider the first capture occasion as a recapture occasion. We il-

lustrate some possible life-histories in Examples 4.9 to 4.13 below.

Example 4.9: Consider the life-history for a study of three recapture and four recovery

occasions where an animal was first-captured at the first capture occasion. The animal

was then not recaptured during the first recapture occasion, recaptured alive during

the second recapture occasion, and was finally being recaptured alive and recovered

dead in the last capture and recovery occasions of the study. This would have the

life-history code 1013, where the first 1 indicates the initial capture, the 0 indicates no

recapture, the next 1 indicates an alive recapture, and the 3 indicates the animal was

recaptured alive before it was also recovered dead in the same year. In the notation
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from Burnham (1993) and Cooch and White (2014) the life-history would alternatively

be expressed as 10 00 10 11.

Example 4.10: Consider a very similar animal life-history, where instead of being both

recaptured alive and recovered dead in the last capture and recovery occasions of the

study, the animal is only recovered dead and not recaptured alive. This would have

the life-history code 1012, where the first 1 indicates the initial capture, the 0 indicates

no recapture, the next 1 indicates an alive recapture, and the 2 indicates the animal

was only recovered dead. In the notation from Burnham (1993) and Cooch and White

(2014) the life-history would alternatively be expressed as 10 00 10 01.

Example 4.11: It is possible to have no live recaptures observed for an animal, while it

is still recovered dead at the final recovery occasion. For a study of four capture and

three recapture occasions, this would have the life-history code 1002, where Burnham

(1993) and Cooch and White (2014) would alternatively express this life-history as

10 00 00 01. As we will demonstrate later on in this section, the probability of this

life-history is complex as while the animal is recovered dead at the end of the study,

there is no information on whether the animal emigrated from the location study or

not before its recovery dead.

Example 4.12: There can be life-histories where the animal is not recovered dead at

any point. For example, take the life-history where the animal is first-captured at the

first capture occasion, recaptured alive at the second and third capture occasions, but

not recapture alive at the fourth capture occasion. It is also not recovered dead at

any point in the study. This would have the life-history code 1110, where Burnham

(1993) and Cooch and White (2014) would alternatively express this life-history as 10

10 10 00. A χ term will be used to express the uncertainty of whether the animal is

alive or dead at the final recapture and recovery occasions of the study, as we shall

demonstrate later on in this section.

Example 4.13: Our final example would be one possibly that an animal is recovered

dead straight after the animal’s first-capture occasion in the study. This would have

the life-history code as 3000, where Burnham (1993) and Cooch and White (2014)

would alternatively express this life-history as 11 00 00 00.

Let pj denote the probability that an animal is recaptured at capture occasion j

(i.e. recapture occasion j− 1), for j = 2, . . . , n2 + 1 and λj denote the probability that
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an animal is recovered dead in the jth year of the study, for j = 1, . . . , n2 + 1. There

are a total of n2 + 1 λj parameters as it is possible to be recovered dead before the

first recapture occasion as well as after the final recapture occasion in the study. We

let Sj denote the probability that an animal at time j survives until time j + 1 given

that the animal has survived up to that point, for j = 1, . . . , n2 + 1, and Fj denote

the probability of animal fidelity (where 1−Fj is the probability of permanent animal

emigration), that an animal at time j remains in the study location until capture oc-

casion j, for j = 1, . . . , n2. We do not consider any age-dependent parameters as age

is rarely explored in the data sets which are fitted using capture-recapture-recovery

fidelity models. We now revisit Examples 4.9 to 4.13 below and demonstrate how the

probabilities of those life-histories can be obtained.

Example 4.9 revisited: In the life-history 1013, the animal was recaptured alive at each

recapture occasion apart from the first recapture occasion, and was also recovered dead

at the final recovery occasion. If we assume that all parameters are time-dependent,

the probability of this life-history is

Pr(1013) = S1F1(1− p2)S2F2p3S3F3p4(1− S4)λ4.

This shows an example where an animal was recaptured alive and recovered dead in

the final occasions of the study. It is also assumed to have not permanently emigrated

during the study as the animal was recaptured alive in the final recapture occasion of

its life.

Example 4.10 revisited: A similar life-history is 1012 where the animal was not re-

captured alive during the last recapture occasion when the animal was then recovered

dead. If we assume that all parameters are time-dependent, the probability of this

life-history is

Pr(1012) = S1F1(1− p2)S2F2p3S3 {(1− F3) + F3(1− p4)} (1− S4)λ4.

The added complication here stems for the fact that while we know the animal survived

until the final recovery occasion, we are unclear whether the animal emigrated during

this time or the animal remained at the location but was not recaptured. We deal with

this complication when we are unsure that the animal has emigrated or not after the

third capture occasions by using a γ term to represent γ3,4 = {(1− F3) + F3(1− p4)}.
We give the general form for γ in Equation (4.10) later in this section.
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Example 4.11 revisited: This γ term seen in Example 4.10, which represents our un-

certainty over whether or not the animal has emigrated or not before a recovery dead,

is more complex when there is a greater number of years between last capture and

recovery dead. If we observe the life-history 1002 where the animal was never recap-

tured alive but was recovered dead at the final recovery occasion of the study, then if

we assume that all parameters are time-dependent, the probability of this life-history

is

Pr(1002) = S1S2S3 {(1− F1) + F1(1− p2) [(1− F2)

+ F2(1− p3) {(1− F3) + F3(1− p4)}]} (1− S4)λ4

= S1S2S3γ1,4(1− S4)λ4.

The complication here is the fact that while we know the animal survived until the

final recovery occasion as we recovered dead at that time, we do not know if the animal

has permanently emigrated or not. Furthermore, this emigration could have happened

at any time before its recovery, thus the long expression for γ1,4 in this case as we are

unsure about when the animal emigrated if at all.

Example 4.12 revisited: We use χ terms in our capture-recapture-recovery models of

Section 4.2 to represent the fact we are uncertain whether the animal has died and

not been recovered, or is still alive but has not been recaptured alive. The χ terms

are also used in the fidelity model, such as in the animal life-history 1110 where the

animal was recaptured alive during the first and second recapture occasions but we

are uncertain of its survival after the second recapture occasion. However, this χ term

is more complex in the fidelity model as we also have to consider animal emigration

as well. If we assume that all parameters are time-dependent, the probability of this

life-history is

Pr(1110) = S1F1p2S2F2p3 [(1− S3)(1− λ3) + S3(1− F3) {(1− S4)(1− λ4)

+ S4}+ S3F3(1− p4) {(1− S4)(1− λ4) + S4}]

= S1F1p2S2F2p3χ3.

This χ3 term represents that we are uncertain about the animal after the second re-

capture occasion of the study: The animal could either have died just after the second

recapture occasion and not been recovered with probability (1 − S3)(1 − λ3), the an-

imal could have emigrated and then either died with no recovery or survived with
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probability S3(1 − F3) {(1− S4)(1− λ4) + S4}, or the animal could have remained

in the study location and was not captured ar capture occasion four (recapture oc-

casion three) and then either died with no recovery or survived with probability

S3F3(1− p4) {(1− S4)(1− λ4) + S4}. This χ term can then have a very wide range of

possibilities if more ‘0’ observations are in the life-history, say the life-history 1000 for

example. We give the general form for χ in Equation (4.8) later in this section.

Example 4.13 revisited: Finally, we can also observe a dead recovery straight after

first-capture in this model, denoted by the life-history 3000. If we assume that all

parameters are time-dependent, the probability of this life-history is simply

Pr(3000) = (1− S1)λ1.

A model for these life-histories can be seen in the likelihood given in Burnham

(1993, pp.205). We however would like to examine individual life-histories as a base for

generating an exhaustive summary. We can write down the probability of a particular

life-history occurring as we did in for the previous capture-recapture-recovery model

in Section 4.2, but it is more complex here as permanent emigration has to also be

considered. It is also true when an animal permanently emigrates that the animal

cannot be recaptured alive it could possibly still be recovered dead. Let

χj = (1− Sj)(1− λj) + Sj(1− Fj)Ψj+1 + SjFj(1− pj+1)χj+1, (4.8)

where χn2+1 = (1− Sn2+1)(1− λn2+1) + Sn2+1, and

Ψj = (1− Sj)(1− λj) + SjΨj+1, (4.9)

with Ψn2+1 = (1−Sn2+1)(1−λn2+1) +Sn2+1. The term Ψj denotes the probability of

either being not recovered dead or surviving, given that the animal has permanently

emigrated after the last time the animal was recaptured. This complexity in the χ

term is encompassed in Burnham (1993) using his notations of λd and λl.
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Suppose an animal was last recaptured alive at capture occasion w and was also

recovered dead at time b, then let the probability of not capturing the animal alive

between time w and the time the animal was recovered dead at time b be

γw,b = (1− Fw) + Fw(1− pw+1)γw+1,b, (4.10)

where γb,b = 1. This is a necessary term for the case where the animal is recovered dead

and not recaptured alive at the same time. The complication in the γ term is because

an animal could emigrate or not but still be recovered dead at a later point in the study.

Let δk denote the life-history entry at time k. The possible individual life-histories

at a specific time point are δk = 3 if the animal is both recaptured alive and recovered

dead at occasion k, δk = 2 if the animal is only recovered dead at occasion k, δk = 1

if the animal is only recaptured alive in year k, and δk = 0 if the animal is neither

recaptured or recovered at occasion k. The life-history entry δ1 can only be ‘1’ or ‘3’ as

the animal cannot be recaptured alive until the next capture occasion at entry δ2. Let

an animal be first-captured at time a and last seen either by recapturing or recovery at

time b. If we further let w denote the last capture occasion the animal was recaptured

alive, the probability associated with a particular life-history, hX , is equal to

Pr(hX) =



b∏
k=a+1

Sk−1Fk−1 {δkpk + (1− δk)(1− pk)}χb if δb = 1,

w∏
k=a+1

Sk−1Fk−1 {δkpk + (1− δk)(1− pk)} if δb = 2,

×
b−1∏
m=w

Smγw,b(1− Sb)λb
b−1∏

k=a+1

Sk−1Fk−1 {δkpk + (1− δk)(1− pk)} if δb = 3.

×Sb−1Fb−1pb(1− Sb)λb

(4.11)

An overall likelihood can be obtained as the product of the N different life-histories

observed as

L =
N∏
X=1

Pr(hX).

A suitable exhaustive summary for the model can be generated containing all the

probabilities of the distinct life-histories as separate exhaustive summary terms. This

exhaustive summary can then be used to obtain intrinsic parameter redundancy results

in Section 4.9 and extrinsic parameter redundancy results in Section 4.10.
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Table 4.8: Intrinsic parameter redundancies for capture-recapture-recovery fidelity
models

Model Model rank Deficiency Confounded parameters

S(·) F (·) p(·) λ(·) 4 0
S(·) F (·) p(·) λ(t) n2 + 4 0
S(·) F (·) p(t) λ(·) n2 + 3 0
S(·) F (·) p(t) λ(t) 2n2 + 3 0
S(·) F (t) p(·) λ(·) n2 + 3 0
S(·) F (t) p(·) λ(t) 2n2 + 3 0
S(·) F (t) p(t) λ(·) 2n2 + 1 1 Fn2pn2+1

S(·) F (t) p(t) λ(t) 3n2 + 1 1 Fn2pn2+1

S(t) F (·) p(·) λ(·) n2 + 4 0
S(t) F (·) p(·) λ(t) 2n2 + 3 1 (1− Sn2+1)λn2+1

S(t) F (·) p(t) λ(·) 2n2 + 3 0
S(t) F (·) p(t) λ(t) 3n2 + 2 1 (1− Sn2+1)λn2+1

S(t) F (t) p(·) λ(·) 2n2 + 3 0
S(t) F (t) p(·) λ(t) 3n2 + 2 1 (1− Sn2+1)λn2+1

S(t) F (t) p(t) λ(·) 3n2 + 1 1 Fn2pn2+1

S(t) F (t) p(t) λ(t) 4n2 2 Fn2pn2+1, (1− Sn2+1)λn2+1

4.9 Intrinsic parameter redundancy for the fidelity model

We firstly consider the intrinsic parameter redundancy of the fidelity model in

general. Table 4.8 gives us these intrinsic parameter redundancy results for every

possibility of parameter dependency in the fidelity model. We denote the fidelity mod-

els to be ‘S(·) F (·) p(·) λ(·)’, where S(·) denotes survival probabilities, F (·) denotes

fidelity probabilities, p(·) denotes recapture probabilities and λ(·) denotes recovery

probabilities, where each different parameter has the option to be either constant, (·),
or time-dependent, (t). The second column of Table 4.8 refers to the rank of the model,

which is the number of estimable parameters in the model, where there are n2 recap-

ture occasions in the study with n2 ≥ 3. The third column refers to the parameter

deficiency of the model where it is parameter redundant when d > 0. The final column

then gives the confounded parameters if the model is parameter redundant, which are

obtained by using the method of solving partial differential equations as detailed in

Section 2.2.

The proof of these results can be found in Appendix B.3. Table 4.8 shows that

most fidelity models are intrinsically full rank. Furthermore, for the models that are

parameter redundant, only the last two sets of parameters are confounded. This is

analogous to the result found in Section 4.5 where only the last sets of parameters are
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confounded. This intrinsic result for the fully time-dependent model is a confirmation

of the result given in Burnham (1993, pp.207) and Cooch and White (2014, Section

9.7) where they indicate there are identifiability problems in the model with the same

confounded estimable parameter combinations as given in Table 4.8.

4.10 Extrinsic parameter redundancy for the fidelity model

We now demonstrate how the extrinsic parameter redundancy of a particular data

set can be found for the fidelity model using the Maple procedure caprecaprecovfidelity

in Example 4.14 below. We then use this procedure to analyse a study of mountain

chicken frogs in Montserrat in Example 4.15.

Example 4.14 - Extrinsic parameter redundancy in the capture-recapture-recovery fi-

delity model: [See electronic appendix example4.14.mw] For the purposes of our model

analysis, we require the model to have time-dependency and group-dependency as pa-

rameter alternatives. Group-dependency explores how the life-histories differ between

groups of animals by allowing parameters to vary among the groups of the animals. For

example, if the survival parameters were time- and group-dependent, then the survival

probabilities for group ‘1’ would be equal to S1,1 for the first year, S1,2 for the second

year, S1,3 for the third year, and so on. The second group would then have parameters

S2,1, S2,2, etc. The procedure caprecaprecovfidelity has the parameter options as

being constant, time-dependent, group-dependent, or time- and group-dependent for

all the parameters in the model. The group which a particular life-history is from is

given in the vector Cov. Entry i in the vector Cov indicates which group the life-

history in row i of the data matrix Data is from. We see how this group-dependency

can be shown in the Maple code below.

Consider this data set of distinct life-histories where (i) denotes which group they

are from: 1111(1), 1120(2), 1130(3), 1013(1), 1013(3), 1002(2), 1000(1), 1000(2),

1000(3), 0103(1), 0103(2), 0102(1), 0111(1), 0100(1), 0100(2), 0100(3), 0010(1), 0010(2),

0010(3) and 0030(3).



CAPTURE-RECAPTURE-RECOVERY MODELS 137

These 20 life-histories are given in the matrix

Data =



1 1 1 1

1 1 2 0

1 1 3 0

1 0 1 3

1 0 1 3

1 0 0 2
...

...
...

...

0 0 1 0

0 0 1 0

0 0 3 0



,

with the vector Cov indicating which group each respective life-history is from as

Cov =



1

2

3

1

3

2
...

2

3

3



.

Consider a model where the survival parameters are group- and time-dependent,

the fidelity parameters are constant, the recapture parameters are time-dependent,

and the recovery parameters are group-dependent. We can find the model’s exhaustive

summary by using the Maple code over.
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kappa := caprecaprecovfidelity2(Data,Cov,4,1,2,3);

# Inputs: (Data,Cov,S,F,z1,z2);

# Data = Data of all life-histories;

# Cov = column vector of which group the life-history from the

# respective row of Data is from; S = survival probability;

# F = fidelity probability; z1 = recapture probability;

# z2 = recovery probability; for S, F, z1 and z2: ‘1’=constant,

# ‘2’=time-dep, ‘3’=group-dep, ‘4’=time+group-dep.

This code converts the data in the matrix Data to generate the model’s exhaustive

summary as

κ =



S1,1F
3p2S1,2p3S1,3p4 {(1− S1,4)(1− λ1) + S1,4}

S2,1Fp2S2,2 {(1− F ) + F (1− p3)} (1− S2,3)λ2
S3,1F

2p2S3,2p3(1− S3,3)λ3
S1,1F

3(1− p2)S1,2p3S1,3p4(1− S1,4)λ1
S3,1F

3(1− p2)S3,2p3S3,3p4(1− S3,4)λ3
S2,1S2,2S2,3 ((1− F ) + F (1− p2) [(1− F ) · · ·

· · ·+ F (1− p3) {(1− F ) + F (1− p4)}]) (1− S2,4)λ2
...

(1− S2,3)(1− λ2) + S2,3(1− F ) {(1− S2,4)(1− λ2) + S2,4} · · ·
· · ·+ S2,3F (1− p4) {(1− S2,4)(1− λ2) + S2,4}

(1− S3,3)(1− λ3) + S3,3(1− F ) {(1− S3,4)(1− λ3) + S3,4} · · ·
· · ·+ S3,3F (1− p4) {(1− S3,4)(1− λ3) + S3,4}

(1− S3,3)λ3



.

The parameter deficiency of this exhaustive summary can then be found by the usual

methods as described in Section 2.2.

theta := parsproc(kappa):

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

The parameter set and derivative matrix are given in the Maple file example4.14.mw

only to save space. We use the hybrid symbolic-numerical method of Section 2.5 to

find the model rank due to the computational complexity of the derivative matrix.

This derivative matrix has the model rank and parameter deficiency as

r := 19,d := 0.
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We then conclude that this exemplar data set has no parameter redundancy for the

fidelity model with group- and time-dependent survival parameters, constant fidelity

parameters, time-dependent recapture parameters, and group-dependent recovery pa-

rameters. This means that using that model every parameter in the model can in

theory be estimated for that data set.

Example 4.15 - The mountain chicken frogs data set for the capture-recapture-recovery

fidelity model: We now demonstrate extrinsic parameter redundancy in the fidelity

model by examining a real data set on mountain chicken frogs in Montserrat. The

data were observed during a trial of an anti-fungal drug and the experimenters wanted

to analyse survival probabilities between different groups of animals. This study took

place for 24 weeks with 15 weeks of treatment followed by 9 weeks of post-treatment

monitoring, however a volcanic eruption cut the study short at that point, when the

experimenters were intending to continue the study further. All of the individual ani-

mals were split into three different groups: A control group of frogs who were caught

and checked to not have the disease, a control group of frogs who were bathed in a

stream water bath to replicate the stresses of the treatment but without the drug,

and a treatment group of frogs which were treated with the drug. We denote these

as group ‘1’ to be a control group, group ‘2’ to be a bath-control group, and group

‘3’ to be the group which has had the anti-fungal treatment. Note that this study is

not a randomised experiment so the amount of possible life-histories for each group

is dependent on how many frogs were selected for each group by the experimenters.

There are 36 distinct life-histories from the control group, 87 distinct life-histories from

the bath-control group and 67 distinct life-histories from the treatment group. The

experimenters had two aims for this study: First they wanted to see if there was a

difference between the survival probabilities before and after the treatment of the drug

after 15 weeks, and they secondly wanted to see if the animals treated with the drug

had higher survival probabilities than a control group of animals. We use this data set

as an illustration of extrinsic parameter redundancy results for the fidelity model even

though it is unclear if the experimenters had considered immigration to be a factor in

this study.

We can use the previous Maple procedure caprecaprecovfidelity to produce an

exhaustive summary so that extrinsic parameter redundancy results can be obtained

for the mountain chicken frogs data for all of the different possible fidelity models. We

give these results in Table 4.9, where we denote the models as ‘S(·) F (·) p(·) λ(·)’, where

S(·) denotes survival probabilities, F (·) denotes fidelity probabilities, p(·) denotes re-
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capture probabilities and λ(·) denotes recovery probabilities. Each different parameter

has the options to be either constant, (·), time-dependent, (t), or group-dependent, (g),

e.g. S(g) indicates a model where the survival parameters are group-dependent. We

do not list any results exploring when parameters are both group- and time-dependent,

as all of these models are parameter redundant with a parameter deficiency at least of 5.

As we can see in Table 4.9, every fidelity model that is intrinsically full rank still

remains full rank when exploring the mountain chicken frogs data set. These results

show that many fidelity models are not parameter redundant even when examining

sparse data sets. However we exclude the cases where a set of parameters are time-

and group-dependent, as when this occurs the data are not rich enough so that the

model is then parameter redundant.

4.11 Discussion

We have advanced our theory on capture-recapture models from Chapter 3 to now

include dead recoveries in the same study. In this case an animal can be recaptured

many times before being found dead, giving us estimates of recapture, recovery and

survival probabilities. Using joint capture-recapture-recovery models is better than

considering two separate mark-recovery and capture-recapture analyses as the survival

estimate are more precise (Burnham, 1993). We considered intrinsic parameter redun-

dancy results of these models with different time- and age- dependencies in Section

4.5 by first showing simper exhaustive summaries in Theorem 3.2 which are proved

in Appendix B.2. Many of the models are intrinsically not parameter redundant and

even for the models that are parameter redundant, these models only confound the

last set of parameters for the survival, recapture and recovery parameters for the final

recapture/recovery occasion n2 of the study. This is advantageous as while a model

may still be parameter redundant, the majority of the survival parameters can be es-

timated without the need for constraining parameters or reparameterisation.
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Table 4.9: Extrinsic parameter redundancies for capture-recapture-recovery fidelity models for the mountain chicken frogs data set
Model Rank Deficiency Model Rank Deficiency Model Rank Deficiency

S(·) F (·) p(·) λ(·) 4 0 S(·) F (·) p(·) λ(t) 27 0 S(·) F (·) p(·) λ(g) 6 0
S(·) F (·) p(t) λ(·) 26 0 S(·) F (·) p(t) λ(t) 49 0 S(·) F (·) p(t) λ(g) 28 0
S(·) F (·) p(g) λ(·) 6 0 S(·) F (·) p(g) λ(t) 29 0 S(·) F (·) p(g) λ(g) 8 0
S(·) F (t) p(·) λ(·) 26 0 S(·) F (t) p(·) λ(t) 49 0 S(·) F (t) p(·) λ(g) 28 0
S(·) F (t) p(t) λ(·)* 47 1 S(·) F (t) p(t) λ(t)* 70 1 S(·) F (t) p(t) λ(g)* 49 1
S(·) F (t) p(g) λ(·) 28 0 S(·) F (t) p(g) λ(t) 51 0 S(·) F (t) p(g) λ(g) 30 0
S(·) F (g) p(·) λ(·) 6 0 S(·) F (g) p(·) λ(t) 29 0 S(·) F (g) p(·) λ(g) 8 0
S(·) F (g) p(t) λ(·) 28 0 S(·) F (g) p(t) λ(t) 51 0 S(·) F (g) p(t) λ(g) 30 0
S(·) F (g) p(g) λ(·) 8 0 S(·) F (g) p(g) λ(t) 31 0 S(·) F (g) p(g) λ(g) 10 0
S(t) F (·) p(·) λ(·) 27 0 S(t) F (·) p(·) λ(t)* 49 1 S(t) F (·) p(·) λ(g) 29 0
S(t) F (·) p(t) λ(·) 49 0 S(t) F (·) p(t) λ(t)* 71 1 S(t) F (·) p(t) λ(g) 51 0
S(t) F (·) p(g) λ(·) 29 0 S(t) F (·) p(g) λ(t)* 51 1 S(t) F (·) p(g) λ(g) 31 0
S(t) F (t) p(·) λ(·) 49 0 S(t) F (t) p(·) λ(t)* 57 15 S(t) F (t) p(·) λ(g) 51 0
S(t) F (t) p(t) λ(·)* 70 1 S(t) F (t) p(t) λ(t)* 78 16 S(t) F (t) p(t) λ(g)* 72 1
S(t) F (t) p(g) λ(·) 51 0 S(t) F (t) p(g) λ(t)* 60 14 S(t) F (t) p(g) λ(g) 53 0
S(t) F (g) p(·) λ(·) 29 0 S(t) F (g) p(·) λ(t)* 51 1 S(t) F (g) p(·) λ(g) 31 0
S(t) F (g) p(t) λ(·) 51 0 S(t) F (g) p(t) λ(t)* 73 1 S(t) F (g) p(t) λ(g) 53 0
S(t) F (g) p(g) λ(·) 31 0 S(t) F (g) p(g) λ(t)* 53 1 S(t) F (g) p(g) λ(g) 33 0
S(g) F (·) p(·) λ(·) 6 0 S(g) F (·) p(·) λ(t) 29 0 S(t) F (·) p(·) λ(g) 8 0
S(g) F (·) p(t) λ(·) 28 0 S(g) F (·) p(t) λ(t) 51 0 S(t) F (·) p(t) λ(g) 30 0
S(g) F (·) p(g) λ(·) 8 0 S(g) F (·) p(g) λ(t) 31 0 S(t) F (·) p(g) λ(g) 10 0
S(g) F (t) p(·) λ(·) 28 0 S(g) F (t) p(·) λ(t) 51 0 S(t) F (t) p(·) λ(g) 30 0
S(g) F (t) p(t) λ(·)* 49 1 S(g) F (t) p(t) λ(t)* 72 1 S(t) F (t) p(t) λ(g)* 51 1
S(g) F (t) p(g) λ(·) 30 0 S(g) F (t) p(g) λ(t) 53 0 S(t) F (t) p(g) λ(g) 32 0
S(g) F (g) p(·) λ(·) 8 0 S(g) F (g) p(·) λ(t) 31 0 S(t) F (g) p(·) λ(g) 10 0
S(g) F (g) p(t) λ(·) 30 0 S(g) F (g) p(t) λ(t) 53 0 S(t) F (g) p(t) λ(g) 32 0
S(g) F (g) p(g) λ(·) 10 0 S(g) F (g) p(g) λ(t) 33 0 S(t) F (g) p(g) λ(g) 12 0

All the fidelity models that are starred* are intrinsically parameter redundant
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We then considered extrinsic parameter redundancy results by exploring a data set

of cormorants from Hènaux et al. (2007). We consider three subsets of the data which

vary in sparseness and observe how this affects the ability to estimate parameters. Even

for the relatively sparse data set of the colony 1 data only where only 465 out of the

possible 12,282 distinct life-histories were recorded, there are very few models that are

parameter redundant. This shows that even a sparse data set may have enough data

to be able to estimate all the parameters in a capture-recapture-recovery model. We

also consider generalising the life-histories in Section 4.7 by considering a sparseness

statistic c so that only the life-histories that have c or fewer occasions between first

capture and last recapture/recovery are considered. This extrinsic case is the more

likely to occur in practice as very rarely will there be a perfect data set observed.

We further went on to explore a different capture-recapture-recovery model in Sec-

tions 4.8 to 4.10 based on Burnham (1993, Section 3.2). From this fidelity model we

can obtain estimates of the probability of animal emigration as well as the probability

of animal survival. We explored how the probabilities of these life-histories can be

expressed and gave some intrinsic parameter redundancy results as well as examples of

extrinsic parameter redundancies including exploring a data set on mountain chicken

frogs in Montserrat.

Finally, it is worth noting that some of the models in this chapter have some

assumptions which need to be satisfied to achieve unbiased parameter estimates. Many

of these assumptions are similar to those mentioned in Sections 2.1 and 3.9.

1. Each animal has an equal recapture and recovery probability. This may not be

the case due to animals being trap-happy or trap-shy, which may give a negative

or positive estimate bias.

2. We do not consider the loss of marking tags during the study. Potentially some

of animals may lose their tags during the study, and this may influence the

number of recaptures/recoveries recorded. Tag loss can be incorporated into

a capture-recapture-recovery model by the use of a parameter (such as shown

in Arnason and Mills, 1981, and Pomeroy et al., 2010) but such models have

not been considered in parameter redundancy analysis in a capture-recapture-

recovery framework.

3. The discrete time period between recovery occasions needs to be same during the

study. As we are working on a discrete time period this generally means yearly
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intervals, and these time periods have to remain at yearly intervals through-

out the study. Capture-recapture-recovery models are being developed for the

continuous time case, such as in Langrock and King (2013).

4. Technological and/or human errors in the data are not considered, or at least are

considered to be of negligible value. This includes issues like incorrect individual

identification and incorrect data input into computers. Note that this is different

from having missing observations as we are saying here that there are no incorrect

observations rather than missing ones.

5. We assume that the recapturing and recovering of animals does not have an ef-

fect on the survival probabilities of other animals in the study. Similarly, the

recapturing and recovering of animals does not have an effect on the probability

of recapture or recovery for the other animals in the study as well.

We now leave models where we mark or capture individuals, for a different class of

models called occupancy models, which are explored in Chapter 5.



Chapter 5

Occupancy Models

5.1 Occupancy modelling background

The previous chapters considered models involving marking of individual animals

and then recapturing and/or recovering them later on in the study. Rather than indi-

viduals being marked, this chapter examines models for data where the presence and

absence of a species is recorded, which is known as occupancy modelling. These

occupancy studies can be used to estimate the proportion of sites which are occupied

by a certain species. Collections of occupancy data can form a basis of a monitoring

program where the probability of occupancy at certain sites is closely supervised. As

MacKenzie et al. (2006) state, we, “did not appreciate the generality of the concept

of ‘occupancy’,” until the development of these occupancy models in the last decade.

Before the formulation of these occupancy models in the early 2000’s, it was consid-

ered difficult to estimate absolute abundance change among large sites as marking

individual animals proved problematic. The parameters in occupancy models are dif-

ferent from the ones in Chapters 2, 3 and 4, as instead of estimating the probability of

survival, the occupancy model estimates the probability that a species is present at a

location. Estimating species occupancy can be advantageous in some ecological studies

where it is easier to collect data on whether a species is present or absent compared

to the effort to mark and recapture/recover individuals.

The first occupancy models in animal studies used ad-hoc methods to estimate oc-

cupancy probabilities where the detection probabilities were less than one, such as in

Geissler and Fuller (1987) and Azuma et al. (1990). The beginnings for the increased

use of occupancy studies comes from the work of MacKenzie et al. (2002, 2003) and

Tyre et al. (2003). MacKenzie et al. (2002) and Tyre et al. (2003) explore a model with

144



OCCUPANCY MODELS 145

replicated sampling surveys where observers would see if they can detect a species dur-

ing each survey. A survey is an attempt by an observer to detect an animal species at

a given time point. The replication of these surveys can form the basis of a monitoring

program which provides information about the presence or absence of animal species

at that time. The model likelihoods of MacKenzie et al. (2002) and Tyre et al. (2003)

account for imperfect detection by noting that the non-detection of a species does not

necessarily imply that the species is absent. MacKenzie et al. (2003) extends this work

to consider a model with multiple seasons, where each season would be defined as a

different time period during which the presence or absence of a species is assumed to

be static. MacKenzie et al. (2003) consider changes in occupancy probability between

seasons, such as the species going from being present to absent, or vice-versa. MacKen-

zie et al. (2003) has been widely referenced since as it describes the most employed

occupancy model at the current time due to its simplicity and flexibility of use. The

book by MacKenzie et al. (2006) has also been widely cited due to the wide range of

models discussed in their book, and a review of the recent advances in occupancy mod-

elling can be seen in Bailey et al. (2014), which was presented at the 2013 EURING

meeting in Georgia, USA.

Recent applications of occupancy methodology have been wide ranging in their use

such as in Bailey et al. (2004a) monitoring terrestrial salamanders, in O’Connell Jr.

et al. (2006) using the MacKenzie et al. (2002) model to derive parameter estimates

of occupancy for a range of mammals in Cape Cod, Massachusetts, and in Falke et al.

(2010) which explores Great Plains stream fish in North America using the multiple

state occupancy model from Nichols et al. (2007). The area of species distribution

modelling, in which presence/absence studies play a role, is also a recently developing

field which considers results of occupancy studies to predict such aspects as conser-

vation areas in a country. The application of these methods is shown in Beale et al.

(2012), or where potentially unobserved species have not been found yet, as in Pearson

et al. (2007). It is possible to combine different data sets to improve the accuracy

of occupancy estimates as well, as shown in Nichols et al. (2008). There has also

been a wide range of extensions to the original occupancy models of MacKenzie et al.

(2002, 2003), such as observing species in multiple occupancy states in MacKenzie

et al. (2009), observing multiple interacting species in MacKenzie et al. (2004), and

the use of occupancy models to derive estimates of animal abundance in Royle and

Nichols (2003). We explore parameter redundancy results for these three occupancy

model extensions in Sections 6.1, 6.3 and 6.4 respectively later on in this thesis.
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Occupancy models can be fitted using PRESENCE (MacKenzie and Hines, 2014)

which is a software package developed to derive parameter estimates for a range of oc-

cupancy models, though most occupancy models can also be fitted using the software

package MARK (Cooch and White, 2014). Alternative software programs that also fit

occupancy models include E-SURGE (Gimenez et al., 2014), and R using the package

unmarked (Fiske and Chandler, 2011, and Fiske et al., 2014).

We start by considering parameter redundancy in the basic occupancy model in

Section 5.2 which has only one survey in only one season. Then this can be extended

to include multiple detection surveys in Section 5.3 and multiple seasons in Section 5.4,

as well as observing species from multiple groups in Section 5.7. Intrinsic parameter

redundancy results are obtained in Section 5.5, and extrinsic parameter redundancy

is explored in Sections 5.6 and 5.8. There is also a final section on the effect of data

sparseness in Section 5.9.

5.2 The basic occupancy model

The simplest occupancy model is the model which has only one survey which de-

tects whether the species is present or absent. We consider adding more surveys in the

next section but consider only one survey for now. We let p denote the probability of

species detection at that survey. Observe that p denotes a different probability from

the previous sections as p now indicates when the species is detected, and not when an

individual is recaptured in a capture-recapture or capture-recapture-recovery model.

The other parameter required in this model is the probability of species occupation,

denoted as ϕ. This species occupation parameter gives the probability that the species

is present at the beginning of the study.

For this simplest occupancy model, it is clear there are only two possibilities: Either

the species is detected, or the species is not detected. If the species is detected then it

must be present at this site and has the probability ϕp. If the species is not detected

however, it is not clear if the species is absent at that site, or if the species is actually

present but was not detected. This problem of non-detection is important to consider

as a non-detection does not necessarily imply the species is absent at that site. If we do

not consider the case where the species could be present but is not detected, we achieve

bias in our estimates, especially in the underestimation of the true occupancy rates

(MacKenzie et al., 2006, pp.104-105). The probability of the species being undetected

is the probability the species was present but not detected, ϕ(1−p), plus the probability
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the species was absent, (1−ϕ). An exhaustive summary then includes the probabilities

of these two options, κ = [ϕp, ϕ(1− p) + (1− ϕ)]T . This model however is parameter

redundant, as when we find the derivative matrix with respect to its parameters θ =

[ϕ, p]T we obtain that

D =

[
∂κ

∂θ

]
=

[
ϕ −ϕ
p −p

]
,

only has a matrix rank of 1, meaning the exhaustive summary has a parameter defi-

ciency of 1. This is clear to see as we observe that ϕ(1 − p) + (1 − ϕ) = 1 − ϕp so

that the parameters p and ϕ only ever appear as the product ϕp. This is well known

in MacKenzie et al. (2003) and the idea behind the robust design is that when more

than one survey is conducted, this parameter redundancy is removed. We show this

in the next section.

5.3 Adding more detection surveys

We can extend the previous simple model by considering when observers attempt

to detect animal species at more than one survey during the study, see for example

MacKenzie et al. (2006, Section 4.4). We are assuming that the occupancy status for

a species does not change between surveys, so that a species that is present remains

present during the whole of the study, and similarly for a species which is absent.

In this model we still denote the probability of species occupancy as ϕ, but we now

denote the probability of detection as pj for survey j = 1, . . . , k, where k is the total

number of surveys in the study. We follow a similar notation to capture-recapture

studies and denote a particular series of detections in an occupancy-history as a

binary series of 1’s and 0’s. We let ‘1’ denote when the species was detected for that

particular survey and ‘0’ denote when the species was not detected. Examples 5.1 and

5.2 below show how the probability of particular occupancy-histories can be obtained.



OCCUPANCY MODELS 148

Example 5.1: A possible occupancy-history could be h = 01110. This means that the

species was not detected during surveys 1 and 5 in the study, but was detected during

surveys 2, 3 and 4. Observe that the occupancy-history does not need a detection

to begin, as unlike the models of Chapter 2, 3 and 4, we do not need to mark the

individuals first before detection. As the species was detected in at least one survey it

shows the species is present at that site, and the probability of this occupancy-history

is then equal to

Pr(h) = ϕ(1− p1)p2p3p4(1− p5).

Example 5.2: The probability of the occupancy-history where there are no detections

in the study denoted as h = 00000, is equal to

Pr(h) = ϕ (1− p1) (1− p2) (1− p3) (1− p4) (1− p5) + (1− ϕ) .

This is due to considering both cases where the species could be present but not de-

tected at all during the study, or whether the species is absent.

The probabilities of all the observed occupancy-histories forms an exhaustive sum-

mary for the occupancy model. If we let δj represent the individual occupancy-history

entry for survey j (which is either equal to zero or one for all j), then the probability

of occupancy-history hX occurring is

Pr(hX) =


ϕ

k∏
j=1

{δjpj + (1− δj) (1− pj)} if
∑k

j=1 δj ≥ 1,

ϕ

k∏
j=1

(1− pj) + (1− ϕ) if
∑k

j=1 δj = 0.

(5.1)

All the possible occupancy-histories fall into the top expression in Equation (5.1) apart

from the history which has no detections at all during the study. The exhaustive sum-

mary is then a vector of all the occupancy-history probabilities recorded in the study.

This occupancy model can also be referred to as being a zero-inflated binomial model,

as stated in Royle and Nichols (2003), as occupancy data commonly contains a large

of non-detections during a study. Zero-inflated models have been used before in sta-

tistical ecology such as in Ridout et al. (2001) and Morgan (2008, pp.124).

If we consider the intrinsic parameter redundancy of this occupancy model, this

model is not parameter redundant and all of the parameters in the model are estimable,
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given that at least two surveys are performed. When there is only one survey, this is

the same as the basic simplest model of Section 5.2 which was shown to be parameter

redundant with a deficiency of one. This is a result which is proved later on in Theorem

5.1 in Section 5.5.

However, typically the use of occupancy modelling is to examine presence/absence

patterns over multiple time periods. Therefore, we consider the parameter redundancy

of occupancy studies performed over a multiple number of seasons, and this model will

be described in the next section.

5.4 Increasing the number of seasons

Rather than one season with multiple surveys, a typical study will observe a site

over a multiple number of seasons. This multiple-seasons model is more widely

used in practice due to the estimation of parameters where the species possibly change

occupancy states between seasons. This change of occupancy status from present to

absent, or vice-versa, may be of interest when considering if a species occupies the

site over particular time periods, and is the reason why this model is regularly used in

occupancy studies.

Let T represent the number of seasons observed in the study at a single site, with

kt as the number of surveys during season t. kt is generally the same number of surveys

for every season in the study but this does not necessarily have to be the case. As

this is a two state model where the only states are presence and absence, we define

state ‘1’ to be where the species is present and state ‘0’ to be where the species is

absent. Let pt,j denote the probability of detection during survey j during season t for

j = 1, . . . , kt and t = 1, . . . , T . Let ϕ
[1]
0 be the probability that the species is present at

time t = 0, and ϕ
[a,1]
t be the transition probability that a site that is occupancy state

a in season t, where a = {0, 1}, is then occupied by the target species in season t + 1

for all t = 1, . . . , T − 1.

Note that MacKenzie et al. (2003) uses a different set of parameters to define these

transition probabilities. They define εt = 1 − ϕ[1,1]
t as the probability of moving from

being present in season t to being absent in season t + 1 (i.e. moving from state 1 to

state 0), also known as species extinction. They further define as γt = ϕ
[0,1]
t as the

probability of moving from being absent in season t to being present in season t + 1

(i.e. moving from state 0 to state 1), also known as species colonisation. Due to the
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reparameterisation theorem Theorem 2.3, this reparameterisation results in the same

parameter redundancy as the parameterisation in terms of ϕ
[1,1]
t and ϕ

[0,1]
t . Here we

use the ϕ
[a,1]
t notation as the model more naturally extends to the cases with more

states as explored later in Section 6.1. It is also worth noting that ϕ
[0]
0 = 1 − ϕ[1]

0 ,

and ϕ
[a,0]
t = 1− ϕ[a,0]

t for each state a = {0, 1}, to enable the model to have the least

number of parameters possible.

We assume that species extinction or species colonisation does not happen mid-

season and only happen between seasons, with each season denoting the same discrete

time period throughout the study. We further assume that the dynamic processes be-

tween seasons are being explicitly modelled, though it is possible to have an implicitly

modelled study by defining ϕ
[a,1]
t = ϕt for all t, i.e. the state it was in previously is not

considered. Such a model is shown in MacKenzie et al. (2006, Section 7.2), however we

explore explicit models only in this thesis where the previous state in the last season

is considered.

Let φt denote the transition matrix

φt =

[
ϕ
[1,1]
t 1− ϕ[1,1]

t

ϕ
[0,1]
t 1− ϕ[0,1]

t

]
,

for all t = 1, . . . , T −1, and let φ0 be the row vector corresponding to the initial species

presence/absence as

φ0 =
[
ϕ
[1]
0 1− ϕ[1]

0

]
.

Let δt,j denote the species observed state during season t in survey j, where δt,j = 1

when the species is detected and δt,j = 0 when the species is not detected. Let pX,t

be the column vector where each entry is the probability of observing the occupancy-

history hX in season t conditional upon its occupancy state. The general form for pX,t

can be expressed as

pX,t =


kt∏
j=1

{δt,jpt,j + (1− δt,j) (1− pt,j)}

kt∏
j=1

(1− δt,j)

 . (5.2)

This does mean that if there is at least one detection during season t, the second entry

in pX,t would be equal to zero. This shows that is impossible for a species to be absent
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from the site if the species has been detected during the season. We show examples of

pX,t vectors in Examples 5.1 and 5.2 below.

Example 5.1 revisited: The pX,t vector with the occupancy-history h = 01110 in season

t would be equal to

p01110,t =

[
(1− pt,1)pt,2pt,3pt,4(1− pt,5)

0

]
.

Example 5.2 revisited: The pX,t vector with the occupancy-history h = 00000 which

has no detections in the season t would be equal to

p00000,t =

[
(1− pt,1)(1− pt,2)(1− pt,3)(1− pt,4)(1− pt,5)

1

]
.

Let ∆(pX,t) denote a diagonal matrix with diagonal entries given by the vector pX,t

and zeros on the non-diagonal entries. Note that this is the same matrix as denoted

by D(pX,t) from in MacKenzie et al. (2003) so that we do not confuse this diagonal

matrix ∆ with our derivative matrix D.

Example 5.2 revisited: The matrix ∆(p00000,t) for t 6= T is given as

∆(p0000,t) =

[
(1− pt,1)(1− pt,2)(1− pt,3)(1− pt,4)(1− pt,4) 0

0 1

]
.

We observe that no diagonal matrix is required for the detections in the final

season T in the study to give the correct matrix dimensions. The probability of the

occupancy-history hX is given as

Pr(hX) = φ0

[
T−1∏
t=1

∆(pX,t)φt

]
pX,T . (5.3)

The likelihood for the multiple-seasons occupancy model is then

L =

N∏
X=1

Pr(hX), (5.4)



OCCUPANCY MODELS 152

for the N different occupancy-histories observed in a study. When more seasons are

added in a model, we will use a vertical dash ‘|’ to indicate the change in seasons in

the binary code for the occupancy-history, though some papers use blanks in the code

to indicate this, as in MacKenzie et al. (2003, 2009). We give Example 5.3 and 5.4

below to show how the probability of an occupancy-history can be obtained.

Example 5.3: Consider a study where we have 3 seasons where there are 2 surveys in

every season. The probability of observing the occupancy-history h = 10|11|01, where

the species is detected once in the first season in the first survey, is detected both times

in season two, and is only detected in the last survey in the final season, can be found

by multiplying the following matrices and vectors together:

Pr(h) = φ0∆(p10,1)φ1∆(p11,2)φ2p01,3

=
[
ϕ
[1]
0 1− ϕ[1]

0

]
·

[
p1,1(1− p1,2) 0

0 0

]
·

[
ϕ
[1,1]
1 1− ϕ[1,1]

1

ϕ
[0,1]
1 1− ϕ[0,1]

1

]
·

[
p2,1p2,2 0

0 0

]
·

[
ϕ
[1,1]
2 1− ϕ[1,1]

2

ϕ
[0,1]
2 1− ϕ[0,1]

2

]
·

[
(1− p3,1)p3,2

0

]
= ϕ

[1]
0 p1,1(1− p1,2)ϕ

[1,1]
1 p2,1p2,2ϕ

[1,1]
2 (1− p3,1)p3,2.

Example 5.4: The probability of the occupancy-history h = 00|00|00, where there are

no detections at all for any surveys in the study, is

Pr(h) = φ0∆(p00,1)φ1∆(p00,2)φ2p00,3

=
[
ϕ
[1]
0 1− ϕ[1]

0

]
·

[
(1− p1,1)(1− p1,2) 0

0 1

]
·

[
ϕ
[1,1]
1 1− ϕ[1,1]

1

ϕ
[0,1]
1 1− ϕ[0,1]

1

]
·

[
(1− p2,1)(1− p2,2) 0

0 1

]
·

[
ϕ
[1,1]
2 1− ϕ[1,1]

2

ϕ
[0,1]
2 1− ϕ[0,1]

2

]
·

[
(1− p3,1)(1− p3,2)

1

]
= ϕ

[1]
0 (1− p1,1)(1− p1,2)

[
ϕ
[1,1]
1 (1− p2,1)(1− p2,2)

{
ϕ
[1,1]
2 (1− p3,1)(1− p3,2)

+
(

1− ϕ[1,1]
2

)}
+
(

1− ϕ[1,1]
1

){
ϕ
[0,1]
2 (1− p3,1)(1− p3,2) +

(
1− ϕ[0,1]

2

)}]
+

(
1− ϕ[1]

0

) [
ϕ
[0,1]
1 (1− p2,1)(1− p2,2)

{
ϕ
[1,1]
2 (1− p3,1)(1− p3,2)

+
(

1− ϕ[1,1]
2

)}
+
(

1− ϕ[0,1]
1

){
ϕ
[0,1]
2 (1− p3,1)(1− p3,2) +

(
1− ϕ[0,1]

2

)}]
.

The complex expression in Example 5.4 stems from the fact that non-detection in a
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season does not necessarily mean the species is absent at that time period and the true

occupancy-history behind the species could have 8 different possibilities depending on

colonisations and/or extinctions between seasons.

As in the previous chapters in this thesis, we note that this occupancy model has

underlying assumptions. A number of these assumptions are discussed in MacKenzie

et al. (2002, 2003) and Mazerolle et al. (2007).

1. The occupancy state of the species does not change within a season. While we

have parameters to indicate the probability of when a species becomes extinct

or is colonised at a site, these parameters are only given between seasons. It is

possible a species could become extinct half way through a season, but accounting

for this in the model may possibly mean the model becomes parameter redundant.

We assume in these models that extinction and colonisation happens between the

last survey of one season and the first survey of the next season. Otto et al. (2013)

considers this assumption and shows there is bias in the parameter estimates

when this assumption does not hold in occupancy studies.

2. Detection and non-detection of species does not have an effect on future prob-

abilities in the model. Detecting (or not detecting) a species at a certain time

point should not influence future detection probabilities or future extinction and

colonisation probabilities either if there is more than one season in the study.

An example where this assumption could be violated is if detecting a species

in some way injures or disturbs the detected individual or habitat, which then

makes detection of the species less likely in the next survey. Still, if the individual

numbers are large enough this could be considered of negligible value.

3. The sampling intervals of each season are all of the same time period during

the study. As we are working on a discrete time period, seasons generally mean

yearly intervals, and these have to remain yearly intervals throughout the study.

4. Technological and/or human errors in the data collection are considered to be

negligible. This includes items like incorrect species identification or incorrect

data input into computers. Note that this is somewhat different from having

missing observations, as we will discuss in Section 5.8, as we are saying here

there are no incorrect observations rather than missing ones.

We begin our analysis of occupancy models by generating a result for intrinsic

parameter redundancy in the next section.
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5.5 Intrinsic parameter redundancy for occupancy mod-

els

To examine intrinsic parameter redundancy in the multiple capture-recapture and

capture-recapture-recovery models in Sections 3.4 and 4.4, we found that there were

simpler exhaustive summaries that could be used. This reduced the large number of

exhaustive summary terms in the model considerably. We can then go on to obtain

general intrinsic parameter redundancy results using this simpler exhaustive summary.

There is a similar result for occupancy models as given in Theorem 5.1 below.

Theorem 5.1. a) The standard two-state occupancy model with perfect data for any

number of surveys per season greater than one, is not parameter redundant. Any season

with only one survey or no surveys at all during the season adds one to the parameter

deficiency of that model.

b) A simpler exhaustive summary of the occupancy model consists of the terms

• st,j = ϕ
[1,1]
t−1 pt,j for all t = 2, . . . , T and j = 1, . . . , kt, where s1,j = ϕ

[1]
0 p1,j for all

j = 1, . . . , kt,

• rt = ϕ
[1,1]
t−1

∏kt
j=1 pt,j for all t = 2, . . . , T and j = 1, . . . , kt, where r1 = ϕ

[1]
0

∏k1
j=1 p1,j

for all j = 1, . . . , kt,

• and ut = ϕ
[0,1]
t /ϕ

[1,1]
t for all t = 1, . . . , T − 1.

The proof of Theorem 5.1 can be found in Appendix B.4. The proof uses the

two-stage extension theorem of Theorem 3.1 to prove there is a simpler exhaustive

summary as given in the theorem, and then we can use the standard extension theo-

rem of Theorem 2.2 to prove the simpler exhaustive summary is full rank for a general

number of surveys and seasons. This theorem proves that there is no intrinsic param-

eter redundancy in the standard two-state occupancy model, given that there are at

least two surveys in each season.

We note that the number of exhaustive summary terms grows exponentially with

number of surveys and seasons during a study, with rate 2T×
∑T

t=1 kt . In practice for a

large number of seasons, not all of the possible occupancy-histories will be observed in

a typical data set. It is for this reason why we consider extrinsic parameter redundancy

results for occupancy models in the next section.
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5.6 Extrinsic parameter redundancy for occupancy mod-

els

Similarly to Sections 3.7, 4.6 and 4.10, we have developed Maple code which con-

siders the extrinsic parameter redundancy of a given data set. This Maple procedure,

occmodseasonshist, converts data of observed occupancy-histories into exhaustive

summary terms which can be examined for parameter redundancy. This procedure

uses matrix multiplication to generate each exhaustive summary term corresponding

to its occupancy-history. We can further relax our dependencies on the model param-

eters as follows:

• By relaxing season-dependence on the between seasons occupancy parameters:

ϕ
[1,1]
t = ϕ

[1,1]
c and ϕ

[0,1]
t = ϕ

[0,1]
c for all seasons t = 1, . . . , T − 1. We give the

subscript c to denote a constant occupancy probability over all seasons. Note

that ϕ
[1]
0 remains as while other transition probabilities go from state a to state 1,

ϕ
[1]
0 has no previous state and cannot be seen to be a transition probability. This

is viewed in Section 6.2 where we extend the model to include a given previous

state at time t = 0.

• By relaxing survey-dependence on the detection parameters: pt,j = pt for all

surveys j = 1, . . . , kt and seasons t = 1, . . . , T . There is then no difference

between detection probabilities within a single season.

• By relaxing season-dependence on the detection parameters: pt,j = pj for all

surveys j = 1, . . . , kt and seasons t = 1, . . . , T . There is then no difference

between detection probabilities between seasons, and the probabilities are only

dependent on which survey is considered during the season.

• By relaxing both season-dependence and survey-dependence on the detection

parameters: pt,j = p for all surveys j = 1, . . . , kt and seasons t = 1, . . . , T . There

is then no difference between any detection probabilities for the whole of the

study.

We use the model notation of ϕ()p() to distinguish between the different parame-

ter dependencies in a model. The transition occupancy parameters ϕ
[a,1]
t can be either

constant, ϕ(·), or season-dependent, ϕ(t). The detection parameters pt,j can be either

constant, p(·), season-dependent, p(t), survey-dependent, p(j), or season- and survey-

dependent, p(t, j). The default model has season-dependent transition probabilities

and season- and survey-dependent detection probabilities, i.e. ϕ(t)p(t, j), as used in

MacKenzie et al. (2003). We show the Maple code with a small data set in Example
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5.5 and then explore a real data set on house finches from MacKenzie et al. (2006).

Example 5.5 - Extrinsic parameter redundancy in multiple-seasons occupancy models:

[See electronic appendix example5.5.mw] Consider an example where we have two

seasons, with two surveys in the first season and three surveys in the second sea-

son. Suppose we only observe the occupancy-histories: 11|100, 10|100, 01|111, 00|011,

00|001 and 00|000. We can use the Maple procedure occmodseasonshist to obtain a

model’s parameter redundancy for this data set. The procedure occmodseasonshist

requires two inputs to generate the model’s exhaustive summary. The first input is a

row vector of how many surveys there are per season, given in the vector S as

S =
[

2 3
]
.

The second input as a matrix of the observed data of the occupancy-histories, with

the matrix being of dimension N as the number of occupancy-histories observed by

T ×
∑T

t=1 kt, given in the matrix T as

T =



1 1 1 0 0

1 0 1 0 0

0 1 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0


.

Consider a model which has season-dependent occupancy parameters and only

survey-dependent detection parameters, as denoted by ϕ(t)p(j). The parameter defi-

ciency of the model can be found by the Maple code as follows:

S := < <2|3> >;

T := < <1|1|1|0|0>, <1|0|1|0|0>, <0|1|1|1|1>, <0|0|0|1|1>,

<0|0|0|0|1>, <0|0|0|0|0> >;

kappa := occmodseasonshist(2,3,S,T);

# Inputs: (y,z,S,T);

# y = transition probability; z = detection probability;

# for y and z: ‘1’=constant, ‘2’=season-dep, ‘3’=survey-dep,

# ‘4’=season+survey-dep (y can only be ‘1’ or ‘2’);

# S = row vector of the number of surveys per season;

# T = list of all occupancy-histories.
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theta := parsproc(kappa);

DD := Dmat(logvector(kappa),pars):

r := Rank(DD); d := Dimension(theta)-r;

This Maple code generates the exhaustive summary

κ =



ϕ0p1p2ϕ1,11p1(1− p2)(1− p3)
ϕ0p1(1− p2)ϕ1,11p1(1− p2)(1− p3)

ϕ0(1− p1)p2ϕ1,11p1p2p3

{ϕ0(1− p1)(1− p2)ϕ1,11 + (1− ϕ0)ϕ1,1} (1− p1)p2p3
{ϕ0(1− p1)(1− p2)ϕ1,11 + (1− ϕ0)ϕ1,1} (1− p1)(1− p2)p3

ϕ0(1− p1)(1− p2) {ϕ1,11(1− p1)(1− p2)(1− p3) + (1− ϕ1,11)} · · ·
· · ·+ (1− ϕ0) {ϕ1,1(1− p1)(1− p2)(1− p3) + (1− ϕ1,1)}


,

where ϕ0 = ϕ
[1]
0 , ϕt,1 = ϕ

[0,1]
t and ϕt,11 = ϕ

[1,1]
t for season t. Maple does not work well

with superscripts so we have used the subscript t, 11 to denote the superscript [1, 1]

for the occupancy parameter ϕ
[1,1]
t where the species remains present between seasons,

and t, 1 to denote the superscript [0, 1] for the occupancy parameter ϕ
[0,1]
t where the

species goes from being absent to being present between seasons. The parameters in

the model are θ = [p1, p2, p3, ϕ0, ϕ1,1, ϕ1,11]
T , and differentiating the exhaustive

summary by these parameters gives us the derivative matrix, which is not given here

to save page space but can be found in the Maple file example5.5.mw. This derivative

matrix has the model rank and parameter deficiency as

r := 5,d := 1.

This means that this exemplar data set has a parameter deficiency of 1, compared

to the intrinsic parameter deficiency of 0 as proved in Theorem 5.1.

We now use this Maple procedure to examine the extrinsic parameter redundancy

of real data considering a data set of house finches from MacKenzie et al. (2006).

Example 5.6 - The house finches data set: This data set arises from a study of house

finches (Carpodacus mexicanus) in North America. This study was conducted by the

North American Breeding Bird Survey, which has been conducted annually since 1965

and uses observers who are volunteers. This data has been analysed before in Robbins

et al. (1986) for the study between the years 1965 and 1979, in Sauer et al. (1994) which
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details the effect of observer differences on inference, and in Link and Sauer (1998)

which gives a location based analysis of the data. Further detailed information and

historical background on the data set is given in Robbins et al. (1986) and MacKenzie

et al. (2006). The volunteer observers stopped at 50 set points along a pre-determined

route and listed all the different birds they could see in a three minute period of

observation. We are only interested in house finches so the data set shows a ‘1’ if a

house finch was seen at one of the points and a ‘0’ otherwise. In addition, a ‘distance

band’ for each bird was recorded. These distance bands show us where each bird is

seen from to their point of release from Long Island as the experimenters wished to

explore the rate of house finches expanding westwards. These distance bands go from

0 to 2.5 kilometres in 0.1 kilometre increments and each observation been rounded to

the nearest 0.1 kilometre increment. We use these distance band to explore certain

sections of the data available to us, and there are more birds recorded for the lower

distance bands than higher ones. These particular groupings below have no ecological

interest and are only given for illustrative purposes.

• Data from all the distance bands (694 individual occupancy-histories).

• Data from the occupancy-histories with the distance band 0km (17 individual

occupancy-histories).

• Data from the occupancy-histories with a distance band of between 2.2km and

2.5km (38 individual occupancy-histories).

• Data from the occupancy-histories with the distance band 2.5km (3 individual

occupancy-histories).

Due to the data collection process, survey-dependent parameters are not possible

in this analysis. Table 5.1 displays the possible occupancy models in this set-up, where

the parameters could be constant (·) or season-dependent (t) for both the transition

and detection probabilities. The number of parameters in the model are given in the

second column and the parameter deficiency in the subsequent columns for each data

subset specified above.

This is an example where our procedures have been used to find parameter deficien-

cies of certain collections of occupancy-histories rather than solely exploring intrinsic

parameter deficiency for perfect data. The results in Table 5.1 show again the problem

of insufficient data, as is a consistent theme in this thesis. What is somewhat surprising

is that even though there are more occupancy-histories in the 2.2km to 2.5km group
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Table 5.1: Extrinsic parameter redundancies in multiple-seasons occupancy models
exploring the house finches data set from MacKenzie et al. (2006)

Number of All bands 0km band 2.2-2.5km bands 2.5km band
Model parameters deficiency deficiency deficiency deficiency

ϕ(·) p(·) 4 0 0 0 2
ϕ(·) p(t) 9 0 0 1 7
ϕ(t) p(·) 12 0 1 3 10
ϕ(t) p(t) 17 0 1 5 15

Survey-dependence for detection probabilities is not possible here

compared to the 0km distance band animals, the former case has a higher parameter

redundancy. The reason for this is that there are quite a few histories in this group

that have no detections at all (25 out of the 28) unlike the 0km group which has only

1 occupancy-history involving no detections at all during the study. This shows it

is better for estimating parameters to have many distinct histories rather than solely

many individual histories.

5.7 Addition of group-dependent parameters

An extension to the multiple-seasons model could be to include a variety of groups

of the species examined, as given in the multiple-groups occupancy model in this

section. This is a model where different groups of the species can be differentiated

between, such as species from different sites, or characteristics between species. In rich

data sets it could also provide inference for different parameters between groups to

analyse different group transition and detection probabilities.

One example of different group-dependent parameters is to differentiate between

sampling sites. MacKenzie and Royle (2005), MacKenzie et al. (2006, Section 7.7),

and Guillera-Arroita (2011) for example analyse the addition of more sites from the

viewpoint of model design, and whether it is better to have more sites with fewer

observations per site or to only have a few sites with a high number of observations.

Other factors that could use this multiple-groups occupancy model would be to:

• Differentiate between breeding habitats between species.

• Differentiate between characteristics between the species, e.g. how big the animal

is, if the animal has a particular biological feature or not, whether the species

flowers or not, etc.
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• Differentiate between a species’ genetical information say by different ID tags.

• Differentiate between external influences such as the weather.

For example, we could consider the difference between male and female animals. If this

was the case, the parameters could have the index s = 1 when the occupancy-history

refers to male animals and s = 2 for female animals, so that the probability of detection

of male animals is pt,j,1 and the probability of detection of female animals is pt,j,2 for

survey j in season t. Note that when using this group-dependent model to account for

these factors, the differences among species are then assumed to be independent. This

can be quite unrealistic say in the case of gender where the number of male species is

likely to be dependent on the number of female species due to such reasons as breeding.

The different species case is a particular one we consider in Section 6.3 where we con-

sider a two-species interaction model which takes into consideration non-independence

between species.

The multiple-groups occupancy model has the following probability of occupancy-

history hX as

Pr(hX) = φ0,s

[
T−1∏
t=1

∆(pX,t,s)φt,s

]
pX,T,s, (5.5)

with the same notation as before but considered at groups s = 1, . . . , S. This means

that the occupancy parameters are of the form ϕ
[1]
0,s, ϕ

[1,1]
t,s and ϕ

[0,1]
t,s with the detection

parameters of the form pt,j,s for survey j in season t for group s. The overall likelihood

is then equal to

L =

N∏
X=1

Pr(hX),

for the N different occupancy-histories observed in a study. In this case as occupancy-

histories can observed from different groups, this could include multiple instances of

the same occupancy-history observed at many groups. If there is there no group-

dependency for all of the parameters, this model reduces to the multiple-seasons oc-

cupancy model of Equation (5.3) in Section 5.4. Additionally with this model, it is

possible to consider group-dependence on only a certain set of parameters which gives

this model added flexibility, e.g. the occupancy parameters may be group-dependent

but the detection not or vice-versa depending on the study context.

In terms of intrinsic parameter redundancy for the multiple-groups occupancy

model, the following Theorem 5.2 holds.
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Theorem 5.2. The multiple-groups occupancy model with perfect data with two or

more surveys per season is not parameter redundant. Any season with only one survey

or no surveys at all during the season for all groups adds the value of S to the parameter

deficiency of that model.

The proof of Theorem 5.2 is a direct result from Theorem 5.1 as if you consider

intrinsic parameter redundancy separately for each group s = 1, . . . , S, then the model

has no parameter redundancy for each group s. As each individual group has no pa-

rameter redundancy, then all of the groups combined must also have no parameter

redundancy as every parameter is group-dependent by the full model specification.

The proof is also seen as a trivial application of a proof from integrated population

modelling in Cole and McCrea (2012, Theorem 2: Remark 1).

The following Maple procedure occmodgroupshist can be used to examine group-

dependent occupancy models, given in the supplementary Maple file example5.7.mw.

This is an extension of the Maple procedure occmodseasonshist from Section 5.6.

Due to group-dependence also being considered now, we have many more parame-

ter options: The occupancy parameters can be constant, ϕ(·), season-dependent, ϕ(t),

and/or group-dependent, ϕ(s). The detection parameters can be constant, p(·), survey-

dependent, p(j), season-dependent, p(t), and/or group-dependent, p(s), i.e. in total

there are 32 different possibilities of model. We show a small exemplar data set of

occupancy-histories to show how the procedure works, then explore a real data set of

amphibian monitoring in the Greater Yellowstone and Grand Teton national parks.

Example 5.7 - Extrinsic parameter redundancy in the multiple-groups occupancy model:

[See electronic appendix example5.7.mw] Consider an example with two seasons where

there are two surveys in both seasons. There are two different groups in this exam-

ple and we observe only the occupancy-histories 11|10(1), 11|01(1), 01|10(1), 01|00(1),

00|10(1), 00|00(1), 11|01(2), 01|00(2), 00|10(2), with the number in brackets indicating

at what group the occupancy-history was observed at.

For this procedure, we require three data inputs. The first input in the row vector

S is the number of surveys per season, given as

S =
[

2 2
]
.

The second input then specifies which occupancy-history is in each group as the column
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vector S2 as

S2 =
[

1 1 1 1 1 1 2 2 2 2
]T
.

The final input is the matrix T of all the occupancy-histories as

T =



1 1 1 0

1 1 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0

1 1 0 1

0 1 0 0

0 0 1 0

0 0 0 0



.

Note that each occupancy-history in row i in the matrix T was observed at the group

in row i of the column vector S2 respectively. Consider a model where the occupancy

parameters are only season-dependent and the detection parameters are only survey-

and group-dependent. The parameter deficiency of these occupancy-histories can then

be found by the following Maple code over.

S := < <2|2> >;

S2 := < <1>, <1>, <1>, <1>, <1>, <1>, <2>, <2>, <2>, <2> >;

T := < <1|1|1|0>, <1|1|0|1>, <0|1|1|0>, <0|1|0|0>, <0|0|1|0>,

<0|0|0|0>, <1|1|0|1>, <0|1|0|0>, <0|0|1|0>, <0|0|0|0> >;

kappa := occmodgroupshist(2,7,S,S2,T);

# Inputs: (y,z,S,S2,T);

# y = transition probability; z = detection probability;

# for y: ‘1’=constant, ‘2’=season-dep, ‘3’=group-dep,

# ‘4’=season+group-dep;

# for z: ‘1’=constant, ‘2’=season-dep, ‘3’=survey-dep,

# ‘4’=season+survey-dep; ‘5’=group-dep, ‘6’=season+group-dep,

# ‘7’=survey+group-dep, ‘8’=season+survey+group-dep;

# S = row vector of the number of surveys per season;

# S2 = column vector determining the group of the occupancy-history;

# T = list of all occupancy-histories.
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theta := parsproc(kappa);

DD := Dmat(logvector(kappa),theta):

r := Rank(DD); d := Dimension(theta)-r;

This generates the exhaustive summary

κ =



ϕ0,cpc,1,1pc,2,1ϕ1,11,cpc,1,1(1− pc,2,1)
ϕ0,cpc,1,1pc,2,1ϕ1,11,c(1− pc,1,1)pc,2,1

ϕ0,c(1− pc,1,1)pc,2,1ϕ1,11,cpc,1,1(1− pc,2,1)
ϕ0,c(1− pc,1,1)pc,2,1 {ϕ1,11,c(1− pc,1,1)(1− pc,2,1) + (1− ϕ1,11,c)}

ϕ0,c(1− pc,1,1)(1− pc,2,1)ϕ1,11,cpc,1,1(1− pc,2,1) + (1− ϕ0,c)ϕ1,1,cpc,1,1(1− pc,2,1)
ϕ0,c(1− pc,1,1)(1− pc,2,1) {ϕ1,11,c(1− pc,1,1)(1− pc,2,1) + (1− ϕ1,11,c)}+ · · ·

· · · (1− ϕ0,c) {ϕ1,1,c(1− pc,1,1)(1− pc,2,1) + (1− ϕ1,1,c)}
ϕ0,cpc,1,2pc,2,2ϕ1,11,c(1− pc,1,2)pc,2,2

ϕ0,c(1− pc,1,2)pc,2,2 {ϕ1,11,c(1− pc,1,2)(1− pc,2,2) + (1− ϕ1,11,c)}
ϕ0,c(1− pc,1,2)(1− pc,2,2)ϕ1,11,cpc,1,2(1− pc,2,2) + (1− ϕ0,c)ϕ1,1,cpc,1,2(1− pc,2,2)
ϕ0,c(1− pc,1,2)(1− pc,2,2) {ϕ1,11,c(1− pc,1,2)(1− pc,2,2) + (1− ϕ1,11,c)}+ · · ·

· · · (1− ϕ0,c) {ϕ1,1,c(1− pc,1,2)(1− pc,2,2) + (1− ϕ1,1,c)}



,

where ϕ0,c = ϕ
[1]
0,c, ϕ1,1,c = ϕ

[0,1]
1,c and ϕ1,11,c = ϕ

[1,1]
1,c indicates how they are represented

in Maple. The parameters in the model are θ = [pc,1,1, pc,1,2, pc,2,1, pc,2,2, ϕ0,c, ϕ1,1,c,

ϕ1,11,c]
T , and differentiating the exhaustive summary by these parameters gives us the

derivative matrix, which is not given here to save page space but can be found in the

Maple file example5.7.mw. This derivative matrix has the model rank and parameter

deficiency as

r := 7,d := 0.

In this model there are sufficient data to theoretically allow all the parameters in

the model to be estimated with no parameter redundancy.

We now examine extrinsic parameter redundancy in a real data set involving mon-

itoring amphibians in the Yellowstone and Grand Teton National Parks in the USA.

Example 5.8 - The Yellowstone and Grand Teton amphibians data set: This data set

arises from the monitoring of amphibians in the Yellowstone and Grand Teton Na-

tional Parks in the state of Wyoming, USA, over a four-year period from 2006 to 2009.



OCCUPANCY MODELS 164

Gould et al. (2012) derives occupancy estimates of amphibians from data gathered

at two different ‘scales’, one from surveys of the portions of watersheds denoted as

catchments, and another scale from surveys of individual wetland sites. There are

also three different species of amphibian considered, the tiger salamander (Ambystoma

tigrinum), the Columbia spotted frog (Rana luteiventris), and the boreal chorus frog

(Pseudacris maculata). We consider a multiple species interaction model in Section

6.3 but we assume there is independence between the three species in the data set for

this analysis. The scale of the surveys which are taken from individual wetland sites is

either recorded at Yellowstone or Grand Teton National Park, and the surveys which

are not taken at wetland sites are from one of 31 different catchment sites in the study.

The parameters could be season-dependent (t) and/or group-dependent (s), and the

detection parameters additionally could be survey-dependent (j).

We explore group-dependent models by examining arbitrary subsets of the data to

illustrate typical parameter deficiencies for a range of sparse and rich data sets. The

three different group-dependent subsets we consider in Table 5.2 below are

• Data dependent on surveys from the individual wetland sites only (a total of

78 occupancy-histories with either Yellowstone or Grand Teton as the different

groups).

• Data dependent on surveys from catchments and only considering the first 9 sites

(a total of 504 occupancy-histories with 9 different groups).

• Data dependent on surveys from catchments and only considering the first 18

sites (a total of 663 occupancy-histories with 18 different groups).

The subsets given above are in terms of the data’s richness, with the wetland-only

data being relatively rich as there are many distinct occupancy-histories with only two

different groups, while the subset considering 18 different groups is sparse due to the

large number of parameters when they are considered to be group-dependent. We fur-

ther eliminate all of the occupancy-histories which have missing values; We deal with

missing observations in Section 5.8. The results of this extrinsic parameter redundancy

analysis are displayed in Table 5.2 which gives the model in the first column and each

model rank and parameter deficiency for the three partitions above in the remaining

columns.

As we can see from Table 5.2 that there are extremely high parameter deficiencies

for the most complex occupancy models where there is quite sparse data. The reason
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Table 5.2: Extrinsic parameter redundancies in multiple-groups occupancy models
exploring the Yellowstone and Grand Teton data set of Gould et al. (2012) where all
histories with missing observations are ignored

Factor: Wetland sites Site ID for 9 sites Site ID for 18 sites

Model Rank Deficiency Rank Deficiency Rank Deficiency

ϕ(·) p(·) 4 0 4 0 4 0
ϕ(·) p(t) 7 0 7 0 7 0
ϕ(·) p(j) 5 0 5 0 5 0
ϕ(·) p(t, j) 11 0 11 0 11 0
ϕ(·) p(s) 5 0 12 0 21 0
ϕ(·) p(t, s) 11 0 39 0 66 9
ϕ(·) p(j, s) 7 0 21 0 38 1
ϕ(·) p(t, j, s) 19 0 74 1 106 41
ϕ(t) p(·) 8 0 8 0 8 0
ϕ(t) p(t) 11 0 11 0 11 0
ϕ(t) p(j) 9 0 9 0 9 0
ϕ(t) p(t, j) 15 0 15 0 15 0
ϕ(t) p(s) 9 0 16 0 25 0
ϕ(t) p(t, s) 15 0 43 0 70 9
ϕ(t) p(j, s) 11 0 25 0 42 1
ϕ(t) p(t, j, s) 23 0 78 1 110 41
ϕ(s) p(·) 7 0 28 0 50 5
ϕ(s) p(t) 10 0 31 0 53 5
ϕ(s) p(j) 8 0 29 0 51 5
ϕ(s) p(t, j) 14 0 35 0 57 5
ϕ(s) p(s) 8 0 36 0 63 9
ϕ(s) p(t, s) 14 0 63 0 95 31
ϕ(s) p(j, s) 10 0 45 0 75 15
ϕ(s) p(t, j, s) 20 2 92 7 124 74
ϕ(t, s) p(·) 15 0 62 2 91 36
ϕ(t, s) p(t) 18 0 65 2 94 36
ϕ(t, s) p(j) 16 0 63 2 92 36
ϕ(t, s) p(t, j) 22 0 69 2 98 36
ϕ(t, s) p(s) 16 0 70 2 101 43
ϕ(t, s) p(t, s) 20 2 91 8 123 75
ϕ(t, s) p(j, s) 17 1 78 3 110 52
ϕ(t, s) p(t, j, s) 24 6 107 28 139 131
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for this is the high number of different parameters in the complex models and the lack

of data: The data needs to be very rich for there to be no parameter redundancy in

the ϕ(t, s)p(t, j, s) model for example. A number of the simpler models turn out to

have no parameter redundancy though, such as all of the models which do not include

group-dependence in any of the parameters in the model.

5.8 Missing observations in occupancy models

We have explored the Yellowstone and Grand Teton national park data set of Gould

et al. (2012) in the previous section, but a limitation of our analysis is that we had to

delete some of the data as there were missing observations in some of the occupancy-

histories. In the Yellowstone and Grand Teton data set we actually discarded 519

of the 1290 possible occupancy-histories as there were some missing observations in

them, even though these 519 occupancy-histories still provide some information about

the species. This is a poor way of dealing with such incomplete histories as we should

maximise the data given to us fully, and not discard these partial occupancy-histories.

Leaving out data may also bias our parameter estimates we obtain from the data as

we are discarding some occupancy-histories that contain additional information about

some of the model parameters. Missing observations have been dealt with in occu-

pancy models in MacKenzie et al. (2002, 2003, 2004, 2009), and it is relatively easy

to adjust the model accordingly for these missing observations. We regard this as a

very practical consideration as quite a number of the data sets we have analysed using

occupancy models have missing observations in them. The reasons for these missing

observations are wide-ranging, from a lack of resources to technological errors, though

it is important that we are considering missing observations rather than incorrect ob-

servations. We show how missing observations can be considered in a general model

first, though it is easier to follow the adjustments for missing observations by using

examples as seen in Examples 5.9 to 5.12.

We maintain the previous notation of ϕ
[1]
0,s as the original occupancy state in the

study, ϕ
[0,1]
t,s and ϕ

[1,1]
t,s as the occupancy transition probabilities, along with pt,j,s as

the detection probabilities. All these parameters are for seasons t = 1, . . . , T at groups

s = 1, . . . , S, and the detection probabilities are for every survey j = 1, . . . , kt where kt

denotes the number of surveys in season t for every group s. The transition occupancy

matrices remain as

φt,s =

[
ϕ
[1,1]
t,s 1− ϕ[1,1]

t,s

ϕ
[0,1]
t,s 1− ϕ[0,1]

t,s

]
,
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for all t = 1, . . . , T − 1 at groups s = 1, . . . , S, where φ0,s is equal to the row vector

φ0,s =
[
ϕ
[1]
0,s 1− ϕ[1]

0,s

]
.

Let the observed state in an occupancy-history in survey j in season t at group s be

denoted by δt,j,s. If we further let γt,j,s be defined as

γt,j,s =

{
1 when δt,j,s ≥ 0 (i.e. it is not a missing observation),

0 when δt,j,s = −1 (i.e. it is a missing observation),

then pX,t,s is the column vector

pX,t,s =


kt∏
j=1

γt,j,s {δt,j,spt,j,s + (1− δt,j,s) (1− pt,j,s)}+ (1− γt,j,s)

kt∏
j=1

(1− δt,j,sγt,j,s)

 . (5.6)

Observe the differences between the p vectors in Equations (5.2) and (5.6) and how an

adjustment is made for missing observations using the γt,j,s terms. The second term

in pX,t,s can also be represented as{
0 when a single δt,j,s = 1 for any survey j in that season for that group,

1 when δt,j,s = {0,−1} for all surveys in that season for that group.

We can again denote ∆(pX,t) to be a diagonal matrix with diagonal entries given by the

vector pX,t, and zeros on the non-diagonal entries. The probability of an occupancy-

history, hX , then remains

Pr(hX) = φ0,s

[
T−1∏
t=1

∆(pX,t,s)φt,s

]
pX,T,s,

with the final likelihood

L =

N∏
X=1

Pr(hX),

for the N different occupancy-histories observed in a study.
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This model which adapts for missing observations has been implemented in the pre-

vious Maple procedures of occmodseasonshist from Section 5.6 and occmodgroupshist

of Section 5.7. We denote an occupancy-history which has a missing observation with

an underline, ‘ ’, such as in the occupancy-history h = 11|1 |00 in Example 5.9 below,

where the detection for the second survey of the second season was missing. When

inputting occupancy-histories into Maple we use the number ‘−1’ to denote when that

particular survey has a missing observation. We now demonstrate in Examples 5.9

to 5.12 how some occupancy-histories can be displayed as their probabilities of being

observed.

Example 5.9: Suppose we observe the occupancy-history h = 11|1 |00 where the detec-

tion for the second survey of the second season was missing. It would then be incorrect

to have any p2,2 parameters in this occupancy-history as the occupancy-history gives us

no information about the probability of detection for the second survey of the second

season. If we assume that there is no for that group-dependence for ease of notation

here, then the probability of this occupancy-history is equal to

Pr(h) = φ0∆(p11,1)φ1∆(p1 ,2)φ2p00,3

=
[
ϕ
[1]
0 1− ϕ[1]

0

]
·

[
p1,1p1,2 0

0 0

]
·

[
ϕ
[1,1]
1 1− ϕ[1,1]

1

ϕ
[0,1]
1 1− ϕ[0,1]

1

]
·

[
p2,1 0

0 0

]
·

[
ϕ
[1,1]
2 1− ϕ[1,1]

2

ϕ
[0,1]
2 1− ϕ[0,1]

2

]
·

[
(1− p3,1)(1− p3,2)

1

]
= ϕ

[1]
0 p1,1p1,2ϕ

[1,1]
1 p2,1

{
ϕ
[1,1]
2 (1− p3,1)(1− p3,2) + (1− ϕ[1,1]

2 )
}
.

We can see here that the second survey in the second season is effectively overlooked

in the occupancy-history so that there are no p2,2 parameters in the model.

Example 5.10: Suppose we observe the occupancy-history h = 11|0 |00 which is the

same occupancy-history at Example 5.9 apart from there is no detection in the first

survey of the second season. If there is no for that group-dependence, the probability
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of this occupancy-history is given as

Pr(h) = φ0∆(p11,1)φ1∆(p0 ,2)φ2p00,3

=
[
ϕ
[1]
0 1− ϕ[1]

0

]
·

[
p1,1p1,2 0

0 0

]
·

[
ϕ
[1,1]
1 1− ϕ[1,1]

1

ϕ
[0,1]
1 1− ϕ[0,1]

1

]
·

[
(1− p2,1) 0

0 1

]
·

[
ϕ
[1,1]
2 1− ϕ[1,1]

2

ϕ
[0,1]
2 1− ϕ[0,1]

2

]
·

[
(1− p3,1)(1− p3,2)

1

]
= ϕ

[1]
0 p1,1p1,2

[
ϕ
[1,1]
1 (1− p2,1)

{
ϕ
[1,1]
2 (1− p3,1)(1− p3,2) + (1− ϕ[1,1]

2 )
}

+

(1− ϕ[1,1]
1 )

{
ϕ
[0,1]
2 (1− p3,1)(1− p3,2) + (1− ϕ[0,1]

2 )
}]

.

There is uncertainty of what occupancy state the species was in during the second

season as it still could be absent or present but they were not detected.

Example 5.11: A further problem is if there are no detections at all in a single season.

Take the occupancy-history h = 11| |00 which has this problem where no detection

surveys were possible in the second season. Then similarly to above, the season is ef-

fectively ignored for the purposes of the occupancy-history. However some adjustment

does need to be made to consider the occupancy state in this unknown season as we

are unsure if the species was present or absent during the season. The probability of

this occupancy-history then is equal to

Pr(h) = φ0∆(p11,1)φ1∆(p ,2)φ2p00,3

=
[
ϕ
[1]
0 1− ϕ[1]

0

]
·

[
p1,1p1,2 0

0 0

]
·

[
ϕ
[1,1]
1 1− ϕ[1,1]

1

ϕ
[0,1]
1 1− ϕ[0,1]

1

]
·

[
1 0

0 1

]
·

[
ϕ
[1,1]
2 1− ϕ[1,1]

2

ϕ
[0,1]
2 1− ϕ[0,1]

2

]
·

[
(1− p3,1)(1− p3,2)

1

]
= ϕ

[1]
0 p1,1p1,2ϕ

[1,1]
1

{
ϕ
[1,1]
2 (1− p3,1)(1− p3,2) + (1− ϕ[1,1]

2 )
}

+

ϕ
[1]
0 p1,1p1,2

(
1− ϕ[1,1]

1

){
ϕ
[0,1]
2 (1− p3,1)(1− p3,2) + (1− ϕ[0,1]

2 )
}
.

Therefore in the case where there are no detections in a single season, p ,t = [1 1]T

and ∆(p ,t) is equal to the identity matrix.

Example 5.12: Further note that if all of the detections in the final season of the

study are missing, then the parameters ϕ
[1,1]
T−1 and ϕ

[0,1]
T−1 are not given in the exhaustive
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summary term. This can be seen in the example h = 11|01| :

Pr(h) = φ0∆(p11,1)φ1∆(p01,2)φ2p ,3

=
[
ϕ
[1]
0 1− ϕ[1]

0

]
·

[
p1,1p1,2 0

0 0

]
·

[
ϕ
[1,1]
1 1− ϕ[1,1]

1

ϕ
[0,1]
1 1− ϕ[0,1]

1

]
·

[
(1− p2,1)p2,2 0

0 0

]
·

[
ϕ
[1,1]
2 1− ϕ[1,1]

2

ϕ
[0,1]
2 1− ϕ[0,1]

2

]
·

[
1

1

]
= ϕ

[1]
0 p1,1p1,2ϕ

[1,1]
1 (1− p2,1)p2,2

{
ϕ
[1,1]
2 + (1− ϕ[1,1]

2 )
}

= ϕ
[1]
0 p1,1p1,2ϕ

[1,1]
1 (1− p2,1)p2,2.

This idea that the parameters ϕ
[1,1]
T−1 and ϕ

[0,1]
T−1 cannot be estimated further ex-

tends to the case where more than one season has no surveys: If for example the

occupancy-history 11| | is given, if the result is simplified, then the probability of

this occupancy-history is equal to ϕ
[1]
0 p1,1p1,2 with no ϕ

[a,1]
t parameters estimable.

Example 5.8 revisited - Missing observations considered in the Yellowstone and Grand

Teton data set: We show how parameter redundancy can be reduced from Table 5.2

by now considering the occupancy-histories with missing observations in the analysis.

We give a reminder of how the different subsets of the data have been differentiated

below:

• Data dependent on surveys from the individual wetland sites only (a total of

78 occupancy-histories with either Yellowstone or Grand Teton as the different

groups).

• Data dependent on surveys from catchments and only considering the first 9 sites

(a total of 504 occupancy-histories with 9 different groups).

• Data dependent on surveys from catchments and only considering the first 18

sites (a total of 663 occupancy-histories with 18 different groups).

The models are denoted the same as given in Table 5.2 previously in this chapter.

Table 5.3 shows these extrinsic parameter redundancy results when these incomplete

histories are then considered in the analysis.

We can see by comparing Table 5.2 to Table 5.3 that there is less parameter de-

ficiency when the model is parameter redundant. There are also some models which

then become full rank only after these missing observation occupancy-histories are
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Table 5.3: Extrinsic parameter redundancies in multiple-groups occupancy models
exploring the Yellowstone and Grand Teton data set of Gould et al. (2012) where all
histories with missing observations are now included

Factor: Wetland sites Site ID for 9 sites Site ID for 18 sites

Model Rank Deficiency Rank Deficiency Rank Deficiency

ϕ(·) p(·) 4 0 4 0 4 0
ϕ(·) p(t) 7 0 7 0 7 0
ϕ(·) p(j) 5 0 5 0 5 0
ϕ(·) p(t, j) 11 0 11 0 11 0
ϕ(·) p(s) 5 0 12 0 21 0
ϕ(·) p(t, s) 11 0 39 0 74 1
ϕ(·) p(j, s) 7 0 21 0 38 1
ϕ(·) p(t, j, s) 19 0 75 0 141 6
ϕ(t) p(·) 8 0 8 0 8 0
ϕ(t) p(t) 11 0 11 0 11 0
ϕ(t) p(j) 9 0 9 0 9 0
ϕ(t) p(t, j) 15 0 15 0 15 0
ϕ(t) p(s) 9 0 16 0 25 0
ϕ(t) p(t, s) 15 0 43 0 78 1
ϕ(t) p(j, s) 11 0 25 0 42 1
ϕ(t) p(t, j, s) 23 0 79 0 145 6
ϕ(s) p(·) 7 0 28 0 55 0
ϕ(s) p(t) 10 0 31 0 58 0
ϕ(s) p(j) 8 0 29 0 56 0
ϕ(s) p(t, j) 14 0 35 0 62 0
ϕ(s) p(s) 8 0 36 0 71 1
ϕ(s) p(t, s) 14 0 63 0 122 4
ϕ(s) p(j, s) 10 0 45 0 88 2
ϕ(s) p(t, j, s) 22 0 99 0 183 15
ϕ(t, s) p(·) 15 0 64 0 123 4
ϕ(t, s) p(t) 18 0 67 0 126 4
ϕ(t, s) p(j) 16 0 65 0 124 4
ϕ(t, s) p(t, j) 22 0 71 0 130 4
ϕ(t, s) p(s) 16 0 72 0 139 5
ϕ(t, s) p(t, s) 22 0 99 0 183 15
ϕ(t, s) p(j, s) 18 0 81 0 155 7
ϕ(t, s) p(t, j, s) 26 4 134 1 230 40

The bold values indicate that a model which was parameter redundant when missing
observations were not considered in Table 5.2 is now not parameter redundant.

The italics values indicate there is a reduction in the parameter deficiency for that
model compared to the data excluding missing observations in Table 5.2.
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considered, such as the ϕ(t)p(j, s), ϕ(s)p(t) and ϕ(s)p(t, j) occupancy models for the

18-site data set. This shows that it is beneficial to use incomplete missing data as

more parameters can be estimated if we consider these occupancy-histories. It is also

realistic in studies that some of the observations will be missing so that it is important

that these occupancy-histories are considered in the analysis.

5.9 The effect of data sparseness on parameter redun-

dancy

As in Sections 3.8 and 4.7, we would like to identify how parameter redundancy

increases with sparseness of data. We explore combinations of low, medium and high

occupancy and detection parameters and see how parameter redundant they are when

we have sparse data. We view cases where there are only N = 20, 30, 50 or 100

occupancy-histories observed in the study. As you can see in Table 5.4 on page 174,

the probabilities of recording an occupancy-history where there are detections in every

survey is especially small, even for the case where occupancy and detection probabili-

ties are both relatively high (0.8 is defined as a ‘high’ value in this example).

We consider for given parameter values and sample sizes the expected probability

of each occupancy-history. If the expectation is at least 1, then the occupancy-history

is included in the exhaustive summary, otherwise the occupancy-history is excluded

from the exhaustive summary. We then obtain the parameter redundancy of the ex-

haustive summary where only the occupancy-histories with expectation greater than 1

are included. For example, consider a 2-season model with 3-surveys per season when

the occupancy and detection parameters are equal to ϕ = p = 0.2 (which is defined

as ‘low’ in this example). When N = 20 there is only one occupancy-history with an

expectation greater than one in this case, which is the history 000|000. However, when

ϕ = 0.2 and p = 0.8, there are three different occupancy-histories with expectations

greater than one as 000|000, 000|111 and 111|000. Furthermore, if ϕ = 0.8 and p = 0.2,

there are then seven different occupancy-histories with expectations greater than one

as 000|000, 100|000, 010|000, 001|000, 000|100, 000|010, 000|001. We can increase N

to see how this increases the number of occupancy-histories which have greater expec-

tations than one and how this affects the parameter redundancy in the model. We

can also list how large N is required to be so that each occupancy model is full rank.

The results of this are shown in Table 5.5 on page 175 for a 2-season 3-survey model

and in Tables 5.6a and 5.6b on pages 176 and 177 for a 3-season 2-survey model (note
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that season-dependent occupancy parameters are only applicable when there are three

seasons in the study).

We can see in Tables 5.5, 5.6a and 5.6b that there is generally less parameter

redundancy if the detection probabilities are quite high as there are more occupancy-

histories with expectations greater than one when this occurs. A similar effect occurs

when occupancy probabilities are also quite high. The real problems with parameter

redundancy are for data sets where detection and occupation parameters are both low;

many occupancy-histories need to be recorded in this case so that all the parameters

in the model can be estimated.
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Table 5.4: The probabilities of occupancy-histories being observed for a certain number of detections during the history, with different
ranges of low, medium and high occupancy and detection probabilities

Number of ϕ = 0.2 ϕ = 0.5 ϕ = 0.8
detections p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8

The 2-seasons with 3-surveys per season model (Table 5.5):

0 0.8143 0.6806 0.6426 0.5715 0.3164 0.2540 0.3716 0.0900 0.0426
1 0.1386 0.1238 0.0308 0.2903 0.2109 0.0484 0.3745 0.1800 0.0317
2 0.0406 0.1294 0.1235 0.1094 0.2461 0.1958 0.1880 0.2700 0.1327
3 0.0058 0.0525 0.1671 0.0245 0.1406 0.2765 0.0550 0.2400 0.2163
4 0.0006 0.0094 0.0098 0.0038 0.0586 0.0614 0.0098 0.1500 0.1573
5 0.0001 0.0038 0.0157 0.0004 0.0234 0.0983 0.0010 0.0600 0.2517
6 0.0000 0.0006 0.0105 0.0000 0.0039 0.0655 0.0000 0.0100 0.1678

The 3-seasons with 2-surveys per season model (Tables 5.6a and 5.6b):

0 0.7992 0.6141 0.5275 0.5514 0.2441 0.1406 0.3609 0.0640 0.0125
1 0.1654 0.2168 0.1254 0.3228 0.2930 0.1298 0.3893 0.1920 0.0413
2 0.0321 0.1339 0.2606 0.1033 0.2637 0.2995 0.1887 0.2880 0.1283
3 0.0031 0.0265 0.0400 0.0198 0.1328 0.1638 0.0518 0.2560 0.1992
4 0.0003 0.0079 0.0413 0.0025 0.0527 0.1843 0.0085 0.1440 0.2831
5 0.0000 0.0008 0.0032 0.0002 0.0117 0.0492 0.0008 0.0480 0.2013
6 0.0000 0.0001 0.0021 0.0000 0.0020 0.0328 0.0000 0.0080 0.1342

The first column gives the number of detections in a single occupancy-history.
The subsequent columns give the probabilities of that number of detections

being observed for the different values of ϕ and p given in the top row.
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Table 5.5: Parameter redundancies for the occupancy-histories in a 2-season 3-surveys occupancy model with different ranges of
low/medium/high occupancy and detection probabilities

ϕ = 0.2 ϕ = 0.5 ϕ = 0.8
p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8

N = 20

# of histories 1 1 3 1 1 4 7 1 3

ϕ p(·) 3 3 1 3 3 0 1 3 1
ϕ p(t) 4 4 2 4 4 1 2 4 2
ϕ p(j) 5 5 3 5 5 2 1 5 3
ϕ p(t, j) 8 8 6 8 8 5 2 8 6

N = 30

# of histories 1 1 3 7 15 4 7 1 10

ϕ p(·) 3 3 1 1 0 0 1 3 0
ϕ p(t) 4 4 2 2 0 1 2 4 0
ϕ p(j) 5 5 3 1 0 2 1 5 0
ϕ p(t, j) 8 8 6 2 0 5 2 8 0

N = 50

# of histories 7 15 9 7 15 10 7 15 16

ϕ p(·) 1 0 0 1 0 0 1 0 0
ϕ p(t) 2 0 0 2 0 0 2 0 0
ϕ p(j) 1 0 0 1 0 0 1 0 0
ϕ p(t, j) 2 0 0 2 0 0 2 0 0

N = 100

# of histories 7 15 10 13 15 16 22 64 31

ϕ p(·) 1 0 0 0 0 0 0 0 0
ϕ p(t) 2 0 0 0 0 0 0 0 0
ϕ p(j) 1 0 0 0 0 0 0 0 0
ϕ p(t, j) 2 0 0 0 0 0 0 0 0

How many observations are needed to ensure every model is full rank:

174 49 49 83 29 32 65 34 24

# of histories indicates how many occupancy-histories have an expected value greater than one.
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Table 5.6a: Parameter redundancies for the occupancy-histories in a 3-season 2-surveys occupancy model with different ranges of
low/medium/high occupancy and detection probabilities (Table 1)

ϕ = 0.2 ϕ = 0.5 ϕ = 0.8
p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8

N = 20

# of histories 1 1 4 7 1 7 7 1 4

ϕ(·) p(·) 3 3 0 0 3 0 0 3 0
ϕ(·) p(t) 5 5 2 2 5 0 2 5 2
ϕ(·) p(j) 4 4 1 0 4 0 0 4 1
ϕ(·) p(t, j) 8 8 5 2 8 2 2 8 5
ϕ(t) p(·) 5 5 2 2 5 0 2 5 2
ϕ(t) p(t) 7 7 4 4 7 1 4 7 4
ϕ(t) p(j) 6 6 3 2 6 0 2 6 3
ϕ(t) p(t, j) 10 10 7 4 10 4 4 10 7

N = 30

# of histories 1 10 4 7 10 7 7 1 10

ϕ(·) p(·) 3 0 0 0 0 0 0 3 0
ϕ(·) p(t) 5 0 2 2 0 0 2 5 0
ϕ(·) p(j) 4 0 1 0 0 0 0 4 0
ϕ(·) p(t, j) 8 0 5 2 0 2 2 8 0
ϕ(t) p(·) 5 1 2 2 1 0 2 5 1
ϕ(t) p(t) 7 1 4 4 1 1 4 7 1
ϕ(t) p(j) 6 1 3 2 1 0 2 6 1
ϕ(t) p(t, j) 10 1 7 4 1 4 4 10 1

# of histories indicates how many occupancy-histories have an expected value greater than one.
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Table 5.6b: Parameter redundancies for the occupancy-histories in a 3-season 2-surveys occupancy model with different ranges of
low/medium/high occupancy and detection probabilities (Table 2)

ϕ = 0.2 ϕ = 0.5 ϕ = 0.8
p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8 p = 0.2 p = 0.5 p = 0.8

N = 50

# of histories 7 10 10 7 10 14 7 10 13

ϕ(·) p(·) 0 0 0 0 0 0 0 0 0
ϕ(·) p(t) 2 0 0 2 0 0 2 0 0
ϕ(·) p(j) 0 0 0 0 0 0 0 0 0
ϕ(·) p(t, j) 2 0 0 2 0 0 2 0 0
ϕ(t) p(·) 2 1 1 2 1 0 2 1 0
ϕ(t) p(t) 4 1 1 4 1 0 4 1 0
ϕ(t) p(j) 2 1 1 2 1 0 2 1 0
ϕ(t) p(t, j) 4 1 1 4 1 0 4 1 0

N = 100

# of histories 7 10 13 10 10 26 22 37 26

ϕ(·) p(·) 0 0 0 0 0 0 0 0 0
ϕ(·) p(t) 2 0 0 0 0 0 0 0 0
ϕ(·) p(j) 0 0 0 0 0 0 0 0 0
ϕ(·) p(t, j) 2 0 0 0 0 0 0 0 0
ϕ(t) p(·) 2 1 0 1 1 0 0 0 0
ϕ(t) p(t) 4 1 0 1 1 0 0 1 0
ϕ(t) p(j) 2 1 0 1 1 0 0 0 0
ϕ(t) p(t, j) 4 1 0 1 1 0 0 0 0

How many observations are needed to ensure every ϕ(·) model is full rank:

146 28 48 75 21 47 62 32 30

How many observations are needed to ensure every ϕ(t) model is full rank:

1053 470 76 191 103 47 86 63 37

# of histories indicates how many occupancy-histories have an expected value greater than one.



OCCUPANCY MODELS 178

5.10 Discussion

This chapter has dealt with occupancy studies which are conducted over multi-

ple surveys in multiple seasons, as well as possibly being observed between different

groups. Occupancy modelling is being used more frequently with better detection

technology now available to us. We can see its importance by viewing the high num-

ber of papers in the last decade that have used occupancy modelling as a basis for

analysis. As these models are being more widely used, obtaining the parameter redun-

dancy of these models is now of interest. We have described the formulation of these

models and observed that the occupancy models in this chapter are not intrinsically

parameter redundant given a perfect data set, if each season has at least two surveys.

Any parameter redundancy that an occupancy model might have (given two or more

surveys per season) is due to the sparseness of the observed data. We have explored

extrinsic parameter redundancy for two data sets in this chapter, one on house finches

in Table 5.1 from MacKenzie et al. (2006) and one on amphibian monitoring in Greater

Yellowstone and Grand Teton national parks in Tables 5.2 and 5.3 from Gould et al.

(2012). These results convey the importance of rich data sets to enable all of the

parameters in the model to be estimated. We further developed Maple codes in this

chapter to incorporate occupancy-histories with some missing observations during the

study which reduces the parameter redundancy of some models. We then evaluated

sample size limitations and showed that more occupancy-histories need to be observed

when there are low transition and detection probabilities to enable all of the model

parameters to be estimated.

We continue examining parameter redundancy in occupancy models in Chapter 6,

examining further extensions. This includes the addition of multiple states, a model to

consider the interaction of occupancy states between two species, and the Royle-Nichols

model which allows animal abundance estimates to be obtained.



Chapter 6

Complex Occupancy Models

In this chapter, we explore a variety of different occupancy models which are ex-

tensions of the models explored in Chapter 5. The alternative models include the

following:

• We explore a multiple-states occupancy model in Section 6.1 which can account

for different states of occupancy detection. For example, this can be to deter-

mine whether an animal species is either present and breeding, present and not

breeding, or absent, as its possible states of occupancy. We examine how the

model can be constructed for three different states to begin with, and then ex-

tend further to include observations for different species groups, of which there

may be missing observations in the occupancy-histories as well. Maple code is

given so that we that obtain extrinsic parameter redundancy results and includes

a real example involving green frogs in Maryland, taken from MacKenzie et al.

(2009).

• We explore a further extension of this multiple-states model where the occu-

pancy state of the species is known before the study is conducted at time t = 0.

This is explored in Section 6.2 and Maple code is provided to examine extrinsic

parameter redundancy results.

• We then explore a two-species interaction model in Section 6.3. This model con-

siders two different species simultaneously, allowing the presence/absence of one

species to affect the presence/absence of another species. We only explore pa-

rameter redundancy in the two-species interaction model but show that a model

can be proposed for a multiple number of interacting species. We then exam-

ine extrinsic parameter redundancy using the real data example of Sections 5.7

and 5.8, exploring amphibian breeding in Yellowstone and Grand Teton national

179
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parks from Gould et al. (2012).

• We finally explore the Royle-Nichols occupancy model of Royle and Nichols

(2003) in Section 6.4. Royle and Nichols (2003) explore the link between an-

imal abundance and species detection to propose an alternative model which

takes into account the fact that locations with a higher abundance may have a

higher species detection probability. We then examine extrinsic parameter re-

dundancy results from a data set on woodthrush and catbirds from the North

America Breeding Bird Survey given in Fiske et al. (2014).

As there is a wide variety of occupancy models explored in this thesis, we show

all the occupancy models examined in this thesis in Table 6.1 for clarity. As there is

a very large number of possible exhaustive summary terms in the occupancy models

explored in this chapter, it is unrealistic that all possible occupancy-histories will be

observed for these models. It is for this reason that we only explore extrinsic parameter

redundancy results and not intrinsic parameter redundancy results in this chapter.

Table 6.1: The different occupancy models examined for parameter redundancy in this
thesis

Model Section Summary of model

The basic 5.2 The basic occupancy model with only one

occupancy model detection survey in a single season

Multiple-surveys 5.3 The basic occupancy model with a multiple number

occupancy model of detection surveys during a single season

Multiple-seasons 5.4 The basic occupancy model with multiple surveys

occupancy model and multiple seasons during the study

Multiple-groups 5.7 The multiple-seasons model with

occupancy model different groups during the study

Multiple-states 6.1 The multiple-seasons model with different possible

occupancy model states of detection, e.g. breeding/non-breeding/absence

Multiple-states and 6.1.3 The multiple-states model which also

multiple-groups model considers observations at different groups

Known initial 6.2 The multiple-states model where an

state model occupancy-history’s original state is known

2-species interaction 6.3 The multiple-seasons model where we consider an

occupancy model interaction between two different species

The Royle- 6.4 An alternative single-season occupancy model where it is

Nichols model possible to obtain estimates of animal abundance.
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6.1 The multiple-states occupancy model

This section considers a multiple-states occupancy model which is an extension

to the occupancy model with the addition of multiple occupied states. A commonly

used example of an occupancy study with multiple occupied states is one with three

different true occupancy states, where a species could be present and breeding, where a

species could be present but is not breeding, and where a species could be absent. This

is a sequential model as even if members of a species is detected as non-breeders, we

need to consider the possibility that the species was actually breeding but not detected

as such.

Multiple-state models are widely used in other ecological models, such as capture-

recapture models in Brownie et al. (1993), Nichols and Kendall (1995), Doligez et al.

(2002), Choquet et al. (2004) and McCrea et al. (2010, 2012), as well as in capture-

recapture-recovery models in McCrea (2012) and King (2012). Parameter redundancy

of multiple-state models has previously been examined in Gimenez et al. (2004) and

Cole (2012).

Multiple-state occupancy models were developed in MacKenzie et al. (2009), fol-

lowing the methods of Royle and Link (2005) and Nichols et al. (2007) to allow for the

changes in a greater number of occupied states. The model given in MacKenzie et al.

(2009) is the one we use in this chapter for our parameter redundancy analysis. We

first consider the multiple-state occupancy model with only three different states, and

then show that the model can be extended to more than three states.

6.1.1 A three-state occupancy model

Consider a model which has three different states which are denoted as being in

state 0, state 1 and state 2 respectively. State 0 represents the state where the species

is absent from the study location. State 1 and state 2 then represents the states where

the species is present, however state 1 and state 2 are different observational true

states: For example, state 1 could represent the state where the species is present but

not breeding, and state 2 could represent the state where the species is present and

breeding. This is a common practical example of a three state occupancy model as

given in MacKenzie et al. (2009). Note that if a species is not detected in a season,

the species could be in any of the three possible states: Breeding, not breeding, or

the species actually was absent at the location. As the observational true states are

hierarchical, there are two possibilities if the species is detected, but a species that is
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breeding could be wrongly observed as not breeding. We know with certainty that a

species is breeding if there is a detection where evidence of breeding is observed.

Let ϕ
[a]
0 be the initial occupancy probability that the species is in state a = {0, 1, 2}

at time t = 0. Further let ϕ
[a,b]
t be the occupancy transition probability of going from

state a in season t−1 to state b in season t, and observe that ϕ
[a,0]
t = 1−ϕ[a,1]

t −ϕ[a,2]
t .

We observe repeated surveys during each season where the detection parameters change

notation slightly from before so that the probability of species detection is given as

pl,mt,j for survey j in season t, where the species is detected at state l given its true state

is in state m. We change notation here as we now need to consider a multiple number

of observed states while we did not need to do this in Chapter 5. Similarly to the

transition probabilities, p0,2t,j = 1− p1,2t,j − p
2,2
t,j and p0,1t,j = 1− p1,1t,j apply here to reduce

the number of parameters in the model. We display the series of detections in an

occupancy-history to indicate the observed state during each survey in the study. This

is similar to before in Chapter 6 but we now obtain a ‘2’ within a species occupancy-

history if the species was observed in state 2 during that survey. Examples 6.1 to 6.3

demonstrate how the probabilities of some multiple-state occupancy-histories can be

expressed.

Example 6.1: Consider the single-season occupancy-history h = 1220. This indicates

the species is breeding for the season, but the species was detected as not breeding in

the first survey, detected as breeding in the second and third surveys and the species

was undetected in the final survey. The species must be in a breeding state as there is

at least one detection in state 2 during the season. The probability of this occupancy-

history is given as

Pr(h) = ϕ
[2]
0 p

1,2
1,1p

2,2
1,2p

2,2
1,3(1− p

1,2
1,4 − p

2,2
1,4).

Example 6.2: Consider the single-season occupancy-history h = 1110. This could mean

that the species was breeding but breeding was not detected in the first three surveys

and the species was not detected in the final survey, or the species was actually not

breeding and the species was detected as such in the first three surveys and was not

detected in the final survey. The probability of this occupancy-history is then equal to

Pr(h) = ϕ
[2]
0 p

1,2
1,1p

1,2
1,2p

1,2
1,3(1− p

1,2
1,4 − p

2,2
1,4) + ϕ

[1]
0 p

1,1
1,1p

1,1
1,2p

1,1
1,3(1− p

1,1
1,4).

Observe the consideration of both possibilities where the species could have been a
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breeder but only detected as a non-breeder, or the species truly was a non-breeder.

Example 6.3: Further consider the single-season occupancy-history if h = 0000 with

no species detection at all. This could mean the species was present and breeding but

not detected in any of the surveys, or the species was present and not breeding but

was not detected in any of the surveys, or the species truly was absent at that location.

The probability of this occupancy-history is then equal to

Pr(h) = ϕ
[2]
0

4∏
j=1

(
1− p1,21,j − p

2,2
1,j

)
+ ϕ

[1]
0

4∏
j=1

(
1− p1,11,j

)
+
(

1− ϕ[1]
0 − ϕ

[2]
0

)
.

This complex expression stems from the fact that we are uncertain about its presence

or absence at the site, as well as about its breeding state if the species truly was present

at the site but not detected.

Similarly to Section 5.4 we use matrix notation to express the general probability

for an occupancy-history. We extend φt to be

φt =


ϕ
[2,2]
t ϕ

[2,1]
t 1− ϕ[2,1]

t − ϕ[2,2]
t

ϕ
[1,2]
t ϕ

[1,1]
t 1− ϕ[1,1]

t − ϕ[1,2]
t

ϕ
[0,2]
t ϕ

[0,1]
t 1− ϕ[0,1]

t − ϕ[0,2]
t

 ,
for a 3-state model for every season t = 1, . . . , T − 1, with φ0 given as

φ0 =
[
ϕ
[2]
0 ϕ

[1]
0 1− ϕ[1]

0 − ϕ
[2]
0

]
.

We then consider the column vector pX,t, where the first entry is the probability

of observing that occupancy-history given that the species is in the breeding state,

the second entry is the probability of observing that occupancy-history given that the

species is in the non-breeding state, and the last entry is the probability of observing

that occupancy-history given that the species is absent, for all seasons t = 1, . . . , T . If

there is at least one detection during the season, the last entry would be equal to zero

as it is clear the species is present in that season, while the final entry would be equal

to one if the species was not observed during that season. Let δt,j denote the species

observed state at survey j in season t where δt,j = {0, 1, 2}. Further let

αt,j =

{
1 if δt,j = 1 or 2 (i.e. for when the species is detected regardless of state),

0 if δt,j = 0 (i.e. for when the species is not detected),
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for every survey j = 1, . . . , kt, where kt is the number of surveys in season t, and

β0t =

{
1 when max(δt,j) = 0 for all j = 1, . . . , kt,

0 when max(δt,j) = 1 or 2 for all j = 1, . . . , kt,

β1t =

{
1 when max(δt,j) = 0 or 1 for all j = 1, . . . , kt,

0 when max(δt,j) = 2 for all j = 1, . . . , kt,

for seasons t = 1, . . . , T . The column vector pX,t is given as

pX,t =


∏kt
j=1

{
αt,jp

δt,j ,2
t,j + (1− αt,j)

(
1− p1,2t,j − p

2,2
t,j

)}
β1t
∏kt
j=1

{
αt,jp

1,1
t,j + (1− αt,j)

(
1− p1,1t,j

)}
β0t

 . (6.1)

We show some examples of pX,t vectors for the previous examples 6.1 to 6.3 below.

Example 6.1 revisited: In the example where the occupancy-history is observed as

h = 1220, the column vector p1220,t is given as

p1220,t =


p1,2t,1 p

2,2
t,2 p

2,2
t,3 (1− p1,2t,4 − p

2,2
t,4 )

0

0

 .

Example 6.2 revisited: In the example where the occupancy-history is observed as

h = 1110, the column vector p1110,t is given as

p1110,t =


p1,2t,1 p

1,2
t,2 p

1,2
t,3 (1− p1,2t,4 − p

2,2
t,4 )

p1,1t,1 p
1,1
t,2 p

1,1
t,3 (1− p1,1t,4 )

0

 .

Example 6.3 revisited: In the final example where the occupancy-history is observed

as h = 0000 with no detections at all during the season, the column vector p0000,t is

given as

p0000,t =


(1− p1,2t,1 − p

2,2
t,1 )(1− p1,2t,2 − p

2,2
t,2 )(1− p1,2t,3 − p

2,2
t,3 )(1− p1,2t,4 − p

2,2
t,4 )

(1− p1,1t,1 )(1− p1,1t,2 )(1− p1,1t,3 )(1− p1,1t,4 )

1

 .
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Observe that while this formulation of the model given in Equation (6.1) is similar

to the form given in MacKenzie et al. (2009), we have switched the order of states in

pX,t so that the first entry denotes the probability the species is in state 2 rather than

denoting the species is in state 0 as in MacKenzie et al. (2009). We have formulated

the model this way as we feel the formulation is easier to show in examples if the first

entry of pX,t is the probability of being in state 2, rather than in state 0.

Both the formulation here and in MacKenzie et al. (2009) give the same probability

for any occupancy-history, as the transition matrices are then transposed in MacKen-

zie et al. (2009) to accommodate for the alternative expression for pX,t.

Let ∆(pX,t) be the diagonal matrix with the elements of pX,t along the main

diagonal in order and zeros for the non-diagonal entries. The probability of a certain

occupancy-history can be expressed as

Pr(hX) = φ0

[
T−1∏
t=1

∆(pX,t)φt

]
pX,T .

The likelihood is then given as

L =
N∏
X=1

Pr(hX),

for the N different occupancy-histories observed in a study. We give Examples 6.4

and 6.5 to show how the probabilities of occupancy-histories for a multiple number of

seasons can be obtained.

Example 6.4: Consider a study where there are three seasons where each season con-

tains two surveys, and three different observational states are considered. The prob-

ability of the occupancy-history h = 21|22|11 can be found by the product of the
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following terms

Pr(h) = φ0∆(p21,1)φ1∆(p22,2)φ2p11,3

=
[
ϕ
[2]
0 ϕ

[1]
0 1− ϕ[1]

0 − ϕ
[2]
0

]
·


p2,21,1p

1,2
1,2 0 0

0 0 0

0 0 0

 ·

ϕ
[2,2]
1 ϕ

[2,1]
1 1− ϕ[2,1]

1 − ϕ[2,2]
1

ϕ
[1,2]
1 ϕ

[1,1]
1 1− ϕ[1,1]

1 − ϕ[1,2]
1

ϕ
[0,2]
1 ϕ

[0,1]
1 1− ϕ[0,1]

1 − ϕ[0,2]
1

 ·

p2,22,1p

2,2
2,2 0 0

0 0 0

0 0 0

 ·

ϕ
[2,2]
2 ϕ

[2,1]
2 1− ϕ[2,1]

2 − ϕ[2,2]
2

ϕ
[1,2]
2 ϕ

[1,1]
2 1− ϕ[1,1]

2 − ϕ[1,2]
2

ϕ
[0,2]
2 ϕ

[0,1]
2 1− ϕ[0,1]

2 − ϕ[0,2]
2

 ·

p1,23,1p

1,2
3,2

p1,13,1p
1,1
3,2

0


= ϕ

[2]
0 p

[2,2]
1,1 p

[1,2]
1,2 ϕ

[2,2]
1 p

[2,2]
2,1 p

[2,2]
2,2

(
ϕ
[2,2]
2 p

[1,2]
3,1 p

[1,2]
3,2 + ϕ

[2,1]
2 p

[1,1]
3,1 p

[1,1]
3,2

)
.

This final probability can be expanded into two cases, where the species could be in

a breeding state throughout the study, or the species could be in a breeding state for

the first two seasons and be in a non-breeding state in the final season.

Example 6.5: Consider the same study where the occupancy-history h = 10|00|02 is

observed. The probability of this occupancy-history can be expressed by the product
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of the terms

Pr(h) = φ0∆(p10,1)φ1∆(p00,2)φ2p02,3

=
[
ϕ
[2]
0 ϕ

[1]
0 1− ϕ[1]

0 − ϕ
[2]
0

]
·


p1,21,1(1− p

1,2
1,2 − p

2,2
1,2) 0 0

0 p1,11,1(1− p
1,1
1,2) 0

0 0 0

 ·

ϕ
[2,2]
1 ϕ

[2,1]
1 1− ϕ[2,1]

1 − ϕ[2,2]
1

ϕ
[1,2]
1 ϕ

[1,1]
1 1− ϕ[1,1]

1 − ϕ[1,2]
1

ϕ
[0,2]
1 ϕ

[0,1]
1 1− ϕ[0,1]

1 − ϕ[0,2]
1

 ·


(1− p1,22,1 − p
2,2
2,1)(1− p

1,2
2,2 − p

2,2
2,2) 0 0

0 (1− p1,12,1)(1− p
1,1
2,2) 0

0 0 1

 ·

ϕ
[2,2]
2 ϕ

[2,1]
2 1− ϕ[2,1]

2 − ϕ[2,2]
2

ϕ
[1,2]
2 ϕ

[1,1]
2 1− ϕ[1,1]

2 − ϕ[1,2]
2

ϕ
[0,2]
2 ϕ

[0,1]
2 1− ϕ[0,1]

2 − ϕ[0,2]
2

 ·


(1− p1,23,1 − p
2,2
3,1)p

2,2
3,2

0

0


=

{[
ϕ
[2]
0 p

1,2
1,1

(
1− p1,21,2 − p

2,2
1,2

)
ϕ
[2,2]
1 + ϕ

[1]
0 p

1,1
1,1

(
1− p1,11,2

)
ϕ
[1,2]
1

]
·(

1− p1,22,1 − p
2,2
2,1

)(
1− p1,22,2 − p

2,2
2,2

)
ϕ
[2,2]
2 +

[
ϕ
[2]
0 p

1,2
1,1

(
1− p1,21,2 − p

2,2
1,2

)
ϕ
[2,1]
1

+ ϕ
[1]
0 p

1,1
1,1

(
1− p1,11,2

)
ϕ
[1,1]
1

]
·
(

1− p1,12,1

)(
1− p1,12,2

)
ϕ
[1,2]
2

+
[
ϕ
[2]
0 p

1,2
1,1

(
1− p1,21,2 − p

2,2
1,2

)(
1− ϕ[2,1]

1 − ϕ[2,2]
1

)
ϕ
[0,2]
2

+ ϕ
[1]
0 p

1,1
1,1

(
1− p1,11,2

)(
1− ϕ[1,1]

1 − ϕ[1,2]
1

)
ϕ
[0,2]
2

]}(
1− p1,23,1 − p

2,2
3,1

)
p2,23,2.

This rather complex probability is a consequence of being unsure if the species is

present, either as breeding or non-breeding, or absent in the second season. Compli-

cation in occupancy models arise when there are no detections in a single season, as

shown previously in Example 5.4 of Section 5.4.

6.1.2 A general m-state model which involves group-dependence

We now consider a more general model for m different states for s different groups.

This model can include a range of different parameter dependencies including group-

dependency. It is important to note that the ambiguity of the observations is only

sequential, i.e. if a species is detected in state 1, while the species may actually be

in a state higher than 1, it is clear the species is not in state 0. This means we have

the following cell probabilities as given in Table 6.2. As is shown in Table 6.2, if the
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Table 6.2: The probability of a species true state given its observed state
True Observed State
State 0 1 2 · · · l − 1 l

0 1 0 0 · · · 0 0

1 1− p1,1t,j,s p1,1t,j,s 0 · · · 0 0

2 1− p1,2t,j,s − p
2,2
t,j,s p1,2t,j,s p2,2t,j,s · · · 0 0

...
...

...
...

. . .
...

...

m− 1 1−
(∑m−1

l=1 pl,m−1t,j,s

)
p1,m−1t,j,s p2,m−1t,j,s · · · pl−1,m−1t,j,s 0

m 1−
(∑m

l=1 p
l,m
t,j,s

)
p1,mt,j,s p2,mt,j,s · · · pl−1,mt,j,s pl,mt,j,s

species is truly in state m, then the species could be observed at any state in the study,

though it is hoped to be observed in state m.

The transition matrix is now given by

φt,s =



ϕ
[m,m]
t,s ϕ

[m,m−1]
t,s · · · ϕ

[m,1]
t,s 1−

∑m
l=1 ϕ

[m,l]
t,s

ϕ
[m−1,m]
t,s ϕ

[m−1,m−1]
t,s · · · ϕ

[m−1,1]
t,s 1−

∑m
l=1 ϕ

[m−1,l]
t,s

...
...

. . .
...

...

ϕ
[1,m]
t,s ϕ

[1,m−1]
t,s · · · ϕ

[1,1]
t,s 1−

∑m
l=1 ϕ

[1,l]
t,s

ϕ
[0,m]
t,s ϕ

[0,m−1]
t,s · · · ϕ

[0,1]
t,s 1−

∑m
l=1 ϕ

[0,l]
t,s


,

for every season t = 1, . . . , T − 1, with φ0,s given as

φ0,s =
[
ϕ
[m]
0,s ϕ

[m−1]
0,s · · · ϕ

[2]
0,s ϕ

[1]
0,s 1−

∑m
l=1 ϕ

[l]
0,s

]
.

If we let the observed state in season t at survey j for group s be equal to δt,j,s, we

can define αt,j,s as

αt,j,s =

{
1 when δt,j,s ≥ 1 (i.e. for when the species is detected),

0 when δt,j,s = 0 (i.e. for when the species is not detected),

for every survey j = 1, . . . , kt, and

βlt,s =

{
1 when max(δt,j,s) ≤ l for all j = 1, . . . , kt,

0 when max(δt,j,s) > l for all j = 1, . . . , kt,

in season t = 1, . . . , T for group s = 1, . . . S for every state l = 0, . . . ,m − 1. The
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detection probabilities in the column vector pX,t,s can be expressed as

pX,t,s =



∏kt
j=1

{
αt,j,sp

δt,j,s,m
t,j,s + (1− αt,j,s)

(
1−

∑m
l=1 p

l,m
t,j,s

)}
βm−1t,s

∏kt
j=1

{
αt,j,sp

δt,j,s,m−1
t,j,s + (1− αt,j,s)

(
1−

∑m−1
l=1 pl,m−1t,j,s

)}
βm−2t,s

∏kt
j=1

{
αt,j,sp

δt,j,s,m−2
t,j,s + (1− αt,j,s)

(
1−

∑m−2
l=1 βl,m−2t,j,s

)}
...

β2t,s
∏kt
j=1

{
αt,j,sp

δt,j,s,2
t,j,s + (1− αt,j,s)

(
1− p1,2t,j,s − p

2,2
t,j,s

)}
β1t,s

∏kt
j=1

{
αt,j,sp

δt,j,s,1
t,j,s + (1− αt,j,s)

(
1− p1,1t,j,s

)}
β0t,s


. (6.2)

The probability of an individual occupancy-history is given by

Pr(hX) = φ0,s

[
T−1∏
t=1

∆(pX,t,s)φt,s

]
pX,T,s,

and the final likelihood can be expressed as

L =

N∏
X=1

Pr(hX),

for the N different occupancy-histories observed in a study. We give Example 6.6 to

show how the probabilities of occupancy-histories for a large number of multiple sea-

sons can be obtained.

Example 6.6: Consider a study where there are two seasons where each season contains

two surveys, along with the species possibly being in four different observational states.

The probability of the occupancy-history h = 42|01 can be found by the product of
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the following terms

Pr(h) = φ0∆(p42,1)φ1p01,2

=
[
ϕ
[4]
0 ϕ

[3]
0 ϕ

[2]
0 ϕ

[1]
0 1−

∑4
l=1 ϕ

[l]
0

]
·



p4,41,1p
2,4
1,2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


·



ϕ
[4,4]
1 ϕ

[4,3]
1 ϕ

[4,2]
1 ϕ

[4,1]
1 1− ϕ[4,1]

1 − ϕ[4,2]
1 − ϕ[4,3]

1 − ϕ[4,4]
1

ϕ
[3,4]
1 ϕ

[3,3]
1 ϕ

[3,2]
1 ϕ

[3,1]
1 1− ϕ[3,1]

1 − ϕ[3,2]
1 − ϕ[3,3]

1 − ϕ[3,4]
1

ϕ
[2,4]
1 ϕ

[2,3]
1 ϕ

[2,2]
1 ϕ

[2,1]
1 1− ϕ[2,1]

1 − ϕ[2,2]
1 − ϕ[2,3]

1 − ϕ[2,4]
1

ϕ
[1,4]
1 ϕ

[1,3]
1 ϕ

[1,2]
1 ϕ

[1,1]
1 1− ϕ[1,1]

1 − ϕ[1,2]
1 − ϕ[1,3]

1 − ϕ[1,4]
1

ϕ
[0,4]
1 ϕ

[0,3]
1 ϕ

[0,2]
1 ϕ

[0,1]
1 1− ϕ[0,1]

1 − ϕ[0,2]
1 − ϕ[0,3]

1 − ϕ[0,4]
1


·



(1− p1,43,1 − p
2,4
3,1 − p

3,4
3,1 − p

4,4
3,1)p

1,4
3,2

(1− p1,33,1 − p
2,3
3,1 − p

3,3
3,1)p

1,3
3,2

(1− p1,23,1 − p
2,2
3,1)p

1,2
3,2

(1− p1,13,1)p
1,1
3,2

0


= ϕ

[4]
0 p

4,4
1,1p

2,4
1,2

{
ϕ
[4,4]
1

(
1− p1,43,1 − p

2,4
3,1 − p

3,4
3,1 − p

4,4
3,1

)
p1,43,2

+ ϕ
[4,3]
1

(
1− p1,33,1 − p

2,3
3,1 − p

3,3
3,1

)
p1,33,2 + ϕ

[4,2]
1

(
1− p1,23,1 − p

2,2
3,1

)
p1,23,2

+ ϕ
[4,1]
1

(
1− p1,13,1

)
p1,13,2

}
.

6.1.3 A general group-dependent m-state model which contains miss-

ing observations

We can again account for missing observations in occupancy-histories as shown

previously in Section 5.8. In a similar way to before, the way to deal with missing

observations is to effectively ignore any parameters relating to that detection survey.

As we previously denoted in Section 5.8, we use an underline ‘ ’ when viewing an

individual occupancy-history where that survey has a missing observation, and we

use the notation ‘−1’ in the Maple input to denote when that survey has a missing

observation. If we continue to let the observed state in an occupancy-history in survey
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j in season t for group s be denoted as δt,j,s, and further specify γt,j,s as

γt,j,s =

{
1 when δt,j,s ≥ 0 (i.e. it not a missing observation),

0 when δt,j,s = −1 (i.e. it is a missing observation).

Let

αt,j,s =

{
1 when δt,j,s ≥ 1 (i.e. for when the species is detected regardless of state),

0 when δt,j,s = 0 or− 1 (i.e. for when the species is not detected),

for every survey j = 1, . . . , kt and

βlt,s =

{
1 when max(δt,j,s) ≤ l for all j = 1, . . . , kt,

0 when max(δt,j,s) > l for all j = 1, . . . , kt,

in season t = 1, . . . , T for group s = 1, . . . S. We then define pX,t,s to be the column

vector

pX,t,s =



∏kt
j=1 γt,j,s

{
αt,j,sp

δt,j,s,m
t,j,s + (1− αt,j,s)

(
1−

∑m
l=1 p

l,m
t,j,s

)}
+ (1− γt,j,s)

βm−1t,s

∏kt
j=1 γt,j,s

{
αt,j,sp

δt,j,s,m−1
t,j,s + (1− αt,j,s)

(
1−

∑m−1
l=1 pl,m−1t,j,s

)}
+ (1− γt,j,s)

βm−2t,s

∏kt
j=1 γt,j,s

{
αt,j,sp

δt,j,s,m−2
t,j,s + (1− αt,j,s)

(
1−

∑m−2
l=1 pl,m−2t,j,s

)}
+ (1− γt,j,s)

...

β2t,s
∏kt
j=1 γt,j,s

{
αt,j,sp

δt,j,s,2
t,j,s + (1− αt,j,s)

(
1− p1,2t,j,s − p

2,2
t,j,s

)}
+ (1− γt,j,s)

β1t,s
∏kt
j=1 γt,j,s

{
αt,j,sp

δt,j,s,1
t,j,s + (1− αt,j,s)

(
1− p1,1t,j,s

)}
+ (1− γt,j,s)

β0t,s


.

(6.3)

This means as previously that the probability of an individual occupancy-history is

equal to

Pr(hX) = φ0,s

[
T−1∏
t=1

∆(pX,t,s)φt,s

]
pX,T,s, (6.4)

making the likelihood equal to

L =
N∏
X=1

Pr(hX),

for the N different occupancy-histories observed in a study. Example 6.7 below shows

how missing observations can be incorporated into this multiple-state model to obtain

an occupancy-history probability.
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Example 6.7: Consider a study where there are three seasons where each season con-

tains two surveys, along with the species possibly being in three different observational

states. The probability of the occupancy-history h = 1 | |20 can be found by the prod-

uct of the following terms

Pr(h7) = φ0∆(p1 ,1)φ1∆(p ,2)φ2p00,3

=
[
ϕ
[2]
0 ϕ

[1]
0 1− ϕ[1]

0 − ϕ
[2]
0

]
·


p1,21,1 0 0

0 p1,11,1 0

0 0 0

 ·

ϕ
[2,2]
1 ϕ

[2,1]
1 1− ϕ[2,1]

1 − ϕ[2,2]
1

ϕ
[1,2]
1 ϕ

[1,1]
1 1− ϕ[1,1]

1 − ϕ[1,2]
1

ϕ
[0,2]
1 ϕ

[0,1]
1 1− ϕ[0,1]

1 − ϕ[0,2]
1

 ·


1 0 0

0 1 0

0 0 1

 ·

ϕ
[2,2]
2 ϕ

[2,1]
2 1− ϕ[2,1]

2 − ϕ[2,2]
2

ϕ
[1,2]
2 ϕ

[1,1]
2 1− ϕ[1,1]

2 − ϕ[1,2]
2

ϕ
[0,2]
2 ϕ

[0,1]
2 1− ϕ[0,1]

2 − ϕ[0,2]
2

 ·

p2,23,1(1− p

2,2
3,2 − p

1,2
3,2)

0

0



=
[
ϕ
[2]
0 p

1,2
1,1

{
ϕ
[2,2]
1 ϕ

[2,2]
2 + ϕ

[2,1]
1 ϕ

[1,2]
2 +

(
1− ϕ[2,2]

1 − ϕ[2,1]
1

)
ϕ
[0,2]
2

}
+

ϕ
[1]
0 p

1,1
1,1

{
ϕ
[1,2]
1 ϕ

[2,2]
2 + ϕ

[1,1]
1 ϕ

[1,2]
2 +

(
1− ϕ[1,2]

1 − ϕ[1,1]
1

)
ϕ
[0,2]
2

}]
× p2,23,1

(
1− p2,23,2 − p

1,2
3,2

)
.

6.1.4 Extrinsic parameter redundancy and Maple code for the multiple-

states model

The Maple procedures occmodstateshist and occmodstategroupshist given in

the electronic appendices example6.8.mw and example6.9.mw are extensions of the

code from Section 5.8 where we are now considering more than two states in the model.

The procedure occmodstateshist given in Example 6.8 is for a multiple-state model

without any group-dependency and the procedure occmodstategroupshist given in

Example 6.9 is for a multiple-state model with possible group-dependent parameters.

Note that if only two states are listed in the code’s input, this code generates essentially

the same output as the code for the multiple-seasons model of the previous chapter as

they give identical exhaustive summaries but with different parameter notations. This

multiple-states model is flexible as you can relax similar assumptions to previously

in this model: The transition probabilities can be constant, season-dependent and/or
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state-dependent, and the detection probabilities can be constant, season-dependent

and/or state-dependent and/or survey-dependent, i.e. there are 32 different possi-

bilities of model parameters. The second procedure in Example 6.9 can also have

parameters which are group-dependent as well.

Example 6.8 - The multiple-states occupancy model: [See electronic appendix

example6.8.mw] Take an example of these occupancy-histories for a three-state model

for two seasons with two surveys per season: 22|21, 22|20, 21|22, 21|01, 21|00, 20|12,

20|01, 20|00, 12|22, 12|12, 12|21, 12|02, 12|00, 02|21, 02|12, 02|01, 01|22, 01|12, 01|01,

00|22, 00|20, 00|10, 00|02, 00|01 and 00|00. The first input in the Maple procedure

occmodstateshist is a row vector of how many surveys there are per season, given in

the vector S as

S =
[

2 2
]
.

The second input is the observed data of the occupancy-histories given in the matrix

T as

T =



2 2 2 1

2 2 2 0

2 1 2 2

2 1 0 1

2 1 0 0
...

...
...

...


.

Consider a model where all the parameters are season- and state-dependent, along

with survey-dependence for the detection parameters. The parameter redundancy of

that occupancy model can be found by the code below:

S := < <2|2> >;

T := < <2|2|2|1>, <2|2|2|0>, <2|1|2|2>, <2|1|0|1>, <2|1|0|0>,

<2|0|1|2>, <2|0|1|2>, <2|0|0|1>, <2|0|0|0>, <1|2|2|2>, <1|2|1|2>,

<1|2|2|1>, <1|2|0|2>, <1|2|0|0>, <0|2|2|1>, <0|2|1|2>, <0|2|0|1>,

<0|1|2|2>, <0|1|2|2>, <0|1|1|2>, <0|1|0|1>, <0|0|2|2>, <0|0|2|0>,

<0|0|1|0>, <0|0|0|2>, <0|0|0|1>, <0|0|0|0> >;

kappa := occmodstateshist(3,4,8,S,T);

# Inputs: (M,y,z,S,T);

# M = number of states;

# y = transition probability; z = detection probability;

# for y: ‘1’=constant, ‘2’=season-dep, ‘3’=state-dep,

# ‘4’=season+state-dep;
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# for z: ‘1’=constant, ‘2’=season-dep, ‘3’=survey-dep,

# ‘4’=season+survey-dep, ‘5’=state-dep,‘6’=season+state-dep,

# ‘7’=survey+state-dep, ‘8’=season+survey+state-dep;

# S = row vector of the number of surveys per season;

# T = list of all occupancy-histories.

theta := parsproc(kappa):

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

This generates the exhaustive summary

κ =



ϕ0,2p1,1,2,2p1,2,2,2ϕ1,2,2p2,1,2,2p2,2,1,2

ϕ0,2p1,1,2,2p1,2,2,2ϕ1,2,2p2,1,2,2(1− p2,2,1,2 − p2,2,2,2)
ϕ0,2p1,1,2,2p1,2,1,2ϕ1,2,2p2,1,2,2p2,2,2,2

ϕ0,2p1,1,2,2p1,2,1,2 {ϕ1,2,2(1− p2,1,1,2 − p2,1,2,2)p2,2,1,2 + ϕ1,2,1(1− p2,1,1,1)p2,2,1,1}
ϕ0,2p1,1,2,2p1,2,1,2 {ϕ1,2,2(1− p2,1,1,2 − p2,1,2,2)(1− p2,2,1,2 − p2,2,2,2) + · · ·

· · · ϕ1,2,1(1− p2,1,1,1)(1− p2,2,1,1) + (1− ϕ1,2,1 − ϕ1,2,2)}
...


,

where ϕ0,l = ϕ
[l]
0 , ϕt,l,m = ϕ

[l,m]
t and pt,j,l,m = pl,mt,j for survey j in season t with ob-

served state l at true state m. Maple does not perform operations well for parameters

which have superscripts, so we have used a number of subscripts instead to denote

different parameters instead. The parameter set and derivative matrix are not given

here to save space but can be found in the Maple file example6.8.mw. We use the

hybrid symbolic-numerical method of Section 2.5 to find the model rank due to com-

putational complexity of the derivative matrix. This derivative matrix has the model

rank and parameter deficiency as

r := 17,d := 3.

This exemplar data set results in a parameter deficiency of 3 with 17 estimable pa-

rameter combinations. This result can then be contrasted with those for different mod-

els, for instance if the transition probabilities were relaxed to be only season-dependent

and the detection probabilities relaxed to be only season- and state-dependent, there

is then no parameter redundancy in the model.

Next we consider a group-dependent model, where we demonstrate how the Maple

procedure occmodstategroupshist can be used to generate exhaustive summary terms
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in Example 6.9.

Example 6.9 - The multiple-states occupancy model with group-dependency: [See elec-

tronic appendix example6.9.mw] Consider a three-state, two-season study with two

surveys per season, where we take the 25 occupancy-histories from Example 6.8 as

being in the first group. We now observe 17 different occupancy-histories from a sec-

ond group: 22|21, 21|01, 20|12, 20|02, 20|01, 20|00, 12|22, 12|12, 12|21, 12|00, 02|21,

02|12, 02|01, 00|20, 00|10, 00|02 and 00|00. The first input in the Maple procedure

occmodstategroupshist is a row vector of how many surveys there are per season,

given in the vector S as

S =
[

2 2
]
.

We now have a further input for this procedure unlike the procedure occmodstateshist

which does not consider group-dependence. We denote S2 as the column vector de-

noting which group each occupancy-history is from. This is given as

S2 =
[

1 1 · · · 1 2 2 · · · 2
]T
.

The final input is the observed data of the occupancy-histories given in the matrix T

as

T =



2 2 2 1

2 2 2 0
...

...
...

...

0 0 0 1

0 0 0 0

2 2 2 1

2 1 0 1
...

...
...

...

0 0 0 2

0 0 0 0



.

Consider a model where all the parameters are season-, state- and group-dependent,

along with survey-dependence for the detection parameters. The parameter redun-

dancy of that occupancy model can be found by using the code below:

S := < <2|2> >;

S2 := < <1>, ... (25 1’s in total) ... <1>,

<2>, ... (17 2’s in total) ... <2> >;

T := < <2|2|2|1>, <2|2|2|0>, <2|1|2|2>, <2|1|0|1>, <2|1|0|0>,



COMPLEX OCCUPANCY MODELS 196

... (all occupancy-histories from group 1) ... <0|0|0|1>, <0|0|0|0>,

<2|2|2|1>, <2|1|0|1>, <2|0|1|2>, <2|0|0|2>, <2|0|0|1>, <2|0|0|0>,

... (all occupancy-histories from group 2) ... <0|0|0|2>, <0|0|0|0> >;

kappa := occmodstategroupshist(3,8,16,S,S2,T);

# Inputs: (M,y,z,S,S2,T);

# M = number of states;

# y = transition probability; z = detection probability;

# for y: ‘1’=constant, ‘2’=season-dep, ‘3’=state-dep,

# ‘4’=season+state-dep, ‘5’=group-dep, ‘6’=season+group-dep,

# ‘7’=state+group-dep, ‘8’=season+state+group-dep;

# for z: ‘1’=constant, ‘2’=season-dep, ‘3’=survey-dep,

# ‘4’=season+survey-dep, ‘5’=state-dep, ‘6’=season+state-dep,

# ‘7’=survey+state-dep, ‘8’=season+survey+state-dep,

# ‘9’=group-dep, ‘10’=season+group-dep, ‘11’=survey+group-dep,

# ‘12’=season+survey+group-dep, ‘13’=state+group-dep,

# ‘14’=season+state+group-dep, ‘15’=survey+state+group-dep,

# ‘16’=season+survey+state+group-dep;

# S = row vector of the number of surveys per season;

# S2 = column vector determining the group of each occupancy-history;

# T = list of all occupancy-histories.

theta := parsproc(kappa):

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

This generates the exhaustive summary

κ =



ϕ0,2,1p1,1,2,2,1p1,2,2,2,1ϕ1,2,2,1p2,1,2,2,1p2,2,1,2,1

ϕ0,2,1p1,1,2,2,1p1,2,2,2,1ϕ1,2,2,1p2,1,2,2,1(1− p2,2,1,2,1 − p2,2,2,2,1)
...

ϕ0,2,2p1,1,2,2,2p1,2,2,2,2ϕ1,2,2,2p2,1,2,2,2p2,2,1,2,2

ϕ0,2,2p1,1,2,2,2p1,2,1,2,2 {ϕ1,2,2,2(1− p2,1,1,2,2 − p2,1,2,2,2)p2,2,1,2,2 · · ·
+ϕ1,2,1,2(1− p2,1,1,1,2)p2,2,1,1,2}


,

where ϕ0,l,s = ϕ
[l]
0,s, ϕt,l,m,s = ϕ

[l,m]
t,s and pt,j,l,m,s = pl,mt,j,s for survey j in season t with

observed state l at true state m. The parameter set and derivative matrix, which are

not given here to save space but can be found in the Maple file example6.9.mw. We

use the hybrid symbolic-numerical method of Section 2.5 to find the model rank due

to computational complexity of the derivative matrix. This derivative matrix has the
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model rank and parameter deficiency as

r := 31,d := 9.

This exemplar data set results in a parameter deficiency of 9 with 31 estimable

parameter combinations.

6.1.5 A real data example: Green frogs in Maryland

We now illustrate extrinsic parameter redundancy results for multiple-state mod-

els, using the Maple procedure occmodstateshist from Example 6.8, on a data set of

green frogs in Maryland from MacKenzie et al. (2009).

Example 6.10 - The multiple-states occupancy model for the green frogs data set: We

now consider a data set of green frogs from Maryland, USA, observed as part of the

North American Amphibian Monitoring Program (NAAMP). This data set comes from

MacKenzie et al. (2009) and consists of 10 listening stations spaced around a 24.1km

route where each station is at least 0.8km apart. The green frogs (Rana clamitans)

were observed in Maryland, USA from 2001 to 2005 inclusive. More details on the

NAAMP is given in Weir and Mossman (2005) and this data set has been analysed

previously in Royle and Link (2005) and Weir et al. (2005, 2009). A full analysis of

parameter estimate results from this data set are given in MacKenzie et al. (2009)

and for the 2001 year only data in Royle and Link (2005). 160 out of the 281 different

occupancy-histories involve some missing observations where the observations were not

recorded.

The observers in the study listen to green frogs at stations along the route and they

do so for a total of five minutes at each station. There are four different classification

states for the frogs, with the different states detailed as follows:

• A ‘0’ denotes when no green frogs were detected at that survey.

• A ‘1’ denotes the presence of green frogs if some of them can be counted during

the survey.

• A ‘2’ denotes when individual frog calls can be distinguished with some overlap-

ping of calls.

• A ‘3’ denotes some constant, overlapping calls when there is a full chorus of frogs

heard.
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It is assumed that any station is able to achieve any of these four states and it is a

sequential model, i.e. if the species is detected in state 1, then the species may actually

be in state 2 or state 3, but the species is definitely not in state 0; however if the species

is detected in state 3, then the species is truly in state 3.

We use the notation where the transition probabilities can be constant, ϕ(·), season-

dependent, ϕ(t), and/or state-dependent, ϕ(m), and where the detection probability

can be constant, p(·), season-dependent, p(t), and/or survey-dependent, p(j), and/or

state-dependent, p(m). For example, ϕ(·)p(t, j,m) is a model with a constant transi-

tion probability with the detection probabilities dependent on season, survey and state.

We consider two cases in our analysis, one case where we omit occupancy-histories

containing any missing observations, and a second case where we include these partial

histories in the analysis. The case where occupancy-histories with missing observations

are deleted has 68 distinct occupancy-histories out of the 121 individual occupancy-

histories observed, and the case where occupancy-histories with missing observations

are included has 178 distinct occupancy-histories out of the 281 individual occupancy-

histories observed. We present extrinsic parameter redundancy results in Table 6.3.

Table 6.3 displays the result that the ϕ(t,m) p(t, j,m) model has less parameter

deficiency than the ϕ(·) p(t, j,m) model, i.e. adding season- and state-dependency to

the ϕ parameters decreases the parameter deficiency of the model. The result that

increasing model complexity helps decrease parameter redundancy is not generally

true, but the results show that a particular confounding of some of the parameters

is eliminated when more parameters are added to the model. This is similar to a

result found in Section 2.9 where the T/A mark-recovery model has no parameter

redundancy, but when the survival parameters are then made constant, the C/A mark-

recovery model is then parameter redundant. In this case, making the model more

complex allows parameters to be estimated, but these may be poor estimates for the

underlying values of the parameters as there is less amount of information about each

parameter than before. We can also see from the table that every model apart from

when the detection parameters are season-, survey- and state-dependent, is full rank for

the full data set including the occupancy-histories with missing observations. This is

a surprising result as it is a relatively small data set with only 178 distinct occupancy-

histories, some of which have missing observations too.



COMPLEX OCCUPANCY MODELS 199

Table 6.3: Parameter redundancies for multiple-states occupancy models exploring the
green frogs data set of MacKenzie et al. (2009)

Number of Deficiency for Deficiency including
Model parameters only full histories all partial histories

ϕ(·) p(·) 2 0 0
ϕ(·) p(t) 6 0 0
ϕ(·) p(j) 4 0 0
ϕ(·) p(t, j) 16 0 0
ϕ(·) p(m) 7 0 0
ϕ(·) p(t,m) 31 3 0
ϕ(·) p(j,m) 19 1 0
ϕ(·) p(t, j,m) 91 50 15
ϕ(t) p(·) 6 0 0
ϕ(t) p(t) 10 0 0
ϕ(t) p(j) 8 0 0
ϕ(t) p(t, j) 20 0 0
ϕ(t) p(m) 11 0 0
ϕ(t) p(t,m) 35 7 0
ϕ(t) p(j,m) 23 1 0
ϕ(t) p(t, j,m) 95 54 19
ϕ(m) p(·) 16 0 0
ϕ(m) p(t) 20 0 0
ϕ(m) p(j) 18 0 0
ϕ(m) p(t, j) 30 0 0
ϕ(m) p(m) 21 0 0
ϕ(m) p(t,m) 45 0 0
ϕ(m) p(j,m) 33 1 0
ϕ(m) p(t, j,m) 105 38 7
ϕ(t,m) p(·) 52 1 0
ϕ(t,m) p(t) 56 2 0
ϕ(t,m) p(j) 54 0 0
ϕ(t,m) p(t, j) 66 3 0
ϕ(t,m) p(m) 57 1 0
ϕ(t,m) p(t,m) 81 19 0
ϕ(t,m) p(j,m) 69 3 0
ϕ(t,m) p(t, j,m) 141 74 9
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6.2 Including a species original occupancy state

An extension to the multiple-state model in Section 6.1 explores the case where

the species’ original state can also be considered in the model. This may be of use

when a study is begun at a certain point when the experimenter knows that the

species is definitely present at the very start of the study. The reason why this model

is advantageous to use is by considering when the occupancy probabilities are not

season-dependent. If the occupancy parameters are not season-dependent, this means

in this model we can define the parameters ϕ
[1]
0 and ϕ

[1,1]
c to be the same. This then

reduces the number of total parameters in the model. Under this extension, the row

vector φ0,s becomes

φ0,a,s =
[
ϕ
[a,m]
0,s ϕ

[a,m−1]
0,s · · · ϕ

[a,2]
0,s ϕ

[a,1]
0,s 1−

∑m
l=1 ϕ

[a,l]
0,s

]
, (6.5)

where a indicates the state of the particular occupancy-history at time 0. The other

notation from Section 6.1.3 remains the same. The previous state for each occupancy-

history can also be distinct. This information on the initial species occupation state

is given in the Maple procedure occmodstatesfirsthist in the vector S3. There can

be mix of occupancy-histories which have original state known and unknown as well.

When an occupancy-history has no known original state, the equivalent row in S3 has

the number ‘−1’ to denote this. This means that when the information about the

original state of an occupancy-history is known, it is incorporated into the model as

ϕ
[a,m]
0,s for known state a. The occupancy-histories where the original state is unknown

changes the notation, as seen previously in this thesis, to become ϕ
[−1,m]
0,s , but this is

equivalent to the previous notation of ϕ
[m]
0,s . Further note that if the transition proba-

bilities are defined as not being state-dependent, the original state is not required in

the input and the previous procedure occmodstategroupshist should be used from

Example 6.9 in Section 6.1.4.

Example 6.11 - The multiple-states occupancy model with an initial state: [See elec-

tronic appendix example6.11.mw] Consider a data set containing 9 occupancy-histories

where there are two surveys in the first season and three surveys in the second season

with two different observational states: 11|100(U), 10|100(U), 10|010(1), 10|001(1),

01|111(U), 01|000(1), 00|011(0), 00|001(U) and 00|000(0), where (U) indicates the

occupancy-history has an unknown original state and (a) where the species is originally

in state a for a = {0, 1}. The parameters in the multiple-states model with group-

dependency can be constant, season- and/or state-dependent and/or group-dependent,
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with the detection probabilities also being possibly survey-dependent. We have the in-

puts T as the occupancy-histories, S as the number of surveys per season, S2 as the

column vector denoting which group the occupancy-history in T is from, and S3 as

the column vector denoting which original state the occupancy-history in T was in.

As there are only two different states in this model the options for the values in S3

are ‘1’ if the species was originally present at that site, ‘0’ if the species was originally

absent at that site, or ‘−1’ if the species’ original state was unknown. If we do not

consider any group-dependence in this example we can then code the model as follows:

The inputs are given as

S =
[

2 3
]
,

S2 =
[

1 1 1 1 1 1 1 1 1
]T
,

S3 =
[
−1 −1 1 1 −1 1 0 −1 0

]T
,

T =



1 1 1 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 1 1

0 1 0 0 0

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0



.

Consider the two-state model where the occupancy parameters are only state-

dependent and the detection parameters are season- and survey-dependent. We do

not consider any state-dependent or group-dependent parameters in this example. We

can then obtain the extrinsic parameter redundancy corresponding to this data set by

the following Maple code:

S := < <2|3> >;

S2 := Matrix(9,1,1);

# Observe that we still need this vector even if

# there is no group-dependence to be considered.

S3 := < <-1>, <-1>, <1>, <1>, <-1>, <1>, <0>, <-1>, <0> >;

# ‘-1’ denotes an unknown original state.

T := < <1|1|1|0|0>, <1|0|1|0|0>, <1|0|0|1|0>, <1|0|0|0|1>,

<0|1|1|1|1>, <0|1|0|0|1>, <0|0|0|1|1>, <0|0|0|0|1>, <0|0|0|0|0> >;
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kappa := occmodstatesfirsthist(2,4,7,S,S2,S3,T);

# Inputs: (M,y,z,S,S2,S3,T);

# M = number of states;

# y = transition probability; z = detection probability;

# for y: ‘1’=constant, ‘2’=season-dep, ‘3’=state-dep,

# ‘4’=season+state-dep, ‘5’=group-dep, ‘6’=season+group-dep,

# ‘7’=state+group-dep, ‘8’=season+state+group-dep;

# for z: ‘1’=constant, ‘2’=season-dep, ‘3’=survey-dep,

# ‘4’=season+survey-dep, ‘5’=state-dep, ‘6’=season+state-dep,

# ‘7’=survey+state-dep, ‘8’=season+survey+state-dep,

# ‘9’=group-dep, ‘10’=season+group-dep, ‘11’=survey+group-dep,

# ‘12’=season+survey+group-dep, ‘13’=state+group-dep,

# ‘14’=season+state+group-dep, ‘15’=survey+state+group-dep,

# ‘16’=season+survey+state+group-dep;

# S = row vector of the number of surveys per season;

# S2 = column vector determining the group of each occupancy-history;

# S3 = column vector determining the original state of each

# occupancy-history in T respectively; if the entry in S3 is equal

# to -1 then this shows the state at time 0 was unknown;

# T = list of all occupancy-histories.

theta := parsproc(kappa);

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

This generates the exhaustive summary, where the constant group-dependent sub-

scripts are omitted, as

κ =



ϕc,−1,1p1,1,c,cp1,2,c,cϕc,1,1p2,1,c,cp̄2,2,c,cp̄2,3,c,c

ϕc,−1,1p1,1,c,cp̄1,2,c,cϕc,1,1p2,1,c,cp̄2,2,c,cp̄2,3,c,c

ϕ2
c,1,1p1,1,c,cp̄1,2,c,cp̄2,1,c,cp2,2,c,cp̄2,3,c,c

ϕ2
c,1,1p1,1,c,cp̄1,2,c,cp̄2,1,c,cp̄2,2,c,cp2,3,c,c

ϕc,−1,1p̄1,1,c,cp1,2,c,cϕc,1,1p2,1,c,cp2,2,c,cp2,3,c,c

ϕc,1,1p̄1,1,c,cp1,2,c,c {ϕc,1,1p̄2,1,c,cp̄2,2,c,cp̄2,3,c,c + ϕ̄c,1,1}
{ϕc,0,1p̄1,1,c,cp̄1,2,c,cϕc,1,1 + ϕ̄c,0,1ϕc,0,1} p̄2,1,c,cp2,2,c,cp2,3,c,c
{ϕc,−1,1p̄1,1,c,cp̄1,2,c,cϕc,1,1 + ϕ̄c,−1,1ϕc,0,1} p̄2,1,c,cp̄2,2,c,cp2,3,c,c
{ϕc,0,1p̄1,1,c,cp̄1,2,c,cϕc,1,1 + ϕ̄c,0,1ϕc,0,1} p̄2,1,c,cp̄2,2,c,cp̄2,3,c,c · · ·

· · ·+ ϕc,0,1p̄1,1,c,cp̄1,2,c,cϕ̄c,1,1 + ϕ̄2
c,0,1



,
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where ϕc,l,m = ϕ
[l,m]
c and pt,j,c,c = pc,ct,j for survey j in season t with observed state

l at true state m (there is no state-dependency on the detection parameters), where

ϕ̄c,1,1 = 1−ϕc,1,1. The parameter set of this model is θ = [p1,1,c,c, p1,2,c,c, p2,1,c,c, p2,2,c,c,

p2,3,c,c, ϕc,−1,1, ϕc,0,1, ϕc,1,1]
T . The derivative matrix is not given here to save space but

can be found in the Maple file example6.11.mw. We use the hybrid symbolic-numerical

method of Section 2.5 to find the model rank due to computational complexity of the

derivative matrix. This derivative matrix has the model rank and parameter deficiency

as

r := 9,d := 0.

This means that including information about original states at time 0 does not cause

parameter redundancy in this case. We can now estimate more parameters in this 2

state model of the form ϕ
[a,m]
0,s for a = {−1, 0, 1} with−1 indicating an unknown original

state, rather than just the sole ϕ
[m]
0,s parameter. Therefore, if this information regarding

original state is available, then it can be beneficial to use this information in this

procedure to examine parameter redundancies. There can also be multiple occupancy-

histories with different original states, e.g. three different exhaustive summary terms

can be made from the observations 00|00(U), 00|00(1) and 00|00(0) due to different

original states. This extension can then help produce better point estimates for the

ϕ
[l,m]
0,s parameters in the model.

6.3 The two-species interaction occupancy model

We have explored a variety of occupancy models with a view to estimating the

probability of occupancy in various studies. However, a limitation in these models in

that you can only examine a single species. Multiple species are not accounted for

in the same model. It is possible to consider each species separately, but this would

not be ideal if some assumptions lead you to believe that the presence or absence

of one species has a direct interaction on the presence or absence of another species.

So therefore this two-species interaction occupancy model explores two different

interacting species being considered at the same time. We examine extrinsic parameter

redundancy in the occupancy model from MacKenzie et al. (2004) where they consider

a single-season-only model, however we use the extension of this model to account for

multiple seasons given in MacKenzie et al. (2006, Chapter 8). We also illustrate how

a model with multiple interacting species could be formed later on in Section 6.3.2.

The work from MacKenzie et al. (2004, 2006) has been used to analyse a variety of
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interacting animal species, including northern spotted and barred owls in Bailey et al.

(2009), Virginia rail and California Black rail waterbirds in Richmond et al. (2010),

and interacting snake species in Steen et al. (2014).

6.3.1 Model formulation

The two-species interaction occupancy model has different sets of parameters to ac-

count for different species, where we denote the two species as ‘species A’ and ‘species

B’. The important consideration to make in this model is the fact we allow the pres-

ence/absence of species A to have an effect on the presence/absence of species B. If

there is no interaction between two species it would be possible to consider a simpler

occupancy model such as from Section 5.7, but we assume here that species A does

has an effect on species B. The model parameters are as follows:

• ϕ[AB]
0,s : The probability of both species being present at time t = 0.

• ϕ[A]
0,s : The probability that species A is present regardless of the status of species

B at time t = 0.

• ϕ[B]
0,s : The probability that species B is present regardless of the status of species

A at time t = 0.

• ϕ[X,Y ]
t,s : The transition probability of going from occupancy category X in season

t − 1 to occupancy category Y in season t, for any season t = 1, . . . , T − 1. X

and Y can be either ‘AB’ where both species are present, ‘A’ where only species

A is present, ‘B’ where only species B is present, or ‘U’ where both species are

absent.

• rABt,j,s: The probability of detecting both species, given both species are present

at survey j.

• rAbt,j,s: The probability of detecting species A but not species B, given both species

are present.

• raBt,j,s: The probability of detecting species B but not species A, given both species

are present.

• pAt,j,s: The probability of detecting species A, given only species A is present.

• pBt,j,s: The probability of detecting species B, given only species B is present.

Every parameter in this model can be season-dependent and/or group-dependent,

with the detection probabilities also possibly being survey-dependent. Season-dependence
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is denoted by the subscript t, group-dependence with the subscript s, and survey-

dependence with the subscript j as is commonly used in this chapter. Observe that

the transition probability of going from state X to the unknown state U is equal to

ϕ
[X,U ]
t,s = 1−ϕ[X,AB]

t,s −ϕ[X,A]
t,s −ϕ[X,B]

t,s , and the probability that detecting neither species

given both species are present is equal to rabt,j,s = 1 − rABt,j,s − rAbt,j,s − raBt,j,s, thus reduc-

ing the number of parameters in the model. We also change our parameter notation

compared to that given in MacKenzie et al. (2006, pp.245) as they use the parameters

{ε, ν, γ, η, ω} as an alternative to our notation of ϕ
[X,Y ]
t,s , which gives the transition

probability between various states of extinction and colonisation for all different pos-

sibilities of species presence/absence. There is also a different parameterisation of this

two-species model given in Richmond et al. (2010). These alternative parameterisa-

tions will have the same extrinsic parameter redundancy results as can be shown using

the reparameterisation theorem of Theorem 2.3.

There are some parameters that are of particular interest to experimenters perform-

ing two-species occupancy studies. These include the transition probabilities ϕ
[A,AB]
t,s

and ϕ
[B,AB]
t,s , which are the probabilities that both species are present at the study lo-

cation in season t given one of the species was absent in season t− 1. The parameters

ϕ
[A,B]
t,s and ϕ

[B,A]
t,s are also of interest where the two species switch occupancy states

as these parameters examine the relationships between native and invasive species.

Commonly in work on single-season occupancy studies, experimenters instead wish to

obtain levels of co-occurrence between the two interacting species in the study. This

co-occurrence ratio is called the species interaction factor, which is denoted as φ, but

is not to be confused between the survival parameters from previous chapters. This

species interaction factor is given as

φ =
ϕ[AB]

ϕ[A]ϕ[B]
. (6.6)

If the two species occupy the study location independently, then ϕ[AB] = ϕ[A] × ϕ[B]

and therefore φ = 1. A species interaction factor value of less than one suggests they

co-occur at the location less regularly then they would do if the species are indepen-

dent, and a species interaction factor value of greater than one suggests they co-occur

at the location more regularly.

We now write down a general form for any occupancy-history in this two-species

interaction occupancy model. Let φ0,s be the initial transition row vector for group s
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given as

φ0,s =
[
ϕAB0,s ϕA0,s − ϕAB0,s ϕB0,s − ϕAB0,s 1− ϕA0,s − ϕB0,s + ϕAB0,s

]
. (6.7)

The later transition matrices are denoted as φt,s for seasons t = 1, . . . , T − 1 for group

s, and are given by

φt,s =


ϕ
[AB,AB]
t,s ϕ

[AB,A]
t,s ϕ

[AB,B]
t,s 1− ϕ[AB,AB]

t,s − ϕ[AB,A]
t,s − ϕ[AB,B]

t,s

ϕ
[A,AB]
t,s ϕ

[A,A]
t,s ϕ

[A,B]
t,s 1− ϕ[A,AB]

t,s − ϕ[A,A]
t,s − ϕ[A,B]

t,s

ϕ
[B,AB]
t,s ϕ

[B,A]
t,s ϕ

[B,B]
t,s 1− ϕ[B,AB]

t,s − ϕ[B,A]
t,s − ϕ[B,B]

t,s

ϕ
[U,AB]
t,s ϕ

[U,A]
t,s ϕ

[U,B]
t,s 1− ϕ[U,AB]

t,s − ϕ[U,A]
t,s − ϕ[AB,B]

t,s

 . (6.8)

The column vector of the detection probabilities is denoted by p
{hAX,t,s},{hBX,t,s}
t,s for

the Xth occupancy-history hAX,t,s of species A and for the Xth occupancy-history hBX,t,s

of species B in season t for group s. The column vector p
{hAX,t,s},{hBX,t,s}
t,s is a 4-entry

column vector with the probability of both species being present in the first row, the

probability of only species A being present in the second row, the probability of only

species B being present in the third row, and the probability of both species being

absent in the final row. This means that if both species are detected then the vector

would only have a non-zero entry in the first row. If only species A was detected there

would only be non-zero entries in the first two rows of the vector, and if only species

B was detected there would only be non-zero entries in the first and third rows of the

vector. We only consider species which have the two states as presence and absence

for these two-species interaction models. If we let

δAt,j,s =

{
1 when species A is detected on survey j in season j for group s,

0 when species A is not detected on survey j in season j for group s,

for species A and

δBt,j,s =

{
1 when species B is detected on survey j in season j for group s,

0 when species B is not detected on survey j in season j for group s,
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for species B during season t at survey j for group s, we can define this vector

p
{hAX,t,s},{hBX,t,s}
X,t,s , to be given as



kt∏
j=1

{
δAt,j,sδ

B
t,j,sr

AB
t,j,s + δAt,j,sδ̄

B
t,j,sr

Ab
t,j,s + δ̄At,j,sδ

B
t,j,sr

aB
t,j,s + δ̄At,j,sδ̄

B
t,j,s

(
1− rABt,j,s − rAbt,j,s − raBt,j,s

)}


kt∏
j=1

δ̄Bt,j,s

(δAt,j,spAt,j,s + δ̄At,j,sp̄
A
t,j,s

)


kt∏
j=1

δ̄At,j,s

(δBt,j,spBt,j,s + δ̄Bt,j,sp̄
B
t,j,s

)
kt∏
j=1

δ̄At,j,sδ̄
B
t,j,s



,

(6.9)

where δ̄At,j,s = (1 − δAt,j,s). We show how occupancy-histories for the two-species inter-

action model can be represented in Examples 6.12 to 6.14 below.

Example 6.12: Consider an example where there are three surveys in season t, where

the occupancy-history for species A is observed as hA = 110 and the occupancy-history

for species B is observed as hB = 100. The detection probability vector is then given

as

p
{hA110,t,s},{hB100,t,s}
X,t,s =


rABt,1,sr

Ab
t,2,s(1− rABt,3,s − rAbt,3,s − raBt,3,s)

0

0

0

 .

Example 6.13: Consider the occupancy-history where the occupancy-history for species

A is observed as hA = 000 and the occupancy-history for species B is observed as

hB = 011. This gives the following column vector for the detections

p
{hA000,t,s},{hB011,t,s}
X,t,s =


(1− rABt,1,s − rAbt,1,s − raBt,1,s)raBt,2,sraBt,3,s

0

(1− pBt,1,s)pBt,2,spBt,3,s
0

 .
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Example 6.14: Consider the occupancy-history where the occupancy-history for species

A is observed as hA = 000 and the occupancy-history for species B is observed as

hB = 000, which results in the column vector

p
{hA000,t,s},{hB000,t,s}
X,t,s =


∏3
j=1(1− rABt,j,s − rAbt,j,s − raBt,j,s)∏3

j=1(1− pAt,j,s)∏3
j=1(1− pBt,j,s)

1

 .

We denote ∆(pX,t,s) as the matrix where we diagonalise the pX,t,s vector by putting

the elements of pX,t,s on the diagonal and zeros on the non-diagonal elements of the

matrix. The probability of a certain occupancy-history occurring is expressed as

Pr(hX) = φ0,s

[
T−1∏
t=1

∆

(
p
{hAX,t,s},{hBX,t,s}
X,t,s

)
φt,s

]
p
{hAX,T,s},{hBX,T,s}
X,T,s . (6.10)

This gives the likelihood

L =

N∏
i=1

Pr(hX),

for the N different occupancy-histories observed in a study. We give Example 6.15

below to show how the probability of a single occupancy-history with multiple seasons

can obtained.

Example 6.15: Consider the occupancy-history where the occupancy-history for species

A is observed as hA = 10|00 and the occupancy-history for species B is observed as

hB = 01|00. The probability of this occupancy-history with no group-dependency can
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be obtained by

Pr(h) = φ0∆

(
p
{hA10,1,c},{hB01,1,c}
X,1,c

)
φ1p
{hA00,2,c},{hB00,2,c}
X,2,c

=


ϕ
[AB]
0,c

ϕ
[A]
0,c − ϕ

[AB]
0,c

ϕ
[B]
0,c − ϕ

[AB]
0,c

1− ϕ[A]
0,c − ϕ

[B]
0,c + ϕ

[AB]
0,c


T

·


rAb1,1,cr

aB
1,2,c 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 ·

ϕ
[AB,AB]
1,c ϕ

[AB,A]
1,c ϕ

[AB,B]
1,c 1− ϕ[AB,AB]

1,c − ϕ[AB,A]
1,c − ϕ[AB,B]

1,c

ϕ
[A,AB]
1,c ϕ

[A,A]
1,c ϕ

[A,B]
1,c 1− ϕ[A,AB]

1,c − ϕ[A,A]
1,c − ϕ[A,B]

1,c

ϕ
[B,AB]
1,c ϕ

[B,A]
1,c ϕ

[B,B]
1,c 1− ϕ[B,AB]

1,c − ϕ[B,A]
1,c − ϕ[B,B]

1,c

ϕ
[U,AB]
1,c ϕ

[U,A]
1,c ϕ

[U,B]
1,c 1− ϕ[U,AB]

1,c − ϕ[U,A]
1,c − ϕ[AB,B]

1,c

 ·


(1− rAB2,1,c − rAb2,1,c − raB2,1,c)(1− rAB2,2,c − rAb2,2,c − raB2,2,c)
(1− pA2,1,c)(1− pA2,2,c)
(1− pB2,1,c)(1− pB2,2,c)

1



= ϕ
[AB]
0,c rAb1,1,cr

aB
1,2,c

{
ϕ
[AB,AB]
1,c

(
1− rAB2,1,c − rAb2,1,c − raB2,1,c

)(
1− rAB2,2,c − rAb2,2,c − raB2,2,c

)
+ ϕ

[AB,A]
1,c

(
1− pA2,1,c

) (
1− pA2,2,c

)
+ ϕ

[AB,B]
1,c

(
1− pB2,1,c

) (
1− pB2,2,c

)
+
(

1− ϕ[AB,AB]
1,c − ϕ[AB,A]

1,c − ϕ[AB,B]
1,c

)}
.

6.3.2 Having more than two species in the model

It is possible to extend this model beyond just two interacting species. The model

however gets complex for even a small number of multiple species. To see how this

model can be extended, take a three-species model for example. Define ϕ
[X]
0,s as the

initial occupancy state of all three of the species for group s, e.g. ϕ
[ABC]
0,s indicates the

probability all three species are initially present, while ϕ
[B]
0,s indicates the probability
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that only species B is initially present. The first transition vector can be defined as

φ0,s =



ϕ
[ABC]
0,s

ϕ
[AB]
0,s − ϕ

[ABC]
0,s

ϕ
[AC]
0,s − ϕ

[ABC]
0,s

ϕ
[BC]
0,s − ϕ

[ABC]
0,s

ϕ
[A]
0,s − ϕ

[AB]
0,s − ϕ

[AC]
0,s + ϕ

[ABC]
0,s

ϕ
[B]
0,s − ϕ

[AB]
0,s − ϕ

[BC]
0,s + ϕ

[ABC]
0,s

ϕ
[C]
0,s − ϕ

[AC]
0,s − ϕ

[BC]
0,s + ϕ

[ABC]
0,s

1− ϕ[A]
0,s − ϕ

[B]
0,s − ϕ

[C]
0,s + ϕ

[AB]
0,s + ϕ

[AC]
0,s + ϕ

[BC]
0,s − ϕ

[ABC]
0,s



T

.

The transition probabilities ϕ
[X,Y ]
t,s for season t for group s go from occupancy category

X to occupancy category Y , e.g. ϕ
[ABC,A]
t,s means from going from all three species

being present in season t−1 to season t where only species A is present. The subsequent

transition matrices φt,s are then given in the matrix below

ϕ
[ABC,ABC]
t,s ϕ

[ABC,AB]
t,s ϕ

[ABC,AC]
t,s ϕ

[ABC,BC]
t,s ϕ

[ABC,A]
t,s ϕ

[ABC,B]
t,s ϕ

[ABC,C]
t,s 1−

∑
Y ϕ

[ABC,Y ]
t,s

ϕ
[AB,ABC]
t,s ϕ

[AB,AB]
t,s ϕ

[AB,AC]
t,s ϕ

[AB,BC]
t,s ϕ

[AB,A]
t,s ϕ

[AB,B]
t,s ϕ

[AB,C]
t,s 1−

∑
Y ϕ

[AB,Y ]
t,s

ϕ
[AC,ABC]
t,s ϕ

[AC,AB]
t,s ϕ

[AC,AC]
t,s ϕ

[AC,BC]
t,s ϕ

[AC,A]
t,s ϕ

[AC,B]
t,s ϕ

[AC,C]
t,s 1−

∑
Y ϕ

[AC,Y ]
t,s

ϕ
[BC,ABC]
t,s ϕ

[BC,AB]
t,s ϕ

[BC,AC]
t,s ϕ

[BC,BC]
t,s ϕ

[BC,A]
t,s ϕ

[BC,B]
t,s ϕ

[BC,C]
t,s 1−

∑
Y ϕ

[BC,Y ]
t,s

ϕ
[A,ABC]
t,s ϕ

[A,AB]
t,s ϕ

[A,AC]
t,s ϕ

[A,BC]
t,s ϕ

[A,A]
t,s ϕ

[A,B]
t,s ϕ

[A,C]
t,s 1−

∑
Y ϕ

[A,Y ]
t,s

ϕ
[B,ABC]
t,s ϕ

[B,AB]
t,s ϕ

[B,AC]
t,s ϕ

[B,BC]
t,s ϕ

[B,A]
t,s ϕ

[B,B]
t,s ϕ

[B,C]
t,s 1−

∑
Y ϕ

[B,Y ]
t,s

ϕ
[C,ABC]
t,s ϕ

[C,AB]
t,s ϕ

[C,AC]
t,s ϕ

[C,BC]
t,s ϕ

[C,A]
t,s ϕ

[C,B]
t,s ϕ

[C,C]
t,s 1−

∑
Y ϕ

[C,Y ]
t,s

ϕ
[U,ABC]
t,s ϕ

[U,AB]
t,s ϕ

[U,AC]
t,s ϕ

[U,BC]
t,s ϕ

[U,A]
t,s ϕ

[U,B]
t,s ϕ

[U,C]
t,s 1−

∑
Y ϕ

[U,Y ]
t,s


,

with
∑

Y ϕ
[X,Y ]
t,s denoting the sum of all the transition probabilities from occupancy

category X to category Y = {ABC,AB,AC,BC,A,B,C}. The detection column

vector can then be defined as

p
{hAX,t,s},{hBX,t,s},{hCX,t,s}
X,t,s =



Pr(All three species are present)

Pr(Only species A and B are present)

Pr(Only species A and C are present)

Pr(Only species B and C are present)

Pr(Only species A is present)

Pr(Only species B is present)

Pr(Only species C is present)

Pr(All species are absent)



T

,



COMPLEX OCCUPANCY MODELS 211

containing detection probabilities pXt,j,s with occupancy category X. The final proba-

bility of a certain occupancy-history is expressed as

Pr(hX) = φ0,s

[
T−1∏
t=1

∆

(
p
{hAX,t,s},{hBX,t,s},{hCX,t,s}
X,t,s

)
φt,s

]
p
{hAX,T,s},{hBX,T,s},{hCX,T,s}
X,T,s .

(6.11)

As we can see though from the matrix φt,s, there is a very large number of pa-

rameters in this model, so that the data source for fitting such a model needs to be

substantial. Due to the large number of parameters and the difficulty of coding this

model in Maple, even for a three-species model, we will not consider any further the

occupancy model for more than two species in any depth. It is mentioned here for

future reference if this model, or indeed a model with even more than three interacting

species, would be applicable in another context.

6.3.3 Parameter redundancy in the two-species model

The Maple procedure below generates the exhaustive summary given a set of

occupancy-histories using the two-species interaction occupancy model.

Example 6.16 - The two-species interaction occupancy model: [See electronic appendix

example6.16.mw] Consider a study for a model with two seasons with two surveys per

season and no group-dependency. We observe these occupancy-histories for species

A: 11|11, 11|10, 10|10, 10|10, 10|10, 10|00, 01|11, 01|10, 01|10, 01|01, 01|00, 01|00,

01|00, 00|11, 00|10, 00|10, 00|10, 00|01, 00|01, 00|01, 00|01, 00|00, 00|00, 00|00, 00|00

and 00|00. We also observe these occupancy-histories for species B: 01|10, 10|11,

00|00, 00|01, 11|01, 10|00, 00|00, 00|10, 00|00, 10|10, 10|10, 00|10, 11|11, 01|10, 01|10,

00|11, 00|01, 11|10, 11|00, 01|10, 00|11, 00|10, 00|01, 10|01, 10|10 and 00|00. These

occupancy-histories are given in the two matrices TA and TB, where TA represents

the occupancy-histories of species A and TB represents the occupancy-histories of

species B. Note that each row for occupancy-history of species A in matrix TA must

be in the same row as the occupancy-history of species B in matrix TB so that it

matches up between the matrices.

In the Maple procedure occmodspecieshist we need to specify S as the number of

surveys per season and S2 as the column vector denoting which group the occupancy-

histories listed in TA and TB are from. Along with the matrices TA and TB, these

inputs are given as

S =
[

2 2
]
,
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S2 =
[

1 1 · · · 1 1
]T
,

TA =



1 1 1 1

1 1 1 0

1 0 1 1

1 0 1 0

1 0 1 0
...

...
...

...


,

TB =



0 1 1 0

1 0 1 1

1 1 0 0

0 0 0 1

1 1 0 1
...

...
...

...


.

Consider a model with season-dependent occupancy parameters and season- and

survey-dependent detection parameters. We can then obtain the extrinsic parameter

redundancy results corresponding this data set by the following Maple code:

S := < <2|2> >;

S2 := Matrix(26,1,1);

# a 1 by 26 column vector with all entries as 1: Observe that

# this vector still needs to be defined even if there is no

# parameters which are group-dependent.

TA := < <1|1|1|1>, <1|1|1|0>, <1|0|1|0>, <1|0|1|0>, ..., <0|0|0|0> >;

TB := < <0|1|1|0>, <1|0|1|1>, <0|0|0|0>, <0|0|0|1>, ..., <0|0|0|0> >;

kappa := occmodspecieshist(2,4,S,S2,TA,TB);

# Inputs: (y,z,S,S2,TA,TB);

# y = transition probability; z = detection probability;

# for y: ‘1’=constant, ‘2’=season-dep, ‘3’=state-dep,

# ‘4’=season+state-dep; for z: ‘1’=constant, ‘2’=season-dep,

# ‘3’=survey-dep, ‘4’=season+survey-dep, ‘5’=state-dep,

# ‘6’=season+state-dep, ‘7’=survey+state-dep,

# ‘8’=season+survey+state-dep;

# S = row vector of the number of surveys per season;

# S2 = column vector to determine the group of each occupancy-history;

# TA = list of all occupancy-histories for species A;
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# TB = list of all occupancy-histories for species B.

theta := parsproc(kappa):

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

This generates the exhaustive summary

κ =



ϕ0,c,ABr1,1,c,Abr1,2,c,ABϕ1,c,AB,ABr2,1,c,ABr2,2,c,Ab

ϕ0,c,ABr1,1,c,ABr1,2,c,Abϕ1,c,AB,ABr2,1,c,ABr2,2,c,aB

ϕ0,c,ABr1,1,c,ABr1,2,c,aB {ϕ1,c,AB,ABr2,1,c,Abr2,2,c,Ab + ϕ1,c,AB,Ap2,1,c,Ap2,2,c,A}
{ϕ0,c,ABr1,1,c,Ab(1− r1,2,c,AB − r1,2,c,Ab − r1,2,c,aB)ϕ1,c,AB,AB · · ·
+(ϕ0,c,A − ϕ0,c,AB)p1,1,c,A(1− p1,2,c,A)ϕ1,c,A,AB} r2,1,c,Abr2,2,c,aB

ϕ0,c,ABr1,1,c,ABr1,2,c,aBϕ1,c,AB,ABr2,1,c,Abr2,2,c,aB
...


,

where the transition probabilities are ϕt,c,X,Y = ϕ
[X,Y ]
t,c and ϕ0,c,X = ϕ

[Y ]
0,c for X =

{U,A,B,AB} and Y = {A,B,AB}, and the detection probabilities are rt,j,c,V = rVt,j,c

and pt,j,c,W = pWt,j,c for V = {AB,Ab, aB} and W = {A,B}. The parameter set and

derivative matrix are not given here to save space but can be found in the Maple file

example6.16.mw. We use the hybrid symbolic-numerical method of Section 2.5 to

find the model rank due to computational complexity of the derivative matrix. This

derivative matrix has the model rank and parameter deficiency as

r := 26,d := 9.

This has a parameter deficiency of 9 with 26 estimable parameter combinations.

However, if we fixed the detection probabilities to be constant for example, then there is

an extrinsic parameter deficiency of only 2 with 18 estimable parameter combinations.

6.3.4 A real data example: Different species in the Yellowstone and

Grand Teton data set

We now illustrate extrinsic parameter redundancy results for two-species interac-

tion occupancy models using the Maple procedure occmodspecieshist from Example

6.16 on the amphibian breeding in Yellowstone and Grand Teton national parks data

set of Gould et al. (2012).
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Example 6.17 - The two-species interaction occupancy model for the Yellowstone and

Grand Teton data set: To show a real data set using the two-species interaction model,

we examine the Yellowstone and Grand Teton data set from Gould et al. (2012) which

we previously explored in Sections 5.7 and 5.8. The data considers occupancy-histories

from three different species on tiger salamanders (Ambystoma tigrinum), Columbian

spotted frogs (Rana luteiventris) and boreal chorus frogs (Pseudacris maculata). We

could use the model from Section 6.3.2 for a three-species interaction model, but

will only explore two-species interaction models in this thesis. To further reinforce

that the code accommodates group-dependence as well, we propose to include group-

dependence by splitting the data into four different groups: Group 1 examines the

observations from the wetland sites, group 2 examines the observations obtained from

the first five site ID numbers in the study, group 3 examines the observations ob-

tained from the sixth to the tenth site ID numbers in the study, and group 4 comprises

the remaining observations in the study. This is again an arbitrarily chosen set of

groups not picked by any sort of contextual background, but this does mean groups

2, 3 and 4 roughly have the same number of occupancy-histories. We also consider

the occupancy-histories with missing observations for this analysis. The parameters

in the model as before can be season-dependent, (t), and/or group-dependent, (s), as

well as possibly being survey-dependent for the detection probabilities, (j). We also

examine three different parameter deficiencies for each of the species comparisons we

can make, i.e. we compare tiger salamanders to Columbian spotted frogs, Columbian

spotted frogs to boreal chorus frogs, and boreal chorus frogs to tiger salamanders. This

analysis is presented in Table 6.4.

We observe from Table 6.4 that most of the simpler two-species interaction mod-

els remain full rank for this data set. The data does however have large parameter

deficiencies when the occupancy parameters are both season- and group-dependent.

This is due to the number of parameters when these two dependencies are factored in,

as there is a total of {12(T − 1) + 3}S different occupancy parameters when they are

season- and group-dependent (which is equal to 156 different parameters in this study).

There are also some differences when you compare the species pairs, such as there are

lower parameter deficiencies when comparing the Columbian spotted frogs and boreal

chorus frogs then comparing either of them with the tiger salamanders: This is the

effect of slightly different confounding parameters between the different cases, possibly

due to large number of missing observations for the tiger salamanders.
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Table 6.4: Parameter redundancies in two-species interaction occupancy models ex-
ploring the Yellowstone and Grand Teton data set of Gould et al. (2012)

Parameter deficiency of
Number of Salamanders & Columbian frogs & Chorus frogs &

Model parameters Columbian frogs chorus frogs salamanders

ϕ(·) p(·) 20 0 0 0
ϕ(·) p(t) 35 0 0 0
ϕ(·) p(j) 25 0 0 0
ϕ(·) p(t, j) 55 0 0 0
ϕ(·) p(s) 35 0 0 0
ϕ(·) p(t, s) 95 1 0 1
ϕ(·) p(j, s) 55 0 0 0
ϕ(·) p(t, j, s) 175 28 13 32
ϕ(t) p(·) 44 0 0 0
ϕ(t) p(t) 59 0 0 0
ϕ(t) p(j) 49 0 0 0
ϕ(t) p(t, j) 79 0 0 0
ϕ(t) p(s) 59 0 0 0
ϕ(t) p(t, s) 118 1 0 1
ϕ(t) p(j, s) 79 0 0 0
ϕ(t) p(t, j, s) 199 29 13 47
ϕ(s) p(·) 65 0 0 0
ϕ(s) p(t) 80 0 0 0
ϕ(s) p(j) 70 0 0 0
ϕ(s) p(t, j) 100 0 0 0
ϕ(s) p(s) 80 0 0 0
ϕ(s) p(t, s) 140 7 9 14
ϕ(s) p(j, s) 100 0 0 1
ϕ(s) p(t, j, s) 220 53 40 74
ϕ(t, s) p(·) 161 20 17 31
ϕ(t, s) p(t) 176 20 17 31
ϕ(t, s) p(j) 166 20 17 31
ϕ(t, s) p(t, j) 196 21 17 44
ϕ(t, s) p(s) 176 24 19 42
ϕ(t, s) p(t, s) 236 67 54 86
ϕ(t, s) p(j, s) 196 34 25 56
ϕ(t, s) p(t, j, s) 316 134 112 164

A three-species interaction occupancy model is not considered here.



COMPLEX OCCUPANCY MODELS 216

6.4 The Royle-Nichols model

6.4.1 Obtaining abundance estimates from occupancy models

The final work in this chapter explores the Royle-Nichols occupancy model

proposed by Royle and Nichols (2003), which explores the analysis of animal abun-

dance in the species population. In previous occupancy models we do not allow abun-

dance to influence detectability. In some examples this may be a valid assumption,

but there are many examples of where a higher species abundance means there is a

higher species detection probability. Royle and Nichols (2003) exploit the link be-

tween the variation in abundance and the variation in detection probability to propose

a model which considers heterogeneity in detection probability as a way of viewing

heterogeneity in a species’ abundance. The Royle-Nichols model allows the estimation

of species abundance from repeated surveys of species detection with the advantage of

us not needing to uniquely mark individuals. Examples of the use of the Royle-Nichols

models include examining small mammals in tracking tube data from Nams and Gillis

(2003), examining green frogs in Royle (2004a), and examining mountain plovers in

Dreitz et al. (2006).

Royle and Nichols (2003) use the model of Section 5.3 and MacKenzie et al. (2002)

as a basis for their model. The Royle-Nichols model only contains a single ‘season’

with multiple surveys in the study. We let n be the number of species individuals that

are present at the study location. Further let r be the individual detection probability.

Note that r is the individual detection probability rather than the species detection

probability given as p in our previous occupancy models. These are two different

parameters which have different meanings as there can be multiple individuals in a

single species which could be detected. The probability of detecting a species in a

survey given the species is present is

p = 1− (1− r)n. (6.12)

This probability is calculated as one minus the probability of not detecting that species,

where the probability of not detecting that species is equal to the probability of not

detecting any of the individuals in the species, (1− r)n. We note that p may be equal

to zero, which is the case when the probability of individual detection is r = 0 or when

there are no individuals as n = 0. It is also seen that if n = 1, then the probabil-

ity of species detection is exactly equal to the probability of individual detection, p = r.
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If we let w be the number of detections observed in k repeated surveys, then a

likelihood for the Royle-Nichols model, conditional on the number of n individuals,

can be expressed as

L(w|n) =

(
k

w

)
{1− (1− r)n}w {(1− r)n}k−w , (6.13)

where
(
k
w

)
is the binomial coefficient of there being w detections from k surveys. If we

further consider a likelihood which is unconditional on the number of n individuals at

the study location, this can be given as

L(w) =
∞∑
n=0

(
k

w

)
{1− (1− r)n}w {(1− r)n}k−w · f(n), (6.14)

with a mixing distribution f(n). This mixing distribution gives the probability that n

individuals are present at the study location. A commonly used distribution for f(n)

is the Poisson distribution with

f(n) =
e−µµn

n!
. (6.15)

This Poisson distribution contains the estimable parameter of interest, µ, which is

equal to the mean population size. This then gives the Poisson abundance Royle-

Nichols model used in MacKenzie et al. (2006) and Royle (2006). Note that there is

flexibility over f(n) as there are alternative choices for mixing distributions. A reg-

ularly used two-parameter mixing distribution is the negative binomial Royle-Nichols

model. Inference from using different mixing distributions can be seen in Stanley and

Royle (2005, Tables 2 and 3).

It is worth mentioning the problems with model identifiability of occupancy pa-

rameters where different mixture functions give different estimates of occupancy. This

can be seen in Royle (2006, Table 3) where they consider a variety of occupancy mod-

els with different mixture functions, and the resulting estimates of occupancy range

between 0.51 and 0.91. While it is true that only one of those models estimates abun-

dance, they all give different estimates for occupancy. As Royle (2006) states, “These

results suggest that while identifiability of ϕ is an important problem to be aware of,

it may not inhibit inference.” Therefore care must be taken in selecting a suitable

mixture function to use for inference in this model. Note that this is the consideration

of model identifiability, rather than parameter identifiability which is what we are ex-

ploring in this thesis. We only consider using a Poisson mixing function in this thesis
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for parameter redundancy analysis.

To obtain exhaustive summary terms from the likelihood in Equation (6.14), we

need to specify some upper limit, N , for the summation, to avoid a likelihood which

contains a infinite amount of terms. The idea in practice of this is that as f(n) ≈ 0

when n is large, the addition of terms involving f(n) for n > N , for some given N , is of

negligible value. This function depends on the assumptions about n and whether low

values of n are realistic or likely. We then obtain the likelihood for the Royle-Nichols

model using a Poisson mixing function as

L(w) =
N∑
n=0

(
k

w

)
{1− (1− r)n}w {(1− r)n}k−w e

−µµn

n!
. (6.16)

Estimates of abundance are usually obtained from

Pr(n|w) =
Pr(w|n) · Pr(n)∑N
n=1 Pr(w|n) · Pr(n)

, (6.17)

by the use of Bayes Theorem, where Pr(n) = f(n) and Pr(w|n) are binomial proba-

bilities from the data as seen in Equation (6.13). While using this formula may give

poor estimates of n at a local scale, average or total abundances from the data will

be estimated well from this equation. Discussion of this can be seen in Royle and

Nichols (2003). We can also obtain an estimate of occupancy, ϕ̂
[1]
0 , easily using this

Royle-Nichols model. An estimate of occupancy can be simply formed as

ϕ̂
[1]
0 = 1− f(0)

= 1− e−µ̂,

using a Poisson mixing function in the model.

6.4.2 Adding group- and/or survey-dependency in the Royle-Nichols

Poisson model

As a common theme in this thesis, we are interested in exploring what happens

to a model’s parameter redundancy when you change parameter dependencies in the

model. In the Royle-Nichols model, we have two sets of parameters of interest which

we can vary. The first parameter we can vary is the individual detection parameter

r. We can let this parameter be group-dependent and/or survey-dependent by now

denoting this parameter as rs,j during survey j for group s. If this parameter is not
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group- or survey-dependent, then it is constant and the situation is equivalent to the

previous section where there was just one parameter, r, regardless of survey or group.

The Poisson mixing distribution has the parameter µ which could be constant for all

groups, or be group-dependent, denoted as µs for group s. This means we can rewrite

the likelihood with the most complex model with full group- and survey-dependence,

conditional on observing n individuals, as

L =

N∑
n=0

S∏
s=1

k∏
j=1

{1− (1− rs,j)n}δs,j {(1− rs,j)n}1−δs,j
e−µsµns
n!

, (6.18)

where δs,j = 1 when there is a detection in survey j for group s, and δs,j = 0 when

there is no detection in survey j for group s, for all j = 1, . . . , k and s = 1, . . . , S.

To generate the exhaustive summary terms we will use in this section, consider

letting fs,n = e−µsµns /n! which is the mixing function for a single n value of group s.

It can be shown that a single occupancy-history, hX , where n individuals are present

in group s has the probability

Pr(hX) =
k∏
j=1

[
{1− (1− rs,j)n}δs,j {(1− rs,j)n}1−δs,j

]
fs,n. (6.19)

This is equivalent to obtaining the joint probability of the observed data given from the

δs,j values as well the number of individuals n. We show some example Royle-Nichols

occupancy-history probabilities below.

Example 6.18: Consider the occupancy-history 011 for a study of k = 3 surveys. If we

consider full group- and survey-dependence on both individual detection probabilities

and mixture function probabilities, then the probability of the occupancy-history is

equal to

Pr(hX) = {1− rs,1}n {1− (1− rs,2)n} {1− (1− rs,3)n} fs,n,

for any given number of individuals n for group s. Observe that n is not actually a

parameter in the model but is one which can be given, and that fs,n represents the

Poisson mixing function fs,n = e−µsµns /n!.

We can consider missing observations in a single Royle-Nichols occupancy-history

too. For an observation which has not been recorded that observation is effectively

ignored. For example if the first survey was a missing observation, then there would
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be no rs,1 parameter given for that occupancy-history in its exhaustive summary term.

This changes the probability of a single occupancy-history to be equal to

Pr(hX) =

k∏
j=1

[
γs,j {1− (1− rs,j)n}δs,j {(1− rs,j)n}1−δs,j + (1− γs,j)

]
fs,n, (6.20)

where

γs,j =

{
1 when δs,j ≥ 0 (i.e. it not a missing observation),

0 when δs,j = −1 (i.e. it is a missing observation).

Example 6.19: Consider the occupancy-history 0 11 for a study of k = 4 surveys. If

we consider full group- and survey-dependence on both parameters as well as survey-

dependent individual detection parameters, then the probability of the occupancy-

history is equal to

Pr(hX) = {1− rs,1}n {1− (1− rs,3)n} {1− (1− rs,4)n} fs,n,

for any given number of n individual for group s. We see here that the second ob-

servation is effectively ignored so there is no rs,2 parameter in the occupancy-history

probability.

6.4.3 Extrinsic parameter redundancy in the Royle-Nichols Poisson

model

We can now see an example of the Maple code used to generate exhaustive sum-

mary terms from binary code occupancy-histories in Example 6.20. This code can

be used to examine the extrinsic parameter redundancy of the model as for previous

methods shown in Section 2.2.

Example 6.20: The Royle-Nichols model using a simulated data set: [See electronic

appendix example6.20.mw] Consider a study where there are k = 4 surveys and we

observe the following occupancy-histories: 1111, 1100, 1011, 1 0, 011 , 0100, 0010,

0000. The inputs for the Maple procedure occmodroylenicholshist require the vector

S2 as the column vector denoting which group each occupancy-history is in as

S2 =
[

1 1 1 1 1 1 1 1
]T
,
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and T as the matrix of all occupancy-histories as

T =



1 1 1 1

1 1 0 0

1 0 1 1

1 −1 −1 0

0 1 1 −1

0 1 0 0

0 0 1 0

0 0 0 0


.

The maximum number of individuals which are present at the study location, N , also

needs to be defined in this procedure. We set N = 2 in this example to reduce the

complexity in these calculations but we can consider a model which has a much larger

value of N . Say we use a Poisson mixture with no group-dependence so there are n

unknown parameters, fc,n, which represent the mixing functions in the model. This in

effect means there is a single parameter for the Poisson mixture distribution, µ, but the

mixing distribution is further dependent on the value of n taken as f(c, n) = e−µµn/n!.

This means that there is a constant µ for all groups in the Poisson mixture distribution.

We let the individual species detection probabilities be only survey-dependent so we

have rc,j for j = 1, . . . , 4. The exhaustive summary and parameter redundancy for this

model can then be obtained by the code below.

S2 := Matrix(8,1,1):

# a 1 by 8 column vector with all entries as 1: Observe that

# this vector still needs to be defined even if there is no

# parameters which are group-dependent.

T := < <1|1|1|1>, <1|1|0|0>, <1|0|1|1>, <1|-1|-1|0>,

<0|1|1|-1>, <0|1|0|0>, <0|0|1|0>, <0|0|0|0> >;

P := occmodroylenicholshist(3,1,2,S2,T);

# Inputs: (y,z,N,S2,T);

# y = individual detection probability;

# z = mixture parameter dependency;

# for y: ‘1’=constant, ‘2’=group-dep, ‘3’=survey-dep,

# ‘4’=group+survey-dep;

# for z: ‘1’=constant, ‘2’=group-dep;

# N = number of maximum individuals which could be present;

# S2 = column vector determining the group of each occupancy-history;
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# T = list of all occupancy-histories.

kappa := Matvec(P);

theta := parsproc(kappa);

DD := Dmat(logvector(kappa),theta):

hybrid := Formnum2(DD,theta);

Let P be the matrix which contains all of the possible occupancy-history probabilities

given in the data set which are dependent on the different values of n possible. Each

row in P gives a different occupancy-history from the data, and each column j gives a

different value of n. For example as N = 2, the first column would give the probabilities

of the different occupancy-histories from the data when n = 0. The second column

would give the probabilities of the occupancy-histories when n = 1, and the final

column would give the probabilities of the occupancy-histories when n = 2. This

matrix is given below

P =



0 rc,1rc,2rc,3rc,4fc,1 · · ·
0 rc,1rc,2(1− rc,3)(1− rc,4)fc,1 · · ·
0 rc,1(1− rc,2)rc,3rc,4fc,1 · · ·
0 rc,1(1− rc,4)fc,1 · · ·
0 (1− rc,1)rc,2rc,3fc,1 · · ·
0 (1− rc,1)rc,2(1− rc,3)(1− rc,4)fc,1 · · ·
0 (1− rc,1)(1− rc,2)rc,3(1− rc,4)fc,1 · · ·
fc,0 (1− rc,1)(1− rc,2)(1− rc,3)(1− rc,4)fc,1 · · ·

· · ·
{

1− (1− rc,1)2
}{

1− (1− rc,2)2
}{

1− (1− rc,3)2
}{

1− (1− rc,4)2
}
fc,2

· · ·
{

1− (1− rc,1)2
}{

1− (1− rc,2)2
}

(1− rc,3)2(1− rc,4)2fc,2
· · ·

{
1− (1− rc,1)2

}
(1− rc,2)2

{
1− (1− rc,3)2

}{
1− (1− rc,4)2

}
fc,2

· · ·
{

1− (1− rc,1)2
}

(1− rc,4)2fc,2
· · · (1− rc,1)2

{
1− (1− rc,2)2

}{
1− (1− rc,3)2

}
fc,2

· · · (1− rc,1)2
{

1− (1− rc,2)2
}

(1− rc,3)2(1− rc,4)2fc,2
· · · (1− rc,1)2(1− rc,2)2

{
1− (1− rc,3)2

}
(1− rc,4)2fc,2

· · · (1− rc,1)2(1− rc,2)2(1− rc,3)2(1− rc,4)2fc,2


,

where rc,j denotes the individual detection probability in survey j and fc,n denotes the

mixing Poisson parameter given there are n individuals in the study location. This

mixing Poisson parameter fc,n is equivalent to obtaining µ in the Poisson mixture

fc,n = e−µµn/n!. The non-zero terms in P can then give an exhaustive summary for
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this model as

κ =



rc,1rc,2rc,3rc,4fc,1{
1− (1− rc,1)2

}{
1− (1− rc,2)2

}{
1− (1− rc,3)2

}{
1− (1− rc,4)2

}
fc,2

rc,1rc,2(1− rc,3)(1− rc,4)fc,1{
1− (1− rc,1)2

}{
1− (1− rc,2)2

}
(1− rc,3)2(1− rc,4)2fc,2

rc,1(1− rc,2)rc,3rc,4fc,1
...

(1− rc,1)2(1− rc,2)2
{

1− (1− rc,3)2
}

(1− rc,4)2fc,2
fc,0

(1− rc,1)(1− rc,2)(1− rc,3)(1− rc,4)fc,1
(1− rc,1)2(1− rc,2)2(1− rc,3)2(1− rc,4)2fc,2



.

The parameter set is given by θ = [fc,0, fc,1, fc,2, rc,1, rc,2, rc,3, rc,4]
T . There are

seven parameters in the model, four for the individual detection probabilities for each

survey j, and three mixing parameters for each different n = 0, 1, 2 value as N = 2.

The derivative matrix is not given here to save space but can be found in the Maple

file example6.20.mw. We use the hybrid symbolic-numerical method of Section 2.5 to

find the model rank due to computational complexity of the derivative matrix. This

derivative matrix has the model rank and parameter deficiency as

r := 7,d := 0.

This means that this data set for the Royle-Nichols has no parameter redundancy

and all the parameters in the model can be estimated.

We demonstrate how this procedure can be used with real data by using data sets

on woodthrush and catbirds, taken from the North American Breeding Bird Survey

(Robbins et al., 1986). These are two data sets which have regularly been used in

the unmarked package for the statistical software package R, as shown in Fiske and

Chandler (2011) and Fiske et al. (2014). These data sets have also previously been

used to estimate population sizes using Poisson mixture distributions in Royle (2004b).

Both data sets have 50 individual occupancy-histories observed over 11 surveys. The

woodthrush data set is richer than the catbird data set as it contains a total of 206

observed detections during the 50 occupancy-histories, compared to the catbird data

set which only has 51 observed detections. We arbitrarily divide this data set into 5

different groups each containing 10 different occupancy-histories so we can also view
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Table 6.5: Parameter redundancies for Royle-Nichols models for the woodthrush and
catbird data sets from Fiske et al. (2014)

Woodthrush data set Catbirds data set

Model Model rank Deficiency Model rank Deficiency

r(·) µ(·) 5 0 5 0

r(·) µ(s) 18 0 21 0

r(s) µ(·) 9 0 9 0

r(s) µ(s) 22 0 25 0

r(j) µ(·) 15 0 15 0

r(j) µ(s) 28 0 31 0

r(s, j) µ(·) 54 5 39 20

r(s, j) µ(s) 64 8 51 24

group-dependency in this data set. In the model description, we denote the detec-

tion parameters as r(·) and the mixing parameters as µ(·), with (·) denoting that the

parameters are constant, (s) denoting that the parameters are group-dependent, and

(j) denoting that the parameters are survey-dependent for the detection probabilities

only. We use the Maple code in the electronic appendix file example6.20.mw to obtain

the model rank and parameter deficiency for these data sets given in Table 6.5.

We can see from Table 6.5 that there is a reduction in the number of estimable

parameters in the final two rows of the table. However, most models are full rank, so

that all parameters can be estimated in those Royle-Nichols occupancy models.

6.5 Discussion and further occupancy models

This chapter has gone beyond the work done in Chapter 5 and explored differ-

ent model possibilities for occupancy studies. We have considered a general m-state

model, though in practice a species will only have three or four different observa-

tional states which the animal could be in. We have developed Maple code to obtain

individual occupancy-history probabilities and have used them to examine extrinsic

parameter deficiencies in an example containing green frogs in Maryland in Section

6.1.5 from MacKenzie et al. (2009). Some of the results in Table 6.3 showed that

including the use of state-dependent parameters can decrease parameter deficiency by

un-confounding some of the parameters in some cases.

In Section 6.3 a two-species interaction model was considered as an extension of
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the original occupancy model. This allowed the occupancy and detection parameters

to be estimated dependent on an interaction between two different species. For exam-

ple, the presence of species A could affect the presence of species B or vice-versa. We

used Maple code to find the extrinsic parameter redundancies for the Yellowstone and

Grand Teton National Park data example from Gould et al. (2012) and examined inter-

actions between Columbian spotted frogs, boreal chorus frogs and tiger salamanders.

The Royle-Nichols model was then considered by exploiting the link between animal

abundance and probability of species occupation. We explored this model and show

some extrinsic parameter redundancy results using Maple on data sets of woodthrush

and catbirds from Fiske et al. (2014).

The analysis of these occupancy models is important as the use of these models is

increasing. There is still future work to be done on this subject and we list some of

the extensions that have not been considered in this thesis:

• The original occupancy model deals with the fact that non-detection does not

imply occupancy, in other words taking into account false-negative errors. In-

corporating false-positive errors which consider incorrect detections say by an

incorrect species detection by the observer, is discussed in Royle and Link (2006),

Green et al. (2011) and Miller et al. (2011).

• We can view different habitat states rather than occupancy states exploring how

species prefer particular habitats. MacKenzie et al. (2011) consider this and

obtain estimates of transition occupancy probabilities of species going between

habitat states as an alternative to different occupancy states between seasons.

A possible model with two habitat states could be based on the two-species

interaction model of Section 6.3.

• We discretise each detection in our models but an alternative model can be fitted

so each observation has a continuous time of detection. This can be seen in Hines

et al. (2010) and Guillera-Arroita et al. (2011) where a multinomial likelihood

can still be extracted from the observations recorded.

• We can view occupancy modelling to obtain estimates of species richness where

we have imperfect detection, such as in Dorazio and Royle (2005) as well as

Dorazio et al. (2006).

• We can consider the data in the form of detection counts for a survey instead of

recording it was detected or not detected at the survey. This is seen in a variety
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of contexts such as in Royle (2004a), Kéry et al. (2009), Yamaura et al. (2011)

and Guillera-Arroita et al. (2012).

• There has also been recent work done on exploring the connection between occu-

pancy models and multi-event capture-recapture models, as seen in Pradel, 2005

and Gimenez et al. (2014) by considering hidden Markov models, where they

provide a direct reparameterisation between the two models.



Chapter 7

Conclusions and Future Work

7.1 Discussion

In this thesis, we have examined parameter redundancy for a variety of ecological

models. Statistical ecology itself is an ever increasing area of research as more people

nowadays require information on how ecological ecosystems behave and interact in the

world. This information influences government and business environmental policies

so that they can best protect these ecosystems. More complex ecological models are

used to analyse such ecosystems due to the increase of more advanced technologies for

both collection and interpretation of data, as shown in King (2014). As these govern-

ment and business policies require parameter estimates such as survival or occupancy

probabilities, parameter redundancy identifies whether statistical models can actually

obtain these parameter estimates in principle. A model which does not generate the

full estimation of the model parameters is not ideal, as obtaining these values is what

is required from the analysis using the model. In such cases, parameter constraints are

then used to obtain inference, as regularly used in linear modelling in other statistical

fields. This thesis explores these issues and provides lists of ecological models which

are not parameter redundant so that these parameters can be estimated.

We have two purposes for this work: The first purpose is to identify models that are

intrinsically parameter redundant. It would not be wise to use a model for an analysis

of a data set where there is some confounding of the parameters, meaning you cannot

achieve the parameter estimates that are required. We show which a variety of models

which are not parameter redundant and indicate what parameter constraints can be

used so that the model is not intrinsically parameter redundant. The second purpose

is to give an indication as to how rich a data set needs to be for a particular model

227
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to be able to estimate every parameter in the model. We use example data sets to

show typical extrinsic parameter redundancies. The results of these analyses show that

the data can be far from ‘perfect’, where not all of the possibilities are observed dur-

ing a study, yet all the parameters can still be estimated for some of the simpler models.

A wide variety of models and applications have been considered in this thesis.

Chapter 2 examines mark-recovery models where we mark animals and then attempt

to recover these marked animals dead at future time points. The objective of this

model is to find estimates of animal survival between time points in the study. This

is also the case in capture-recapture models of Chapter 3 where we estimate survival

probabilities by the use of live recaptures rather than dead recoveries. This is further

extended in Chapter 4 where live recaptures and dead recoveries are both considered in

the same model. Some of the models in this thesis show that even though these seem

attractive models to use, they can have issues with parameter redundancy even for rel-

atively simple models, such as the fully time-dependent capture-recapture model. We

consider a range of models where we change the parameter dependencies in the model,

and age- and time-dependency are common parameter dependencies we examine. The

majority of capture-recapture and capture-recapture-recovery models are not intrinsi-

cally parameter redundant so the parameter redundancy in these cases usually came

from sparse data sets rather than the model itself. Examples of data sets explored

for extrinsic parameter redundancy includes data on dippers from Marzolin (1988)

in capture-recapture modelling and data on cormorants from Hènaux et al. (2007) in

capture-recapture-recovery modelling.

We then proceeded to examine a different ecological model which estimates species

occupancy rates rather than survival probabilities. Chapter 5 presents how these oc-

cupancy models can be used to generate estimates of species occupancy using a robust

design with more than one survey per season for multiple seasons. It is shown that the

occupancy models of Chapter 5 are intrinsically not parameter redundant given that

each season has at least two surveys during each season, meaning this model in theory

is an ideal one to use as all of the model parameters can be estimated. However, what is

usually the case in occupancy studies is that you record data which are far from perfect

so the analysis of sparse data sets becomes more crucial to consider in these models.

To show the problems of sparse data, we view data on house finches from MacKenzie

et al. (2006) in Table 5.1, as well as considering group-dependent data in Table 5.2

on amphibian breeding in Yellowstone and Grand Teton national parks in USA, given

in Gould et al. (2012). Missing observations in the data also becomes more of an
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issue in occupancy studies, and these extrinsic parameter redundancy results are then

considered by also including partial occupancy-histories. This increases the number of

occupancy-histories in the data and reduces the extrinsic parameter redundancies as

seen in Table 5.3. A brief analysis on approximate sample sizes was also explored in

Section 5.9 and shows that even more data are required when transition and detection

probabilities in a study are low. These ideas were extended further in Chapter 6 where

a collection of alternative models were examined for extrinsic parameter redundancy

using a range of data sets. These included the addition of multiple states in Section

6.1, the two-species interaction model in Section 6.3, and the Royle-Nichols model in

Section 6.4.

7.2 Further work

There is still much work to be done on parameter redundancy in the future. We

list a few ways parameter redundancy analysis can be developed:

• While a range of models have been examined for parameter redundancy as seen

in Tables 1.1a and 1.1b, it is certainly not exhaustive and there are many more

models to consider. Distance sampling in ecology (such as reviewed in Thomas

et al., 2010) is one such wide area that requires parameter redundancy analy-

sis. Other models include spatially explicit capture-recapture models (such as

in Borchers, 2012), Jolly-Seber tag loss models (such as in Cowen and Schwarz,

2006), multi-event modelling (such as in Pradel, 2005) and further occupancy

models extensions as discussed in Section 6.5.

• We would like to deal with some potential problems in the estimation of parame-

ter combinations when the exhaustive summary is complex. Currently the Maple

code for generating the partial differential equations and then the estimable pa-

rameter combinations fails to work due to a lack of computational memory. This

is something that could be considered and ways of solving these PDE’s with less

computational complexity could be examined. The PDE’s can be solved numer-

ically so the values of α can be obtained, so we can conclude which original

parameters can be explicitly estimated, but we have no method of obtaining the

other estimable parameter combinations from the model. Recent work in identi-

fiability analysis has also considered this issue (Eisenberg and Hayashi, 2014).

• Identifiability issues can be further be considered in a Bayesian framework as

shown in Gelfand and Sahu (1999), Garrett and Zeger (2000) and Gimenez et al.
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(2009). They define weak identifiability as when the data give little information

about certain parameters in the model, such as how parameter redundancy af-

fects the parameter estimation in classical techniques. Similarly to the classical

approach, parameter estimation conclusions using the Bayesian approach can be

misleading or incorrect if there is weak identifiability. We only used classical

approaches in this thesis as they are easier to code than MCMC methods. This

area of research with the use of priors to help inference is an alternative to using

model constraints and is something that could be explored in more depth.

• Finally, a piece of software could be programmed which makes the calculation of

a model’s parameter redundancy easy and user-friendly. This could come in the

form of a stand-alone program and would give users step-by-step instructions

on how to input matrices which generates final parameter redundancy results

without having to think about the codes behind the procedure. Similar ideas

have been considered in the past regarding identifiability analysis in the software

package DAISY, see Bellu et al. (2007) for further details. Currently the program

Maple needs to be used to do the calculations as given in this thesis, and this

process could be made easier for users without Maple knowledge.



Appendix A

Common Maple Procedures

This Appendix provides the basic Maple procedures used in this thesis. We include

these basic procedures which allow us to examine the parameter redundancy and give

the estimable parameter combinations of a particular model. These procedures are

mostly the work of previous authors including Catchpole et al. (2002), Cole et al.

(2010) and Choquet and Cole (2012) and we list these basic procedure below:

1. Matvec: Converts a data matrix into its vector of non-zero terms.

2. logvector: Converts a data matrix into its log-vector form of the exhaustive

summary κ(see Section 2.4).

3. parsproc: Generates a list of all the parameters in the model.

4. Dmat: Forms the model derivative matrix by differentiating the exhaustive sum-

mary by its parameters.

5. Formnum: Performs the hybrid symbolic-numerical method of Choquet and Cole

(2012) to find the model’s rank and parameter deficiency along with α(see Section

2.5).

6. Formnum2: The same hybrid symbolic-numerical method as Formnum to find the

model’s rank and parameter deficiency but without the representation of α in

the output (see Section 2.5).

7. Estpars: Finds all of the estimable parameter combinations for parameter re-

dundant models.

The longer procedures developed as part of the thesis can be found in the online

supplementary Maple files for the different examples during the thesis. This includes

the Maple codes that obtain a model’s simpler intrinsic exhaustive summary (such as

231
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ringmod from Chapter 2 or capmod from Chapter 3), or the codes that turn animal his-

tories into their multinomial probabilities to explore extrinsic parameter redundancy

(such as caprecaphistories from Chapter 3 or occmodseasonshist from Chapter 5).

1. Matvec := proc(P)

local sizekappa, i, j, κ, kappaindex ;

sizekappa := 0:

for i to Dimension(P)[1] do

for j to Dimension(P)[2] do

if P[i, j] 6= 0 then sizekappa := sizekappa + 1

end if:

end do: end do:

κ:= Vector(sizekappa):

kappaindex := 0:

for i to Dimension(P)[1] do

for j to Dimension(P)[2] do

if P[i, j] 6= 0 then kappaindex := kappaindex + 1:

κ[kappaindex ] := P[i, j]:

end if:

end do: end do:

κ

end proc:

2. logvector := proc(κ)

local i, lnkappa;

lnkappa := Vector(κ):

for i to Dimension(κ) do lnkappa[i] := ln(κ[i]):

end do:

lnkappa

end proc:

3. parsproc := proc(κ)

〈(seq(op(n, indets(κ)), n = 1 .. nops(indets(κ)))〉;
end proc:

4. Dmat := proc(κ,θ)

local DD1, i, j;



APPENDICES 233

DD1 := Matrix(1 .. Dimension(θ), 1 .. Dimension(κ)):

for i to Dimension(θ) do

for j to Dimension(κ) do DD1[i, j] := diff(κ[j], θ[i])

end do: end do:

DD1

end proc:

5. Formnum := proc(D1,θ)

local j, results, numpars, D1rand;

results := Matrix(5,3):

for j from 1 to 5 do numpars := seq
(
θ[i] = evalf

(
rand( )

1000000000000

)
, i = 1 .. Dimension(θ)

)
:

D1rand := eval(D1, numpars);

results[j,1] := Rank(D1rand);

results[j,2] := Dimension(θ) - Rank(D1rand);

results[j,3] := NullSpace(Transpose(D1rand));

end do:

results

end proc:

6. Formnum2 := proc(D1,θ)

local j, results, numpars, D1rand;

results := Matrix(5,2):

for j from 1 to 5 do numpars := seq
(
θ[i] = evalf

(
rand( )

1000000000000

)
, i = 1 .. Dimension(θ)

)
:

D1rand := eval(D1, numpars);

results[j,1] := Rank(D1rand);

results[j,2] := Dimension(θ) - Rank(D1rand);

end do:

results

end proc:

7. Estpars := proc(D1,θ)

local i, r, d, alphapre, α, PDE, FF, ans;

r := Rank(D1);

d := Dimension(θ) - r;

alphapre := NullSpace(Transpose(D1));

α := Matrix(d, Dimension(θ));

PDE := Vector(d);
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FF := f(seq(θ[i], i = 1 .. Dimension(θ)));

for i to d do α[i, 1 .. Dimension(θ)] := alphapre[i];

PDE[i] := add((diff(FF,θ[j]))·α[i, j], j = 1 .. Dimension(θ))

end do;

ans := pdsolve(seq(PDE[i] = 0, i = 1 .. d));

〈α, PDE, ans〉
end proc:



Appendix B

Reparameterisation Proofs

B.1 Proof of the multiple capture-recapture simpler ex-

haustive summary theorem

The proof of Theorem 3.2 is also given in the supplementary material in Hubbard

et al. (2014). The theorem states that a simpler exhaustive summary for the capture-

recapture model consists of the terms si,j = φi,jpi+1,j+1 (for i = 1, . . . , n2 and j =

i, . . . ,min(n1 + i − 1, n2)) and ti,j = φi,j(1 − pi+1,j+1) (for i = 1, . . . , n2 − 1 and

j = i, . . . ,min(n1 + i− 1, n2 − 1)). The proof of Theorem 3.2 is split into three parts:

• In part one, we show that the original exhaustive summary consisting of the

capture-histories can be reparameterised in terms of [s, t], utilising the reparam-

eterisation theorem of Theorem 2.3.

• In part two, we create a new exhaustive summary, denoted as κuvw, utilising the

reparameterisation theorem of Theorem 2.3. This is created so that the extension

theorem of Theorem 2.2 can be applied in order for results to be extended to any

dimension.

• In part three, we show that the reparameterisation [s, t] is an exhaustive sum-

mary, again utilising the reparameterisation theorem of Theorem 2.3.

We assume that none of the parameters are on boundary values, so that our parameter

space is restricted to 0 < φi,j < 1 and 0 < pi,j < 1 for all values of i and j for this

theorem to apply. Theorem 2.3 states that if the derivative matrix [∂κ(κnew)/∂κnew]

is full rank then κnew is a new exhaustive summary.

235
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Part one:

We show that any capture-history can be expressed in terms of parameters si,j

and ti,j . The probability of a particular capture-history, hX , with individual capture

observations δk at time k, where an animal is first recaptured at time a and last

recaptured at time b, is given as

Pr(hX) =

[
b∏

k=a+1

φk−a,k−1 {δkpk−a+1,k + (1− δk)(1− pk−a+1,k)}

]
χb−a+1,b.

These probabilities can be reparameterised in terms of si,j = φi,jpi+1,j+1 and ti,j =

φi,j(1− pi+1,j+1) to give

Pr(h) =

b∏
k=a+1

(δksk−a+1,k + (1− δk)tk−a+1,k)χb−a+1,b.

The probability of an animal never being seen again, χi,j , with χi,n2+1 = 1, can be

shown to be a function of si,j and ti,j , by first expanding χi,j , to give

χi,j = (1− φi,j) + φi,j(1− pi+1,j+1) · [(1− φi+1,j+1) +

φi+1,j+1(1− pi+2,j+2) · [(1− φi+2,j+2) + φi+2,j+2 ·

(1− pi+3,j+3) · [· · · [((1− φn2,n2) + φn2,n2(1− pn2+1,n2+1)] · · · ]]].

By noting that (1− φi,j) = (1− si,j − ti,j), we can write χi,j as

χi,j = (1− si,j − ti,j) + ti,j [(1− si+1,j+1 − ti+1,j+1) + ti+1,j+1 ·

[(1− si+2,i+2 − ti+2,j+2) + ti+3,j+3[· · · [(1− sn2,n2)] · · · ]]].

Therefore all capture-histories can be parameterised in terms of s and t only.

Part two:

We derive a new exhaustive summary which consists of the following terms:

• uj =

n2−j+1∏
k=1

φk,k+j−1pk+1,k+j ,

for all j = 1, . . . , n2;

• vi,j =
(1− pi+1,j+1)

pi+1,j+1
,

for all i = 1, . . . , n2 − 1 and j = i, . . . ,min(i+ n1 − 1, n2);
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• and wi,j =
χi+1,j+1(

n2−j∏
k=1

φk+i,k+jpk+i+1,k+j+1

) ,

for all i = 1, . . . , n2 − 1 and j = i, . . . ,min(i+ n1 − 1 ≤ n2).

We can reparameterise the original exhaustive summary consisting of the capture-

histories, when there are n1 = n2 = 2 years of marking and recapture, as

κ =



Pr(111)

Pr(101)

Pr(011)

Pr(110)

Pr(100)

Pr(010)


=



φ1,1p2,2φ2,2p3,3

φ1,1(1− p2,2)φ2,2p3,3
φ1,2p2,3

φ1,1p2,2χ2,2

χ1,1

χ1,2


=



u1

u1v1,1

u2

u1w1,1

ū1 − u1(v1,1 + w1,1)

ū2


.

The reparameterisation is given as κuvw = [u1, u2, v1,1, w1,1]
T where the derivative

matrix,

[
∂κ

∂κuvw

]
=


1 v1,1 0 w1,1 −1− v1,1 − w1,1 0

0 0 1 0 0 −1

0 u1 0 0 −u1 0

0 0 0 u1 −u1 0

 ,
has full rank 4. A modified PLUR decomposition of [∂κ/∂κuvw] shows that this is

valid for all values of u1, u2, v1,1 and w1,1 as long as u1 = φ1,1p2,2φ2,2p3,3 is non-zero.

This only occurs at a boundary and the parameter space has already been restricted

to exclude boundary values. Therefore by Theorem 2.3, when n1 = n2 = 2, κuvw is

an alternative exhaustive summary for the model. Now consider extending the model

firstly by adding another year of recapture so that n2 = 3, while keeping n1 = 2. The
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original exhaustive summary is then

κ =



Pr(1111)

Pr(1011)

Pr(0111)

Pr(1100)

Pr(1000)

Pr(0101)

Pr(1110)

Pr(1010)

Pr(0110)

Pr(1101)

Pr(1001)

Pr(0100)



=



φ1,1p2,2φ2,2p3,3φ3,3p4,4

φ1,1p̄2,2φ2,2p3,3φ3,3p4,4

φ1,2p2,3φ2,3p3,4

φ1,1p2,2χ2,2

χ1,1

φ1,2p̄2,3φ2,3p3,4

φ1,1p2,2φ2,2p3,3χ2,2)

φ1,1p̄2,2φ2,2p3,3χ2,2

φ1,2p2,3χ2,3

φ1,1p2,2φ2,2p̄3,3φ3,3p4,4

φ1,1p̄2,2φ2,2p̄3,3φ3,3p4,4

φ̄1,2 + φ1,2p̄2,3χ2,3



=



u1

u1v1,1

u2

u1w1,1

k4

u2v1,2

u1w2,2

u1v1,1w2,2

u2w1,2

u1v2,2

u1v1,1v2,2

ū2 − u2(v1,2 + w1,2)



,

where k4 = 1− u1− u1v1,1− u1w1,1− u1w2,2− u1v1,1w2,2− u1v2,2− u1v1,1v2,2 and φ̄ =

(1−φ). This uses the reparameterisation κuvw = [u1, u2, v1,1, v1,2, v2,2, w1,1, w1,2, w2,2]
T .

We now use the two-stage extension theorem of Theorem 3.1. The first stage involves

the exhaustive summary terms

κ1 =


u1

u1v1,1

u2

u1w1,1

 ,

with parameters θ1 = [u1, u2, v1,1, w1,1]. The derivative matrix

[
∂κ1

∂θ1

]
=


1 v1,1 0 w1,1

0 0 1 0

0 u1 0 0

0 0 0 u1

 ,
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has full rank 4. The second stage examines the remaining exhaustive summary terms

κ2 =



k4

u2v1,2

u1w2,2

u1v1,1w2,2

u2w1,2

u1v2,2

u1v1,1v2,2

1− u2 − u2v1,2 − u2w1,2


,

with parameters θ2 = [v1,2, v2,2, w1,2, w2,2]
T . The derivative matrix

[
∂κ2

∂θ2

]
=


0 u2 0 0 0 0 0 −u2

−u1 − u1v1,1 0 0 0 0 u1 u1v1,1 0

0 0 0 0 u2 0 0 −u2
−u1 − u1v1,1 0 u1 u1v1,1 0 0 0 0

 ,

has full rank 4. Therefore by the two-stage extension theorem of Theorem 3.1, the

model can be extended in terms of years of recapture. Adding a year of marking so

n1 = 3 while n2 = 3 adds the following exhaustive summary terms

κ3 =

[
Pr(0011)

Pr(0010)

]
=

[
φ1,3p2,4

1− φ1,3p2,4

]
=

[
u3

1− u3

]
.

As there is only one additional parameter in κ3, this is trivially full rank and means

that the original model can be extended for a greater number years of marking. There-

fore κuvw is an exhaustive summary for any dimension.

Part three:

This part involves checking whether the derivative matrix [∂κuvw(s, t)/∂(s, t)] is

full rank and then using the two-stage theorem of Theorem 3.1 to show it is always

full rank for larger dimensions. Starting with n1 = n2 = 2 we can reparameterise κuvw
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in terms of s and t to get

κuvw(s, t) =


u1

v1,1

w1,1

u2

 =


s1,1s2,2

t1,1/s1,1

(1− s2,2)/s2,2
s1,2

 , (B.1)

with parameter set κst = [s1,1, s1,2, s2,2, t1,1]
T . The derivative matrix

[
∂κuvw(s, t)

∂κst

]
=


s2,2 − t1,1

s21,1
0 0

0 0 0 1

s1,1 0 − 1
s2,2
− (1−s2,2)

s22,2
0

0 1
s1,1

0 0

 ,

has full rank 4. A modified PLUR decomposition of [∂κuvw(s, t)/∂κst] shows this

the model remains full rank for any value of s1,1, s1,2, s2,2 or t1,1. Therefore κst is an

exhaustive summary when n1 = n2 = 2. If we extend the model to add another year

of recapture, the exhaustive summary becomes

κuvw(s, t) =



u1

u2

v1,1

v1,2

v2,2

w1,1

w1,2

w2,2


=



s1,1s2,2s3,3

s1,2s2,3

t1,1/s1,1

t1,2/s1,2

t2,2/s2,2

(1− s3,3)/s3,3
(1− s2,3)/s2,3

{(1− s2,2 − t2,2) + t2,2 (1− s3,3)} /s2,2s3,3


,

with parameters κst = [s1,1, s1,2, s2,2, s2,3, s3,3, t1,1, t1,2, t2,2]
T . Note that the terms

u2, v2,2 and w1,2 are identical to u1, v1,1 and w1,1 respectively if s1,1 is re-labelled as

s1,2, s2,2 as s2,3, and t1,1 as t1,2. This can then form the first stage of the two-stage

extension theorem with

κ1 =


u2

v1,2

w1,2

 =


s1,2s2,3

t1,2/s1,2

(1− s2,3)/s2,3

 ,
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with parameters θ1 = [s1,2, s2,3, t1,2]. The derivative matrix

[
∂κ1

∂θ1

]
=


s2,3 − t1,2

s21,2
0

s1,2 0 − 1
s2,3
− (1−s2,3)

s22,3

0 1
s1,2

0

 ,
has full rank 3. The second stage involves the terms

κ2 =



u1

v1,1

v2,2

w1,1

w2,2


=



s1,1s2,2s3,3

t1,1/s1,1

t2,2/s2,2

(1− s3,3)/s3,3
{(1− s2,2 − t2,2) + t2,2 (1− s3,3)} /s2,2s3,3


,

with the parameter set θ2 = [s1,1, s2,2, s3,3, t1,1, t2,2]
T . The derivative matrix

[
∂κ2

∂θ2

]
=



s2,2s3,3− t1,1
s21,1

0 0 0

s1,1s3,3 0 − t2,2
s22,2

0 − 1
s2,2s3,3

− {(1−s2,2−t2,2)+t2,2(1−s3,3)}
s22,2s3,3

s1,1s2,2 0 0 − 1
s2,2
− (1−s3,3)

s22,2
− t2,2
s2,2s3,3

− {(1−s2,2−t2,2)+t2,2(1−s3,3)}
s2,2s23,3

0 1
s1,1

0 0 0

0 0 1
s2,2

0 − 1
s2,2


,

has full rank 5. Therefore by the two-stage extension theorem of Theorem 3.1, the

model can be extended in terms of years of recapture. Adding a year of marking so

n1 = 3 while n2 = 3 adds only the exhaustive summary term u3 = s1,3. As there is

only one additional parameter, this extension is trivially full rank and means that the

original model can be extended for a greater number of years of marking. Therefore s

and t form an exhaustive summary for any dimension. This then completes the proof

of Theorem 3.2.

Note that alternative exhaustive summaries could have been used here as well.

This includes only considering the exhaustive summaries generated by the parameters

si,j and si,j + ti,j = φi,j , or alternatively si,j and si,j/(si,j + ti,j) = pi,j . Both these

alternative exhaustive summaries would obtain the same general intrinsic parameter

redundancy result of Theorem 3.2 as shown by use of the reparameterisation theorem

of Theorem 3.2.
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B.2 Proof of the multiple capture-recapture-recovery sim-

pler exhaustive summary theorem

The proof of Theorem 4.1 is also given in the supplementary material in Hubbard

et al. (2014). The theorem states that a simpler exhaustive summary for the multiple

capture-recapture-recovery model consists of the terms si,j = φi,jpi+1,j+1 (for i =

1, . . . , n2 and j = i, . . . ,min(n1+i−1, n2)), ti,j = φi,j(1−pi+1,j+1) (for i = 1, . . . , n2−1

and j = i, . . . ,min(n1 + i− 1, n2− 1)) and ri,j = (1−φi,j)λi,j (for all i = 1, . . . , n2 and

j = i, . . . ,min(n1 + i− 1, n2)). The proof of Theorem 4.1 is split into three parts:

• In part one, we show that the original exhaustive summary consisting of the

life-histories can be reparameterised in terms of [s, t, r], utilising the reparame-

terisation theorem of Theorem 2.3.

• In part two, we create a new exhaustive summary, denoted as κuvwx, utilising the

reparameterisation theorem of Theorem 2.3. This is created so that the extension

theorem of Theorem 2.2 can be applied in order for results to be extended to any

dimension.

• In part three, we show that the reparameterisation κuvwx(s, t, r) is an exhaustive

summary, again utilising the reparameterisation theorem of Theorem 2.3.

We assume that none of the parameters are on boundary values, so that our param-

eter space is restricted to 0 < φi,j < 1, 0 < pi,j < 1 and 0 < λi,j < 1 for all values

of i and j for this theorem to apply. Theorem 2.3 states that if the derivative matrix

[∂κ(κnew)/∂κnew] is full rank then κnew is a new exhaustive summary.

Part one:

We show that any life-history can be expressed in terms of parameters si,j , ti,j and

ri,j . The probability of a particular life-history, hX , with individual capture/recovery

observations δk at time k, where an animal is first recaptured at time a and last

recaptured or recovered at time b, is given as

Pr(hX) =



b∏
k=a+1

φk−a,k−1 {δkpk−a+1,k + (1− δk)(1− pk−a+1,k)}χb−a+1,b if δb = 1,

b−1∏
k=a+1

φk−a,k−1 {δkpk−a+1,k + (1− δk)(1− pk−a+1,k)} if δb = 2.

×(1− φb−a,b−1)λb−a,b−1
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These probabilities can be reparameterised in terms of si,j = φi,jpi+1,j+1, ti,j = φi,j(1−
pi+1,j+1) and ri,j = (1− φi,j)λi,j to give

Pr(h) =



b∏
k=a+1

{δksk−a+1,k + (1− δk)tk−a+1,k}χb−a+1,b if δb = 1,

b−1∏
k=a+1

{δksk−a+1,k + (1− δk)tk−a+1,k} rb−a+1,b if δb = 2.

The probability of never being seen again, χi,j , with χi,n2+1 = 1, can be shown to be

a function of si,j , ti,j and ri,j , by first expanding χi,j to give

χi,j = (1− φi,j)(1− λi,j) + φi,j(1− pi+1,j+1) ·

[(1− φi+1,j+1)(1− λi+1,j+1) + φi+1,j+1(1− pi+2,j+2) ·

[(1− φi+2,j+2)(1− λi+2,j+2) + φi+2,j+2(1− pi+3,j+3) ·

[· · · [((1− φn2,n2)(1− λn2,n2) + φn2,n2(1− pn2+1,n2+1)] · · · ]]].

By noting that (1− φi,j)(1− λi,j) = (1− si,j − ti,j − ri,j)

χi,j = (1− si,j − ti,j − ri,j) + ti,j ·

[(1− si+1,j+1 − ti+1,j+1 − ri+1,j+1) + ti+1,j+1 ·

[(1− si+2,j+2 − ti+2,j+2 − ri+2,j+2) + ti+2,j+2 ·

[· · · [(1− sn2,n2 − rn2,n2)] · · · ]]].

Therefore all life-histories can be parameterised in terms of s, t and r only.

Part two:

We derive a new exhaustive summary consisting of following terms:

• uj =

n2−j+1∏
k=1

φk,k+j−1pk+1,k+j ,

for all j = 1, . . . , n2;

• vi,j =
(1− pi+1,j+1)

pi+1,j+1
,

for all i = 1, . . . , n2 − 1 and j = i, . . . ,min(i+ n1 − 1, n2 − 1);

• wi,j =
χi+1,j+1(

n2−j∏
k=1

φk+i,k+jpk+i+1,k+j+1

) ,

for all i = 1, . . . , n2 − 1 and j = i, . . . ,min(i+ n1 − 1, n2 − 1);
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• and xi,j =
ri,j(

n2−j∏
k=0

φk+i,k+jpk+i+1,k+j+1

) ,

for all i = 1, . . . , n2 and j = i, . . . ,min(i+ n1 − 1, n2).

We can reparameterise the original exhaustive summary consisting of the life-histories,

when there are n1 = n2 = 2 years of marking and recapture/recovery, as

κ =



Pr(111)

Pr(101)

Pr(011)

Pr(110)

Pr(112)

Pr(120)

Pr(102)

Pr(012)

Pr(100)

Pr(010)



=



φ1,1p2,2φ2,2p3,3

φ1,1p̄2,2φ2,2p3,3

φ1,2p2,3

φ1,1p2,2χ2,2

φ1,1p2,2φ̄2,2λ2,2

φ̄1,1λ1,1

φ1,1p̄2,2φ̄2,2λ2,2

φ̄1,2λ1,2

χ1,1

φ̄1,2λ̄1,2 + φ1,2p̄2,3



=



u1

u1v1,1

u2

u1w1,1

u1x2,2

u1x1,1

u1v1,1x2,2

u2x1,2

k9

1− u2 − u2x1,2



,

where k9 = 1− u1− u1v1,1− u1w1,1− u1x2,2− u1x1,1− u1v1,1x2,2 and φ̄ = (1−φ) and.

The reparameterisation is given as κuvwx = [u1, u2, v1,1, w1,1, x1,1, x1,2, x2,2]
T where the

derivative matrix is

[
∂κ

∂κuvwx

]
=



1 v1,1 0w1,1 x2,2 x1,1 v1,1x2,2 0 D1,9 0

0 0 1 0 0 0 0 x1,2 0 −1− x1,2
0 u1 0 0 0 0 u1x2,2 0 −u1(1 + x2,2) 0

0 0 0 u1 0 0 0 0 −u1 0

0 0 0 0 0 u1 0 0 −u1 0

0 0 0 0 0 0 0 u2 0 −u2
0 0 0 0 u1 0 u1v1,1 0 −u1(1 + v1,1) 0


,

has full rank 7 where D1,9 = −1− v1,1 + v1,1x2,2−x2,2−x1,1−w1,1. A modified PLUR

decomposition of [∂κ/∂κuvwx] shows this is valid for all values of u1, u2, v1,1 and w1,1

as long as u1 = φ1,1p2,2φ2,2p3,3 and u2 = φ1,2p2,3 are non-zero. This only occurs at

boundary values, which have been excluded from the parameter space. Therefore by

Theorem 2.3, when n1 = n2 = 2, κuvwx is an alternative exhaustive summary for the

model. Now consider extending the model firstly by adding another year of recapture



APPENDICES 245

so that n2 = 3, while keeping n1 = 2. The original exhaustive summary is then

κ =



Pr(1111)

Pr(1011)

Pr(0111)

Pr(1100)

Pr(1120)

Pr(1200)

Pr(1020)

Pr(0120)

Pr(1000)

Pr(0101)

Pr(1110)

Pr(1010)

Pr(0110)

Pr(1101)

Pr(1001)

Pr(0100)

Pr(1112)

Pr(1102)

Pr(1012)

Pr(1002)

Pr(0112)

Pr(0102)



=



u1

u1v1,1

u2

u1w1,1

u1x2,2

u1x1,1

u1v1,1x2,2

u2x1,2

k9

u2v1,2

u1w2,2

u1v1,1w2,2

u2w1,2

u1v2,2

u1v1,1v2,2

k16

u1x3,3

u1v2,2x3,3

u1v1,1x3,3

u1v1,1v2,2x3,3

u2x2,3

u2v1,2x2,3



,

where k9 = 1−u1−u1v1,1−u1w1,1−u1x2,2−u1x1,1−u1v1,1x2,2−u1w2,2−u1v1,1w2,2−
u1v2,2− u1v1,1v2,2− u1x3,3− u1v2,2x3,3− u1v1,1x3,3− u1v1,1v2,2x3,3 and k16 = 1− u2−
u2x1,2−u2v1,2−u2w1,2−u2x2,3−u2v1,2x2,3. We write κuvwx = [u1, u2, v1,1, v1,2, v2,2,

w1,1, w1,2, w2,2, x1,1, x1,2, x2,2, x2,3, x3,3]
T . The two-stage extension theorem Theorem
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3.1 is applied next. The first stage involves the exhaustive summary terms

κ1 =



u1

u1v1,1

u2

u1w1,1

u1x2,2

u1x1,1

u1v1,1x2,2

u2x1,2


,

with parameters θ1 = [u1, u2, v1,1, w1,1, x1,1, x1,2, x2,2]. The derivative matrix

[
∂κ1

∂θ1

]
=



1 v1,1 0 w1,1 x2,2 x1,1 v1,1x2,2 0

0 0 1 0 0 0 0 x1,2

0 u1 0 0 0 0 u1x2,2 0

0 0 0 u1 0 0 0 0

0 0 0 0 0 u1 0 0

0 0 0 0 0 0 0 u2

0 0 0 0 u1 0 u1v1,1 0


,

has full rank 7. The second stage examines the remaining exhaustive summary terms

κ2 =



k9

u2v1,2

u1w2,2

u1v1,1w2,2

u2w1,2

u1v2,2

u1v1,1v2,2

k16

u1x3,3

u1v2,2x3,3

u1v1,1x3,3

u1v1,1v2,2x3,3

u2x2,3

u2v1,2x2,3



,
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with parameters θ2 = [v1,2, v2,2, w1,2, w2,2, x2,3, x3,3]
T . The derivative matrix [∂κ2/∂θ2]

has full rank 6. Therefore by the two-stage extension theorem of Theorem 3.1, the

model can be extended in terms of years of recapture. Adding a year of marking so

n1 = 3 while n2 = 3 adds the following exhaustive summary terms

κ3 =


Pr(0011)

Pr(0010)

Pr(0012)

 =


φ1,3p2,4

1− φ1,3p2,4
(1− φ1,3)λ1,3

 =


u3

1− u3 − u3x1,3
u1x1,3

 ,
with parameters θ1 = [u3, x1,3]. The derivative matrix

[
∂κ3

∂θ3

]
=

[
1 −1− x1,3 x1,3

0 −u3 u3

]
,

has full rank 2. Therefore κuvwx is an exhaustive summary for any dimension.

Part three:

This part involves checking whether the derivative matrix [∂κuvwx(s, t, r)/∂(s, t, r)]

is full rank and then using the two-stage extension theorem of Theorem 3.1 to show it

is always full rank for larger dimensions. Starting with n1 = n2 = 2 we can reparame-

terise κuvwx in terms of s, t and r to get

κuvwx(s, t, r) =



u1

v1,1

w1,1

u2

x1,1

x1,2

x2,2


=



s1,1s2,2

t1,1/s1,1

(1− s2,2 − r2,2)/s2,2
s1,2

r1,1/s1,1s2,2

r1,2/s1,2

r2,2/s2,2


, (B.2)
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with parameter set κstr = [s1,1, s1,2, s2,2, t1,1, r1,1, r1,2, r2,2]
T . The derivative matrix

[
∂κuvwx(s, t, r)

∂κstr

]
=



s2,2− t1,1
s21,1

0 0− r1,1
s21,1s2,2

0 0

0 0 0 1 0
−r1,2
s1,2

0

s1,1 0 −1
s2,2
− 1−s2,2−r2,2

s22,2
0− r1,1

s1,1s22,2
0 − r2,2

s22,2

0 1
s1,1

0 0 0 0 0

0 0 0 0 1
s2,2s1,1

0 0

0 0 0 0 0 1
s1,2

0

0 0 − 1
s2,2

0 0 0 1
s2,2


,

has full rank 7. A modified PLUR decomposition of [∂κuvwx(s, t, r)/∂κstr] shows

this the model remains full rank for any value of s1,1, s1,2, s2,2, t1,1, r1,1, r1,2 or r2,2.

Therefore κuvwx(s, t, r) is an exhaustive summary when n1 = n2 = 2. If we extend the

model to add another year of recapture, the parameter set is

κuvwx(s, t, r) =



u1

u2

v1,1

v1,2

v2,2

w1,1

w1,2

w2,2

x1,1

x1,2

x2,2

x2,3

x3,3



=



s1,1s2,2s3,3

s1,2s2,3

t1,1/s1,1

t1,2/s1,2

t2,2/s2,2

(1− s3,3 − s3,3)/s3,3
(1− s2,3 − r2,3)/s2,3

{(1− s2,2 − t2,2 − r2,2) + t2,2 (1− s3,3)} /s2,2s3,3
r1,1/s1,1s2,2s3,3

r1,2/s1,2s2,3

r2,2/s2,2s3,3

r2,3/s2,3

r3,3/s3,3



,

with parameters κstr = [s1,1, s1,2, s2,2, s2,3, s3,3, t1,1, t1,2, t2,2, r1,1, r1,2, r2,2, r2,3, r3,3]
T .

Note that the terms u2, v2,2w1,2, x1,2 and x2,3 are identical to u1, v1,1, w1,1, x1,1 and

x2,2 respectively if s1,1 is re-labelled as s1,2, s2,2 as s2,3, t1,1 as t1,2, r1,1 as r1,2, and r2,2



APPENDICES 249

as r2,3. This can then form stage one of the two-stage extension theorem with

κc =



u2

v1,2

w1,2

x1,2

x2,2


=



s1,2s2,3

t1,2/s1,2

(1− s2,3 − r2,3)/s2,3
r1,2/s1,2s2,3

r2,3/s2,3


,

with parameters θ1 = [s1,2, s2,3, t1,2, r1,2, r2,3]. The derivative matrix

[
∂κ1

∂θ1

]
=



s2,3 − t1,2
s21,2

0 − r1,2
s21,2s2,3

0

s1,2 0 − 1
s2,3
− 1−s2,3−r2,3

s22,3
− r1,2
s1,2s22,3

r2,3
s22,3

0 1
s1,2

0 0 0

0 0 0 1
s1,2s2,3

0

0 0 −1
s2,3

0 1
s2,3


,

has full rank 5. The second stage involves the exhaustive summary terms

κ2 =



u1

v1,1

v2,2

w1,1

w2,2

x1,1

x2,2

x3,3


=



s1,1s2,2s3,3

t1,1/s1,1

t2,2/s2,2

(1− s3,3)/s3,3
{(1− s2,2 − t2,2 − r2,2) + t2,2 (1− s3,3)} /s2,2s3,3

r1,1/s1,1s2,2s3,3

r2,2/s2,2s3,3

r3,3/s3,3


,

with the parameter set θ2 = [s1,1s2,2, s3,3, t1,1, t2,2, r1,1, r2,2, r3,3]
T . The derivative ma-

trix [∂κ2/∂θ2] has full rank 5. Therefore by the two-stage extension theorem of The-

orem 3.1, the model can be extended in terms of years of recapture. Adding a year of

marking so n1 = 3 while n2 = 3 adds the following exhaustive summary terms

κ3 =

[
u3

x1,3

]
=

[
s1,3

r1,3/s1,3

]
,

with parameters θ1 = [s1,3, x1,3]. The derivative matrix

[
∂κ3

∂θ3

]
=

 1
−r1,3
s21,3

0 1
s1,3

 ,
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has full rank 2. Therefore s, t and r form an exhaustive summary for any dimension.

This then completes the proof of Theorem 4.1.

B.3 Proof of the intrinsic fidelity model results

We prove the results of Table 4.8 in three steps:

• In part one, we show that the original exhaustive summary where n2 = 2 con-

sisting of the fidelity life-histories can be reparameterised in terms of [t,v,u,w],

utilising the reparameterisation theorem of Theorem 2.3. We can then show that

this simpler exhaustive summary is full rank.

• In part two, we consider extending the model by an extra recapture and recovery

occasion so that n2 = 3. We show this extension is full rank by splitting the

exhaustive summary into two parts by considering relabelling some of the life-

histories. We then achieve the final result for the fully time-dependent case.

• In part three, we consider other models which are not fully time-dependent and

derive results for these models.

We assume for these results that none of the parameters are on boundary values so our

parameter space only includes the case where none of the parameters are equal to 0 or

1. If some of the parameters are on boundary values, this could change the parameter

redundancy of the model.

Part one:

Begin with the case where n1 = n2 = 2 with two recapture occasions and three

recovery occasions and where all of the parameters are time-dependent. All of the
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possible life-histories are given below:

κ =



Pr(300)

Pr(130)

Pr(120)

Pr(113)

Pr(112)

Pr(111)

Pr(110)

Pr(103)

Pr(102)

Pr(101)

Pr(100)

Pr(030)

Pr(013)

Pr(012)

Pr(011)

Pr(010)

Pr(003)

Pr(001)



=



(1− S1)λ1
S1F1p2(1− S2)λ2
S1γ1,2(1− S2)λ2

S1F1p2S2F2p3(1− S3)λ3
S1F1p2S2γ2,3(1− S3)λ3

S1F1p2S2F2p3χ3

S1F1p2χ2

S1F1(1− p2)S2F2p3(1− S3)λ3
S1S2γ1,3(1− S3)λ3

S1F1(1− p2)S2F2p3χ3

χ1

(1− S2)λ2
S2F2p3(1− S3)λ3
S2γ2,3(1− S3)λ3

S2F2p3χ3

χ2

(1− S3)λ3
χ3



,

where

χj = (1− Sj)(1− λj) + Sj(1− Fj)Ψj+1 + SjFj(1− pj+1)χj+1,

with χn2+1 = (1− Sn2+1)(1− λn2+1) + Sn2+1, where

Ψj = (1− Sj)(1− λj) + SjΨj+1,

with Ψn2+1 = 1, and

γa,b = (1− Fa) + Fa(1− pa+1)γa+1,b,

with γb,b = 1. These formulae were previously given in Section 4.8.
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Now we can reparameterise this model by using the following parameters:

ti = Fipi+1 for i = 1, . . . , n2,

ui = Fi(1− pi+1) for i = 1, . . . , n2 − 1,

vi = (1− Si)λi for i = 1, . . . , n2 + 1, and

wi = (1− Si)(1− λi) for i = 1, . . . , n2.

Further note that we can obtain individual original parameters as

ti + ui = Fipi+1 + Fi(1− pi+1)

= Fi,

and

1− vi − wi = 1− (1− Si)λi − (1− Si)(1− λi)

= 1− (λi − Siλi)− (1− Si − λi + Siλi)

= Si.

This means the exhaustive summary can alternatively be written as

κs =



Pr(300)

Pr(130)

Pr(120)

Pr(113)

Pr(112)

Pr(111)

Pr(110)

Pr(103)

Pr(102)

Pr(101)

Pr(100)

Pr(030)

Pr(013)

Pr(012)

Pr(011)

Pr(010)

Pr(003)

Pr(001)



=



v1

(1− v1 − w1)t1v2

(1− v1 − w1)γ1,2v2

(1− v1 − w1)t1(1− v2 − w2)t2v3

(1− v1 − w1)t1(1− v2 − w2)γ2,3v3

(1− v1 − w1)t1(1− v2 − w2)t2χ3

(1− v1 − w1)t1χ2

(1− v1 − w1)u1(1− v2 − w2)t2v3

(1− v1 − w1)(1− v2 − w2)γ1,3v3

(1− v1 − w1)u1(1− v2 − w2)t2χ3

χ1

v2

(1− v2 − w2)t2v3

(1− v2 − w2)γ2,3v3

(1− v2 − w2)t2χ3

χ2

v3

χ3



, (B.3)
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where

γi,j = (1− ti − ui) + uiγi+1,j , (B.4)

with γj,j = 1, and

χj = wj + (1− vj − wj)(1− tj − uj)Ψj+1 + (1− vj − wj)ujχj+1, (B.5)

with χn2+1 = wn2+1 + (1− vn2+1 − wn2+1) = 1− vn2+1, where

Ψj = wj + (1− vj − wj)Ψj+1,

with Ψn2+1 = wn2+1+(1−vn2+1−wn2+1) = 1−vn2+1. Observe that we do not require

a un2 term for this reparameterisation as

χn2 = wn2 + (1− vn2 − wn2)(1− tn2 − un2)Ψn2+1 + (1− vn2 − wn2)un2χn2+1

= wn2 + (1− vn2 − wn2)(1− tn2 − un2)(1− vn2+1) + (1− vn2 − wn2)un2(1− vn2+1)

= wn2 + (1− vn2 − wn2)(1− vn2+1) {(1− tn2 − un2) + un2}

= wn2 + (1− vn2 − wn2)(1− vn2+1)(1− tn2).

This algebra means we can eventually reparameterise the original model containing

10 parameters by using 8 different parameters given as θs = [t1, t2, u1, v1, v2, v3,

w1, w2]
T . This gives the derivative matrix, Ds, when we differentiate the simpler

exhaustive summary, κs, with respect to its parameters as

0 (1− v1 − w1)v2 −(1− v1 − w1)v2 (1− v1 − w1)(1− v2 − w2)t2v3 · · · 0 0

0 0 0 (1− v1 − w1)t1(1− v2 − w2)v3 · · · 0 0

0 0 0 0 · · · 0 0

1 −t1v2 −(1− t1)v2 −(1− v2 − w2)t2v3 · · · 0 0

0 (1− v1 − w1)t1 (1− v1 − w1)(1− t1) −(1− v1 − w1)t1t2v3 · · · 0 0

0 0 0 (1− v1 − w1)t1(1− v2 − w2)t2 · · · 1 −1

0 −t1v2 −(1− t1)v2 −t1(1− v2 − w2)t2v3 · · · 0 0

0 0 0 −(1− v1 − w1)t1t2v3 · · · 0 0


.

(B.6)

This derivative matrix has rank 8 and is full rank. This shows that the original

exhaustive summary containing 2 recapture and 3 recovery occasions is full rank. A

modified PLUR decomposition of [∂κs/∂(t,u,v,w)] shows this the model remains full

rank for any non-boundary values.
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Part two:

Now let us add an additional recapture and recovery occasion so that n2 = 3.

Consider the partition where the exhaustive summary is in two parts where κ =

[κ1,κ2]
T . Let κ1 be the life-histories of the animals which are marked in the second

capture occasion and beyond as

κ1 =



Pr(0300)

Pr(0130)

Pr(0120)

Pr(0113)

Pr(0112)

Pr(0111)

Pr(0110)

Pr(0103)

Pr(0102)

Pr(0101)

Pr(0100)

Pr(0030)

Pr(0013)

Pr(0012)

Pr(0011)

Pr(0010)

Pr(0003)

Pr(0001)



=



(1− S2)λ2
S2F2p3(1− S3)λ3
S2γ2,3(1− S3)λ3

S2F2p3S3F3p4(1− S4)λ4
S2F2p3S3γ3,4(1− S4)λ4

S2F2p3S3F3p4χ4

S2F2p3χ3

S2F2(1− p3)S3F3p4(1− S4)λ4
S2S3γ2,4(1− S4)λ4

S2F2(1− p3)S3F3p4χ4

χ2

(1− S3)λ3
S3F3p4(1− S4)λ4
S3γ3,4(1− S4)λ4

S3F3p4χ4

χ3

(1− S4)λ4
χ4



.
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κ1 can be reparameterised in terms of [t,v,u,w] as

κs,1 =



Pr(0300)

Pr(0130)

Pr(0120)

Pr(0113)

Pr(0112)

Pr(0111)

Pr(0110)

Pr(0103)

Pr(0102)

Pr(0101)

Pr(0100)

Pr(0030)

Pr(0013)

Pr(0012)

Pr(0011)

Pr(0010)

Pr(0003)

Pr(0001)



=



v2

(1− v2 − w2)t2v3

(1− v2 − w2)γ2,3v3

(1− v2 − w2)t2(1− v3 − w3)t3v4

(1− v2 − w2)t2(1− v3 − w3)γ3,4v4

(1− v2 − w2)t2(1− v3 − w3)t3χ4

(1− v2 − w2)t2χ3

(1− v2 − w2)u2(1− v3 − w3)t3v4

(1− v2 − w2)(1− v3 − w3)γ2,4v4

(1− v2 − w2)u2(1− v3 − w3)t3χ4

χ2

v3

(1− v3 − w3)t3v4

(1− v3 − w3)γ3,4v4

(1− v3 − w3)t3χ4

χ3

v4

χ4



, (B.7)

where γi,j and χi are as given in Equations (B.4) and (B.5) respectively. If we compare

κs,1 above in Equation (B.7) to κs in Equation (B.3), we find that these two exhaustive

summaries are the same if we use a relabelling system on κs,1 so that

t3 7→ t2

t2 7→ t1

u2 7→ u1

v4 7→ v3

v3 7→ v2

v2 7→ v1

w3 7→ w2

w2 7→ w1.

This relabelling further means that the expressions χ and γ are given as χi 7→ χi−1

and γi,j 7→ γi−1,j−1. The derivative matrix Ds,1 = [∂κ1/∂θs,1] with respect to the
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parameters θs,1 = [t1, t2, u1, v1, v2, v3, w1, w2]
T is the same as given in Equation

(B.6) which is shown to be full rank.

Now consider the remaining exhaustive terms in κ2 where

κ2 =



Pr(3000)

Pr(1300)

Pr(1200)

Pr(1130)

Pr(1120)

Pr(1113)

Pr(1112)

Pr(1111)

Pr(1110)

Pr(1103)

Pr(1102)

Pr(1101)

Pr(1100)

Pr(1030)

Pr(1020)

Pr(1013)

Pr(1012)

Pr(1011)

Pr(1010)

Pr(1003)

Pr(1002)

Pr(1001)

Pr(1000)



=



(1− S1)λ1
S1F1p2(1− S2)λ2
S1γ1,2(1− S2)λ2

S1F1p2S2F2p3(1− S3)λ3
S1F1p2S2γ2,3(1− S3)λ3

S1F1p2S2F2p3S3F3p4(1− S4)λ4
S1F1p2S2F2p3S3γ3,4(1− S4)λ4

S1F1p2S2F2p3S3F3p4χ4

S1F1p2S2F2p3χ3

S1F1p2S2F2(1− p3)S3F3p4(1− S4)λ4
S1F1p2S2S3γ2,4(1− S4)λ4

S1F1p2S2F2(1− p3)S3F3p4χ4

S1F1p2χ2

S1F1(1− p2)S2F2p3(1− S3)λ3
S1S2γ1,3(1− S3)λ3

S1F1(1− p2)S2F2p3S3F3p4(1− S4)λ4
S1F1(1− p2)S2F2p3S3γ3,4(1− S4)λ4

S1F1(1− p2)S2F2p3S3F3p4χ4

S1F1(1− p2)S2F2p3χ3

S1F1(1− p2)S2F2(1− p3)S3F3p4(1− S4)λ4
S1S2S3γ1,4(1− S4)λ4

S1F1(1− p2)S2F2(1− p3)S3F3p4χ4

χ1



,
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which can be reparameterised as defined previously as

κs,2 =



Pr(3000)

Pr(1300)

Pr(1200)

Pr(1130)

Pr(1120)

Pr(1113)

Pr(1112)

Pr(1111)

Pr(1110)

Pr(1103)

Pr(1102)

Pr(1101)

Pr(1100)

Pr(1030)

Pr(1020)

Pr(1013)

Pr(1012)

Pr(1011)

Pr(1010)

Pr(1003)

Pr(1002)

Pr(1001)

Pr(1000)



=



v1

(1− v1 − w1)t1v2

(1− v1 − w1)γ1,2v2

(1− v1 − w1)t1(1− v2 − w2)t2v3

(1− v1 − w1)t1(1− v2 − w2)γ2,3v3

(1− v1 − w1)t1(1− v2 − w2)t2(1− v3 − w3)t3v4

(1− v1 − w1)t1(1− v2 − w2)t2(1− v3 − w3)γ3,4v4

(1− v1 − w1)t1(1− v2 − w2)t2(1− v3 − w3)t3χ4

(1− v1 − w1)t1(1− v2 − w2)t2χ3

(1− v1 − w1)t1(1− v2 − w2)u2(1− v3 − w3)t3v4

(1− v1 − w1)t1(1− v2 − w2)(1− v3 − w3)γ2,4v4

(1− v1 − w1)t1(1− v2 − w2)u2(1− v3 − w3)t3χ4

(1− v1 − w1)t1χ2

(1− v1 − w1)u1(1− v2 − w2)t2v3

(1− v1 − w1)(1− v2 − w2)γ1,3v3

(1− v1 − w1)u1(1− v2 − w2)t2(1− v3 − w3)t3v4

(1− v1 − w1)u1(1− v2 − w2)t2(1− v3 − w3)γ3,4v4

(1− v1 − w1)u1(1− v2 − w2)t2(1− v3 − w3)t3χ4

(1− v1 − w1)u1(1− v2 − w2)t2χ3

(1− v1 − w1)u1(1− v2 − w2)u2(1− v3 − w3)t3v4

(1− v1 − w1)(1− v2 − w2)(1− v3 − w3)γ1,4v4

(1− v1 − w1)u1(1− v2 − w2)u2(1− v3 − w3)t3χ4

χ1



.

(B.8)

This exhaustive summary contains the extra parameters θs,2 = [t1, u1, v1, w1]
T as κs,1

contained all the remaining parameters in κs,2 before the parameters were relabelled.

If we find the derivative matrix Ds,2 when you differentiate κs,2 with respect to its

parameters θs,2, this is given as
0 (1− v1 − w1)v2 −(1− v1 − w1)v2 (1− v1 − w1)(1− v2 − w2)t2v3 · · ·
0 0 0 0 · · ·
1 −t1v2 −(1− t1)v2 −t1(1− v2 − w2)t2v3 · · ·
0 −t1v2 −(1− t1)v2 −t1(1− v2 − w2)t2v3 · · ·

 ,

this derivative matrix has rank 4 and is full rank. As Ds,1 is full rank and the ex-

tended matrix Ds,2 is also full rank, this then proves the reparameterised exhaustive
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summary is full rank for any increase of n2. As we have reparameterised the model

with two fewer parameters in it, the final parameter redundancy result for the fully

time-dependent S(t) F (t) p(t) λ(t) capture-recapture-recovery fidelity model is that

the model has an intrinsic parameter deficiency of 2.

Part three:

We have shown in part two that we can create a simpler exhaustive summary using

the parameters [t, v, u, w]. We can now use this simpler exhaustive summary to create

general intrinsic parameter redundancy results for different models where we consider

relaxing some of the model parameters so they have constant probabilities instead of

time-dependent ones. The simpler exhaustive summary for when n2 = 2 is given by

the exhaustive summary

κ =



t1

t2

u1

v1

v2

v3

w1

w2


=



F1p2

F2p3

F1(1− p2)
(1− S1)λ1
(1− S2)λ2
(1− S3)λ3

(1− S1)(1− λ1)
(1− S2)(1− λ2)


.

If we find the derivative matrix with respect to the parameters θ = [F1, F2, S1, S2,

S3, p2, p3, λ1, λ2, λ3]
T this matrix

[
∂κ

∂θ

]
=



p2 0 (1− p2) 0 0 0 0 0

0 p3 0 0 0 0 0 0

0 0 0 −λ1 0 0 −(1− λ1) 0

0 0 0 0 −λ2 0 0 −(1− λ2)
0 0 0 0 0 −λ3 0 0

F1 0 −F1 0 0 0 0 0

0 F2 0 0 0 0 0 0

0 0 0 (1− S1) 0 0 −(1− S1) 0

0 0 0 0 (1− S2) 0 0 −(1− S2)
0 0 0 0 0 (1− S3) 0 0



,
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has a rank of 8 with a parameter deficiency of 2. If we let s1 = Fn2pn2+1 and s2 =

(1 − Sn2+1)λn2+1, then the derivative matrix with respect to the new parameter set

θs = [F1, S1, S2, p2, λ1, λ2, s1, s2]
T is equal to

[
∂κ

∂θs

]
=



p2 0 (1− p2) 0 0 0 0 0

0 0 0 −λ1 0 0 −(1− λ1) 0

0 0 0 0 −λ2 0 0 −(1− λ2)
F1 0 −F1 0 0 0 0 0

0 0 0 (1− S1) 0 0 −(1− S1) 0

0 0 0 0 (1− S2) 0 0 −(1− S2)
0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0


,

which has full rank 8. This shows the previous result that the fully time-dependent

fidelity model has a parameter deficiency of 2.

Now consider the case where either the fidelity parameters, Fi, or the recapture

parameters, pi+1, are constant. In this case, the above reparameterisation where

s1 = Fn2pn2+1 now contains one constant parameter and one new parameter, e.g.

if the fidelity parameters are now constant then s1 = Fpn2+1. However for this exam-

ple, as the fidelity parameters are now constant, the parameter F can be obtained by

only the use of the parameters t1 and u1, as t1+u1 = Fp2+F (1−p2) = F . So therefore

as s1 now only contains one new parameter pn2 , we lose the parameter redundancy

in the model caused by the fidelity and recapture parameters being confounded. This

means if the either the fidelity parameters or the recapture parameters are constant

then the intrinsic parameter redundancy of the model is reduced by one.

Similar logic to above applies if either the survival parameters, Si, or the recovery

parameters, λi+1, are constant. For example if the survival parameters are constant,

s2 = (1 − S)λn2+1 now contains only one new parameter, and we lose the parameter

redundancy in the model caused by the survival and recovery parameters being con-

founded. This means if the either the survival parameters or the recovery parameters

are constant then parameter redundancy is reduced by one.

If the fidelity parameters and the recapture parameters are both constant, s1 =

F × p can be estimated by any of the previous parameters ti so we also lose the
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confounding caused by the fidelity and recapture parameters as well. This means if

both the fidelity parameters, Fi, and the recapture parameters, pi+1, are constant, then

parameter redundancy is again reduced by one. This also applies if both the survival

parameters, Si, and the recovery parameters, λi, are constant. This then completes

the proof of the results given in Table 4.8.

B.4 Proof of the intrinsic occupancy model theorem

Theorem 5.1 part a) states that the occupancy model with at least two surveys

per season is not intrinsically parameter redundant. Theorem 5.1 part b) gives that

a simpler exhaustive summary for the occupancy model with multiple seasons and

surveys can consist of the terms st,j = ϕ
[1,1]
t−1 pt,j (for t = 2, . . . , T and j = 1, . . . , kt)

where s1,j = ϕ
[1]
0 p1,j (for j = 1, . . . , kt), rt = ϕ

[1,1]
t−1

∏kt
j=1 pt,j (for t = 2, . . . , T and

j = 1, . . . , kt) where r1 = ϕ
[1]
0

∏k1
j=1 p1,j (for j = 1, . . . , kt) and ut = ϕ

[0,1]
t /ϕ

[1,1]
t (for

t = 1, . . . , T − 1). The proof of Theorem 5.1 is split into four parts:

• In part one, we show that the original exhaustive summary consisting of the

occupancy-histories can be reparameterised in terms of [s, r,u], utilising the repa-

rameterisation theorem of Theorem 2.3.

• In part two, we create a new exhaustive summary, denoted as κvwx, utilising

the reparameterisation theorem of Theorem 2.3. This is created so that the

standard extension theorem of Theorem 2.2 can be applied in order for results

to be extended to any dimension.

• In part three, we show that the reparameterisation [s, r,u] is an exhaustive sum-

mary, again utilising the reparameterisation theorem of Theorem 2.3. This shows

part b) of the theorem.

• In part four, we then use the standard extension theorem of Theorem 2.2 to

prove part a) of the theorem using the simpler exhaustive summary we have

proved in steps one to three. Starting with an initial one-season model with two

surveys, we consider extending (trivially) the number of surveys in a season and

then extending the number of seasons in the model. We consider three cases,

where the new season has two or more surveys, the case where the new season

has one survey, and the case where the new season has no new surveys, to prove

the theorem’s final result.

We assume that none of the parameters are on boundary values, so that our parameter

space is restricted to 0 < pt,j < 1, 0 < ϕ
[1]
0 < 1, 0 < ϕ

[1,1]
t < 1 and 0 < ϕ

[0,1]
t < 1 for all
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values of t and j for this theorem to apply. Theorem 2.3 states that if the derivative

matrix [∂κ(κnew)/∂κnew] is full rank then κnew is a new exhaustive summary.

Part one:

The reparameterisations used in this part are st,j = ϕ
[1,1]
t−1 pt,j , rt = ϕ

[1,1]
t−1

∏kt
j=1 pt,j

(where s1,j = ϕ
[1]
0 p1,j and r1 = ϕ

[1]
0

∏k1
j=1 p1,j for the t = 1 case) and ut = ϕ

[0,1]
t /ϕ

[1,1]
t .

• We can show ϕ
[1]
0 is a product of the reparameterised parameters as

ϕ
[1]
0 =

(∏k1
j=1 s1,j

r1

)1/(k1−1)

.

For example, if there were 3 surveys in the first season, we could achieve ϕ
[1]
0 by

setting

(∏k1
j=1 s1,j

r1

)1/(k1−1)

=

(
s1,1s1,2s1,3

r1

)1/(3−1)

=

(
ϕ
[1]
0 p1,1ϕ

[1]
0 p1,2ϕ

[1]
0 p1,3

ϕ
[1]
0 p1,1p1,2p1,3

)1/2

=
(
ϕ
[1]
0 ϕ

[1]
0

)1/2
= ϕ

[1]
0 .

• In a similar method to the previous bullet point, we can see that

ϕ
[1,1]
t =

(∏kt+1

j=1 st+1,j

rt+1

)1/(kt+1−1)

,

for any t = 1, . . . , T − 1.

• The ϕ
[0,1]
t occurs in the occupancy-history when a species becomes present from

a period when the species has been absent (i.e. colonisation). This parameter

on its own is the only time the reparameterisation parameter ut = ϕ
[0,1]
t /ϕ

[1,1]
t is
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needed in the model, i.e.

ϕ
[0,1]
t = ut ·

(∏kt+1

j=1 st+1,j

rt+1

)1/(kt+1−1)

=

(
ϕ
[0,1]
t

ϕ
[1,1]
t

)
· ϕ[1,1]

t (as seen in the previous bullet)

= ϕ
[0,1]
t ,

for any t = 1, . . . , T − 1.

• A single pt,j can be found by performing the calculation

pt,j = st,j

(∏kt
i=1 st,i
rt

)−1/(kt−1)
.

For example, if we wanted the parameter p2,3 where there are 4 surveys in the

second season, then

st,j ·

(∏kt
i=1 st,i
rt

)−1/kt−1
= s2,3 ·

(
s2,1s2,2s2,3s2,4

r2

)−1/(4−1)

= ϕ
[1,1]
1 p2,3 ·

(
ϕ
[1,1]
1 p2,1ϕ

[1,1]
1 p2,2ϕ

[1,1]
1 p2,3ϕ

[1,1]
1 p2,4

ϕ
[1,1]
1 p2,1p2,2p2,3p2,4

)−1/3
= ϕ

[1,1]
1 p2,3 ·

(
ϕ
[1,1]
1 ϕ

[1,1]
1 ϕ

[1,1]
1

)−1/3
= ϕ

[1,1]
1 p2,3 ·

(
1

ϕ
[1,1]
1

)
= p2,3.

As every original parameter can be expressed as a product of the reparameterised

parameters [s, r,u], then every original exhaustive summary term must be a product

of the reparameterised parameters [s, r,u] as they only contain the original parameters.

Part two:

We derive a new exhaustive summary which consists of the following terms:

• v = ϕ
[1]
0

(
T∏
t=2

ϕ
[1,1]
t−1

) T∏
t=1

kt∏
j=1

pt,j

,

which represents the history of being detected during every survey in the study;
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• wt,j =
(1− pt,j)
pt,j

,

for all j = 1, . . . , kt and t = 1, . . . , T ;

• and x[a,b] =
ϕ
[1,1]
a−1

∏ka
j=1(1− pa,j)fa+1 + (1− ϕ[1,1]

a−1)ga+1∏b
t=a ϕ

[1,1]
t−1

∏kt
j=1 pt,j

,

which is used for multiple seasons of non-detection going from season a to season

b (where 2 ≤ a, b ≤ T with a ≤ b), with the recursive functions f and g given by

ft = ϕ
[1,1]
t−1

kt∏
j=1

(1− pt,j)ft+1 + (1− ϕ[1,1]
t−1 )gt+1, and

gt = ϕ
[0,1]
t−1

kt∏
j=1

(1− pt,j)ft+1 + (1− ϕ[0,1]
t−1 )gt+1,

where fb+1 = 1, and gb+1 = ϕ
[0,1]
b /ϕ

[1,1]
b if b < T with gb+1 = 1 when b = T .

For x[1,b], then the function f is equal to

f1 = ϕ
[1]
0

k1∏
j=1

(1− p1,j)f2 + (1− ϕ[1]
0 )g2.

Also observe that a simpler form arises when a = b, i.e. when there is only one

season of non-detection between two seasons of detection, as

x[a,a] =
ϕ
[1,1]
a−1

∏ka
j=1(1− pa,j) + (1− ϕ[1,1]

a−1)ϕ
[0,1]
a

ϕ
[1,1]
a

ϕ
[1,1]
a−1

∏ka
j=1 pt,j

,

where ϕ
[0,1]
a /ϕ

[1,1]
a does not appear in x[a,a] when a = T . This complex form

for x[a,b] stems from the fact that even though a species is not detected in the

seasons [a, b], the species could potentially go through periods of extinction and

colonisation unknown to us due to the lack of detections in these seasons.

We can now reparameterise the original exhaustive summary consisting of the

occupancy-histories, when there are two seasons of detection with two surveys per
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season, as

κ =



Pr(11|11)

Pr(11|10)

Pr(11|01)

Pr(11|00)

Pr(10|11)

Pr(10|10)

Pr(10|01)

Pr(10|00)

Pr(01|11)

Pr(01|10)

Pr(01|01)

Pr(01|00)

Pr(00|11)

Pr(00|10)

Pr(00|01)

Pr(00|00)



=



ϕ
[1]
0 p1,1p1,2ϕ

[1,1]
1 p2,1p2,2

ϕ
[1]
0 p1,1p1,2ϕ

[1,1]
1 p2,1p̄2,2

ϕ
[1]
0 p1,1p1,2ϕ

[1,1]
1 p̄2,1p2,2

ϕ
[1]
0 p1,1p1,2(ϕ

[1,1]
1 p̄2,1p̄2,2 + ϕ̄

[1,1]
1 )

ϕ
[1]
0 p1,1p̄1,2ϕ

[1,1]
1 p2,1p2,2

ϕ
[1]
0 p1,1p̄1,2ϕ

[1,1]
1 p2,1p̄2,2

ϕ
[1]
0 p1,1p̄1,2ϕ

[1,1]
1 p̄2,1p2,2

ϕ
[1]
0 p1,1p̄1,2(ϕ

[1,1]
1 p̄2,1p̄2,2 + ϕ̄

[1,1]
1 )

ϕ
[1]
0 p̄1,1p1,2ϕ

[1,1]
1 p2,1p2,2

ϕ
[1]
0 p̄1,1p1,2ϕ

[1,1]
1 p2,1p̄2,2

ϕ
[1]
0 p̄1,1p1,2ϕ

[1,1]
1 p̄2,1p2,2

ϕ
[1]
0 p̄1,1p1,2(ϕ

[1,1]
1 p̄2,1p̄2,2 + ϕ̄

[1,1]
1 )

(ϕ
[1]
0 p̄1,1p̄1,2 + ϕ̄

[1]
0 ϕ

[0,1]
1 /ϕ

[1,1]
1 )ϕ

[1,1]
1 p2,1p2,2

(ϕ
[1]
0 p̄1,1p̄1,2 + ϕ̄

[1]
0 ϕ

[0,1]
1 /ϕ

[1,1]
1 )ϕ

[1,1]
1 p2,1p̄2,2

(ϕ
[1]
0 p̄1,1p̄1,2 + ϕ̄

[1]
0 ϕ

[0,1]
1 /ϕ

[1,1]
1 )ϕ

[1,1]
1 p̄2,1p2,2

{ϕ[1]
0 p̄1,1p̄1,2(ϕ

[1,1]
1 p̄2,1p̄2,2 + ϕ̄

[1,1]
1 )}+ ϕ̄

[1]
0 (ϕ

[0,1]
1 p̄2,1p̄2,2 + ϕ̄

[0,1]
1 )



,
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where ϕ̄ = (1− ϕ), which can be expressed as

κ =



Pr(11|11)

Pr(11|10)

Pr(11|01)

Pr(11|00)

Pr(10|11)

Pr(10|10)

Pr(10|01)

Pr(10|00)

Pr(01|11)

Pr(01|10)

Pr(01|01)

Pr(01|00)

Pr(00|11)

Pr(00|10)

Pr(00|01)

Pr(00|00)



=



v

vw2,2

vw2,1

vx[2,2]

vw1,2

vw1,2w2,2

vw1,2w2,1

vw1,2x[2,2]

vw1,1

vw1,1w2,2

vw1,1w2,1

vw1,1x[2,2]

vx[1,1]

vx[1,1]w2,2

vx[1,1]w2,1

vx[1,2]



.

The reparameterisation is given as κvwx = [v, w1,1, w1,2, w2,1, w2,2, x[1,1], x[1,2], x[2,2]]
T

where the derivative matrix [∂κ/∂κvwx] is equal to
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

1 w2,2 w2,1 x2,2 w1,2 w1,2w2,2 w1,2w2,1 w1,2x[2,2] · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 v vw2,2 vw2,1 vx2,2 · · ·
0 0 v 0 0 0 vw1,2 0 · · ·
0 v 0 0 0 vw1,2 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 · · ·
0 0 0 v 0 0 0 vw1,2 · · ·

· · · w1,1 w1,1w2,2 w1,1w2,1 w1,1x[2,2] x[1,1] w2,2x[1,1] w2,1x[1,1] x[1,2]

· · · v vw2,2 vw2,1 vx[2,2] 0 0 0 0

· · · 0 0 0 0 0 0 0 0

· · · 0 0 vw1,1 0 0 0 vx[1,1] 0

· · · 0 vw1,1 0 0 0 vx[1,1] 0 0

· · · 0 0 0 0 v vw2,2 vw2,1 0

· · · 0 0 0 0 0 0 0 0

· · · 0 0 0 vw1,1 0 0 0 0


,

and it has full rank 8. A modified PLUR decomposition of [∂κ/∂κvwx] shows that this

is valid for all values of u1, u2, v1,1 and w1,1 apart from any of the parameters being

equal to zero. This only occurs at a boundary and the parameter space has already

been restricted to exclude such boundary values. Therefore by Theorem 2.3, when

there are two seasons in the study with two surveys per season, κvwx is an alternative

exhaustive summary for the model.
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Now consider extending the model firstly by adding a survey for each season. The

original exhaustive summary is then

κ =



Pr(111|111)

Pr(111|110)

Pr(111|101)

Pr(111|011)

Pr(111|100)

Pr(111|010)

Pr(111|001)

Pr(111|000)
...

Pr(001|000)

Pr(000|111)

Pr(000|110)

Pr(000|101)

Pr(000|011)

Pr(000|100)

Pr(000|010)

Pr(000|001)

Pr(000|000)



=



v

vw2,3

vw2,2

vw2,1

vw2,2w2,3

vw2,1w2,3

vw2,1w2,2

vx[2,2]
...

vw1,1w1,2x[2,2]

vx[1,1]

vx[1,1]w2,3

vx[1,1]w2,2

vx[1,1]w2,1

vx[1,1]w2,2w2,3

vx[1,1]w2,1w2,3

vx[1,1]w2,1w2,2

vx[1,2]



.

This uses the reparameterisation κvwx = [v, w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, x[1,1],

x[1,2], x[2,2]]
T . We now use the two-stage extension theorem of Theorem 3.1. The first

stage involves the exhaustive summary terms

κ1 =



v

vw1,1

vw1,2

vw2,1

vw2,2

vx[2,2]

vw1,1x[2,2]

vw1,2x[2,2]

vw2,1x[1,1]

vw2,2x[1,1]

vx[1,2]



,
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with parameters θ1 = [v, w1,1, w1,2, w2,1, w2,2, x[1,1], x[1,2], x[2,2]]. The derivative matrix

[∂κ1/∂θ1] is equal to

1 w1,1 w1,2 w2,1 w2,2 x[2,2] w1,1x[2,2] w1,2x[2,2] w2,1x[1,1] w2,2x[1,1] x[1,2]

0 v 0 0 0 0 vx[2,2] 0 0 0 0

0 0 v 0 0 0 0 vx[2,2] 0 0 0

0 0 0 v 0 0 0 0 vx[1,1] 0 0

0 0 0 0 v 0 0 0 0 vx[1,1] 0

0 0 0 0 0 0 0 v vw2,1 vw2,2 0

0 0 0 0 0 0 0 0 0 0 v

0 0 0 0 0 0 vw1,1 vw1,2 0 0 0



and has full rank 8. The second stage examines the remaining exhaustive summary

terms denoted as κ2 (not given here to save space), involving the terms which involve

the additional parameters θ2 = [w1,3, w2,3]
T . The derivative matrix [∂κ2/∂θ2] has full

rank 2, so the model can be extended in terms of additional surveys.

Next consider the extension of an extra season so there are three seasons with two

surveys in each season. The original exhaustive summary is then

κ =



Pr(11|11|11)

Pr(11|11|10)

Pr(11|11|01)

Pr(11|11|00)

Pr(11|10|11)

Pr(11|01|11)

Pr(11|00|11)

Pr(10|11|11)

Pr(01|11|11)

Pr(00|11|11)
...

Pr(00|10|00)

Pr(11|00|00)

Pr(10|00|00)

Pr(01|00|00)

Pr(00|00|00)



=



v

vw3,2

vw3,1

vx[3,3]

vw2,2

vw2,1

vx[2,2]

vw1,2

vw1,1

vx[1,1]
...

vx[1,1]w2,2x[3,3]

vx[2,3]

vw1,2x[2,3]

vw1,1x[2,3]

vx[1,3]



.
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This uses the reparameterisation κvwx = [v, w1,1, w1,2, w2,1, w2,2, w3,1, w3,2, x[1,1],

x[1,2], x[1,3], x[2,2], x[2,3], x[3,3]]
T . We now use the two-stage extension theorem of

Theorem 3.1. The first stage involves the exhaustive summary terms

κ1 =



v

vw1,1

vw1,2

vw2,1

vw2,2

vx[2,2]

vw1,1x[2,2]

vw1,2x[2,2]

vw2,1x[1,1]

vw2,2x[1,1]

vx[1,2]



,

with parameters θ1 = [v, w1,1, w1,2, w2,1, w2,2, x[1,1], x[1,2], x[2,2]]. This is the same as κ1

when considering the extension of more surveys, and the derivative matrix there was

shown to be full rank 8. The second stage examines the remaining exhaustive summary

terms denoted as κ2 (not given here to save space), involving the terms which involve

the additional parameters θ2 = [w3,1, w3,2, x[1,3], x[2,3], x[3,3]]
T . The derivative matrix

[∂κ2/∂θ2] has full rank 5, so the model can be extended in terms of additional seasons.

Therefore, κvwx is an exhaustive summary for any dimension.

Part three:

This part involves checking whether the derivative matrix [∂κvwx(s, r,u)/∂(s, r,u)]

is full rank and then using the two-stage theorem of Theorem 3.1 to show it is always

full rank for larger dimensions. It can be shown that we can reparameterise κvwx in

terms of s, r and u as

• v =

T∏
t=1

rt;

• wt,j =
1

st,j


(∏kt

m=1 st,m
rt

)1/(kt−1)

− st,j

,

for all t = 1, . . . , T and j = 1, . . . , kt; and
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• x[a,b] =

∏ka
j=1

ra
sa,j

{(∏ka
m=1 sa,m
ra

)1/(ka−1)
− sa,j

}
fa+1 +

{
1−

(∏ka
m=1 sa,m
ra

)1/(ka−1)
}
ga+1∏b

t=a rt
,

for 2 ≤ a, b ≤ T with a ≤ b, where the recursive functions f and g are equal to

ft =

kt∏
j=1

rt
st,j


(∏kt

m=1 st,m
rt

)1/(kt−1)

− st,j

 fa+1 +

1−

(∏kt
m=1 st,m
rt

)1/(kt−1)
 ga+1,

and,

gt =

kt∏
j=1

rtut−1
st,j


(∏kt

m=1 st,m
rt

)1/(kt−1)

− st,j

 ft+1

+ (1− ut−1)

1−

(∏kt
m=1 st,m
rt

)1/(kt−1)
 gt+1,

where fb+1 = 1, and gb+1 = ub if b < T and gb+1 = 1 when b = T . Also observe

that a simpler form arises when a = b, i.e. when there is only one season of

non-detection between two seasons of detection, as

x[a,a] =

∏ka
j=1

ra
sa,j

{(∏ka
m=1 sa,m
ra

)1/(ka−1)
− sa,j

}
+

{
1−

(∏ka
m=1 sa,m
ra

)1/(ka−1)
}
ua

ra
,

where ua does not appear in x[a,a] when a = T .

Starting with the basic two seasons with two surveys per season we can then reparam-

eterise κvwx in terms of s, r and u to get

κvwx(s, r,u) =



v

w1,1

w1,2

w2,1

w2,2

x[1,1]

x[1,2]

x[2,2]



=



r1r2(
s21,1s1,2

)
/r1 − 1(

s1,1s
2
1,2

)
/r1 − 1(

s22,1s2,2
)
/r2 − 1(

s2,1s
2
2,2

)
/r2 − 1(

s21,1s1,2
r1
− 1

)(
s1,1s21,2
r1
− 1

)
+ 1

r1

(
1− s1,1s1,2

r1

)
u1

c7(
s22,1s2,2
r2
− 1

)(
s2,1s22,2
r2
− 1

)
+ 1

r2

(
1− s2,1s2,2

r2

)



,

where c7 =

(
s21,1s1,2
r1
− 1

)(
s1,1s21,2
r1
− 1

){(
s22,1s2,2
r2
− 1

)(
s2,1s22,2
r2
− 1

)
+

1
r2

(
1− s2,1s2,2

r2

)}
+ 1
r1

(
1− s1,1s1,2

r1

){(
u1

s22,1s2,2
r2
− 1

)(
s2,1s22,2
r2
− 1

)
+ (1−u1)

r2

(
1− s2,1s2,2

r2

)}
,

with parameter set θsru = [s1,1, s1,2, s2,1, s2,2, r1, r2, u1]
T . The derivative matrix

[∂κvwx(s, r,u)/∂θsru] has full rank 7. A modified PLUR decomposition of [∂κvwx(s, r,u)/∂θsru]
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shows that the model remains full rank apart from when some of the parameters are on

boundary values, where these possibilities are excluded at the beginning of the proof.

If we now extend the model to add another survey per season, the exhaustive summary

becomes what is given below. To suppress notation in this exhaustive summary, we

will denote

lt,j,kt =
1

st,j


(∏kt

m=1 st,m
rt

)1/(kt−1)

− st,j

 ,

where kt = 3 in this addition single survey extension, and

mt,kt = 1−

(∏kt
j=1 st,j

rt

)1/(kt−1)

,

for t = 1, . . . , T and j = 1, . . . , kt, so that the exhaustive summary κvwx(s, r,u) is

equal to



v

w1,1

w1,2

w1,3

w2,1

w2,2

w1,3

x[1,1]

x[1,2]

x[2,2]



=



r1r2

l1,1,2

l1,2,2

l1,3,2

l2,1,2

l2,2,2

l2,3,2

l1,1,2l1,2,2l1,3,2 + (m1,2u1/r1)

r1l1,1,2l1,2,2l1,3,2 {r2l2,1,2l2,2,2l2,3,2+
(m2,2/r2)}+m1,2 {r2u1l2,1,2l2,2,2l2,3,2 + ((1− u1)m2,2/r2)}

l2,1,2l2,2,2l2,3,2 + (m2,2/r1)



,

with parameters θsru = [s1,1, s1,2, s1,3, s2,1, s2,2, s2,3, r1, r2, u1]
T . We now use the two-

stage extension theorem of Theorem 3.1. Note that for the two surveys per season

model that

lt,j,2 =
1

st,j

{
st,1st,2
rt

− st,j
}
,

= (st,1st,2st,j) /rt − 1,

mt,2 = 1− st,1st,2
rt

,
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and for the three surveys per season model that

lt,j,3 =
1

st,j

{√
st,1st,2st,3

rt
− st,j

}
,

mt,3 = 1−
√
st,1st,2st,3

rt
.

If we relabel lt,j,2 as lt,j,3 and mt,2 as mt,3 this can then form the first stage of the

two-stage extension theorem

κ1 =



v

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

x[2,2]


=



r1r2

l1,1,3

l1,2,3

l1,3,3

l2,1,3

l2,2,3

l2,3,3

l2,1,3l2,2,3l2,3,3 + (m2,3/r2)


,

with parameters θ1 = [s1,1, s1,2, s1,3, s2,1, s2,2, s2,3, r1, r2]. The derivative matrix [∂κ1/∂θ1]

has full rank 8. The second stage involves the rest of the exhaustive terms as κ2 =

[x[1,1], x[1,2]]
T , but this only has the additional parameter u1, so κ2 is trivially full

rank. Therefore by the two-stage extension theorem of Theorem 3.1, the model can be

extended in terms of surveys per season.

We now extend the original model two-survey two-season model by adding another

season, which has two surveys in the new season. The exhaustive summary κvwx(s, r,u)
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for this extension is equal to



v

w1,1

w1,2

w2,1

w2,2

w3,1

w3,2

x[1,1]

x[1,2]

x[1,3]

x[2,2]

x[2,3]

x[3,3]



=



r1r2r3(
s21,1s1,2

)
/r1 − 1(

s1,1s
2
1,2

)
/r1 − 1(

s22,1s1,2
)
/r2 − 1(

s2,1s
2
1,2

)
/r2 − 1(

s23,1s1,2
)
/r3 − 1(

s3,1s
2
1,2

)
/r3 − 1

l1,1,2l1,2,2 + (m1,2u1/r1)

r1l1,1,2l1,2,2 {r2l2,1,2l2,2,2+
(m2,2/r2)}+m1,2/r1 {u1r2l2,1,2l2,2,2 + ((1− u1)m2,2u2/r2)}

c10

l2,1,2l2,2,2 + (m2,2u2/r2)

r2l2,1,2l2,2,2 {r3l3,1,2l3,2,2+
(m3,2/r2)}+m2,2/r2 {u2r3l3,1,2l3,2,2 + ((1− u2)m3,2/r3)}

l3,1,2l3,2,2 + (m3,2/r3)



,

where the lt,j,kt and mt,kt notation remains as before with parameter set

θsru = [s1,1, s1,2, s2,1, s2,2, s3,1, s3,2, r1, r2, r3, u1, u2]
T , and

c10 = r1l1,1,2l1,2,2 (r2l2,1,2l2,2,2 [r3l3,1,2l3,2,2 + {m3,2/r3}] +

m2,2/r2 [u2r3l3,1,2l3,2,2 + {(1− u2)m3,2/r3}])

+m1,2/r1 (u1r2l2,1,2l2,2,2 [r3l3,1,2l3,2,2 + {m3,2/r3}])

+ (1− u1)m2,2/r2 [u2r3l3,1,2l3,2,2 + {(1− u2)m3,2/r3}]) .
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Consider this exhaustive summary as the first stage of a two-stage extension theorem

proof as

κ1 =



v

w1,1

w1,2

w2,1

w2,2

w3,1

w3,2

x[2,2]

x[2,3]

x[3,3]



=



r1r2r3

r1/
(
s21,1s1,2

)
− 1

r1/
(
s1,1s

2
1,2

)
− 1

r2/
(
s22,1s2,2

)
− 1

r2/
(
s2,1s

2
2,2

)
− 1

r3/
(
s23,1s3,2

)
− 1

r3/
(
s3,1s

2
3,2

)
− 1

l2,1,2l2,2,2 + (m2,2u2/r2)

r2l2,1,2l2,2,2 {r3l3,1,2l3,2,2 +

(m3,2/r2)}+m2,2u2/r2 {r3l3,1,2l3,2,2 + (m3,2/r3)}
l3,1,2l3,2,2 + (m3,2/r3)



,

with parameters θ1 = [s1,1, s1,2, s2,1, s2,2, s3,1, s3,2, r1, r2, r3, u2]. The derivative matrix

[∂κ1/∂θ1] has full rank 10. The second stage involves the rest of the exhaustive terms

as κ2 = [x[1,1], x[1,2], x[1,3]]
T , but only has the additional parameter u1, so κ2 is trivially

full rank. Therefore by the two-stage extension theorem of Theorem 3.1, the model

can be extended in terms of the number of seasons in the study.

Therefore, s, r and u form an exhaustive summary for any dimension which com-

pletes part three.

Part four:

To complete the proof, we can use the original extension theorem of Theorem 2.2 to

prove the final result given our simpler exhaustive summary found before. Consider the

simplest case where there is only one season of two surveys. The exhaustive summary

given for this model using the simpler exhaustive summary has the form

κ =


s1,1

s1,2

r1

 =


ϕ
[1]
0 p1,1

ϕ
[1]
0 p1,2

ϕ
[1]
0 p1,1p1,2

 ,
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with parameters θ = [p1,1, p1,2, ϕ
[1]
0 ]T . The derivative matrix

[
∂κ

∂θ

]
=


ϕ
[1]
0 0 ϕ

[1]
0 p1,2

0 ϕ
[1]
0 ϕ

[1]
0 p1,1

p1,1 p1,2 p1,1p1,2

 ,

has full rank 3. This means that the original model is full rank. We can extend

in two directions: By adding another survey and by adding another season. The

first extension is a trivial application of the extension theorem as while it adds the

exhaustive summary term ϕ
[1]
0 p1,3 and changes the previous exhaustive summary term

ϕ
[1]
0 p1,1p1,2 to ϕ

[1]
0 p1,1p1,2p1,3, it only adds the additional parameter p1,3 so the extension

is trivially full rank. In the second extension case, if we add another season also with

two surveys, then the extended exhaustive terms are

κ2 =


s2,1

s2,2

r2

u1

 =


ϕ
[1,1]
1 p2,1

ϕ
[1,1]
1 p2,2

ϕ
[1,1]
1 p2,1p2,2

ϕ
[0,1]
1 /ϕ

[1,1]
1

 ,

with new parameters θ2 = [p2,1, p2,2, ϕ
[0,1]
1 , ϕ

[1,1]
1 ]T . This extension has the derivative

matrix

[
∂κ2

∂θ2

]
=


ϕ
[1,1]
1 0 ϕ

[1,1]
1 p2,2 0

0 ϕ
[1,1]
1 ϕ

[1,1]
1 p2,1 0

0 0 0 1/ϕ
[1,1]
1

p2,1 p2,2 p2,1p2,2 −ϕ[0,1]
1 /

(
ϕ
[1,1]
1

)2

 ,

which has full rank 4. This then proves that the model is full rank for any dimension,

given that each season has at least two surveys.

To prove that the deficiency is increased by one for every season which has either

zero or one survey during the season, we can consider what happens to the exhaustive

summary when a new season is added with either zero or one survey in it. If we use

the simpler exhaustive summary then adding a season with only one survey adds the

exhaustive summary terms

κext,1 =

[
st+1,1 = rt+1

ut

]
=

[
ϕ
[1,1]
t pt+1,1

ϕ
[0,1]
t /ϕ

[1,1]
t

]
,
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for the new extended season t with new parameters θ1 = [ϕ
[1,1]
t , ϕ

[0,1]
t , pt+1,1]. The

derivative matrix

[
∂κext,1
∂θ1

]
=


pt+1,1 −ϕ[0,1]

t /
(
ϕ
[1,1]
t

)2
0 1/ϕ

[1,1]
t

ϕ
[1,1]
t 0

 ,
shows us that the extension has a rank of 2 and a parameter deficiency of 1. This then

shows the parameter deficiency goes up by 1 if there is only one survey in a season.

If the extended season has no surveys at all, then this adds the exhaustive summary

terms

κext,0 =
[
ut

]
=
[
ϕ
[0,1]
t /ϕ

[1,1]
t

]
,

for the new extended season t with new parameters θ0 = [ϕ
[1,1]
t , ϕ

[0,1]
t ]. The derivative

matrix [
∂κext,0
∂θ0

]
=

 −ϕ[0,1]
t /

(
ϕ
[1,1]
t

)2
1/ϕ

[1,1]
t

 ,
shows us that the extension has a rank of 1 and a parameter deficiency of 1. This then

shows the parameter deficiency goes up by 1 if there are no surveys in a season as well.

This then completes the proof of Theorem 5.1.

We note that there are other alternative reparameterisations that could have been

used in this proof, such as for example the proof for when all occupancy and detection

parameters are constant using the alternative reparameterisation given in Morgan et al.

(2007). An alternative exhaustive summary would obtain the same general intrinsic

parameter redundancy result of Theorem 5.1 as shown by use of the reparameterisation

theorem of Theorem 3.2.
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Kéry, M., Dorazio, R. M., Soldaat, L., van Strien, A., Zuiderwijk, A., and Royle,

J. A. (2009). Trend estimation in populations with imperfect detection. Journal of

Applied Ecology, 46, 1163–1172.

King, R. (2012). A review of Bayesian state–space modelling of capture-recapture-

recovery data. Interface Focus, 2, 190–204.

King, R. (2014). Statistical ecology. Annual Review of Statistics and Its Application,

1, 401–426.



BIBLIOGRAPHY 286

King, R. and Brooks, S. P. (2003). Closed–form likelihoods for Arnason–Schwarz

models. Biometrika, 90, 435–444.

Koopmans, T. C., Rubin, H., and Leipnik, R. B. (1950). Measuring the equation

systems of dynamic economics. In Koopmans, T. C. and Marschak, J., editors,

Statistical Inference in Dynamic Economic Models (Cowles Commission Monograph

10). Chapman and Hall, London, UK.

Krementz, D. G., Barker, R. J., and Nichols, J. D. (1997). Sources of variation in

waterfowl survival rates. The Auk, 114, 93–102.

Lakhani, K. H. and Newton, I. (1983). Estimating age–specific bird survival rates from

ring recoveries – can it be done? Journal of Animal Ecology, 52, 83–91.

Langrock, R. and King, R. (2013). Maximum likelihood estimation of mark–recapture–

recovery models in the presence of continuous covariates. Annals of Applied Statis-

tics, 7, 1709–1732.

Laplace, P. S. (1786). Sur les naissances, les mariages et les morts. Mèmoires de l’
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