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Abstract

Models for visualization are important, helping the de-
veloper and user to understand the visualization process; to
follow the connections and the data paths through the sys-
tem; and to reference and compare the functionality and the
limitations of different systems or techniques.

Display models specifically classify the data by what
type of output can be created.

Jacques Bertin [2] described a symbolic reference model
that he used to describe images and displays. In this pa-
per we review his and other ‘display orientated models’ de-
scribing important aspects of these methods and ideas. We
then translate Bertin’s scheme into an algebraic form as a
method to describe visualizations.

Keywords: Visualization models, Display models,
Bertin’s semiology.

1. Introduction

There are many diverse data types, data storage meth-
ods, system configurations and dimensions all with different
names, terminology and models applied to them. A classi-
fication model allows systems, data and algorithms to be
grouped and compared.

Display models classify the information by what type of
output may be created. In this paper we present different
display models including Bertin’s model. Indeed, Bertin’s
display model [1, 2] describes many ‘image space’ com-
ponents with a graphical method for representing the “Uti-
lization of the Image Space” and it is possible to transfer
this method into an algebraic form. Thus, within this pa-
per we also present one such algebraic scheme and use it to
describe different visualization techniques.

Visualization is an issue that has been addressed by many
researchers but there is currently no standard model for vi-
sualization, whether for the visualization system, flow of

data or display aspects. A commonly adopted model, de-
scribing the visualization flow, is thedataflowmodel (Up-
son [15], and Haber and McNabb [7]), this is a good gen-
eral model and is used in many visualization systems, for
example, AVS [15], IBM Data Explorer [11] and IRIS Ex-
plorer [8].

Within this paper we focus on the ‘display methods’ of
visualization. In the following sections we provide a review
of many ‘display models’, then extend Bertins method into
an algebraic form.

2. Data and Dimensionality

Earnshaw and Wiseman [6] provide a general “Data and
Display Dimensionality” classification scheme that organ-
ises current output representation techniques by comparing
the output primitives dimension with the dimension of the
data.

Collins [5] extends Earnshaw and Wiseman’s model (Ta-
ble 1) to include the data types of Scalar (S), Vector (V) and
Tensor (T). The Table includes multiple display examples;
some of these are explained below:

Attribute Mapping maps attributes to a surface, using
colours and textures.

Colour Maps are formed by mapping colour, from the
range of the data values, onto a 2D image.

Dot Surfaces are surfaces that are made from points.

Glyphs represent symbols that change in appearance de-
pending on the values and position within the data, and
can depict values, vectors and tensors.

Height Fields are generated from creating a height (ter-
rain) at each point on two dimensional data.

Moreover, Bertin specifically presents a display catego-
rization.
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Display Dimensionality of the Data
Dimension 1D 2D 3D nD
0D Points Scatter Plots(S,M) 3D Scatter Plots(S, M)

Tri-Scatter Plot(S)
Dot Surfaces(S)

1D Lines / Contour Maps(S) Vector Arrows(V)/
Curves(S) Streamlines(V)

2D – Height Fields(S) Tiled Surfaces(S) Attribute
Colour Maps(S) Ribbons(V) mapping (S,M)

3D – – Solid (S)/ Glyph (T)
Volume Modelling (S) icon (M)

Scalar(S), Vector(V), Tensor(T), Multivariate(M)

Table 1. Examples classified by Data and Display Dimensions, after Earnshaw/Wiseman [6]

3. Bertin’s Display Primitive Model

Bertin [1, 2] describes a display primitive classification
model dividing the output primitives into four categories:

Diagrams including bar charts, scatter plots, histograms
and schematics.

Networks including trees and path connections.

Maps including geographical maps and diagrams in which
the positions are constrained by a “real life” object.
Often maps incur a non-uniform projection (that must
be understood when reading the map); for example, the
spherical surface of the Earth is often mapped onto a
flat two dimensional geographical map.

Symbols including signs and icons.

Bertin splits these into components that represent the di-
mensions of the output primitive, with each output primi-
tive split into three categories of eitherpoint, line or area.
He designates a level oforganizationto each primitive. A
primitive can therefore be:

Associative (�) where any object can be immediately iso-
lated as belonging to the same category, and each ob-
ject can be considered assimilar.

Selective ( 6=) where each object can be grouped into a cat-
egorydifferencedby this variable (forming families).

Ordered (O) that allows each element to be grouped into
an order of scale.

Quantitative (Q) where each element can be compared to
be greater or less than another element. This includes
values as percentages and logarithms.

This classification model allows the inclusion of meth-
ods such as pie diagrams, bar charts, scatter plots and three
dimensional isosurface diagrams. Bertin classifies the out-
put display method as an icon, using lines, arcs and ar-
rows (Figure 1). The Diagrams, Networks, Maps and Sym-
bols are represented by how they ‘utilize’ the image space,
whether circular or linear, and this is represented in Figure 1
as “Utilization of the Image Space”.

3.1. Display technique Catalogs

Lohse et al [10], with many volunteers, have classified
multiple visualization representations. Subjects sortedthe
visual representations into clusters of objects, from which a
hierarchical tree diagram was created. The clusters formed
groups of graphs, tables, maps, diagrams, icons and net-
work charts; using similar classifications to Bertin [2]. A
scatter plot, of icons to networks (on one axis) against
graphs, tables to maps and diagrams (on the other axis) was
generated.

4. Bertin’s Symbolic Schema

We extend Bertin’s representation to include a Compos-
ite classification. This Composite category includes images
that use multiple primitives, such as, a diagram of glyphs
or a map (showing geometric information) with a network
(showing connectivity information). Figure 5 shows some
visualization techniques within Bertin’s classification struc-
ture, however, the Organization of each component is not
depicted in the diagram. This information can easily be in-
cluded but the component of Organization often depends on
the data being represented and on the method of represen-
tation. Figure 4 shows some examples with one particular
Organization classification.

Bertin describes six representation methods, namedReti-
nal Variables, of shape, orientation, colour, texture, value,
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Object Classes Operation Classes

scalar identify
scalar field locate
nominal distinguish
direction categorize

direction field cluster
shape distribution

position rank
spatially extended object compare

structure within and between relations
associate
correlate

Table 2. Object and Operation Classes, after
Wehrend and Lewis

size. Each variable can be classified using points, lines and
areas. Figure 2 shows examples of the six retinal variables.
Moreover, colour may be described by Hue, Saturation and
Brightness, and attributes such as transparency, and ani-
mation may be added [9]. The level of organization can
be compared with the retinal variables in classifications of
point, line or area; this is shown, with the planar dimen-
sions, in Table 3.

Wehrend and Lewis [16] generate a matrix of display
techniques of ‘Object Classes’ against ‘Operation Classes’.
Object Classes are defined by the nature of the target do-
main, such as a scalar value and the shape of an object. The
Operation Classes define the user’s goal, whether to read
off an actual value (Identify) or to compare two such val-
ues (Compare), for example. Table 2 lists the Object and
Operation Classes. This ‘catalog’ of techniques does not
hold information about the difference, similarity or merits
of each technique, but can be used as a reference into tech-
niques that are available.

4.1. Underlying Field Models

Brodlie [4] describes a classification model that “models
the underlying field rather than the dimensionality and order
of the sampled data”, creating a conceptual model, Figure 6.
He then describes a classification scheme that allows the un-
derlying field and display to be classified with an algebraic
expression. He splits the data into two cases ofordinal (O)
andnominal (N)which describe order and no associated or-
der, respectively. Scalar, Vector and Tensor details are refer-
enced as S, V and T, that represent the type of the data, and
are applied to the basic type (N or O) as superscripts. Inde-
pendent variables are noted inside parenthesis and a range,
or an aggregate, is labelled inside square brackets. The di-
mensions of each variable is noted as subscripts; positions
in two dimensional space can be represented byO2; sim-

ImageData Modelling Underlying
Field Viewing

Field
Classification

Display
Classification

Figure 6. Underlying Field Visualization Pro-
cess Model

Output Field Display
Method Classification Classification
Histogram OS(O1) OS([O1℄)
Bar Chart OS(N1) OS(N1)
2D Contouring OS(O2) OS(O1)
Surface Rendering
(from 3D data)

OS(O3) OS(O2)
Volume Rendering OS(O3) OS(O3)
3D wind, arrow plot OV3(O3) OV3 (O3)
Ordinal(O), Nominal(N), Scalar(S), Vector(V), Tensor(T)

Dimensions 1, 2, 3 etc.,

Table 3. Visualization Classification Exam-
ples, after Brodlie

ilarly the number of components of a Vector (V), such as
two, is represented byV2 and the components of a Tensor
(each separated by colons), such as a three by three dimen-
sional tensor, are represented byT3:3. Some examples are
described in Table 3.

Brodlie explains that this system allows the underlying
data field and the display technique to be classified, but it
does not classify multiple techniques. For example, “tem-
perature over an aircraft wing, is a two dimensional sub-
space within three dimensional space”.

4.2. Display Models for Automated Visualization
Design

Some visualization systems automatically create the vi-
sualizations from a database of knowledge (metadata infor-
mation) and user requirements. These tools classify the dis-
play variables to generate an appropriate visualization auto-
matically.

The Vista tool [14], for example, creates appropriate vi-
sualizations by asking the user to preference each variable.
Perception rules are applied to the variables such as “posi-
tion is more effectively perceived than colour” and quanti-
tative information is easier to perceive “by using geometry
rather than colour”. Vista divides the primitive visualiza-
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tion techniques into Positional, Temporal and Retinal vari-
ables. Positional is divided further into one, two and three
dimensions. Animation is used to depict the Temporal vari-
ables and the Retinal variables are divided (like Bertin) into
colour, shape, size, orientation and texture.

Mackinlay [12] designed APT (A Presentation Tool),
based on terminology from Bertin [2] and the effective-
ness of visual perception from the work of Cleveland and
McGill. Mackinlay composes complex presentations from
simpler presentations, where each less complex presenta-
tion displays a subset of the overall information. The tool
can create effective displays of bar charts, scatter plots and
connected graphs.

Beshers and Feiner [3] discuss many other Automated
Visualization Design tools.

5. Algebraic Extension to Bertin’s Model

Bertin’s model uses a graphical notation to describe the
different display techniques. He encodes the type of the
display, utilization of the image space and the organisation
of the component. This classification scheme could be rep-
resented in algebraic notation. We propose one method to
encode the type of the display and the utilisation of the im-
age space. The organisation of the component depends on
the data and the type of retinal variable used to display the
component, so it is not encoded in this scheme.

5.1. Classifiers

We break, as before, the images into: Diagrams (D),
Networks (N ), Maps (M ) and Symbols (S). ThereforeD,N , M andS represent the classifiers. However within an
image display some of the components are represented by
the retinal variables (such as size, shape and colour). The
classifiers are extended to include these Retinal Variables
(R). The scheme encodes no distinction between the types
of the retinal variables, but does encode the total amount of
retinal variables used in a particular view. (See Classifier
Quantity, section 5.2).

Multiple images, or multiple views [13], such as a matrix
of histograms, are represented by Bertin with ‘�n’ sym-
bols. Our scheme represents these by the letterX .

Symbols (including icons and glyphs) and Retinal vari-
ables can be explained as describing the same component.
For example, a glyph, such as a temperature gauge, is rep-
resented by the retinal variable size. In some instances the
reverse is also possible where, for example, every point in
a diagram is represented by a circle symbol. Our scheme
therefore overloads the retinal operator (R) to represent
both retinal variables (R) and the symbol (S) classifiers.
Moreover, the classifiers now only includeD, N , M , X
andR; i.e. S is excluded.

5.2. Classifier Quantity

Bertin represents each component as a single closed ar-
row, the total number of components therefore being cal-
culated from the number of arrows in the graphical repre-
sentation. We represent the number of components (for a
particular classifier) as a power. A scatter plot diagram (ofx component against ay component) could then be repre-
sented byD2.

The total number of components for a particular display
can be calculated by adding the powers together.

Moreover, if the Symbol (S) classifier was included
(with the Retinal VariableR), the quantity classifier would
need to represent zero components. The example of a tem-
perature gauge (with the retinal variable size) could be rep-
resented by (the composite form of)S0R1.

5.3. Utilization of the Image Space

Bertin describes the utilization of the image space in cat-
egories of: regular, irregular, circular and perspective ar-
rangement; our scheme divides them similarly, and names
them:r, i, 
 andp respectively.

The symbols, for example, do not easily fall under this
classification as not having any particular arrangement;
however, we represent the symbols under the irregular clas-
sification.

5.3.1. Expression Form

The algebraic expressions are formed from Classifiers
and a ‘Method of utilizing the image space’ and a power
represents the number of components for this classifier. For
example, a circular network of objects depicting their con-
nectivity with one retinal variable (representing the number
of elements in the object) is represented byN
1R1, the total
amount of components being two.

Composite forms are generated by joining the single ex-
pressions together. Brackets are used to disambiguate the
scope of the the multiple classifierX . For example a group
of stacked grey scale slices (maps) can be represented byX1(Mr2R1).
6. Examples and Summary

Table 4 lists some display methods with their appropriate
Algebraic notation; the algebraic display methods are taken
from the schematics in Figure 5.

The algebraic form allows complicated displays to be de-
scribed as composite groups of statements, but the scheme
disregards information about the organization of each com-
ponent (whether selective, ordered or associative). The ori-
gin of the data and the exact description of the display is not



Display Methods

Algebraic
Type Description

Classification

Time Line Dr1
Histogram Dr2D
Stacked Histogram X1Dr2
Matrix of Histograms X2Dr2
List of Groups Nr1
Circular Group Connections N
1
Venn Network Nr1N
List of Group and Sizes Nr1R1
Network of Groups and Sizes N
1R1
Network of Groups,Sizes and Texture N
1R2
Binary Threshold Slice Mr2
Grey level Slice Mr2R1

M
Stacked, Grey level Slices X1(Mr2R1)
Volume Rendering Mp3R1
Road Sign R1

S
Temperature Gauge R1

C Network with Size, inside 3D Map Mp3Nr1R1
D Diagrams,N Networks,M Maps,

S Symbols,C Composites

Table 4. Display Methods with Algebraic Clas-
sification

represented; for example, both an X-Ray image and a two
dimensional slice (throughreal-life data) are represented asMr2R1, both having a total of three components. However,
the algebraic form provides a method to classify abstrac-
tions and visualizations.
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