University of

"1l Kent Academic Repository

Bryans, Jeremy W. and Derrick, John (1999) Stochastic specification and
verification. In: 3rd Irish Workshop in Formal Methods. Electronic Workshops
in Computing . Springer

Downloaded from
https://kar.kent.ac.uk/21797/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21797/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Stochastic Specification and Verification

Jeremy Bryans and John Derrick
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
(Phone: + 44 1227 764000, Email: J.Derrick@ukc.ac.uk.)

Abstract

Modern distributed systems include a class of applications in which non-functional requirements are important.
In particular, these applications include multimedia facilities where real time constraints are crucial to their cor-
rect functioning. In order to specify such systems it is necessary to describe that events occur at times given by
probability distributions. Stochastic process algebras have emerged as a useful technique by which such systems
can be specified and verified.

However, stochastic descriptions are very generd, in particular they allow the use of general probability dis-
tribution functions, and therefore their verification can be complex. In this paper we define a trandation from
stochastic process algebras to timed automata. By doing so we aim to use the simpler verification methods for
timed automata (e.g. reachability properties) for the more complex stochastic descriptions.

Keywords: Distributed systems; stochastic process algebras; timed automata.

1 Introduction

In this paper we define and verify atrandation from a stochastic process algebra to timed automata. The reason
for doing so is to support the specification and verification of non-functional propertiesin distributed multimedia
systems.

Theadvent of distributed multimediaapplicationssuch asvideo conferencing, radio over theinternet etc, placegreat
demands on the specification and design of such systems because of the need to describe and verify non-functional
requirements. These non-functional requirements typically involve real time constraints such as placing bounds
on end-to-end latency, and are often called Quality of Service (QoS) requirements because they reflect the overall
quality of delivery as opposed to the functional aspects.

In order to specify and verify such constraintsit is necessary not only to be able to describe deterministic timing
concerns but a so probabilistic and stochastic systems. That is, in practice timings cannot be assumed to be fixed
(deterministictimings) but eventscan occur at different timeswith particular probabilities. Thereforeit isnecessary
to describetimingsthat occur according to certain probability distributions. For example, in anetwork specification
it is not sufficient to assumethat the packet deliveries arrive at fixed predetermined times, instead we need to model
the system where they might might arrive at times determined by an exponential distribution.

There are now anumber of techniqueswhich can be used to describe such systems, e.g. Petri-nets[13], generalised
semi-Markov processes [8] and stochastic process algebras etc. In this paper we will consider stochastic process
algebras, for which a number of formalisms, techniques and tools are available, e.g. PEPA [10], TIPP[9], EMPA
[3] PAgs [11] and SPADES [7]. Stochastic process algebras offer a number of advantages over other techniques
such as Petri-nets. In particular, stochastic process algebras are compositional and allow a specification to be built

Irish Workshop on Formal Methods, 1999 1

as anumber of smaller components composed together (e.g. using the parallel composition operator). Such com-
positionality isimportant if the specification and verification techniques areto scale. In addition, stochastic process
algebras allow the study of both functional and non-functional requirements within the same description, giving a
morerealistic view of overall performance than, say, a queueing theory description of the problem.

In this paper we focus on the stochastic process agebra SPADES. The reason for thisis twofold. The primary
motivationisthat SPADES supportsnot just exponential distributionsbut general distributions. Theissuehereisthe
following. A stochastic process a gebraassociates a distribution function F with an action a so that ar; P describes
an action prefix where the probability of the time delay after which a can happen is determined by the distribution
function F. Because of the interleaving semantics of most process algebras and the low complexity of verification
(exponentia distributions are memoryless, this greatly simplifies verification of properties) most process algebras
restrict themselvesto allowing only exponential distributionsfor F.

However, thisis unrealistic in practice and it is necessary in general for F to range over any distribution (e.g. uni-
form, gamma, deterministic etc). For example, it is often assumed that packet lengths are exponentially distributed.
However, in redlity thisis not the case, rather they are either of constant length (asin ATM cells[14]) or they are
uniformly distributed with minimum and maximum size (asin Ethernet frames[14]). SPADES allows this gener-
ality. It does so by using stochastic automata as its underlying model, and this forms the second motivation for its
use here. Stochastic automata are based on timed automata[2], which enable alink to be formed into the extensive
work on verification for timed automata. Thisisuseful for the following reason. Although general distributionsare
important for describing complex distributed systems, they do make a range of verification tasks more complex.
In particular, the move from memoryless exponentia distributions to arbitrary general distributions has profound
implications for the complexity of verification techniques such as model checking.

However, there are a collection of properties, such as reachability properties, which can be verified for genera
stochastic systems by looking at a ssimplified underlying model. It is for this reason that we define a trandation
from stochastic process algebras to timed automata. By doing so we aim to support the verification of arange of
properties by using techniques developed for timed automata.

The structure of the paper is asfollows. In Section 2 we introduce SPADES and stochastic automataillustrated by
asimple specification of amultimedia stream. We also briefly review timed automataand the particular model we
use, timed automata with deadlines [5]. In Section 3 we define the trandation of stochastic automatainto timed
automatawith deadlines. Thistrandation is verified in Section 4, and we conclude in Section 5.

2 Stochastic specification and verification

Multimediadistributed applicationsare now commonplace. They are a so difficult to specify and verify. Onereason
for thisisanumber of new requirementsthat now haveto be considered when building such asystem. For example,
interactions between componentsin such systems are often continuous, e.g. the flow of packetsin aradio over the
internet application. These continuous interactions lead to QoS constraints which, for example, place acceptable
bounds on the various timing aspects of this packet flow (latency, jitter, throughput etc).

Stochastic process algebras offer a promising method by which we can specify and verify these systemsin acom-
positional manner. In this paper we will use the SPADES process algebra because it provides support for general
distribution functions as well as providing a link into (timed) automata. We will use the latter as our verification

strategy.

This is attractive because there are a range of verification tools available for timed automata, e.g. the Kronos and
UPPAAL model checkers, whilst verification for stochastic techniques with generalised distribution functions has
proved difficult. In particular, the non-memorylessnature of generalised distribution functionsmeansthat stochastic
model checkingis currently feasible for only very small state spaces. With a non-memorylessdistribution recal cu-
lations of conditional probabilities need to be undertaken at each state explored in the state space, placing severe

bounds on the feasibility with the current techniques.

Thelink with automataal so allow stochastic process algebrasto be used within other multi-paradigm specification
frameworks. For example, timed automata have been used as an underlying formalismto bring together avariety of
specification approaches[4]. The use of stochastic automata as a basisfor stochastic process algebras, and the link
developed in this paper between stochastic automata and timed automata should allow the integration of SPADES
into such multi-paradigm approaches, this offers clear advantages when specifying complex systems.

2.1 Stochastic process algebras and automata

The stochastic process algebra SPADES and its underlying stochastic automata model use clocksto trigger events.
Clocks are variables which take a value set according to a given probability distribution function. After being set
a clock counts down, and when the clock reaches zero it enables certain events (or transitions) in the model. To
model this situation the syntax of SPADES includes the following (where a is an action, pisaprocessand Cisa
set of clocks.)

puz=stop | ap | C=p | p+tp | {Clp | plab

Thisis a standard process algebra extended with a clock setting operation and a triggering condition. The former,
{ C[}p, setstheclocksin C to avalue chosen according to their respective probability distribution functions. C — p
isthe triggering condition: the process p becomes enabled as soon as all the clocksin C expire.

2.1.1 A multimedia examplein SPADES

Asan example, consider the specification of asimplemultimediastream. It hasthree components: a Source process,
a Sink process and a Channel. The Source generates a sequence of packets, which are transmitted by the Channel
to the Sink, which displaysthem. We assume that the Channel isunreliable, and may lose packets. We also assume
that the Sink processisimpatient, and if it does not receive packets at a sufficiently fast rate it will timeout.

These components can be written in SPADES as

Source {Itr [}{tr} — trans; Source
Snk = {d,t'[}(receive; {d} — display; Snk + {t'} — timeout; Sop)

Channel = Channely

Channely = {t[}{t} — trans, {|t,r,|[}Channel,
{t} — trans; {t[}Channel;,
+

Channel; = {r} = receive; {r,![}Channel;_;
+

{I} = loss; {r,I[}Channel;_,
and the Stream can then be given as the parallel composition of these components:

Stream = Source || {trans} Channel ||{receive} Sink

The Source process begins by setting the clock tr according to the probability function Fi; and defined as (the unit
of time being ms):

probability
1
09

Fe(t) = 0; ift<5s
= 0.18(t—5); if t € (5,10] ime
= 0.9; if t € (10,45] 5 45
= 0.01(t—45)+0.9; ifte (45,55]
= 1; otherwise

Thisrepresentsasituation where messages made up of several packetsarebeing transmitted. If apacketisgenerated
itisreasonably likely that afurther packet will be generatedin the near future, (between 5 and 10ms, inthisexample)
but if the following packet is not generated (if, for example, the previous packet marked the end of a message) then
therewill be atime interval of approximately 50ms (between 45 and 55ms) before the start of the next message.

When the clock tr expires, the action trans is enabled, and when it fires the process repeatsitself.

In the process Sink, the clocks d and t' are set initialy. The clock d controls the rate of display of packets, and t'
controlsthe timeout behaviour. The distributions Fq and F| are given by

Fq(t) = 0;ift<25 Fe(t) = 0;ift<50
1; otherwise 1; otherwise

Both these functions represent deterministic timing. Function Fy says that a packet cannot be displayed until pre-
cisely 25ms after the previousone. At any timelessthat 25msadisplay action isnot possible; at every time greater
that or equal to 25msthe display action is enabled. |f a display action is performed, the process will recurse again
to Sink.

In the Sink process, the receive action does not have any clock dictating its rate, and therefore if the Snk process
was operating on its own the receive action would happen immediately. However, this action has to synchronise
with the receive action in Channel, and the clock r will then influenceitsrate.

If, after displaying a packet, the Snk does not receive another packet within 50ms, it will timeout and stop. It will
also timeout if it does not receive a packet within 50ms of initialisation.

The Channel processcontainsthethree clockst, r and |, which control therates of thetrans, receive and loss actions
respectively. The processis presented as a parameterised set of recursive equations. The functions F; and F, are
defined as

F(t) = 0; ift<9 Fi(t) L: if £ < 200

200’
0.5(t—9), ifte[9,11] 1; otherwise
1; otherwise

and the probability distribution F; isabounded normal curve, centred at 50, truncated at 25 and 75, and normalised.

The function F; represents the time Channel takesto initialise, and the “recovery time’ necessary after each trans
action. Initially, when no packets are contained in Channel, the clock t is set according to F, and the trans action
is enabled when clock t has expired. When the trans action fires, each of the three clocks are set. The function F;
represents the time taken for the Channel to move a message from Sourceto Snk.

Theloss behaviour is modelled by function F;. A packet may be lost from Channel at any point up to 200ms after
it has been received. |

2.1.2 Sochastic Automata

To understand this specification we can think of it as defining a stochastic automaton. Stochastic automata gener-
alisetimed automataby using stochastic clock settingsinstead of strictly deterministictimingsin atimed automaton.
In fact, stochastic automata and SPADES are equally expressive and [7] gives the mapping between SPADES and
stochastic automatain detail. Therefore for the remainder of this paper it sufficesto work at the level of stochastic
automata, for any process a gebraic specification has an equival ent stochastic automata representation.

Definition 1 A stochastic automaton isa structure (S, %, C, A, ¥, k, F) where:

e Sisasetof locationswithsy € S beingtheinitial location, C isthe set of al clocks, and A isaset of actions.

e »C S x(AxC)xSistheset of edges. If sand s’ are states, a isan action and C isasubset of C, then we
,.C
denotetheedge (s, a,C,s) € —» bysi> s and we say that Cisthetrigger set of action a. Weuses —» ¢

a,C
as ashorthand notation for 3C.s —» s.

e k:S — Pgn(C) isthe clock setting function, and indicates which clocks are to be set in which states, where
P, (C) isthe powerset of clocks.

e F:C — (R — [0,1]) assignsto each clock adistribution function such that, for any clock x, F(x)(t) = 0 for
t < 0; wewrite Fx for F(x) and thus F«(t) states the probability that the value selected for the clock x isless
than or equal to't.

Notice that each clock x € C isarandom variable with distribution Fy. O

Thisis the definition of stochastic automata presented in [7], but in this paper we will be less concerned with de-
termining probabilities, and more concerned with determining whether or not a particular value is possible when a
clock isinitialy set. For thisreason we consider the derivatives of these functions F;, sinceif F/(t) > 0, thentis
apossibleinitial value for the clock x.

For smplicity, we consider only functions whose derivative is made up of afinite number of left/right closed inter-
vals; that is, we consider only functions F such that

{tI F'(t) >0} = Ui q<nls Nl

where [g;, hyj] isaleft/right closed interval and n isthe number of intervalsin the derivative. In practice thisis not
asevereredtriction (e.g. [1] imposes the same restriction).

Therange of aclock x isgiven by the set {t | F/(t) > 0}. We aso define max(x) as the maximum possible initial
value of x, given by h,, wherenisthe number of intervalsin the range of x and which may beinfinity. Theminimum
possibleinitial value (min(x)) isgiven by g; and must befinite. Note that the upper and lower boundsof aninterval
may be equal, thus allowing deterministic timing. We assume that all clocks are initially set to some value within
their range.

We can now give the stochastic automata for the example presented above.
2.1.3 The multimedia example as a stochastic automata

The stochastic automata for this example are depicted below. Like the SPADES description above the overall au-
tomaton iscomposed of threeparts: asink, asourceand achannel. Thesearefirst given separately, followed by their

composition. In thefigures, the locations are given as circles with the clocksreset at that location contained within
each circle. The edges of the automata are given as arrows between the locations, with theinitial state represented
by the small ingoing arrow.

disp, {d}

%trans,{n} m rec, {} Q m trans, {t}
N _J

tout, {t'}
The source rec, {1} g

The sink rec, {r}

trans, {t}

{1} ‘'suen
trans, {t}

The channel

The source automaton generates the packets which make up the stream, and are separated according to the proba-
bility function F,.

The channel automaton synchronises with the trans action to accept a packet. This happens according to the prob-
ability distribution F;. When a single packet resides in the channel: it can be passed on to the sink automaton via
therec action; lost viatheloss action; or joined by another packet viathe trans action. When two packetsresidein
the channel then either one of them will belost, or one will be passed on to the sink automaton.

The sink automaton can receive a packet (by synchronising with channel on rec)in which case it displaysit, or it
can timeout.

The composition of stochastic automatais similar to the composition of timed automata, and is explained in detail
in [7]. Component automata may proceed independently, performing the actions for which they alone are respon-
sible, or they may synchronise on combined actions. With independent actions, the subsequent state resets only the
clocks reset by the component automaton. With combined actions, the subsequent state resets the clocks reset by
all participating automata.

The composition of thethree automataaboveisgiven by the automaton below. Notethat thesmaller circles, entered
after atimeout, are actually capable of performing further actions, since the Channel itself does not timeout, and
may continueto performtransandlossactions. However, we do not incorporatethat extrabehaviour in thediagram,
to avoid cluttering the presentation.

tout A"} tow, {t'} tout [t'}

trans, {t,tr} m trans, {t, tr}
t,r, 1, tr
\ ‘

A/

{111} 'suen

{111} 'suesy

trans, {t, tr}

trans, {t, tr}

}

di sp, [{d}

tout, {t’

2.2 Timed automata

Timed automata, as typified by the UPPAAL tool [12], represent one of the major approaches to specifying real
time systems. Like a stochastic automaton, atimed automaton consists of a set of clocks and locations. The clocks
proceed at the same rate and measure the amount of timethat has el apsed sincethey werereset. Locations (or states)
can have invariants attached to them. If atimed automaton isin a particular location, the invariant must be true.
This property can be used to make actions urgent, by insisting that the automaton must have exited the state by a
certain time.

In this paper we use timed automatawith deadlines (TAD), as presented in [5], which differ dightly from the stan-
dard presentation of timed automata. The essential approachin timed automatawith deadlinesisto associate dead-
lines with trangitions instead of placing invariants on states. Therefore transitions consist of 4-tuples (a, g, d, r),
comprising of an action a, guard g, deadline d and set of clocksr. Guards and deadlines are predicates parame-
terised by the values of the clocks. The guard states when atransition is enabled (i.e. when it may be taken), and

if the deadlineis true then the transition must be taken. When the transition occursthe clocksin r arereset to zero.
The congtraint d = g is assumed to hold. This meansthat if in a state time cannot progress (because a deadline
is true), then the action is aso enabled. This preventstimelocks from occurring. Thisissue is discussed in detail
in [5]. We can give the following definition.

Definition 2 Formally atimed automaton with deadlines (TAD) consists of the following.

¢ A discrete labelled transition system (Z, —, A) where

— Zisafinite set of discrete states
— Aisafinite set of actions
— —C Z x A x Zisan untimed transition relation

e AsetX={xy,...,%} of non-negativereal valued variables called clocks.

¢ A labelling function h mapping untimed transitions into timed transitions: h(z, a,Z) = (z(a,9,d,r),Z)
where

— g and d are the guard and deadline of the transition. Guards and deadlines are predicates p defined by
the following grammar:

pu=Xf#C|pAp[pVp
wherex € X, c € Ry and # € {<, >}. Werequired = g.

e risaset of clocksto be reset to zero. O

The clocksin a TAD are always reset to zero and count upwards at the same rate. Thisisin contrast to the clocks
in stochastic automata, which are set to some valuein R according to their probability distribution function, and
count downwards. We assume in thiswork that all clocksin aTAD areinitialy set to zero. Thisisasimplification
of thework in [5] where clocks may take any valuesinitially, but we do not need that generality in defining a correct
trandation.

As an example of atimed automaton with deadlines consider the following specification.

The timed automaton depicted beginsin state 0. All clocks x; are initially set to zero. In state O the transition a
becomespossibleassoon asx; reaches1, and remains possibleuntil x; reaches2. At that timethe deadlinebecomes
true, and action a is forced to happen if it hasn’t already been taken.

When state 1 isentered, clock x» will already have some value between 1 and 2, since it has been counting upwards
in synchronisation with clock x;. Clock x, alows action b between time 4 and time 6, and insists on it (via the
deadline) at time 6. However, at time5, clock x; enablesaction ¢, and so between times 5 and 6 the choice between
b and c is non-deterministic. If action b does occur, the three clocks x; , X2 and X3 are reset to zero, and the process
beginsagainfromstate 0. If action c occursthetimed automaton entersstate 2 and no further transitionsare possible.
Note that clock x3 cannot progress beyond time 6, because at that time action b isforced and x3 is reset to zero. O

A range of tools and techniques are available for timed automata which can support various verification activities.
Oneof the most successful techniqueshasbeen model checking, where asystem can be checkedto seeif aparticular
property holds. Thisis achieved by representing the property as a formulain a propositional temporal logic (e.g.
CTL), and the model checker automatically compares this with a state-transition graph of the systems behaviour.
Model checkersnow exist for arange of specification paradigmsincluding both real-time and probabilistic systems.

UPPAAL is agood example of a real-time model checker, where the system under consideration is represented
as atimed automaton. UPPAAL includes both a smulator and a model checker which can check the reachability
properties of the system. |f aproperty does not hold in agiven system, UPPAAL provides an example trace which
can be fed into the simulator for further analysis. There are many alternative model checking tools and techniques,
e.g. Kronos[15].

By providing a mapping from stochastic automata to timed automata, we aim to reuse this existing technology to
enabl e reachability analysisto be performed on stochastic automata specifications.

3 Trandating stochastic to timed automata

In this section we define the mapping from stochastic to timed automata. The mapping isrelatively straightforward
and intuitive, and we illustrate the trandlation with our running example. The proof of correctness of the mapping
ismore technical, and is verified in Section 4.

Thetrandation mappingisdesigned to preserve precisely the behaviour that is necessary to verify reachability prop-
erties, and remove the remaining redundant information. In particular, because the reachability analysis looks for
reachable statesand not the probability of reaching those states, we can removethe probabilistic element and replace
it by non-deterministic timing information.

For example, given a stochastic automaton fragment

O - {X} O
X > y

where

Fe(t)=0; if t< 1
=2t—1t% if t € [1,2]
= 1; otherwise

the pertinent information is that the clock x can be set to any value between 1 and 2. The actual probabilities do not
matter, so that for our purposes an equivalent timed automaton would be the following:

Lr={x Z : a,g,d,r : :

In this description we have used the same action namea, andg: X € [1,2],d: x =2, and r : {y}.

This timed automaton has the following behaviour. The guard g specifies the times at which the transition may be
taken, which here are the values between 1 and 2. It must be taken by the deadlined : x = 2. When it is actually
taken is non-deterministically chosen between these limits. It isin this sense that the stochastic information in the
probabilistic distribution function has been replaced by a non-deterministic choice of actual time determined by
the interplay of the guards and deadlines. In general, the guards and deadlines are determined by more complex
formulae than suggested by this small fragment. The reasonsfor this are given after the definition.

From this exampleit should be clear how we will define the translation. Each stochastic automaton will be mapped
to atimed automaton with the same number of locationsand the same action label set. Eachtransitioninthestochas-
tic automaton will be mapped to a transition in the timed automaton. For each stochastic automaton clock thereis
a corresponding timed automaton clock. However, the stochastic information represented in the probability dis-
tribution associated with each stochastic automaton clock becomes embedded as deadlines and guards. Finally,
an appropriateinitial valuation for the timed automaton has to be given, and this is drawn from a possible initial
valuation in the stochastic automaton.

The definition of the mapping can thus formally be given by the following *.

Definition 3 Trandating a SA into a TAD
Let (S,%,C,A, ¥, k, F) be astochastic automaton. This automaton is mapped to the timed automaton (Z, —»+
,A) where
«Z=S8
e A=A
e — 7 isthetransition relation —» with the clocks removed, i.e.
—71C Zx Ax Zwhere —1={(z,a,7) | 3Ca.(5,8,C4,8) € BAS=2ZAS =7}
The set X contains clock variables, labelled x; and indexed as the SA variables.
X={x|Vqgel.Ix.i=j}
h(z,a,Z) = (z (a,9,d,r),Z) where C, isthe trigger set for action a and

-g= E\/\CiGCa u(i) > min(c)
Veec, Ui) € ran(ci))
>/\c|eca u(i) > max(ci)
— d= Agec, Ul > max(c)
—r=k(S)
e Theinitial valuation for the TAD (up) isthe valuation with each clock set to zero.
VX € Xu(i) =0

To seethisin practice let us consider the example stochastic automata given in Section 2.1.3. The Sink stochastic
automaton will trandate to the following timed automaton.

LThis definition was formulated by Pedro D’ Argenio [6].

10

disp
g:d>=25
d:d>=25
r:{t’, d}

g: true
d: false

3
~g
a1
o

S oQ
o1
S

o=
faes]

To understand how the definitions for the guards and deadlines have been chosen, first consider asingle transition
as depicted in the stochastic automaton on page 9. The clock x in the resultant timed automaton with deadlinesis
set to zero when the clock X in the stochastic automaton is nondeterministically set to some value within its range.
Thus when the stochastic automaton clock reaches zero, (and action a fires) the clock in the TAD will be at some
value within the range of x, i.e. u(x) € ran(x).

a, {c1, c2} : :

If ran(c;) = [2,4] U [7,8] and ran(cz) = [4,5] U [8,9] then it is not possible for action a to fire at time 3, since
clock ¢, cannot have expired by thistime. The earliest time at which a can fire is time 4; the greater of the two
minimums, which we expressin general as A, ¢, U(i) > min(ci), where C, isthe trigger set for each action a.

Now consider the following fragment

Also, note that it is not possible for a to fire at time 6, because neither clock can be set to this value. We must
thereforeinsist that at least one clock be within rangein order for the action to fire, i.e. \/ ¢, u(i) € ran(ci).

o a,{c2) m b, {c3} Q
_/

Next, consider the fragment

whereran(cs) = [2, 3].

The clock c; will certainly have expired before the second state is reached, and so in the stochastic automaton the
action b will fire as soon as the second state is entered. In the timed automaton, we therefore require the guard to
continueto betrue evenif all clocks have passed their maximum values, and this gives us the full definition of the
guard

(Aqec, ulD) > min(a)
A
Voeo, () € ran(c))
Vv
Aecc, UlD) > max(c)

Asfor thedeadline, we can only be certainthat the stochastic automaton action will fireif al the clockshave expired.
This trandlates to the timed automaton as insisting that all clocks have passed their maximum value, and so the

1

deadlineis

Macc, UlD) > max(c)

and we also have that d = g, asrequired.

4 Verification of thetranslation algorithm

In this section we verify the trandation defined above. In order to verify the translation we have to show that any
stochastic automata and its corresponding timed automaton with deadlines are equivalent. By equivalent we mean
that they have the same meaning in some suitable semantic model. Because we are removing the stochastic element
inthe stochastic automatain order to verify reachability properties, the semantic model we chooseisonethat records
just actions and their associated timings. In fact we use two dight variants in order to record this information: a
timed action transition system and atime/action transition system. Thisisbecausethe semantic model for stochastic
automata uses timed actions, while timed automata with deadlines are mapped to time/action transition systems.

SA — 5 TAD

timed ~= time/action
action

Theverification of thetrand ation then amountsto showing that thetimed action semantics of astochastic automaton
is equivalent to the time/action semantics of atimed automaton with deadlines. The proof isin two parts. Thefirst
showsthat any timed action trace arising from astochasti ¢c automaton can al so be performed by thetimed automaton
with deadlines (i.e. thetraceisin the time/action semantics). The second part of the proof does the converse: that
any time/action trace in the timed automaton with deadlinesis a possible trace in the semantics of the stochastic
automaton.

Before we give the proof we define timed action and time/action transition systems and show how to map the au-
tomatato their respective models.

4.1 Timed action transition systems: the semantics of SA

Thetimed action transition system results from a stochastic automaton where we abstract away from the stochastic
information. It is defined asthe end result of first taking the interpretation of a stochastic automaton, followed by
its probabilistic abstraction. These are defined as follows.

SA

|

1 A(SA)

}

PA(I j(SA))

Intheinterpretation |2, A represents an actual, as opposed to potentational behaviour, and vistheinitial valuation.

12

4.1.1 Theinterpretation of a stochastic automaton

Theinterpretation of astochastic automatonis given by aProbabilistic Transition System (PTS). Probabilistic tran-
sition systems are explained in detail in [7], where they are used to give a semantic model for stochastic automata.
Here, they are used simply as an intermediate step in generating the timed action system. If SA = (S, %,C,A,-
—, &, F) isastochastic automaton, then theinterpretation is given by the probabilistic transition system I (SA) =
(S xV x{0}),(SxV x{1}),(%0,V,0),A x Rsg, T, —) where T and — are defined by the rules Prob and
Act:

,Ca
s2e8 AdeRsy A VX E Cal(v—d)(X) <0
— ! b,Cp _dq
K= (X1, -, %) oo vd e [0.d).Vs—>d.3ye Co.(v—=d)(y) >0
TV, 0) = DS(R(Fxy- -2 Fu)) sv,1) 24 (¢, (v=d),0)

Act

TheruleProb correspondsto setting some clockswithin the stochastic automaton. Essentially, T(s, v, 0) isthe prob-
ability space where the sample space is made up of the state s combined with all possible resultant clock settings,
and the probability measureisderived fromFy,, . . ., Fx, inthe obviousway. The annotations0 and 1 are smply to
indicate whether or not the clocks have been set, and we say (s, V', 1) € T(s, v, 0) if (s,v, 0) isin the sample space
of the probability space.

Therule Act specifies the conditions under which a stochastic automaton can perform an action a at time d.

4.1.2 The probabilistic abstraction of a stochastic automaton
The timed action system is produced from the PTS via the probabilistic abstraction function PA. Asits name sug-
gests, thisfunction removesall probabilistic information from the PTS.

Let (S xVx {0}),(SxV x{1}), (%, Vo, 0),A x Ry, T, —) betheinterpretation of the stochastic automaton.
The probabilistic abstraction of the SA is given by

(S xV),(%0,V0), A X Rxo, —3)
where ((s,v), a(d), (,V')) e—sif and only if

v’ e V.(s,Vv' 1) € T(s,v,0)
A
((S, VH) 1),a(d)7 (SI,V” - d,O)) €E—

andV' —d=V.

Note that we use the subscript on the transition system arrow to distinguish it from the TAD transition relation,
which will beintroduced later.

In accordance with convention, we will write (s, v) ﬂs (s,V) for ((s,v),a(d), (s,V)) €e—s, and therefore a
timed action transition system consists of transitions with labels of the form a(d), where a is a discrete action and

disatimevalue. A transition (s, V) ﬂs (s, V') should be understood to mean that the state-valuation pair (s, v)
can delay for atime d, before performing the action a and entering the state-valuation pair (s, V).

Below, we give the timed action transition system resulting from the stochastic automaton description of the Sink,
specified on page 6. Because time is represented by the real numbers, any timed action graph quickly becomes
infinite and so where we can we draw just one arrow, with alabel to represent the range of possible time values.

13

(s0,(25,50))

timeout(50) rec(t), 0<=t<=25
rec(t), 25<t<=50

(s0,(~25,0)) (s1,(25-t,50-1)) (s1,(25-t,50~t)

disp(25-t) disp(0)

4.2 Timelaction transition systems: the semantics of TAD

Thetime/action transition system isthe standard semanticsfor timed automatawith deadlines. It consists of transi-
tionslabelled by elements of A, which correspond to state changes, and transitions|abelled with non-negativereals,
which correspond to time steps. The significant difference between timed action and time/action transition systems
isthat in the former the passing of time and the performing of an action are merged into one transition, whilein the
|atter they are separate transitions.

Thetime/action semantics of the TAD isgiven by thetransitionrelation —1C (ZxRL)) x (AUR>0) X (ZxRL).
A (state,valuation) pair of aTAD isapair (z,u) wherez € Zisadiscrete state and u € R, isaclock valuation.

Givenz € Z, if {(z,&,7)}icl isthe set of al transitionsissued from zand h(z a;,z) = (z, (a, 0, d, ri),) then
the time/action transitions are defined by the following two clauses:

e Viel.VueRY,.(z u) =5 (z, ulri]) if gi(u) whereu[r;] isthe val uation obtained from uwhen all the clocks
inr; are set to zero, and the others are left unchanged.

e (ZU) LI (Zu+t)ifVt' <tcs(u+t') wherecs = - \/ ¢, di.

For example, the time/action transition system resulting from the TAD specification of the Sink on page 10 is as
below. Again, we parameterise time transitions where we can.

t:25<t<=50

(s0,(50,50€ (s0,00,0) —>(S0,(t)

[ec
t:0<=t<=25
I——wso,a,t» l

rec (sl,(t,t))0_> (sL,(t)

timeout

(s2,(50,50))

(s1,t0) 2o (s1,(25,29)
disp

14

4.3 Proof

We are now in aposition to give the proof of equivalence between the semantic modelsthat arise from a stochastic
automaton and its translation.

Outline: Wewill provethat the trand ation from stochastic automatato timed automatawith deadlines (thefunction
saztad) is correct with respect to the probabilistic abstraction function. In particular, we prove timed trace equiv-
alence: the timed traces possible through the transition system PA(1{} (SA)) and the timed traces possible through
thetransition system [sa2tad(SA)] areequal, where SA isany stochastic automaton; 17, (SA) istheinterpretation of
the stochastic automaton in terms of a probabilistic transition system; PA is the probabilistic abstraction function;
sa2tad is the function from stochastic automatato timed automatawith deadlines; and [[]] is the semantic interpre-
tation of aTAD.

First, we introduce some auxiliary definitions between the two different types of valuations: stochastic automata
valuations, denoted v in the sequel, and TAD valuations, denoted u. If n isthe number of clocksin the valuation,
thenvisin R" anduisin RY,. We assumethe set of clocksis ordered.

Example: Asan example, consider the timed action and time/action transition systems given above. If the pair
(t, @) represents the action a being observed at absolute timet, then the timed trace

((0,rec), (25, disp), (45, rec), (50, disp), (100, tout))

is a possible behaviour of both systems. The proof works by showing that the set of all possible traces resulting
from the conventional interpretation of the stochastic automaton and the set of all possible traces resulting from our
TAD interpretation are equal.

4.3.1 SAtracesoccur inits TAD trandation

The proof isin two parts. This part shows that any trace that the SA can perform can be performed by the TAD.
We do this by showing that any (state,valuation) pair in the SA can be simulated by a (state,valuation) pair in the
TAD. We do this by showing that if two (state,valuation) pairs correspond, in a manner to be defined, then atimed
action possible for the SA has related time and action transitions within the TAD.

Definition 4 Correspondence
Two valuationsv and u correspond (written v < u) provided visinR", uisin R}, and
Vi< nv(i) 4+ u(i) € ran(c)

We then define the correspondence between (state,valuation) pairs as follows.

—

(s,V) < (z,u) iff s= zand VYV € DJ(R(k())).V=< u. O
We now begin the proof. We assumethat (s, v) < (z,u), and we wish to prove that
(sv) Ms(8,v) = (20) ~S1 (2, u+d) A (Z,u+d) 1 (2, U+ d)fra))

By the PA function we deduce that

IV'.(s,v',1) € T(s V,0)
A

(Savlla 1) ﬂjl)j (Slavu - d,O)

15

wherevg = V' —d.

R

From thefirst clauseit follows (by therule Prob) that (s,v’, 1) € D(R(Fy,, . - ., Fx,)) wheres(s)= {X1, ..., %n}.
—

(We will write DS(R(k(s))) asan abbreviation for DS(R(Fx,, - - ., Fx,))-)

From the second clause it follows (from rule Act) that

,Ca
Sy S AVXE Ca.(V' —d)(x) <0
b,Ci
Vd € [0,d).Vs b .3y € Co. (V' —d')(y) >0

To show that (z u) S (Z',u+ d) we need to show that Vd' < d.cs(u + d') wherecs = -/, dead;, where|l
enumerates all the possible transitionsfrom s, and dead; is the deadline for transition i.

—

We know that (s, V) =< (z, u), and thereforethat s = zand that Vv € DJ(R(x(s))).V < u. In particular, V' < u, S0
VXV’ (X) + u(x) € ran(x).

Since Vx.v'(x) + u(x) € ran(x), it followsthat Vd' € [0,d).Vx.(v' — d")(x) + (u+ d")(x) € ran(x), and since

b,Ci b,C
Vd € [0,d).¥s -» .3y € Cp.(v/ — d')(y) > 0, it followsthat Vd' € [0,d).¥s —» Ty € Cp.(u— d')(y) <
max(y).

Thusfor every time valuelessthan d, and for every action b possiblefrom s, thereis some clock y in thetrigger set
Cp such that u(y) < max(y), and therefore the cs condition above holds.

To show that (z,u + d) —=s1 (Z, (u + d)[ra]), we must show that g(u + d) holds. We divide this into two cases.
First, we consider the case where the action a isnot urgent, i.e. some of the clocksin C, may still be running when
the state sis entered, and so a is not forced to happen immediately.

Now weknow fromrule Act that Vd' € [0,d).3x € Ca.(V' —d')(X) > 0and VX € C,.(V' —d)(X) < 0. Therefore
there must be a clock y in C, such that (v — d)(y) = 0, and by correspondence (u + d)(y) € ran(y) and therefore
g(u + d) holds, asrequired.

In the second casg, action aisurgent: all clocksin C, have expired strictly beforethe state sisentered. Inthiscase,
we cannot find ad > 0 suchthat Vd' € [0,d).3x € Ca.v(X) — d' > 0, and therefore d must be zero. For each
clock xin C,, ts, + max(X) < ta, wherets, isthe absolute time at which the clock x was last set. Inthe TAD, each
clock is set to zero at timets, and counts up, therefore at timet, all clocksin C, must be greater than max(x), and
therefore g(u) holds, as required.

It remainsto show that (s, V') < (Z,U').

Thetimed action transitionis (s, v) a(—dls (s, v—d), and thetime/action transitions performed are (z, u) A (Zu+
d) 257 (Z, (u+ d)[ra]), so we must show that (s, v — d) < (Z, (u+ d)[ra)).

By ruleAct s s s, and sincethisis atransition of the stochastic automaton SA we can deducethat z = ,and
thereforethat s = 7.

—

To show that the valuations match, we begin by noting that, by definition, k(s)= ra.

—
Now, let v bein DS, (R(x(s))). Then for all clocks x

16

and for al clocks x

X€Era= (U+d)ra](x) =0
XEra= (U+d)ra](x) = (U+d)(x)

so, for al valuations V' (x) in DS, (R(n@))), and all clocksx, V' (X) + u(x) € ran(x), asrequired.

Initial states: Sinceall theclocksxintheinitial SA valuationv, areinitially setto avaluewithintheir rangeran(x),
and all the clocksintheinitia TAD valuation uy are set to zero, and theinitial state of the TAD isderived from the
initial state of the SA, the two (state,val uation) pairs (S, Vo) and (2, Ug) clearly correspond.

This completesthefirst half of the proof. |

4.3.2 Any TAD traceisavalid SA trace

We now prove that given a trandation of a stochastic automaton into a TAD, any trace possible for the TAD is
possiblefor the stochastic automaton. We do thisby inductiononthelength of thetrace: provided(. . ., (t_1,8—1))
isavalid trace of both the SA and the TA, we show that if (..., (t_1,a-1), (tj, g)) isavalid trace of the TAD, it
is aso avalid trace of the SA. In order to simplify the presentation, we make the assumption that al clocks are
associated with only onetransition.

In the base casg, if ((t1,a;)) isatrace of the TAD then from the definition of the guard we know that

(/\iec1 t; > min(ci)
A

\/keCl t; € ran(cy))
\Y

/\iecl t; > max(c)
and from the time-passing constraint we know that
vd €10,t;).Vl € L.3me C. max(cy) < d
(where L enumerates all outgoing transitionsfrom).

In thisinstance the time-passing constraint isincompatible with the second clause of the guard, and therefore only
the first clause can be true. The trace can be reproduced by setting clock ¢, to t;, and ¢; to min(c;) for each clock
¢, i # k. Since clocks can only be used once, setting clocks to their minimums will not interfere with any other
possible transitionsfrom s,.

For the inductive step, consider atrace (..., (t—i,a-1), (t,&)) from a TAD. Recall that t; is the time at which
event g occurs, C; isthetrigger set of action a;, and ts isthe latest time at which clock i was reset.

From the definition of the guard we know that

(/\iecj > min(G) +t§
A
Vieg,§ € ran(a) + 189
\Y
AiGCj t > max(¢) + ts

and from the time-passing constraint we know that

vd' e [ti_1,t).Vl € L.3me Cy.tsy + max(Cy) < d’

17

The definition of the guard gives rise to two cases. In the firdt, at least one of the clock variables must be within
range (Vyec, -4 € ran(c) + tsg) and all clocks must have have started (A\¢, -t > min(ci) + ts). The SA can
reproduce this behaviour by setting clock kto t; — t_; and all other clocks to their respective minimums. Since
clocksare only used once we arefreeto set all clocks here aswewish. Inthisfirst case, the time-passing constraint
ensuresthat every other outgoing transition has at least one clock (say ¢) initstrigger set which may still be active
(tsm + max(cm) > t;), and therefore no other transition is forced to have occurred previously.

In the second case, tj is strictly greater than max(c;) + ts for all clocksini in the trigger set of a;, but the time-
passing constraint applied to transition g; states that for all time between tj_; andt; thereisaclock in thetrigger set
whichislessthan max(c;) +ts. Thiscan only beresolved if notime elapses betweent;_, andt; (i.e. thattj_; = t;),
and this correspondsto the case in the SA where all clocksin the trigger set have already expired, and so action g
fires as soon as action a;_; does. O

4.4 Example

Thetrandation of our stochastic automaton representing the multimedia stream can now be derived. Theresult is
the timed automaton given below. Due to space limitations within the diagram, the transitions are labelled repre-
sentatively; the meaning of the labelsis given below.

label action guard deadline reset
lossl loss >0 [>200 {}
loss2 loss >0 [>200 {r,I}
tout tout t'>50 t'>50 {}
recl rec r>25 r>175 {}
rec2 rec r>25 r>7 {rl}
disp disp d>25 d>25 {dt}

18

tout \ tout

transl trans2

trans2

transl

| 0ssl

The trans actions have more complex guards and deadlines, since they are derived from two clocks.

label action guard deadline reset
(t=9Atr>5)A

transl trans (te[9,11]Vitr e [5,10] Vtr € [45,55])) t=11Atr>55 {trltr}

V (t > 11 Atr > 55)

(t=9Atr>5)A

(te[9,11]Vvitr e [5,10] Vtr € [45,55])) t=11Atr>55 {ttr}

V(=11 Atr > 55)

trans2 trans

The aim of this trandation is to produce a timed automaton which we can check for reachability properties. Ex-
amples of reachability properties might include: can we reach a state where atimeout is possible? Can wereach a
state where more than ten packets are in the channel ? None of these properties requires precise probabilities to be
determined, therefore we can check our stochastic automaton against these properties by using the trandation into
timed automaton?.

2Lack of space means we cannot give afull account of this here, however it would involve turning the timed automaton with deadlines into
aform suitable for input into one of the automata tools, e.g. UPPAAL.

19

5 Conclusions

In this paper we have defined atrand ation from stochastic automata to timed automata with deadlines. The aim of
thiswas to enable reachability analysisto be performed on stochastic automatain afeasible manner. Although this
is successful much remainsto be donein terms of verification of stochastic specification. The greatest challengein
this respect lies in the area of stochastic model checking. There are extremely efficient model checkers for timed
automata, yet model checking for stochastic automata with arbitrary distributions is currently hampered by prob-
lems due to the extensive cal culations necessarily involved in building model checking procedures. Any work in
this direction would represent a significant breakthrough.

Acknowledgements. Theresearch presented hereissupported by the UK Engineering and Physical Sciences Research Council
under grant number GR/L95878 (A Specification Architecturefor the Validation of Real-timeand Stochastic Quality of Service).
Thanks are due to co-workers on this project for their input into this work: Howard Bowman at Kent and Lynne and Gordon
Blair from Lancaster University. Wewould also liketo thank Pedro D’ Argenio and Justin Pearson for their help and advice with
thiswork.

References

[1] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for probabilistic real-time systems. In Proceedings
of 18th ICALP, 1991.

[2] Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer Science, 126:183-235, 1994.

[3] Marco Bernardo, Lorenzo Donatiello, and Roberto Gorrieri. Integrating performance and functional analysis of concurrent
systems with EMPA. Technical Report UBLCS-95-14, Department of Computer Science, University of Bologna, Piazza
di Porto S. Donato, 5, 40127 Bologna, September 1995. Revised March 1996.

[4] LynneBlair and Gordon Blair. Composition in multiparadigm techniques. In Paolo Ciancarini, Alessandro Fantechi, and
Roberto Gorrieri, editors, Formal Methods for Open Object-based Distributed Systems, pages 401417, February 1999.

[5] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modelling urgency in timed systems. In COMPOS 97. LNCS,
1997.

[6] Pedro D’Argenio. Personal communication.

[7] PedroR. D’Argenio, Joost-Pieter Katoen, and Ed Brinksma. An algebraic approach to the specification of stochastic sys-
tems (extended abstract). In D. Gries and W.-P. de Roever, editors, Proceedings of the | FIP Working Conference on Pro-
gramming Concepts and Methods, PROCOMET’ 98, pages 126-147. Chapman & Hall, 1998.

[8] PW. Glynn. A GSMP formalism for discrete event simulation. In Proceedings of the |EEE, volume 77(1), pages 14-23,
1989.

[9] Holger Hermanns, Michad Rettlebach, and Thorsten Weiss. Formal Characterisation of Immediate Actionsin SPA with
Nondeterministic Branching. The Computer Journal, 38(7):530-541, 1995.

[10] Jane Hillston. A Compositional Approach to Performance Modelling. Distinguished Dissertations in Computer Science.
Cambridge University Press, 1996.

[11] Joost-Pieter Katoen. Quantitative and Qualitative Extensions of Event Sructures. PhD thesis, Centre for Telematics and
Information Technology, P.O. Box 217, 7500 AE Enschede The Netherlands, April 1996.

[12] K.G. Larsen, P. Pettersson, and W. Yi. Diagnostic model-checking for real-time systems. In Proceedings of the 4th DI-
MACS Wbrkshop on \erification and Control of Hybrid Systems, New Brunswick, New Jersey, 1995.

[13] W. Reisig. Petri Nets, An Introduction. Springer-Verlag, 1982.
[14] A.S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[15] S. Yovine. Kronos. A Verification Tool for Rea Time Systems. Springer International Journal of Software Tools for
Technology Transfer, 1(1/2), 1997.

20

