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Stochastic Specification and Verification

Jeremy Bryans and John Derrick
Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.

(Phone: + 44 1227 764000, Email: J.Derrick@ukc.ac.uk.)

Abstract

Modern distributed systems include a class of applications in which non-functional requirements are important.
In particular, these applications include multimedia facilities where real time constraints are crucial to their cor-
rect functioning. In order to specify such systems it is necessary to describe that events occur at times given by
probability distributions. Stochastic process algebras have emerged as a useful technique by which such systems
can be specified and verified.

However, stochastic descriptions are very general, in particular they allow the use of general probability dis-
tribution functions, and therefore their verification can be complex. In this paper we define a translation from
stochastic process algebras to timed automata. By doing so we aim to use the simpler verification methods for
timed automata (e.g. reachability properties) for the more complex stochastic descriptions.

Keywords: Distributed systems; stochastic process algebras; timed automata.

1 Introduction

In this paper we define and verify a translation from a stochastic process algebra to timed automata. The reason
for doing so is to support the specification and verification of non-functional properties in distributed multimedia
systems.

The advent of distributed multimedia applications such as video conferencing, radio over the internet etc, place great
demands on the specification and design of such systems because of the need to describe and verify non-functional
requirements. These non-functional requirements typically involve real time constraints such as placing bounds
on end-to-end latency, and are often called Quality of Service (QoS) requirements because they reflect the overall
quality of delivery as opposed to the functional aspects.

In order to specify and verify such constraints it is necessary not only to be able to describe deterministic timing
concerns but also probabilistic and stochastic systems. That is, in practice timings cannot be assumed to be fixed
(deterministic timings) but events can occur at different times with particular probabilities. Therefore it is necessary
to describe timings that occur according to certain probability distributions. For example, in a network specification
it is not sufficient to assume that the packet deliveries arrive at fixed predetermined times, instead we need to model
the system where they might might arrive at times determined by an exponential distribution.

There are now a number of techniques which can be used to describe such systems, e.g. Petri-nets [13], generalised
semi-Markov processes [8] and stochastic process algebras etc. In this paper we will consider stochastic process
algebras, for which a number of formalisms, techniques and tools are available, e.g. PEPA [10], TIPP [9], EMPA
[3] PAGS [11] and SPADES [7]. Stochastic process algebras offer a number of advantages over other techniques
such as Petri-nets. In particular, stochastic process algebras are compositional and allow a specification to be built
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as a number of smaller components composed together (e.g. using the parallel composition operator). Such com-
positionality is important if the specification and verification techniques are to scale. In addition, stochastic process
algebras allow the study of both functional and non-functional requirements within the same description, giving a
more realistic view of overall performance than, say, a queueing theory description of the problem.

In this paper we focus on the stochastic process algebra SPADES. The reason for this is twofold. The primary
motivation is that SPADES supports not just exponential distributions but general distributions. The issue here is the
following. A stochastic process algebra associates a distribution function F with an action a so that aF; P describes
an action prefix where the probability of the time delay after which a can happen is determined by the distribution
function F. Because of the interleaving semantics of most process algebras and the low complexity of verification
(exponential distributions are memoryless, this greatly simplifies verification of properties) most process algebras
restrict themselves to allowing only exponential distributions for F.

However, this is unrealistic in practice and it is necessary in general for F to range over any distribution (e.g. uni-
form, gamma, deterministic etc). For example, it is often assumed that packet lengths are exponentially distributed.
However, in reality this is not the case, rather they are either of constant length (as in ATM cells [14]) or they are
uniformly distributed with minimum and maximum size (as in Ethernet frames [14]). SPADES allows this gener-
ality. It does so by using stochastic automata as its underlying model, and this forms the second motivation for its
use here. Stochastic automata are based on timed automata [2], which enable a link to be formed into the extensive
work on verification for timed automata. This is useful for the following reason. Although general distributions are
important for describing complex distributed systems, they do make a range of verification tasks more complex.
In particular, the move from memoryless exponential distributions to arbitrary general distributions has profound
implications for the complexity of verification techniques such as model checking.

However, there are a collection of properties, such as reachability properties, which can be verified for general
stochastic systems by looking at a simplified underlying model. It is for this reason that we define a translation
from stochastic process algebras to timed automata. By doing so we aim to support the verification of a range of
properties by using techniques developed for timed automata.

The structure of the paper is as follows. In Section 2 we introduce SPADES and stochastic automata illustrated by
a simple specification of a multimedia stream. We also briefly review timed automata and the particular model we
use, timed automata with deadlines [5]. In Section 3 we define the translation of stochastic automata into timed
automata with deadlines. This translation is verified in Section 4, and we conclude in Section 5.

2 Stochastic specification and verification

Multimedia distributed applications are now commonplace. They are also difficult to specify and verify. One reason
for this is a number of new requirements that now have to be considered when building such a system. For example,
interactions between components in such systems are often continuous, e.g. the flow of packets in a radio over the
internet application. These continuous interactions lead to QoS constraints which, for example, place acceptable
bounds on the various timing aspects of this packet flow (latency, jitter, throughput etc).

Stochastic process algebras offer a promising method by which we can specify and verify these systems in a com-
positional manner. In this paper we will use the SPADES process algebra because it provides support for general
distribution functions as well as providing a link into (timed) automata. We will use the latter as our verification
strategy.

This is attractive because there are a range of verification tools available for timed automata, e.g. the Kronos and
UPPAAL model checkers, whilst verification for stochastic techniques with generalised distribution functions has
proved difficult. In particular, the non-memoryless nature of generalised distribution functions means that stochastic
model checking is currently feasible for only very small state spaces. With a non-memoryless distribution recalcu-
lations of conditional probabilities need to be undertaken at each state explored in the state space, placing severe
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bounds on the feasibility with the current techniques.

The link with automata also allow stochastic process algebras to be used within other multi-paradigm specification
frameworks. For example, timed automata have been used as an underlying formalism to bring together a variety of
specification approaches [4]. The use of stochastic automata as a basis for stochastic process algebras, and the link
developed in this paper between stochastic automata and timed automata should allow the integration of SPADES
into such multi-paradigm approaches, this offers clear advantages when specifying complex systems.

2.1 Stochastic process algebras and automata

The stochastic process algebra SPADES and its underlying stochastic automata model use clocks to trigger events.
Clocks are variables which take a value set according to a given probability distribution function. After being set
a clock counts down, and when the clock reaches zero it enables certain events (or transitions) in the model. To
model this situation the syntax of SPADES includes the following (where a is an action, p is a process and C is a
set of clocks.)

p ::= stop j a; p j C 7! p j p + p j fjC jgp j p kA p

This is a standard process algebra extended with a clock setting operation and a triggering condition. The former,fjC jgp, sets the clocks in C to a value chosen according to their respective probability distribution functions. C 7! p
is the triggering condition: the process p becomes enabled as soon as all the clocks in C expire.

2.1.1 A multimedia example in SPADES

As an example, consider the specification of a simple multimedia stream. It has three components: a Source process,
a Sink process and a Channel. The Source generates a sequence of packets, which are transmitted by the Channel
to the Sink, which displays them. We assume that the Channel is unreliable, and may lose packets. We also assume
that the Sink process is impatient, and if it does not receive packets at a sufficiently fast rate it will timeout.

These components can be written in SPADES as

Source = fj tr jgftrg 7! trans; Source
Sink = fjd; t0 jg(receive; fdg 7! display; Sink + ft0g 7! timeout; Stop)

Channel = Channel0
Channel0 = fj t jgftg 7! trans; fj t; r; l jgChannel1
Channeli = 8>>>><>>>>: ftg 7! trans; fj t jgChanneli+1+frg 7! receive; fjr; l jgChanneli�1+flg 7! loss; fjr; l jgChanneli�1

and the Stream can then be given as the parallel composition of these components:

Stream = Source kftransg Channel kfreceiveg Sink

The Source process begins by setting the clock tr according to the probability function Ftr and defined as (the unit
of time being ms):
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Ftr(t) = 0; if t 6 5= 0:18(t� 5); if t 2 (5; 10]= 0:9; if t 2 (10; 45]= 0:01(t� 45) + 0:9; if t 2 (45; 55]= 1; otherwise 5 10                                45              55

0.9

1

time

probability

This represents a situation where messages made up of several packets are being transmitted. If a packet is generated
it is reasonably likely that a further packet will be generated in the near future, (between 5 and 10ms, in this example)
but if the following packet is not generated (if, for example, the previous packet marked the end of a message) then
there will be a time interval of approximately 50ms (between 45 and 55ms) before the start of the next message.

When the clock tr expires, the action trans is enabled, and when it fires the process repeats itself.

In the process Sink, the clocks d and t0 are set initially. The clock d controls the rate of display of packets, and t0
controls the timeout behaviour. The distributions Fd and F0t are given by

Fd(t) = 0; if t < 25 Ft0(t) = 0; if t < 50= 1; otherwise = 1; otherwise
Both these functions represent deterministic timing. Function Fd says that a packet cannot be displayed until pre-
cisely 25ms after the previous one. At any time less that 25ms a display action is not possible; at every time greater
that or equal to 25ms the display action is enabled. If a display action is performed, the process will recurse again
to Sink.

In the Sink process, the receive action does not have any clock dictating its rate, and therefore if the Sink process
was operating on its own the receive action would happen immediately. However, this action has to synchronise
with the receive action in Channel, and the clock r will then influence its rate.

If, after displaying a packet, the Sink does not receive another packet within 50ms, it will timeout and stop. It will
also timeout if it does not receive a packet within 50ms of initialisation.

The Channel process contains the three clocks t, r and l, which control the rates of the trans, receive and loss actions
respectively. The process is presented as a parameterised set of recursive equations. The functions Ft and Fl are
defined as

Ft(t) = 0; if t 6 9 Fl(t) = t200 ; if t 6 200= 0:5(t � 9); if t 2 [9; 11] = 1; otherwise= 1; otherwise
and the probability distribution Fr is a bounded normal curve, centred at 50, truncated at 25 and 75, and normalised.

The function Ft represents the time Channel takes to initialise, and the “recovery time” necessary after each trans
action. Initially, when no packets are contained in Channel, the clock t is set according to Ft, and the trans action
is enabled when clock t has expired. When the trans action fires, each of the three clocks are set. The function Fr

represents the time taken for the Channel to move a message from Source to Sink.

The loss behaviour is modelled by function Fl. A packet may be lost from Channel at any point up to 200ms after
it has been received. 2
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2.1.2 Stochastic Automata

To understand this specification we can think of it as defining a stochastic automaton. Stochastic automata gener-
alise timed automata by using stochastic clock settings instead of strictly deterministic timings in a timed automaton.
In fact, stochastic automata and SPADES are equally expressive and [7] gives the mapping between SPADES and
stochastic automata in detail. Therefore for the remainder of this paper it suffices to work at the level of stochastic
automata, for any process algebraic specification has an equivalent stochastic automata representation.

Definition 1 A stochastic automaton is a structure (S; s0; C;A;�I; �;F) where:� S is a set of locations with s0 2 S being the initial location, C is the set of all clocks, and A is a set of actions.� �I� S � (A�C)�S is the set of edges. If s and s0 are states, a is an action and C is a subset of C, then we

denote the edge (s; a;C; s0) 2 �I by s
a;C�I s0 and we say that C is the trigger set of action a. We use s

a�I s0
as a shorthand notation for 9C:s a;C�I s.� � : S ! P�n(C) is the clock setting function, and indicates which clocks are to be set in which states, whereP�n(C) is the powerset of clocks.� F : C ! (R ! [0; 1]) assigns to each clock a distribution function such that, for any clock x, F(x)(t) = 0 for
t < 0; we write Fx for F(x) and thus Fx(t) states the probability that the value selected for the clock x is less
than or equal to t.

Notice that each clock x 2 C is a random variable with distribution Fx. 2
This is the definition of stochastic automata presented in [7], but in this paper we will be less concerned with de-
termining probabilities, and more concerned with determining whether or not a particular value is possible when a
clock is initially set. For this reason we consider the derivatives of these functions F0x, since if F0x(t) > 0, then t is
a possible initial value for the clock x.

For simplicity, we consider only functions whose derivative is made up of a finite number of left/right closed inter-
vals; that is, we consider only functions F such thatft j F0(t) > 0g = S16j6n[gj; hj]
where [gj; hj] is a left/right closed interval and n is the number of intervals in the derivative. In practice this is not
a severe restriction (e.g. [1] imposes the same restriction).

The range of a clock x is given by the set ft j F0x(t) > 0g. We also define max(x) as the maximum possible initial
value of x, given by hn, where n is the number of intervals in the range of x and which may be infinity. The minimum
possible initial value (min(x)) is given by g1 and must be finite. Note that the upper and lower bounds of an interval
may be equal, thus allowing deterministic timing. We assume that all clocks are initially set to some value within
their range.

We can now give the stochastic automata for the example presented above.

2.1.3 The multimedia example as a stochastic automata

The stochastic automata for this example are depicted below. Like the SPADES description above the overall au-
tomaton is composed of three parts: a sink, a source and a channel. These are first given separately, followed by their
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composition. In the figures, the locations are given as circles with the clocks reset at that location contained within
each circle. The edges of the automata are given as arrows between the locations, with the initial state represented
by the small ingoing arrow.

tr trans, {tr} d, t’
rec, {}

tout, {t’}

disp, {d}

The source

trans, {t} trans, {t}
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s
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lo
s
s
, {l}

lo
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t, r, l t, r, l t

r, l

The sink

The channel

The source automaton generates the packets which make up the stream, and are separated according to the proba-
bility function Ftr.

The channel automaton synchronises with the trans action to accept a packet. This happens according to the prob-
ability distribution Ft. When a single packet resides in the channel: it can be passed on to the sink automaton via
the rec action; lost via the loss action; or joined by another packet via the trans action. When two packets reside in
the channel then either one of them will be lost, or one will be passed on to the sink automaton.

The sink automaton can receive a packet (by synchronising with channel on rec)in which case it displays it, or it
can timeout.

The composition of stochastic automata is similar to the composition of timed automata, and is explained in detail
in [7]. Component automata may proceed independently, performing the actions for which they alone are respon-
sible, or they may synchronise on combined actions. With independent actions, the subsequent state resets only the
clocks reset by the component automaton. With combined actions, the subsequent state resets the clocks reset by
all participating automata.

The composition of the three automata above is given by the automaton below. Note that the smaller circles, entered
after a timeout, are actually capable of performing further actions, since the Channel itself does not timeout, and
may continue to perform trans and loss actions. However, we do not incorporate that extra behaviour in the diagram,
to avoid cluttering the presentation.
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2.2 Timed automata

Timed automata, as typified by the UPPAAL tool [12], represent one of the major approaches to specifying real
time systems. Like a stochastic automaton, a timed automaton consists of a set of clocks and locations. The clocks
proceed at the same rate and measure the amount of time that has elapsed since they were reset. Locations (or states)
can have invariants attached to them. If a timed automaton is in a particular location, the invariant must be true.
This property can be used to make actions urgent, by insisting that the automaton must have exited the state by a
certain time.

In this paper we use timed automata with deadlines (TAD), as presented in [5], which differ slightly from the stan-
dard presentation of timed automata. The essential approach in timed automata with deadlines is to associate dead-
lines with transitions instead of placing invariants on states. Therefore transitions consist of 4-tuples (a; g; d; r),
comprising of an action a, guard g, deadline d and set of clocks r. Guards and deadlines are predicates parame-
terised by the values of the clocks. The guard states when a transition is enabled (i.e. when it may be taken), and
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if the deadline is true then the transition must be taken. When the transition occurs the clocks in r are reset to zero.
The constraint d ) g is assumed to hold. This means that if in a state time cannot progress (because a deadline
is true), then the action is also enabled. This prevents timelocks from occurring. This issue is discussed in detail
in [5]. We can give the following definition.

Definition 2 Formally a timed automaton with deadlines (TAD) consists of the following.� A discrete labelled transition system (Z;!;A) where

– Z is a finite set of discrete states

– A is a finite set of actions

– !� Z � A� Z is an untimed transition relation� A set X = fx1; : : : ; xng of non-negative real valued variables called clocks.� A labelling function h mapping untimed transitions into timed transitions: h(z; a; z0) = (z; (a; g; d; r); z0)
where

– g and d are the guard and deadline of the transition. Guards and deadlines are predicates p defined by
the following grammar:

p ::= x#c j p ^ p j p _ p

where x 2 X, c 2 R>0 and # 2 f6;>g. We require d ) g.� r is a set of clocks to be reset to zero. 2
The clocks in a TAD are always reset to zero and count upwards at the same rate. This is in contrast to the clocks
in stochastic automata, which are set to some value in R>0 according to their probability distribution function, and
count downwards. We assume in this work that all clocks in a TAD are initially set to zero. This is a simplification
of the work in [5] where clocks may take any values initially, but we do not need that generality in defining a correct
translation.

As an example of a timed automaton with deadlines consider the following specification.

0 1

2

a
g: 1=< x1 =< 2
d: x1 = 2
r: { }

c
g: 5 =< x3 =< 7
d: x3 = 7
r: { }

b
g: 4 =< x2 =< 6
d: x2 = 6
r: {x1, x2, x3}

The timed automaton depicted begins in state 0. All clocks xi are initially set to zero. In state 0 the transition a
becomes possible as soon as x1 reaches 1, and remains possible until x1 reaches 2. At that time the deadline becomes
true, and action a is forced to happen if it hasn’t already been taken.
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When state 1 is entered, clock x2 will already have some value between 1 and 2, since it has been counting upwards
in synchronisation with clock x1. Clock x2 allows action b between time 4 and time 6, and insists on it (via the
deadline) at time 6. However, at time 5, clock x3 enables action c, and so between times 5 and 6 the choice between
b and c is non-deterministic. If action b does occur, the three clocks x1; x2 and x3 are reset to zero, and the process
begins again from state 0. If action c occurs the timed automaton enters state 2 and no further transitions are possible.
Note that clock x3 cannot progress beyond time 6, because at that time action b is forced and x3 is reset to zero. 2
A range of tools and techniques are available for timed automata which can support various verification activities.
One of the most successful techniques has been model checking, where a system can be checked to see if a particular
property holds. This is achieved by representing the property as a formula in a propositional temporal logic (e.g.
CTL), and the model checker automatically compares this with a state-transition graph of the systems behaviour.
Model checkers now exist for a range of specification paradigms including both real-time and probabilistic systems.

UPPAAL is a good example of a real-time model checker, where the system under consideration is represented
as a timed automaton. UPPAAL includes both a simulator and a model checker which can check the reachability
properties of the system. If a property does not hold in a given system, UPPAAL provides an example trace which
can be fed into the simulator for further analysis. There are many alternative model checking tools and techniques,
e.g. Kronos [15].

By providing a mapping from stochastic automata to timed automata, we aim to reuse this existing technology to
enable reachability analysis to be performed on stochastic automata specifications.

3 Translating stochastic to timed automata

In this section we define the mapping from stochastic to timed automata. The mapping is relatively straightforward
and intuitive, and we illustrate the translation with our running example. The proof of correctness of the mapping
is more technical, and is verified in Section 4.

The translation mapping is designed to preserve precisely the behaviour that is necessary to verify reachability prop-
erties, and remove the remaining redundant information. In particular, because the reachability analysis looks for
reachable states and not the probability of reaching those states, we can remove the probabilistic element and replace
it by non-deterministic timing information.

For example, given a stochastic automaton fragment

x
a ,  {x}

y

where

Fx(t)= 0; if t < 1= 2t � t2; if t 2 [1; 2]= 1; otherwise
the pertinent information is that the clock x can be set to any value between 1 and 2. The actual probabilities do not
matter, so that for our purposes an equivalent timed automaton would be the following:

. . . r = {x} a ,  g ,  d ,  r
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In this description we have used the same action name a, and g : x 2 [1; 2], d : x = 2, and r : fyg.

This timed automaton has the following behaviour. The guard g specifies the times at which the transition may be
taken, which here are the values between 1 and 2. It must be taken by the deadline d : x = 2. When it is actually
taken is non-deterministically chosen between these limits. It is in this sense that the stochastic information in the
probabilistic distribution function has been replaced by a non-deterministic choice of actual time determined by
the interplay of the guards and deadlines. In general, the guards and deadlines are determined by more complex
formulae than suggested by this small fragment. The reasons for this are given after the definition.

From this example it should be clear how we will define the translation. Each stochastic automaton will be mapped
to a timed automaton with the same number of locations and the same action label set. Each transition in the stochas-
tic automaton will be mapped to a transition in the timed automaton. For each stochastic automaton clock there is
a corresponding timed automaton clock. However, the stochastic information represented in the probability dis-
tribution associated with each stochastic automaton clock becomes embedded as deadlines and guards. Finally,
an appropriate initial valuation for the timed automaton has to be given, and this is drawn from a possible initial
valuation in the stochastic automaton.

The definition of the mapping can thus formally be given by the following 1.

Definition 3 Translating a SA into a TAD

Let (S; s0; C;A;�I; �;F) be a stochastic automaton. This automaton is mapped to the timed automaton (Z;�!T;A) where� Z = S� A = A� �!T is the transition relation �I with the clocks removed, i.e.�!T� Z � A� Z where �!T= f(z; a; z0) j 9Ca:(s; a;Ca; s0) 2 �I^ s = z ^ s0 = z0g� The set X contains clock variables, labelled xi and indexed as the SA variables.

X = fxi j 8 cj 2 C: 9 xi:i = jg� h(z; a; z0) = (z; (a; g; d; r); z0) where Ca is the trigger set for action a and

– g = (Vci2Ca
u(i) > min(ci)Ŵ

ci2Ca
u(i) 2 ran(ci))_V

ci2Ca
u(i) > max(ci)

– d = Vci2Ca
u(i) > max(ci)

– r = �(s0)� The initial valuation for the TAD (u0) is the valuation with each clock set to zero.8 xi 2 X:u0(i) = 0
To see this in practice let us consider the example stochastic automata given in Section 2.1.3. The Sink stochastic
automaton will translate to the following timed automaton.1This definition was formulated by Pedro D’Argenio [6].
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disp
g:d >= 25
d: d >= 25
r: {t’, d}

tout
g: t’ >=50
d: t’ >= 50
r: {}

rec
g: true
d: false
r: {}

To understand how the definitions for the guards and deadlines have been chosen, first consider a single transition
as depicted in the stochastic automaton on page 9. The clock x in the resultant timed automaton with deadlines is
set to zero when the clock x in the stochastic automaton is nondeterministically set to some value within its range.
Thus when the stochastic automaton clock reaches zero, (and action a fires) the clock in the TAD will be at some
value within the range of x, i.e. u(x) 2 ran(x).
Now consider the following fragment

c1, c2
a, {c1, c2}

If ran(c1) = [2; 4] [ [7; 8] and ran(c2) = [4; 5] [ [8; 9] then it is not possible for action a to fire at time 3, since
clock c2 cannot have expired by this time. The earliest time at which a can fire is time 4; the greater of the two
minimums, which we express in general as

V
ci2Ca

u(i) > min(ci), where Ca is the trigger set for each action a.

Also, note that it is not possible for a to fire at time 6, because neither clock can be set to this value. We must
therefore insist that at least one clock be within range in order for the action to fire, i.e.

W
ci2Ca

u(i) 2 ran(ci):
Next, consider the fragment

c2, c3
a, {c2} b, {c3}

where ran(c3) = [2; 3].
The clock c3 will certainly have expired before the second state is reached, and so in the stochastic automaton the
action b will fire as soon as the second state is entered. In the timed automaton, we therefore require the guard to
continue to be true even if all clocks have passed their maximum values, and this gives us the full definition of the
guard (Vci2Ca

u(i) > min(ci)Ŵ
ci2Ca

u(i) 2 ran(ci))_V
ci2Ca

u(i) > max(ci)
As for the deadline, we can only be certain that the stochastic automaton action will fire if all the clocks have expired.
This translates to the timed automaton as insisting that all clocks have passed their maximum value, and so the

11



deadline isV
ci2Ca

u(i) > max(ci)
and we also have that d ) g, as required.

4 Verification of the translation algorithm

In this section we verify the translation defined above. In order to verify the translation we have to show that any
stochastic automata and its corresponding timed automaton with deadlines are equivalent. By equivalent we mean
that they have the same meaning in some suitable semantic model. Because we are removing the stochastic element
in the stochastic automata in order to verify reachability properties, the semantic model we choose is one that records
just actions and their associated timings. In fact we use two slight variants in order to record this information: a
timed action transition system and a time/action transition system. This is because the semantic model for stochastic
automata uses timed actions, while timed automata with deadlines are mapped to time/action transition systems.

SA TAD

timed
action

time/action~=

The verification of the translation then amounts to showing that the timed action semantics of a stochastic automaton
is equivalent to the time/action semantics of a timed automaton with deadlines. The proof is in two parts. The first
shows that any timed action trace arising from a stochastic automaton can also be performed by the timed automaton
with deadlines (i.e. the trace is in the time/action semantics). The second part of the proof does the converse: that
any time/action trace in the timed automaton with deadlines is a possible trace in the semantics of the stochastic
automaton.

Before we give the proof we define timed action and time/action transition systems and show how to map the au-
tomata to their respective models.

4.1 Timed action transition systems: the semantics of SA

The timed action transition system results from a stochastic automaton where we abstract away from the stochastic
information. It is defined as the end result of first taking the interpretation of a stochastic automaton, followed by
its probabilistic abstraction. These are defined as follows.

SA

I   (SA)A

v

I   (SA)A

v
PA( )

In the interpretation IA
v , A represents an actual, as opposed to potentational behaviour, and v is the initial valuation.

12



4.1.1 The interpretation of a stochastic automaton

The interpretation of a stochastic automaton is given by a Probabilistic Transition System (PTS). Probabilistic tran-
sition systems are explained in detail in [7], where they are used to give a semantic model for stochastic automata.
Here, they are used simply as an intermediate step in generating the timed action system. If SA = (S; s0; C;A;-�I; �;F) is a stochastic automaton, then the interpretation is given by the probabilistic transition system IA

v0(SA) =((S � V � f0g); (S �V � f1g); (s0; v0; 0);A�R>0 ; T;�!) where T and �! are defined by the rules Prob and
Act: �!�(s)= fx1; : : : ; xng

T(s; v; 0) = Ds
v(R(Fx1 ; : : : ;Fxn)) Prob

s
a;Ca�I s0 ^ d2R>0 ^ 8 x 2 Ca:(v � d)(x) 6 08 d0 2 [0:d):8 s

b;Cb�I : 9 y 2 Cb:(v � d0)(y) > 0(s; v; 1) a(d)�! (s0; (v � d); 0) Act

The rule Prob corresponds to setting some clocks within the stochastic automaton. Essentially, T(s; v; 0) is the prob-
ability space where the sample space is made up of the state s combined with all possible resultant clock settings,
and the probability measure is derived from Fx1 ; : : : ;Fxn in the obvious way. The annotations 0 and 1 are simply to
indicate whether or not the clocks have been set, and we say (s; v0; 1) 2 T(s; v; 0) if (s; v; 0) is in the sample space
of the probability space.

The rule Act specifies the conditions under which a stochastic automaton can perform an action a at time d.

4.1.2 The probabilistic abstraction of a stochastic automaton

The timed action system is produced from the PTS via the probabilistic abstraction function PA. As its name sug-
gests, this function removes all probabilistic information from the PTS.

Let ((S �V �f0g); (S �V �f1g); (s0; v0; 0);A�R>0 ; T;�!) be the interpretation of the stochastic automaton.
The probabilistic abstraction of the SA is given by((S � V); (s0; v0);A� R>0 ;�!S)
where ((s; v); a(d); (s0; v0)) 2�!S if and only if9 v00 2 V :(s; v00; 1) 2 T(s; v; 0)(̂(s; v00; 1); a(d); (s0; v00 � d; 0)) 2�!
and v00 � d = v0.
Note that we use the subscript on the transition system arrow to distinguish it from the TAD transition relation,
which will be introduced later.

In accordance with convention, we will write (s; v) a(d)�!S (s0; v0) for ((s; v); a(d); (s0; v0)) 2�!S, and therefore a
timed action transition system consists of transitions with labels of the form a(d), where a is a discrete action and

d is a time value. A transition (s; v) a(d)�!S (s0; v0) should be understood to mean that the state-valuation pair (s; v)
can delay for a time d, before performing the action a and entering the state-valuation pair (s0; v0).
Below, we give the timed action transition system resulting from the stochastic automaton description of the Sink,
specified on page 6. Because time is represented by the real numbers, any timed action graph quickly becomes
infinite and so where we can we draw just one arrow, with a label to represent the range of possible time values.
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(s0,(25,50))

timeout(50) rec(t), 0<=t<=25
rec(t), 25<t<=50

(s0,(−25,0)) (s1,(25−t,50−t)) (s1,(25−t,50−t))

disp(0)disp(25−t)

4.2 Time/action transition systems: the semantics of TAD

The time/action transition system is the standard semantics for timed automata with deadlines. It consists of transi-
tions labelled by elements of A, which correspond to state changes, and transitions labelled with non-negative reals,
which correspond to time steps. The significant difference between timed action and time/action transition systems
is that in the former the passing of time and the performing of an action are merged into one transition, while in the
latter they are separate transitions.

The time/action semantics of the TAD is given by the transition relation�!T� (Z�Rn>0 )�(A[R>0 )�(Z�Rn>0 ).
A (state,valuation) pair of a TAD is a pair (z; u) where z 2 Z is a discrete state and u 2 Rn>0 is a clock valuation.

Given z 2 Z, if f(z; ai; zi)gi2I is the set of all transitions issued from z and h(z; ai; zi) = (z; (ai; gi; di; ri); zi) then
the time/action transitions are defined by the following two clauses:� 8 i 2 I:8 u 2 Rm>0 :(z; u) ai�!(zi; u[ri]) if gi(u) where u[ri] is the valuation obtained from u when all the clocks

in ri are set to zero, and the others are left unchanged.� (z; u) t�! (z; u + t) if 8 t0 < t:cs(u + t0) where cs = : Wi2I di.

For example, the time/action transition system resulting from the TAD specification of the Sink on page 10 is as
below. Again, we parameterise time transitions where we can.

(s0,(0,0))(s0,(50,50))

(s0,(t,t))
t:0<=t<=25timeout

rec

rec

(s2,(50,50))

(s1,(t,t)) (s1,(25,25))

(s1,(t,t))

25−t

0 disp

disp

t:25<t<=50
(s0,(t,t))

(s1,(t,t))
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4.3 Proof

We are now in a position to give the proof of equivalence between the semantic models that arise from a stochastic
automaton and its translation.

Outline: We will prove that the translation from stochastic automata to timed automata with deadlines (the function
sa2tad) is correct with respect to the probabilistic abstraction function. In particular, we prove timed trace equiv-
alence: the timed traces possible through the transition system PA(IA

v0(SA)) and the timed traces possible through
the transition system [[sa2tad(SA)]] are equal, where SA is any stochastic automaton; IA

v0(SA) is the interpretation of
the stochastic automaton in terms of a probabilistic transition system; PA is the probabilistic abstraction function;
sa2tad is the function from stochastic automata to timed automata with deadlines; and [[]] is the semantic interpre-
tation of a TAD.

First, we introduce some auxiliary definitions between the two different types of valuations: stochastic automata
valuations, denoted v in the sequel, and TAD valuations, denoted u. If n is the number of clocks in the valuation,
then v is in Rn and u is in Rn>0 . We assume the set of clocks is ordered.

Example: As an example, consider the timed action and time/action transition systems given above. If the pair(t; a) represents the action a being observed at absolute time t, then the timed traceh(0; rec); (25; disp); (45; rec); (50; disp); (100; tout)i
is a possible behaviour of both systems. The proof works by showing that the set of all possible traces resulting
from the conventional interpretation of the stochastic automaton and the set of all possible traces resulting from our
TAD interpretation are equal.

4.3.1 SA traces occur in its TAD translation

The proof is in two parts. This part shows that any trace that the SA can perform can be performed by the TAD.
We do this by showing that any (state,valuation) pair in the SA can be simulated by a (state,valuation) pair in the
TAD. We do this by showing that if two (state,valuation) pairs correspond, in a manner to be defined, then a timed
action possible for the SA has related time and action transitions within the TAD.

Definition 4 Correspondence
Two valuations v and u correspond (written v � u) provided v is in Rn , u is in Rn>0 and8 i 6 n:v(i) + u(i) 2 ran(ci)
We then define the correspondence between (state,valuation) pairs as follows.(s; v) � (z; u) iff s = z and 8 v 2 Ds

v(R( �!�(s))):v � u. 2
We now begin the proof. We assume that (s; v) � (z; u), and we wish to prove that(s; v) a(d)�!S (s0; v0)) (z; u) d�!T (z00; u + d) ^ (z00; u + d) a�!T (z0; (u + d)[ra])
By the PA function we deduce that9 v00:(s; v00; 1) 2 T(s; v; 0)(̂s; v00; 1) a(d)!P (s0; v00 � d; 0)
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where v0S = v00 � d:
From the first clause it follows (by the rule Prob) that (s; v00; 1) 2 Ds

v(R(Fx1 ; : : : ;Fxn)) where
�!�(s)= fx1; : : : ; xng.

(We will write Ds
v(R( �!�(s))) as an abbreviation for Ds

v(R(Fx1 ; : : : ;Fxn)).)
From the second clause it follows (from rule Act) that

s
a;Ca�Is0 ^ 8 x 2 Ca:(v00 � d)(x) 6 08 d0 2 [0; d):8 s

b;Cb�I : 9 y 2 Cb:(v00 � d0)(y) > 0
To show that (z; u) d�!T (z00; u + d) we need to show that 8 d0 < d:cs(u + d0) where cs = :Wi2I deadi, where I
enumerates all the possible transitions from s, and deadi is the deadline for transition i.

We know that (s; v) � (z; u), and therefore that s = z and that 8 v 2 Ds
v(R( �!�(s))):v � u. In particular, v00 � u, so8 x:v00(x) + u(x) 2 ran(x).

Since 8 x:v00(x) + u(x) 2 ran(x), it follows that 8 d0 2 [0; d):8 x:(v00 � d0)(x) + (u + d0)(x) 2 ran(x), and since8 d0 2 [0; d):8 s
b;Cb�I : 9 y 2 Cb:(v00 � d0)(y) > 0, it follows that 8 d0 2 [0; d):8 s

b;Cb�I 9 y 2 Cb:(u � d0)(y) <max(y).
Thus for every time value less than d, and for every action b possible from s, there is some clock y in the trigger set
Cb such that u(y) < max(y), and therefore the cs condition above holds.

To show that (z; u + d) a�!T (z0; (u + d)[ra]), we must show that g(u + d) holds. We divide this into two cases.
First, we consider the case where the action a is not urgent, i.e. some of the clocks in Ca may still be running when
the state s is entered, and so a is not forced to happen immediately.

Now we know from rule Act that 8 d0 2 [0; d): 9 x 2 Ca:(v00�d0)(x) > 0 and 8 x 2 Ca:(v00�d)(x) 6 0. Therefore
there must be a clock y in Ca such that (v00 � d)(y) = 0, and by correspondence (u + d)(y) 2 ran(y) and therefore
g(u + d) holds, as required.

In the second case, action a is urgent: all clocks in Ca have expired strictly before the state s is entered. In this case,
we cannot find a d > 0 such that 8 d0 2 [0; d): 9 x 2 Ca:v(x) � d0 > 0, and therefore d must be zero. For each
clock x in Ca, tsx +max(x) < ta, where tsx is the absolute time at which the clock x was last set. In the TAD, each
clock is set to zero at time tsx and counts up, therefore at time ta all clocks in Ca must be greater than max(x), and
therefore g(u) holds, as required.

It remains to show that (s0; v0) � (z0; u0).
The timed action transition is (s; v) a(d)�!S (s0; v�d), and the time/action transitions performed are (z; u) d�!T (z; u+
d) a�!T (z0; (u + d)[ra]), so we must show that (s0; v� d) � (z0; (u + d)[ra]).
By rule Act s

a;Ca�! s0, and since this is a transition of the stochastic automaton SA we can deduce that z
a;Ca�! z0, and

therefore that s0 = z0.
To show that the valuations match, we begin by noting that, by definition,

�!�(s0)= ra.

Now, let v0 be in Ds0
v0(R( �!�(s0))). Then for all clocks x

x 2 ( �!�(s0))) v0s(x) 2 ran(x)
x 62 ( �!�(s0))) v0(x) = v0(x)
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and for all clocks x

x 2 ra ) (u + d)[ra](x) = 0
x 62 ra ) (u + d)[ra](x) = (u + d)(x)

so, for all valuations v0(x) in Ds0
v0(R( �!�(s0))), and all clocks x, v0(x) + u(x) 2 ran(x), as required.

Initial states: Since all the clocks x in the initial SA valuation v0 are initially set to a value within their range ran(x),
and all the clocks in the initial TAD valuation u0 are set to zero, and the initial state of the TAD is derived from the
initial state of the SA, the two (state,valuation) pairs (s0; v0) and (z0; u0) clearly correspond.

This completes the first half of the proof. 2
4.3.2 Any TAD trace is a valid SA trace

We now prove that given a translation of a stochastic automaton into a TAD, any trace possible for the TAD is
possible for the stochastic automaton. We do this by induction on the length of the trace: provided h: : : ; (tj�1; aj�1)i
is a valid trace of both the SA and the TA, we show that if h: : : ; (tj�1; aj�1); (tj; aj)i is a valid trace of the TAD, it
is also a valid trace of the SA. In order to simplify the presentation, we make the assumption that all clocks are
associated with only one transition.

In the base case, if h(t1; a1)i is a trace of the TAD then from the definition of the guard we know that(Vi2C1 t1 > min(ci)Ŵ
k2C1 t1 2 ran(ck))_V
i2C1 t1 > max(ci)

and from the time-passing constraint we know that8 d0 2 [0; t1):8 l 2 L: 9m 2 Cl:max(cm) 6 d0
(where L enumerates all outgoing transitions from s0).

In this instance the time-passing constraint is incompatible with the second clause of the guard, and therefore only
the first clause can be true. The trace can be reproduced by setting clock ck to t1, and ci to min(ci) for each clock
ci, i 6= k. Since clocks can only be used once, setting clocks to their minimums will not interfere with any other
possible transitions from s0.

For the inductive step, consider a trace h: : : ; (tj�1; aj�1); (tj; aj)i from a TAD. Recall that tj is the time at which
event aj occurs, Cj is the trigger set of action aj, and tsi is the latest time at which clock i was reset.

From the definition of the guard we know that(Vi2Cj
tj > min(ci) + tsiŴ

k2Cj
tj 2 ran(ck) + tsk)_V

i2Cj
tj > max(ci) + tsi

and from the time-passing constraint we know that8 d0 2 [tj�1; tj):8 l 2 L: 9m 2 Cl:tsm +max(cm) 6 d0
17



The definition of the guard gives rise to two cases. In the first, at least one of the clock variables must be within
range (

W
k2Cj

:tj 2 ran(ck) + tsk) and all clocks must have have started (
V

i2Cj
:tj > min(ci) + tsi). The SA can

reproduce this behaviour by setting clock k to tj � tj�1 and all other clocks to their respective minimums. Since
clocks are only used once we are free to set all clocks here as we wish. In this first case, the time-passing constraint
ensures that every other outgoing transition has at least one clock (say cm) in its trigger set which may still be active
(tsm +max(cm) > tj), and therefore no other transition is forced to have occurred previously.

In the second case, tj is strictly greater than max(ci) + tsi for all clocks in i in the trigger set of aj, but the time-
passing constraint applied to transition aj states that for all time between tj�1 and tj there is a clock in the trigger set
which is less than max(ci)+ tsi. This can only be resolved if no time elapses between tj�1 and tj (i.e. that tj�1 = tj),
and this corresponds to the case in the SA where all clocks in the trigger set have already expired, and so action aj

fires as soon as action aj�1 does. 2

4.4 Example

The translation of our stochastic automaton representing the multimedia stream can now be derived. The result is
the timed automaton given below. Due to space limitations within the diagram, the transitions are labelled repre-
sentatively; the meaning of the labels is given below.

label action guard deadline reset
loss1 loss l > 0 l > 200 fg
loss2 loss l > 0 l > 200 fr; lg
tout tout t0 > 50 t0 > 50 fg
rec1 rec r > 25 r > 75 fg
rec2 rec r > 25 r > 75 fr; lg
disp disp d > 25 d > 25 fd; t0g
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The trans actions have more complex guards and deadlines, since they are derived from two clocks.label action guard deadline reset
trans1 trans

((t > 9 ^ tr > 5) ^(t 2 [9; 11] _ tr 2 [5; 10] _ tr 2 [45; 55]))_ (t > 11 ^ tr > 55) t > 11 ^ tr > 55 ft; r; l; trg
trans2 trans

((t > 9 ^ tr > 5) ^(t 2 [9; 11] _ tr 2 [5; 10] _ tr 2 [45; 55]))_ (t > 11 ^ tr > 55) t > 11 ^ tr > 55 ft; trg
The aim of this translation is to produce a timed automaton which we can check for reachability properties. Ex-
amples of reachability properties might include: can we reach a state where a timeout is possible? Can we reach a
state where more than ten packets are in the channel? None of these properties requires precise probabilities to be
determined, therefore we can check our stochastic automaton against these properties by using the translation into
timed automaton2.2Lack of space means we cannot give a full account of this here, however it would involve turning the timed automaton with deadlines into
a form suitable for input into one of the automata tools, e.g. UPPAAL.
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5 Conclusions

In this paper we have defined a translation from stochastic automata to timed automata with deadlines. The aim of
this was to enable reachability analysis to be performed on stochastic automata in a feasible manner. Although this
is successful much remains to be done in terms of verification of stochastic specification. The greatest challenge in
this respect lies in the area of stochastic model checking. There are extremely efficient model checkers for timed
automata, yet model checking for stochastic automata with arbitrary distributions is currently hampered by prob-
lems due to the extensive calculations necessarily involved in building model checking procedures. Any work in
this direction would represent a significant breakthrough.
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[5] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modelling urgency in timed systems. In COMPOS’97. LNCS,
1997.

[6] Pedro D’Argenio. Personal communication.

[7] Pedro R. D’Argenio, Joost-Pieter Katoen, and Ed Brinksma. An algebraic approach to the specification of stochastic sys-
tems (extended abstract). In D. Gries and W.-P. de Roever, editors, Proceedings of the IFIP Working Conference on Pro-
gramming Concepts and Methods, PROCOMET’98, pages 126–147. Chapman & Hall, 1998.

[8] P.W. Glynn. A GSMP formalism for discrete event simulation. In Proceedings of the IEEE, volume 77(1), pages 14–23,
1989.

[9] Holger Hermanns, Michael Rettlebach, and Thorsten Weiss. Formal Characterisation of Immediate Actions in SPA with
Nondeterministic Branching. The Computer Journal, 38(7):530–541, 1995.

[10] Jane Hillston. A Compositional Approach to Performance Modelling. Distinguished Dissertations in Computer Science.
Cambridge University Press, 1996.

[11] Joost-Pieter Katoen. Quantitative and Qualitative Extensions of Event Structures. PhD thesis, Centre for Telematics and
Information Technology, P.O. Box 217, 7500 AE Enschede The Netherlands, April 1996.

[12] K.G. Larsen, P. Pettersson, and W. Yi. Diagnostic model-checking for real-time systems. In Proceedings of the 4th DI-
MACS Workshop on Verification and Control of Hybrid Systems, New Brunswick, New Jersey, 1995.

[13] W. Reisig. Petri Nets, An Introduction. Springer-Verlag, 1982.

[14] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[15] S. Yovine. Kronos: A Verification Tool for Real Time Systems. Springer International Journal of Software Tools for
Technology Transfer, 1(1/2), 1997.

20


