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Abstract A multiphase approach that incorporates demand points aggregation, Variable 

Neighbourhood Search (VNS) and an exact method is proposed for the solution of large-scale 

unconditional and conditional p-median problems. The method consists of four phases. In the 

first phase several aggregated problems are solved with a “Local Search with Shaking” 

procedure to generate promising facility sites which are then used to solve a reduced problem 

in Phase 2 using VNS or an exact method. The new solution is then fed into an iterative 

learning process which tackles the aggregated problem (Phase 3).  Phase 4 is a post 

optimisation phase applied to the original (disaggregated) problem. For the p-median 

problem, the method is tested on three types of datasets which consist of up to 89,600 

demand points. The first two datasets are the BIRCH and the TSP datasets whereas the third 

is our newly geometrically constructed dataset that has guaranteed optimal solutions. The 

computational experiments show that the proposed approach produces very competitive 

results. The proposed approach is also adapted to cater for the conditional p-median problem 

with interesting results.   

Keywords Variable neighbourhood search, exact method, aggregation, large p-median 

problems, adaptive learning 

 

1. Introduction 

The p-median problem is a discrete location problem where the objective is to find the 

location of p facilities among n discrete potential sites in such a way to minimise the sum of 

the weighted distances between customers and their nearest facilities. The p-median problem 

becomes the conditional problem when some (say q) facilities already exist in the study area 

and the aim is to locate p new facilities given the existing q facilities. This problem is also 

known as the (p, q) median problem. A customer can be served by one of the existing or the 

new open facilities whichever is the closest to the customer. When q = 0, the problem 
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reduces to the unconditional problem (the p-median problem for short). A further but brief 

description related to the conditional p-median problem will be presented in Section 6 where 

some results are also given. 

The p-median problem is categorized as NP-hard (Kariv and Hakimi, 1969). For relatively 

large problems, optimal solutions may not be found and hence heuristic or metaheuristic 

methods are usually considered to be the best way forward for solving such problems. 

Mladenovic et al. (2007) provided an excellent review on the p-median problem focusing on 

metaheuristic methods. The p-median problem was originally formulated by ReVelle and 

Swain (1970). However, Rosing et al. (1979) enhanced the p-median problem formulation to 

reduce its solution time. In their model, the furthest p-1 assignments associated with each 

demand point are ignored. This reduction scheme is based on the observation that in the worst 

case, a demand point i is served by its (n-p+1)
th

 closest site. The enhanced p-median 

formulation is formulated as follows: 

Minimise 
 Ii Fj

iji

i

Yjidw ),(  (1) 

Subject to 
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 iij FjiY  ,}1,0{  (6) 

Where 

(I,J) : set of customers }),...,1{( nIi  and set of potential sites }),...,1{( MJj   

   (i.e. : In   and JM  ) respectively 

iw  : demand or weight of customer i; 

),( jid  : distance between customer i and potential site j (Euclidian distance is used here); 

p : the required number of facilities to locate; 

ijY  = 1, if customer i is fully served by a facility at site j and = 0 otherwise; 

jX  = 1, if a facility is opened at potential site j and = 0 otherwise; 

Fi   : set of all sites except the p−1 furthest sites from demand point i. 

The objective function (1) minimises the total demand-weighted distance. Constraints (2) 

guarantee that each customer i is assigned to one facility only. Constraint (3) states that the 
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number of facilities to be located is p. Constraints (4) ensure that customer i can only be 

allocated to facility j (i.e., Yij = 1) if a facility is opened at site j (i.e., Xj = 1). The use of the 

sets Fi in constraints (2), (4) and (6) yields a more compact formulation, requiring a fewer 

number of variables and constraints than the classical formulation.  

In some applications, p-median problems may involve a large number of demand points 

and potential facility sites. These problems arise, for example, in urban or regional areas 

where the demand points are individual private residences. Francis et al. (2009) stated that it 

may be impossible and time consuming to solve location problems consisting of a large 

number of demand points. To simplify the problem, it is quite common to aggregate demand 

points (and/or potential facility sites) when solving large-scale location problems. In other 

words, the number of demand points (and/or potential facility sites) can be reduced from n to 

m points (m << n) so that the approximated problem can be solved within a reasonable 

amount of computing time. However, aggregation introduces errors in the data as well as in 

the models output, thus resulting in less accurate results.  

The main contributions of this paper include: (i) a novel multiphase approach that 

incorporates aggregation, Variable Neighbourhood Search (VNS) and an exact method for 

solving large p-median problems, (ii) new best solutions for some benchmark problems, (iii) 

the construction of a new large dataset for p-median problems with guaranteed optimality, 

and (iv) an adaptation of the proposed approach for the conditional p-median problem. 

The paper is organized as follows. Section 2 presents a brief review of the past efforts at 

solving large p-median problems. Section 3 describes the ingredients that make up our 

method as well as the overall algorithm. Detailed explanations of the main steps and the 

“Local Search with Shaking” procedure are described in Section 4. Computational results are 

presented in Section 5 using large datasets including the one with guaranteed optimal 

solutions which we constructed. Section 6 presents a brief review on the conditional p-

median problem followed by the adaptation and the implementation of our approach for this 

related problem. The last section provides a summary of our findings and highlights some 

avenues for future research. 

 

2. Past efforts at solving large p-median problems 

This section presents an overview of past efforts at solving large p-median problems (see 

Francis et al., 2009, for an excellent review). Hillsman and Rhoda (1978) introduced a 
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classification of aggregation errors using three types, namely source A, B, and C errors. 

Source A error occurs when the distance between an Aggregate Spatial Unit (ASU) and a 

facility is utilized in the model, instead of the true distance between a Basic Spatial Unit 

(BSU) and a facility. Source B error exists in the special case when a facility is located at an 

ASU whereas source C error appears when a BSU is assigned to the wrong facility.  

Goodchild (1979) stated that aggregation tends to produce more dramatic effects on 

location than on the values of the objective function while also noting that there is no 

aggregation scheme without a possible resulting error. Bach (1981) mentioned that “the level 

of aggregation exerts a strong influence on the optimal locational patterns as well as on the 

values of the locational criteria”. Mirchandani and Reilly (1986) examined the effect of 

replacing distances to demand points (BSUs) in a region by the distance to a single point 

(ASU) representing that region.  

Current and Schilling (1987) proposed a method for eliminating source A and source B 

errors. They introduced a novel way of measuring aggregated weighted travel distances for p-

median problems. Let ),( jid  denote the distance between the i
th

 and the j
th

 BSUs and ),(
~

jkd  

the distance between the representative point of the k
th 

ASU and the j
th

 BSU. The distance 

between the k
th 

ASU and the j
th

 facility is traditionally defined as: 

 ),(ˆ jkd  = ),(
~

jkdWk  (7) 

where  
kAi ik wW  with Ak being the set of aggregated BSUs at the k

th
 ASU. 

To eliminate source A and B errors, the distance proposed in Current and Schilling (1987) is 

set as: 

 ),(ˆ jkd  =  kAi i jidw ),(  (8) 

However, this method is not able to eliminate source C errors.  

Casillas (1987) introduced two measures to assess the accuracy of aggregated models. 

These include the cost error )):():'(( CFfCFfce   and the optimality error 

)):():(( CFfCFfoe   where F and F’ represent the optimal locations of the p facilities 

found with the original and the aggregated models respectively, while C and C’ denote the 

list of BSUs and ASUs. The objective functions ):( CFf , ):( CFf  and ):( CFf   represent the 

objective function evaluated using F and C, F’ and C, and F’ and C’ respectively. 

Oshawa et al (1991) studied the location error and the cost error due to “rounding” in the 

unweighted 1-median and 1-centre problems in the one-dimensional continuous space. 
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Aggregation error bounds for the median and the centre problems were developed by Francis 

and Lowe (1992). A Geographical Information System (GIS) method for eliminating source 

C error was proposed by Hodgson and Neuman (1993). Transport costing errors for the 

median problems were investigated by Ballou (1994) who demonstrated that cost errors 

increase with p but decrease with m. An investigation by Fotheringham et al (1995) 

suggested that the level of aggregation affects the location error more significantly than the 

objective function value. Francis et al. (1996) introduced a median row-column aggregation 

method to find an aggregation which gives a small error bound. In addition to the A, B, and C 

errors, Hodgson et al. (1997) introduced source D error which arises when the BSU locations 

act as potential sites.  

Murray and Gottsegen (1997) investigated the influence of data aggregation on the 

stability of facility locations and the objective function for the planar p-median model. 

Demand point aggregation procedures for the p-median and the p-centre network location 

models were studied by Andersson et al. (1998). Hodgson and Salhi (1998) proposed a 

quadtree-based technique to eliminate source A, B, and C errors in the allocation process. 

Bowerman et al. (1999) investigated the demand partitioning method for reducing source A, 

B, and C aggregation errors in p-median problems. Erkut and Bozkaya (1999) provided a 

review of aggregation errors for the p-median problem. Francis et al. (2000) computed error 

bounds for several location models. Plastria (2001) investigated how to minimise aggregation 

errors when selecting the ASUs location at which to aggregate given groups of BSUs. 

Hodgson (2002) introduced data surrogation error in the p-median problem which appears 

when an original population’s demand is substituted by inappropriate values.  

To solve large p-median problems without aggregation, Church (2003) put forward an 

enhanced Mixed Integer Linear Programming formulation called COBRA. He also proved 

that there are redundant assignment variables that can be consolidated if they satisfy some 

equivalent assignment conditions. These conditions are based on the order of closeness of 

facility sites with respect to pairs of demand points. This property leads to a reduction that 

can be up to 80% of the original number of variables. An enhanced model formulation 

referred to as Both Exact and Approximate Model Representation (BEAMR) was later 

proposed by Church (2008). Hansen et al. (2009) introduced a primal-dual VNS 

metaheuristic for large p-median clustering problems where a Reduced VNS is used to get 

good initial solutions which are then fed into a VNS with decomposition. The worst-case 

analysis of demand point aggregation for the Euclidean p-median problem on the plane was 
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investigated by Qi and Shen (2010). An alternative covering based formulation which has a 

small subset of constraints and variables is studied by Garcia et al. (2010). This method is 

relatively more efficient when p is large.  

Avella et al. (2012) designed an aggregation heuristic based on Lagrangean relaxation. 

They proposed three main procedures, namely a sub-gradient column generation, a core 

heuristic, and an aggregation heuristic. The first procedure solves the Lagrangean relaxation 

by combining subgradient optimisation with column generation. The core heuristic is defined 

by a subset of the most promising variables found according to the Lagrangean reduced costs 

associated with the open facilities as well as those associated with the allocation variables. 

An aggregation heuristic is then introduced to tackle the problem when the value of p is 

relatively small. Very recently, Irawan and Salhi (2013) introduced an approach using 

demand points aggregation and variable neighbourhood search for solving large-scale p-

median problems. Their method used a multi-batch methodology where a learning process 

that feeds information from one batch to another is utilised. A batch consists of aggregated 

problems. In this paper, we propose a multiphase approach instead of a multi-batch approach. 

The first batch of the method by Irawan and Salhi (2013) is similar to our Phase 1 except that 

a more efficient implementation of the local search is adopted. Subsequent phases are also 

designed to guide the search in exploring new areas while retaining promising regions. 

Moreover, we also enhance the method used to solve the aggregated p-median problem; we 

present an efficient way in aggregating the demand points; and we put forward an effective 

implementation of the local search that is used to solve the disaggregated (original) problem. 

 

3. An Adaptive Approach (AA) for solving large p-median problems 

We propose an adaptive approach which consists of four phases. The main steps of these 

phases are depicted in Figure 1 but a brief overview is given below. Moreover, a visualisation 

of our methodology is presented in Appendix A whereas a detailed description of the main 

steps is given in the next section. In this study, for simplicity we consider potential facility 

sites as customer sites (i.e. M=n).  

In the first phase a learning process is conducted. Here, a clustering procedure is used to 

aggregate n BSUs into m ASUs, with m << n. As each customer site acts as a potential 

facility site, the aggregated problem reduces to having m customers and m potential facility 

sites. This phase consists of solving a number of aggregated problems of m ASUs using a 

“Local Search with Shaking” procedure with the aim of choosing p facility locations. This will 
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be described further in subsection 4.3. Let L denote a list of distinct facilities obtained from 

the solutions of the aggregated problems.  

 

Figure 1. An Adaptive Approach (AA) 

Initialization 

Define the parameters m, itermax, Lmax, T and set L = Ø. 

Phase 1 

Do T times the following steps (t = 1, …, T) 

(i) Aggregate n BSUs into m ASUs and construct m clusters by allocating all BSUs to their 

nearest ASUs. 

(ii)  Calculate the distance ),(ˆ jkd , k=1,..,m; j=1,…,m.  

(iii) Solve the t
th
 aggregated p-median problem using “Local Search with Shaking (m, m, p)”, 

let ),...,,(
21

t
p

tt
tF   be the obtained facility locations with t

i  denoting the i
th
 facility 

at iteration t and set tFLL  . 

Phase 2 

(i) Construct |L| clusters around these |L| promising facilities, and compute the distance 

),(ˆ jkd , k=1,..,|L|; j=1,…,|L|.  

(ii)  If |L|  Lmax solve the p-median problem with “CPLEX (|L|,|L|, p)”, otherwise apply a 

“VNS (|L|,|L|, p)”. Let bestF̂   be the obtained facility configuration. 

(iii) Solve the p-median problem with “Local Search with Shaking (n, |L|, p)” using bestF̂   as 

the initial facility configuration. Let F’ be the obtained set of open facilities and 

):( CFf   its corresponding cost.  

(iv) Set bestF̂  = F’ and ):( CFffbest  . Let bestF̂  and iter = 0. 

Phase 3 

(i) Aggregate n into m potential sites by including the facility locations in E. 

(ii)  Solve the p-median problem using “Local Search with Shaking (n,m,p)” using bestF̂   as 

the initial solution. Let F   be the obtained facility configuration and ):( CFf   its cost. 

(iii)  If bestfCFf  ):(  then  

Set bestF̂  = F  , ):( CFffbest   and bestF̂   . Set  iter = 0 and go to Step (i) of 

Phase 3. 

Else set iter = iter + 1. If iter  itermax go to Phase 4, else go to Step (i) of Phase 3. 

Phase 4 

Solve the p-median problem using “Local Search (n,n,p)” using bestF̂   as the initial solution. 
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In Phase 2, |L| facilities are considered as the ‘promising’ facilities to set up an aggregated 

p-median problem which is then solved with a VNS or with CPLEX, depending on the size of 

the augmented problem. Namely, if |L| is relatively small then the problem is solved by 

CPLEX (|L|, |L|, p), otherwise a VNS (|L|, |L|, p) is adopted where Method (g, s, p) refers to 

the procedure ‘Method’ for locating ‘p’ facilities, using ‘s’ potential sites and serving ‘g’ 

customers. When the VNS is applied, the best solution found in Phase 1 is used as the initial 

solution. To get a feasible solution to the p-median problem with the original customers set, 

the “Local Search with Shaking” is then used with |L| potential facility sites starting from the 

solution returned by VNS or CPLEX in the previous step. We refer to this procedure as the 

“Local Search with Shaking (n, |L|, p)”. The best solution in this phase is then fed into the 

next phase (Phase 3). 

The third phase is an iterative process that incorporates potential facility sites aggregation 

and the use of the “Local Search with Shaking”. Unlike Phase 1, the aggregation here 

includes the promising sites found in the previous iteration. This set of promising sites is 

denoted by E. The resulting aggregated problem with n customers and m potential facility 

sites is then solved by “Local Search with Shaking (n, m, p)”. The obtained solution is then 

used as an initial solution for the next iteration and the process is repeated until a stopping 

criterion is met. In our study, the process stops when there is no improvement after a 

prescribed number of consecutive iterations which we denote by itermax. 

In the final phase (Phase 4), a post optimisation is carried out. Here, a local search is used 

to solve the original problem (without aggregation) starting from the best solution obtained in 

the previous phase. To speed up the search, a reduction scheme, which is described in 

subsection 4.5, is also incorporated into the search.  

 

4. Description of the main phases of the Adaptive Approach 

In this section we present the aggregation scheme and the distance calculation method. 

These are followed by the description of the “Local Search with Shaking”, the VNS, the 

exact method, and the local search which is used in the original problem.  

 

4.1. The aggregation methodology (Phases 1(i) and 3(i)) 

This subsection describes the procedure to aggregate n BSUs into m ASUs used in Phases 

1(i) and 3(i). The set of the m ASUs includes the followings: 
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 the promising facility locations obtained from previous iterations in Phase 3 (i.e. the set 

E). Note that in Phase 1, E = Ø. 

 (mγ) pseudo randomly generated points, where γ is a parameter (γ > 0). 

  (m-|E|-mγ) randomly generated points. 

Firstly, the method includes the promising facility locations (E) as part of the aggregated 

points. We assume the use of these points may increase the probability of obtaining a good 

solution. Secondly the Basic Cell Approach (BCA), as shown in Figure 2 and briefly 

described below, is used to generate the subsequent mγ aggregated points. All demand points 

are covered by square cells and the cell information is used for determining m ASUs. This 

scheme overcomes the weaknesses of a simple random process when dealing with clustered 

demand points. In addition, it ensures that the generated ASUs are not too close to each other. 

This is achieved by imposing that the distance between any pair of ASU points is larger than 

a certain threshold which is based on the side of the cell. Finally, some randomly generated 

points are added to the set of ASUs to increase the diversity of the solutions. 

The BCA method is adapted from the approach given in Irawan and Salhi (2013) which is 

originally based on the one by Salhi and Gamal (2003) for the multisource Weber problem. 

An illustration of the BCA is shown in Figure 2. The main steps of the method are formally 

given in Figure 3.  

                       

 

                   

Figure 2. The basic cell approach (BCA) 
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Figure 3. The main steps of the BCA 

Initially, ( WL cc  ) square cells are constructed. We set the number of cells to be 

approximately m. Let  denote the length of the side of the cell which is given by: 

















minmax

minmax
minmax /)(

yy

xx
mxx   

where xmax and xmin refer to the maximum and the minimum x coordinate of the points 

respectively. Similarly, ymax and ymin refer to the maximum and the minimum y coordinate 

respectively. A cell is identified by its bottom-left corner. In other words, the coordinates of 

the bottom-left corner of the z
th

 cell is denoted by (Xz, Yz), z = 1,…,( WL cc  ). The bottom-left 

corner of cell 1 is    minmin11 ,, yxYX   and successive cells are defined as follow: 

   )mod( , )mod(, minmin WLzz czyczxYX    

The number of demand points in each cell, Gz, is then recorded and its corresponding 

probability distribution is calculated as Pz = Gz / n, z = 1,…,( WL cc  ). 

Next, a cell is chosen in a pseudo random manner based on the cumulative probability 

distribution. In other words, we generate randomly   (0,1) and choose )(~   ~ 1
)(


z
Fzstz  with 

  z
v vz PF 1)( . For instance as an illustration, 3~ z  in Figure 4. A demand point (say point a) 

is then chosen randomly in the cell z~  as long as it satisfies the threshold distance separation 

criterion  


),( jadMind
Cj

a


with ρ being a parameter whose value is dynamically 

decreased if no aggregated point is found after a number of attempts being made (say ς, in our 

Step 1 Construct WL cc   square cells to get approximately m cells of length  which will cover 

all demand points. Set parameters ρ, γ, and ς. 

Step 2 Record the number of demand points in each cell z as Gz and determine its corresponding 

probability distribution, say Pz = Gz / n, z = 1,…,( WL cc  ).  

Step 3 Define C’ = E as the set of initial promising sites (in Phase 1, E = Ø). 

Step 4 Set count = 0. 

Step 5 Generate randomly  (0,1) and choose )(1
)(

~   ~  zFzstz  with   z
v vz PF 1)( . 

Step 6 Choose randomly a demand point k in the cell z~ and calculate d


 (the distance between 

demand point k and the nearest point in C’). 

Step 7 If d

 ρ  set C’ = C’  {k}. If |C’| = mγ stop the search 

 Otherwise  

  Set count = count + 1.  

 If count = ς then set ρ = ρ/2 and go to Step 4 else go to Step 5 
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study ς = m).  The selection of a cell and of a point within the cell is repeated until a 

prescribed number of ASUs is reached. The centroid of the points in a cell was also attempted 

but a preliminary study showed that the quality of the solution was found to be slightly 

inferior.  

 
Figure 4. The illustration of determining z~  

 

4.2. The distance calculation method (Phases 1(ii) and 2(i)) 

When using the “Local Search with Shaking”, the VNS, or CPLEX to solve the 

aggregated p-median problem, the distance matrix between points in C’ (ASUs) has to be 

determined first. The way this is performed depends on the type of aggregated p-median 

problems used. The aggregated problems can be categorised as (m, m, p), (n, m, p), or (|L|, |L|, 

p) where (a,b,p) refers to solving the p-median with a customers and b potential sites. 

In Phase 1(iii), the (m, m, p) aggregated problem is solved. Here, the procedure to 

calculate the distance between points in C’ is performed first by constructing m clusters, and 

allocating all demand points to the nearest points in C’. Secondly, the total weight of each 

cluster Wk, k = 1,…,m is computed. Finally, the approximate distance between each pair of 

points in C’, denoted by ),(ˆ jkd , is calculated using (7).  

In Phase 2(ii), the (|L|, |L|, p) aggregated problem is solved instead. In this case, we 

calculate the distance between each pair of points in L using (8) which is practical in this case 

as the (|L|, |L|, p) aggregated problem is solved only once. In Phases 2(iii) and 3(ii), where no 

clustering is needed, the true distance between the i
th

 BSU and the j
th

 facility, ),( jid , is used 

for both the (n, |L|, p) and the (n, m, p) aggregated problems.  

 

. . . 

Cumulative 

Probability (F(z)) 

1 2 3 4 . . . WL cc   

zth cell 0 

1 

 
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4.3. The “Local Search with Shaking” for the aggregated p-median problem (Phases 

1(iii), 2(iii), and 3(ii)) 

We use a “Local Search with Shaking” to speed up the search. This choice is due to the 

fact that our method is an iterative-based approach and therefore finding solutions to the 

aggregated problems with the VNS or CPLEX would be too time consuming. The method 

utilises one shaking and one call to the local search only. We explore the following two 

approaches: 

(a) Only the first neighbourhood (N1) is used. This shaking process can be considered as a 

perturbation. This is then enhanced by a local search.  

(b) Similar to (a), but instead of using the first neighbourhood (N1), the k
th

 neighbourhood 

(Nk) is randomly generated where k  (1, kmax).  

We refer to (a) and (b) as Var1 and Var2 respectively. We carried out some preliminary 

experiments to test the performance of these two variants. The results, reported in the 

computational results section, show that Var2 is relatively superior.  

The shaking process adapted here applies the shaking algorithm used by Hansen and 

Mladenovic (1997). Let X denote the facility configuration of the current solution and H the 

set of potential facility sites. The k
th

 neighbourhood structure Nk is defined as: Nk(X) = use of 

N1(X) k times with k = 1,…,kmax and   XXN )(1  where    is chosen randomly in 

H-X and X  is selected to yield the best improvement.  

The “Local Search with Shaking” is used to solve the (m, m, p), the (n, |L|, p), and the (n, 

m, p) p-median problems. In both Phases 2 and 3, this procedure takes the best solution from 

the previous steps as the initial solution when solving the (n, |L|, p), and the (n, m, p) p-

median problems. For the (m, m, p) p-median problem solved in Phase 1, p randomly chosen 

points are considered instead.  

For the (m, m, p) problem, the local search process uses the procedure 

“FindBestCustomer” proposed by Irawan and Salhi (2013) combined with the use of an 

efficient data structure initially presented by Resende and Werneck (2007). The latter records 

intermediate calculations so to eliminate any unnecessary recomputations. A similar data 

structure was also successfully implemented by Osman and Salhi (1996) when solving the 

vehicle fleet mix problem. We refer to this local search as “IS-RW”. This procedure is based 

on the fast interchange heuristic introduced by Whitaker (1983) which is then adapted to 

increase the computational speed at the expense of a small loss in quality. The procedure 
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identifies a point (say point i) among the potential facility sites to be inserted and a facility 

(say facility j, jX) that yields the highest saving to be removed. The procedure restricts the 

search as follow: it considers point i  Sj with Sj being the set of potential sites that are nearer 

to facility j than the other open facilities in the current solution (|Sj| < |H|-p). For the (n, |L|, p) 

and the (n, m, p) problems, we use the well-known fast swap-based local search procedure of 

Resende and Werneck (2007). We refer to this local search as “RW”. We can afford to use 

this local search here without the reduction scheme used in “IS-RW” as good solutions are 

usually obtained from Phase 1 which are then used as initial solutions for the (n, |L|, p) and 

the (n, m, p) problems.. 

Figure 5 presents the “Local Search with Shaking” when solving the aggregated p-

median problems with the use of Var2.  

 

Figure 5 The “Local Search with Shaking” (Var2) for solving the aggregated problems 

We conducted preliminary experiments to test the performance of these two local searches 

namely IS-RW and RW. The results are reported in the computational results section. 

 

4.4. The VNS and CPLEX (Phase 2(iii)) 

Variable Neighbourhood Search (VNS) is a metaheuristic first introduced by Brimberg 

and Mladenovic (1996) for solving continuous location-allocation problems. Hansen and 

Mladenovic (1997) formally formulated this heuristic and applied it to solve the p-median 

problem. VNS combines both local search and neighbourhood search. The first search looks 

for local optimality, while the latter aims to escape from these local optima by systematically 

using a larger neighbourhood if an improvement is not found and then reverts back to the 

smaller one otherwise. Initial VNS implementations are given in Hansen and Mladenovic 

Step 1 Initialization  

Set the initial solution (X). Choose p points randomly for Phase 1 whilst for Phases 2 and 3 take 

the best solution from the previous steps. Define Nk(X), k = 1,…,kmax with kmax = p. 

Step 2 Shaking 

Generate k  (1,kmax) randomly and determine X’  Nk(X). 

Step 3 Local Search 

For the (m, m, p) problem: Apply the local search “IS-RW” on X’. 

For the (n, |L|, p) and the (n, m, p) problems: Apply the local search “RW” on X’. 
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(2001), but newer variants of VNS and successful applications can be found in Hansen et al. 

(2010).  

The VNS or CPLEX is utilized to solve the augmented (|L|, |L|, p) p-median problems. 

The use of these relatively more intensive methods is acceptable as one run of VNS/CPLEX 

is needed only. Moreover, the size of the p-median problem (|L|, |L|, p) is still relatively small.  

When the VNS is used, we limit the computing time for solving the problem to Tvns 

seconds. In this study, we set 1000/10 5.05.025.0 mpnTvns   which is found based on a 

preliminary study. The algorithm of the VNS is based on the one by Hansen and Mladenovic 

(1997) incorporating the fast swap-based local search (RW). The enhanced formulation (1) – 

(6) of the p-median problem, as given by Rosing et al. (1979), is used in the CPLEX 

implementation. 

 

4.5. The Local Search for the original  p-median problem (Phase 4) 

An additional post optimisation step to solve the disaggregated problem (original 

problem) starting from the best solution found in the previous phase is introduced. The main 

steps are similar to the ones proposed by Irawan and Salhi (2013) except here we adopt a 

more efficient implementation of the procedure “FindBestCustomer” where we restrict the 

search even further by imposing that the substituted location must lie within a certain 

covering radius (r). The value of r is based on the average of the longest distances from the 

facilities to their associated potential sites. In other words, we set  










j

Xj
o Rrr Min,Min  

where ),(max jidR
jSi

j


  and 



p

j
jo Rpr

1

)/( . This setting is used to ensure that the search 

is more restrictive while remaining within each Rj, j=1,…,p.  is a correction parameter 

which we set, in our experiments, to 0.25. This was found empirically using a small sample 

problem. By using this restriction, the number of potential sites used in the procedure 

“FindBestCustomer” is drastically decreased which led to a massive reduction in the 

computing time of the local search without a significant loss in solution quality. Here, we do 

not apply the data structure of Resende and Werneck as the number of potential facility sites 

is relatively large (n) which creates an excessive memory problem due to the use of a two 

dimensional matrix as part of its data structure. 
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5. Computational Results 

To assess the performance of our solution method, we carried out an extensive 

computational study. The code was written in C++ .Net 2010 and used the IBM ILOG 

CPLEX version 12.5 Concert Library.  The tests were run on a PC with an Intel Core i5 CPU 

650@ 3.20GHz processor, 4.00 GB of RAM and under Windows 7(32bit).  

In our computational experiments, we used two existing datasets from the literature and a 

new dataset with guaranteed optimal solutions which we constructed. We first provide 

preliminary computational results for the two local searches and the two variants. Full 

computational experiments on the p-median problem are given next. 

 

The existing datasets  

These consist of the BIRCH and the TSP datasets. The BIRCH dataset is kindly provided by 

Avella et al. (2012) in http://iv.icc.ru/Papers.hatml whereas the TSP dataset can be 

downloaded from http://www.tsp.gatech.edu/world/countries.html.  

 

The newly generated dataset  

This is constructed using a well-defined though trivial geometric structure so to guarantee 

optimality when the value of p is equal to the number of groups/clusters in the dataset. We 

refer to the new dataset as the ‘Circle dataset’. Two examples of this dataset (n = 500, p = 4 

and n = 20000, p = 100) are shown in Figure 6. The algorithm for generating the Circle 

dataset is given in Appendix B and its proof of optimality is provided in Appendix C. This is 

based on the following two items: (i) the p-median problem reduces to p 1-median problems; 

(ii) the optimal centre of each cluster reduces to the same optimal centre of each ring which is 

the point as defined in our construction. Different instances of this dataset can be downloaded 

from the CLHO (2013) website (http://www.kent.ac.uk/kbs/research/research-

centres/clho/datasets.html). 

 

Some notation  

The results of our experiments are presented in several tables.  The notation in the tables is 

as follows: 

 n: number of demand points  

 p: number of medians  

http://iv.icc.ru/Papers.hatml
http://www.tsp.gatech.edu/world/countries.html
http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html
http://www.kent.ac.uk/kbs/research/research-centres/clho/datasets.html
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 Z: objective function value 

 Time: computational time 

 Deviation(%): this is the percent gap from the best known solution and is computed as: 













 


b

bc

Z

ZZ
Deviation 100 , where Zc and Zb correspond to the Z value obtained with method 

’c’ and the best Z value respectively. This is equivalent to the optimality error as defined 

by Casillas (1987). 

 ‘Bold’ values in the table refer to the best solutions. 

 

 

Figure 6. Two examples of the Circle Dataset (CLHO, 2013) 

 

 

5.1. Preliminary Empirical Comparison  

In this subsection we conduct small experiments to assess the performance of the two local 

searches as well as the two variants which we discussed in the earlier section. 

a) The two local searches (RW vs IS-RW) 

Small experiments on 3 TSP datasets (mu1979, tz6117, and ym7663) were conducted to 

compare the performance of RW and IS-RW. Values of p varying from 10 to 100 with an 

increment of 10 are used. Each instance was executed 10 times for both local searches 

starting from the same initial solution. Table 1 shows the performance of both local searches 

where Saving (%) refers to the percentage saving in CPU time of IS-RW over RW. From this 

table, it can be noted that IS-RW runs approximately 15-36% faster than RW. However, the 

quality of the solution obtained by IS-RW is, as expected, slightly affected with a 

n = 500, p =4 n = 20000, p = 100 
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deterioration between 2% and 11%. We use IS-RW when solving the aggregated problems 

(Phase 1) as the obtained facility locations of the aggregated problem do not necessary yield 

the corresponding best solution of the original problem. In other words, the main objective in 

Phase 1 is to identify the promising facility locations while consuming a smaller amount of 

computing time. 

Table 1 The average of CPU time of RW and IS-RW on the TSP data (in seconds) 

p 
mu1979 (n = 1979)   tz6117 (n = 6117)   ym7663 (n = 7663) 

RW IS+RW Saving (%)   RW IS+RW Saving (%)   RW IS+RW Saving (%) 

10 0.51  0.54  -6.09  

 

5.56  5.57  -0.07  

 

11.32  12.76  -12.75  

20 0.46  0.48  -4.64  

 

4.27  4.99  -16.93  

 

8.14  8.56  -5.12  

30 0.48  0.40  16.98  

 

4.14  4.60  -11.22  

 

7.52  7.80  -3.66  

40 0.56  0.41  26.48  

 

4.25  4.25  0.11  

 

7.81  6.79  13.02  

50 0.65  0.42  35.31  

 

4.61  4.13  10.52  

 

7.56  6.43  14.98  

60 0.71  0.39  45.56  

 

4.91  4.11  16.40  

 

8.43  6.48  23.20  

70 0.86  0.39  54.52  

 

5.41  3.96  26.82  

 

8.88  7.15  19.48  

80 1.00  0.40  60.18  

 

6.22  3.94  36.59  

 

9.90  6.86  30.70  

90 1.17  0.42  64.09  

 

6.96  4.18  39.87  

 

10.99  6.76  38.44  

100 1.32  0.43  67.49    8.16  4.23  48.12    12.02  6.84  43.06  

Average 0.77  0.43  35.99  

 

5.45  4.40  15.02  

 

9.26  7.64  16.14  

 

b) The two Variants (Var1 and Var2) 

We also tested Var1 and Var2 using IS-RW as a local search on the TSP dataset varying in 

size from n = 734 to 9,976. We increase the value of p with n. Each instance was executed 10 

times and every run in both approaches used the same initial solution. The summary results 

are presented in Table 2 which shows the average of the objective function (Z), the deviation 

(%), the average total CPU and the average shaking time. As the “Local Search with 

Shaking” is used only once for each subproblem, referring to the average behaviour rather 

than the best is, in our view, more reliable. 

In general, Var2 generates better results than Var1 as it produces both a higher number of 

smaller average objective values and a smaller deviation (0.09841%). This means that 

conducting the shaking process k times does improve the quality of the solution.  To our 

surprise, the table also shows that Var2 runs faster than Var1. This could be due to the fact 

that the shaking process does not only affect the performance of the local search but makes 

the task of the local search relatively easier. Moreover, the shaking time is found to be 

negligible when compared to the total CPU time (approx. 1.89% extra CPU time only for 
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Var2 in the worst case, see for example instance ei8246). These results support our choice of 

using Var2 within the “Local Search with Shaking”.  

Table 2 Comparison between the Var1 and the Var2 Methods 

File 

Name 
n p 

Z 
Deviation 

Average Total CPU 

Time 

Average 

Shaking Time 

(%) (milliseconds) (milliseconds) 

Var1 Var2 Var1 Var2 Var1 Var2 Var1 Var2 

uy734 734 25 209,214 207,647 0.75460 - 64.90 54.20 0.00 1.00 

zi929 929 30 208,002 209,374 - 0.65959 108.50 98.40 0.10 1.70 

mu1979 1979 35 320,885 320,777 0.03363 - 401.50 336.40 0.30 5.40 

ca4663 4663 40 6,885,883 6,817,921 0.99681 - 2,878.80 2,202.70 1.20 16.50 

tz6117 6117 45 2,412,269 2,371,727 1.70937 - 4,171.10 3,597.60 2.00 37.10 

eg7146 7146 50 1,010,761 1,003,380 0.73559 - 7,529.00 5,733.10 2.20 49.30 

ym7663 7663 55 1,430,669 1,416,127 1.02695 - 6,934.80 5,578.30 2.90 55.90 

ei8246 8246 60 1,235,810 1,241,036 - 0.42290 8,851.60 6,137.40 3.20 116.30 

ja9847 9847 65 3,365,986 3,311,024 1.65999 - 12,925.50 10,102.90 3.90 106.50 

gr9882 9882 70 1,869,116 1,859,538 0.51504 - 13,235.00 9,655.40 3.70 84.50 

kz9976 9976 75 6,378,764 6,340,439 0.60445 - 13,657.00 12,725.60 3.60 71.80 

    
Average 0.73058 0.09841 6,432.52 5,111.09 2.10 49.64 

 

5.2. Experiments on large p-median problems 

In our computational study, we set the parameters as follows: m = 0.1n, T = 10, Lmax = 

300, and itermax = 5. Those parameters were chosen based on a small preliminary study. The 

number of aggregated points is only 10% of the number of demand points. The value of m 

affects the quality of the solution. The higher the value of m, the higher is the chance of 

getting a better solution. However, the computing time also increases with increasing values 

of m. The number of iterations (T) in Phase 1 also influences the quality of the obtained 

solution. The likelihood of getting a good solution increases when T is high, which also 

increases diversification, but at the expense of a longer computing time. We set Lmax = 300 as 

CPLEX runs relatively long when the size of the problem exceeds this value.  The method 

terminates when there is no improvement in five consecutive iterations (itermax = 5). In 

addition, we fixed the seed for the random generator to a constant, say m, so the results can 

be reproducible if need be.  

Different settings were considered for the parameter ρ used to determine the threshold 

distance  in the BCA method ( = ρ). Based on some preliminary tests, we set ρ = 0 for the 

clustered datasets and ρ = 0.25 for the non-clustered ones. The BIRCH and Circle datasets 

belong to the clustered dataset category whereas the TSP fits the non-clustered category. This 
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choice of the parameter ρ implies that the threshold distance is relatively small for the 

clustered dataset as the demand points are spread in a certain area. For the non-clustered 

dataset, we set the number of aggregated points generated from the promising facility 

locations based on the BCA method to be 75% (γ = 0.75), whereas the remaining 25% were 

generated randomly. For the clustered dataset, we set γ = 0.90. 

 

5.2.1. Experiments on the existing datasets 

The BIRCH dataset includes the largest instances tested in the literature (n ranges from 

25,000 to 89,600). For the TSP dataset, we use the Italy, Sweden, Burma, and China 

instances (n ranges from 16,862 to 71,009). 

 

Case 1: BIRCH Dataset 

The results of our experiments on the BIRCH dataset are compared with the ones obtained 

by Irawan and Salhi (2013), Avella et al. (2012), and Hansen et al. (2009). We refer to these 

3 methods as IS, AV, and VNSH respectively. The computational results of the AV and 

VNSH methods are taken from Avella et al. (2012). The value of p ranges between 25 and 

64. 

The specification of the computer used to execute IS is the same as the one used here. 

Computational experiments for AV and VNSH were carried out by Avella et al. (2012) on an 

Intel Core 2Quad CPU 2.6 GHz, 4.00 GB of RAM and under Windows XP64. Dongarra’s 

transformation is used to provide a fair comparison in terms of CPU time. The formulation of 

this transformation is as follow: 
2

1
12

Nf

Nf
TT  , where T1 denotes the reported time in Machine 1 

and T2 the estimated time in Machine 2. Nf1 and Nf2 represent the number of Mflops in 

Machines 1 and 2 respectively. The software used to record the values of Nf1 and Nf2 can be 

downloaded from http://www.roylongbottom.org.uk. In that software, we record the value of 

32 bit SSE MFLOPS. As we could not obtain precisely the number of Mflops of the 

computer used by Avella et al. (2012), we provide an approximation based on a slightly 

slower but similar computer available to us, namely a PC Intel Core 2Duo 2.6GHz, 4 GB of 

RAM. 

The computational results for our method (AA) on the BIRCH dataset are presented in 

Table 3 where the summary results of the four methods (AA, IS, AV, and VNSH) are shown: 

the best known objective function (Z), the deviation (%), and the time (in seconds). In these 

http://www.roylongbottom.org.uk/
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experiments, we used two types of BIRCH instances, namely BIRCH instances of type 1 and 

BIRCH instances of type 3.  

Table 3 Computational Results for the AA method on the BIRCH dataset 

File 

Name 
n p 

Z Best 

Known 

Deviation (%) 
 

Time (seconds) 

VNSH AV IS AA 
 

VNSH AV IS AA 

BIRCH instances of type 1 
         

1 25,000 25 31,229.3 0.430 0.171 0.000 0.000 
 

206 447 157 93 

2 36,000 36 45,115.6 0.000 0.245 0.000 0.000 
 

590 780 373 215 

3 49,000 49 61,384.1 0.000 0.302 0.000 0.000 
 

818 1,216 612 421 

4 64,000 64 79,987.3 0.000 0.438 0.083 0.083 
 

1,527 2,258 1,110 939 

5 30,000 25 37,563.6 0.001 0.142 0.000 0.000 
 

321 559 223 133 

6 43,200 36 54,191.4 0.000 0.211 0.000 0.000 
 

767 1,003 434 244 

7 58,800 49 73,626.8 0.000 0.310 0.000 0.000 
 

1,454 1,691 792 566 

8 76,800 64 95,989.1 0.000 0.421 0.052 0.052 
 

2,931 2,834 1,510 1,020 

9 35,000 25 43,902.1 0.000 0.159 0.000 0.000 
 

569 768 353 197 

10 50,400 36 63,169.2 0.000 0.253 0.000 0.000 
 

1,185 1,472 645 460 

11 68,600 49 85,833.5 0.000 0.289 0.000 0.000 
 

1,787 2,441 1,149 666 

12 89,600 64 112,059.2 0.000 0.380 0.000 0.000 
 

3,678 4,501 2,069 1,487 

# best 
 

10 0 10 10 
     

Average 
 

0.0360 0.2769 0.0113 0.0113 
 

1,319.42 1,664.17 785.62 536.80 

BIRCH instances of type 3 
         

21 25,000 25 17,696.2 
 

0.1268 0.0000 0.0000 
  

527 125 138 

22 36,000 36 27,423.0 
 

0.1935 0.0000 0.0000 
  

913 365 216 

23 49,000 49 44,149.0 
 

0.3025 0.1208 0.0000 
  

1,760 526 398 

24 64,000 64 58,840.3 
 

0.2570 0.1055 0.0000 
  

2,624 1,049 968 

25 30,000 25 21,829.9 
 

0.1614 0.0000 0.0000 
  

832 454 170 

26 43,200 36 32,339.4 
 

0.1614 0.0000 0.0000 
  

1,873 492 342 

27 58,800 49 50,857.9 
 

0.2502 0.0000 0.0000 
  

2,692 899 946 

28 76,800 64 66,573.6 
 

0.5574 0.2525 0.0000 
  

4,393 1,892 1,836 

29 35,000 25 24,811.0 
 

0.0913 0.0000 0.0078 
  

972 288 290 

30 50,400 36 38,102.6 
 

0.1566 0.0001 0.0000 
  

2,297 611 659 

31 68,600 49 61,857.1 
 

0.2430 0.0410 0.0000 
  

3,556 1,035 879 

32 89,600 64 78,777.5 
 

0.5938 0.0000 0.0092 
  

5,779 2,189 1,688 

# best 
  

0 7 10 
     

Average 
  

0.2579 0.0433 0.0014 
 

T1 2,351.50 827.15 710.86 

         
Mflops 3,545.00 4,415.00 4,415.00 

         
T2 1,888.12 827.15 710.86 

 

On the BIRCH instances of type 1, the AA’s results are similar to the ones of IS but AA is 

approximately 15% faster than IS. AA provides better solutions compared to AV. Compared 

to VNSH, it produces similar objective function values, while yielding a slightly smaller 

deviation (0.0113%). On the BIRCH instances of type 3, the upper bound of VNSH was not 

provided by Avella et al. (2012). AA outperforms IS and AV where AA found 10 best 

solutions and yielded the smallest deviation (0.0014%). As stated in Hansen et al. (2009), our 

experiments also show that the BIRCH instances of type 3 are harder to solve compared to 

type 1 instances. 
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Compared to AV, according to Dongarra's transformation, the specification of the 

computer used to execute our method (AA) is approximately 25% faster than the one used by 

Avella et al. (2011).  Table 3 also presents the transformed computing time (T2). Note that 

AA is faster than both IS and AV while generating relatively better results. Overall, AA 

found 5 new best solutions for this difficult type of instances. 

 

Case 2: TSP Dataset 

The computational results for the TSP dataset are given in Table 4. There are 4 instances 

(Italy, Sweden, Burma, and China), where each instance is solved with p varying from 25 to 

100 with an increment of 25, totalling 16 instances. Our results are compared with the ones of 

IS. For p  100, we set γ = 0.90 and ρ = 0.10. 

Table 4 Computational Results for the AA method on the TSP dataset 

Description 
 

p 
The Best Known 

Z 
 

Deviation (%) 
 

Time (seconds) 

 
IS AA 

 
IS AA 

Italy Data 

(n=16,862) 

25 7,406,925.33 
 

0.05762 0.00000 
 

96.82 70.34 

50 5,100,031.58 
 

0.21061 0.00000 
 

119.01 109.02 

75 4,087,255.68 
 

0.01946 0.00000 
 

233.80 136.37 

100 3,490,908.55 
 

0.05437 0.00000 
 

350.33 167.82 

Sweden Data 

(n=24,978) 

25 14,098,813.68 
 

0.00000 0.54322 
 

348.43 215.89 

50 9,665,260.28 
 

0.02729 0.00000 
 

278.59 256.11 

75 7,783,165.38 
 

0.00000 0.05237 
 

450.64 287.71 

100 6,677,281.78 
 

0.00000 0.10613 
 

637.66 288.46 

Burma Data 

(n=33,708) 

25 18,226,756.71 
 

0.00160 0.00000 
 

418.36 273.13 

50 12,597,568.51 
 

0.04881 0.00000 
 

479.49 451.90 

75 10,187,180.83 
 

0.18312 0.00000 
 

651.47 527.29 

100 8,731,907.79 
 

0.18702 0.00000 
 

1,107.66 449.62 

China Data  

(n=71,009) 

25 113,794,799.80 
 

0.01586 0.00000 
 

2,227.85 2,556.07 

50 78,526,961.86 
 

0.13582 0.00000 
 

2,901.61 3,404.75 

75 63,786,587.67 
 

0.37598 0.00000 
 

3,217.66 3,339.16 

100 54,865,606.72 
 

0.00809 0.00000 
 

4,030.75 2,958.15 

 
#Best 

  
3 13 

   

 
Average 

 
0.08285 0.04386 

 
1,096.88 968.24 

  

In general, our method (AA) produces better results than the ones of IS. Here, AA yields a 

higher number of best solutions and a smaller deviation (0.04386%). The proposed approach 

also produces 13 new best solutions which can be used for further benchmarking. Based on 

the average computing time, AA runs approximately 12% faster than IS. 
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5.2.2. Experiments on the newly constructed dataset with guaranteed optimality 

By conducting experiments on the Circle dataset, the optimal errors can be obtained.  The 

number of demand points (n) ranges from 20,000 to 60,000 with an increment of 10,000 

whilst the number of opened facilities (p) is equal to 0.5%n and 1%n. There are 10 instances 

denoted by C1 to C10. Table 5 presents the results of these experiments. Z* refers to the 

optimal objective function value. 

Table 5 shows that AA produces the optimal solutions for all instances. Overall, it seems 

that the Circle dataset can be solved quite easily by our method. With respect to the 

computing time, solving the problems with larger p requires more time than the one with 

smaller p. This could be partly due to the fact that in the “Local Search with Shaking”, kmax is 

set to p and as ),1( maxkk , consequently a larger value of p will obviously increase the 

computational burden. It is worth noting that although these instances are visually trivial, 

they were constructed purposely this way to assess the ability of our approach to find optimal 

solutions. It is not that obvious for the algorithm to find the solutions as no extra information 

is fed into the search. 

Table 5 Computational Results for the AA method on the Circle dataset 

File 

Name 
n p Z* ZAA Deviation (%) Time (Seconds) 

C1 20,000 100 1,648,585.87 1,648,585.87 0.0000 86.57 

C2 20,000 200 897,033.86 897,033.86 0.0000 172.51 

C3 30,000 150 2,472,878.81 2,472,878.81 0.0000 245.55 

C4 30,000 300 1,234,194.78 1,234,194.78 0.0000 372.03 

C5 40,000 200 3,297,171.74 3,297,171.74 0.0000 475.53 

C6 40,000 400 1,645,593.04 1,645,593.04 0.0000 592.67 

C7 50,000 250 4,214,610.74 4,214,610.74 0.0000 843.53 

C8 50,000 500 2,056,991.29 2,056,991.29 0.0000 1,108.13 

C9 60,000 300 4,945,757.61 4,945,757.61 0.0000 1,250.56 

C10 60,000 600 2,468,389.55 2,468,389.55 0.0000 1,767.75 

    
Average 0.0000 691 

 

 

6. The conditional p-median problem  

In this section we review some papers focusing on the conditional p-median problem 

followed by the adaptation of our approach to this related problem and a summary of some 

computational results.  
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6.1. A brief review of the conditional p-median problem 

The conditional location problem was first formally introduced by Minieka (1980) where 

conditional centers and medians on a graph were investigated. Chen (1990) developed a 

method for solving minisum and minimax conditional location-allocation problems with p1. 

An algorithm that requires the one-time solution of an unconditional (p+1) center or (p+1) 

median for solving the conditional (p+1) center or (p+1) median on networks was suggested 

by Berman and Simchi-Levi (1990).  

Drezner (1995) proposed a general heuristic for the conditional p-median problem on both 

the network and the plane. In his paper, the term “(p,q) median problem” was introduced. Let 

Q denote the set of existing facilities where Q  J. The objective function for the p-median 

problem, equation (1), can be modified as follow (see Drezner, 1995):  

    
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Qj

i


  can be computed for each i  I beforehand, equation (9) can be 

rewritten as : 

  
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










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Ii QjJj

ii jidDwZ ),(Min,Min
,

 (10) 

The use of equation (10) is computationally more efficient as it avoids unnecessary 

calculations. 

Berman and Drezner (2008) suggested a method for solving both the conditional p-median 

and p-center problems. The method needs the one-time solution of an unconditional p-median 

and p-center problem using the shortest distance matrix. A hybridization approach combining 

a harmony search and a greedy heuristic for solving p-median problems was recently 

proposed by Kaveh and Esfahani (2012).  

 

6.2. The adaptation of AA for the large (p,q) median problems 

Our proposed method (AA) which is designed to solve large p-median problems can easily 

be adapted for tackling large (p,q) median problems. Our revised approach, which is referred 

to as AAq, contains the following minor modifications. 
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a) The aggregation method 

The q existing facility locations are always included in the promising facility locations 

(E) which are then used to aggregate the points. These locations are also used in Phase 1, 

meaning that E  Ø in Phase 1 but E = Q. 

b) The “Local Search with Shaking” 

In both the shaking and the local search, the existing facilities are always retained open 

in the solutions. In other words, the existing facilities are not even checked for possible 

removal.  

 The shaking 

When finding the best facility to be removed (say facility j) from the current solution, 

facility j is not one of the existing facilities (i.e.  j  Q).  

 The local search 

The implementation of the best improvement strategy does not include the existing 

facilities as these locations are always part of the solution.  

c) The exact method  

The implementation of the exact method with CPLEX is still using equations (1) – (6). 

However, constraints (11) are added to ensure that the existing facilities are always in the 

solution. 

 QjX j 1  (11) 

The introduction of such constraints (11) into the p-median formulation makes the 

problem relatively much easier to solve. In our study, we are now able to increase the 

value of Lmax from 300 to 1100 while using a similar amount of computational time.  

d) The post-optimisation (the local search on the original problem) 

The modification in the post-optimisation is quite similar to the local search in the “Local 

Search with Shaking” described earlier in part (b). 

 

6.3. Computational results on the (p,q) median problem 

The configuration of the parameters used for solving the (p,q) median problem is similar 

to the one for the p-median problem except we set Lmax = 1,100. We test our modified method 

on the TSP dataset (Italy, Sweden, Burma, and China) that has already been tested on the 

unconditional p-median problem. We opted for this dataset so that we could use the solutions 

obtained by solving the p-median problem to set the existing q facilities in the (p,q) median 

problem. Namely, the q existing facility locations are obtained from the solution of the p-
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median problem solved in the previous section. For example for the (p=25, q=25) median 

problem, the existing 25 facility locations are from the solution of the (p=25) median 

problem. The objective function of the (p=25, q=25) median problem is then compared to the 

one of the unconditional (p=50) median problem which is taken as a lower bound. In this 

case, the objective function value of the (p=25, q=25) median problem should be worse than 

or equal to the one of the (p=50) median problem. Note that such a claim is only valid if an 

exact method is used instead of a heuristic. 

The computational results of AAq on the TSP dataset are given in Table 6. The deviation 

(%) is the gap between the objective function value found by the AAq and the one by AA. 

The results show that solving (p,q) using the AAq requires almost a third less amount of 

computing time than AA. This is quite expected as in the local search, the existing facilities 

are already fixed and consequently the number of combinations in the swapping procedure 

decreases drastically.  

Table 6 Computational Results for the (p,q) median problem on the TSP dataset 

Description 
 

p-Median problem (AA) 
 

(p, q)-Median problem (AAq) 

 
p Z 

Time 

(seconds)  
p q Z 

Deviation 

(%) 

Time 

(seconds) 

Italy Data 

(n=16,862) 

 
50 5,100,031.58 109.02 

 
25 25 5,407,411.93 6.03 42.18 

 75 4,087,255.68 136.37  
50 25 4,272,997.47 4.54 99.25 

  
25 50 4,302,311.14 5.26 60.98 

 100 3,490,908.55 167.82  
50 50 3,698,225.76 5.94 65.57 

  
25 75 3,605,335.36 3.28 28.18 

Sweden 

Data 

(n=24,978) 

 
50 9,665,260.28 256.11 

 
25 25 10,163,911.00 5.16 100.58 

 75 7,783,165.38 287.71  
50 25 8,098,016.88 4.05 140.64 

  
25 50 8,155,349.71 4.78 116.45 

 100 6,677,281.78 288.46  
50 50 7,020,252.82 5.14 200.01 

  
25 75 6,898,906.64 3.32 100.95 

Burma 

Data 

(n=33,708) 

 
50 12,597,568.51 451.90 

 
25 25 13,099,836.27 3.99 191.39 

 75 10,187,180.83 527.29  
50 25 10,557,462.19 3.63 322.85 

  
25 50 10,582,656.48 3.88 152.14 

 100 8,731,907.79 449.62  
50 50 9,155,818.79 4.85 351.97 

  
25 75 9,052,184.99 3.67 164.34 

China Data  

(n=71,009) 

 
50 78,526,961.86 3,404.75 

 
25 25 82,437,517.47 4.98 911.16 

 75 63,786,587.67 3,339.16  
50 25 66,448,542.12 4.17 2,068.54 

  
25 50 66,367,405.04 4.05 792.73 

 100 54,865,606.72 2,958.15  
50 50 57,296,333.65 4.43 1,353.44 

  
25 75 56,649,744.56 3.25 705.66 

   
Average 1,031.36 

    
4.42 398.45 
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On average, the deviation between the objective function value of the (p,q) median 

problem and the one of the p-median problem is 4.42%. Table 6 also shows interesting results 

where the objective function value of a more restricted problem happens to be, in some cases, 

smaller than the less restricted. For instance, the Z value for (p=25, q=75) median problem is 

smaller than the one of (p=50, q=50) problem. This could be due to two reasons: (i) the q 

facilities for the two cases are not necessarily the same and hence may have different effect 

and (ii) using a heuristic approach could also yield different solution for the two cases.  

We have also attempted another variant of the AAq where in the post-optimization phase 

(Phase 4), a VNS is used instead of the local search. This was possible as the computing time 

of the AAq’s local search is usually quite fast. For the VNS, we set kmax = p. The use of the 

VNS in the post-optimisation yields slightly better deviation (4.41%) at the expense of a 

much longer computing time (almost 6 times). Out of 20 instances, the VNS improves 

slightly the quality of the solutions on 8 instances. The objective values are reported here for 

benchmarking purposes only. Italy: Z(p=50,q=25) = 4,272,752.66; Z(50,50) = 3,697,823.05; 

Sweden: Z(25, 25) = 10,163,883.03; Z(50, 25) = 8,093,829.14; Z(50, 50) = 7,017,515.03;  

China: Z(25, 25) = 82,437,310.68; Z(50, 25) = 66,444,176.54; Z(50, 50) = 57,296,280.91. 

 

7. Conclusion and suggestions 

An adaptive approach based on data aggregation, the use of a “Local Search with 

Shaking” and an efficient implementation of VNS/CPLEX is proposed to solve large 

unconditional and conditional p-median problems. The method consists of four phases. The 

first two phases are part of a learning process where demand point aggregation, a “Local 

Search with Shaking”, and a VNS/CPLEX are utilised to obtain a better initial solution. The 

third phase is an iterative-based phase which incorporates demand point aggregation and the 

“Local Search with Shaking” to improve the solution. The last phase is a post-optimisation 

process performed on the original problem.  

The computational results show that our approach performs well and runs relatively fast. 

For the unconditional problem, the proposed approach was tested on three types of datasets. 

The first one is the BIRCH dataset. On the BIRCH instances of type 1, our method produces 

better solution compared to the one by Avella et al. (2012) and similar solutions to the ones 

by Irawan and Salhi (2013) and by Hansen et al. (2009). On the BIRCH instances of type 3, 

our method is superior than the ones of Avella et al. (2012) and Irawan and Salhi (2013). On 

the TSP dataset, the results show that our method clearly outperforms the Irawan and Salhi 



27 
 

(2013) method as it finds 13 new best known solutions for the 16 instances and reduces the 

average deviation. On the Circle dataset, which we constructed to guarantee geometrically 

optimal solutions, the proposed method is able to find all the optimal solutions. For the 

conditional problem, the adapted method was only assessed on the TSP dataset. The results 

also reveal that our method performs quite well when compared against the results of the 

unconditional p-median problem which are used as lower bounds. 

This study could be extended to investigate other related location problems such as large 

vertex p-center problems and their counterparts on the plane. The proposed method could 

also be adapted for clustering of large datasets with higher dimension as part of data mining.   
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Appendix A. An illustration of the adaptive approach (AA) 

 

Figure A.1. An illustration of the adaptive approach (AA) 
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Appendix B. The generator for the Circle dataset 

Input integer A,B,C,R; // where (A mod C = 0) and (B mod R = 0)  

// N = the number of points, the number of clusters (Q) = C*R 

// C = Number of columns; R = Number of rows;  

// n = number of customers in one cluster 

N=A*B; n=(A*B)/(C*R); 

If (C<R) Then Set α=(int)(B/R) and β=(int)(A/C) 

Else Set α=(int)(A/C) and β=(int)(B/R) 

=n; Yc=; //Yc -> y-coordinate of the centre of the circle   

ω=0; ν=0;                                 

for r=1 To R do 

begin 

   δ=0.75; // the radius of one clustered dataset is 0.75   

   Xc=δ; // Xc -> x-coordinate of the centre of the circle                 

   for c=1 To C do 

   begin 

       δ=0.75; ρ=δ/α; // the radius decreases by ρ 

  for k=1 To α do 

  begin 

     for i=1 To β do 

     begin 

             ω = ω + 1 

             If ((k=α) And (i=β)) Then  

                Set ν=ν+1; x= Xc; y=Yc;S[ν]=ω; // the optimal solution 

             Else  

                θ=i*2*Π/β; 

                Set x=Xc+δ*cos(θ); //x coordinate 

                Set y=Yc+δ*sin(θ); //y coordinate 

             End If 

             X[ω]=(int)(x+0.5); Y[ω]=(int) (y+0.5);//x and y coordinate 

     end 

     δ=δ–ρ; // decrease the radius 

  end 

  Xc=Xc+2; // x-coordinate of the centre of next cluster 

   end 

   Yc=Yc+2; //y-coordinate of the centre of next cluster 

end 

 

Figure B.1. The algorithm for generating the Circle dataset 
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Appendix C. The proof of optimality  

Let A and B be the inputs. C and R be the number of columns and rows respectively. 

Define N = A * B and Q = C * R as the number of customers and clusters respectively. 

Define  = N/Q as the number of customers in one cluster 

Let Rmax denote the radius of the largest circle (ring) in a cluster where Rmax = 0.75  

(X[c,r] and Y[c,r]) :  the coordinate of the centre of the cluster defined by [c,r]  

 where c = 1,…,C and r = 1,…,R 

Let X[1,1] = Rmax and Y[1,1] = .  

This leads to :  

X[c,r] = X[1,1] + 2(c-1)  and Y[c,r] = Y[1,1] + 2(r-1)  (C.1) 

 

 

Figure C.1. An illustration of the Circle dataset 
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The proof of optimality is based on two items: 

(i) The p-median problem can be reduced to p 1-median problems. 

Let Fz be the set of points in the z
th

 cluster and Qzdij

wz
wFj
zFi

,...,1,5.0Min 






 .  

Let P1 and P2 be the two-points where P1  Fz and P2  Fw such that 

  ij

wz
wFj
zFi

dMinArgPP






21, . These are shown in Figure C.1.  

Let z
id be the distance between point i ( zFi ) and the centre of cluster z.  

 75.025.175.0
11
 z

P
w
P

dd  

This shows that the furthest point in cluster z remained served by the centre of cluster z. 

This demonstrates all points in cluster z remained as part of cluster z, z = 1,…,Q. 

Therefore the Q-median problem is reduced to solve Q 1-median problems, with each 

median representing a centre of a given cluster.  

(ii) In each cluster, the optimal point for all circles (rings) needs to be proved to be exactly in 

the centre defined by (C.1) which is the centre point used for generating the points in the 

rings.  

Let )~ ,~( yx  be the coordinate of the optimal solution (O). To proof that )~ ,~( yx  is the 

coordinate of the centre of the circle, we need to examine two situations. This is based on 

whether s is even or odd. 

a) s is even.  

Given the construction of the points (see Equation C.2), the circle is defined by two 

critical points (P1 and P2) such that  21OPP . This leads to )~ ,~( yx  as given below: 

 

Figure C.2. An example of a cluster in the Circle dataset 
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)cos(],[)cos(],[][ 002  kk rcrXrcrXPx 

     2/)cos(],[)cos(],[~
00  kk rcrXrcrXx   

  ],[2/],[2~ crXcrXx   

)sin(],[][ 01 krcrYPy   

)sin(],[)sin(],[][ 002  kk rcrYrcrYPy 

     2/)sin(],[)sin(],[~
00  kk rcrYrcrYy   

  ],[2/],[2~ crYcrYy   
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b) s is odd. A circle can be defined by three critical points making an acute and isosceles 

triangle. For example, in the k
th

 ring the three points are PA, PB, and PC with 

   axisxOPA  and ,    axisxOPB  and , and    axisxOPC  and . The centre of the 

circle, (O), is the circumcentre of the triangle PAPBPC whose coordinates are as follow: 

 /~x    (C.3) 

 /~y      (C.4) 

where  

         ][][][][][][][][][][][][ 222222
BACCACBBCBAA PyPyPyPxPyPyPyPxPyPyPyPx   (C.5) 

         ][][][][][][][][][][][][ 222222
ABCCCABBBCAA PxPxPyPxPxPxPyPxPxPxPyPx   (C.6) 

      ][][][][][][][][][2 BACACBCBA PyPyPxPyPyPxPyPyPx   (C.7) 

The coordinate of the points: 

)sin(],[][ and)cos(],[][  kAkA rcrYPyrcrXPx   (C.8) 

)sin(],[][ and)cos(],[][  kAkB rcrYPyrcrXPx   (C.9) 

)sin(],[][ and)cos(],[][  kAkA rcrYPyrcrXPx   (C.10) 

Substitute (C.8), (C.9), and (C.10) into (C.7) 

  sincossincossincossincossincossincos2 2 
k

r  (C.11) 

Substitute (C.8), (C.9), and (C.10) into (C.5) 

  sincossincossincossincossincossincos2],[ 2 
k

rrcX  (C.12) 

Substitute (C.8), (C.9), and (C.10) into (C.6) 

  sincossincossincossincossincossincos2],[ 2 
k

rrcY  (C.13) 

Substitute (C.12) and (C.11) into (C.3) 

],[~ rcXx   

Substitute (C.13) and (C.11) into (C.4) 

],[~ rcYy   

 

 

Figure C.3. The centre of the three critical points PA, PB, and PC (s = 5) 
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