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Abstract This paper describes a “textual tree trace” (TTT) notation for
representing the execution of Prolog programs. Compact, textual and non-
linear, it provides detailed information about variable binding and execution
history, and distinguishes several modes of goal failure. The revised form
given here, yet to be tested empirically, is partly informed by Paul Mulhol-
land’s empirical comparisons of Prolog trace notations, in which an earlier
version of the T'TT notation was amongst those studied and criticised. The
work presented here is an updated version of a previous workshop paper
(Taylor, du Boulay, & Patel, 1994).

1 INTRODUCTION

Prolog is now a well-established language, with a wide range of applications.
Its simple, uniform syntax and powerful inbuilt features of unification and
backtracking often allow algorithms to be encoded more elegantly than in
other, more conventional languages. However, these same features often
present difficulties for novice Prolog programmers (Pain & Bundy, 1987;
Taylor, 1988). Consequently, Prolog trace notations and tools have not only
a debugging role, but also an important didactic role.

Prolog tracers vary considerably in their notations, interfaces, and the
facets of Prolog execution which they display (for example, Byrd, 1980;
Eisenstadt, 1984; Mellish, 1984; Eisenstadt & Brayshaw, 1988; Plummer,
1988; Horsfield, Bocca & Dahmen, 1990; Rajan, 1990). The development
and now widespread availability of powerful graphical workstations and in-
creasingly sophisticated graphical user interfaces and programming tools has
provided a much wider range of possibilities to explore regarding the design
of tracing tools. However, it should not be assumed that graphical modes of
display are invariably superior to textual ones, particularly in the context of
program tracing, where much of the information content involved is inher-



ently textual. In practice, of course, graphical and textual approaches are
not mutually exclusive, and can complement one other. Thus, although the
notation described in this paper is composed entirely of text, its effective-
ness in a tracing tool might well be enhanced by the use of graphical devices
such as colouring, shading, flashing, and so on.

The work described here arose from a project entitled “Explanation Fa-
cilities for Prolog”, in which existing Prolog tracing tools and notations were
investigated (see Patel, du Boulay & Taylor, 1991 & 1997) — particularly
the standard “Spy” or “Byrd Box” textual tracer (Byrd, 1980; Clocksin
& Mellish, 1981); the EPTB or “Extended Prolog Tracer for Beginners”,
a prototype textual tracer giving very detailed information (Dichev & du
Boulay, 1989); and the TPM or “Transparent Prolog Machine”, a graphical
tree tracer developed at the Open University and available in several ver-
sions (Eisenstadt & Brayshaw, 1988; Eisenstadt, Brayshaw & Paine, 1991).
During this project a new TTT (“textual tree trace”) notation and tracing
tool were proposed, intended to combine some novel features with useful
features from previous notations and tools. Only the notation — which uses
a textual, non-linear, sideways tree format — is addressed here. Some issues
relating to interface and tool design were discussed in the initial specification
of notation and tool given in Taylor, du Boulay & Patel (1991).

Following the initial design, a prototype TTT meta-interpreter was im-
plemented (in Prolog), and the notation continued to evolve. After a limited
empirical study (Patel, du Boulay & Taylor, 1994) of its static features sug-
gested that the initial notation was over-complex and potentially confusing,
a simpler and more compact intermediate form was developed. Mulholland
compared similar intermediate TT'T notations with other Prolog trace no-
tations in two fine-grained protocol-based studies (Mulholland 1994, 1995
& 1997). The first comparison involved novices and included initially also
the Spy and PTP (both linear textual notations) and the TPM (a graphical
tree notation), and subsequently the Plater notation (another linear textual
notation, devised by Mulholland). The subjects used short traces in various
notations, controlled via a uniform tracer interface, to deduce how a simple
program being traced differed from a program text visible to them. The ex-
perimental protocols looked at the types of misunderstandings, information
and strategies involved. Statistically significant differences were observed
for some measures, with some notations better in some aspects but worse
in others. Overall, Mulholland’s TTT performed better than the TPM and
Spy, and slightly worse than the PTP, which in turn was outperformed by
Mulholland’s Plater notation. In the second comparison, which involved



experts, and a slightly improved TTT notation which showed intermediate
bindings, the results were less clearcut, and the Prolog expertise of the sub-
jects seem to dominate, allowing them to perform reasonably well using any
of the notations concerned.

Mulholland’s work goes further than previous empirical work in its detail
and in looking at both static and dynamic aspects of notations. However,
his experiments are still very limited in scope. His main study with novices
is based on very short traces of just one program, a task (trying to find
how an invisible program being traced differs from a visible program text)
untypical of the way tracers are actually used in practice, and one particular
selection of comparison measures. Without a much wider range of compar-
ison measures, traces, and tasks, his conclusions must be interpreted with
some caution. For example, with large traces, one might expect a non-linear
notation like the TTT to perform better than than any of the linear nota-
tions, which display information in a less compact and localised way, and
so would require a lot more scrolling. This was not tested in Mulholland’s
experiment, in which traces were short enough to fit easily on one screen
window, in any notation. Nonetheless, the latest version of the TTT no-
tation, yet to be tested empirically, is partly informed by his experimental
evidence.

Mulholland’s main criticisms of the earlier TTT notation — particularly
regarding its use by novices - include the following;:

1. Difficulty of tracking non-linear development. The TTT nota-
tion is non-linear, so that changes often occur within a trace, rather
than always at the end, as is the case with linear notations. Comments
from subjects and timing misunderstandings suggested that novices
found this harder to follow than linear development, at least initially.
To help with this problem, Mulholland’s TTT notation distinguished
the most recently activated call from the other calls.

2. Tree display method. TTT’s sideways tree format was described
by Mulholland as perceptively less clear than a vertical tree format
(although the basis for this opinion was not stated explicitly). It was
suggested that increasing the indentation offset of subgoals relative to
their parents (originally one character-width) would help to emphasise
the tree structure.

3. Clause-goal misunderstandings. Some novices confused goals with
clauses because the T'TT notation does not have separate lines marking



clause entry.

4. Insufficient visual emphasis of call status. The status of calls was
said to be not clear enough visually, because call status information
was given only at the right-hand end of each line. It was recommended
that some status information should be given at the left-hand end of
each call line.

Regarding 1), non-linearity cannot be abandoned without destroying the
whole character of the notation, but has compensating advantages in show-
ing the structure of the computation more explicitly. Novices may indeed
find it harder to understand at first than linear development, but possibly
might find it more helpful in the long run, although there is insufficient ev-
idence to establish whether or not this is the case. To aid comprehension
of the non-linear development, the latest TTT notation marks every newly
appeared line or line which has just changed, so that any changes between
one stage and the next can be spotted more easily and quickly.

As far as 2) is concerned, a sideways tree actually has some advan-
tages as far as the display of textual information is concerned. The vertical
tree format used in the TPM’s “long-distance view” leaves insufficient space
between sibling nodes to display call arguments, and in some cases even
the predicate names are truncated or not shown, with the result that such
information has to be accessed by opening, closing and scrolling of subwin-
dows, rather than being immediately visible, as it is in the TTT’s sideways
tree format. As for indentation, a parent-child indentation offset of one
character-width was chosen as the default to keep the trace compact in the
left-to-right dimension, but this could easily be left for the user to adjust on
request.

The lack of separate lines marking clause entries, remarked on in 3),
is a consequence of a general design aim of compactness (see section 2),
the overall benefits of which hopefully outweigh the drawbacks, particularly
when large traces are generated. For this reason, no revisions to the TTT
notation have been made in connection with this problem. However, the
resulting clause-goal confusions, observed in Mulholland’s experiment with
novices, might perhaps be ameliorated by some kind of separate commentary
line, as proposed e.g. by Rajan (1990). Another simple remedy for reducing
misunderstandings — as some of the novice subjects suggested, regarding
trace notations in general — might be for the tracing tool to provide a
symbol key or annotated example, which could be displayed on the screen



by default, at least until a user was sufficiently familiar with the notation
for this to be superfluous.

Regarding 4), the latest TTT notation follows Mulholland’s recommen-
dation of giving more visual emphasis to differences in call status, by provid-
ing current status information at the left-hand end of each line, in addition
to the more detailed information shown at the right-hand end of each line
(see section 3 for details). One further change made to the notation is a
method of showing variable bindings different to that used in the original
TTT notation and in Mulholland’s experiment with novices. This resembles
Mulholland’s later TTT notation, used with his expert subjects, in showing
initial and intermediate bindings as well as call exit bindings, but improves
on that further by displaying such bindings using a structured sideways tree
format.

2 DESIGN PRINCIPLES

The TTT notation reflects the following design aims, which overlap with
Rajan’s (1990), although his concern interfaces as well as notations.

e Localisation of information. Information about a particular aspect
of execution — e.g. a particular call or variable — should be localised,
rather than being widely distributed across the trace, thereby reduc-
ing the amount of scrolling and visual scanning required to find such
information.

e Encoding of computational structure. The overall structure of
the computation should be encoded explicitly. An obvious way to do
this is to adopt a tree format of some kind.

e Correlation with source code. The notation should facilitate cor-
relation of trace output with the program being traced.

e Avoidance of abstract symbolism. Symbols should have self-
evident meanings, as far as possible.

e Explicit representation. Information should be represented explic-
itly rather than implicitly, i.e. in a way that minimises the amount
of inference required to extract the information. For example, the
numbers of matching clauses should be shown explicitly.



e Attention to variable bindings. The trace should indicate the
history of variable binding and unbinding, so that the construction
and deconstruction of complex data-structures can be observed.

e Cumulative notation. At any stage, it should be possible to see
the whole history of execution up to that stage, i.e. trace information
should not be overwritten. Of course, one may wish to cut down on
detail, but those details should be available for display.

e Standard ASCII representation. Traces should be constructed
from the standard ASCII character set. This does not preclude the
use of extra visual devices such as highlighting and colouring to aid
comprehension, but it ensures that the basic notation can be displayed
and printed easily on any kind of terminal or printer.

3 MAIN FEATURES

The main features of the notation are illustrated here by a summary of
the symbols used (see Table 1), and by selected stages of a simple trace.
The trace output is shown here with a constant level of detail; in a fully-
developed TTT tracer, the level of detail would be controlled by both default
restrictions and explicit user commands (for example, intermediate variable
bindings would typically not be shown).

To illustrate the use of some of the symbols, consider the trace generated
from the following program clauses (numerically labelled in the leftmost col-
umn).

1 prefix([1, L). []is a prefix of any L
2 prefix([H|T], [HIT1]):- [H|T] is a prefiz of [H|T1]
prefix(T,T1). if T is a prefiz of T1

Suppose the following query is evaluated against these clauses:
?7- prefix(P, [a,b]l), fail.

Comparison with the more familiar ‘Spy’ notation provides a useful per-
spective on the TTT notation. Spy tracers produce a simple linear trace,
typically unindented, recording the events at each of four ports. Variables
are notated using internal numbers, e.g. _3, which bear no relation to the
variable names in the user’s program. Figure 1 shows an intermediate stage



General call status notation

? Being tried or retried.

S Succeeded.

F Failed.

SF Succeeded then failed on backtracking.

SS Succeeded then succeeded again on backtracking.

Failure modes

F Default — failures resulting from subgoal failures, failures of system calls, and
SO on

I'F Cut failure — failure resulting from the action of the cut.

Fm Match failure — a predicate with the same name and arity as the call exists,
but none of its clauses match (or have previously matched) the call.

Fa Arity failure — no predicate of the same name and arity as the call exists, but
one of the same name and different arity does.

Fu Undefined predicate failure — no predicate of the same name as the call exists,

with or without the same arity as the call.

Mulholland uses Fm differently, to mean that there are no matching clauses left,
although some may have matched previously, before backtracking occurred.
Thus the combination SFm sometimes appears in his TTT notation, but never
in the TTT notation described here, which uses just SF in such cases, and in
which Fm, Fa and Fu are never preceded by S.

Unification and binding

/ In current binding sequence (e.g. X/a means X unified with a).

# In old binding sequence, now undone (e.g. X#a means X formerly unified with
a).

5, _23 | Numeric variable suffixes (added to variable names to distinguish different
variables with the same name).

Mulholland uses = and # instead of / and #.

Call identifiers (for call number n in execution order, right-justified in a 5-character field,
padded out with filler characters)

?>>>n: | For calls currently being tried or retried (e.g. 7>>34, ?>>>9).
S<<<n: | For calls returned successfully (e.g. S<<<5, 5<125).
F###n: | For irretrievably failed calls (e.g. F##23, F###8).

Mulholland’s TTT uses the >>>n: prefix differently, to distinguish the most
recently activated call, and — like the original TTT notation — uses a ***n:
prefix for all other calls.

Miscellaneous symbols

I Marks edge of block relating to a call.

* Marks a newly appeared line or a line which has just changed.
; Call disjunction. 7
G ) Brackets for delimiting disjunctions.

Table 1: Summary of TTT notation




?>>>1: prefix(P, [a,b]) 1SF 287
[1 P#[]
[2 P/[alT_1]1/[al
S<<<3: prefix(T_1, [b]) 1S
[1 T_1/0]
F###2: fail F
F###4: fail F

* %
* %
* X%
* X%
* %
* %
* %
* X%
* %
* %
* %

(1) Call : prefix(_1, [a, b])?
(1) Exit : prefix([], [a, b])?
(2) Call : fail?

(2) Fail : fail?

(1) Redo : prefix([], [a, b])?
(3) Call : prefix(_2, [b])?

(3) Exit : prefix([], [b])?

(1) Exit : prefix([al, [a, b])?
(4) Call : fail?

(4) Exit : fail?

(1) Redo : prefix([al, [a, b])?

of the TTT trace (above) and the corresponding unindented Spy trace (be-
low). At this stage, the second call to the system predicate fail has failed,
and the initial top-level call prefix(P, [a,b]l) is being requeried. Points

Figure 1: TTT trace (above) Spy trace (below)

to note:

e The proof tree is shown here in maximum detail to elucidate the no-
tation. A fully developed TTT interface would provide both default
and user controls on the amount of detail.

e Each call is represented by its own call block of one or more contiguous
lines: for example, the top 3 lines of the trace relate to the first call.
The depth of a call in the proof tree is encoded by its call block’s
indentation from the left-hand margin.

e Each call block begins with a call line, subdivided from left to right
into: the call identifier; the call term; and the call status field (consist-
ing of one subfield for each matching clause tried, or just one undivided
field for system predicates). For example, the first line of the trace is

subdivided as follows:




Call identifier  Call term Call status field
?>>>1: prefix(P, [a,b]) 1SF 257
(in two parts, for clauses 1 and 2)

The initial symbol of the call identifier, in this case ?, indicates the
call’s current status.

The non-linearity of the notation is illustrated by the insertion of call
3 between calls 1 and 2. Using different line prefixes to emphasise the
current status of calls is a response to Mulholland’s criticism of the
original notation, in which status information was confined to the call
status field, and call identifiers were padded out with the same filler
character *, regardless of current call status. Differences in status are
now visually much clearer.

The call term is shown as instantiated when the call is first made.
Actual variable names are used, with numerical suffixes to distinguish
different variables with the same name, e.g. the variables T_1 and T_2
correspond to different invocations of clause 2 of prefix/2. Top-level
variables (in this case, P) are left unsuffixed.

The call status field provides more detailed status information than
the call identifier, indicating not only the call’s current status, but
also its previous execution history, in a compact mnemonic notation.
E.g. in the top line of the trace, 1SF 2S? shows that clause 1 (of
the predicate prefix) matched the call, succeeded once, and failed on
backtracking; and subsequently clause 2 matched, succeeded initially,
and is now being requeried after further backtracking.

Any lines in a call block after the call line show variable bindings, an-
notated by the clause numbers to which they relate (unless they result
from system predicates), for the variables unbound in the call term
when it is called. In the unabbreviated notation, the bindings shown
include not just initial and final bindings, but intermediate ones too,
e.g. the line |2 P/[alT_11/[a] shows an active series of bindings
for P, associated with clause 2 of prefix, i.e. P was instantiated first
to [alT_1], and then to [a]. The line above, |1 P#[], shows an
earlier binding [] of P, associated with clause 1 and now completely
undone by backtracking.

A * marks a line which has just appeared or just changed. Here only
one line — the first — is so marked, but in general there may be



several. This is helpful with a non-linear notation, in which changes
may occur anywhere within the existing trace, not just at the end as
is the case with linear notations.

The features just described reflect the previously stated design aims.
“Call blocks”, “call status fields” and “variable binding trees” all embody
localisation of information. The explicit display of call arguments, clause
numbers, ‘actual’ variable names and the use of a sideways top-down left-to-
right tree structure all facilitate correlation with the source code correspond-
ing to the trace. Awoidance of abstract symbols is illustrated by mnemonics
(such as F for failure, S for success) and standard symbols (/ to encode bind-
ing). Finally, the notation conforms to standard ASCII representation, and
without sacrificing the other aims of encoding of structure, explicit repre-
sentation of information, and a cumulative notation, it meets the important
practical aim of compactness. In Figure 1, the TTT trace is only 7 lines com-
pared to the Spy trace’s 11 lines, even though it provides much more explicit
information about matching clauses, variable bindings, and the structure of
the computation. In some cases, a Spy trace will be shorter than the cor-
responding TTT trace, e.g. when there is no backtracking, and the calls
contain on average 2 or more free variables at the time of calling. However,
TTT traces are typically considerably shorter than those of any linear tracer
— sometimes half the length, or less if most of the calls are fully instantiated
when called.

4 DYNAMIC ASPECTS

In this section, selected stages of the trace for the prefix example illustrate
the dynamic aspects of the TTT notation. If the query were being traced
step-by-step, the tracer would stop at each stage, until prompted by the
user to proceed.

Initial calling. When a call is first made, its call block contains only the
call line, in which the call status field consists of a single 7 character. Any
call currently being queried or requeried has a 7 at the rightmost end of its
status field and a prefix of the form ?>>... in its call identifier. The first
stage of the trace illustrates this:

*  7>>>1: prefix(P, [a,b]) 7 First top-level call

10



Clause head matching and resultant variable binding. When a
clause head matches a call, its clause number is inserted into the call status
field, to the left of the ?, and any resulting variable bindings are shown on
separate lines (not only those of variables initially free in the call, but also
‘knock-on effects’ on other variables, as illustrated shortly). In the second
line below, the 1 indicates that the sequence of bindings beginning on that
line is associated with clause 1.

*  7>>>1: prefix(P, [a,b]) 17 Head of clause 1 matches, and
* |1 P/[] P becomes bound to [ ] as a result.

Success of a clause with no subgoals. When a clause succeeds, the
7 immediately to the right of the corresponding clause number in the call
status field is replaced by an S. If the clause has no subgoals, the S appears
immediately after the stage in which the clause head matching is shown, as
illustrated below.

* S<<<1: prefix(P, [a,b]) 1S Clause 1 succeeds immediately after
[1 P/[] matching, because it has no subgoals.

Calls to system predicates. The next stage shows a call to the system
predicate fail, which has just failed, as indicated by a prefix of the form
F### in its call identifier. It is easily identifiable as a call to a system predi-
cate, because its status field (at the right-hand end of the call line) contains
an F not preceded by any clause number. Similarly, a successful call to a
system predicate would have a call status field with an S not preceded by
any clause number.

S<<<1: prefix(P, [a,b]) 1S
[1 P/I1
* F###2: fail F System call fail fails.

Backtracking, clause retrying and variable unbinding. The next
three stages illustrate backtracking, clause retrying and variable unbinding.
From the second to third stages, the status field of call 1 changes from 157
to 1SF 7, rather than simply to 1SF, because there is another clause left
to be tried (i.e. clause 2 of prefix/2) whose head also matches call 1. To
represent the unbinding of P which accompanies the failure of clause 1, the
/ character between P and [] is replaced by a # character. The new binding

11



of [alT_1] for P, which results from the matching of clause 2 of prefix/2
against call 1, is shown on a fresh line in the call block for call 1. The 2
on that line indicates that this binding is associated with clause 2, unlike
the binding of [ — shown on the line above — which was associated with
clause 1. Note that the binding for P is shown as [a|T_1], not as [a|T],
although this is the first occurrence of T. Only variables mentioned in the
top-level call are unsuffixed.

*  7>>>1: prefix(P, [a,b]) 187 Re-evaluating clause 1 for call 1.
[1 P/I1
F###2: fail F

?>>>1: prefix(P, [a,b]) 1SF ? Clause 1 cannot be resatisfied and so fails.
1 P#[] P becomes unbound.
F###2: fail F

*  7>>>1: prefix(P, [a,b]) 1SF 27 Head of clause 2 matches,
1 P#[]
* |2 P/[alT_1] and a new binding for P results.
F###2: fail F

Calling of subgoals. The next stage shows the calling of the subgoal of
clause 2 of prefix/2. Rather than being added to the end of the trace, as
it would be in a linear notation, the subgoal’s call line is inserted below the
call block of its parent call, and immediately above the call line of the next
sibling of the parent call. The indentation from the left-hand margin of the
call line for the subgoal is one greater than the indentation of the call line
for its parent call, thus encoding the subgoal’s greater depth in the proof tree.

?>>>1: prefix(P, [a,b]) 1SF 27

[1 P#[]
[2 P/[alT_1]
*  7>>>3: prefix(T_1, [b]) 7 Subgoal of clause 2 is called.

F###2: fail F

Propagation of instantiation. The next stage illustrates how the ‘knock-
on’ effects of variable instantiation are represented. Here, the binding of T_1
to the value [] results in a further instantiation of P from [a|T_1] to [a].
Propagation of uninstantiation is represented in a similar way — see later.

12



?>>>1: prefix(P, [a,b]) 1SF 27
I1 P#[]

* |2 P/lalT_1]/[a]

x  7>>>3: prefix(T_1, [b]) 17

* |1 T_1/[]
F###2: fail F

Head of clause 1 matches call 3,
so T_1 becomes bound,
and P further instantiated.

Success of a clause with subgoals.

The next two stages show clause 1

succeeding for call 3; and then clause 2 succeeding for call 1 (because call 3
corresponds to the only subgoal of clause 2). Success of a call is indicated by
? changing to S in its call status field, and further emphasised by a change
in the prefix of its call identifier, from ?>>> to S<<<.

Clause 1 succeeds for call 8 because it has no
subgoals.

?>>>1: prefix(P, [a,b]) 1SF 27
1 P#[]
[2 P/[alT_1]/[a]
*  S<<<3: prefix(T_1, [b]) 1S
I1 T_1/10]
F###2: fail F
* S<<<1: prefix(P, [a,b]) 1SF 2S
I1 P#[]
[2 P/[alT_1]1/[a]
S<<<3: prefix(T_1, [b]) 1S
1 T_1/0]
F###2: fail F

Clause 2 succeeds for call 1 because there are
no more of its subgoals to be satisfied.

Propagation of uninstantiation.

A few stages later, a fresh call to fail

(call 4) fails, and backtracking occurs. In the first stage below, clause 2 is
requeried for call 1. In the second stage, clause 1 is requeried for call 3;
but fails since it cannot be resatisfied, and T_1 becomes unbound again,
as shown in the third stage, which also shows the ‘knock-on’ effect of the
partial uninstantiation of P, resulting from the unbinding of T_1.

x  7>>>1: prefix(P, [a,b]) 1SF 287
[1 P#[]
[2 P/[alT_1]1/[al
S<<<3: prefix(T_1, [b]) 1S
[1 T_1/11

F###2: fail F
F###4: fail F

Attempting to resatisfy clause 2 for call 1.

13



?>>>1: prefix(P, [a,b]) 1SF 287
[1 P#[]
|2 P/[alT_1]/[a]

I1 T_1/[]
F###2: fail F
F###4: fail F

?>>>1: prefix(P, [a,b]) 1SF 287

[1 P#[]

[2 P/[alT_1]#[a]
?>>>3: prefix(T_1, [b]) 1SF ? Clause 1 can’t be resatisfied so it fails,
|1 T_1#[] T_1 becomes unbound,

F###2: fail F and the binding of P reverts to [a|T_1].

F###4: fail F

Fresh intermediate bindings. In the next stage, clause 2 matches call 3,
resulting in a new binding [b|T_2] for T_1, and a new intermediate binding
[a,b|T_2] for P, which is shown on a fresh line, with the same indenta-
tion as the now unbound value [a]. The structured display of bindings in
a ‘sideways tree’ encodes the fact that both [al and [a,b|T_2] are ‘chil-
dren’ of [a|T_1]. This method of showing bindings is an improvement on
the method used in some earlier versions of the TTT notation (including
Mulholland’s) in which no intermediate bindings were shown, and top-level
variables were shown in several calls when they unified with clause variables,
rather than just been shown at the top-level, as here.

?>>>1: prefix(P, [a,b]) 1SF 287
[1 P#[]
[2 P/[alT_1]#[a]
| /[a,b|T_2]
?7>>>3: prefix(T_1, [b]l) 1SF 27 |Head of clause 2 matches call 3,
[1 T_1#[]
* [2 T_1/[b|T_2] and a new binding of T_1 results,
F###2: fail F bringing about a new binding of P also.
F###4: fail F

Repeated success of a clause. Several stages later, clause 2 has suc-
ceeded for call 3, and consequently, clause 2 succeeds again for call 1, indi-
cated by a second S after the 2 in the status field of call 1. At this stage,
the bindings of P associated with each success of call 1 (once using clause 1,
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and twice using clause 2) can be read off as the ‘leaves’ of the two ‘sideways
binding trees’ for P. Thus in the tree for clause 1, there is only one leaf
(the binding [1); whilst in the tree for clause 2, there are two, i.e. [a] and
[a,b]. The chain of bindings leading to a particular binding can be read off
by following a path to that binding from the root of the binding tree which
contains it: for example, the chain [a|T_1]1, [a,b|T_2] leads to the binding
[a,b] of P.

1 P#[]

[2 P/[alT_1]#[a]

| /la,b|T_2]1/[a,b]
S<<<3: prefix(T_1, [b]) 1SF 2S

I1 T_1#[]

[2 T_1/[b|T_2]/[b]
S<<<5: prefix(T_2, [1) 1S
1 T_2/0]

F###2: fail F
F###4: fail F

The TTT notation has some other minor features, not illustrated here.
These include special notations for clause numbering in database-changing
programs (those involving assert, retract, etc.), and for disjunctive calls.

5 CONCLUSION

A “textual tree trace” (TTT) notation has been described, in which the
execution of a Prolog goal is represented by a ‘sideways tree’, growing right-
ward and downward from a root displayed at the top left-hand margin. This
form of tree facilitates correlation of the trace with the program clauses in-
volved in its generation — particularly if the latter are displayed with the
subgoals of a clause uniformly indented with respect to the clause head.
Like some previous notations, the TTT notation shows clause head match-
ing events, distinguishes several modes of failure, and shows ‘actual names’
of variables as they appear in the program being traced (distinct variables
with the same name are distinguished by adding numerical suffixes). The
characteristic features of the notation include compactness, localisation of
information pertaining to each goal, non-linear expansion of the trace and a
detailed view of variable binding and unbinding. The revised form described
here has yet to be empirically tested, but takes some account of Mulholland’s
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(1997) empirically-based criticisms of an earlier form of the notation. The
main improvements made are a clearer display of call status information, ex-
plicit marking of lines where changes have just occurred, and a different and
more structured way of showing variable bindings, which includes interme-
diate bindings. Overall, the TTT notation illustrates an approach to Prolog
tracing which combines the immediately visible display of key textual infor-
mation about goals and data structures, with the explicit representation of
computational structure usually associated with graphical formats.
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