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t This paper des
ribes a \textual tree tra
e" (TTT) notation forrepresenting the exe
ution of Prolog programs. Compa
t, textual and non-linear, it provides detailed information about variable binding and exe
utionhistory, and distinguishes several modes of goal failure. The revised formgiven here, yet to be tested empiri
ally, is partly informed by Paul Mulhol-land's empiri
al 
omparisons of Prolog tra
e notations, in whi
h an earlierversion of the TTT notation was amongst those studied and 
riti
ised. Thework presented here is an updated version of a previous workshop paper(Taylor, du Boulay, & Patel, 1994).1 INTRODUCTIONProlog is now a well-established language, with a wide range of appli
ations.Its simple, uniform syntax and powerful inbuilt features of uni�
ation andba
ktra
king often allow algorithms to be en
oded more elegantly than inother, more 
onventional languages. However, these same features oftenpresent diÆ
ulties for novi
e Prolog programmers (Pain & Bundy, 1987;Taylor, 1988). Consequently, Prolog tra
e notations and tools have not onlya debugging role, but also an important dida
ti
 role.Prolog tra
ers vary 
onsiderably in their notations, interfa
es, and thefa
ets of Prolog exe
ution whi
h they display (for example, Byrd, 1980;Eisenstadt, 1984; Mellish, 1984; Eisenstadt & Brayshaw, 1988; Plummer,1988; Hors�eld, Bo

a & Dahmen, 1990; Rajan, 1990). The developmentand now widespread availability of powerful graphi
al workstations and in-
reasingly sophisti
ated graphi
al user interfa
es and programming tools hasprovided a mu
h wider range of possibilities to explore regarding the designof tra
ing tools. However, it should not be assumed that graphi
al modes ofdisplay are invariably superior to textual ones, parti
ularly in the 
ontext ofprogram tra
ing, where mu
h of the information 
ontent involved is inher-1



ently textual. In pra
ti
e, of 
ourse, graphi
al and textual approa
hes arenot mutually ex
lusive, and 
an 
omplement one other. Thus, although thenotation des
ribed in this paper is 
omposed entirely of text, its e�e
tive-ness in a tra
ing tool might well be enhan
ed by the use of graphi
al devi
essu
h as 
olouring, shading, 
ashing, and so on.The work des
ribed here arose from a proje
t entitled \Explanation Fa-
ilities for Prolog", in whi
h existing Prolog tra
ing tools and notations wereinvestigated (see Patel, du Boulay & Taylor, 1991 & 1997) | parti
ularlythe standard \Spy" or \Byrd Box" textual tra
er (Byrd, 1980; Clo
ksin& Mellish, 1981); the EPTB or \Extended Prolog Tra
er for Beginners",a prototype textual tra
er giving very detailed information (Di
hev & duBoulay, 1989); and the TPM or \Transparent Prolog Ma
hine", a graphi
altree tra
er developed at the Open University and available in several ver-sions (Eisenstadt & Brayshaw, 1988; Eisenstadt, Brayshaw & Paine, 1991).During this proje
t a new TTT (\textual tree tra
e") notation and tra
ingtool were proposed, intended to 
ombine some novel features with usefulfeatures from previous notations and tools. Only the notation | whi
h usesa textual, non-linear, sideways tree format | is addressed here. Some issuesrelating to interfa
e and tool design were dis
ussed in the initial spe
i�
ationof notation and tool given in Taylor, du Boulay & Patel (1991).Following the initial design, a prototype TTT meta-interpreter was im-plemented (in Prolog), and the notation 
ontinued to evolve. After a limitedempiri
al study (Patel, du Boulay & Taylor, 1994) of its stati
 features sug-gested that the initial notation was over-
omplex and potentially 
onfusing,a simpler and more 
ompa
t intermediate form was developed. Mulholland
ompared similar intermediate TTT notations with other Prolog tra
e no-tations in two �ne-grained proto
ol-based studies (Mulholland 1994, 1995& 1997). The �rst 
omparison involved novi
es and in
luded initially alsothe Spy and PTP (both linear textual notations) and the TPM (a graphi
altree notation), and subsequently the Plater notation (another linear textualnotation, devised by Mulholland). The subje
ts used short tra
es in variousnotations, 
ontrolled via a uniform tra
er interfa
e, to dedu
e how a simpleprogram being tra
ed di�ered from a program text visible to them. The ex-perimental proto
ols looked at the types of misunderstandings, informationand strategies involved. Statisti
ally signi�
ant di�eren
es were observedfor some measures, with some notations better in some aspe
ts but worsein others. Overall, Mulholland's TTT performed better than the TPM andSpy, and slightly worse than the PTP, whi
h in turn was outperformed byMulholland's Plater notation. In the se
ond 
omparison, whi
h involved2



experts, and a slightly improved TTT notation whi
h showed intermediatebindings, the results were less 
lear
ut, and the Prolog expertise of the sub-je
ts seem to dominate, allowing them to perform reasonably well using anyof the notations 
on
erned.Mulholland's work goes further than previous empiri
al work in its detailand in looking at both stati
 and dynami
 aspe
ts of notations. However,his experiments are still very limited in s
ope. His main study with novi
esis based on very short tra
es of just one program, a task (trying to �ndhow an invisible program being tra
ed di�ers from a visible program text)untypi
al of the way tra
ers are a
tually used in pra
ti
e, and one parti
ularsele
tion of 
omparison measures. Without a mu
h wider range of 
ompar-ison measures, tra
es, and tasks, his 
on
lusions must be interpreted withsome 
aution. For example, with large tra
es, one might expe
t a non-linearnotation like the TTT to perform better than than any of the linear nota-tions, whi
h display information in a less 
ompa
t and lo
alised way, andso would require a lot more s
rolling. This was not tested in Mulholland'sexperiment, in whi
h tra
es were short enough to �t easily on one s
reenwindow, in any notation. Nonetheless, the latest version of the TTT no-tation, yet to be tested empiri
ally, is partly informed by his experimentaleviden
e.Mulholland's main 
riti
isms of the earlier TTT notation | parti
ularlyregarding its use by novi
es - in
lude the following:1. DiÆ
ulty of tra
king non-linear development. The TTT nota-tion is non-linear, so that 
hanges often o

ur within a tra
e, ratherthan always at the end, as is the 
ase with linear notations. Commentsfrom subje
ts and timing misunderstandings suggested that novi
esfound this harder to follow than linear development, at least initially.To help with this problem, Mulholland's TTT notation distinguishedthe most re
ently a
tivated 
all from the other 
alls.2. Tree display method. TTT's sideways tree format was des
ribedby Mulholland as per
eptively less 
lear than a verti
al tree format(although the basis for this opinion was not stated expli
itly). It wassuggested that in
reasing the indentation o�set of subgoals relative totheir parents (originally one 
hara
ter-width) would help to emphasisethe tree stru
ture.3. Clause-goal misunderstandings. Some novi
es 
onfused goals with
lauses be
ause the TTT notation does not have separate lines marking3




lause entry.4. InsuÆ
ient visual emphasis of 
all status. The status of 
alls wassaid to be not 
lear enough visually, be
ause 
all status informationwas given only at the right-hand end of ea
h line. It was re
ommendedthat some status information should be given at the left-hand end ofea
h 
all line.Regarding 1), non-linearity 
annot be abandoned without destroying thewhole 
hara
ter of the notation, but has 
ompensating advantages in show-ing the stru
ture of the 
omputation more expli
itly. Novi
es may indeed�nd it harder to understand at �rst than linear development, but possiblymight �nd it more helpful in the long run, although there is insuÆ
ient ev-iden
e to establish whether or not this is the 
ase. To aid 
omprehensionof the non-linear development, the latest TTT notation marks every newlyappeared line or line whi
h has just 
hanged, so that any 
hanges betweenone stage and the next 
an be spotted more easily and qui
kly.As far as 2) is 
on
erned, a sideways tree a
tually has some advan-tages as far as the display of textual information is 
on
erned. The verti
altree format used in the TPM's \long-distan
e view" leaves insuÆ
ient spa
ebetween sibling nodes to display 
all arguments, and in some 
ases eventhe predi
ate names are trun
ated or not shown, with the result that su
hinformation has to be a

essed by opening, 
losing and s
rolling of subwin-dows, rather than being immediately visible, as it is in the TTT's sidewaystree format. As for indentation, a parent-
hild indentation o�set of one
hara
ter-width was 
hosen as the default to keep the tra
e 
ompa
t in theleft-to-right dimension, but this 
ould easily be left for the user to adjust onrequest.The la
k of separate lines marking 
lause entries, remarked on in 3),is a 
onsequen
e of a general design aim of 
ompa
tness (see se
tion 2),the overall bene�ts of whi
h hopefully outweigh the drawba
ks, parti
ularlywhen large tra
es are generated. For this reason, no revisions to the TTTnotation have been made in 
onne
tion with this problem. However, theresulting 
lause-goal 
onfusions, observed in Mulholland's experiment withnovi
es, might perhaps be ameliorated by some kind of separate 
ommentaryline, as proposed e.g. by Rajan (1990). Another simple remedy for redu
ingmisunderstandings | as some of the novi
e subje
ts suggested, regardingtra
e notations in general | might be for the tra
ing tool to provide asymbol key or annotated example, whi
h 
ould be displayed on the s
reen4



by default, at least until a user was suÆ
iently familiar with the notationfor this to be super
uous.Regarding 4), the latest TTT notation follows Mulholland's re
ommen-dation of giving more visual emphasis to di�eren
es in 
all status, by provid-ing 
urrent status information at the left-hand end of ea
h line, in additionto the more detailed information shown at the right-hand end of ea
h line(see se
tion 3 for details). One further 
hange made to the notation is amethod of showing variable bindings di�erent to that used in the originalTTT notation and in Mulholland's experiment with novi
es. This resemblesMulholland's later TTT notation, used with his expert subje
ts, in showinginitial and intermediate bindings as well as 
all exit bindings, but improveson that further by displaying su
h bindings using a stru
tured sideways treeformat.2 DESIGN PRINCIPLESThe TTT notation re
e
ts the following design aims, whi
h overlap withRajan's (1990), although his 
on
ern interfa
es as well as notations.� Lo
alisation of information. Information about a parti
ular aspe
tof exe
ution | e.g. a parti
ular 
all or variable | should be lo
alised,rather than being widely distributed a
ross the tra
e, thereby redu
-ing the amount of s
rolling and visual s
anning required to �nd su
hinformation.� En
oding of 
omputational stru
ture. The overall stru
ture ofthe 
omputation should be en
oded expli
itly. An obvious way to dothis is to adopt a tree format of some kind.� Correlation with sour
e 
ode. The notation should fa
ilitate 
or-relation of tra
e output with the program being tra
ed.� Avoidan
e of abstra
t symbolism. Symbols should have self-evident meanings, as far as possible.� Expli
it representation. Information should be represented expli
-itly rather than impli
itly, i.e. in a way that minimises the amountof inferen
e required to extra
t the information. For example, thenumbers of mat
hing 
lauses should be shown expli
itly.5



� Attention to variable bindings. The tra
e should indi
ate thehistory of variable binding and unbinding, so that the 
onstru
tionand de
onstru
tion of 
omplex data-stru
tures 
an be observed.� Cumulative notation. At any stage, it should be possible to seethe whole history of exe
ution up to that stage, i.e. tra
e informationshould not be overwritten. Of 
ourse, one may wish to 
ut down ondetail, but those details should be available for display.� Standard ASCII representation. Tra
es should be 
onstru
tedfrom the standard ASCII 
hara
ter set. This does not pre
lude theuse of extra visual devi
es su
h as highlighting and 
olouring to aid
omprehension, but it ensures that the basi
 notation 
an be displayedand printed easily on any kind of terminal or printer.3 MAIN FEATURESThe main features of the notation are illustrated here by a summary ofthe symbols used (see Table 1), and by sele
ted stages of a simple tra
e.The tra
e output is shown here with a 
onstant level of detail; in a fully-developed TTT tra
er, the level of detail would be 
ontrolled by both defaultrestri
tions and expli
it user 
ommands (for example, intermediate variablebindings would typi
ally not be shown).To illustrate the use of some of the symbols, 
onsider the tra
e generatedfrom the following program 
lauses (numeri
ally labelled in the leftmost 
ol-umn).1 prefix([℄, L).2 prefix([H|T℄, [H|T1℄):-prefix(T,T1). [ ℄ is a pre�x of any L[HjT℄ is a pre�x of [HjT1℄if T is a pre�x of T1Suppose the following query is evaluated against these 
lauses:?- prefix(P, [a,b℄), fail.Comparison with the more familiar `Spy' notation provides a useful per-spe
tive on the TTT notation. Spy tra
ers produ
e a simple linear tra
e,typi
ally unindented, re
ording the events at ea
h of four ports. Variablesare notated using internal numbers, e.g. _3, whi
h bear no relation to thevariable names in the user's program. Figure 1 shows an intermediate stage6



General 
all status notation? Being tried or retried.S Su

eeded.F Failed.SF Su

eeded then failed on ba
ktra
king.SS Su

eeded then su

eeded again on ba
ktra
king.Failure modesF Default | failures resulting from subgoal failures, failures of system 
alls, andso on!F Cut failure | failure resulting from the a
tion of the 
ut.Fm Mat
h failure | a predi
ate with the same name and arity as the 
all exists,but none of its 
lauses mat
h (or have previously mat
hed) the 
all.Fa Arity failure | no predi
ate of the same name and arity as the 
all exists, butone of the same name and di�erent arity does.Fu Unde�ned predi
ate failure | no predi
ate of the same name as the 
all exists,with or without the same arity as the 
all.Mulholland uses Fm di�erently, to mean that there are no mat
hing 
lauses left,although some may have mat
hed previously, before ba
ktra
king o

urred.Thus the 
ombination SFm sometimes appears in his TTT notation, but neverin the TTT notation des
ribed here, whi
h uses just SF in su
h 
ases, and inwhi
h Fm, Fa and Fu are never pre
eded by S.Uni�
ation and binding/ In 
urrent binding sequen
e (e.g. X/a means X uni�ed with a).# In old binding sequen
e, now undone (e.g. X#a means X formerly uni�ed witha)._5, _23 Numeri
 variable suÆxes (added to variable names to distinguish di�erentvariables with the same name).Mulholland uses = and 6= instead of / and #.Call identi�ers (for 
all number n in exe
ution order, right-justi�ed in a 5-
hara
ter �eld,padded out with �ller 
hara
ters)?>>>n: For 
alls 
urrently being tried or retried (e.g. ?>>34, ?>>>9).S<<<n: For 
alls returned su

essfully (e.g. S<<<5, S<125).F###n: For irretrievably failed 
alls (e.g. F##23, F###8).Mulholland's TTT uses the >>>n: pre�x di�erently, to distinguish the mostre
ently a
tivated 
all, and | like the original TTT notation | uses a ***n:pre�x for all other 
alls.Mis
ellaneous symbols| Marks edge of blo
k relating to a 
all.* Marks a newly appeared line or a line whi
h has just 
hanged.; Call disjun
tion.(, ) Bra
kets for delimiting disjun
tions.Table 1: Summary of TTT notation7



* ?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail FF###4: fail F** (1) Call : prefix(_1, [a, b℄)?** (1) Exit : prefix([℄, [a, b℄)?** (2) Call : fail?** (2) Fail : fail?** (1) Redo : prefix([℄, [a, b℄)?** (3) Call : prefix(_2, [b℄)?** (3) Exit : prefix([℄, [b℄)?** (1) Exit : prefix([a℄, [a, b℄)?** (4) Call : fail?** (4) Exit : fail?** (1) Redo : prefix([a℄, [a, b℄)?Figure 1: TTT tra
e (above) Spy tra
e (below)of the TTT tra
e (above) and the 
orresponding unindented Spy tra
e (be-low). At this stage, the se
ond 
all to the system predi
ate fail has failed,and the initial top-level 
all prefix(P, [a,b℄) is being requeried. Pointsto note:� The proof tree is shown here in maximum detail to elu
idate the no-tation. A fully developed TTT interfa
e would provide both defaultand user 
ontrols on the amount of detail.� Ea
h 
all is represented by its own 
all blo
k of one or more 
ontiguouslines: for example, the top 3 lines of the tra
e relate to the �rst 
all.The depth of a 
all in the proof tree is en
oded by its 
all blo
k'sindentation from the left-hand margin.� Ea
h 
all blo
k begins with a 
all line, subdivided from left to rightinto: the 
all identi�er; the 
all term; and the 
all status �eld (
onsist-ing of one sub�eld for ea
h mat
hing 
lause tried, or just one undivided�eld for system predi
ates). For example, the �rst line of the tra
e issubdivided as follows: 8



Call identi�er Call term Call status �eld?>>>1: prefix(P, [a,b℄) 1SF 2S?(in two parts, for 
lauses 1 and 2)The initial symbol of the 
all identi�er, in this 
ase ?, indi
ates the
all's 
urrent status.� The non-linearity of the notation is illustrated by the insertion of 
all3 between 
alls 1 and 2. Using di�erent line pre�xes to emphasise the
urrent status of 
alls is a response to Mulholland's 
riti
ism of theoriginal notation, in whi
h status information was 
on�ned to the 
allstatus �eld, and 
all identi�ers were padded out with the same �ller
hara
ter *, regardless of 
urrent 
all status. Di�eren
es in status arenow visually mu
h 
learer.� The 
all term is shown as instantiated when the 
all is �rst made.A
tual variable names are used, with numeri
al suÆxes to distinguishdi�erent variables with the same name, e.g. the variables T_1 and T_2
orrespond to di�erent invo
ations of 
lause 2 of prefix/2. Top-levelvariables (in this 
ase, P) are left unsuÆxed.� The 
all status �eld provides more detailed status information thanthe 
all identi�er, indi
ating not only the 
all's 
urrent status, butalso its previous exe
ution history, in a 
ompa
t mnemoni
 notation.E.g. in the top line of the tra
e, 1SF 2S? shows that 
lause 1 (ofthe predi
ate prefix) mat
hed the 
all, su

eeded on
e, and failed onba
ktra
king; and subsequently 
lause 2 mat
hed, su

eeded initially,and is now being requeried after further ba
ktra
king.� Any lines in a 
all blo
k after the 
all line show variable bindings, an-notated by the 
lause numbers to whi
h they relate (unless they resultfrom system predi
ates), for the variables unbound in the 
all termwhen it is 
alled. In the unabbreviated notation, the bindings shownin
lude not just initial and �nal bindings, but intermediate ones too,e.g. the line |2 P/[a|T_1℄/[a℄ shows an a
tive series of bindingsfor P, asso
iated with 
lause 2 of prefix, i.e. P was instantiated �rstto [a|T_1℄, and then to [a℄. The line above, |1 P#[℄, shows anearlier binding [℄ of P, asso
iated with 
lause 1 and now 
ompletelyundone by ba
ktra
king.� A * marks a line whi
h has just appeared or just 
hanged. Here onlyone line | the �rst | is so marked, but in general there may be9



several. This is helpful with a non-linear notation, in whi
h 
hangesmay o

ur anywhere within the existing tra
e, not just at the end asis the 
ase with linear notations.The features just des
ribed re
e
t the previously stated design aims.\Call blo
ks", \
all status �elds" and \variable binding trees" all embodylo
alisation of information. The expli
it display of 
all arguments, 
lausenumbers, `a
tual' variable names and the use of a sideways top-down left-to-right tree stru
ture all fa
ilitate 
orrelation with the sour
e 
ode 
orrespond-ing to the tra
e. Avoidan
e of abstra
t symbols is illustrated by mnemoni
s(su
h as F for failure, S for su

ess) and standard symbols (/ to en
ode bind-ing). Finally, the notation 
onforms to standard ASCII representation, andwithout sa
ri�
ing the other aims of en
oding of stru
ture, expli
it repre-sentation of information, and a 
umulative notation, it meets the importantpra
ti
al aim of 
ompa
tness. In Figure 1, the TTT tra
e is only 7 lines 
om-pared to the Spy tra
e's 11 lines, even though it provides mu
h more expli
itinformation about mat
hing 
lauses, variable bindings, and the stru
ture ofthe 
omputation. In some 
ases, a Spy tra
e will be shorter than the 
or-responding TTT tra
e, e.g. when there is no ba
ktra
king, and the 
alls
ontain on average 2 or more free variables at the time of 
alling. However,TTT tra
es are typi
ally 
onsiderably shorter than those of any linear tra
er| sometimes half the length, or less if most of the 
alls are fully instantiatedwhen 
alled.4 DYNAMIC ASPECTSIn this se
tion, sele
ted stages of the tra
e for the prefix example illustratethe dynami
 aspe
ts of the TTT notation. If the query were being tra
edstep-by-step, the tra
er would stop at ea
h stage, until prompted by theuser to pro
eed.Initial 
alling. When a 
all is �rst made, its 
all blo
k 
ontains only the
all line, in whi
h the 
all status �eld 
onsists of a single ? 
hara
ter. Any
all 
urrently being queried or requeried has a ? at the rightmost end of itsstatus �eld and a pre�x of the form ?>>. . . in its 
all identi�er. The �rststage of the tra
e illustrates this:* ?>>>1: prefix(P, [a,b℄) ? First top-level 
all10



Clause head mat
hing and resultant variable binding. When a
lause head mat
hes a 
all, its 
lause number is inserted into the 
all status�eld, to the left of the ?, and any resulting variable bindings are shown onseparate lines (not only those of variables initially free in the 
all, but also`kno
k-on e�e
ts' on other variables, as illustrated shortly). In the se
ondline below, the 1 indi
ates that the sequen
e of bindings beginning on thatline is asso
iated with 
lause 1.* ?>>>1: prefix(P, [a,b℄) 1?* |1 P/[℄ Head of 
lause 1 mat
hes, andP be
omes bound to [ ℄ as a result.Su

ess of a 
lause with no subgoals. When a 
lause su

eeds, the? immediately to the right of the 
orresponding 
lause number in the 
allstatus �eld is repla
ed by an S. If the 
lause has no subgoals, the S appearsimmediately after the stage in whi
h the 
lause head mat
hing is shown, asillustrated below.* S<<<1: prefix(P, [a,b℄) 1S|1 P/[℄ Clause 1 su

eeds immediately aftermat
hing, be
ause it has no subgoals.Calls to system predi
ates. The next stage shows a 
all to the systempredi
ate fail, whi
h has just failed, as indi
ated by a pre�x of the formF### in its 
all identi�er. It is easily identi�able as a 
all to a system predi-
ate, be
ause its status �eld (at the right-hand end of the 
all line) 
ontainsan F not pre
eded by any 
lause number. Similarly, a su

essful 
all to asystem predi
ate would have a 
all status �eld with an S not pre
eded byany 
lause number.S<<<1: prefix(P, [a,b℄) 1S|1 P/[℄* F###2: fail F System 
all fail fails.Ba
ktra
king, 
lause retrying and variable unbinding. The nextthree stages illustrate ba
ktra
king, 
lause retrying and variable unbinding.From the se
ond to third stages, the status �eld of 
all 1 
hanges from 1S?to 1SF ?, rather than simply to 1SF, be
ause there is another 
lause leftto be tried (i.e. 
lause 2 of prefix/2) whose head also mat
hes 
all 1. Torepresent the unbinding of P whi
h a

ompanies the failure of 
lause 1, the/ 
hara
ter between P and [℄ is repla
ed by a # 
hara
ter. The new binding11



of [a|T_1℄ for P, whi
h results from the mat
hing of 
lause 2 of prefix/2against 
all 1, is shown on a fresh line in the 
all blo
k for 
all 1. The 2on that line indi
ates that this binding is asso
iated with 
lause 2, unlikethe binding of [℄ | shown on the line above | whi
h was asso
iated with
lause 1. Note that the binding for P is shown as [a|T_1℄, not as [a|T℄,although this is the �rst o

urren
e of T. Only variables mentioned in thetop-level 
all are unsuÆxed.* ?>>>1: prefix(P, [a,b℄) 1S?|1 P/[℄F###2: fail F Re-evaluating 
lause 1 for 
all 1.* ?>>>1: prefix(P, [a,b℄) 1SF ?* |1 P#[℄F###2: fail F Clause 1 
annot be resatis�ed and so fails.P be
omes unbound.* ?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄* |2 P/[a|T_1℄F###2: fail F Head of 
lause 2 mat
hes,and a new binding for P results.Calling of subgoals. The next stage shows the 
alling of the subgoal of
lause 2 of prefix/2. Rather than being added to the end of the tra
e, asit would be in a linear notation, the subgoal's 
all line is inserted below the
all blo
k of its parent 
all, and immediately above the 
all line of the nextsibling of the parent 
all. The indentation from the left-hand margin of the
all line for the subgoal is one greater than the indentation of the 
all linefor its parent 
all, thus en
oding the subgoal's greater depth in the proof tree.?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄|2 P/[a|T_1℄* ?>>>3: prefix(T_1, [b℄) ?F###2: fail F Subgoal of 
lause 2 is 
alled.Propagation of instantiation. The next stage illustrates how the `kno
k-on' e�e
ts of variable instantiation are represented. Here, the binding of T_1to the value [℄ results in a further instantiation of P from [a|T_1℄ to [a℄.Propagation of uninstantiation is represented in a similar way | see later.12



?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄* |2 P/[a|T_1℄/[a℄* ?>>>3: prefix(T_1, [b℄) 1?* |1 T_1/[℄F###2: fail F Head of 
lause 1 mat
hes 
all 3,so T 1 be
omes bound,and P further instantiated.Su

ess of a 
lause with subgoals. The next two stages show 
lause 1su

eeding for 
all 3; and then 
lause 2 su

eeding for 
all 1 (be
ause 
all 3
orresponds to the only subgoal of 
lause 2). Su

ess of a 
all is indi
ated by? 
hanging to S in its 
all status �eld, and further emphasised by a 
hangein the pre�x of its 
all identi�er, from ?>>> to S<<<.?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄|2 P/[a|T_1℄/[a℄* S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail F Clause 1 su

eeds for 
all 3 be
ause it has nosubgoals.* S<<<1: prefix(P, [a,b℄) 1SF 2S|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail F Clause 2 su

eeds for 
all 1 be
ause there areno more of its subgoals to be satis�ed.
Propagation of uninstantiation. A few stages later, a fresh 
all to fail(
all 4) fails, and ba
ktra
king o

urs. In the �rst stage below, 
lause 2 isrequeried for 
all 1. In the se
ond stage, 
lause 1 is requeried for 
all 3;but fails sin
e it 
annot be resatis�ed, and T_1 be
omes unbound again,as shown in the third stage, whi
h also shows the `kno
k-on' e�e
t of thepartial uninstantiation of P, resulting from the unbinding of T_1.* ?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail FF###4: fail F

Attempting to resatisfy 
lause 2 for 
all 1.
13



?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄* ?>>>3: prefix(T_1, [b℄) 1S?|1 T_1/[℄F###2: fail FF###4: fail F Attempting to resatisfy 
lause 1 for 
all 3.
?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄* |2 P/[a|T_1℄#[a℄* ?>>>3: prefix(T_1, [b℄) 1SF ?* |1 T_1#[℄F###2: fail FF###4: fail F Clause 1 
an't be resatis�ed so it fails,T 1 be
omes unbound,and the binding of P reverts to [ajT 1℄.Fresh intermediate bindings. In the next stage, 
lause 2 mat
hes 
all 3,resulting in a new binding [b|T_2℄ for T_1, and a new intermediate binding[a,b|T_2℄ for P, whi
h is shown on a fresh line, with the same indenta-tion as the now unbound value [a℄. The stru
tured display of bindings ina `sideways tree' en
odes the fa
t that both [a℄ and [a,b|T_2℄ are `
hil-dren' of [a|T_1℄. This method of showing bindings is an improvement onthe method used in some earlier versions of the TTT notation (in
ludingMulholland's) in whi
h no intermediate bindings were shown, and top-levelvariables were shown in several 
alls when they uni�ed with 
lause variables,rather than just been shown at the top-level, as here.?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄#[a℄* | /[a,b|T_2℄* ?>>>3: prefix(T_1, [b℄) 1SF 2?|1 T_1#[℄* |2 T_1/[b|T_2℄F###2: fail FF###4: fail F Head of 
lause 2 mat
hes 
all 3,and a new binding of T 1 results,bringing about a new binding of P also.Repeated su

ess of a 
lause. Several stages later, 
lause 2 has su
-
eeded for 
all 3, and 
onsequently, 
lause 2 su

eeds again for 
all 1, indi-
ated by a se
ond S after the 2 in the status �eld of 
all 1. At this stage,the bindings of P asso
iated with ea
h su

ess of 
all 1 (on
e using 
lause 1,14



and twi
e using 
lause 2) 
an be read o� as the `leaves' of the two `sidewaysbinding trees' for P. Thus in the tree for 
lause 1, there is only one leaf(the binding [℄); whilst in the tree for 
lause 2, there are two, i.e. [a℄ and[a,b℄. The 
hain of bindings leading to a parti
ular binding 
an be read o�by following a path to that binding from the root of the binding tree whi
h
ontains it: for example, the 
hain [a|T_1℄, [a,b|T_2℄ leads to the binding[a,b℄ of P.* S<<<1: prefix(P, [a,b℄) 1SF 2SS|1 P#[℄|2 P/[a|T_1℄#[a℄| /[a,b|T_2℄/[a,b℄S<<<3: prefix(T_1, [b℄) 1SF 2S|1 T_1#[℄|2 T_1/[b|T_2℄/[b℄S<<<5: prefix(T_2, [℄) 1S|1 T_2/[℄F###2: fail FF###4: fail F
Clause 2 su

eeds for the 2nd time for 
all 1.

The TTT notation has some other minor features, not illustrated here.These in
lude spe
ial notations for 
lause numbering in database-
hangingprograms (those involving assert, retra
t, et
.), and for disjun
tive 
alls.5 CONCLUSIONA \textual tree tra
e" (TTT) notation has been des
ribed, in whi
h theexe
ution of a Prolog goal is represented by a `sideways tree', growing right-ward and downward from a root displayed at the top left-hand margin. Thisform of tree fa
ilitates 
orrelation of the tra
e with the program 
lauses in-volved in its generation | parti
ularly if the latter are displayed with thesubgoals of a 
lause uniformly indented with respe
t to the 
lause head.Like some previous notations, the TTT notation shows 
lause head mat
h-ing events, distinguishes several modes of failure, and shows `a
tual names'of variables as they appear in the program being tra
ed (distin
t variableswith the same name are distinguished by adding numeri
al suÆxes). The
hara
teristi
 features of the notation in
lude 
ompa
tness, lo
alisation ofinformation pertaining to ea
h goal, non-linear expansion of the tra
e and adetailed view of variable binding and unbinding. The revised form des
ribedhere has yet to be empiri
ally tested, but takes some a

ount of Mulholland's15



(1997) empiri
ally-based 
riti
isms of an earlier form of the notation. Themain improvements made are a 
learer display of 
all status information, ex-pli
it marking of lines where 
hanges have just o

urred, and a di�erent andmore stru
tured way of showing variable bindings, whi
h in
ludes interme-diate bindings. Overall, the TTT notation illustrates an approa
h to Prologtra
ing whi
h 
ombines the immediately visible display of key textual infor-mation about goals and data stru
tures, with the expli
it representation of
omputational stru
ture usually asso
iated with graphi
al formats.A
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