
A REVISED TEXTUAL TREE TRACENOTATION FOR PROLOGC. N. Taylor, J. B. H. du Boulayy, and M. J. PatelzDepartment of Computer S
ien
e, City University, London.yS
hool of Cognitive and Computing S
ien
es, University of Sussex, Brighton.zApplite
h Resear
h, Usmanpura, Ahmedabad, India.Abstra
t This paper des
ribes a \textual tree tra
e" (TTT) notation forrepresenting the exe
ution of Prolog programs. Compa
t, textual and non-linear, it provides detailed information about variable binding and exe
utionhistory, and distinguishes several modes of goal failure. The revised formgiven here, yet to be tested empiri
ally, is partly informed by Paul Mulhol-land's empiri
al
omparisons of Prolog tra
e notations, in whi
h an earlierversion of the TTT notation was amongst those studied and
riti
ised. Thework presented here is an updated version of a previous workshop paper(Taylor, du Boulay, & Patel, 1994).1 INTRODUCTIONProlog is now a well-established language, with a wide range of appli
ations.Its simple, uniform syntax and powerful inbuilt features of uni�
ation andba
ktra
king often allow algorithms to be en
oded more elegantly than inother, more
onventional languages. However, these same features oftenpresent diÆ
ulties for novi
e Prolog programmers (Pain & Bundy, 1987;Taylor, 1988). Consequently, Prolog tra
e notations and tools have not onlya debugging role, but also an important dida
ti
 role.Prolog tra
ers vary
onsiderably in their notations, interfa
es, and thefa
ets of Prolog exe
ution whi
h they display (for example, Byrd, 1980;Eisenstadt, 1984; Mellish, 1984; Eisenstadt & Brayshaw, 1988; Plummer,1988; Hors�eld, Bo

a & Dahmen, 1990; Rajan, 1990). The developmentand now widespread availability of powerful graphi
al workstations and in-
reasingly sophisti
ated graphi
al user interfa
es and programming tools hasprovided a mu
h wider range of possibilities to explore regarding the designof tra
ing tools. However, it should not be assumed that graphi
al modes ofdisplay are invariably superior to textual ones, parti
ularly in the
ontext ofprogram tra
ing, where mu
h of the information
ontent involved is inher-1

ently textual. In pra
ti
e, of
ourse, graphi
al and textual approa
hes arenot mutually ex
lusive, and
an
omplement one other. Thus, although thenotation des
ribed in this paper is
omposed entirely of text, its e�e
tive-ness in a tra
ing tool might well be enhan
ed by the use of graphi
al devi
essu
h as
olouring, shading,
ashing, and so on.The work des
ribed here arose from a proje
t entitled \Explanation Fa-
ilities for Prolog", in whi
h existing Prolog tra
ing tools and notations wereinvestigated (see Patel, du Boulay & Taylor, 1991 & 1997) | parti
ularlythe standard \Spy" or \Byrd Box" textual tra
er (Byrd, 1980; Clo
ksin& Mellish, 1981); the EPTB or \Extended Prolog Tra
er for Beginners",a prototype textual tra
er giving very detailed information (Di
hev & duBoulay, 1989); and the TPM or \Transparent Prolog Ma
hine", a graphi
altree tra
er developed at the Open University and available in several ver-sions (Eisenstadt & Brayshaw, 1988; Eisenstadt, Brayshaw & Paine, 1991).During this proje
t a new TTT (\textual tree tra
e") notation and tra
ingtool were proposed, intended to
ombine some novel features with usefulfeatures from previous notations and tools. Only the notation | whi
h usesa textual, non-linear, sideways tree format | is addressed here. Some issuesrelating to interfa
e and tool design were dis
ussed in the initial spe
i�
ationof notation and tool given in Taylor, du Boulay & Patel (1991).Following the initial design, a prototype TTT meta-interpreter was im-plemented (in Prolog), and the notation
ontinued to evolve. After a limitedempiri
al study (Patel, du Boulay & Taylor, 1994) of its stati
 features sug-gested that the initial notation was over-
omplex and potentially
onfusing,a simpler and more
ompa
t intermediate form was developed. Mulholland
ompared similar intermediate TTT notations with other Prolog tra
e no-tations in two �ne-grained proto
ol-based studies (Mulholland 1994, 1995& 1997). The �rst
omparison involved novi
es and in
luded initially alsothe Spy and PTP (both linear textual notations) and the TPM (a graphi
altree notation), and subsequently the Plater notation (another linear textualnotation, devised by Mulholland). The subje
ts used short tra
es in variousnotations,
ontrolled via a uniform tra
er interfa
e, to dedu
e how a simpleprogram being tra
ed di�ered from a program text visible to them. The ex-perimental proto
ols looked at the types of misunderstandings, informationand strategies involved. Statisti
ally signi�
ant di�eren
es were observedfor some measures, with some notations better in some aspe
ts but worsein others. Overall, Mulholland's TTT performed better than the TPM andSpy, and slightly worse than the PTP, whi
h in turn was outperformed byMulholland's Plater notation. In the se
ond
omparison, whi
h involved2

experts, and a slightly improved TTT notation whi
h showed intermediatebindings, the results were less
lear
ut, and the Prolog expertise of the sub-je
ts seem to dominate, allowing them to perform reasonably well using anyof the notations
on
erned.Mulholland's work goes further than previous empiri
al work in its detailand in looking at both stati
 and dynami
 aspe
ts of notations. However,his experiments are still very limited in s
ope. His main study with novi
esis based on very short tra
es of just one program, a task (trying to �ndhow an invisible program being tra
ed di�ers from a visible program text)untypi
al of the way tra
ers are a
tually used in pra
ti
e, and one parti
ularsele
tion of
omparison measures. Without a mu
h wider range of
ompar-ison measures, tra
es, and tasks, his
on
lusions must be interpreted withsome
aution. For example, with large tra
es, one might expe
t a non-linearnotation like the TTT to perform better than than any of the linear nota-tions, whi
h display information in a less
ompa
t and lo
alised way, andso would require a lot more s
rolling. This was not tested in Mulholland'sexperiment, in whi
h tra
es were short enough to �t easily on one s
reenwindow, in any notation. Nonetheless, the latest version of the TTT no-tation, yet to be tested empiri
ally, is partly informed by his experimentaleviden
e.Mulholland's main
riti
isms of the earlier TTT notation | parti
ularlyregarding its use by novi
es - in
lude the following:1. DiÆ
ulty of tra
king non-linear development. The TTT nota-tion is non-linear, so that
hanges often o

ur within a tra
e, ratherthan always at the end, as is the
ase with linear notations. Commentsfrom subje
ts and timing misunderstandings suggested that novi
esfound this harder to follow than linear development, at least initially.To help with this problem, Mulholland's TTT notation distinguishedthe most re
ently a
tivated
all from the other
alls.2. Tree display method. TTT's sideways tree format was des
ribedby Mulholland as per
eptively less
lear than a verti
al tree format(although the basis for this opinion was not stated expli
itly). It wassuggested that in
reasing the indentation o�set of subgoals relative totheir parents (originally one
hara
ter-width) would help to emphasisethe tree stru
ture.3. Clause-goal misunderstandings. Some novi
es
onfused goals with
lauses be
ause the TTT notation does not have separate lines marking3

lause entry.4. InsuÆ
ient visual emphasis of
all status. The status of
alls wassaid to be not
lear enough visually, be
ause
all status informationwas given only at the right-hand end of ea
h line. It was re
ommendedthat some status information should be given at the left-hand end ofea
h
all line.Regarding 1), non-linearity
annot be abandoned without destroying thewhole
hara
ter of the notation, but has
ompensating advantages in show-ing the stru
ture of the
omputation more expli
itly. Novi
es may indeed�nd it harder to understand at �rst than linear development, but possiblymight �nd it more helpful in the long run, although there is insuÆ
ient ev-iden
e to establish whether or not this is the
ase. To aid
omprehensionof the non-linear development, the latest TTT notation marks every newlyappeared line or line whi
h has just
hanged, so that any
hanges betweenone stage and the next
an be spotted more easily and qui
kly.As far as 2) is
on
erned, a sideways tree a
tually has some advan-tages as far as the display of textual information is
on
erned. The verti
altree format used in the TPM's \long-distan
e view" leaves insuÆ
ient spa
ebetween sibling nodes to display
all arguments, and in some
ases eventhe predi
ate names are trun
ated or not shown, with the result that su
hinformation has to be a

essed by opening,
losing and s
rolling of subwin-dows, rather than being immediately visible, as it is in the TTT's sidewaystree format. As for indentation, a parent-
hild indentation o�set of one
hara
ter-width was
hosen as the default to keep the tra
e
ompa
t in theleft-to-right dimension, but this
ould easily be left for the user to adjust onrequest.The la
k of separate lines marking
lause entries, remarked on in 3),is a
onsequen
e of a general design aim of
ompa
tness (see se
tion 2),the overall bene�ts of whi
h hopefully outweigh the drawba
ks, parti
ularlywhen large tra
es are generated. For this reason, no revisions to the TTTnotation have been made in
onne
tion with this problem. However, theresulting
lause-goal
onfusions, observed in Mulholland's experiment withnovi
es, might perhaps be ameliorated by some kind of separate
ommentaryline, as proposed e.g. by Rajan (1990). Another simple remedy for redu
ingmisunderstandings | as some of the novi
e subje
ts suggested, regardingtra
e notations in general | might be for the tra
ing tool to provide asymbol key or annotated example, whi
h
ould be displayed on the s
reen4

by default, at least until a user was suÆ
iently familiar with the notationfor this to be super
uous.Regarding 4), the latest TTT notation follows Mulholland's re
ommen-dation of giving more visual emphasis to di�eren
es in
all status, by provid-ing
urrent status information at the left-hand end of ea
h line, in additionto the more detailed information shown at the right-hand end of ea
h line(see se
tion 3 for details). One further
hange made to the notation is amethod of showing variable bindings di�erent to that used in the originalTTT notation and in Mulholland's experiment with novi
es. This resemblesMulholland's later TTT notation, used with his expert subje
ts, in showinginitial and intermediate bindings as well as
all exit bindings, but improveson that further by displaying su
h bindings using a stru
tured sideways treeformat.2 DESIGN PRINCIPLESThe TTT notation re
e
ts the following design aims, whi
h overlap withRajan's (1990), although his
on
ern interfa
es as well as notations.� Lo
alisation of information. Information about a parti
ular aspe
tof exe
ution | e.g. a parti
ular
all or variable | should be lo
alised,rather than being widely distributed a
ross the tra
e, thereby redu
-ing the amount of s
rolling and visual s
anning required to �nd su
hinformation.� En
oding of
omputational stru
ture. The overall stru
ture ofthe
omputation should be en
oded expli
itly. An obvious way to dothis is to adopt a tree format of some kind.� Correlation with sour
e
ode. The notation should fa
ilitate
or-relation of tra
e output with the program being tra
ed.� Avoidan
e of abstra
t symbolism. Symbols should have self-evident meanings, as far as possible.� Expli
it representation. Information should be represented expli
-itly rather than impli
itly, i.e. in a way that minimises the amountof inferen
e required to extra
t the information. For example, thenumbers of mat
hing
lauses should be shown expli
itly.5

� Attention to variable bindings. The tra
e should indi
ate thehistory of variable binding and unbinding, so that the
onstru
tionand de
onstru
tion of
omplex data-stru
tures
an be observed.� Cumulative notation. At any stage, it should be possible to seethe whole history of exe
ution up to that stage, i.e. tra
e informationshould not be overwritten. Of
ourse, one may wish to
ut down ondetail, but those details should be available for display.� Standard ASCII representation. Tra
es should be
onstru
tedfrom the standard ASCII
hara
ter set. This does not pre
lude theuse of extra visual devi
es su
h as highlighting and
olouring to aid
omprehension, but it ensures that the basi
 notation
an be displayedand printed easily on any kind of terminal or printer.3 MAIN FEATURESThe main features of the notation are illustrated here by a summary ofthe symbols used (see Table 1), and by sele
ted stages of a simple tra
e.The tra
e output is shown here with a
onstant level of detail; in a fully-developed TTT tra
er, the level of detail would be
ontrolled by both defaultrestri
tions and expli
it user
ommands (for example, intermediate variablebindings would typi
ally not be shown).To illustrate the use of some of the symbols,
onsider the tra
e generatedfrom the following program
lauses (numeri
ally labelled in the leftmost
ol-umn).1 prefix([℄, L).2 prefix([H|T℄, [H|T1℄):-prefix(T,T1). [℄ is a pre�x of any L[HjT℄ is a pre�x of [HjT1℄if T is a pre�x of T1Suppose the following query is evaluated against these
lauses:?- prefix(P, [a,b℄), fail.Comparison with the more familiar `Spy' notation provides a useful per-spe
tive on the TTT notation. Spy tra
ers produ
e a simple linear tra
e,typi
ally unindented, re
ording the events at ea
h of four ports. Variablesare notated using internal numbers, e.g. _3, whi
h bear no relation to thevariable names in the user's program. Figure 1 shows an intermediate stage6

General
all status notation? Being tried or retried.S Su

eeded.F Failed.SF Su

eeded then failed on ba
ktra
king.SS Su

eeded then su

eeded again on ba
ktra
king.Failure modesF Default | failures resulting from subgoal failures, failures of system
alls, andso on!F Cut failure | failure resulting from the a
tion of the
ut.Fm Mat
h failure | a predi
ate with the same name and arity as the
all exists,but none of its
lauses mat
h (or have previously mat
hed) the
all.Fa Arity failure | no predi
ate of the same name and arity as the
all exists, butone of the same name and di�erent arity does.Fu Unde�ned predi
ate failure | no predi
ate of the same name as the
all exists,with or without the same arity as the
all.Mulholland uses Fm di�erently, to mean that there are no mat
hing
lauses left,although some may have mat
hed previously, before ba
ktra
king o

urred.Thus the
ombination SFm sometimes appears in his TTT notation, but neverin the TTT notation des
ribed here, whi
h uses just SF in su
h
ases, and inwhi
h Fm, Fa and Fu are never pre
eded by S.Uni�
ation and binding/ In
urrent binding sequen
e (e.g. X/a means X uni�ed with a).# In old binding sequen
e, now undone (e.g. X#a means X formerly uni�ed witha)._5, _23 Numeri
 variable suÆxes (added to variable names to distinguish di�erentvariables with the same name).Mulholland uses = and 6= instead of / and #.Call identi�ers (for
all number n in exe
ution order, right-justi�ed in a 5-
hara
ter �eld,padded out with �ller
hara
ters)?>>>n: For
alls
urrently being tried or retried (e.g. ?>>34, ?>>>9).S<<<n: For
alls returned su

essfully (e.g. S<<<5, S<125).F###n: For irretrievably failed
alls (e.g. F##23, F###8).Mulholland's TTT uses the >>>n: pre�x di�erently, to distinguish the mostre
ently a
tivated
all, and | like the original TTT notation | uses a ***n:pre�x for all other
alls.Mis
ellaneous symbols| Marks edge of blo
k relating to a
all.* Marks a newly appeared line or a line whi
h has just
hanged.; Call disjun
tion.(,) Bra
kets for delimiting disjun
tions.Table 1: Summary of TTT notation7

* ?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail FF###4: fail F** (1) Call : prefix(_1, [a, b℄)?** (1) Exit : prefix([℄, [a, b℄)?** (2) Call : fail?** (2) Fail : fail?** (1) Redo : prefix([℄, [a, b℄)?** (3) Call : prefix(_2, [b℄)?** (3) Exit : prefix([℄, [b℄)?** (1) Exit : prefix([a℄, [a, b℄)?** (4) Call : fail?** (4) Exit : fail?** (1) Redo : prefix([a℄, [a, b℄)?Figure 1: TTT tra
e (above) Spy tra
e (below)of the TTT tra
e (above) and the
orresponding unindented Spy tra
e (be-low). At this stage, the se
ond
all to the system predi
ate fail has failed,and the initial top-level
all prefix(P, [a,b℄) is being requeried. Pointsto note:� The proof tree is shown here in maximum detail to elu
idate the no-tation. A fully developed TTT interfa
e would provide both defaultand user
ontrols on the amount of detail.� Ea
h
all is represented by its own
all blo
k of one or more
ontiguouslines: for example, the top 3 lines of the tra
e relate to the �rst
all.The depth of a
all in the proof tree is en
oded by its
all blo
k'sindentation from the left-hand margin.� Ea
h
all blo
k begins with a
all line, subdivided from left to rightinto: the
all identi�er; the
all term; and the
all status �eld (
onsist-ing of one sub�eld for ea
h mat
hing
lause tried, or just one undivided�eld for system predi
ates). For example, the �rst line of the tra
e issubdivided as follows: 8

Call identi�er Call term Call status �eld?>>>1: prefix(P, [a,b℄) 1SF 2S?(in two parts, for
lauses 1 and 2)The initial symbol of the
all identi�er, in this
ase ?, indi
ates the
all's
urrent status.� The non-linearity of the notation is illustrated by the insertion of
all3 between
alls 1 and 2. Using di�erent line pre�xes to emphasise the
urrent status of
alls is a response to Mulholland's
riti
ism of theoriginal notation, in whi
h status information was
on�ned to the
allstatus �eld, and
all identi�ers were padded out with the same �ller
hara
ter *, regardless of
urrent
all status. Di�eren
es in status arenow visually mu
h
learer.� The
all term is shown as instantiated when the
all is �rst made.A
tual variable names are used, with numeri
al suÆxes to distinguishdi�erent variables with the same name, e.g. the variables T_1 and T_2
orrespond to di�erent invo
ations of
lause 2 of prefix/2. Top-levelvariables (in this
ase, P) are left unsuÆxed.� The
all status �eld provides more detailed status information thanthe
all identi�er, indi
ating not only the
all's
urrent status, butalso its previous exe
ution history, in a
ompa
t mnemoni
 notation.E.g. in the top line of the tra
e, 1SF 2S? shows that
lause 1 (ofthe predi
ate prefix) mat
hed the
all, su

eeded on
e, and failed onba
ktra
king; and subsequently
lause 2 mat
hed, su

eeded initially,and is now being requeried after further ba
ktra
king.� Any lines in a
all blo
k after the
all line show variable bindings, an-notated by the
lause numbers to whi
h they relate (unless they resultfrom system predi
ates), for the variables unbound in the
all termwhen it is
alled. In the unabbreviated notation, the bindings shownin
lude not just initial and �nal bindings, but intermediate ones too,e.g. the line |2 P/[a|T_1℄/[a℄ shows an a
tive series of bindingsfor P, asso
iated with
lause 2 of prefix, i.e. P was instantiated �rstto [a|T_1℄, and then to [a℄. The line above, |1 P#[℄, shows anearlier binding [℄ of P, asso
iated with
lause 1 and now
ompletelyundone by ba
ktra
king.� A * marks a line whi
h has just appeared or just
hanged. Here onlyone line | the �rst | is so marked, but in general there may be9

several. This is helpful with a non-linear notation, in whi
h
hangesmay o

ur anywhere within the existing tra
e, not just at the end asis the
ase with linear notations.The features just des
ribed re
e
t the previously stated design aims.\Call blo
ks", \
all status �elds" and \variable binding trees" all embodylo
alisation of information. The expli
it display of
all arguments,
lausenumbers, `a
tual' variable names and the use of a sideways top-down left-to-right tree stru
ture all fa
ilitate
orrelation with the sour
e
ode
orrespond-ing to the tra
e. Avoidan
e of abstra
t symbols is illustrated by mnemoni
s(su
h as F for failure, S for su

ess) and standard symbols (/ to en
ode bind-ing). Finally, the notation
onforms to standard ASCII representation, andwithout sa
ri�
ing the other aims of en
oding of stru
ture, expli
it repre-sentation of information, and a
umulative notation, it meets the importantpra
ti
al aim of
ompa
tness. In Figure 1, the TTT tra
e is only 7 lines
om-pared to the Spy tra
e's 11 lines, even though it provides mu
h more expli
itinformation about mat
hing
lauses, variable bindings, and the stru
ture ofthe
omputation. In some
ases, a Spy tra
e will be shorter than the
or-responding TTT tra
e, e.g. when there is no ba
ktra
king, and the
alls
ontain on average 2 or more free variables at the time of
alling. However,TTT tra
es are typi
ally
onsiderably shorter than those of any linear tra
er| sometimes half the length, or less if most of the
alls are fully instantiatedwhen
alled.4 DYNAMIC ASPECTSIn this se
tion, sele
ted stages of the tra
e for the prefix example illustratethe dynami
 aspe
ts of the TTT notation. If the query were being tra
edstep-by-step, the tra
er would stop at ea
h stage, until prompted by theuser to pro
eed.Initial
alling. When a
all is �rst made, its
all blo
k
ontains only the
all line, in whi
h the
all status �eld
onsists of a single ?
hara
ter. Any
all
urrently being queried or requeried has a ? at the rightmost end of itsstatus �eld and a pre�x of the form ?>>. . . in its
all identi�er. The �rststage of the tra
e illustrates this:* ?>>>1: prefix(P, [a,b℄) ? First top-level
all10

Clause head mat
hing and resultant variable binding. When a
lause head mat
hes a
all, its
lause number is inserted into the
all status�eld, to the left of the ?, and any resulting variable bindings are shown onseparate lines (not only those of variables initially free in the
all, but also`kno
k-on e�e
ts' on other variables, as illustrated shortly). In the se
ondline below, the 1 indi
ates that the sequen
e of bindings beginning on thatline is asso
iated with
lause 1.* ?>>>1: prefix(P, [a,b℄) 1?* |1 P/[℄ Head of
lause 1 mat
hes, andP be
omes bound to [℄ as a result.Su

ess of a
lause with no subgoals. When a
lause su

eeds, the? immediately to the right of the
orresponding
lause number in the
allstatus �eld is repla
ed by an S. If the
lause has no subgoals, the S appearsimmediately after the stage in whi
h the
lause head mat
hing is shown, asillustrated below.* S<<<1: prefix(P, [a,b℄) 1S|1 P/[℄ Clause 1 su

eeds immediately aftermat
hing, be
ause it has no subgoals.Calls to system predi
ates. The next stage shows a
all to the systempredi
ate fail, whi
h has just failed, as indi
ated by a pre�x of the formF### in its
all identi�er. It is easily identi�able as a
all to a system predi-
ate, be
ause its status �eld (at the right-hand end of the
all line)
ontainsan F not pre
eded by any
lause number. Similarly, a su

essful
all to asystem predi
ate would have a
all status �eld with an S not pre
eded byany
lause number.S<<<1: prefix(P, [a,b℄) 1S|1 P/[℄* F###2: fail F System
all fail fails.Ba
ktra
king,
lause retrying and variable unbinding. The nextthree stages illustrate ba
ktra
king,
lause retrying and variable unbinding.From the se
ond to third stages, the status �eld of
all 1
hanges from 1S?to 1SF ?, rather than simply to 1SF, be
ause there is another
lause leftto be tried (i.e.
lause 2 of prefix/2) whose head also mat
hes
all 1. Torepresent the unbinding of P whi
h a

ompanies the failure of
lause 1, the/
hara
ter between P and [℄ is repla
ed by a #
hara
ter. The new binding11

of [a|T_1℄ for P, whi
h results from the mat
hing of
lause 2 of prefix/2against
all 1, is shown on a fresh line in the
all blo
k for
all 1. The 2on that line indi
ates that this binding is asso
iated with
lause 2, unlikethe binding of [℄ | shown on the line above | whi
h was asso
iated with
lause 1. Note that the binding for P is shown as [a|T_1℄, not as [a|T℄,although this is the �rst o

urren
e of T. Only variables mentioned in thetop-level
all are unsuÆxed.* ?>>>1: prefix(P, [a,b℄) 1S?|1 P/[℄F###2: fail F Re-evaluating
lause 1 for
all 1.* ?>>>1: prefix(P, [a,b℄) 1SF ?* |1 P#[℄F###2: fail F Clause 1
annot be resatis�ed and so fails.P be
omes unbound.* ?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄* |2 P/[a|T_1℄F###2: fail F Head of
lause 2 mat
hes,and a new binding for P results.Calling of subgoals. The next stage shows the
alling of the subgoal of
lause 2 of prefix/2. Rather than being added to the end of the tra
e, asit would be in a linear notation, the subgoal's
all line is inserted below the
all blo
k of its parent
all, and immediately above the
all line of the nextsibling of the parent
all. The indentation from the left-hand margin of the
all line for the subgoal is one greater than the indentation of the
all linefor its parent
all, thus en
oding the subgoal's greater depth in the proof tree.?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄|2 P/[a|T_1℄* ?>>>3: prefix(T_1, [b℄) ?F###2: fail F Subgoal of
lause 2 is
alled.Propagation of instantiation. The next stage illustrates how the `kno
k-on' e�e
ts of variable instantiation are represented. Here, the binding of T_1to the value [℄ results in a further instantiation of P from [a|T_1℄ to [a℄.Propagation of uninstantiation is represented in a similar way | see later.12

?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄* |2 P/[a|T_1℄/[a℄* ?>>>3: prefix(T_1, [b℄) 1?* |1 T_1/[℄F###2: fail F Head of
lause 1 mat
hes
all 3,so T 1 be
omes bound,and P further instantiated.Su

ess of a
lause with subgoals. The next two stages show
lause 1su

eeding for
all 3; and then
lause 2 su

eeding for
all 1 (be
ause
all 3
orresponds to the only subgoal of
lause 2). Su

ess of a
all is indi
ated by?
hanging to S in its
all status �eld, and further emphasised by a
hangein the pre�x of its
all identi�er, from ?>>> to S<<<.?>>>1: prefix(P, [a,b℄) 1SF 2?|1 P#[℄|2 P/[a|T_1℄/[a℄* S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail F Clause 1 su

eeds for
all 3 be
ause it has nosubgoals.* S<<<1: prefix(P, [a,b℄) 1SF 2S|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail F Clause 2 su

eeds for
all 1 be
ause there areno more of its subgoals to be satis�ed.
Propagation of uninstantiation. A few stages later, a fresh
all to fail(
all 4) fails, and ba
ktra
king o

urs. In the �rst stage below,
lause 2 isrequeried for
all 1. In the se
ond stage,
lause 1 is requeried for
all 3;but fails sin
e it
annot be resatis�ed, and T_1 be
omes unbound again,as shown in the third stage, whi
h also shows the `kno
k-on' e�e
t of thepartial uninstantiation of P, resulting from the unbinding of T_1.* ?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄S<<<3: prefix(T_1, [b℄) 1S|1 T_1/[℄F###2: fail FF###4: fail F

Attempting to resatisfy
lause 2 for
all 1.
13

?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄/[a℄* ?>>>3: prefix(T_1, [b℄) 1S?|1 T_1/[℄F###2: fail FF###4: fail F Attempting to resatisfy
lause 1 for
all 3.
?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄* |2 P/[a|T_1℄#[a℄* ?>>>3: prefix(T_1, [b℄) 1SF ?* |1 T_1#[℄F###2: fail FF###4: fail F Clause 1
an't be resatis�ed so it fails,T 1 be
omes unbound,and the binding of P reverts to [ajT 1℄.Fresh intermediate bindings. In the next stage,
lause 2 mat
hes
all 3,resulting in a new binding [b|T_2℄ for T_1, and a new intermediate binding[a,b|T_2℄ for P, whi
h is shown on a fresh line, with the same indenta-tion as the now unbound value [a℄. The stru
tured display of bindings ina `sideways tree' en
odes the fa
t that both [a℄ and [a,b|T_2℄ are `
hil-dren' of [a|T_1℄. This method of showing bindings is an improvement onthe method used in some earlier versions of the TTT notation (in
ludingMulholland's) in whi
h no intermediate bindings were shown, and top-levelvariables were shown in several
alls when they uni�ed with
lause variables,rather than just been shown at the top-level, as here.?>>>1: prefix(P, [a,b℄) 1SF 2S?|1 P#[℄|2 P/[a|T_1℄#[a℄* | /[a,b|T_2℄* ?>>>3: prefix(T_1, [b℄) 1SF 2?|1 T_1#[℄* |2 T_1/[b|T_2℄F###2: fail FF###4: fail F Head of
lause 2 mat
hes
all 3,and a new binding of T 1 results,bringing about a new binding of P also.Repeated su

ess of a
lause. Several stages later,
lause 2 has su
-
eeded for
all 3, and
onsequently,
lause 2 su

eeds again for
all 1, indi-
ated by a se
ond S after the 2 in the status �eld of
all 1. At this stage,the bindings of P asso
iated with ea
h su

ess of
all 1 (on
e using
lause 1,14

and twi
e using
lause 2)
an be read o� as the `leaves' of the two `sidewaysbinding trees' for P. Thus in the tree for
lause 1, there is only one leaf(the binding [℄); whilst in the tree for
lause 2, there are two, i.e. [a℄ and[a,b℄. The
hain of bindings leading to a parti
ular binding
an be read o�by following a path to that binding from the root of the binding tree whi
h
ontains it: for example, the
hain [a|T_1℄, [a,b|T_2℄ leads to the binding[a,b℄ of P.* S<<<1: prefix(P, [a,b℄) 1SF 2SS|1 P#[℄|2 P/[a|T_1℄#[a℄| /[a,b|T_2℄/[a,b℄S<<<3: prefix(T_1, [b℄) 1SF 2S|1 T_1#[℄|2 T_1/[b|T_2℄/[b℄S<<<5: prefix(T_2, [℄) 1S|1 T_2/[℄F###2: fail FF###4: fail F
Clause 2 su

eeds for the 2nd time for
all 1.

The TTT notation has some other minor features, not illustrated here.These in
lude spe
ial notations for
lause numbering in database-
hangingprograms (those involving assert, retra
t, et
.), and for disjun
tive
alls.5 CONCLUSIONA \textual tree tra
e" (TTT) notation has been des
ribed, in whi
h theexe
ution of a Prolog goal is represented by a `sideways tree', growing right-ward and downward from a root displayed at the top left-hand margin. Thisform of tree fa
ilitates
orrelation of the tra
e with the program
lauses in-volved in its generation | parti
ularly if the latter are displayed with thesubgoals of a
lause uniformly indented with respe
t to the
lause head.Like some previous notations, the TTT notation shows
lause head mat
h-ing events, distinguishes several modes of failure, and shows `a
tual names'of variables as they appear in the program being tra
ed (distin
t variableswith the same name are distinguished by adding numeri
al suÆxes). The
hara
teristi
 features of the notation in
lude
ompa
tness, lo
alisation ofinformation pertaining to ea
h goal, non-linear expansion of the tra
e and adetailed view of variable binding and unbinding. The revised form des
ribedhere has yet to be empiri
ally tested, but takes some a

ount of Mulholland's15

(1997) empiri
ally-based
riti
isms of an earlier form of the notation. Themain improvements made are a
learer display of
all status information, ex-pli
it marking of lines where
hanges have just o

urred, and a di�erent andmore stru
tured way of showing variable bindings, whi
h in
ludes interme-diate bindings. Overall, the TTT notation illustrates an approa
h to Prologtra
ing whi
h
ombines the immediately visible display of key textual infor-mation about goals and data stru
tures, with the expli
it representation of
omputational stru
ture usually asso
iated with graphi
al formats.A
knowledgementsThe authors thank Paul Brna and Pablo Romero for useful
omments ona draft of this paper. The initial work on TTT was supported by JointResear
h Coun
il Grant no. SPG8825737. The TTT prototype was imple-mented in POPLOG.REFERENCESByrd, L. (1980). Understanding the
ontrol
ow of Prolog programs. InS-A Tarnlund (Ed)., Pro
eedings of the Logi
 Programming Workshop,Debre
en, Hungary.Clo
ksin, W.F. & Mellish, C.S. (1981). Programming in Prolog. Berlin:Springer-Verlag.Di
hev, C. & du Boulay, B. (1989). An enhan
ed tra
e tool for Prolog.Cognitive S
ien
e Resear
h Paper No.138, University of Sussex.Eisenstadt, M. (1984). A Powerful PROLOG Tra
e Pa
kage. ECAI-84:Advan
es in Arti�
ial Intelligen
e, T. O'Shea (Ed.) Amsterdam: ElsevierS
ien
e Publishers.Eisenstadt, M. & Brayshaw, M. (1988). The Transparent Prolog Ma
hine(TPM): An exe
ution model and graphi
al debugger for logi
 program-ming. Journal of Logi
 Programming, 5(4), 277{342.Eisenstadt, M., Brayshaw, M. & Paine, J. (1991). The Transparent PrologMa
hine: Visualizing Logi
 Programs. Oxford: Intelle
t Books.Hors�eld, T., Bo

a, J. & Dahmen, M. (1990). MegaLog User Guide.Mellish, C. (1984) Tea
h * Tra
er, POPLOG programming environment,University of Sussex.Mulholland, P. (1994). The e�e
t of graphi
al and textual visualisation onthe
omprehension of Prolog exe
ution by novi
es: an empiri
al analysis.16

In 6th Workshop of the Psy
hology of Programming Interest Group, 18{26,Open University.Mulholland, P. (1995). A framework for des
ribing and evaluating softwarevisualisation systems: a
ase-study in Prolog. Ph.D. Thesis, KnowledgeMedia Institute, Open University.Mulholland, P. (1997) Using a �ne-grained
omparative evaluation te
hniqueto understand and design software visualisation tools. In Wiedenbe
k, S &S
holtz, J. (Eds.), Empiri
al Studies of Programmers: Seventh Workshop,New York, ACM Press.Pain, H. & Bundy, A. (1987). What stories should we tell novi
e Prologprogrammers? In Hawley, R. (Ed.), Arti�
ial Intelligen
e ProgrammingEnvironments, Chi
hester: Ellis Horwood.Patel, M.J., du Boulay, J.B.H. & Taylor, C. (1991). E�e
t of format on infor-mation and problem solving. Pro
eedings of the 13th Annual Conferen
eof the Cognitive S
ien
e So
iety, Chi
ago, 852{856.Patel, M.J., du Boulay, J.B.H. & Taylor, C. (1994). Textual Tree (Pro-log) Tra
er: An Experimental Evaluation. In D. Gilmore, R. Winder &F. Detienne (Eds.), User-Centred Requirements for Software EngineeringEnvironments, Springer-Verlag, 127{141.Patel, M.J., du Boulay, J.B.H., & Taylor, C. (1997). Evaluation of Con-trasting Prolog Tra
e Output Formats, International Journal of Human-Computer Studies, 47, 289{322.Plummer, D. (1988). Coda: an extended debugger for Prolog. Logi
 Pro-gramming: Pro
eedings of the 5th International Conferen
e and Sympo-sium, 496{511, Cambridge, MA: MIT Press.Rajan, T. (1990). Prin
iples for the design of dynami
 tra
ing environmentsfor novi
e programmers. Instru
tional S
ien
e, 19 (4/5), 377{406.Taylor, C., du Boulay, J.B.H. & Patel, M.J. (1991). Outline proposal for aProlog \Textual Tree Tra
er" (TTT). Cognitive S
ien
e Resear
h PaperNo.177, University of Sussex.Taylor, C., du Boulay, J.B.H. & Patel, M.J. (1994). Textual tree tra
enotation for Prolog: an overview. In R. M. Bottino, P. For
heri & M. T.Mol�no (Eds.), International Conferen
e on Logi
 Programming ICLP'94:Post-Conferen
e Workshop on Logi
 Programming and Edu
ation, SantaMargherita Ligure.Taylor, J. A. (1988). Programming in Prolog: an in-depth study of the prob-lems for beginners learning to program in Prolog. D.Phil thesis, S
hoolof Cognitive and Computing S
ien
es, University of Sussex.17

