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Abstract

This paper presents a translation between the formal description technique LOTOS and
the object-oriented specification language Object-Z. The need for such a translation lies in the
use of formal methods in viewpoint specification, and in particular in the Open Distributed
Processing standard. The use of viewpoints as a set of partial interlocking specifications brings
an obligation to check the consistency of these partial specifications, and to do so we need to
relate specifications written in differing languages. The work presented here aims to support
the consistency checking of viewpoints written using formal methods by defining a translation
from LOTOS to Object-Z. A LOTOS specification describes both an ADT component and
a behavioural model, the former is translated into the Z type system, and the behavioural
specification is translated into a collection of Object-Z classes where we relate LOTOS actions
to operations in the Object-Z specification. A case study is presented which illustrates the
translation and consistency checking techniques discussed in the paper.

Key words: Distributed Systems; Open Distributed Processing; Formal methods (Object-Z,
LOTOS); Viewpoints; Consistency; Partial Specification.

1 Introduction

In this paper we define a translation between the formal description technique LOTOS [6] and the
object-oriented specification language Object-Z [15]. The motivation for deriving such a translation
arises from the use of formal methods in viewpoint specification and distributed systems design.

Specification by viewpoints [17] is advocated as a structuring method for the description of complex
systems. Each viewpoint represents one perspective of the envisaged system, and thus viewpoints
provide a true separation of concerns. In addition, each viewpoint can use a specification language
which is dedicated to its particular perspective - acknowledging the generally held belief that no
(formal) method applies equally well to all domains of application.

Our motivation for studying viewpoint specification derives from its use in distributed systems
design, and in particular in the Open Distributed Processing (ODP) standard [22, 21, 1]. There are
five viewpoints, with fixed pre-determined roles, in ODP: enterprise, information, computational,
engineering and technology. Requirements and specifications of an ODP system can be made
from any of these viewpoints. For example, the computational viewpoint is concerned with the
algorithms and data flow of the distributed system function. It represents the system and its
environment in terms of objects which interact by transfer of information via interfaces. The
engineering viewpoint, on the other hand, is more concerned with the distribution mechanisms
and the provision of the various transparencies needed to support distribution.



Inherent in any viewpoint approach is the need to check or manage the consistency of viewpoints
and to show that the different specifications do not impose contradictory requirements [18]. The
mechanisms needed to do this depend on the viewpoint languages used, and we have a particular
interest in the use of formal techniques because the ODP reference model places an emphasis on
the use of formalism. The reference model includes an architectural semantics which describes the
application of formal methods to the specification of ODP systems. Of the available notations,
state-based languages such as Z are likely to be used for at least the information, and possibly
other, viewpoints. Because ODP has adopted an object-based approach to specifying distributed
systems, the object-oriented variant of Z, Object-Z, has been advocated as a language that will
meet many of the requirements of ODP viewpoint specification [15, 8]. For the computational and
engineering viewpoints, LOTOS is a strong candidate in addition to other, less formal, notations.

Because viewpoints overlap in the parts of the system that they describe, in order to check con-
sistency the relationship between the viewpoints needs to be documented. In simple examples
these parts will be linked implicitly by having the same name and type in both viewpoints. In
general, however, we may need more complicated descriptions for relating common aspects of the
viewpoints, such descriptions are called correspondences in ODP [22]. A collection of viewpoints
can then be defined to be consistent if and only if a common refinement can be found (i.e. a
specification that refines all the original viewpoints) with respect to the correspondences between
the viewpoints.

The strategy we envisage to check the consistency of one ODP viewpoint written in Object-Z
with another written in LOTOS is as follows. First translate the LOTOS specification to an
observationally equivalent one in Object-Z, then use the mechanisms defined in [4, 8] to check the
consistency of the two viewpoints now both expressed in Object-Z. These mechanisms attempt to
find a common refinement of the two viewpoints - if one exists the viewpoints are consistent !.

The aim of the work described here is to support such a consistency checking mechanism by
providing a translation of LOTOS into Object-Z. The background to the problems of consistency
checking in ODP, and the motivation for considering these two particular languages is discussed
in Section 2. In Section 3 we provide a brief introduction to the languages Object-Z and LOTOS.
Section 4 then defines and illustrates the translation between the languages. The ADT component
of a LOTOS specification is translated directly into the Z type system. To translate the behavioural
aspect of a LOTOS specification, we map each LOTOS process to an Object-Z class. Adopting this
approach allows a natural mapping to be identified between many of the behavioural constructs in
the two languages, for example, we find that process instantiation in LOTOS corresponds naturally
to object instantiation in Object-Z. Section 5 discusses the consistency checking techniques as
applied to the case study. Finally, we conclude in Section 6.

2 Background

The objective of ODP is to enable the construction of distributed systems in a multi-vendor
environment through the provision of a general architectural framework that such systems must
conform to. The initiative which lead to the standardization of Open Distributed Processing came
from a growing awareness that many of the communications-oriented standardization activities
aimed at the provision of Open Systems Interconnection required a broader framework than was
provided by the OSI Reference Model. A simple interconnection model is not powerful enough for
the construction of complex distributed applications. What is needed is a model which can combine
the description of system structure with statement of system-wide objectives and constraints, so
that the adequacy of the solutions proposed can be judged against the system’s original purpose.

n fact these mechanisms are defined for Z as opposed to Object-Z. Section 5 discusses why these techniques
are also relevant to Object-Z.



The ODP standardization initiative is a response to these issues, and provides a framework for
the specification and standardisation of distributed systems.

The complete specification of any non-trivial distributed system involves a very large amount of
information. Attempting to capture all aspects of the design in a single description is generally
unworkable. The use of multiple views of a system is one method of achieving a suitable decom-
position of a complex design into a manageable form. The ODP Reference Model (RM-ODP) has
adopted such a mechanism, and has identified a number of viewpoints. The viewpoints enable
different participants to observe a system from a suitable perspective and at a suitable level of
abstraction [25, 1]. Requirements and specifications of an ODP system can be made from any of
these viewpoints.

The set of viewpoints has been chosen so that the resultant specifications together address the
complete set of concerns involved in providing a specification of the system. However, as with other
viewpoint models [17, 18], the ODP viewpoints are not independent. They are each partial views
of the complete system specification. Some items can, therefore, occur in more than one viewpoint,
and there are a set of consistency constraints arising from the correspondences between terms in
the viewpoint languages and the statements relating the various terms within each language. The
checking of such consistency is an important part of demonstrating the correctness of the full set
of specifications.

Although ODP is a framework for standardization, rather than a design methodology, imple-
mentation of standards requires precise and unambiguous interpretations of specifications and
standards. For this reason formal methods play an important role within ODP, indeed the refer-
ence model states that The work of the RM-ODP is based on the use, as far as possible, of formal
description techniques to give it a clear and unambiguous interpretation [22]. In support of this,
the architectural semantics (given in Part 4 of the reference model) provides an interpretation of
ODP modelling concepts which enables viewpoints to be written in a number of formal description
techniques (FDTs).

The diversity inherent in a complex framework such as ODP means that a number of different
(formal) techniques are applicable to differing aspects of the model, and the choice of which lan-
guage(s) to use in which viewpoint is a central issue. The available FDTs also offer significant
diversity. For example, LOTOS, Estelle [20] and SDL [9] are targeted at issues of explicit concur-
rency and interaction (specifying ordering and synchronisation of abstract events). On this basis
LOTOS is a strong contender for use in the computational viewpoint. In contrast, model based
techniques such as Object-Z, Z [30] and VDM [23] describe specifications in terms of data state
change, and are particularly suited to use in the enterprise and information viewpoints. In addi-
tion, the approach taken in the reference model is object-based, and the set of concepts defined
constitute a precise basic object model, including the necessary definitions to construct type and
class structures. This has led to interest in the use of object-based specification languages for use
within ODP viewpoints, and Object-Z is a leading candidate for use in the information viewpoint.
However, it should be noted that none of these FDTs fully address the specification requirements
of modern distributed processing and Open Distributed Processing in particular [8]. Therefore to
use FDTs effectively within ODP, specific languages are used within particular viewpoints. For
the potential of ODP to be fully exploited it is therefore necessary to provide a mechanism to
support consistency checking across viewpoints written in those FDTs.

The use of multiple viewpoints is not unique to ODP, and different approaches use different
mechanisms by which to assess consistency. Here we take a constructive view of consistency that
is oriented towards system development and define a collection of viewpoints to be consistent if
and only if a common refinement can be found (i.e. a specification that refines all the original
viewpoints) with respect to the correspondences between the viewpoints. The least such common
refinement of two viewpoints is known as their unification. Such a unification of two viewpoints
has all the requirements imposed by both viewpoints, however, it imposes no extra requirements



besides those contained in the first two viewpoints (or else consistency checking with yet another
viewpoint might unnecessarily fail). Because of this property, finding unifications for pairs of
viewpoints is a constructive way of establishing consistency.

Elsewhere (e.g. [4, 5, 8]) we have described how a unification of two viewpoints can be constructed
when they have been specified in Z. A particularly important aspect of this work was to locate
two conditions which were sufficient to ensure consistency of the two Z viewpoints, and therefore
to allow automation of as much as possible of the unification process. For that reason we have
developed a range of Z unification tools together with theorem proving support [2]. The consistency
conditions can be automatically generated from a Z unification tool and fed into a theorem prover.
Given that the complexity and structure of the consistency conditions are almost exclusively
determined by the predicates that occur in the viewpoint specifications [5], the existing methods
for automated theorem proving in Z (e.g. [24, 7]) can be used to discharge these consistency
conditions. The extension of this work to object based languages has been considered in [14],
which discusses consistency checking in object oriented variants of Z.

The work reported in this paper provides a translation between LOTOS and Object-Z, and by
combining this translation mechanism with the above Z unification techniques we aim to support
the consistency checking of one ODP viewpoint written in Object-Z with another written in
LOTOS as follows. First translate the LOTOS specification to an observationally equivalent one
in Object-Z, then check the consistency of the two viewpoints now both expressed in the same
language. These mechanisms attempt to find a common refinement of the two viewpoints - if one
exists the original viewpoints were consistent. In Section 4 we will illustrate this approach through
a simple case study.

Although the motivation for this work arises from the use of viewpoints in the ODP reference
model, it should be noted that both the translation algorithm and consistency checking techniques
are generic and that they can be applied in an arbitrary viewpoint framework [3]. Indeed it should
be stressed that our motivation in this paper is to present our work on translation, and therefore
the partial specifications used in our running example are not ODP viewpoints but small fragments
of behaviour which serve to illustrate the translation process. Elsewhere we have considered issues
specifically arising from ODP [4, 5].

3 The Languages Object-Z and LOTOS

3.1 Object-Z

Object-Z is an object-oriented extension of the specification language Z, which has been developed
over a number of years and is perhaps the most mature of all the proposals to extend Z in an
object-oriented fashion. It has been advocated as one of the languages suitable for use in the ODP
viewpoints, particularly in respect of the information viewpoint of the reference model.

Object-Z uses a class schema to encapsulate a state schema together with the operations acting
upon that state. It is represented as a named box with zero or more generic parameters. The class
schema may include local type or constant definitions, at most one state schema and initial state
schema together with zero or more operation schemas. A class may also inherit a number of other
classes. The local type and constant definitions of an inherited class are available in the inheriting
class. The schemas of an inherited class are either implicitly available or implicitly conjoined with
identical named schemas of the inheriting class.

A simple example of an Object-Z class is given by the following:



M

count, valuel, value2 : N

— INIT
A(count)
count’' =0
—a
A(count, valuel)
input? : N

count = 0 A count’ =1
valuel' = input?

b
A(count, value2)
input? : N

count =1 A count’ =2
value2' = input?

_c
output! : N
count = 2

output! = maz(valuel, value2)

The variables count, valuel and value2 declared in the (unnamed) state schema are local to the
class. The initial state schema INIT defines the initial values of the variables in the state schema.
The class specified above has three operations: a, b and ¢. The operations in this class allow two
integers to be inserted (using ¢ and b), and the operation ¢ will output the maximum of those
values. Names ending in a ? denote input, and those ending in a ! denote output. Primes (') are
used to denote the value of a state variable after an operation has occurred.

Each operation has a A-list which contains those state variables which may change when the
operation is applied to an object of that class. An operation does not change the state variables
that are not listed in its A-list. Hence the operation a implicitly contains a predicate value2 =
value2'. The preconditions of the operations force them to be invoked in a particular order.
The interpretation of operations in an Object-Z class differs from that in Z, in that an Object-Z
operation cannot occur outside its precondition®. This interpretation of operation preconditions
is crucial for the correctness of the translation defined in this paper.

The behaviour of the class M is best illustrated by looking at a simple transition system repre-
sentation of it, see figure 1.

A class can also include instances, i.e. objects, of other classes as state variables. This allows the
concise specification of the interaction between components of a system. For example,

2Tn 7, an operation is undefined (but enabled) outside its precondition.
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Figure 1: The behaviour of the class M

_ 0OZMaz3
AB: M

__INIT
A.INIT, B.INIT

inl = A.a
in2=A.b
in3 = B.b
out = B.c
i = (A.c || B.a[output?/input?])

specifies a class with two state variables, A and B, which are objects of the class M. Initially
the objects are in their initial state. The objects have operations applied to them using the dot
notation, this notation is made precise in the semantics defined in [27]. Informally we can view
references to objects as follows. If C' is a class the the declaration ¢ : C' declares ¢ to be a variable
whose value is a reference to an object of class C. Then c.INIT is a predicate which denotes
whether the object ¢ conforms to C’s initial state schema. The operation c.Op transforms the
object referenced by ¢ according to the definition of the operation Op defined in the class C.

The operation i represents an internal operation, i.e. one which can be invoked by the object
whenever the precondition of ¢ holds, but which cannot be controlled externally®. The semantics
of internal operations is identical to observable operations, however, weak bisimulation equivalences
[26] defined over the semantics will treat internal operations differently to observable operations.

Object-Z provides additional schema operators to those defined in Z. The parallel operator ||
enables communication between objects to be specified, it behaves like conjunction but also equates
inputs and outputs with the same basename [15]. To define the operator, meta-functions - and
B are used which return the basenames (i.e. apart from the ? and!) of the inputs and outputs
respectively. The operation Op;||Ops is then defined as*

[0p1][y1!/y1?7---,ym!/ym?] A [0])2][:171'/:1717,,517”'/:1}”?]
where 8i1(Op1) N B2(0p2) = {x1,...,2,} and B2(Op1) N Bi(Op2) = {y1,---, Ym}-

For example, in the synchronisation (A.c || B.a[output?/input?]) we have relabelled input? to
output? in B.a. The effect of the parallel composition then specifies that communication takes
place between the two objects A and B.

The notation Op; e Ops denotes enrichment, in that the schema text of Op; enriches the environ-
ment in which Ops is interpreted. That is Op, e Ops = [Opy; d | p] when Opy = [d | p] and the

3Not all versions of Object-Z define and use internal operations in the same way, here we use a distinguishing
name to denote such operations.

4In this paper we extend the definition of || with the convention that, in the presence of any type clashes of
common variables, Op1||Op2 is defined to have predicate false.



free variables of d do not include any variables declared in Op; .

3.2 LOTOS

A LOTOS [6] specification of a system defines the temporal relationships among the interactions
that constitute the externally observable behaviour of the system. A specification consists of two
parts: the behaviour expression describes the process behaviour and its interaction with the envi-
ronment whilst the abstract data type (ADT) describes the data structures and value expressions
used within the behaviour expression. Basic LOTOS refers to the subset of (full) LOTOS that
considers only the temporal aspects of behaviour without value passing or the ADT component.

A simple example of a LOTOS specification is given by the following:

Specification Max3 [inl, in2, in3, out] : noexit
type natural is
sorts nat
opuns 0 :— nat
succ : nat — nat
largest : nat, nat — nat

eqns
forall z,y : nat
ofsort nat
largest(0, z) = =;
largest(z,y) = largest(y, );
largest(succe(z), succ(y)) = succ(largest(z,y));
endtype
behaviour
hide mid in (Max2[inl, in2, mid] | [mid] | Max2[mid, in3, out])
where

process Max2[a, b, c] : noexit :=
a?z : nat; b?y : nat; cllargest(z,y); stop
[
b7y : nat; a’z : nat; cllargest(z,y); stop
endproc
endspec

This specification defines a four gate process that accepts three natural numbers at three input
gates (in any order), and then offers the largest of them at an output gate. A specification or
process behaviour expression is built by applying operators to other behaviour expressions. A
behaviour expression may also include instantiations of other processes (e.g. Max2), whose def-
initions are provided in the where clause of the process definition. The terminals of a behaviour
expression are the occurrences of the processes stop, exit or process instantiations (including re-
cursion) within that expression.

The (atomic) observable interactions that a process may engage in are called the events or actions
of that process. An event is thought of as occurring at an interaction point, or gate, and in the
absence of data passing, the event and gate names coincide. In the above specification the system
may interact with its environment via gates inl, in2, in83, out. Since mid is hidden it does not
appear in the gate list. Hidden events give rise to unobservable actions (denoted 7). Furthermore,
the unobservable (or internal) action i is also user-definable, in that it can appear directly in a
specification, and is used to model the potential non-determinism of a given system. There also



exists a special action §, which is not user-definable, but whose occurrence indicates the successful
termination of a process (and can be used to enable a subsequent process).

The basic data type specification, as illustrated above, consists of a signature and, possibly, a
list of equations. The equations used here define the natural numbers and the function largest is
used to return the maximum of two integer values. A labelled transition system can be used to
illustrate the behaviour (see figure 2) of Maz2.

Figure 2: The behaviour of the process Maz2

The translation we define in this paper is verified against a common semantic model of the two
languages. This model is based upon the semantics for Object-Z described in [27], which effectively
defines a state transition system for each Object-Z specification. By embedding the standard
labelled transition system semantics for LOTOS into it in an obvious manner we can use it as a
common semantic basis for the two languages. With such a common semantic model the translation
can be verified correct by showing that a LOTOS specification and its Object-Z translation are
bisimular as labelled transition systems. The details of this verification are provided in [11].

4 The Translation from LOTOS to Object-Z

In this section we define the translation from LOTOS to Object-Z. The ADT component of
a LOTOS specification is translated directly into the Z type system (see Section 4.2 below).
To translate the behavioural aspect of a LOTOS specification, we note that there is a strong
correlation between classes in object-oriented languages and processes in concurrent systems [32,
19, 27]. We use this correlation as the basis for the translation of the behaviour (which is described
in Sections 4.1 and 4.3 below), and map a LOTOS process to an Object-Z class. Adopting this
approach allows a natural mapping to be identified between many of the behavioural constructs in
the two languages, for example, we find that process instantiation in LOTOS corresponds naturally
to object instantiation in Object-Z.

To map a LOTOS process to an Object-Z class we will relate their observable atomic actions, i.e.
events in LOTOS and operations in Object-Z. Therefore the translation will map each LOTOS
action into an equivalent Object-Z operation schema. For example, a LOTOS specification con-
taining the behaviour in?z : nat; out!(z + 2); stop will be translated into an Object-Z class which
contains operation schemas with names in and out. The Object-Z operation schemas have appro-
priate inputs and outputs to perform the value passing defined in the LOTOS specification. In
addition, each operation schema includes a predicate to ensure that it is applicable in accordance
with the temporal behaviour of the LOTOS specification.

We begin the translation by illustrating how specifications are turned into a number of Object-Z
classes, each one representing a behaviour expression of the LOTOS specification. Section 4.3
contains the heart of the translation where the translation of a LOTOS behaviour expression is
defined. We illustrate the translation algorithm by translating the LOTOS specification Maz3
given in Section 3.2. This will then be checked for consistency with the Object-Z specification



described in Section 3.1.

4.1 Specifications

Consider the LOTOS specification Maz8 which contains a type definition and a behaviour:

Specification Max3 [inl, in2, in3, out] : noexit

type
type definition
endtype
behaviour
hide mid in (Max2[inl, in2, mid] | [mid] | Max2[mid, in3, out])
where
process Max2[a, b, ¢] : noexit :=
a?z : nat; b?y : nat; cllargest(z,y); stop
[
b7y : nat; a’z : nat; cllargest(z,y); stop
endproc
endspec

This is translated to an Object-Z specification consisting of a translation of the type definition
together with a number of Object-Z classes representing the behaviour and process definitions.

One class will represent the behaviour of Maz2, and another class will represent the overall be-
haviour hide mid in (Max2[inl,in2, mid] | [mid] | Max2[mid,in3, out]). This latter class will
contain objects of type Maz2 which will correspond to the process instantiations in the behaviour.
We begin, however, by translating the data types.

4.2 Translation of Data Types

The type definition in the specification is translated directly into the Object-Z type system. LO-
TOS data types are specified using the language for abstract data types ACT ONE [16]. ACT
ONE is an algebraic specification method to write parameterized as well as unparameterized ADT
specifications.

The type specification in Maz3 illustrates the most basic form of data type specification in LOTOS
consists of a signature and, optionally, a list of equations. Its translation will introduce a given
set to represent the sorts (here nat), together with an axiomatic definition which introduces the
operations constrained by the behaviour of the equations®. Thus we translate the above to:

[nat)

58trictly speaking we would also have to include predicates ensuring that we restrict the models of the 7 axiomatic
definition to the initial ones only. An alternative approach would be to code the ADT definitions directly as Z free
types, which by definition are restricted to the initial models. So in this example the first two definitions would be
replaced by the free type declaration

nat := zero | succ(nat)

together with an axiomatic definition for +.



0: nat — nat
succ : nat — nat
largest : nat X nat — nat

Vz,y:nate
largest(0,z) =
largest(z,y) = largest(y, x)
largest(suce(z), suce(y)) = suce(largest(z, y))

Notice that in the translation of nullary operations (ie constants), we remove the arrow, as in
— nat. The commas in an n-ary operation are replaced by X in the Z translation. The ofsort
nat is superfluous in the Z specification.

Any realistic consistency checking toolbox will also contain direct translations from axiomatic
descriptions of standard structured types (e.g. sets and sequences) into their Z mathematical
toolbox (cf. [30]) equivalents. We will assume that this translation has indeed been made in this
example (and hence identify nat and INV).

LOTOS also allows extensions and combinations of type specification by importing a reference to
a type definition and possibly enriching it with additional sorts, operations and equations. The
translation of such a type definition in Z consists of the translation of the imported definition
together with a translation of the enriching sorts, operations and equations as given sets together
with an axiomatic definition. In LOTOS, parameterized data type specifications represent generic
specifications which can be instantiated later. Such a parameterized type is translated to a generic
data type in Z. It is not possible to model type renaming within the Z type system at this level
of abstraction. However, a translation of a LOTOS specification using type renaming can be
found by first re-writing the LOTOS specification into one where the renamings have already been
carried out and then translating into Z.

4.3 Process definitions and behaviour expressions

To translate a process definition we first translate its behaviour expression into an Object-Z class
by successively applying the rules given below, working bottom up beginning with the LOTOS
terminals, until each operator/terminal has been translated. The variables introduced in a class’
state schemas are assumed to be unique with respect to other state variables introduced during
the translation of a process. We also assume the existence of a boolean type bool.

4.3.1 Translating the process Maz2

To translate the behaviour of Maz2 we first note that the terminals are the two instances of stop.
After translation of the terminals, the rules for action prefix will be applied, and finally the rule
for choice is used. We begin with the branch a?z : nat; b?y : nat; cllargest(z,y); stop. The
translation rule for stop is the following:

1. Inaction. B = stop translates to the Object-Z class

10



s : bool

__INIT
A(s)

That is the translation maps a LOTOS process that cannot engage in any action to an Object-Z
class with no operations. Both will therefore deadlock. O

Continuing with the behaviour under consideration we have to translate cllargest(z, y); stop using
the rule for action prefix together with the translation of stop as the simple class given above. The
action prefix rule is the following;:

2. Action prefix. Let Bla, Opy,...,0p,] =a 7z : T |\E [pred]; P. The occurrence of pred here
is to act as a selection predicate, i.e., the action is offered precisely when pred evaluates to true.
Then (assuming P has already been translated into an Object-Z class) B translates to the class

__B

P.STATE
t : bool
z: T

__INIT
A(t)

t' = true A P.STopP

a = ([A(t,z),ch?: Tycho!: U |t At Achy! = EAz' = chi? A pred[s'/z]]§ P.INIT)V P.a
Opy = P.Op

Op, = P.Op,,

where P.STATE denotes the state schema of the class P, and U = type(E), and B.STor is a
schema that ensures no operation in B will be enabled.

The temporal ordering defined in the LOTOS behaviour offers action a followed by the ordering
defined by P. The translation simulates the same behaviour by using a boolean state variable,
t say, and the Object-Z translation of P. Initially, ¢ is true (so the precondition of a holds) but
every operation in P is disabled (through P.STop). After a occurs that portion of behaviour is
disabled (—¢'), but operations in P are now enabled (P.INIT holds). All operations in the class P
are promoted to the class B (Op; = P.Op;) to make them available. In addition, P may contain
further occurrences of the operation a, these should be available once the initial a is performed,
hence we disjoin P.a to the definition of the operation a.

The LOTOS value and variable declarations are simulated by the input, output and state variables
in the Object-Z class. The rule presented here generalises to an arbitrary number of variable and
value declarations in the obvious manner. |

In our example the action is c!largest(z, y), with this action prefix and using the current translation
of stop the rule produces the following Object-Z fragment.

11



So, 83 : bool

__INIT
A(SQ, 53)

sy A —sh

—C
ch! : IN
A(SQ, 53)

So AT1sh Aish
ch! = largest(z, y)

It is easy to see that this Object-Z class has the same behaviour as cllargest(z, y); stop. Notice
that the specification contains undeclared variables (z,y here) until the complete behaviour has
been translated, eventually the LOTOS variable declarations will introduce state variables into
the class.

The subsequent two applications of action prefix are similar (but this time with inputs) and the
result is the following:

z,y: IN
S0, 81, 82, 83 : bool

__INIT
A(S[), 51, 52, 33)

so AN T(s) VsV osh)

a = [A(, 50, 51, 82, 83), ch? : N |
So NSy AN(sy VsV sh) AN a' = ch?]
b = [A(y750a31a32a33)7 ch? : IN |
st Ass A8y Vst Vst) Ay = ch?]
¢ = [ch! : N, A(s2, 83) | 52 A =184 A =185 A ch! = largest(z, y)]

The translation of the other branch b?y : nat; a?z : nat; cllargest(z,y); stop is similar and
produces another class with three operations a, b, ¢, but this time b will be enabled initially.

We now apply the rule for choice which, in general, is given by

3. Choice. B[Opy, ..., Op,] = P[]Q translates to the Object-Z class

12



_ B

P.STATE
Q.STATE

__INIT
P.INIT
Q.INIT

Op1 = (P.Op1 A Q.SToP) V (Q.Opy A P.STOP)

Op,, = (P.Op, A Q.SToP) V (Q.Op, A P.STOP)

The translation of choice makes a copy of both P and @) available in the Object-Z class. Initially,
all operations from P and @ are available since both P.INIT and Q.INIT hold. However, once an
operation in one branch of the choice is invoked (P.Op; say), operations from the other branch
will be disabled (...A Q.SToP). This ensures that initially a choice is available between operations
from P and @, but that once that choice is resolved operations from only one class are available.
(We have adopted the obvious convention in this paper that if Op is not in the class @ then Q.Op
is taken to be false.) This successfully mimics the choice specified in the LOTOS behaviour. O

Our example contains a choice between a?z : nat; b7y : nat; cllargest(z,y); stop and b7y :
nat; a?z : nat; cllargest(z,y); stop. Each branch has been translated into an Object-Z class,
the first is given above, the second is similar (except uses a different boolean variable, ¢, say).
Applying the choice rule will combine the two classes, so that initially the first operation from
each class is enabled, but subsequently only operations from one of the branches will be enabled.
The actual translation is mechanical, and after some simplification it results in the following

___Maz?2

z,y: IN
S:SO|81|82|83|t1|t2|t3

__INIT
(s)

s’ = s

>

[A(z,8),ch? N | (s =s0As' =8, Vs=1t As' =) Az’ = ch?]
[A(y,s),ch? N | (s=s1As'=sVs=sAs =t)Ay = ch?]
[A(s),ch! : N | (s =85 As' =53V s =1 As' =t3) A ch! = largest(z, y)]

SIS
1 1

This completes the translation of the process Maz2.

4.3.2 Translating the process Maz3

To translate the behaviour of Maz3, we first note that it contains two instantiations of the process
Maz2, whose definition is given in the where clause of Maz3. The Object-Z translation will thus
contain the definition of the class Maxz2 followed by that of Maz3. The terminals in the behaviour

hide mid in (Max2[inl, in2, mid] | [mid] | Max2[mid, in3, out])

are the two process instantiations, and we use the following rule.
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4. Instantiation. Let Blai,...,a,] = Plai,...,a,](E1,...,Ey), where Plgi,...,gn](z
ty--oyTm ¢ ty) is defined elsewhere. This translates to the Object-Z class (where the identi-
fier A is unique in B)

_ B

A:P
A$1=E1/\/\A$m=Em

__INIT
A.INIT

a1 = Agl

an = A.gn

Process instantiation therefore has a natural counterpart in Object-Z as object instantiation.
The identifier used is chosen to be unique because for each process instantiation a new object
is instantiated. The substitution of actual gate names for formal gate names is achieved in the
translation by operation renaming and promotion (a; = A.g;). The replacement of the parameter
list 21, ..., 2, by value expressions Fi, ..., E,, is represented as a predicate equating the variables

in the object instantiation to its value (A.z; = E; A ...). O

In our example, we have two process instantiations each with a different gate set. Each pro-
cess instantiation is translated to an object instantiation and gate sets become operation name
relabellings upon promotion (e.g. inl = A.a ). Thus the process instantiations become:

A: Max2 B : Maz?2
_INIT _INIT
A.INIT B.INIT
ml = A.a mid = B.a
m2 = A.b m3 = B.b
mid = A.c out = B.c

Subsequently we need to translate the parallel composition (Max2[inl, in2, mid] | [mid] | Max2[mid, in3, out])
using the following.

5. Parallel composition. B[Opy,...,Op,] = P | [G] | Q translates to the Object-Z class

14



_ B

P.STATE
Q.STATE

__INIT
P.INIT
Q.INIT

0p1 = (P.0p1 \Y Q.Opl)

where an operation schema definition appears for each operation Op in the gate list of B, and
takes the form of that of Op; if Op ¢ G U{d}, and takes the form of that of Op, if Op € G U {d}.

The translation of the parallel composition B[...] = P | [G] | @ defines an Object-Z class with
operations whose behaviour depends on whether the associated action is in G. If it is not, no
synchronisation occurs, and therefore the translation offers a straight choice between, say, P.Op;
and @Q.Op;. If it is in G, then the operation can occur precisely when it occurs in both P and
Q. This is achieved by using the Object-Z parallel operator between the two operations, e.g.,
P.Op2 || Q.Op2. The full LOTOS value passing synchronisation aspects are also preserved with
this operator. O

In our example the only synchronisation is on gate mid. All other operations are simply included
in the translated Object-Z class because they occur in just one of the original classes. The syn-
chronisation of mid is defined as mid = (A.c || B.a). Finally, mid is hidden, and we use the
rule.

6. Hiding. B[Ops,..., Op,] =hide g1, ..., g, in P translates to the Object-Z class

_ B

P.STATE

__INIT
P.INIT

i = (P.g1) \ (inouts g1) V...V (P.gp) \ (inouts g,)
Op = P.Op

where an operation schema definition of the form Op = P.Op appears for each operation Op €
{Op1,...,0pm}\{91,--.,9n}, and (inouts g;) is the list of all input and output parameters of the
schema g;.

Hiding in the context of LOTOS transforms the hidden observable actions of a process into unob-
servable actions. In the presence of value passing the data is also hidden. In the Object-Z class
the hiding of actions is represented by the change of operation name (i = (P.g;)...), and data
hiding by hiding both the inputs and outputs (... \ (inouts ¢1)). O

Thus the hiding rule in this context causes mid to be renamed with the distinguished operation
name i. Hence we finally derive the class representing Maz3 as specified below.
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_ Max3

A,B: Maz2

__INIT
A.INIT, B.INIT

inl=A.a
n2=A4.b
n3 = B.b
out = B.c
i=(A.c|| B.a)

The remaining rules for LOTOS constructs which we have not considered here are given in full
in [11]. Although the general formulation of some of the rules may seem complex at first, the
translation process can be automated. Indeed, heuristics can be built for commonly occuring
fragments of behaviour (e.g. a sequence of action prefixes as in the example above) so that little
simplification is in fact needed.

5 Checking the viewpoints for Consistency

Although the main emphasis of this paper is an illustration of the translation mechanism, we
complete the picture in this section by showing how we can check viewpoints for consistency once
they have been translated into the same language.

The translated LOTOS specification can be compared with the Object-Z specifications of M and
OZMaz3 given in Section 3.1, and we apply the consistency checking techniques as described
in [4, 5]. To show that two viewpoint specifications are consistent we need to show that there
exists a common refinement of the two specifications with respect to the correspondences between
the viewpoints, where the correspondences document the overlap or commonality between the
viewpoints. We begin by identifying the correspondences between the viewpoints.

At an object level we can identify certain classes. The class Maz3 and OZMaz3 will be implemented
as one component in the final system, and we can identify operations with identical names (e.g.,
the operations inl in the two viewpoints represent partial specifications of the same event). We can
also identify M and Maz2 as representing the same class. Finally, it is clear that count in class M
represents information that is also represented by the state variable s in the class Maxz2. However,
unlike the other correspondences this is not a matter of simply identifying these components, and
we note that the relation R C N x {so, 81, 82, 3, t1, ta, 3} which relates their values is given by

{(Oa 30)7 (L Sl)a (25 52)a (25 53)}'

Having identified the relationship between the two viewpoints we now construct a least refined
specification of the two viewpoints, i.e., a specification which is a refinement of both original
viewpoints. This unification we build will depend, therefore, on the particular refinement relation
used to construct it. Here we will use the standard Z refinement relation for state-based systems
as described in [30, 31].

The standard Z refinement relation allows an operations precondition to be weakened upon re-
finement and for the operations postcondition to be strengthened. In Object-Z the precondition
of an operation represents its guard, whereas in Z an operation is enabled but undefined outside
its precondition. It is natural, therefore, for refinement of a Z operation to allow weakening of
its precondition, but usually this is not allowed for a refinement of an Object-Z operation, i.e.
the precondition of a refined operation in Object-Z must be identical to the original precondition.
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However, in the context of partial specifications an operation represents only a partial descrip-
tion of its full specification, therefore it is natural (and indeed desirable) to allow a weakening
of preconditions upon refinement when constructing the unification of two operations. We will
therefore use the standard Z refinement relation which allows weakening of preconditions in the
construction of unifications in Object-Z.

Given that the structure of Maz3 and OZMax3 are identical, it follows that we just have to
consider whether we can find a common refinement of M and Maz2; if we can the two viewpoints
overall will be consistent 8. The unification of M and Maz2 is constructed in two phases. In the
first phase, a unified state schema for the two viewpoints has to be constructed, and this relies on
the correspondences between the two viewpoints. The viewpoint operations are then adapted to
operate on this unified state. At this stage we have to check that a condition called state consistency
is satisfied. In the second phase, called operation unification, pairs of adapted operations from the
viewpoints which are linked by a correspondence have to be combined into single operations on
the unified state. This also involves a consistency condition (operation consistency) which ensures
that the unified operation is a refinement of the viewpoint operations.

We build the unified state space using a totalisation of the relation R (for details of the totalisation
of a relation see [4]), we then adapt the operations of each viewpoint to make them operate on
the unified state.

An algorithm described in [4, 5] calculates the adaptions of each specification. In our example the
unified state space will be:

z,y: IN
SCSO|51|82|53|t1|t2|t3

Because this is the same state space as Maxz2, the adapted Maz2 is unchanged from the original.
However, because of how the correspondence relation links up values in the two state spaces,
count is linked to both s; and s3 when count has the value 2. On the adapted state space it must
therefore still be possible to apply ¢ an arbitrary number of times when it is in either of these
states. The adapted M is thus given by

6i.e. we use a refinement which is monotonic
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___adaptedM

valuel, value2 : N
S:SO|81|82|83

__INIT
A(s)

s’ = s

—a
A(s, valuel)
input? : N

s=sANs =8
valuel' = input?

b
A(s, value2)
input? : N

s=85 As = s
value2' = input?

_ec
A(s)
output! : N

s,8" € {s2,83}
output! = maz(valuel, value2)

Figure 3 shows the state transition diagrams for the original M, its adapted version, that for Maz?2
and the unification of M with Maz2. Given the correspondence relation used it is easily seen that
the adapted version of M and its original specification represent the same behaviour, i.e. after an
a and a b operation the operation ¢ can be performed any number of times.

a a y X a b

Y

b b a b a

(03 c ¢ ¢ ¢
> .

M adapted M Max2 Unification of Max2 and M

o

(¢
(¢]

Figure 3: Unifying M and Max2

We can now attempt to unify the operations. The unification of two viewpoint operations should
exhibit possible behaviour of each of the viewpoint operations in each situation where the viewpoint

18



operation was applicable. This requirement can be formalised using pre- and postconditions.
The unified operation will be applicable whenever one of the viewpoint operations is, i.e. its
precondition is the disjunction of the viewpoint operation preconditions. Moreover, when the
unified operation is applied to a state satisfying one particular precondition, a state should result
that satisfies the corresponding postcondition. The unification of operations A and B is given by

__U(A,B)
Decls

pre AV pre B
pre A = post A
pre B = post B

where Decls is the declarations of A and B merged together. Performing this unification for each
of the operations produces the following specification

— Unification(M , Maz2)

valuel, value2 : N
S:SO|81|82|83|t1|t2|t3

__INIT
A(s)

s’ = s

—a
A(s, valuel)
input? : N

(s=sANs'=sVs=t As' =1)
valuel' = input?

b
A(s, value2)
input? : N

(s=s1ANs'=%Vs=sAs' =t)
value2' = input?

_c
A(s)
output! : N

(s=9Ns'=353Vs=5As=%uVs=s=s55Vs=tkAs =1)
output! = maz(valuel, value2)

Figure 3 illustrates the behaviour of the unification. To illustrate what has happened consider the
occurrence of the operation ¢ in the left hand branch. This is a refinement of the ¢ operation from
the left hand branch of Maz2 and the ¢ from the adapted M. To see this consider the state s5. In
M, ¢ will transform this state to either s3 or return to s>, the choice is non-deterministic. However,
in Maz?2 there is just one possible behaviour. A refinement can’t introduce any non-determinism,
it can only reduce non-determinism, therefore only one behaviour is allowed in the unification,

that which moves from s to s3. This conforms with Maxz2 and reduces the non-determinism in
M.
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Now consider the state s3. In this state the operation ¢ in Maz2 was not enabled, whereas in M ¢
will either return the state s3 or transform it to s;. Since we can weaken the precondition under
refinement the most general refinement of ¢ in this state will be that defined above.

This class satisfies the consistency requirements (as defined in [5]) because the state and the
operations are consistent. Therefore it is the least common refinement of the two original viewpoint
specifications M and Maz2. The viewpoints are therefore consistent.

Of course the choice of correspondence relation is important, and choosing a different one can
result in inconsistent specifications. For example, suppose that we related the values of state
variables count and s by the relation R = {(0, o), (1, %), (2,2),(2,%3)}. This will result in a
different adaption to the unified state, and that for M is now given by

___adaptedM

valuel, value2 : N
8280|t1|t2|t3

__INIT
A(s)

s’ = s

—a
A(s, valuel)
input? : N

s=sAs' =t
valuel' = input?

b
A(s, value2)
input? : N

§ = tl A Sl = t2
value2' = input?

_c
A(s)
output! : N

S, s' € {tg, tg}
output! = maz(valuel, value2)

The states of this adapted M and the state of the class Maz2 are consistent, however, the operations
are not. For example, consider the operation a, an attempt to build its unification would produce
the following operation definition

_a
A(s, valuel)
input? : N

(s=sAs" =s)
(s=sNs'=t)
(S = t1 A s = tg
valuel' = input?
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which is clearly inconsistent since the state space of Maz2 is defined as a free type, so sy # #1.

6 Conclusions

Using viewpoints written in process algebras and state-based languages requires that the gap
between different specification styles is bridged. To do so we have used an object-oriented variant
of Z which has a natural behavioural interpretation. It is this behavioural interpretation which
makes it possible to define a state transition system for Object-Z specifications. We used this
state transition system as a common semantic model for the two languages, and thereby defined
and verified a translation between LOTOS and Object-Z.

Related work includes [28, 19] where methods of formally specifying concurrent systems using
Object-Z together with CSP are developed. However, the motivation there is not consistency
checking between viewpoints, but rather the construction of one specification using a combination
of two languages. The basis of the language integration defined in [28, 19] is a semantics of
Object-Z classes identical to that of CSP processes, where classes are related to processes and
events to operations in a similar manner to the work described here. The treatment of input and
output parameters of operations is, however, slightly different leading to a different treatment of
refinement [29]. The relationship between the Z and LOTOS refinement relations in the context of
consistency checking in ODP is discussed in [13, 12], where the latter develops refinement relations
for Z specifications that contain internal operations.

The work described in this paper builds upon earlier work described in [10] which provided a
partial translation between LOTOS and Z. However, this was defined via a complex intermediate
semantic model, and without a full treatment of instantiation and recursion. The direct translation
defined here has the benefit of preserving some of the syntactic structure of a LOTOS specification
upon translation. For example, process instantiation can be translated directly to Object-Z object
instantiation. The translation also sheds light on how behavioural specification is structured in
the two languages. Consider, for example, parallel composition. In LOTOS a parallel composition
is formed between two complete behaviours, as in P||@. However, in Object-Z we can’t form such
a parallel composition between classes, rather we compose operations together using the Object-Z
parallel composition schema calculus operator, as in P.Op||@.Op. Thus the translation of P||Q
has to be given as one explicit class definition, but the behaviour inherent in PJ||@ appears in
the operation definitions as Op = P.Op||Q.Op. Thus the translation preserves structure, but in
Object-Z that structure appears at an operation level rather than a class or behavioural level.

In a similar fashion the structure of a guarded process can be seen to be mapped to a similar
structure at the operation level upon translation. That is the translation of a process [pred] — P
is a class with operations Op = P.Op e [pred], where the pred now appears as a guard to every
operation in the translated class.

Some structure is preserved in the translation of action prefix, although it has a less natural
representation in Object-Z. Consider the translation of the behaviour a; P. This will be an
Object-Z class containing a definition of an operation a given by

a= ([A(t) |t A=t § P.INIT)V P.a

The structure represented by the action prefix ; has appeared as a sequential composition § of an
event a (given by [A(t) | t A —#']) followed by the behaviour of P. However, because in general
this behaviour may be another Object-Z class this is represented by the behaviour in P becoming
enabled (P.INIT). The disjunction with P.a is necessary because P may contain further instances
of the operation a which need promoting to this level.

If P is not a process instantiation simpler translation rules can be given, for example, in translating
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a behaviour such as a?z : nat; b7y : nat; cllargest(z,y); stop (part of the definition of Maz2)
intermediate variables can be used to translate the action prefixes directly to the simpler version
of Max2 given in Section 4. Similar simplifications can be given for the LOTOS choice operator
when, in translating P[|@, P and @ are not process instantiations. Further work to be done in
this area includes development of less complex translation rules for these situations, particularly
for behaviours involving action prefix and choice.

More information about the work described here (which is partially funded by British Telecom
Research Labs. and the Engineering and Physical Sciences Research Council under grant number
GR/K13035) can be found at:

http://www.cs.ukc.ac.uk/research/tcs/openviews/
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