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A failures semantics for ET-LOTOS!

Steve Schneider

Royal Holloway, University of London

Jeremy Bryans and Jim Davies
University of Reading

Abstract A denotational semantics is presented for ET-LOTOS [Lel.94] in the style of
semantics for timed CSP, in terms of timed failures with additional information about
internal events. This semantics is consistent with the original operational semantics, and
is shown to be the weakest congruence stronger than trace equivalence—the weakest useful
congruence.

1 Introduction

The LOTOS specification language was developed to support specification and de-
sign of distributed and communicating systems. Recently, a number of proposals
have arisen for incorporating time into the language [Lel.94, QFA93, BLT94], en-
abling the modelling of quantitative timing behaviour.

A LOTOS specification consists primarily of a description of desirable behaviour.
But we also require a notion of how closely any proposed implementation should
resemble that ideal. Many approaches require that an implementation should be
at least weakly bisimilar to the specification process. Bisimulation equivalence has
the pleasing property that it can often be efficiently checked mechanically, and
further it usually has a complete set of characterising algebraic laws. Proposals for
timed extensions to LOTOS are generally accompanied by appropriate notions of
bisimulation.

On the other hand, the kind of distinctions made by bisimulation equivalence are
finer than can generally be made by interacting agents, which do not have access to
the internal state of their communication partners. In fact, processes which are not
bisimilar may still be indistinguishable in any context. This paper takes the view
that if no context can tell a specification process from a proposed implementation,
then the implementation should be considered to be satisfactory. Since bisimulation
congruence is strictly stronger than this notion of equivalence, it is useful as a
sufficient condition for equivalence, but should not be considered as a necessary
condition.
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We follow the CSP approach of [Sch94], and see how it adapts to the LOTOS op-
erators. For definiteness, we will consider the timed LOTOS proposal of [Lel.94],
as this appears to be the most amenable to this treatment. We begin by requiring
that processes which have different traces should be considered distinct, and then
search for the weakest congruence over the language that preserves this distinction.
We find that the timed failures used in CSP are not quite enough, and that we also
require information about the times at which certain internal events are possible,
because some LOTOS operators are sensitive to internal events. The result is a fully
abstract denotational semantics for timed LOTOS .

Equivalence and congruence

A congruence on a language is an equivalence relation that is preserved by all of
the operators of the language. Hence it is preserved by all contexts built from those
operators. Given a notion = of equivalence, the corresponding congruence = is the
weakest congruence (i.e. the one which makes as few distinctions as possible) which
implies =-equivalence. In other words

VP.(Qe P=(Q = P =(Q
and if we have another congruence &' for which

VP,Qe (P Q=P

Q)

then
VP, Qe P = (Q=P=(Q

For example, untimed trace equivalence on processes identifies two processes if
any finite sequence of events (any untimed trace) which can be observed during
an exection of one may also be observed of the other. Untimed trace congruence
(hereafter called trace congruence) for timed CSP turns out to be timed failures
equivalence, where two processes are identified if they have the same set of timed

failures (see [Sch94] for details).

In this paper we are interested in the weakest congruence stronger than (untimed)
trace equivalence. We regard this as the weakest congruence of any practical use—
anything weaker will equate processes which have different traces! For timed CSP,
this turns out to be the timed failures semantics, and this is in turn equivalent to
may testing equivalence [Hen88] on the operational semantics (where two processes
are equivalent if the set of tests each may pass is the same). In general however, may
testing equivalence might not be a congruence, and in fact it is not a congruence
for timed versions of LOTOS.



Basic Timed LOTOS

We focus on Leduc and Léonard’s proposal for Basic ET-LOTOS [Lel.94]. They
present an extension to the language of Basic LOTOS to include timing operators,
and give an operational semantics for the language, in terms of event transitions
and delay transitions. Processes are defined in terms of those transitions that may
be performed.

An event transition is of the form P — Q. This indicates that process P may
immediately perform event a and then behave as process Q. A delay transition is

of the form P — Q. This indicates that process P may evolve in d units of time to
process Q.

LOTOS assumes a universal set of gates (. It also makes use of special events
i,6 ¢ G, and we will introduce other such special events w ¢ G,v € G in this
paper. The event a ranges over G U {i,6,w}. A set of gates I' is a subset of G.
The variables ¢, u range over a set of time variables; d ranges over the set of time
values, which is taken to be [0,00) U {oo}, though it is noted in [Lel.94] that any
commutative monoid with an absorbent (zero) element oo for 4+ will serve as a time
domain.

The formal semantics of Basic ET-LOTOS is given in [Lel.94]; we reproduce it here
to keep the paper self-contained.

The syntax is as follows: A process P is defined by an equational definition with a
where clause binding a vector of process variables to a vector of process terms:

P:=Q where V¥ :=§
Every Y occuring free in some Q must appear in the vector of process variables Y.
As discussed below, the vector of process terms must be time-guarded in the vector
of process variables. This constraint is not imposed in [Lel.94], but is necessary for
the semantic approach taken in this paper.

The terms Q are defined as follows:

Q := stop | exit{d} | a@t{d};Q | A Q Q0 Q
|QIIT] Q| hideT inQ | Q@>»Q|Q[>Q|Y

These denote respectively: deadlock; termination at time d; life reducer (or event
timeout); delay; choice; concurrency; abstraction; enabling (or sequential composi-
tion); disabling; process variable.

If t does not appear free in Q then the term a{d} ; Q may be used as an abbreviation
for a@t{d}; Q. The term a; Q abbreviates a{oo} ; Q for a # 1, and 1 ;Q is used for

i{o};q.



The rules for the operators are given as follows:

d
stop — stop

a@t{d;} ;P — [0/t]P

a@t{d; +d) ;P > a@t{ds}: [t +d/t]P

[a%i,d>d1]

d
a@t{d; +d};P — stop

a
P — P

AOp 2 pf

d
Aditdp 5 Adip

a
P — P

d
AP — P

5
exit{d;} — stop

d
exit{d; +d} — exit{di}



d
exit{d;} — stop

a
P — P
POQ > P
a
QDP—>P/
a a
P — P Q — @

LTl @ — P I[T1l q
Q IlTll P S g IlT] P

d

p 2 pf Q- qQ

PITIlQ — P I[T] @

P — P Q—Q

PICI QP IT] @

[d>d1]

[a ¢ TU{8} ]

[acTU{6) ]

a
hide I in P — hide I' in P’



a

P — P

- [a €]
hide I in P — hide I' in P’

a
P — P
‘v’aEFo—'(Pi)

a
hide I’ in P — hide I in P’




3
PD>Q — P
d d
P — P Q — @

[gl/hlv"'vgn/hn]P — P
Q[hl,...,hn] ;=P

a
Q[glv"'vgn] — P

[gl/hlv"'vgn/hn]P — P
Q[hl,...,hn] ;=P

d
Q[glv"'vgn] — P

Operationally, there is no problem with instant or unguarded recursions; their tran-
sitions may be calculated using the rules in exactly the same way as guarded recur-
sions. A definition such as S := S is perfectly legitimate, and defines a time-stop
process, one that has no event or delay transitions (in contrast to stop which can
always allow time to pass). A definition such as S := a@t{1} ;S is guarded by the
event a, and can do as many copies of the event a at time 0 as the environment is
prepared to allow.

However, the standard denotational approach for timed CSP (which is being fol-
lowed here) would need a significant alteration in order to deal with such process
definitions. Recursive definitions are required to take some time to reach their next
invocation. This makes the semantics more straightforward, at the expense of ex-
pressibility. Thus any recursive definition must be time-guarded in the sense that
there is some non-zero delay, imposed by a A% construct, guarding any recursive
call. (In a mutual recursion, there must be some universal non-zero time guard
which holds for each recursive definition.) As a result, no time-stopping process
can be written; the examples in the preceding paragraph are all considered to be
unguarded in the timed sense.



Traces

The traces of a process may be extracted from its operational semantics by use of
the rules below.

() € traces(P)

rLp
tr € traces(P’)
(a) " tr € traces(P)

[a#i]

pLp
tr € traces(P’)

tr € traces(P)

pLp
tr € traces(P’)

tr € traces(P)

The set traces(P) is defined to be the smallest set closed under these inference rules.

Timed failures

The set of events ¥ includes every gate in (7, and the events 6 and w. The internal
event ¢ 1s not in X.

A timed event (¢, a) is an element of [0, 00) x X.

A timed failure is a particular view of an execution of a process, recording what
might have been observed by its environment, or by another process. It will contain
the events that were performed, the times at which they were performed, and the
times at which events were refused by the process. The approach of CSP is to
associate each process with the set of those timed failures that are consistent with



some run of the process. Throughout this paper, the term failure means timed
failure.

A timed trace is a finite sequence of timed events in which the times are non-
decreasing. The set of timed traces is denoted T'T'.

A timed refusal is a set of timed events.

A timed failure is a (timed trace, timed refusal) pair. This is considered a record
of an execution; the timed trace records those timed events that were performed,
and the timed refusal records those timed events that were refused by the process,
during the execution.

Since process executions are finitely variable, in that only finitely many changes
of state may occur in a finite interval, it is sufficient to consider timed refusal
sets which are finitely variable; where the set of events being refused changes only
finitely often. Timed refusals thus have a particular structure: a finite union of
refusal tokens.

FRTOK = {[b,e)x A |0 <b<e<oo, 4%}
FRSET = {|JB | B Cf" FRTOK}

Notation

We use s to range over T'T, the set of timed traces, and X to range over FRSET, the
set of timed refusals; ¢, u range over the finite times [0, 00); I ranges over subsets
of [0,00) (usually intervals).

We use the following operations on sequences of timed events: s;” s, denotes the
concatenation of s; and sz; end(s™ ((t,a))) = t.

The following projections on sequences are defined by list comprehension:

sT 1 = ((tya) | (t,a) « s,t € 1)
s\ A = ((t,a) | (t,a) « s,a ¢ A)
s A = ((t,a) | (t,a) « s.a € A)
s+u = ((t+u,a)| (t,a) « s)
events(s) = (a | (t,a) « s)
) = A

(s
a(s

X <u = {(ta)
X171 = {(ta)



X—u = {(t—wu,a)| (t,a) € X,t > u}
o(X) = {a | (v,0) € X}
end(X) = sup{u | (v,a) € X}

We define end(s, X) = max{end(s), end(X)}.

Example

The timed failure

(((3,a),(8,0)),[0,3) x {b} U[3,5) x {a})

corresponds to an execution in which the event b was offered to the process but not
accepted (i.e. refused) up until time 3; the event a was then observed at time 3;
a further copy of the event a was refused over the interval [, 5); and finally the
event b was performed at time §.

This would be a possible observation of the process a; A% b ; stop. The event a can
occur at any time, or not at all. If it occurs at time &, then no further copies of
it are possible, and so will be refused over the interval [3,5). The event b is not
enabled in this execution until time 5, so it can be refused over the interval [0, 3).
It may be performed at any time after time 5; in this instance, it is performed at
time §&.

Extracting failures

We can define inductively what it means for a timed failure to be consistent with
a given execution. The relation exhibits is a predicate on processes and timed
failures drawn from TT x FRSET. The events that may appear in timed traces
are G U {6,w}—any action of interest apart from .

P exhibits ((),{})

P 5 Q A Q exhibits (s, X)
P exhibits (((0,a)) s, X)

[a# ]

P 5 Q A Q exhibits (s, X)
P exhibits (s, X)

10



P g
Q exhibits (s, X — )
Va € o(X <1 t) ¢ =(P =)

P exhibits (s + ¢, X)

The relation exhibits is defined to be the smallest relation closed under these
inference rules—it holds only in cases that can be established using these rules.
The last consistency rule exploits a variant of the reverse persistency result 4.2.4 of

[Lel.94]: that if P 5 Q and —(P N ) then

a

t/
Vi' <t eP — P = (P —)

In other words, if P is able to refuse a initially, then at every point before the end of
an evolution a may still be refused. Hence the refusal set X <| ¢ recorded during
the evolution is consistent with the execution if P is unable to perform any of the
events in that set (at the beginning of that evolution).

The failures of P can now be extracted:

failures(P) = {(s,X) | P exhibits (s, X)}

Example

The following sequence of executions is possible for a; A% b ; stop, and this is con-

sistent with the failure (((3,a),(8,0)),[0,3) x {b} U[3,5) x {a}).

0 a;A’b;stop
L3
3 a;A%b;stop R A%b;stop
L2
5 A® :b;stop
13

8 b;stop —  stop

11



The inference rules may be used with this sequence of transitions (considered in
reverse order) to derive the claim above:

stop exhibits (()
+ b;stop exhibits (((
+ A%b;stop exhibits ({(
+ A%b;stop exhibits ({(
- ({(
- ({(

[0,2) x {a})
a;A’b;stop exhibits ,a),(5,0)),[0,2) x {a})
a;A’b;stop exhibits ,a),(8,0)),[0,3)x {b}U[3,5) x {a})

The traces of a process may be deduced from its failures:

Theorem 1.1 traces(P) = {events(s) | (s, X) € failures(P)} 0

Proof Each execution of P gives rise to a trace tr, and is consistent with a set of
failures of P each of whose timed trace s has events(s) = tr. O

Corollary 1.2 Timed failures equivalence is stronger than trace equivalence a

Distinguishing processes with different failures

The next theorem gives the converse relationship between trace congruence and
timed failures equivalence. If failures equivalence were a congruence, then the pre-
vious corollary together with this theorem would yield that failures equivalence is
trace congruence. Alas, as we shall see later, failures equivalence is not a congruence
for the language Basic ET-LOTOS.

Theorem 1.3 If two processes are trace congruent, then they have the same timed
failures O

Proof Given a particular timed failure (s, X;), with a particular representation
for the refusal set X,

Xo = [ug,u)) x Ay Ulug,uy) X Ag Ui U [, ul,) X Ay,

m

we can construct a context that detects (s5, Xp).

P’<> = w;Stop

Pl((t,a)>AS = At a@‘t{O} 3 P/S—t
Qi = [Jaea; A" a@t{u’—u}; Stop [ A¥iw;Stop
o = ||, 0

12



In this construction, w is a special ‘success’ event that is not contained in the set of
gates (& available to processes. Note the use of generalised choice in the definition of
Qi; since the set A; is finite, this is simply multiple applications of the [ operator.

The timed LOTOS context for (sy, Xy) is

Clegxg)(®) = RIZ][(P [w]lQx)) \ =

The process C(s,x,)(P) is able to perform w if and only if (sy, Xy) € failures(P):

the P, component can perform w only after performing the events in the trace sy,
0

and the Qg‘o component can perform w only if everything in Xy is refused.

If (59, Xp) is a failure of P, then tmces(C(S@xo)(P)) = {(), (w)}. If (sp,Xp) is not a
failure of P, then traces(Cs,x,)(P)) = {()}. Thus if two processes have the same
traces in all contexts, then they must have the same timed failures. O

This result also holds for timed CSP. There it is also true that failures equivalence
is a congruence, and so it follows that it is trace congruence for the language of
timed CSP.

Failures equivalence is not a congruence

In the case of ET-LOTOS, however, failures equivalence is not enough to yield a
congruence. Failures contain no information about internal activity. This does
not matter in timed CSP, since none of the operators of the language respond to
internal events. In ET-LOTOS, there are two operators that are sensitive to hiding,
and which therefore may not preserve failures equivalence: choice and disabling.

Consider the two processes

P1 = 1i;a{5};Stop
P2 = a{5};Stop

These two processes have the same timed failures:

{(0:X) [ a g o(X 7]0,5]);
U{(((w, @), X) [ <5 Aa ¢ o(X T [0,u));

But Py will always perform an internal event at time 0, whereas P, performs no
event before its initial a.

A context C(R) = R 0 A!b{5};Stop, involving choice may distinguish P1 from
P2: the process C(P1) is unable to perform a b event at time /—the internal event
of P1 will resolve the choice at time 0. On the other hand, the process C(P2) is able
to perform event b at time 1. Thus (b) is a trace of C(P2) but not of C(P1).

13



A context D(R) = A!b{5};Stop [> Rinvolving disabling may distinguish Py from
Py: D(P1) is unable to perform b since the interrupt will occur at time 0. Yet D(P2)
is able to perform b, since the interrupt need not occur at all, and certainly need
not occur before time ! when b becomes available.

These examples illustrate that the timed failures information is not sufficient to
predict all the traces of a process in any context.

The extra information required is the time of the first event (internal or external)
during a particular execution corresponding to a timed failure. This will be the
time at which a choice is resolved, or at which a disabling occurs. It is only the
first event that can be detected by these two operators, so information concerning
subsequent internal activity is not required.

We will associate a time as well as a timed failure with a given execution. A number
of time values could be associated with any particular timed failure. A timed failure
triple is a triple:

(t,s,X)

which is associated with a process iff the process has an execution where the first
(internal or external) event occurs at time ¢, s records the trace of visible events,
and X records the visible events that were refused. If s = () then ¢ can take a finite
or infinite value; otherwise it must be finite (in fact no greater than the beginning
of s). The infinite value in (o0, (), X') indicates that there is an execution consistent
with ((), X) in which no event occurs—in other words, no event need occur before

end(X).

These triples can be extracted directly from the operational semantics in much the
same way as the timed failures were earlier:

P exhibits’ (o0, (), {})

a

P —Q
Q exhibits’ (¢,s, X)

b exhibite’ (0.((0.0) s x) 271

P Q
Q exhibits’ (¢,s, X)

P exhibits’ (0,s, X)

14



P L g
Q exhibits’ (u,s, X —d)
Va € o(X <1 d) e =(P =)

P exhibits’ (v +t,s 4+ ¢, X)

We associate a set of failure triples with a process P

failuretriples(P) = {(t,s,X) | P exhibits’ (¢,s, X)}
The following theorem is immediate:

Theorem 1.4 traces(P) = {events(s) | (t,s,X) € failuretriples(P)} O

Proof Each execution of P gives rise to a trace tr, and is consistent with a set of
failure triples of P each of whose timed trace s has events(s) = tr. O

Corollary 1.5 Failure triple equivalence is stronger than trace equivalence a

The next theorem points in the opposite direction.

Theorem 1.6 Trace congruence is stronger than failure triple equivalence O

Proof We have two cases to consider: ¢ finite and ¢ infinite.

If ¢ is finite then let C; ¢ xy(R) be the context

Ci(t,)) e Xult,t+1)x (v} (v ;v ; Stop [> R)

Observe that t < begin(s), so trace(t,v)” s is well-formed. Then for v to be per-
formed and then refused at time ¢, we must have that the disabling occurs at time ¢:
the first event from the execution of R which corresponds to (s, X'). Hence C; s x)(P)
will have (w) as a trace if and only if (¢, s, X) is a failure triple of P.

Now consider the case that ¢ is infinite. We first require a lemma:

Lemma 1.7 IfP exhibits’ (¢,(), X)and ¢t > end(X)then P exhibits’ (oo, (), X)
a

15



This is easily established by examining the proof of P exhibits’ (¢, (), X), and
considering the prefix of it which has inferences based only on delay transitions.

Now if (o0, (), X) is a behaviour of P but not of Q, then there are two possibilities:
either ((), X) is not a failure of Q, in which case there is a context C( x to distinguish
P from Q; or else it is a failure of Q, in which case any associated time value must
be less than end(X), by the lemma above. In this latter case, consider the context

D(R) = C((enanvyx)(R O AT® {0} ;stop

Then D(P) can perform an w, since it is possible that the choice will not be resolved
by P by time end(X). On the other hand, by the lemma above, any execution of Q
exhibiting ((), X ) must perform some event strictly earlier than end(X), and so the
choice can never be resolved against Q during such an execution. Thus D(Q) cannot
perform w. So there is a context that distinguishes P from Q.

We conclude that trace congruence implies failure triple equivalence; processes with
different timed failure triples can be placed in contexts that yield different traces.
O

Now we can show that failure triple equivalence is a congruence. It will then follow
from Theorem 1.6 and Corollary 1.5 that failure triple equivalence is trace congru-
ence.

Theorem 1.8 Failure triple equivalence is a congruence a

Proof We show this by giving the semantic equations for timed LOTOS in terms
of timed failure triples. We must prove that these equations correspond to the
result of extracting the timed failure triples directly from the operational semantics.
Since the equations are given in a compositional way, they automatically define a
congruence.

We establish the following by structural induction on P, where is the semantic
function from ET-LOTOS to the semantic domain TMj, defined below:

VP e failuretriples(P) = [P]

This completes the proof. O

Denotational semantics for ET-LOTOS

The semantic domain TM; is defined to be those sets

S C ([0,00) x TT x FRSET)U ({00} x {{)} x FRSET)

16



of failure triples satisfying the following condition:

(C) (t,(),X) e SAt>endX) = (c0,(),X) €S

The semantic function is a mapping ET-LOTOS — TMj, defined by the following
equations:

[stop] = {(o0,{),X) [ X € RSET}
lexit{a}] = {(oc, (), X) [ ([0,d] x{8})NX = {}}

U

{(¢,((£,0)), X) [ ([0,t) x{e})n X ={} At < d}
[a@t{d}; Q] = {(oc0,(),X) | ([0,d] x{a})NX = {}}

U

{(u (v, @) (s + ), X) | ([0,0) x{a})0 X ={} Au<d

A dv e (v,5,X —u) € [Qu/t]]}

[i@t{d};Q] = {(o0,(),X) | end(X) < d}

U

{tuys+u, X) | u<dANFve (v,s,X—u) € [Qu/t]]}

[A%Q] = {(utd,s+d,X) [ (u,5X—d) € [Q]}

[P OQ) = {(u,s,.X)] (u,s,X) € [P] A
do > we (v,(),X <l u) € [Q]}
U
{(u, s, X) | (u,5,X) € [Q] A
do > we (v,(),X <l u) € [P]}

[PITiial = A{(w, s, X) | 3(ur,sp, Xp) € [P], (ue, s, Xo) € [Q @
u = min{up,ugt N s € sp|[1']] sg
AXTT=Xp] TUXg| T
AX\T =X, \TnXo\ T}

[hide T in Q] = {(u,s \ I, X) | (u,s, X U[0,end(s, X)) xT') € [Q]}

[P>»Q] = {(u,s,X) | (u,5,XU[0,end(s, X)) x{6}) € [P] A & & o(s)}
U
{(uy s (s"+ 1), X) | (u,s" ,(§)>,X <l tuo,t) x {6} € [P]

v,s', X —1) € [Ql}

17



{(U,SAS/,X) | EI(UvavXP) € [[P]]v(ustle) € [[Q]] d
Xp = X <l ug A end(s) < ug A u = min(up,ug)}

To give a semantics to recursively defined processes, we impose a metric space
structure on 7M. Define

S<tt = {(u,5,X)] (u,5,X) € S,u < tyend(s,X) < t}
U
{(00, (), X) | (¢,0),X) € S,end(X) < t < '}
d(S;,8:) = inf{27" | S, <1t =28, <1t}

Theorem 1.9 The distance function d is a metric on TMy, and (d, TMy) is a
complete metric space. O

The body of a recursive definition Y := Q is a function from Y to Q which we require
to be time guarded. The mapping on TMy corresponding to this function is a
contraction mapping. By Banach’s fixed point theorem [Sut75] this mapping has
a unique fixed point, since TMj is a complete metric space. Full details of this
argument are presented in [DaS93].

The semantics of P := Y where Y = Q is defined to be the unique fixed point of the
contraction mapping corresponding to Q.

A note on the structure of timed refusals

Timed refusals are carefully defined to be left-closed and right-open, so refusal in-
formation has the form [b, €) x A. This decision reflects the way in which processes
make events available. For a context to discover that events are being refused by
a process, the context must itself offer them, and the transition system defined for
Basic ET-LOTOS has the property that events are always made available at some
first point in time, so we may as well record refusal information as being closed
at the bottom. In fact, if we allow refusal information based on open intervals as
well, then we may end up distinguishing processes that cannot be told apart in any
context. Consider the following:

P1
P2

(i;a{0};stop O i;b;stop O 1;b{0};stop)
i;((a{0};stop I[all i{occ};a;stop) O b;stop)

18



Each of these processes performs its first event (internal) at time 0. FEach can
perform a at time 0 only, and can perform b at any time. Fach can refuse b at time
0 provided a is not refused at that time; and each can refuse b at any time after time
0. In fact, they have the same failure triples, and no context can distinguish them.
However, if we were to allow refusal information also in terms of open intervals, then
we would expect (0,(),[0,1) x {a}U(0,1)x {b}) to be exhibited by the P1, but
not by P2, which can exhibit only (0,(),[0,1) x {a} Ule, 1) x {b}) for arbitrarily
small € > 0. Thus we would distinguish processes that no context can distinguish.

The reason for using right-open intervals is more pragmatic: no new information
would be gained by including right-closed intervals, again because of the property
that events are always enabled at first instants. If a refusal [b, e] x A is possible for
a process, then there will always be some ¢ > 0 for which [b,e +¢€) x A is also a
refusal; the events in A will not be enabled until some positive time after e. Hence
including refusal information based on closed intervals yields no new information
about a process.

If events need not become enabled at particular instants, but may become enabled
strictly after some instant, then we will need to record other kinds of refusal infor-
mation. In Full ET-LOTOS, a selection predicate is permitted to restrict the times
at which events may occur, so for example the construction b @ t[t > 0] ; stop al-
lows b to occur at any time after time 0; there is no moment at which it becomes
available. In fact, depending on the freedom one is allowed in the predicate, inter-
vals may not be suitable at all (for example, if a is permitted to occur only at a
rational time) and it seems that the appropriate refusal sets will have significantly
less structure, perhaps ranging over arbitrary sets of timed events. In any case,
contexts can now be constructed that make finer distinctions. For example, the
context for Y

hide {a,b} in ((a;stop O b@t[t > 0];stop O A%w;stop) I[a,bll Y)
IL{}1l A'i;stop

can distinguish P1 (which will allow an w to be performed) from P2 (which will
not).

Comparison with weak bisimulation

Weak timed bisimulation is an equivalence relation defined on processes to abstract
away from internal events. The definition in [Lel.94] is as follows:

d i 42 dn
P —.Q iff P— — ... — (@ where d = X7 di

? d 2 dn ?
P == @ i P( =) —1>*(—>)* — (=)@ where d = X!, di
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PO Qi POS) S (S
P == Q iff P(>)Q

Then a relation R is a weak timed bisimulation if and only if whenever B, R B,
then for any «:

1. if B, == B! then thereissome B} such that B, == B} and B! R B}

2. if B, === B} then thereis some B/ such that B, == B} and B} R B,

Weak timed bisimulation equivalence is incomparable with failure triple congru-
ence. For example, the processes a; stop and 1i;a;stop are weak timed bisimu-
lation equivalent, but have different failure triples: for example the failure triple
(1,((1,a)),{}) is a possible behaviour of the first process, but not of the second
(since the time value must be 0 with such a trace).

However, weak timed bisimulation congruence will be stronger than failure triple
equivalence, as will be illustrated by the following examples, where pairs of processes
are exhibited which have the same failure triple sets, but are not bisimilar.

Consider the following pair of processes:

P1
P2

(i ; A%a{s5} ; stop) O (i ; A’b{5} ; stop)
i A8 ((1 ; a{5} ; stop) O (i ; b{B} ; stop))

Each of P1 and P2 will nondeterministically offer either an a or a b over the interval
[3, 8], so they have the same failure triple semantics. But P1 resolves the choice at
time (), whereas P2 does not resolve the choice until time 3, so it can allow three
units of time to pass (performing only its internal transition at time 0) and reach
a state from which both @ and b are possible; this delay cannot be matched by P1.

This next pair of processes also have the same failure triple sets—no context can
distinguish them—but they are not bisimilar.

P3 = idi:stop I i;a;stop

P4 = P3 [ i;a{2};stop
The process P3 nondeterministically chooses either to deadlock immediately, or to
offer the event a until it is accepted. Process P4 has these same choices, but may

also choose to offer a for two units of time only. This is a transition that cannot be
matched by P3.
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A standard example from untimed process algebra also illustrates the fact that
failures equivalence is weaker than weak timed bisimulation congruence. Consider
the following pair of processes:

P5 = 1i;a{4};stop O 1;b{4};stop
P6 = P5 [ i;(a{4};stop O b{4};stop

The first process offers either an a or a b event for four units of time. The second
may offer either of these, or else may offer its environment the choice of both. They
are not bisimilar: P6 can reach a state in which both a and b are offered, and P5
can reach no similar state. Again, no context can distinguish these processes.

Urgency

The model TMj, does not handle the phenomenon of ‘urgency’ or forcing of events,
where events must occur by some particular time. Urgent events can be modelled
in ET-LOTOS by judicious use of timestops: the process a;P [1 timestop where
timestop := timestop forces the event a to occur at time (. However, Leduc and
Léonard do not encourage the use of timestops, and take the view that timestops
are unnecessary in specification.

For the denotational semantics, we were careful to forbid non-time-guarded recur-
sions, and no timestopping processes can be constructed from the operators of Basic
ET-LOTOS without such recursive definitions. The handling of forced events and
time-stopping processes within a denotational model is a non-trivial extension of
the model presented here. In the document [BDS94] an adaptation of an earlier
stgnals model is proposed, which includes the modelling of urgent events.

As an example of the sorts of difficulties that arise when internal events can be
made urgent, we will examine the urgency operator urge a in P of [BLT94], which
makes all occurrences of a urgent in process P. This may be used on internal or
external actions.

Consider the two processes below. They have the same failure triples. Each may

offer nondeterministically either a or b sometime between time 7 and time 3.

P7
P8

i (AT s i{2);a;stop O i{2}; A ;b;stop)
i (AT ;i{2)};b;stop O i{2}; A ;a;stop)

If the internal event is made urgent, then the resulting processes are different:
urge 1 in P7 # wurge i in P8
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The left-hand process can offer only b, and the right-hand can offer only a. So failure
triples is no longer a congruence in the presence of this operator; more information
is required in order to obtain a congruence. However, we conjecture that the urge
operator restricted to external actions will preserve traces-and-timestops congruence
over the language of Basic ET-LOTOS.
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