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A failures semantics for ET-LOTOS1Steve SchneiderRoyal Holloway, University of LondonJeremy Bryans and Jim DaviesUniversity of ReadingAbstract A denotational semantics is presented for ET-LOTOS [LeL94] in the style ofsemantics for timed CSP, in terms of timed failures with additional information aboutinternal events. This semantics is consistent with the original operational semantics, andis shown to be the weakest congruence stronger than trace equivalence|the weakest usefulcongruence.1 IntroductionThe LOTOS speci�cation language was developed to support speci�cation and de-sign of distributed and communicating systems. Recently, a number of proposalshave arisen for incorporating time into the language [LeL94, QFA93, BLT94], en-abling the modelling of quantitative timing behaviour.A LOTOS speci�cation consists primarily of a description of desirable behaviour.But we also require a notion of how closely any proposed implementation shouldresemble that ideal. Many approaches require that an implementation should beat least weakly bisimilar to the speci�cation process. Bisimulation equivalence hasthe pleasing property that it can often be e�ciently checked mechanically, andfurther it usually has a complete set of characterising algebraic laws. Proposals fortimed extensions to LOTOS are generally accompanied by appropriate notions ofbisimulation.On the other hand, the kind of distinctions made by bisimulation equivalence are�ner than can generally be made by interacting agents, which do not have access tothe internal state of their communication partners. In fact, processes which are notbisimilar may still be indistinguishable in any context. This paper takes the viewthat if no context can tell a speci�cation process from a proposed implementation,then the implementation should be considered to be satisfactory. Since bisimulationcongruence is strictly stronger than this notion of equivalence, it is useful as asu�cient condition for equivalence, but should not be considered as a necessarycondition.1Presented at the COST 247 workshop on extending process algebras, Brighton July 19941



We follow the CSP approach of [Sch94], and see how it adapts to the LOTOS op-erators. For de�niteness, we will consider the timed LOTOS proposal of [LeL94],as this appears to be the most amenable to this treatment. We begin by requiringthat processes which have di�erent traces should be considered distinct, and thensearch for the weakest congruence over the language that preserves this distinction.We �nd that the timed failures used in CSP are not quite enough, and that we alsorequire information about the times at which certain internal events are possible,because some LOTOS operators are sensitive to internal events. The result is a fullyabstract denotational semantics for timed LOTOS .Equivalence and congruenceA congruence on a language is an equivalence relation that is preserved by all ofthe operators of the language. Hence it is preserved by all contexts built from thoseoperators. Given a notion � of equivalence, the corresponding congruence �= is theweakest congruence (i.e. the one which makes as few distinctions as possible) whichimplies �-equivalence. In other words8P ;Q � P �= Q ) P � Qand if we have another congruence �=0 for which8P ;Q � (P �=0 Q ) P � Q)then 8P ;Q � P �=0 Q ) P �= QFor example, untimed trace equivalence on processes identi�es two processes ifany �nite sequence of events (any untimed trace) which can be observed duringan exection of one may also be observed of the other. Untimed trace congruence(hereafter called trace congruence) for timed CSP turns out to be timed failuresequivalence, where two processes are identi�ed if they have the same set of timedfailures (see [Sch94] for details).In this paper we are interested in the weakest congruence stronger than (untimed)trace equivalence. We regard this as the weakest congruence of any practical use|anything weaker will equate processes which have di�erent traces! For timed CSP,this turns out to be the timed failures semantics, and this is in turn equivalent tomay testing equivalence [Hen88] on the operational semantics (where two processesare equivalent if the set of tests each may pass is the same). In general however, maytesting equivalence might not be a congruence, and in fact it is not a congruencefor timed versions of LOTOS. 2



Basic Timed LOTOSWe focus on Leduc and L�eonard's proposal for Basic ET-LOTOS [LeL94]. Theypresent an extension to the language of Basic LOTOS to include timing operators,and give an operational semantics for the language, in terms of event transitionsand delay transitions. Processes are de�ned in terms of those transitions that maybe performed.An event transition is of the form P a�! Q. This indicates that process P mayimmediately perform event a and then behave as process Q. A delay transition isof the form P d�! Q. This indicates that process P may evolve in d units of time toprocess Q.LOTOS assumes a universal set of gates G. It also makes use of special eventsi; � =2 G, and we will introduce other such special events ! =2 G; � 2 G in thispaper. The event a ranges over G [ fi; �; !g. A set of gates � is a subset of G.The variables t ; u range over a set of time variables; d ranges over the set of timevalues, which is taken to be [0 ;1) [ f1g, though it is noted in [LeL94] that anycommutative monoid with an absorbent (zero) element1 for + will serve as a timedomain.The formal semantics of Basic ET-LOTOS is given in [LeL94]; we reproduce it hereto keep the paper self-contained.The syntax is as follows: A process P is de�ned by an equational de�nition with awhere clause binding a vector of process variables to a vector of process terms:P := Q where ~Y := ~QEvery Y occuring free in some Q must appear in the vector of process variables ~Y.As discussed below, the vector of process terms must be time-guarded in the vectorof process variables. This constraint is not imposed in [LeL94], but is necessary forthe semantic approach taken in this paper.The terms Q are de�ned as follows:Q := stop j exitfdg j a@tfdg ; Q j �d Q j Q [] Qj Q |[ � ]| Q j hide � in Q j Q >> Q j Q [> Q j YThese denote respectively: deadlock; termination at time d; life reducer (or eventtimeout); delay; choice; concurrency; abstraction; enabling (or sequential composi-tion); disabling; process variable.If t does not appear free in Q then the term afdg ; Q may be used as an abbreviationfor a@tfdg ; Q. The term a ; Q abbreviates af1g ; Q for a 6= i, and i ; Q is used forif0g ; Q. 3



The rules for the operators are given as follows:stop d�! stopa@tfd1g ; P a�! [0=t]Pa@tfd1+ dg ; P d�! a@tfd1g ; [t+ d=t]P[ a 6= i; d > d1 ]a@tfd1+ dg ; P d�! stopP a�! P0�0 P a�! P0�d1+d P d�! �d1 PP d�! P0�0 P d�! P0exitfd1g ��! stopexitfd1 + dg d�! exitfd1g 4



[ d > d1 ]exitfd1g d�! stopP a�! P0P [] Q a�! P0Q [] P a�! P0P d�! P0 Q d�! Q0P [] Q d�! P0 [] Q0P a�! P0 [ a =2 � [ f�g ]P |[� ]| Q a�! P0 |[� ]| QQ |[� ]| P a�! Q |[� ]| P0P a�! P0 Q a�! Q0 [ a 2 � [ f�g ]P |[� ]| Q a�! P0 |[� ]| Q0P d�! P0 Q d�! Q0P |[� ]| Q d�! P0 |[� ]| Q0P a�! P0 [ a =2 � ]hide � in P a�! hide � in P0 5



P a�! P0 [ a 2 � ]hide � in P i�! hide � in P0P d�! P08a 2 � � :(P a�! )hide � in P d�! hide � in P0P a�! P0 [ a 6= � ]P >> Q a�! P0 >> QP ��! P0P >> Q i�! QP d�! P0:(P ��! )P >> Q d�! P0 >> QP a�! P0 [ a 6= � ]P [> Q a�! P0 [> QQ a�! Q0P [> Q a�! Q0 6



P ��! P0P [> Q ��! P0P d�! P0 Q d�! Q0P [> Q d�! P0 [> Q0[g1=h1; : : : ; gn=hn]P a�! P0Q[h1; : : : ; hn] := PQ[g1; : : : ; gn] a�! P0[g1=h1; : : : ; gn=hn]P d�! P0Q[h1; : : : ; hn] := PQ[g1; : : : ; gn] d�! P0Operationally, there is no problem with instant or unguarded recursions; their tran-sitions may be calculated using the rules in exactly the same way as guarded recur-sions. A de�nition such as S := S is perfectly legitimate, and de�nes a time-stopprocess, one that has no event or delay transitions (in contrast to stop which canalways allow time to pass). A de�nition such as S := a@tf1g ; S is guarded by theevent a, and can do as many copies of the event a at time 0 as the environment isprepared to allow.However, the standard denotational approach for timed CSP (which is being fol-lowed here) would need a signi�cant alteration in order to deal with such processde�nitions. Recursive de�nitions are required to take some time to reach their nextinvocation. This makes the semantics more straightforward, at the expense of ex-pressibility. Thus any recursive de�nition must be time-guarded in the sense thatthere is some non-zero delay, imposed by a �d construct, guarding any recursivecall. (In a mutual recursion, there must be some universal non-zero time guardwhich holds for each recursive de�nition.) As a result, no time-stopping processcan be written; the examples in the preceding paragraph are all considered to beunguarded in the timed sense. 7



TracesThe traces of a process may be extracted from its operational semantics by use ofthe rules below.hi 2 traces(P)P a�! P 0tr 2 traces(P 0) [ a 6= i ]hai_tr 2 traces(P)P i�! P 0tr 2 traces(P 0)tr 2 traces(P)P d�! P 0tr 2 traces(P 0)tr 2 traces(P)The set traces(P) is de�ned to be the smallest set closed under these inference rules.Timed failuresThe set of events � includes every gate in G, and the events � and !. The internalevent i is not in �.A timed event (t ; a) is an element of [0 ;1)� �.A timed failure is a particular view of an execution of a process, recording whatmight have been observed by its environment, or by another process. It will containthe events that were performed, the times at which they were performed, and thetimes at which events were refused by the process. The approach of CSP is toassociate each process with the set of those timed failures that are consistent with8



some run of the process. Throughout this paper, the term failure means timedfailure.A timed trace is a �nite sequence of timed events in which the times are non-decreasing. The set of timed traces is denoted TT .A timed refusal is a set of timed events.A timed failure is a (timed trace, timed refusal) pair. This is considered a recordof an execution; the timed trace records those timed events that were performed,and the timed refusal records those timed events that were refused by the process,during the execution.Since process executions are �nitely variable, in that only �nitely many changesof state may occur in a �nite interval, it is su�cient to consider timed refusalsets which are �nitely variable; where the set of events being refused changes only�nitely often. Timed refusals thus have a particular structure: a �nite union ofrefusal tokens.FRTOK = f[b; e)� A j 0 � b < e < 1;A ��n �gFRSET = f[B j B ��n FRTOKgNotationWe use s to range over TT , the set of timed traces, and X to range over FRSET , theset of timed refusals; t ; u range over the �nite times [0 ;1); I ranges over subsetsof [0 ;1) (usually intervals).We use the following operations on sequences of timed events: s1_s2 denotes theconcatenation of s1 and s2 ; end(s_h(t ; a)i) = t .The following projections on sequences are de�ned by list comprehension:s " I = h(t ; a) j (t ; a)  s; t 2 I is n A = h(t ; a) j (t ; a)  s; a =2 Ais �j A = h(t ; a) j (t ; a)  s:a 2 Ais + u = h(t + u; a) j (t ; a)  sievents(s) = ha j (t ; a)  si�(s) = fa j s �j fag 6= higWe also de�ne a number of projections on refusal sets:X < u = f(t ; a) j (t ; a) 2 X ; t < ugX " I = f(t ; a) j (t ; a) 2 X ; t 2 I g9



X � u = f(t � u; a) j (t ; a) 2 X ; t � ug�(X ) = fa j (u; a) 2 X gend(X ) = supfu j (u; a) 2 X gWe de�ne end(s;X ) = maxfend(s); end(X )g.ExampleThe timed failure (h(3 ; a); (8 ; b)i; [0 ; 3 )� fbg [ [3 ; 5 )� fag)corresponds to an execution in which the event b was o�ered to the process but notaccepted (i.e. refused) up until time 3 ; the event a was then observed at time 3 ;a further copy of the event a was refused over the interval [3 ; 5 ); and �nally theevent b was performed at time 8 .This would be a possible observation of the process a ; �2 b ; stop. The event a canoccur at any time, or not at all. If it occurs at time 3 , then no further copies ofit are possible, and so will be refused over the interval [3 ; 5 ). The event b is notenabled in this execution until time 5 , so it can be refused over the interval [0 ; 3 ).It may be performed at any time after time 5 ; in this instance, it is performed attime 8 .Extracting failuresWe can de�ne inductively what it means for a timed failure to be consistent witha given execution. The relation exhibits is a predicate on processes and timedfailures drawn from TT � FRSET . The events that may appear in timed tracesare G [ f�; !g|any action of interest apart from i .P exhibits (hi; fg)P a�! Q ^ Q exhibits (s;X ) [ a 6= i ]P exhibits (h(0 ; a)i_s;X )P i�! Q ^ Q exhibits (s;X )P exhibits (s;X ) 10



P t�! QQ exhibits (s;X � t)8a 2 �(X < t) � :(P a�! )P exhibits (s + t ;X )The relation exhibits is de�ned to be the smallest relation closed under theseinference rules|it holds only in cases that can be established using these rules.The last consistency rule exploits a variant of the reverse persistency result 4.2.4 of[LeL94]: that if P t�! Q and :(P a�! ) then8 t 0 < t � P t0�! P0 ) :(P0 a�! )In other words, if P is able to refuse a initially, then at every point before the end ofan evolution a may still be refused. Hence the refusal set X < t recorded duringthe evolution is consistent with the execution if P is unable to perform any of theevents in that set (at the beginning of that evolution).The failures of P can now be extracted:failures(P) = f(s;X ) j P exhibits (s;X )gExampleThe following sequence of executions is possible for a ; �2 b ; stop, and this is con-sistent with the failure (h(3 ; a); (8 ; b)i; [0 ; 3 )� fbg [ [3 ; 5 )� fag).0 a ; �2 b ; stop# 33 a ; �2 b ; stop a�! �2 b ; stop# 25 �0 ; b ; stop# 38 b ; stop b�! stop11



The inference rules may be used with this sequence of transitions (considered inreverse order) to derive the claim above:stop exhibits (hi; fg)` b ; stop exhibits (h(0 ; b)i; fg)` �0 b ; stop exhibits (h(3 ; b)i; fg)` �2 b ; stop exhibits (h(5 ; b)i; [0 ; 2 )� fag)` a ; �2 b ; stop exhibits (h(0 ; a); (5 ; b)i; [0 ; 2 )� fag)` a ; �2 b ; stop exhibits (h(3 ; a); (8 ; b)i; [0 ; 3 )� fbg [ [3 ; 5 )� fag)The traces of a process may be deduced from its failures:Theorem 1.1 traces(P) = fevents(s) j (s;X ) 2 failures(P)g 2Proof Each execution of P gives rise to a trace tr , and is consistent with a set offailures of P each of whose timed trace s has events(s) = tr . 2Corollary 1.2 Timed failures equivalence is stronger than trace equivalence 2Distinguishing processes with di�erent failuresThe next theorem gives the converse relationship between trace congruence andtimed failures equivalence. If failures equivalence were a congruence, then the pre-vious corollary together with this theorem would yield that failures equivalence istrace congruence. Alas, as we shall see later, failures equivalence is not a congruencefor the language Basic ET-LOTOS.Theorem 1.3 If two processes are trace congruent, then they have the same timedfailures 2Proof Given a particular timed failure (s0 ;X0 ), with a particular representationfor the refusal set X0X0 = [u1 ; u 01 )� A1 [ [u2 ; u 02 )�A2 [ : : : [ [um ; u 0m)� Amwe can construct a context that detects (s0 ;X0 ).P0hi = ! ; StopP0h(t;a)i_s = �t a@tf0g ; P0s�tQ0i = []a2Ai�u a@tfu0 � ug ; Stop [] �u0 i ; ! ; StopQ0 = k! Q0i 12



In this construction, ! is a special `success' event that is not contained in the set ofgates G available to processes. Note the use of generalised choice in the de�nition ofQi; since the set Ai is �nite, this is simply multiple applications of the [] operator.The timed LOTOS context for (s0 ;X0 ) isC(s0;X0)(R) = (R j[ � ]j (P0s0 j[! ]j Q0X0)) n �The process C(s0;X0)(P) is able to perform ! if and only if (s0 ;X0 ) 2 failures(P):the P0s0 component can perform ! only after performing the events in the trace s0 ,and the Q0X0 component can perform ! only if everything in X0 is refused.If (s0 ;X0 ) is a failure of P, then traces(C(s0;X0)(P)) = fhi; h!ig. If (s0 ;X0 ) is not afailure of P, then traces(C(s0;X0)(P)) = fhig. Thus if two processes have the sametraces in all contexts, then they must have the same timed failures. 2This result also holds for timed CSP. There it is also true that failures equivalenceis a congruence, and so it follows that it is trace congruence for the language oftimed CSP.Failures equivalence is not a congruenceIn the case of ET-LOTOS, however, failures equivalence is not enough to yield acongruence. Failures contain no information about internal activity. This doesnot matter in timed CSP, since none of the operators of the language respond tointernal events. In ET-LOTOS, there are two operators that are sensitive to hiding,and which therefore may not preserve failures equivalence: choice and disabling.Consider the two processes P1 = i ; af5g ; StopP2 = af5g ; StopThese two processes have the same timed failures:f(hi;X ) j a =2 �(X " [0 ; 5 ])g[f(h(u; a)i;X ) j u � 5 ^ a =2 �(X " [0 ; u))gBut P1 will always perform an internal event at time 0 , whereas P2 performs noevent before its initial a.A context C(R) = R [] �1 bf5g ; Stop, involving choice may distinguish P1 fromP2: the process C(P1) is unable to perform a b event at time 1|the internal eventof P1 will resolve the choice at time 0 . On the other hand, the process C(P2) is ableto perform event b at time 1. Thus hbi is a trace of C(P2) but not of C(P1).13



A context D(R) = �1 bf5g ; Stop [> R involving disabling may distinguish P1 fromP2: D(P1) is unable to perform b since the interrupt will occur at time 0 . Yet D(P2)is able to perform b, since the interrupt need not occur at all, and certainly neednot occur before time 1 when b becomes available.These examples illustrate that the timed failures information is not su�cient topredict all the traces of a process in any context.The extra information required is the time of the �rst event (internal or external)during a particular execution corresponding to a timed failure. This will be thetime at which a choice is resolved, or at which a disabling occurs. It is only the�rst event that can be detected by these two operators, so information concerningsubsequent internal activity is not required.We will associate a time as well as a timed failure with a given execution. A numberof time values could be associated with any particular timed failure. A timed failuretriple is a triple: (t ; s;X )which is associated with a process i� the process has an execution where the �rst(internal or external) event occurs at time t , s records the trace of visible events,and X records the visible events that were refused. If s = hi then t can take a �niteor in�nite value; otherwise it must be �nite (in fact no greater than the beginningof s). The in�nite value in (1; hi;X ) indicates that there is an execution consistentwith (hi;X ) in which no event occurs|in other words, no event need occur beforeend(X ).These triples can be extracted directly from the operational semantics in much thesame way as the timed failures were earlier:P exhibits0 (1; hi; fg)P a�! QQ exhibits0 (t ; s;X ) [ a 6= i ]P exhibits0 (0 ; h(0 ; a)i_s;X )P i�! QQ exhibits0 (t ; s;X )P exhibits0 (0 ; s;X ) 14



P d�! QQ exhibits0 (u; s;X � d)8a 2 �(X < d) � :(P a�! )P exhibits0 (u + t ; s + t ;X )We associate a set of failure triples with a process Pfailuretriples(P) = f(t ; s;X ) j P exhibits0 (t ; s;X )gThe following theorem is immediate:Theorem 1.4 traces(P) = fevents(s) j (t ; s;X ) 2 failuretriples(P)g 2Proof Each execution of P gives rise to a trace tr , and is consistent with a set offailure triples of P each of whose timed trace s has events(s) = tr . 2Corollary 1.5 Failure triple equivalence is stronger than trace equivalence 2The next theorem points in the opposite direction.Theorem 1.6 Trace congruence is stronger than failure triple equivalence 2Proof We have two cases to consider: t �nite and t in�nite.If t is �nite then let C(t;s;X)(R) be the contextCh(t;�)i_s;X[[t;t+1)�f�g(� ; � ; Stop [> R)Observe that t � begin(s), so trace(t ; �)_s is well-formed. Then for � to be per-formed and then refused at time t , we must have that the disabling occurs at time t :the �rst event from the execution of R which corresponds to (s;X ). Hence C(t;s;X)(P)will have h!i as a trace if and only if (t ; s;X ) is a failure triple of P.Now consider the case that t is in�nite. We �rst require a lemma:Lemma 1.7 If P exhibits0 (t ; hi;X ) and t � end(X ) then P exhibits0 (1; hi;X )215



This is easily established by examining the proof of P exhibits0 (t ; hi;X ), andconsidering the pre�x of it which has inferences based only on delay transitions.Now if (1; hi;X ) is a behaviour of P but not of Q, then there are two possibilities:either (hi;X ) is not a failure of Q, in which case there is a context C(hi;X) to distinguishP from Q; or else it is a failure of Q, in which case any associated time value mustbe less than end(X ), by the lemma above. In this latter case, consider the contextD(R) = C(h(end(X);�)i;X)(R [] �end(X) �f0g ; StopThen D(P) can perform an !, since it is possible that the choice will not be resolvedby P by time end(X ). On the other hand, by the lemma above, any execution of Qexhibiting (hi;X ) must perform some event strictly earlier than end(X ), and so thechoice can never be resolved against Q during such an execution. Thus D(Q) cannotperform !. So there is a context that distinguishes P from Q.We conclude that trace congruence implies failure triple equivalence; processes withdi�erent timed failure triples can be placed in contexts that yield di�erent traces.2Now we can show that failure triple equivalence is a congruence. It will then followfrom Theorem 1.6 and Corollary 1.5 that failure triple equivalence is trace congru-ence.Theorem 1.8 Failure triple equivalence is a congruence 2Proof We show this by giving the semantic equations for timed LOTOS in termsof timed failure triples. We must prove that these equations correspond to theresult of extracting the timed failure triples directly from the operational semantics.Since the equations are given in a compositional way, they automatically de�ne acongruence.We establish the following by structural induction on P, where is the semanticfunction from ET-LOTOS to the semantic domain TML de�ned below:8P � failuretriples(P) = [[P]]This completes the proof. 2Denotational semantics for ET-LOTOSThe semantic domain TML is de�ned to be those setsS � ([0 ;1)� TT � FRSET ) [ (f1g � fhig � FRSET )16



of failure triples satisfying the following condition:(C ) (t ; hi;X ) 2 S ^ t � end(X ) ) (1; hi;X ) 2 SThe semantic function is a mapping ET-LOTOS ! TML, de�ned by the followingequations:[[stop]] = f(1; hi;X ) j X 2 RSETg[[exitfdg]] = f(1; hi;X ) j ([0 ; d ]� f�g) \ X = fgg[f(t ; h(t ; �)i;X ) j ([0 ; t)� f�g) \ X = fg ^ t � dg[[a@tfdg ; Q]] = f(1; hi;X ) j ([0 ; d ]� fag) \ X = fgg[f(u; h(u; a)i_(s + u);X ) j ([0 ; u)� fag) \ X = fg ^ u � d^ 9 v � (v ; s;X � u) 2 [[Q[u=t]]]g[[i@tfdg ; Q]] = f(1; hi;X ) j end(X ) � dg[f(u; s + u;X ) j u � d ^ 9 v � (v ; s;X � u) 2 [[Q[u=t]]]g[[�d Q]] = f(u + d ; s + d ;X ) j (u; s;X � d) 2 [[Q]]g[[P [] Q]] = f(u; s;X ) j (u; s;X ) 2 [[P]] ^9 v � u � (v ; hi;X < u) 2 [[Q]]g[f(u; s;X ) j (u; s;X ) 2 [[Q]] ^9 v � u � (v ; hi;X < u) 2 [[P]]g[[P j[ � ]jQ]] = f(u; s;X ) j 9(uP ; sP ;XP) 2 [[P]]; (uQ ; sQ ;XQ ) 2 [[Q]] �u = minfuP ; uQg ^ s 2 sP j[ � ]j sQ^ X �j � = XP �j � [ XQ �j �^ X n � = XP n � \ XQ n �g[[hide � in Q]] = f(u; s n �;X ) j (u; s;X [ [0 ; end(s;X ))� �) 2 [[Q]]g[[P >> Q]] = f(u; s;X ) j (u; s;X [ [0 ; end(s;X ))� f�g) 2 [[P]] ^ � =2 �(s)g[f(u; s_(s 0 + t);X ) j (u; s_h(t ; �)i;X < t [ [0 ; t)� f�g 2 [[P]]^ � =2 �(s)^ 9 v � (v ; s 0;X � t) 2 [[Q]]g17



[[P [> Q]] = f(u; s;X ) j (u; s;X ) 2 [[P]] ^9 v � u; v � end(s;X ) � (v ; hi;X ) 2 [[Q]]g[f(u; s_s 0;X ) j 9(uP ; s;XP) 2 [[P]]; (uQ ; s 0;X ) 2 [[Q]] �XP = X < uQ ^ end(s) � uQ ^ u = min(uP ; uQ)gTo give a semantics to recursively de�ned processes, we impose a metric spacestructure on TML. De�neS < t = f(u; s;X ) j (u; s;X ) 2 S ; u < t ; end(s;X ) < tg[f(1; hi;X ) j (t 0; hi;X ) 2 S ; end(X ) < t � t 0gd(S1 ;S2 ) = inff2�t j S1 < t = S2 < tgTheorem 1.9 The distance function d is a metric on TML, and (d ;TML) is acomplete metric space. 2The body of a recursive de�nition Y := Q is a function from Y to Q which we requireto be time guarded. The mapping on TML corresponding to this function is acontraction mapping. By Banach's �xed point theorem [Sut75] this mapping hasa unique �xed point, since TML is a complete metric space. Full details of thisargument are presented in [DaS93].The semantics of P := Y where Y = Q is de�ned to be the unique �xed point of thecontraction mapping corresponding to Q.A note on the structure of timed refusalsTimed refusals are carefully de�ned to be left-closed and right-open, so refusal in-formation has the form [b; e)� A. This decision re
ects the way in which processesmake events available. For a context to discover that events are being refused bya process, the context must itself o�er them, and the transition system de�ned forBasic ET-LOTOS has the property that events are always made available at some�rst point in time, so we may as well record refusal information as being closedat the bottom. In fact, if we allow refusal information based on open intervals aswell, then we may end up distinguishing processes that cannot be told apart in anycontext. Consider the following:P1 := (i ; af0g ; stop [] i ; b ; stop [] i ; bf0g ; stop)P2 := i ; ((af0g ; stop |[ a ]| if1g ; a ; stop) [] b ; stop)18



Each of these processes performs its �rst event (internal) at time 0 . Each canperform a at time 0 only, and can perform b at any time. Each can refuse b at time0 provided a is not refused at that time; and each can refuse b at any time after time0 . In fact, they have the same failure triples, and no context can distinguish them.However, if we were to allow refusal information also in terms of open intervals, thenwe would expect (0 ; hi; [0 ; 1 )� fag [ (0 ; 1 )� fbg) to be exhibited by the P1, butnot by P2, which can exhibit only (0 ; hi; [0 ; 1 )� fag [ [�; 1 )� fbg) for arbitrarilysmall � > 0 . Thus we would distinguish processes that no context can distinguish.The reason for using right-open intervals is more pragmatic: no new informationwould be gained by including right-closed intervals, again because of the propertythat events are always enabled at �rst instants. If a refusal [b; e]� A is possible fora process, then there will always be some � > 0 for which [b; e + �)� A is also arefusal; the events in A will not be enabled until some positive time after e. Henceincluding refusal information based on closed intervals yields no new informationabout a process.If events need not become enabled at particular instants, but may become enabledstrictly after some instant, then we will need to record other kinds of refusal infor-mation. In Full ET-LOTOS, a selection predicate is permitted to restrict the timesat which events may occur, so for example the construction b @ t[t > 0] ; stop al-lows b to occur at any time after time 0 ; there is no moment at which it becomesavailable. In fact, depending on the freedom one is allowed in the predicate, inter-vals may not be suitable at all (for example, if a is permitted to occur only at arational time) and it seems that the appropriate refusal sets will have signi�cantlyless structure, perhaps ranging over arbitrary sets of timed events. In any case,contexts can now be constructed that make �ner distinctions. For example, thecontext for Yhide fa; bg in ((a ; stop [] b @ t[t > 0] ; stop [] �2 ! ; stop) |[ a; b]| Y)|[fg ]| �1 i ; stopcan distinguish P1 (which will allow an ! to be performed) from P2 (which willnot).Comparison with weak bisimulationWeak timed bisimulation is an equivalence relation de�ned on processes to abstractaway from internal events. The de�nition in [LeL94] is as follows:P d�!�Q i� P d1�! d2�! : : : dn�! Q where d = �ni=1 diP d==) Q i� P( i�! )� d1�!� ( i�! )� : : : dn�!� ( i�! )�Q where d = �ni=1di19



P a==) Q i� P( i�! )� a�! ( i�! )�QP "==) Q i� P( i�! )�QThen a relation R is a weak timed bisimulation if and only if whenever B1 R B2then for any �:1. if B1 �==) B 01 then there is some B 02 such that B2 �==) B 02 and B 01 R B 022. if B2 �==) B 02 then there is some B 01 such that B1 �==) B 01 and B 01 R B 02Weak timed bisimulation equivalence is incomparable with failure triple congru-ence. For example, the processes a ; stop and i ; a ; stop are weak timed bisimu-lation equivalent, but have di�erent failure triples: for example the failure triple(1 ; h(1 ; a)i; fg) is a possible behaviour of the �rst process, but not of the second(since the time value must be 0 with such a trace).However, weak timed bisimulation congruence will be stronger than failure tripleequivalence, as will be illustrated by the following examples, where pairs of processesare exhibited which have the same failure triple sets, but are not bisimilar.Consider the following pair of processes:P1 := (i ; �3 af5g ; stop) [] (i ; �3 bf5g ; stop)P2 := i ; �3 ((i ; af5g ; stop) [] (i ; bf5g ; stop))Each of P1 and P2 will nondeterministically o�er either an a or a b over the interval[3 ; 8 ], so they have the same failure triple semantics. But P1 resolves the choice attime 0 , whereas P2 does not resolve the choice until time 3 , so it can allow threeunits of time to pass (performing only its internal transition at time 0 ) and reacha state from which both a and b are possible; this delay cannot be matched by P1.This next pair of processes also have the same failure triple sets|no context candistinguish them|but they are not bisimilar.P3 = i ; stop [] i ; a ; stopP4 = P3 [] i ; af2g ; stopThe process P3 nondeterministically chooses either to deadlock immediately, or too�er the event a until it is accepted. Process P4 has these same choices, but mayalso choose to o�er a for two units of time only. This is a transition that cannot bematched by P3. 20



A standard example from untimed process algebra also illustrates the fact thatfailures equivalence is weaker than weak timed bisimulation congruence. Considerthe following pair of processes:P5 = i ; af4g ; stop [] i ; bf4g ; stopP6 = P5 [] i ; (af4g ; stop [] bf4g ; stopThe �rst process o�ers either an a or a b event for four units of time. The secondmay o�er either of these, or else may o�er its environment the choice of both. Theyare not bisimilar: P6 can reach a state in which both a and b are o�ered, and P5can reach no similar state. Again, no context can distinguish these processes.UrgencyThe model TML does not handle the phenomenon of `urgency' or forcing of events,where events must occur by some particular time. Urgent events can be modelledin ET-LOTOS by judicious use of timestops: the process a ; P [] timestop wheretimestop := timestop forces the event a to occur at time 0 . However, Leduc andL�eonard do not encourage the use of timestops, and take the view that timestopsare unnecessary in speci�cation.For the denotational semantics, we were careful to forbid non-time-guarded recur-sions, and no timestopping processes can be constructed from the operators of BasicET-LOTOS without such recursive de�nitions. The handling of forced events andtime-stopping processes within a denotational model is a non-trivial extension ofthe model presented here. In the document [BDS94] an adaptation of an earliersignals model is proposed, which includes the modelling of urgent events.As an example of the sorts of di�culties that arise when internal events can bemade urgent, we will examine the urgency operator urge a in P of [BLT94], whichmakes all occurrences of a urgent in process P. This may be used on internal orexternal actions.Consider the two processes below. They have the same failure triples. Each mayo�er nondeterministically either a or b sometime between time 1 and time 3 .P7 := i ; (�1 ; if2g ; a ; stop [] if2g ; �1 ; b ; stop)P8 := i ; (�1 ; if2g ; b ; stop [] if2g ; �1 ; a ; stop)If the internal event is made urgent, then the resulting processes are di�erent:urge i in P7 6= urge i in P821
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