An Overview of Rendering from Volume Data —
including Surface and Volume Rendering

Jonathan C. Roberts®
University of Kent at Canterbury

December 1993

Abstract

Volume rendering is a title often ambiguously used in science. One
meaning often quoted is: ‘to render any three volume dimensional data
set’; however, within this categorisation “surface rendering” is contained.
Surface rendering is a technique for visualising a geometric representation
of a surface from a three dimensional volume data set. A more correct
definition of Volume Rendering would only incorporate the direct visu-
alisation of volumes, without the use of intermediate surface geometry
representations. Hence we state: ‘Volume Rendering is the Direct Visu-
alisation of any three dimensional Volume data set; without the use of an
intermediate geometric representation for isosurfaces’; ‘Surface Rendering
is the Visualisation of a surface, from a geometric approximation of an
isosurface, within a Volume data set’; where an isosurface is a surface
formed from a cross connection of data points, within a volume, of equal
value or density.

This paper is an overview of both Surface Rendering and Volume Ren-
dering techniques. Surface Rendering mainly consists of contouring lines
over data points and triangulations between contours. Volume rendering
methods consist of ray casting techniques that allow the ray to be cast
from the viewing plane into the object and the transparency, opacity and
colour calculated for each cell; the rays are often cast until an opaque
object is ‘hit’ or the ray exits the volume.

1 Introduction

This paper considers the rendering of three-dimensional data — used for the
visualisation of datasets. The methods can be grouped into two: (1) Surface
rendering and (2) Volume rendering; both formally defined above. However
the datasets can be represented in many coordinate systems. These can be
grouped under five headings: Cartesian, regular, rectilinear, curvilinear and
unstructured, as represented in Figure 1. Most of the rendering algorithms we
discuss use Cartesian and regular data sets; for more information on rendering
and visualising rectilinear and curvilinear data refer to reference [WCAR90].
The three-dimensional Cartesian model is often referred to as the cuberille
model. The term cuberille is taken as the three dimension variant of the two
dimensional name: “quadrille”. Herman and Lui [HL79] describe the quadrille
as being two orthogonal sets of parallel lines that are equally spaced; the lines
separate the area into squares. A voxel (or volume element) is one part of a
cuberille. Therefore, the cuberille is made up of equally spaced voxels.

*Sponsored by a grant from the Science and Engineering Research Council (SERC)

Cartesian (i,j,k) Regular (i+dx,j+dy,k+dz) Rectilinear

AR

~
—
REN
Curvilinear Unstructured (usually in triangle sections)

Figure 1: Representations of the data-type groups

o ° 9 4 o —O— —06<
o P ?/ \Q
o o o ° q 50
© D o~ —9——¢&
oo P
° o °© o ?g‘ ——o — - }D
—
o Q d\ /0/
° o o\ > — o’ S T
i e
7I
Contour
Data points Contour Segment

Figure 2: Structured data points forming a contour

2 Surface Rendering

Early methods of visualising three dimensional data used contoured planes,
acting as slices throughout the data, these were usually connected, to produce
a surface, using triangle sections. Sections were originally composed by manual
qualification, later this method progressed to a semi automatic and finally an
automatic decision function. The original idea of the contours came from the
manual drawing of contours on acetates; these acetates were stacked on top of
each other with spacers between them, from this a feeling of the overall volume
could be achieved.

2.1 Finding the (contoured) surface

There are two main data representations, for contoured surfaces (1) a structured
planar representation, where the data points can be sorted into planes, Figure
2, contours can then be easily created and (2) unstructured random data points
— where the points are in a random order, Figure 3.

A surface can be made, over a set of arbitrary spaced points, from a series
of triangulations. These points can be connected, by triangles, in many ways,
however, there are some general algorithms to solve this problem, these are
briefly listed below, usually these algorithms add constraints to the data points
one such constraint is for sets of points to ‘lie” within planes, this specification
is discussed in greater detail.

Figure 3: Unstructured data points, with a corresponding contour

1. A recursive triangular subdivision method can be used to subdivide the
unstructured data into triangles. This continues until a pre-defined limit
is reached.

2. A convex hull can be shrunk over the surface to find the outer points,
these points can then be triangulated to form a surface.

2.2 Surface Rendering from Planar Contours

Planar contours are contours on a particular plane. Throughout this text we
shall use contours to mean one closed loop of ‘contour segments’ on a particu-
lar plane, where a ‘contour segment’ is a straight line between two data points
and the planes are perpendicular to each other; Figure 2. Two adjacent con-
tours are defined as Py, Py, P» ... Py _1, followed again by Py and likewise for Q:
Qo,Q1,Q2...0Q,_1 hence the contour P and Q) are modulo n and m respectively.
Figure 4.

There are two main problems when producing a surface form a structured
planar contoured data set. These are (1) the correspondence problem and (2)
the Tiling problem.

The Correspondence Problem This problem occurs when a contour
segment on one plane is being created and there are two or more closed contours
on the plane; the problem is “how to produce a contour given a set of points
in particular plane”. Some solutions to this problem are given by Meyers et al.
[MSS92]. His first solution uses elliptical cylinders; that produce contours fitted
with ellipses; his second solution uses a cost spanning tree that links the contours
together in adjacent sections, a graph is used to find the best connection for the
contours.

The Tiling Problem This problem describes the problem of “how to join
triangle sections (tiles) together, between the contours, to produce a surface”.
Some, solutions to the tiling problem are explained below.

A tile is defined as three points, ‘two from the P plane and one from Q’
or ‘one from the P plane and two from Q’; this is written as (F;, Py, Q;) or
(Qi, Qr, P;). The problem is to decide the orientation of the next tile, Figure
4, whether the next tile 1s Cy or Cs.

Fuchs [FKU77] strictly specifies the triangle segment, which he nicknames a
“tile” with the following two rules:

1. Each contour segment will be used for exactly one tile.

Right span for tile A
(left span for tile B)

Figure 4: Two Parallel contours

Figure 5: Toroidal Representation

2. A left span of a particular tile will be also used as the right span of another
tile, and visé versa.

2.2.1 Graph theory

Fuchs [FKUT7T7] solves the problem ‘to decide the orientation of the next tile’,
using graph theory, stating: “All acceptable surfaces defined between two con-
tours can be associated with certain cycles in a directed toroidal graph”, see
Figures 5 and 6.

An optimum surface (as described by [FKU77]) corresponds to a ‘minimum
cost acceptable trail” in the toroidal graph. The cost of a trail is the “sum of
the arcs traversed by i1t”. The problem of finding the lowest cost path can be
studied by referring to [Joh77] or [Har69]. Examples of corresponding graphs
and contour parts can be seen in Figures 7 and 8.

2.2.2 Heuristic Methods

The tiling problem can be expressed as a cycle in a directed graph so the solution
can be described by an heuristic function. These describe a path that is a “good”
approximation to the best solution. The word path, in this context, is used to
mean a closed set of traversals from the first through the last vertex to the first

VVVYVVV

N 4
\ 74

\ 74

o~ WwWN P
\ 4

m-1 ——————"1—

Figure 7: Directed Graph for a contour segment

Figure 8: A part of the triangulated contour from the directed graph

vertex; that is, from Vertex Vyp to Vi to Vog. The major heuristic methods
are described below.

Keppel (as described by [GD82]) applies tetrahedron to the points and com-
putes the volume of the tetrahedron at a given vertex point (V;;). If the vertical
tetrahedron volume is larger than the horizontal then the next vertex V; ;41 is
considered; otherwise the arc is marked and the vertex V;4, ; is considered. The
tetrahedra are formed by using extra points: O, or O, which are interior to the
contours. The calculation must be performed on a series of convex or concave
parts — therefore, a lot of pre-processing is required. The Corresponding equa-
tions for the vertical and horizontal tetrahedra volumes are shown in equations
1 and 2 respectively. For more information refer to [GD82].

7 {PiQiQiy10,} (1)

TP {PQj+1Qi0y} (2)

Fuchs [FKU77] describes a method using the area of the tiles. The smallest
area is chosen. This works best with a normalisation to the unit square at the
origin.

Christianson [CS78] describes a heuristic using the length of a span as the
appropriate heuristic weight, the span can either be the left or the right span,
defined on Figure 4. The smaller span is chosen. Christianson’s heuristic, as
stated by Ganapathy [GD82] works best on contour pairs that are “coherent
in shape and mutually centered”, the centering and coherency can be achieved
by a normalisation from a transformation to the unit square at the origin.

Ganapathy’s heuristic determines the next contour by considering the cu-
mulative addition of previous weights and the new possible weights. A weight
of a contour tile is defined as the circumference of a normalised tile divided
into the length of the contour segment. The next contour can either be the
vertical or horizontal contour, both the horizontal and vertical weights are ac-
cumulated into two separate running scores and the decision regarding the next
tile is taken so that, in an optimum triangulated surface, the difference between
these scores is minimised. For an optimum surface the difference between these
scores is zero. Therefore, this produces a good approximate to the optimum
triangulated surface.

2.3 Surface Rendering in Cuberille Space

Another method of surface rendering uses the cuberille model. In the Cuberille
Space the data points can be thought of as values with a surrounding cube or
voxel (volume element). The image surface is created from a group of shaded
voxel surfaces. The voxels representing the object can be formed by thresholding
the data-space, each voxel is therefore either inside the required object threshold
or outside the threshold. Therefore, a piece of the surface is created at the
boundary of an inside voxel and an outstde voxel. This, however, does produce
a blocky image; but can be filtered and smoothed in the image space. Figure
9 shows an example of an object represented by boundary pieces in cuberille
space.

Artzy, Freider and Herman [AFHS81] create a list of all the voxels inside the
object (by thresholding the data) then, by a breadth first search (on connectivity
—from a directed graph) they create a connected component for the surface that
they render using a Z—-buffer technique. This technique requires an initial seed
position on the surface.

Figure 9: An Object in Cuberille Space

Herman and Liu [HL79] use the cuberille environment, and the specification
of the data being square and the voxels lying in the same plane, to their advan-
tage. Stating if the centre of a voxel face «r is behind another centre face 3; then
3 completely hides «. This simple phenomenon breaks down when non-square
elements are used. Herman and Liu also use the Z-buffer algorithm, to find
the visible surface and the Warnock algorithm for shading. Their image space
smoothing algorithm uses weighted values on the eight boundary neighbour-
ing pixels; they claim that the whole method was faster than surfaces that are
“composed of triangles at arbitrary orientations; their display requires greater
amount of computer processing than the display of surfaces which are composed
of squares at restricted orientations”.

Gordon and Reynolds [GR85] and also Chen, Reynolds et al. [CRHKS85] dis-
cuss other shading methods within the cuberille model; these include: distance
only shading, gradient shading and constant shading.

2.4 Isosurface — Threshold Methods

As the data can be represented by a series of voxels surrounding each data
point, so the data can be represented as being the vertices of a voxel. In this
representation a surface cuts through the voxel. The orientation of the surface
can be estimated by the in and out nature of the 8 vertices. Lorensen et al.
[LC87] created a large major case lookup table to define how a surface cuts
through a given cube, from vertex information and termed this method the
“Marching Cubes” algorithm.

As with the cuberille approach the data is thresholded. Either this threshold
is incorporated into the algorithm (as in the Marching Cubes [LC87]) or the
whole data set can be pre-processed and the relevant data extracted [VMW83].

Vannier et al. [VMW83] use a pre-processing method on Computed (Ax-
ial) Tomography (CT) scans for “... Cranofacial Surgical Planning and Eval-
uation”. CT scans are formed from a computer comparing the absorption of
X-rays through different planes of a patients body. Different materialsin a body

absorb differing amounts of X-rays.

Vannier divides each of the individual slices into separate files; these files
are filtered through the threshold value. The processed threshold data is saved
to file in the same CT format. The files can be read by imaging technology
designed for CT scans. Vannier uses contours and an interactive CAD system
to produce life-size displays that can be measured and altered by surgeons —
therefore, aiding the surgeons in their calculations for operations. Contouring
over CT scans is relatively simple, because the scans are; by nature of the
scanning device, planar.

Marching cubes is an algorithm that calculates surfaces that are of equal
density — an isosurface. There are two stages to the algorithm:

1. to find the surface that is required by the user. This is specified by a
threshold value. Corresponding triangles are then created and joined to
make a ‘surface’.

2. the second stage calculates the normals at the vertex of each of the trian-
gles. These are then used to produce Gouraud shaded objects.

The algorithm determines the surface by deciding how the surface intersects
a given cube. Lorensen and Cline [LC87] have worked out that a surface can
intersect a cube in 256 (2%) ways — this can be broken down into 14 cases if
topology and rotational symmetry are considered, Figure 10. The whole 256
ways are stored in a ‘cube table’.

The Marching cubes algorithm decides, at a given cube, whether the surface
intersects that cube. If no intersection occurs the cube is either totally outside
the surface, or totally within the surface and case zero is assigned. If there is
an intersection one of the 256 cubes is assigned to that particular voxel. The
next cube is ‘marched’ upon.

The eight densities, at the vertices of a cube, are filtered to the threshold
value and are used as an index into the ‘cube table’. The exact positions,
of the intersections, of the surface pieces are found by linear interpolation of
the densities. The final preparation stage calculates a normal at each triangle
vertex. The triangulated surfaces are rendered by an appropriate renderer.

The “Marching Cubes” algorithm uses a lookup table of 256 values, however,
this table is created from the “major surface cases”, there are many ways of
placing a surface through a cube governed by the vertices. The major cases
can create features in the rendered image that were not in the original and
visé versa. These features are produced by the ambiguities that are inherently
present when placing a surface through an object (a cube) and using only vertex
(neighbour) information. The worst case is the ambiguity caused by the parallel
case, Figure 11. The major case lookup table (from Lorensen) describes the
correct configuration in Figure 11 to be case A, however this need not always
be the correct case.

Wilhelms and Gelder ([WG90]) discuss some of the methods for disam-
biguating the “major case — lookup table”. An ambiguous face, is a face that
contains a possible ambiguous representation — Figure 11. These methods
include:

1. Facial Average — the values at the corners of the cube are averaged for
the ambiguous face and then this value is used to disambiguate the case.

2. Gradient methods — Center pointing gradient — a gradient value, of neigh-
bouring points (outside the cube) are calculated. These values are used to
‘offset’ the actual density values and these new values are used to calculate
(and therefore, disambiguate) the center point of the ambiguous face.

Nagiagusiagta
N gEaQvsgLagta
ORISRt AR .

Figure 10: The fourteen main cube cases

A B C

Figure 11: The worst ambiguity from the “major case” lookup table

The Middle tetrahedra

) Vi :
-
2

/ \
/
/ -

Figure 12: The Tetrahedra orientation within a cube

VT
vy

Figure 13: The triangles for a given tetrahedra

3. Gradient methods — quadratic fit — The underlying gradient function is
represented by a quadratic curve, whose zero points are used to estimate
the sign at the ambiguous point — to choose the correct topology. This
method only works well if the underlying gradient function can be repre-
sented by a quadratic curve.

One slight variation on the “Marching cubes” algorithm can be implemented
when the data points become very close together; when this happens the trian-
gles become very small; therefore, the triangles can be replaced by spheres or
eventually pixels. This method has been named “dividing cubes”.

Another threshold method, can be formed by extending the “marching cubes”
algorithm to use tetrahedra; hence, “Marching Tetrahedra”. The usual config-
uration uses five tetrahedra that fit exactly within a cube. The advantage of
using this topology is that a finer detailed surface is created, however ambi-
guities are still present — because the i1sosurface is created by considering only
neighbour data points. Figure 12. The orientation of each of the triangular
parts for given tetrahedra is shown in Figure 13.

10

3 Volume Rendering

Volume Rendering, as stated before, uses no geometric representations of the
data and usually considers all the voxels in an object for the display of one
view. As Bob Drebin stated .. volumetric data should not be skimmed to
yield only surface renderings” [Fre89], however, renderings of this form (even
with todays technology) tend to be produced at a slower speed than surface
type renderings — although a much higher quality image is produced. When
viewing volume rendered images the user must remember that the drawing
has been created from sampled ‘fuzzy’ data; Surface renderings produce ‘crisp’
images from ‘fuzzy’ datasets, this phenomenon can lead to misinterpretations
of the rendered image; Volume renderings, with transparency, can create the
‘fuzzy’ images.

There are two main subsections to Volume Rendering (1) Backward pro-
jection methods — ray casting techniques (an image space method) and (2)
Forward projection methods (an object space method). This text assumes the
reader understands the basics of ray tracing or ray casting techniques; for more
information refer to [WW92, FvDFJ90]. Ray tracing follows each ray from
the image plane through the model space to find the contribution of the model
to a particular pixel. The projection method is the opposite of ray tracing —
tracing the model to the image plane; each point is accumulated at the current
pixel point. The projection methods can be achieved in either “front-to-back”
or “back-to-front” order.

With surface based methods, as described above, some form of threshold
value 1s used to create an approximation of a surface; the threshold method
often creates extra spurious surface parts, not in the original; or misses parts
(holes) in the surface, that were in the original model. These are known as false
negatives and false positives. This phenomenon can be overcome, to a certain
extent, by using Volume Rendering Techniques.

3.1 Backward Projection — From Clouds to Volume Ren-
dering

From browsing the literature, it can easily be seen that Blinn’s cloud model
[Bli&2] for ray tracing particles in clouds sparked off a growth of ray tracing
literature for Volume rendering. Blinn’s cloud model used a volume (of width T)
filled with particles representing a cloud. The brightness of the cloud depended
upon the amount of particles that are ‘lit” by the rays of light; as the particles
are small they are not individually seen. Blinn states four main participants in
the calculation.

1. Phase functions (based on the phase angle) that is the value of the bright-
ness of a particular particle depending on the viewing angle.

2. Albedo — this is the proportion of reflected light corresponding to the
amount of light hitting the particle

3. Scattering — each particle will only be seen if there are no other particles
in the line of sight, of either the incoming or outgoing ray of light.

4. Transparency — this is the amount of light that manages to penetrate
the clouded volume without being reflected off any particles. This is the
amount of light that can be seen through the image.

11

RGB or
Opacity \/

Figure 14: Examples of possible transfer functions

3.2 Backward Projection — Ray tracing including Opac-
ity

Mark Levoy [Lev88] discusses a method to produce surfaces from volume data
using a ray tracing technique. His method is split into several stages so process-
ing, after alterations, can be kept to a minimum. He also uses look-up table for
the opacity and transparency values. There are two basic pre-processing phases:

1. The data array is used as the input to the shading model. A colour is
associated with each data point and the Phong Shading method is used.
The shading stage produces another array of “voxel colours”.

2. The opacities of the data set (from the original array) are found. The
opacity value can be assigned in one of many ways, to produce an isosur-
face at a given intensity:

a. by using a single, simple, threshold density.

b. using a window threshold.

however, both these methods can produce results that have missing surface
patches and/or additional surface patches that are not contained within
the original data. A better method is:

c. to assign a variable opacity value to the voxels. The voxels in the ar-
ray with the required colour are given the maximum opacity and the
remainder are assigned a value of opacity depending on the closeness
of the actual colour value inversely proportional to the local gradient
vector.

The variable opacity values allow, by accumulating the opacities, more
than one isosurface to be displayed in one picture.

After the pre-processing steps the rays are cast into these two arrays. The
rays are sampled at even spaces along the arrays and tri-linear interpolation
is used to compare the opacity and colour values at the regular points. The
compositing phase acts in a back-to-front order.

Within CT scans the data can be imagined as layers from an onion — the
skin layer followed by a liquid layer followed by a bone layer, — each material
can be assigned an exact opacity value and the intermediate layers can be defined
intermediate values. Also, if the bone layer is the only required viewing layer
then this surface can be allocated a high opacity value.

Levoy, also proposes ways of increasing the image quality, he achieves this
by supersampling — interpolating the data points to create intermediate points,
this reduces the aliasing artifacts, but increases computational expenses.

Upson and Keeler [UKB88] present a ray casting method (and a projection
method); here they use transfer functions to map opacity values to the relevant
density values; this relationship may be smooth or discontinuous, Figure 14.

12

Each ray is cast into the volume, as the “visible volume detector”. At
regular intervals, along the path, a scalar value is calculated by tri-linearly
interpolating the eight nearest values; this re-sampling method is similar to
Levoy’s method [Lev88]. This new scalar value, at each discrete point, is used
with the appropriate transfer function to calculate the transparency/opacity,
colour, shading and texture at that point; the values are integrated as the
volume is traced. The key to this work is to treat the original data as ‘non-
discrete data’, and tri-linearly interpolating neighbouring data points.

When the required opacity is exceeded the exact position of the maximum
opacity value is calculated and the next ray is cast into the volume.

A variation on this general ray casting theme is presented by Sabella [Sab88].
Here, Sabella uses a Density Emitter which is a function that he states: “models
the density of particles, not the particles themselves”, and “can be regarded
as a continuous function”. This idea is similar to Blinn’s method [Bli82].
The intensity of the light reaching the eye, in Sabella’s method, allows varying
densities where as Blinn’s method is fixed. The Brightness equation is listed in
equation 3. He states, the density p(z,y, z) emits an energy of Cp and absorbs
an energy of 7p per unit length. A diagram of an example volume, with one ray
cast and the peak values encountered along the ray are shown in Figure 15.

12 _r o
Brightness :/ e f’l g (A)Mpv(t)ét (3)
t1

) Density field.
p(x(t),y(t),2(t)) Parameterised density field.
t)

p(Short-hand of, above, density field.
v Parameter to control density spread.
M Maximum, — Peak value encountered along ray.
where: t1...ta Start and end voxel on the path of the ray.

D Distance, at which the peak value is encountered.
C Center of gravity.
7 Parameter value to adjust the rate of attenuation.

Attenuation along the ray due to the density field.

3.3 Forward Projection methods

Upson and Keeler [UK88] also describe a forward projection that they named
the cell-by-cell method. This is similar to the ray casting method in that the
opacity, colour and shading values are calculated from the transfer functions
and the scalar values, but the “visible volume detector” 1s based on a projection
or scan line method.

This technique is similar to the Z-buffer algorithm. Each cell is scanned
completely before moving onto the next cell. Many scan lines are applied to
a single cell; on a particular scan line an intersection polygon is created; this
is broken down into smaller polygons (called spans — when projected onto the
image plane), intergration is used (from tri-linear interpolated values) to find
the average contribution to each pixel in each scan line. The correct colour
opacity is calculated and after a whole cell has been processed the next cell is
scanned. The method progressively displays the view on the screen — the front
most pixels are displayed first followed by the more distant pixels in each plane.

Shirley and Tuchman [ST93] discuss a similar method to the cell-by-cell
method. They use a method that transforms all the data into tetrahedra pieces;
each tetrahedra piece is allocated a transparency and colour value depending on

13

Centre of Gravity

T

Figure 15: Histogram of densities along a ray-traced path

the position and distance from the viewer. The pieces are then scan converted
using a painters algorithm.

Another projection method is described by Drebin et al. [DCHS88] — here
they transform the volume data so the ‘rays’ can be projected into the volume
and onto the image plane, by using a scan line method. This can be achieved at
any angle by using a sequence of four transformations, using the Fuler angles:

0,6,v.
T = P.Z.R.(¢) Ry (9) R (0) (4)

T transform
P, Perspective transformation
Where: R, rotation about Z axis
R, rotation about y axis

Drebin uses a two pass image transformation method and mentions a pos-
sibility of generalising this two pass transformation into a three pass image
transformation, this would reduce the amount of resampling stages. A Three
Pass image transformation method (based on Drebin’s proposal) is explained
by Hanrahan [Han90]. Hanrahan claims, referring to the two pass techniques
in Drebin [DCHS88] that the three pass transformations are “more efficient in
time and produce higher quality results for general views than the techniques
proposed in Drebin et al.”

Drebin also uses a classification model that operates on any volume made
up of a mixture of substances. This calculates the percentage of a particular
material in the voxel, from this the colour value for a particular voxel can be
found. Boundaries can be detected by the change in density — a probabilistic
method is used, taking into consideration the number of materials present in
the whole volume and the percentage of a material in a voxel, to disambiguate
the exact boundaries. A typical material assignment, from Drebin, is shown in
Figure 16.

14

100%

ar fat soft tissue bone

0%

CT number =————--

Figure 16: Examples of possible transfer functions

4 Summary

We have discussed here then main techniques for Rendering Volume data; we
acknowledge this as not being a comprehensive overview. There are some
techniques known as Hybrid Volume Rendering Techniques [Lev90], [RK92],
[VWHVP92]; that allow polygon and volume data to be visualised in one image;
that haven’t been discussed and are useful for displaying a scale or grid (or other
polygon defined objects) over, behind and through the volume data. Below is a
brief review of the main methods discussed.
Surface Rendering methods include:

1. Placing tile pieces between contours require a decision method, to find the
next tile orientation, including;:

(a) graph theory [FKU77].
(b) functions [Joh77] [Har69] [GD8&2] [CST8].

2. Tsosurface (Threshold Methods)

(a) Marching Cubes — which uses a binary threshold on the vertices of a
cube, and a look up table, to decide on the orientation of the surface

through that voxel [LC87].

(b) Marching Tetrahedra — similar to the Marching Cubes algorithm but
the cubes are broken into five tetrahedra.

(¢) Dividing Cubes — where the cube topology is transferred into points
instead of triangles.

Volume Rendering Methods include:
1. Backward Projection methods — Ray Casting

Ray Tracing including opacity [UK88] [Lev88] [Sab88] [Bli82]
2. Forward Projection methods

(a) Cell-by-Cell method — scan the cells like a Z-buffer algorithm [UK88].

(b) Volume Transformation — transform the volume so the voxels are per-
pendicular to the viewing angle - then scan the cells [Han90] [DCHS88]

5 Conclusion
From reading manuscripts, there seems to be a distinct argument between Sur-

face Rendering and Volume Rendering techniques; that one produces false pos-
itives and negatives and the measurements cannot be taken from the other. We

15

propose that neither one technique is overall better — they both have major
disadvantages and advantages — so different techniques should be used for the
visualisation of a data set.

With Surface Rendering (and Volume Rendering at an isosurface) exact mea-
surements are possible; with these methods an overall understanding of the im-
age is difficult to grasp; however, with a transparent Volume Rendered image
an overview of the data can be easily grasped. Surface rendered images take
less time to compute than Volume Rendered images however the image quality
is usually greater in Volume rendered images. Quality verses production time
is a usual comparison and with certain visualisations (especially medical), a
lower quality image could cause mis-interpretation of the data which could be
very severe. To aid disambiguity of the object, interaction should be available;
including viewing from different angles, cutting planes and exploring the image
in real time.

The author suggests that both Volume and Surface Rendering techniques
should be coincidentally used: Volume Rendering to create an overall impression
of the three-dimensional view and Surface rendering for an ‘exact view’ at a
particular isosurface.

References

[AFHS81] E. Artzy, G. Frieder, and G. T. Herman. The theory design, imple-
mentation and evaluation of a three-dimensional surface detection
algorithm. Computer Graphics and Image Processing, 15:1-24,
1981.

[Blig&2] J.F. Blinn. Light reflection functions for simulation of clouds
and dusty surfaces. [EEFE Computer Graphics '82 Proceedings,
16(3):21-29, 1982.

[CRHK85] L.S. Chen, R.A. Reynolds, G.T. Herman, and J. K. Kdupa. Surface
shading in the cuberille environment. [EEE Computer Graphics
and Applications, 5(12):33-43, December 1985.

[CST78] H.N. Christianson and T.W. Sederberg. Conversion of complex
contour line definitions into polygonal element mosaics. Computer

Graphics SIGGRAPH Proceedings, 12:187-192, 1978.

[DCHSS] R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.
Computer Graphics, 22(4):65-74, 1988.

[FKU7T] H. Fuchs, Z.M. Kedmen, and S.P. Uselton. Optimal surface recon-
struction for planar contours. CACM, 12(3):69-75, 1977.

[Fre89] K.A. Frenekl. Volume rendering. Communications of the ACM,
32(4):426-435, 1989.

[FvDFJ90] J. Foley, A. van Dam, S. Feiner, and Hughes J. Computer Graph-
ics — Principles and Practice (Second Edition). Addison-Wesley
Systems Programming Series, 1990.

[GD82] S. Ganapathy and T.G. Dennehy. A new general triangulation
method for planar contours. Computer Graphics SIGGRAPH Pro-
ceedings, 16:69-75, 1982.

16

[GRS5]

[Han90]

[Har69]

[HL79]

[Joh77]

[LC87]

[Lev88]

[Lev90]

[MSS92]

[RK92]

[Sab8s]

[ST93]

[UKSS]

[VMWS83]

[VWHVP92]

[WCAR90]

D Gordon and R.A. Reynolds. Image space shading of 3-
dimensional objects. Computer Graphics and Image Processing,

29(3):361-376, March 1985.

P. Hanraham. Three-pass affine transformations for volume ren-

dering. Computer Graphics, 24(5):71-76, 1990.
F Harary. Graph Theory. Addison-Wesley, 1969.

G.T. Herman and H.K. Liu. Three-dimensional display of human
organs from computed tomograms. IEEE, Computer Graphics and

Applications, 9(1):1-21, 1979.

Johnson. Efficient algorithms for shortest paths in sparse networks.

ACM, 24(1):1-13, January 1977.

E.W. Lorensen and H.E. Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. ACM Computer Graphics,
21(4):163-169, 1987.

M. Levoy. Volume rendering — visible volume rendering. Computer

Graphics and Applications, 8(3):29-37, 1988.

M. Levoy. Volume rendering — a hybrid ray tracer for rendering
polygon and volume data. TEEE Computer Graphics and Applica-
tions, (3):33-40, 1990.

D. Meyers, S. Skinner, and K. Sloan. Surfaces from contours. ACM
transactions on Graphics, 11(3):228-258, 1992.

K. Roang and M. Kanagasabai. Four methods for the combined
visualisation of volume data and geometric objects. Book: “Ad-
vances in Scientific Visualisation” Springer-Verlag, Fds. Post,F. H
and Hin,A.J.S, pages 97-104, 1992.

P. Sabella. A rendering algorithm for visualizing 3-d scalor fields.
Computer Graphics, 22(4):51-58, 1988.

S. Shirley and A. Tuchman. A polygonal approximation to direct
scalor volume rendering. Computer Graphics, 24(5):63-70, 1993.

C. Upson and M. Keeler. V-buffer — visible volume rendering.
Computer Graphics, 22(4):59-64, 1988.

M.W. Vannier, F.L.. Marsh, and J.O. Warren. Three dimensional
computer graphics for craniofacial surgical planning and evalua-
tion. Computer Graphics SIGGRAPH Proceedings, 17(3):263-273,
1983.

T. van Walsum, A.J.S Hin, J. Versloot, and F.H Post. Efficient
hybrid rendering of volume data and polygons. Book: “Advances
wm Scientific Visualisation” Springer-Verlag; Eds. Post,F.H and
Hin,A.J.5, pages 83-96, 1992.

J. Wilhelms, J. Challinger, N. Alper, and S. Ramamoorthy. Di-
rect volume rendering of curvilinear volumes. Computer Graphics,

24(5):41-47, 1990.

17

[WG90] J. Wilhelms and A. Van. Gelder. Topological considerations in
isosurface generation — extended abstract. Computer Graphics,

24(5):79-86, 1990.

[WW92] A. Watt and M. Watt. Advanced Animation and Rendering Tech-
niques — Theory and Practice. Addison-Wesley, 1992.

18

