
An Overview of Rendering from Volume Data |including Surface and Volume RenderingJonathan C. Roberts�University of Kent at CanterburyDecember 1993AbstractVolume rendering is a title often ambiguously used in science. Onemeaning often quoted is: `to render any three volume dimensional dataset'; however, within this categorisation \surface rendering" is contained.Surface rendering is a technique for visualising a geometric representationof a surface from a three dimensional volume data set. A more correctde�nition of Volume Rendering would only incorporate the direct visu-alisation of volumes, without the use of intermediate surface geometryrepresentations. Hence we state: `Volume Rendering is the Direct Visu-alisation of any three dimensional Volume data set; without the use of anintermediate geometric representation for isosurfaces'; `Surface Renderingis the Visualisation of a surface, from a geometric approximation of anisosurface, within a Volume data set'; where an isosurface is a surfaceformed from a cross connection of data points, within a volume, of equalvalue or density.This paper is an overview of both Surface Rendering and Volume Ren-dering techniques. Surface Rendering mainly consists of contouring linesover data points and triangulations between contours. Volume renderingmethods consist of ray casting techniques that allow the ray to be castfrom the viewing plane into the object and the transparency, opacity andcolour calculated for each cell; the rays are often cast until an opaqueobject is `hit' or the ray exits the volume.1 IntroductionThis paper considers the rendering of three-dimensional data { used for thevisualisation of datasets. The methods can be grouped into two: (1) Surfacerendering and (2) Volume rendering; both formally de�ned above. Howeverthe datasets can be represented in many coordinate systems. These can begrouped under �ve headings: Cartesian, regular, rectilinear, curvilinear andunstructured, as represented in Figure 1. Most of the rendering algorithms wediscuss use Cartesian and regular data sets; for more information on renderingand visualising rectilinear and curvilinear data refer to reference [WCAR90].The three-dimensional Cartesian model is often referred to as the cuberillemodel. The term cuberille is taken as the three dimension variant of the twodimensional name: \quadrille". Herman and Lui [HL79] describe the quadrilleas being two orthogonal sets of parallel lines that are equally spaced; the linesseparate the area into squares. A voxel (or volume element) is one part of acuberille. Therefore, the cuberille is made up of equally spaced voxels.�Sponsored by a grant from the Science and Engineering Research Council (SERC)1

Cartesian (i,j,k) Regular (i+dx,j+dy,k+dz)

Unstructured (usually in triangle sections)Curvilinear

Rectilinear

Figure 1: Representations of the data-type groups
Data points Contour Segment

Contour

P

QFigure 2: Structured data points forming a contour2 Surface RenderingEarly methods of visualising three dimensional data used contoured planes,acting as slices throughout the data, these were usually connected, to producea surface, using triangle sections. Sections were originally composed by manualquali�cation, later this method progressed to a semi automatic and �nally anautomatic decision function. The original idea of the contours came from themanual drawing of contours on acetates; these acetates were stacked on top ofeach other with spacers between them, from this a feeling of the overall volumecould be achieved.2.1 Finding the (contoured) surfaceThere are two main data representations, for contoured surfaces (1) a structuredplanar representation, where the data points can be sorted into planes, Figure2, contours can then be easily created and (2) unstructured random data points| where the points are in a random order, Figure 3.A surface can be made, over a set of arbitrary spaced points, from a seriesof triangulations. These points can be connected, by triangles, in many ways,however, there are some general algorithms to solve this problem, these arebrie
y listed below, usually these algorithms add constraints to the data pointsone such constraint is for sets of points to `lie' within planes, this speci�cationis discussed in greater detail. 2

Figure 3: Unstructured data points, with a corresponding contour1. A recursive triangular subdivision method can be used to subdivide theunstructured data into triangles. This continues until a pre-de�ned limitis reached.2. A convex hull can be shrunk over the surface to �nd the outer points,these points can then be triangulated to form a surface.2.2 Surface Rendering from Planar ContoursPlanar contours are contours on a particular plane. Throughout this text weshall use contours to mean one closed loop of `contour segments' on a particu-lar plane, where a `contour segment' is a straight line between two data pointsand the planes are perpendicular to each other; Figure 2. Two adjacent con-tours are de�ned as P0; P1; P2 : : :Pm�1, followed again by P0 and likewise for Q:Q0; Q1; Q2 : : :Qn�1 hence the contour P and Q are modulo n and m respectively.Figure 4.There are two main problems when producing a surface form a structuredplanar contoured data set. These are (1) the correspondence problem and (2)the Tiling problem.The Correspondence Problem This problem occurs when a contoursegment on one plane is being created and there are two or more closed contourson the plane; the problem is \how to produce a contour given a set of pointsin particular plane". Some solutions to this problem are given by Meyers et al.[MSS92]. His �rst solution uses elliptical cylinders; that produce contours �ttedwith ellipses; his second solution uses a cost spanning tree that links the contourstogether in adjacent sections, a graph is used to �nd the best connection for thecontours.The Tiling Problem This problem describes the problem of \how to jointriangle sections (tiles) together, between the contours, to produce a surface".Some, solutions to the tiling problem are explained below.A tile is de�ned as three points, `two from the P plane and one from Q'or `one from the P plane and two from Q'; this is written as (Pi; Pk; Qj) or(Qi; Qk; Pj). The problem is to decide the orientation of the next tile, Figure4, whether the next tile is C1 or C2.Fuchs [FKU77] strictly speci�es the triangle segment, which he nicknames a\tile" with the following two rules:1. Each contour segment will be used for exactly one tile.3

(left span for tile B)
Right span for tile A

C2

C1
B

A

Pj+1Pj

m-1

n-1

Qi+1
Qi

Q

P

Figure 4: Two Parallel contours
Figure 5: Toroidal Representation2. A left span of a particular tile will be also used as the right span of anothertile, and vis�e versa.2.2.1 Graph theoryFuchs [FKU77] solves the problem `to decide the orientation of the next tile',using graph theory, stating: \All acceptable surfaces de�ned between two con-tours can be associated with certain cycles in a directed toroidal graph", seeFigures 5 and 6.An optimum surface (as described by [FKU77]) corresponds to a `minimumcost acceptable trail' in the toroidal graph. The cost of a trail is the \sum ofthe arcs traversed by it". The problem of �nding the lowest cost path can bestudied by referring to [Joh77] or [Har69]. Examples of corresponding graphsand contour parts can be seen in Figures 7 and 8.2.2.2 Heuristic MethodsThe tiling problem can be expressed as a cycle in a directed graph so the solutioncan be described by an heuristic function. These describe a path that is a \good"approximation to the best solution. The word path, in this context, is used tomean a closed set of traversals from the �rst through the last vertex to the �rst4

Figure 6: Directed graph of the toroidal representation
5

0 1 2 3 4 5

m-1

4
3
2

1

n-1

Figure 7: Directed Graph for a contour segment
5

4

321

0

5
4

32
1

0

Figure 8: A part of the triangulated contour from the directed graph5

vertex; that is, from Vertex V00 to Vnm to V00. The major heuristic methodsare described below.Keppel (as described by [GD82]) applies tetrahedron to the points and com-putes the volume of the tetrahedron at a given vertex point (Vij). If the verticaltetrahedron volume is larger than the horizontal then the next vertex Vi;j+1 isconsidered; otherwise the arc is marked and the vertex Vi+1;j is considered. Thetetrahedra are formed by using extra points: Op or Oq which are interior to thecontours. The calculation must be performed on a series of convex or concaveparts | therefore, a lot of pre-processing is required. The Corresponding equa-tions for the vertical and horizontal tetrahedra volumes are shown in equations1 and 2 respectively. For more information refer to [GD82].T vi;j fPjQiQi+1Opg (1)T hi;j fPjQj+1QiOqg (2)Fuchs [FKU77] describes a method using the area of the tiles. The smallestarea is chosen. This works best with a normalisation to the unit square at theorigin.Christianson [CS78] describes a heuristic using the length of a span as theappropriate heuristic weight, the span can either be the left or the right span,de�ned on Figure 4. The smaller span is chosen. Christianson's heuristic, asstated by Ganapathy [GD82] works best on contour pairs that are \coherentin shape and mutually centered", the centering and coherency can be achievedby a normalisation from a transformation to the unit square at the origin.Ganapathy's heuristic determines the next contour by considering the cu-mulative addition of previous weights and the new possible weights. A weightof a contour tile is de�ned as the circumference of a normalised tile dividedinto the length of the contour segment. The next contour can either be thevertical or horizontal contour, both the horizontal and vertical weights are ac-cumulated into two separate running scores and the decision regarding the nexttile is taken so that, in an optimum triangulated surface, the di�erence betweenthese scores is minimised. For an optimum surface the di�erence between thesescores is zero. Therefore, this produces a good approximate to the optimumtriangulated surface.2.3 Surface Rendering in Cuberille SpaceAnother method of surface rendering uses the cuberille model. In the CuberilleSpace the data points can be thought of as values with a surrounding cube orvoxel (volume element). The image surface is created from a group of shadedvoxel surfaces. The voxels representing the object can be formed by thresholdingthe data-space, each voxel is therefore either inside the required object thresholdor outside the threshold. Therefore, a piece of the surface is created at theboundary of an inside voxel and an outside voxel. This, however, does producea blocky image; but can be �ltered and smoothed in the image space. Figure9 shows an example of an object represented by boundary pieces in cuberillespace.Artzy, Freider and Herman [AFH81] create a list of all the voxels inside theobject (by thresholding the data) then, by a breadth �rst search (on connectivity{ from a directed graph) they create a connected component for the surface thatthey render using a Z{bu�er technique. This technique requires an initial seedposition on the surface. 6

Figure 9: An Object in Cuberille SpaceHerman and Liu [HL79] use the cuberille environment, and the speci�cationof the data being square and the voxels lying in the same plane, to their advan-tage. Stating if the centre of a voxel face � is behind another centre face �; then� completely hides �. This simple phenomenon breaks down when non-squareelements are used. Herman and Liu also use the Z{bu�er algorithm, to �ndthe visible surface and the Warnock algorithm for shading. Their image spacesmoothing algorithm uses weighted values on the eight boundary neighbour-ing pixels; they claim that the whole method was faster than surfaces that are\composed of triangles at arbitrary orientations; their display requires greateramount of computer processing than the display of surfaces which are composedof squares at restricted orientations".Gordon and Reynolds [GR85] and also Chen, Reynolds et al. [CRHK85] dis-cuss other shading methods within the cuberille model; these include: distanceonly shading, gradient shading and constant shading.2.4 Isosurface | Threshold MethodsAs the data can be represented by a series of voxels surrounding each datapoint, so the data can be represented as being the vertices of a voxel. In thisrepresentation a surface cuts through the voxel. The orientation of the surfacecan be estimated by the in and out nature of the 8 vertices. Lorensen et al.[LC87] created a large major case lookup table to de�ne how a surface cutsthrough a given cube, from vertex information and termed this method the\Marching Cubes" algorithm.As with the cuberille approach the data is thresholded. Either this thresholdis incorporated into the algorithm (as in the Marching Cubes [LC87]) or thewhole data set can be pre-processed and the relevant data extracted [VMW83].Vannier et al. [VMW83] use a pre-processing method on Computed (Ax-ial) Tomography (CT) scans for \... Cranofacial Surgical Planning and Eval-uation". CT scans are formed from a computer comparing the absorption ofX-rays through di�erent planes of a patients body. Di�erent materials in a body7

absorb di�ering amounts of X-rays.Vannier divides each of the individual slices into separate �les; these �lesare �ltered through the threshold value. The processed threshold data is savedto �le in the same CT format. The �les can be read by imaging technologydesigned for CT scans. Vannier uses contours and an interactive CAD systemto produce life-size displays that can be measured and altered by surgeons |therefore, aiding the surgeons in their calculations for operations. Contouringover CT scans is relatively simple, because the scans are, by nature of thescanning device, planar.Marching cubes is an algorithm that calculates surfaces that are of equaldensity | an isosurface. There are two stages to the algorithm:1. to �nd the surface that is required by the user. This is speci�ed by athreshold value. Corresponding triangles are then created and joined tomake a `surface'.2. the second stage calculates the normals at the vertex of each of the trian-gles. These are then used to produce Gouraud shaded objects.The algorithm determines the surface by deciding how the surface intersectsa given cube. Lorensen and Cline [LC87] have worked out that a surface canintersect a cube in 256 (28) ways | this can be broken down into 14 cases iftopology and rotational symmetry are considered, Figure 10. The whole 256ways are stored in a `cube table'.The Marching cubes algorithm decides, at a given cube, whether the surfaceintersects that cube. If no intersection occurs the cube is either totally outsidethe surface, or totally within the surface and case zero is assigned. If there isan intersection one of the 256 cubes is assigned to that particular voxel. Thenext cube is `marched' upon.The eight densities, at the vertices of a cube, are �ltered to the thresholdvalue and are used as an index into the `cube table'. The exact positions,of the intersections, of the surface pieces are found by linear interpolation ofthe densities. The �nal preparation stage calculates a normal at each trianglevertex. The triangulated surfaces are rendered by an appropriate renderer.The \Marching Cubes" algorithm uses a lookup table of 256 values, however,this table is created from the \major surface cases", there are many ways ofplacing a surface through a cube governed by the vertices. The major casescan create features in the rendered image that were not in the original andvis�e versa. These features are produced by the ambiguities that are inherentlypresent when placing a surface through an object (a cube) and using only vertex(neighbour) information. The worst case is the ambiguity caused by the parallelcase, Figure 11. The major case lookup table (from Lorensen) describes thecorrect con�guration in Figure 11 to be case A, however this need not alwaysbe the correct case.Wilhelms and Gelder ([WG90]) discuss some of the methods for disam-biguating the \major case | lookup table". An ambiguous face, is a face thatcontains a possible ambiguous representation { Figure 11. These methodsinclude:1. Facial Average | the values at the corners of the cube are averaged forthe ambiguous face and then this value is used to disambiguate the case.2. Gradient methods | Center pointing gradient { a gradient value, of neigh-bouring points (outside the cube) are calculated. These values are used to`o�set' the actual density values and these new values are used to calculate(and therefore, disambiguate) the center point of the ambiguous face.8

Figure 10: The fourteen main cube cases
A B CFigure 11: The worst ambiguity from the \major case" lookup table9

The Middle tetrahedra

Figure 12: The Tetrahedra orientation within a cube
Figure 13: The triangles for a given tetrahedra3. Gradient methods | quadratic �t { The underlying gradient function isrepresented by a quadratic curve, whose zero points are used to estimatethe sign at the ambiguous point { to choose the correct topology. Thismethod only works well if the underlying gradient function can be repre-sented by a quadratic curve.One slight variation on the \Marching cubes" algorithm can be implementedwhen the data points become very close together; when this happens the trian-gles become very small; therefore, the triangles can be replaced by spheres oreventually pixels. This method has been named \dividing cubes".Another threshold method, can be formed by extending the \marching cubes"algorithm to use tetrahedra; hence, \Marching Tetrahedra". The usual con�g-uration uses �ve tetrahedra that �t exactly within a cube. The advantage ofusing this topology is that a �ner detailed surface is created, however ambi-guities are still present { because the isosurface is created by considering onlyneighbour data points. Figure 12. The orientation of each of the triangularparts for given tetrahedra is shown in Figure 13.10

3 Volume RenderingVolume Rendering, as stated before, uses no geometric representations of thedata and usually considers all the voxels in an object for the display of oneview. As Bob Drebin stated \.. volumetric data should not be skimmed toyield only surface renderings" [Fre89], however, renderings of this form (evenwith todays technology) tend to be produced at a slower speed than surfacetype renderings | although a much higher quality image is produced. Whenviewing volume rendered images the user must remember that the drawinghas been created from sampled `fuzzy' data; Surface renderings produce `crisp'images from `fuzzy' datasets, this phenomenon can lead to misinterpretationsof the rendered image; Volume renderings, with transparency, can create the`fuzzy' images.There are two main subsections to Volume Rendering (1) Backward pro-jection methods | ray casting techniques (an image space method) and (2)Forward projection methods (an object space method). This text assumes thereader understands the basics of ray tracing or ray casting techniques; for moreinformation refer to [WW92, FvDFJ90]. Ray tracing follows each ray fromthe image plane through the model space to �nd the contribution of the modelto a particular pixel. The projection method is the opposite of ray tracing {tracing the model to the image plane; each point is accumulated at the currentpixel point. The projection methods can be achieved in either \front-to-back"or \back-to-front" order.With surface based methods, as described above, some form of thresholdvalue is used to create an approximation of a surface; the threshold methodoften creates extra spurious surface parts, not in the original; or misses parts(holes) in the surface, that were in the original model. These are known as falsenegatives and false positives. This phenomenon can be overcome, to a certainextent, by using Volume Rendering Techniques.3.1 Backward Projection | From Clouds to Volume Ren-deringFrom browsing the literature, it can easily be seen that Blinn's cloud model[Bli82] for ray tracing particles in clouds sparked o� a growth of ray tracingliterature for Volume rendering. Blinn's cloud model used a volume (of width T)�lled with particles representing a cloud. The brightness of the cloud dependedupon the amount of particles that are `lit' by the rays of light; as the particlesare small they are not individually seen. Blinn states four main participants inthe calculation.1. Phase functions (based on the phase angle) that is the value of the bright-ness of a particular particle depending on the viewing angle.2. Albedo | this is the proportion of re
ected light corresponding to theamount of light hitting the particle3. Scattering | each particle will only be seen if there are no other particlesin the line of sight, of either the incoming or outgoing ray of light.4. Transparency | this is the amount of light that manages to penetratethe clouded volume without being re
ected o� any particles. This is theamount of light that can be seen through the image.11

RGB or
Opacity Figure 14: Examples of possible transfer functions3.2 Backward Projection | Ray tracing including Opac-ityMark Levoy [Lev88] discusses a method to produce surfaces from volume datausing a ray tracing technique. His method is split into several stages so process-ing, after alterations, can be kept to a minimum. He also uses look-up table forthe opacity and transparency values. There are two basic pre-processing phases:1. The data array is used as the input to the shading model. A colour isassociated with each data point and the Phong Shading method is used.The shading stage produces another array of \voxel colours".2. The opacities of the data set (from the original array) are found. Theopacity value can be assigned in one of many ways, to produce an isosur-face at a given intensity:a. by using a single, simple, threshold density.b. using a window threshold.however, both these methods can produce results that have missing surfacepatches and/or additional surface patches that are not contained withinthe original data. A better method is:c. to assign a variable opacity value to the voxels. The voxels in the ar-ray with the required colour are given the maximum opacity and theremainder are assigned a value of opacity depending on the closenessof the actual colour value inversely proportional to the local gradientvector.The variable opacity values allow, by accumulating the opacities, morethan one isosurface to be displayed in one picture.After the pre-processing steps the rays are cast into these two arrays. Therays are sampled at even spaces along the arrays and tri-linear interpolationis used to compare the opacity and colour values at the regular points. Thecompositing phase acts in a back-to-front order.Within CT scans the data can be imagined as layers from an onion | theskin layer followed by a liquid layer followed by a bone layer, | each materialcan be assigned an exact opacity value and the intermediate layers can be de�nedintermediate values. Also, if the bone layer is the only required viewing layerthen this surface can be allocated a high opacity value.Levoy, also proposes ways of increasing the image quality, he achieves thisby supersampling | interpolating the data points to create intermediate points,this reduces the aliasing artifacts, but increases computational expenses.Upson and Keeler [UK88] present a ray casting method (and a projectionmethod); here they use transfer functions to map opacity values to the relevantdensity values; this relationship may be smooth or discontinuous, Figure 14.12

Each ray is cast into the volume, as the \visible volume detector". Atregular intervals, along the path, a scalar value is calculated by tri-linearlyinterpolating the eight nearest values; this re-sampling method is similar toLevoy's method [Lev88]. This new scalar value, at each discrete point, is usedwith the appropriate transfer function to calculate the transparency/opacity,colour, shading and texture at that point; the values are integrated as thevolume is traced. The key to this work is to treat the original data as `non-discrete data', and tri-linearly interpolating neighbouring data points.When the required opacity is exceeded the exact position of the maximumopacity value is calculated and the next ray is cast into the volume.A variation on this general ray casting theme is presented by Sabella [Sab88].Here, Sabella uses a Density Emitter which is a function that he states: \modelsthe density of particles, not the particles themselves", and \can be regardedas a continuous function". This idea is similar to Blinn's method [Bli82].The intensity of the light reaching the eye, in Sabella's method, allows varyingdensities where as Blinn's method is �xed. The Brightness equation is listed inequation 3. He states, the density �(x; y; z) emits an energy of C� and absorbsan energy of �� per unit length. A diagram of an example volume, with one raycast and the peak values encountered along the ray are shown in Figure 15.Brightness = Z t2t1 e�� R tt1 �
 (�)���
 (t)�t (3)where: �(x; y; z) Density �eld.�(x(t); y(t); z(t)) Parameterised density �eld.�(t) Short-hand of, above, density �eld.
 Parameter to control density spread.M Maximum, | Peak value encountered along ray.t1 : : : t2 Start and end voxel on the path of the ray.D Distance, at which the peak value is encountered.C Center of gravity.� Parameter value to adjust the rate of attenuation.e�� R tt1 �
(�)�� Attenuation along the ray due to the density �eld.3.3 Forward Projection methodsUpson and Keeler [UK88] also describe a forward projection that they namedthe cell-by-cell method. This is similar to the ray casting method in that theopacity, colour and shading values are calculated from the transfer functionsand the scalar values, but the \visible volume detector" is based on a projectionor scan line method.This technique is similar to the Z{bu�er algorithm. Each cell is scannedcompletely before moving onto the next cell. Many scan lines are applied toa single cell; on a particular scan line an intersection polygon is created; thisis broken down into smaller polygons (called spans { when projected onto theimage plane), intergration is used (from tri-linear interpolated values) to �ndthe average contribution to each pixel in each scan line. The correct colouropacity is calculated and after a whole cell has been processed the next cell isscanned. The method progressively displays the view on the screen | the frontmost pixels are displayed �rst followed by the more distant pixels in each plane.Shirley and Tuchman [ST93] discuss a similar method to the cell-by-cellmethod. They use a method that transforms all the data into tetrahedra pieces;each tetrahedra piece is allocated a transparency and colour value depending on13

View
ing Plan

e

M

t 1

t 2

p (t)

Centre of GravityFigure 15: Histogram of densities along a ray-traced paththe position and distance from the viewer. The pieces are then scan convertedusing a painters algorithm.Another projection method is described by Drebin et al. [DCH88] { herethey transform the volume data so the `rays' can be projected into the volumeand onto the image plane, by using a scan line method. This can be achieved atany angle by using a sequence of four transformations, using the Euler angles:�; �; . T = PzZeRz()Ry(�)Rz(�) (4)Where: T transformPz Perspective transformationRz rotation about Z axisRy rotation about y axisDrebin uses a two pass image transformation method and mentions a pos-sibility of generalising this two pass transformation into a three pass imagetransformation, this would reduce the amount of resampling stages. A ThreePass image transformation method (based on Drebin's proposal) is explainedby Hanrahan [Han90]. Hanrahan claims, referring to the two pass techniquesin Drebin [DCH88] that the three pass transformations are \more e�cient intime and produce higher quality results for general views than the techniquesproposed in Drebin et al."Drebin also uses a classi�cation model that operates on any volume madeup of a mixture of substances. This calculates the percentage of a particularmaterial in the voxel, from this the colour value for a particular voxel can befound. Boundaries can be detected by the change in density | a probabilisticmethod is used, taking into consideration the number of materials present inthe whole volume and the percentage of a material in a voxel, to disambiguatethe exact boundaries. A typical material assignment, from Drebin, is shown inFigure 16. 14

air fat soft tissue bone

100%

0%

CT numberFigure 16: Examples of possible transfer functions4 SummaryWe have discussed here then main techniques for Rendering Volume data; weacknowledge this as not being a comprehensive overview. There are sometechniques known as Hybrid Volume Rendering Techniques [Lev90], [RK92],[vWHVP92]; that allow polygon and volume data to be visualised in one image;that haven't been discussed and are useful for displaying a scale or grid (or otherpolygon de�ned objects) over, behind and through the volume data. Below is abrief review of the main methods discussed.Surface Rendering methods include:1. Placing tile pieces between contours require a decision method, to �nd thenext tile orientation, including:(a) graph theory [FKU77].(b) functions [Joh77] [Har69] [GD82] [CS78].2. Isosurface (Threshold Methods)(a) Marching Cubes { which uses a binary threshold on the vertices of acube, and a look up table, to decide on the orientation of the surfacethrough that voxel [LC87].(b) Marching Tetrahedra { similar to the Marching Cubes algorithm butthe cubes are broken into �ve tetrahedra.(c) Dividing Cubes { where the cube topology is transferred into pointsinstead of triangles.Volume Rendering Methods include:1. Backward Projection methods { Ray CastingRay Tracing including opacity [UK88] [Lev88] [Sab88] [Bli82]2. Forward Projection methods(a) Cell-by-Cell method { scan the cells like a Z-bu�er algorithm [UK88].(b) Volume Transformation { transform the volume so the voxels are per-pendicular to the viewing angle - then scan the cells [Han90] [DCH88]5 ConclusionFrom reading manuscripts, there seems to be a distinct argument between Sur-face Rendering and Volume Rendering techniques; that one produces false pos-itives and negatives and the measurements cannot be taken from the other. We15

propose that neither one technique is overall better { they both have majordisadvantages and advantages { so di�erent techniques should be used for thevisualisation of a data set.With Surface Rendering (and VolumeRendering at an isosurface) exact mea-surements are possible; with these methods an overall understanding of the im-age is di�cult to grasp; however, with a transparent Volume Rendered imagean overview of the data can be easily grasped. Surface rendered images takeless time to compute than Volume Rendered images however the image qualityis usually greater in Volume rendered images. Quality verses production timeis a usual comparison and with certain visualisations (especially medical), alower quality image could cause mis-interpretation of the data which could bevery severe. To aid disambiguity of the object, interaction should be available;including viewing from di�erent angles, cutting planes and exploring the imagein real time.The author suggests that both Volume and Surface Rendering techniquesshould be coincidentally used: VolumeRendering to create an overall impressionof the three-dimensional view and Surface rendering for an `exact view' at aparticular isosurface.References[AFH81] E. Artzy, G. Frieder, and G. T. Herman. The theory design, imple-mentation and evaluation of a three-dimensional surface detectionalgorithm. Computer Graphics and Image Processing, 15:1{24,1981.[Bli82] J.F. Blinn. Light re
ection functions for simulation of cloudsand dusty surfaces. IEEE Computer Graphics '82 Proceedings,16(3):21{29, 1982.[CRHK85] L.S. Chen, R.A. Reynolds, G.T. Herman, and J.K. Kdupa. Surfaceshading in the cuberille environment. IEEE Computer Graphicsand Applications, 5(12):33{43, December 1985.[CS78] H.N. Christianson and T.W. Sederberg. Conversion of complexcontour line de�nitions into polygonal element mosaics. ComputerGraphics SIGGRAPH Proceedings, 12:187{192, 1978.[DCH88] R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.Computer Graphics, 22(4):65{74, 1988.[FKU77] H. Fuchs, Z.M. Kedmen, and S.P. Uselton. Optimal surface recon-struction for planar contours. CACM, 12(3):69{75, 1977.[Fre89] K.A. Frenekl. Volume rendering. Communications of the ACM,32(4):426{435, 1989.[FvDFJ90] J. Foley, A. van Dam, S. Feiner, and Hughes J. Computer Graph-ics | Principles and Practice (Second Edition). Addison-WesleySystems Programming Series, 1990.[GD82] S. Ganapathy and T.G. Dennehy. A new general triangulationmethod for planar contours. Computer Graphics SIGGRAPH Pro-ceedings, 16:69{75, 1982. 16

[GR85] D Gordon and R.A. Reynolds. Image space shading of 3-dimensional objects. Computer Graphics and Image Processing,29(3):361{376, March 1985.[Han90] P. Hanraham. Three-pass a�ne transformations for volume ren-dering. Computer Graphics, 24(5):71{76, 1990.[Har69] F Harary. Graph Theory. Addison-Wesley, 1969.[HL79] G.T. Herman and H.K. Liu. Three-dimensional display of humanorgans from computed tomograms. IEEE, Computer Graphics andApplications, 9(1):1{21, 1979.[Joh77] Johnson. E�cient algorithms for shortest paths in sparse networks.ACM, 24(1):1{13, January 1977.[LC87] E.W. Lorensen and H.E. Cline. Marching cubes: A high resolu-tion 3d surface construction algorithm. ACM Computer Graphics,21(4):163{169, 1987.[Lev88] M. Levoy. Volume rendering { visible volume rendering. ComputerGraphics and Applications, 8(3):29{37, 1988.[Lev90] M. Levoy. Volume rendering { a hybrid ray tracer for renderingpolygon and volume data. IEEE Computer Graphics and Applica-tions, (3):33{40, 1990.[MSS92] D. Meyers, S. Skinner, and K. Sloan. Surfaces from contours. ACMtransactions on Graphics, 11(3):228{258, 1992.[RK92] K. Roang and M. Kanagasabai. Four methods for the combinedvisualisation of volume data and geometric objects. Book: \Ad-vances in Scienti�c Visualisation" Springer-Verlag; Eds. Post,F.Hand Hin,A.J.S, pages 97{104, 1992.[Sab88] P. Sabella. A rendering algorithm for visualizing 3-d scalor �elds.Computer Graphics, 22(4):51{58, 1988.[ST93] S. Shirley and A. Tuchman. A polygonal approximation to directscalor volume rendering. Computer Graphics, 24(5):63{70, 1993.[UK88] C. Upson and M. Keeler. V-bu�er | visible volume rendering.Computer Graphics, 22(4):59{64, 1988.[VMW83] M.W. Vannier, F.L. Marsh, and J.O. Warren. Three dimensionalcomputer graphics for craniofacial surgical planning and evalua-tion. Computer Graphics SIGGRAPH Proceedings, 17(3):263{273,1983.[vWHVP92] T. van Walsum, A.J.S Hin, J. Versloot, and F.H Post. E�cienthybrid rendering of volume data and polygons. Book: \Advancesin Scienti�c Visualisation" Springer-Verlag; Eds. Post,F.H andHin,A.J.S, pages 83{96, 1992.[WCAR90] J. Wilhelms, J. Challinger, N. Alper, and S. Ramamoorthy. Di-rect volume rendering of curvilinear volumes. Computer Graphics,24(5):41{47, 1990. 17

[WG90] J. Wilhelms and A. Van. Gelder. Topological considerations inisosurface generation | extended abstract. Computer Graphics,24(5):79{86, 1990.[WW92] A. Watt and M. Watt. Advanced Animation and Rendering Tech-niques | Theory and Practice. Addison-Wesley, 1992.

18

