
The Speci�cation in Z of the REX ProtocolJ. Derrick & R. SultanaThe Computing Laboratory,University of Kent,Canterbury,CT2 7NF15 November 1993AbstractREX is a protocol supporting a client/server style of interaction between a number of entities in adistributed system. Within this interaction paradigm, client entities may request services suppliedby server entities, by interacting with intermediate protocol entities. This paper presents a Zspeci�cation of part of the REX protocol.

1

Contents1 Introduction 32 The REX Protocol 32.1 ANSA and the ODP Reference Model : 32.2 The ANSA Testbench : 32.3 REX : 43 Preliminaries 54 Entities 55 Requests and Responses 56 Messages 67 Timers 88 Protocol entity states 99 Maintaining session information 1010 The initial state of the session 1111 A simple interrogation 1211.1 A simple interrogation - stage 1 : 1211.2 A simple interrogation - stage 2 : 1311.3 A simple interrogation - stage 3 : 1411.4 A simple interrogation - stage 4 : 1412 Interrogations involving timeouts 1512.1 Timeouts : 1512.2 Repeat response messages : 1612.3 Repeat request messages : 1612.4 Explicit response acknowledgments - REPLY ACKs : 1712.5 Explicit request acknowledgments - CALL ACKs : 182

12.6 The PROBING state : 1913 Announcement interactions 2013.1 A simple announcement - stage 1 : 2113.2 A simple announcement - stage 2 : 2113.3 Delayed CAST request messages : 2214 Fragmentation in interrogation interactions 2314.1 Fragmented CALL requests : 2314.1.1 Accepting the CALL and sending the �rst fragment : : : : : : : : : : : : : : : : : 2314.1.2 Transmission of the other CALL fragments : 2414.1.3 Receipt of the �rst CALL fragment : 2514.1.4 Receipt of other CALL fragments : 2514.1.5 Delays when receiving CALL fragments : 2714.2 Fragmented responses : 2814.2.1 Accepting the response and sending the �rst fragment : : : : : : : : : : : : : : : : 2814.2.2 Transmission of the other response fragments : 2914.2.3 Receipt of the �rst fragment of response : 3014.2.4 Receipt of other response fragments : 3114.2.5 Delays when receiving fragments of response : 3215 Fragmentation in announcements 3315.1 Accepting the CAST and sending the �rst fragment : 3315.2 Transmission of the other CAST fragments : 3415.3 Receipt of the �rst fragment of CAST request : 3515.4 Receipt of other CAST request fragments : 3615.5 Receipt of overtaken CAST request fragments : 3715.6 Delays when receiving fragments of CAST request : 3716 Final details on fragmentation 3817 Schema Decompostion of REX 403

18 Conclusion 4219 Acknowledgments 42A Appendix - Auxiliary functions 44

4

1 IntroductionREX is a protocol supporting a client/server style of interaction between a number of entities in adistributed system. Within this interaction paradigm, client entitiesmay request services supplied byserver entities, by interacting with intermediate protocol entities.A signi�cant part of the protocol deals with interactions that take place between a pair of client andserver entities. Such a sequence of interactions shall be referred to as a session.In this paper we will make use of the Z notation to describe how a session is supported by two REXprotocol entities. Familiarity with the Z notation [Spiv 88, Pott 91] is assumed.2 The REX Protocol2.1 ANSA and the ODP Reference ModelThe origins of REX lie within the ANSA project. The Advanced Networked Systems Architecture(ANSA)was an Alvey project jointly sponsored by eight major IT companies. Sta� from these industrialpartners were amongst the members of the team that worked together on this project.ANSA is a major contributor to the work being carried out by ISO to set-up a Reference Model ofOpen Distributed Processing (ODP). The objectives of this model is to provide a framework forthe standardization of distributed systems. Publicly agreed standards are needed to support the design,implementation, operation and evolution of distributed systems where the various components that makeup the systems come from di�erent vendors.Rather than attempt to directly model the full complexity of a distributed system, ANSA and ODPadopt the idea of taking viewpoints, each of which represents a di�erent abstraction of the originalsystem with emphasis on a speci�c design concern. Each viewpoint has the following properties:� comparatively simpler to model;� self-contained and complete;� bears constraints that are imposed by the fact that all projections relate to some hypotheticalmodel of the complete system.Five viewpoints are identi�ed. The Enterprise viewpoints captures the role that the distributed com-puter system has within the organization - the objectives; activities; policy constraints, all at the organi-zation level. The Information viewpoint establishes an overall view of all the items of information andof the information processing activities in the system. The Computational viewpoint is a view of thedistributed system as a set of linked program modules and hence gives a breakdown of the functionalityof the system. The Engineering viewpoint is a description of the actual mechanisms used to supportthe required functionality. Finally, the Technology viewpoint is used to describe the actual hardwareand software components of the distributed system.2.2 The ANSA TestbenchThe ANSA Testbench is a reference implementation of the engineering model, over a variety of operatingsystems each of which constitutes a technology model. It has served as a vehicle for technology transferback to the sponsors and for demonstrating the use of ANSA principles.5

The Testbench provides a suite of mechanisms and tools to simplify the task of writing distributedapplications. The computational model supported has the constraint that all interactions betweencomponents are con�ned to a client/server interaction paradigm; a client requests a speci�c function tobe performed by a server which performs it at some later time, possibly returning a result.The form of client/server style of interaction implemented in the Testbench is based on remote procedurecalls - remote access to functions is provided via a local procedural interface. Two forms of remoteinvocation are supported:Interrogation:- The client is blocked until the server performs the operation and returns any results.Announcement:- The client does not wait for the server to perform the requested action.Communication between nodes in the engineering model is implemented in terms of three protocol layers:� The bottom layer provides a message-passing service. This manages connection and discon-nection, and the transmission and receipt of messages between individual nodes.� The top layer is a session service, providing end-to-end synchronization of the dialogue.� The middle layer is the execution protocols layer. This maps computational model interactionsonto message exchanges, by making use of the message-passing service.2.3 REXREX (Remote EXecution) is one of the protocols currently included in the Testbench. It is a protocolfor single-endpoint to single-endpoint communication. GEX or Group EXecution which is a protocolfor multi-endpoint to multi-endpoint communication, has been implemented in the ANSA Testbenchversion 4.2.The REX protocol is a set of rules which governs how interactions in the engineering model realize theend-to-end interaction apparent within the computational model. An interaction, as seen in the compu-tational viewpoint, involves merely two entities - the client and the server entities. In the engineeringviewpoint however, two other intermediate entities come into the picture - these are the REX-client andthe REX-server entities. The client entity interacts only with the REX-client entity and the server entityonly with the REX-server entity. The REX-client and the REX-server entities communicate with eachother on behalf of the client and the server entities, making use of a lower-layer message-passing service.One can classify the set of rules constituting the REX protocol by separating rules for mapping interro-gation style of computational model interaction - CALLs, from mapping rules for announcement styleof computational model interaction - CASTs.A detailed description of the rules that de�ne REX is beyond the scope of this paper. The categorizationmade above will merely be used to outline the sequence of operations that take place under idealconditions:1. a client entity submits a CALL to a REX-client entity and is then blocked waiting for a reply;2. the REX-client entity sends the CALL to the REX-server entity;3. when the REX-server entity receives the CALL, this is passed on to the server entity;4. the server entity performs the required operation and eventually returns a reply;5. the REX-server entity sends the reply back to the REX-client entity;6

6. when the REX-client entity receives the reply, it passes it on the client entity which can nowcontinue to operate.CASTs are dealt with similarly. However, in this case the client entity does not elicit a response fromthe server entity.In practice the REX protocol has also to deal with cases such as client requests and server replies gettinglost or delayed. Another layer of complexity is due to the fact that requests and replies may be toolarge to be sent as single messages over the network. For this reason the REX protocol also de�nes afragmentation strategy by which large requests and replies may be conveyed as a number of smallercomponent parts.3 PreliminariesThe set DataType whose elements represent all possible data that may need to be communicated betweenthe client entity and the server entity.[DataType]Any data of type DataType will have a size, for which we de�ne a type:DataSize ::= NThe variable max data size will denote, for the particular network on which the distributed system isinstalled, the maximum size of data that can be transmitted as a single unit. If this limit is exceeded,the data would have to be sent in fragments.max data size : N14 EntitiesTwo REX protocol entities are involved in maintaining a session of communication between the cliententity and the server entity. The client entity interacts with the REX-client entity; the server entityinteracts with the REX-server entity.Entity ::= REX CLIENT j REX SERVER j CLIENT j SERVERProtocolEntity == fREX CLIENT ;REX SERVERgNonProtocolEntity == fCLIENT ; SERVERgWe shall assume that the protocol entities' task is con�ned to supporting one session.5 Requests and ResponsesThe client entity makes requests to the REX-client entity. When the REX-server entity receives arequest from the REX-client entity, it will pass it on to the server entity which will process the request.A request may be a CALL or a CAST. Occasionally, we will need to indicate an absence of a requestand so we also introduce a null request. 7

RequestType ::= CALL j CAST j NO REQUESTThe client entity submits a CALL request when the invocation required is an interrogation, i.e. theclient entity is to be blocked until the server entity performs the operation asked for and its response isreceived. Note that throughout this paper the words response and reply shall be used interchangeably.The client entity submits a CAST request when the invocation required is an announcement, i.e. theclient entity does not wait for the server entity to perform the requested action.The server entity is therefore only expected to send a response in the case of an interrogation. We shallalso need to represent an absence of a response.ResponseType ::= RESPONSE j NO RESPONSEWe can now de�ne request and response schemas as follows:Requesttype : RequestTypedest : Entitydata : DataTypedata size : DataSize Responsetype : ResponseTypedest : Entitydata : DataTypedata size : DataSizeThe components are:� a type identifying the request or response type;� a dest identifying the destination entity;� data which is the actual data-content of the request or response;� data size which is the size of this data-content.6 MessagesTo communicate with each other, the REX-client and the REX-server entities utilize amessage-passingservice. Various types of messages are de�ned:MessageType ::= CALLj CALL FRAGj CALL ACKj PROBEj REPLYj REPLY FRAGj REPLY ACKj CASTj CAST FRAGj FRAG NACKj NO MESSAGECALL, CAST:- messages sent by the REX-client entity and convey client entity requests of the respec-tive type.CALL FRAG, CAST FRAG, REPLY FRAG:- similar messages but these only convey a fragment of arequest or response. 8

REPLY :- messages sent by the REX-server entity and convey server entity responses.PROBE:- probe messages sent by the REX-client entity to check that the REX-server entity is stillactive.CALL ACK:- messages used to explicitly acknowledge the receipt of a CALL or a PROBE message.REPLY ACK:- explicit acknowledgment messages for REPLY messages.FRAG NACK:- explicit negative acknowledgment messages for a fragmented transmission of a requestor response.NO MESSAGE:- we will use this type of message to indicate an absence of a message.Messages which convey some data-content of a request or a response, will be distinguished from thosewhich contain no data. The former will be called data messages and the latter, control messages.We will conveniently assume the NO MESSAGE type to fall under both of these categories.We are not concerned with how the message-passing service operates. However, we need to be aware ofthe limitations of this service. In particular, messages can get delayed, or lost, and there is no guaranteethat they will be received in the order sent. Hence all messages bear a sequence number.We de�ne the set SeqNo from which all message sequence numbers are drawn.SeqNo ::= NSequence numbers are assigned to messages by the protocol entities from which they originate. Theprotocol entities keep a record of the highest data message sequence number that has been sent orreceived. When a protocol entity is to send a new request or response message, the increment of thisnumber is used as the sequence number. When a data message is received, it is identi�ed as referringto a new request, or response, if the sequence number of the message is greater than that held by theprotocol entity.Control messages convey control information about data messages. The sequence number of a controlmessage is set to that of the data message which it refers to.Messages conveying a fragment of a particular request or response will have the same sequence number.However, each fragment contains an o�set identifying its relative position within the complete requestor response. The total number of fragments that compose the request or reply is also stored in eachfragment message. The o�set and the total size of the request or response will be drawn from the setFragIndex.FragIndex ::= N1We now give the schemas for data and control messages.MessageHeadertype :MessageTypedest : ProtocolEntityseqno : SeqNo
9

DataMessageMessageHeaderdata : DataTypeo�set : FragIndextotal size : FragIndextype 2f CALL; CALL FRAG ; CAST ; CAST FRAG ;REPLY ; REPLY FRAG ; NO MESSAGEgControlMessageMessageHeaderfrags map : PFragIndextype 2f CALL ACK ; REPLY ACK ; PROBE ;FRAG NACK ; NO MESSAGEgWe will only be considering message transfers between the two protocol entities. Therefore, we needonly specify the destination of the message to be either the REX-client or the REX-server.The o�set and total size components of data messages are only relevant in the case of messages whichconvey fragments of some complete request or response.The frags map component of control messages is only relevant for FRAG NACK message types. Theprotocol entity sending a FRAG NACKmessage uses this component to provide information as to whichfragments have been successfully received.7 TimersThe protocol entities each make use of a timer-service. A timer can be STARTed or STOPped. Weshall assume that if two consecutive STARTs are performed on a timer, the e�ect of the second STARTshall be that of a STOP followed by a START. We shall use the NO UPDATE operation to representthe absence of an update of the timer, by a protocol entity.TimerUpdateType ::= START j STOP j NO UPDATEThe timers used by the REX-client and the REX-server entities are independent of each other, i.e. anupdate of one timer will not a�ect the other timer.When a timer is STARTed a timeout period is set.TimeoutPeriod ::= REPLY j PROBE j FLOW j CHECKREPLY:- timeout period is used to establish a limit on the time a protocol entity waits for an expectedacknowledgment. If this time expires, the protocol entity would suspect that something has gonewrong, and would take some appropriate action.PROBE:- timeout period is the interval at which the REX-client entity probes the REX-server entity.The concept of probing is explained in a later section.10

When a request or reply is too large to be transmitted as a single unit, it is fragmented and the fragmentsare transmitted separately. Transmission of these fragments is rate-controlled, i.e. transmission isthrottled so as to maintain a comfortable average arrival rate.FLOW:- timeout period is the time a protocol entity waits between transmission of fragments.CHECK:- timeout period is the the time a protocol entity waits for a next fragment, before suspectingthat something has gone wrong.We now give schemas for the update of timers by the protocol entities, and for the occurrence of timeouts.TimerUpdatetype : TimerUpdateTypesource : ProtocolEntityperiod : TimeoutPeriodTimeoutdest : ProtocolEntityWe are only concerned with a single session of interaction between two protocol entities. Therefore,identi�cation of initiators of timer updates and of destination of timeouts, is only a matter of statingwhether the protocol entity is the REX-client or the REX-server.8 Protocol entity statesThe REX-client entity may only exist in one of the following states:RexClientState ::= IDLEj CALLINGj PROBINGj CALL SENDINGj CAST SENDINGj RECEIVINGIDLE:- No outstanding requests to be sent and no outstanding responses or acknowledgments to bereceived. New client entity CALL and CAST requests may only be accepted while the REX-cliententity is in this state.CALLING:- A non-fragmented CALL request has been sent and no response has been received for it.Furthermore, it is not yet known whether the REX-server entity has received the CALL request.PROBING:- A fragmented or non-fragmented CALL request has been sent and its successful and com-plete receipt by the REX-server entity has been acknowledged. However, the response is stilloutstanding. Whilst in this state, the REX-client entity will keep on probing the REX-serverentity by sending PROBE messages. This assures the REX-client entity that the REX-server en-tity is still active and that no serious communication failure has occurred. Provided these probescontinue to be acknowledged, the REX-client will remain in this state inde�nitely.CALL SENDING:- The REX-client entity is in this state if, either a fragmented CALL request is beingtransmitted, or, a fragmented CALL request has been transmitted and no response or acknowl-edgment has been received for it. The REX-client entity remains in this state until the responseor an acknowledgment is received. 11

CAST SENDING:- A fragmented CAST request is being transmitted.RECEIVING:- A fragmented response, to an outstanding CALL request, is being received.Similarly, the REX-server entity may be in one of the following states:RexServerState ::= IDLEj ASKEDj REPLYINGj CALL RECEIVINGj CAST RECEIVINGj SENDINGIDLE:- No outstanding responses to be sent and no outstanding acknowledgments or request fragmentsto be received.ASKED:- A non-fragmented CALL request or a complete fragmented CALL request has been received,but, the response is still outstanding.REPLYING:- There is no outstanding response to be sent, but, the last response that was sent has notbeen acknowledged.CALL RECEIVING:- A new fragmented CALL request is being received; there are still more fragmentsto be received.CAST RECEIVING:- A new fragmented CAST request is being received; there are still more fragmentsto be received.SENDING:- The REX-server entity is in this state if either, a fragmented response is being transmitted,or, a fragmented response has been transmitted and no acknowledgment has been received for it.The REX-server entity remains in this state until an acknowledgment is received. The acknowl-edgment can be an explicit REPLY ACK message; it can also be implicit on the arrival of a newrequest.9 Maintaining session informationIn this section we describe the information that needs to be maintained by each of the protocol entities.But �rst another de�nition is needed:MapFlag ::= OK j NOT OKThe information maintained by the REX-client entity:RexClientInfoclient state : RexClientStateclient seqno : SeqNoclient bu�er : PDataMessagerequest frags map : seq[MapFlag]client state:- The state of the protocol entity, as one of the distinct states mentioned above, in which itcan be.client seqno:- A record of the largest data message sequence number that has been sent or received.12

client bu�er:- If the protocol entity is in one of the states CALLING, PROBING, CALL SENDING,or CAST SENDING, then a copy of the last request sent, or which is being sent, is maintained.If the protocol entity is in the state RECEIVING, a copy of the last response being received ismaintained. Note that if the request or response concerned is fragmented then the bu�er willconsist of a set of message fragments, whereas if the request is non-fragmented then the the bu�erwill consist of a singleton set containing the corresponding message for the complete request.request frags map:- If the protocol entity is in state CALL SENDING or in state CAST SENDING,it needs to know which of the message fragments still need to be transmitted. For the abstractrepresentation of this information, we have chosen to use a sequence. The sequence will consist of aterm for every fragment message of the request being sent. The domain of this sequence correspondsto the fragments' o�sets. If a fragment still needs to be transmitted, the term corresponding tothis fragment will be NOT OK; otherwise the term will be OK.The information maintained by the REX-server entity:RexServerInfoserver state : RexServerStateserver seqno : SeqNoserver bu�er : PDataMessageresponse frags map : seq[MapFlag]server state:- The state of the protocol entity, as one of the distinct states mentioned above, in whichit can be.server seqno:- A record of the largest data message sequence number that has been sent or received.server bu�er:- If the protocol entity is in state REPLYING or in state SENDING, then a copy ofthe last response sent, or which is being sent, is maintained. If the protocol entity is in stateCALL RECEIVING or in state CAST RECEIVING, then a copy of the last request being receivedis maintained. Note that if the request or response concerned is fragmented then the bu�er willconsist of a set of message fragments, whereas if the response is non-fragmented then the the bu�erwill consist of a singleton set containing the corresponding message for the complete response.response frags map:- If the protocol entity is in state SENDING, it needs to know which of the messagefragments still need to be transmitted. A sequence is used to represent this information, as in thecase of the REX-client entity.We also consider the information that needs to be maintained on the session as a whole:SessionInfoRexClientInfoRexServerInfo10 The initial state of the sessionInitially, the session will be in some de�ned state. We will assume that nothing has happened yet.Therefore, both protocol entities will be in state IDLE.InitialiseSession�SessionInfoclient state 0 = IDLEserver state 0 = IDLEserver seqno 0 6 client seqno 0 13

We can choose to start with any values for the sequence numbers, so long as the value for the REX-cliententity is not smaller than the one for the REX-server entity. The reason for this will become apparentin the next section.11 A simple interrogationWe will �rst consider an interrogation interaction, involving no timeouts and no fragmentation. Aninterrogation of this form will involve the following four stages:1. The REX-client entity accepts a CALL request and sends it as a single message to the REX-serverentity.2. The REX-server entity receives this message and submits it as a request to the server entity.3. When the server entity returns a response, the REX-server entity sends it as a single message tothe REX-client entity.4. The REX-client entity receives this message and passes it on to the waiting client entity.We now take a look at each of these stages in turn.11.1 A simple interrogation - stage 1The acceptance of a CALL request by the REX-client entity, as part of a simple interrogation, is describedby the following schema:ClientCallRequest�RexServerInfo�RexClientInforequest? : Requestmessage! : DataMessagetimer update! : TimerUpdateclient state = IDLErequest?:type = CALL ^ request?:dest = REX CLIENTrequest?:data size 6 max data sizeclient state 0 = CALLINGclient seqno 0 = new seqnomessage!:type = CALL ^ message!:dest = REX SERVERmessage!:seqno = new seqnomessage!:data = request?:dataclient bu�er 0 = fmessage!gtimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = REPLYwherenew seqno = client seqno + 1New CALL requests from the client entity will only be accepted if the REX-client entity is in the IDLEstate. Furthermore, since for the time-being we are assuming that no fragmentation is required, only14

requests which are not greater than max data size are considered here. On accepting a request, theREX-client entity will:� change to the CALLING state, thus ensuring that no further client entity requests are acceptedbefore a response has been issued;� transmit the CALL request as a message to the REX-server entity;� keep a copy of this message;� start the timer with a REPLY timeout period.The REX-client will also increment the value of the sequence number held. This value is then used forthe sequence number of the outgoing message.11.2 A simple interrogation - stage 2For this stage of the interrogation we describe the conditions under which the REX-server entity shouldreceive the message, and the actions that it should take.ServerReceiveCallMessage�RexClientInfo�RexServerInfomessage? : DataMessagerequest ! : Requesttimer update! : TimerUpatemessage?:type = CALL ^ message?:dest = REX SERVERmessage?:seqno > server seqnoserver seqno 0 = message?:seqnoserver state 62 fASKED ;CALL RECEIVINGgserver state = SENDING)NOT OK 62 ran request frags mapserver state 2 fREPLYING ; SENDING ;CAST RECEIVINGg)timer update!:type = STOP ^timer update!:source = REX SERVERserver state = IDLE)timer update!:type = NO UPDATEserver state 0 = ASKEDrequest !:type = CALL ^ request !:dest = SERVERrequest !:data = message?:dataOn receiving the message, the sequence number of the incoming data message will be greater than thatcurrently held by the REX-server entity. The protocol entity will therefore update its sequence numberto that of the incoming message.A protocol error will exist if the REX-server entity is in an ASKED or CALL RECEIVING state, or, ifit is in state SENDING and there are still some fragments of a response (to a previous request) to besent. This is because such a condition would imply that the REX-client entity is waiting for more thanone response message; violating our de�nition of an interrogation.Prior to the arrival of this data message, the REX-server might still not know whether a previously sentresponse has arrived at the REX-client entity. If this is the case, the REX-server would not be in theIDLE state and a timer would have been previously STARTed.15

The arrival of this message implicitly acknowledges the receipt of any response sent by the REX-serverentity. (The reason for this again being that the REX-client entity is only allowed to have one outstandingresponse.) The REX-server entity might therefore need to issue a STOP to its timer.Finally, we also point out that the data size component need not be speci�ed when a request is made tothe server entity.11.3 A simple interrogation - stage 3The server entity may take an inde�nite amount of time to process the request and to return a response.On the eventuality of an arrival of a response, the REX-server entity will then transmit this as a messageto the REX-client entity.ServerCallReply�RexClientInfo�RexServerInforesponse? : Responsemessage! : DataMessagetimer update! : TimerUpdateserver state = ASKEDresponse?:type = RESPONSE ^ response?:dest = REX SERVERresponse?:data size 6 max data sizeserver state 0 = REPLYINGserver seqno 0 = new seqnoserver bu�er 0 = fmessage!gmessage!:type = REPLY ^ message!:dest = REX CLIENTmessage!:seqno = new seqnomessage!:data = response?:datatimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = REPLYwherenew seqno = server seqno + 1The situation is analogous to the one encountered in stage 1 of the interrogation; hence we do notcomment any further.11.4 A simple interrogation - stage 4The �nal stage of the interrogation deals with the receipt of the response message by the REX-cliententity, and its delivery to the waiting client entity.
16

ClientReceiveReplyMessage�RexServerInfo�RexClientInfomessage? : DataMessageresponse! : Responsetimer update! : TimerUpdatemessage?:type = REPLY ^ message?:dest = REX CLIENTmessage?:seqno > client seqnoclient seqno 0 = message?:seqnoclient state 62 fIDLE ;RECEIVING ;CAST SENDINGgclient state 0 = IDLEresponse!:type = RESPONSE ^ response!:dest = CLIENTresponse!:data = message?:datatimer update!:type = STOPtimer update!:source = REX CLIENTThis stage is analogous to stage 2. In this case, however, the REX-client entity will always need to issuea STOP to its timer.We again make it clear that the protocol entity may have only one outstanding response by restrictingthe set of states in which it may be in.12 Interrogations involving timeoutsIn this section we start looking at how the REX protocol tackles the problem of delays in messagetransfers. Delays can in fact be in�nite, as in the case of messages getting lost.12.1 TimeoutsWe saw in the �rst stage of an interrogation that on transmitting a CALL message, the REX-clientwould activate the timer. Now suppose that the message does not reach the REX-server entity at all.After a time REPLY, the timeout will occur. The REX-client entity will assume that the message gotlost. It will therefore re-transmit the request message and re-activate the timer.ClientCallingTimeout�SessionInfotimeout? : Timeoutmessage! : DataMessagetimer update! : TimerUpdateclient state = CALLINGtimeout?:dest = REX CLIENTmessage! 2 client bu�ertimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = REPLYThe situation is virtually identical in the case of a response message getting lost.17

ServerReplyingTimeout�SessionInfotimeout? : Timeoutmessage! : DataMessagetimer update! : TimerUpdateserver state = REPLYINGtimeout?:dest = REX SERVERmessage! 2 server bu�ertimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = REPLY12.2 Repeat response messagesEven if a response message is received by the REX-client entity, the REX-server entity may still time-out and perform the operations represented in the schema ServerReplyingTimeout given above. Thismight happen because the next request message (sent by the REX-client entity) that would implicitlyacknowledge the response, might get delayed or lost.We therefore have the possibility of the REX-client entity receiving a repeat of a response message.ClientReceiveRepeatReplyMessage�SessionInfomessage? : DataMessagemessage! : ControlMessagemessage?:type = REPLY ^ message?:dest = REX CLIENTmessage?:seqno 6 client seqnomessage?:seqno = client seqno)client state = IDLE ^message!:type = REPLY ACK ^message!:dest = REX SERVER ^message!:seqno = message?:seqnomessage?:seqno < client seqno)message!:type = NO MESSAGEWhen a repeat response message is received, the REX-client entity would decide whether or not to sendan explicit acknowledgment on the following basis:� if the sequence number of the repeat response message is equal to that currently held by the protocolentity, then the REX-client entity should be in the IDLE state and an explicit acknowledgment issent.� if however the sequence number of the message is less, the protocol entity would have issued a newrequest message; therefore, it may assume that the response would be implicitly acknowledged bythe new request.12.3 Repeat request messagesSimilarly, even if a request message is received by the REX-server entity, the REX-client entity may stilltimeout and perform the operations described by the schema ClientCallingTimeout given in section 12.1.18

This might be due to:� the response messages being delayed or lost, or� the REX-server entity taking longer than expected to process the request and issue a reply.Therefore, the REX-server entity may also receive repeated CALL requests.ServerReceiveRepeatCallMessage�SessionInfomessage? : DataMessagemessage! : ControlMessagemessage?:type = CALL ^ message?:dest = REX SERVERmessage?:seqno 6 server seqnomessage?:seqno = server seqno)server state = ASKED ^message!:type = CALL ACK ^message!:dest = REX CLIENT ^message!:seqno = message?:seqnomessage?:seqno < server seqno)message!:type = NO MESSAGEIn this case, the explicit acknowledgment might be sent to inform the REX-client entity that the requesthad in fact been received and that it is being processed.12.4 Explicit response acknowledgments - REPLY ACKsControl messages are subject to the same delay problems that we considered earlier for data messages.In particular, explicit acknowledgments may take any period of time to reach their destination protocolentity. This may therefore lead to a situation where the REX-client entity has sent more than oneexplicit acknowledgment for a particular response.Bearing the above consideration in mind, we now give a schema which deals with the arrival of an explicitacknowledgment at the REX-server entity.
19

ServerReceiveReplyAckMessage A�RexClientInfo�RexServerInfomessage? : ControlMessagetimer update! : TimerUpdatemessage?:type = REPLY ACKmessage?:dest = REX SERVERmessage?:seqno 6 server seqnomessage?:seqno < server seqno) ignoremessage?:seqno = server seqno)(server state = REPLYING) awaited ack received) ^(server state = IDLE) ignore) ^server state 62fASKED ;CALL RECEIVING ;CAST RECEIVINGgserver seqno 0 = server seqnoserver bu�er 0 = server bu�erresponse frags map 0 = response frags mapwhereignore = (server state 0 = server state ^timer update!:type = NO UPDATE)awaited ack received = (server state 0 = IDLE ^timer update!:type = STOP ^timer update!:source = REX SERVER)The sequence number of the acknowledgment will be equal to the sequence number of the responsemessage which it refers to. Hence, it may not be greater than the sequence number currently held bythe REX-server entity.If the sequence number of the acknowledgment is less than that held by the REX-server entity, this shallindicate that the response in question had already been acknowledged at some prior stage. So, in thiscase the acknowledgment can be ignored.If the sequence numbers are equal then:� the acknowledgment can only be ignored if the protocol entity is in the IDLE state.� if not in the IDLE state, the protocol entity would be anxiously awaiting the acknowledgment, i.e.the response in question would not have been acknowledged and the timer would still be active.� we restrict the set of states in which the protocol entity may be in to rea�rm that the REX-cliententity may only have one outstanding CALL request.12.5 Explicit request acknowledgments - CALL ACKsThe receiving of CALL ACKs by the REX-client entity is analogous to the receiving of REPLY ACKsby the REX-server entity discussed above. The signi�cant di�erence is that when the REX-client entityreceives the �rst explicit acknowledgment for an outstanding CALL request, it will then start probingthe REX-server entity. Probing is discussed in the next section.20

ClientReceiveCallAckMessage A�RexServerInfo�RexClientInfomessage? : ControlMessagetimer update! : TimerUpdatemessage?:type = CALL ACKmessage?:dest = REX CLIENTmessage?:seqno 6 client seqnomessage?:seqno < client seqno) ignoremessage?:seqno = client seqno)(client state = CALLING) start probing) ^client state 62fIDLE ;RECEIVING ;CAST SENDING ;PROBINGgclient seqno 0 = client seqnoclient bu�er 0 = client bu�errequest frags map 0 = request frags mapwhereignore = (client state 0 = client state ^timer update!:type = NO UPDATE)start probing = (client state 0 = PROBING ^timer update!:type = START ^timer update!:source = REX CLIENT ^timer update!:period = PROBE)12.6 The PROBING stateThe REX-client entity will be in the PROBING state when:� it is known that a transmitted CALL request has been received by the REX-server entity, and� the response has not yet been received.While in the PROBING state, the REX-client entity periodically sends a PROBE message. The messagewill carry the sequence number of the outstanding request.ClientProbeTimeout�SessionInfotimeout? : Timeoutmessage! : ControlMessagetimer update! : TimerUpdateclient state = PROBINGtimeout?:dest = REX CLIENTmessage!:type = PROBE ^ message!:dest = REX SERVERmessage!:seqno = client seqnotimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = PROBEWhen a PROBE message is received by the REX-server entity:21

� the PROBE is ignored if the sequence number of the message refers to a CALL request for whichthe response has already been sent.� the protocol entity (which should be in the ASKED state) will send a CALL ACK message explic-itly acknowledging the PROBE message, if the request has not been replied to.ServerReceiveProbeMessage�SessionInfomessage? : ControlMessagemessage! : ControlMessagemessage?:type = PROBE ^ message?:dest = REX SERVERmessage?:seqno 6 server seqnomessage?:seqno < server seqno)message!:type = NO MESSAGEmessage?:seqno = server seqno)server state = ASKED ^message!:type = CALL ACK ^message!:dest = REX CLIENT ^message!:seqno = message?:seqnoWhen a PROBING REX-client entity receives a CALL ACK message it is assured that the REX-serverentity is still active and that no serious communication failure has occurred. Provided these probescontinue to be acknowledged and no response arrives, the REX-client will remain in the PROBINGstate inde�nitely.We therefore extend our description of the receiving of explicit request acknowledgments (given inSection 12.5) as follows:ClientReceiveCallAckMessage B�SessionInfomessage? : ControlMessagetimer update! : TimerUpdatemessage?:type = CALL ACKmessage?:dest = REX CLIENTmessage?:seqno = client seqnoclient state = PROBINGcontinue probingwherecontinue probing = (timer update!:type = START ^timer update!:source = REX CLIENT ^timer update!:period = PROBE)ClientReceiveCallAckMessage C b=ClientReceiveCallAckMessage A_ClientReceiveCallAckMessage B13 Announcement interactionsIn this section we turn our attention to the announcement style of interaction. We again start by lookingat announcements that do not involve fragmentation.22

Announcements do not elicit any sort of response. Therefore, a simple announcement will only involvethe following two stages:1. The REX-client accepts a CAST request and sends it as a single message to the REX-server entity.2. The REX-server entity receives this message and delivers it as a request to the server entity.13.1 A simple announcement - stage 1The receipt of a CAST request by the REX-client entity, as part of a simple announcement, is describedby the following schema:ClientCastRequest�RexServerInfo�RexClientInforequest? : Requestmessage! : DataMessageclient state = IDLErequest?:type = CAST ^ request?:dest = REX CLIENTrequest?:data size 6 max data sizeclient state 0 = client stateclient seqno 0 = new seqnomessage!:type = CAST ^ message!:dest = REX SERVERmessage!:seqno = new seqnomessage!:data = request?:datawherenew seqno = client seqno + 1This stage is similar to the �rst stage of a simple interrogation. However, the following di�erences areworth pointing out:� The protocol entity does not need to keep a copy of the request message that is sent. For announce-ments the protocol does not require the REX-client entity to con�rm that a request message hasreached the REX-server entity. So, it will never need to re-transmit a request message.� Since no response is expected, the protocol entity does not need to activate the timer, and no statechange is involved.� Hence the protocol entity will still be in the IDLE state after the CAST request has been sent,and the client entity may make a new request if it so wishes.13.2 A simple announcement - stage 2This stage is analogous to stage 2 of a simple interrogation. The only signi�cant di�erence is that whena CAST message is received, the protocol entity will return to the IDLE state - since no response is tobe sent back to the REX-client entity. 23

ServerReceiveCastMessage A�RexClientInfo�RexServerInfomessage? : DataMessagerequest ! : Requesttimer update! : TimerUpdatemessage?:type = CAST ^ message?:dest = REX SERVERmessage?:seqno > server seqnoserver state 62 fASKED ;CALL RECEIVINGgserver state = SENDING)NOT OK 62 ran request frags mapserver state 2 fREPLYING ; SENDING ;CAST RECEIVINGg)timer update!:type = STOP ^timer update!:source = REX SERVERserver state 2 fIDLEg)timer update!:type = NO UPDATEserver state 0 = IDLEserver seqno 0 = message?:seqnorequest !:type = CASTrequest !:dest = SERVERrequest !:data = message?:data13.3 Delayed CAST request messagesWe have seen in section 13.1 that after sending a CAST message, the REX-client entity does not haveto wait before starting another interaction by sending a new request message. This might lead to thefollowing sequence of events happening:1. a CAST message is sent and gets delayed;2. the REX-client entity sends another request message;3. the latter request message arrives at the REX-server entity;4. the CAST message then arrives at the REX-server entity;In these situations, where a CAST message is overtaken by another request message, the CAST will beignored when it eventually arrives at the REX-server entity.To take this into account we extend the schema given in section 13.2 as follows:ServerReceiveCastMessage B�SessionInfomessage? : DataMessagerequest ! : Requesttimer update! : TimerUpdatemessage?:type = CAST ^ message?:dest = REX SERVERmessage?:seqno < server seqnorequest !:type = NO REQUESTtimer update!:type = NO UPDATE 24

ServerReceiveCastMessage b=ServerReceiveCastMessage A_ServerReceiveCastMessage B14 Fragmentation in interrogation interactionsIn this section we introduce the fragmentation aspects of the REX-protocol. This is done in the contextof interrogation interactions.An interrogation interaction may involve fragmentation in two ways:� The CALL request may be too large for the REX-client entity to send as a single message. So itis broken down into a number of fragments which are sent as separate fragments.� Similarly, the response may be too large to be transmitted in the opposite direction.We will now take the former case and describe it in detail.14.1 Fragmented CALL requests14.1.1 Accepting the CALL and sending the �rst fragmentClientLargeCallRequest�RexServerInfo�RexClientInforequest? : Requestmessage! : DataMessagetimer update! : TimerUpdateclient state = IDLErequest?:type = CALL ^ request?:dest = REX CLIENTrequest?:data size > max data sizeclient state 0 = CALL SENDINGclient seqno 0 = new seqnoclient bu�er 0 =fragment(request?:data; new seqno;CALL FRAG)message! 2 client bu�er 0message!:o�set = 1request frags map 0 = initialized map � f(1;OK)gtimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = FLOWwherenew seqno = client seqno + 1initialized map =f i : FragIndex ; f :MapFlag jf = NOT OK ^91m : DataMessage �m 2 client bu�er 0 ^ i = m:o�setg 25

The Rex-client entity will store all fragment messages returned by the fragment1 function.The protocol entity will send the �rst of the fragment messages. It will record that the �rst fragmenthas been sent and also that all the remaining ones are still to be transmitted. The timer is activatedwith a FLOW timeout period.14.1.2 Transmission of the other CALL fragmentsAfter a time FLOW from the transmission of the �rst fragment, a timeout will occur and the nextfragment is transmitted. The REX-client entity will also re-activate the timer on the following basis:� If still more fragments remain to be transmitted, the timer is activated with the FLOW timeoutperiod again; so that on the next timeout another fragment is transmitted.� But, if all fragments are now marked as OK, then the protocol entity would have sent the completerequest; in this case the timer is activated with the REPLY timeout period.This represented by the following schema:ClientCallSendingRemainingFragmentsTimeout�RexServerInfo�RexClientInfotimeout? : Timeoutmessage! : DataMessagetimer update! : TimerUpdateclient state = CALL SENDINGtimeout?:dest = REX CLIENTNOT OK 2 ran request frags mapmessage! 2 client bu�ermessage!:o�set = next frag to sendrequest frags map 0 =request frags map � f(next frag to send ;OK)gtimer update!:type = STARTtimer update!:source = REX CLIENTNOT OK 62 ran request frags map 0)timer update!:period = REPLYNOT OK 2 ran request frags map 0)timer update!:period = FLOWclient state 0 = client stateclient seqno 0 = client seqnoclient bu�er 0 = client bu�erwherenext frag to send =min f i : FragIndex ji 2 domrequest frags map ^request frags map(i) = NOT OKgIf a timeout occurs and there are no more fragments to send, then this would mean that a time REPLYhas passed from the transmission of the complete request. The protocol entity would therefore suspectthat something went wrong and it will re-transmit the �rst fragment.1The fragment function is described in Appendix A. 26

ClientCallSendingNoReplyTimeout�SessionInfotimeout? : Timeoutmessage! : DataMessagetimer update! : TimerUpdateclient state = CALL SENDINGtimeout?:dest = REX CLIENTNOT OK 62 ran request frags mapmessage! 2 client bu�ermessage!:o�set = 1timer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = REPLY14.1.3 Receipt of the �rst CALL fragmentThe �rst fragment CALL that is received by the REX-server entity will have a sequence number whichis greater than that held by the REX-server entity.The fragment will be stored and the protocol entity will wait for more fragments to arrive. It knowsthat there are more fragments to come since a fragmented request will always consist of more than onefragment message. As a precaution, the timer is also started. The action taken on timeouts will bedescribed later.ServerReceiveFirstFragmentOfCall�RexClientInfo�RexServerInfomessage? : DataMessagetimer update! : TimerUpdateserver state 62 fASKED ;CALL RECEIVINGgmessage?:type = CALL FRAGmessage?:dest = REX SERVERmessage?:seqno > server seqnoserver state 0 = CALL RECEIVINGserver seqno 0 = message?:seqnoserver bu�er 0 = fmessage?gtimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = CHECKIt is worth also pointing out that we have left open the question of whether the �rst fragment receivedis actually the �rst one sent by the REX-client entity. This may well not be the case.14.1.4 Receipt of other CALL fragmentsSubsequent fragment messages that are received will have the same sequence number as that held bythe REX-server entity. We �rst consider the arrival of a fragment which does not complete the CALLrequest. 27

ServerReceiveNonFinalFragmentOfCall�RexClientInfo�RexServerInfomessage? : DataMessagetimer update! : TimerUpdateserver state = CALL RECEIVINGmessage?:type = CALL FRAGmessage?:dest = REX SERVERmessage?:seqno = server seqnofragment is not repeatfragment is not �nalserver bu�er 0 = server bu�er [fmessage?gtimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = CHECKserver state 0 = server stateserver seqno 0 = server seqnowherefragment is not repeat =8m : DataMessage �m 2 server bu�er) m:o�set 6= message?:o�setfragment is not �nal =9 i : 1 : :max o�set � i 62 fragments receivedmax o�set = message?:total sizefragments received =f i : FragIndex j91m : DataMessage �m 2 server bu�er 0 ^ i = m:o�setgWhen the fragment which is received does complete the set of message fragments, the REX-server entitywill build2 the complete request again and delivers it to the server entity.2The build function is described in Appendix A.
28

ServerReceiveFinalFragmentOfCall�RexClientInfo�RexServerInfomessage? : DataMessagetimer update! : TimerUpdaterequest ! : Requestserver state = CALL RECEIVINGmessage?:type = CALL FRAGmessage?:dest = REX SERVERmessage?:seqno = server seqno8m : DataMessage �m 2 server bu�er) m:o�set 6= message?:o�set8 i : 1 : :max o�set � i 2 fragments receivedserver bu�er 0 = server bu�er [fmessage?gserver state 0 = ASKEDtimer update!:type = STOPtimer update!:source = REX SERVERrequest ! = build(server bu�er 0; SERVER)server seqno 0 = server seqnowheremax o�set = message?:total sizefragments received =f i : FragIndex j91m : DataMessage �m 2 server bu�er 0 ^ i = m:o�setg14.1.5 Delays when receiving CALL fragmentsThe REX-server entity will suspect that fragments have been lost if a time CHECK passes without afragment being received. It would then try to correct the situation by sending a negative acknowledgmentmessage informing the REX-client entity of the fragments that have been received so far.The following schema describes this situation:
29

ServerCallReceivingTimeout�SessionInfotimeout? : Timeoutmessage! : ControlMessagetimer update! : TimerUpdatetimeout?:dest = REX SERVERserver state = CALL RECEIVINGmessage!:type = FRAG NACKmessage!:dest = REX CLIENTmessage!:seqno = server seqnomessage!:frags map =f i : FragIndex j91m : DataMessage �m 2 server bu�er ^ i = m:o�setgtimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = CHECKWhen the REX-client entity receives a negative acknowledgment message, it uses the information con-tained in this message to update its list of fragments to be sent. In this way any fragments which arelost will eventually be re-transmitted.ClientReceiveFragNackMessageForCall�RexServerInfo�RexClientInfomessage? : ControlMessagemessage?:type = FRAG NACKmessage?:dest = REX CLIENTmessage?:seqno = client seqnoclient state = CALL SENDINGrequest frags map 0 =f i : FragIndex ; f :MapFlag ji 6 max o�set ^(i 2 message?:frags map) f = OK) ^(i 62 message?:frags map) f = NOT OK)gclient state 0 = client stateclient seqno 0 = client seqnoclient bu�er 0 = client bu�erwheremax o�set = #request frags map14.2 Fragmented responsesAs we stated earlier, the interrogation may also involve fragmentation if the response is too large to sendback as a single message. This is very similar to the transmission of a fragmented CALL request, so wewill just give the schemas and comment only if there are any major di�erences.14.2.1 Accepting the response and sending the �rst fragment30

ServerLargeCallReply�RexClientInfo�RexServerInforesponse? : Responsemessage! : DataMessagetimer update! : TimerUpdateserver state = ASKEDresponse?:type = RESPONSEresponse?:dest = REX SERVERresponse?:data size > max data sizeserver state 0 = SENDINGserver seqno 0 = new seqnoserver bu�er 0 =fragment(response?:data; new seqno;REPLY FRAG)message! 2 server bu�er 0 ^ message!:o�set = 1response frags map 0 = initialized map � f(1;OK)gtimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = FLOWwherenew seqno = server seqno + 1initialized map =f i : FragIndex ; f :MapFlag jf = NOT OK ^91m : DataMessage �m 2 server bu�er 0 ^ i = m:o�setg14.2.2 Transmission of the other response fragments

31

ServerReplySendingRemainingFragmentsTimeout�RexClientInfo�RexServerInfotimeout? : Timeoutmessage! : DataMessagetimer update! : TimerUpdateserver state = SENDINGtimeout?:dest = REX SERVERNOT OK 2 ran response frags mapmessage! 2 server bu�ermessage!:o�set = next frag to sendresponse frags map 0 =response frags map � f(next frag to send ;OK)gtimer update!:type = STARTtimer update!:source = REX SERVERNOT OK 62 ran response frags map 0)timer update!:period = REPLYNOT OK 2 ran response frags map 0)timer update!:period = FLOWserver state 0 = server stateserver seqno 0 = server seqnoserver bu�er 0 = server bu�erwherenext frag to send =min f i : FragIndex ji 2 domresponse frags map ^response frags map(i) = NOT OKgThe REX-server entity timing-out and no more fragments of response to send:ServerReplySendingNoAckTimeout�SessionInfotimeout? : Timeoutmessage! : DataMessagetimer update! : TimerUpdateserver state = SENDINGtimeout?:dest = REX SERVERNOT OK 62 ran response frags mapmessage! 2 server bu�ermessage!:o�set = 1timer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = REPLYThe REX-server entity will re-transmit the �rst fragment of the response to re-assert that it requires anacknowledgment.14.2.3 Receipt of the �rst fragment of response32

ClientReceiveFirstFragmentOfReply�RexServerInfo�RexClientInfomessage? : DataMessagetimer update! : TimerUpdateclient state 62 fIDLE ;RECEIVING ;CAST SENDINGgmessage?:type = REPLY FRAGmessage?:dest = REX CLIENTmessage?:seqno > client seqnoclient state 0 = RECEIVINGclient seqno 0 = message?:seqnoclient bu�er 0 = fmessage?gtimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = CHECK14.2.4 Receipt of other response fragmentsClientReceiveNonFinalFragmentOfReply�RexServerInfo�RexClientInfomessage? : DataMessagetimer update! : TimerUpdateclient state = RECEIVINGmessage?:type = REPLY FRAGmessage?:dest = REX CLIENTmessage?:seqno = client seqno8m : DataMessage �m 2 client bu�er) m:o�set 6= message?:o�set9 i : 1 : :max o�set � i 62 fragments receivedclient bu�er 0 = client bu�er [fmessage?gtimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = CHECKclient state 0 = client stateclient seqno 0 = client seqnowheremax o�set = message?:total sizefragments received =f i : FragIndex j91m : DataMessage �m 2 client bu�er 0 ^ i = m:o�setg 33

ClientReceiveFinalFragmentOfReply�RexServerInfo�RexClientInfomessage? : DataMessagetimer update! : TimerUpdateresponse! : Responseclient state = RECEIVINGmessage?:type = REPLY FRAGmessage?:dest = REX CLIENTmessage?:seqno = client seqno8m : DataMessage �m 2 client bu�er) m:o�set 6= message?:o�set8 i : 1 : :max o�set � i 2 fragments receivedclient bu�er 0 = client bu�er [fmessage?gclient state 0 = IDLEtimer update!:type = STOPtimer update!:source = REX CLIENTresponse! = build(client bu�er 0;CLIENT)client seqno 0 = client seqnowheremax o�set = message?:total sizefragments received =f i : FragIndex j91m : DataMessage �m 2 client bu�er 0 ^ i = m:o�setg14.2.5 Delays when receiving fragments of responseClientReplyReceivingTimeout�SessionInfotimeout? : Timeoutmessage! : ControlMessagetimer update! : TimerUpdatetimeout?:dest = REX CLIENTclient state = RECEIVINGmessage!:type = FRAG NACKmessage!:dest = REX SERVERmessage!:seqno = client seqnomessage!:frags map =f i : FragIndex j91m : DataMessage �m 2 client bu�er ^ i = m:o�setgtimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = CHECK 34

ServerReceiveFragNackMessage�RexClientInfo�RexServerInfomessage? : ControlMessagemessage?:type = FRAG NACKmessage?:dest = REX SERVERmessage?:seqno = server seqnoserver state = SENDINGresponse frags map 0 =f i : FragIndex ; f :MapFlag ji 6 max o�set ^(i 2 message?:frags map) f = OK) ^(i 62 message?:frags map) f = NOT OK)gserver state 0 = server stateserver seqno 0 = server seqnoserver bu�er 0 = server bu�erwheremax o�set = #response frags map15 Fragmentation in announcementsAnnouncements do not involve any responses. Hence the only way an announcement may involvefragmentation is when the CAST request is too large to send as a single message. The way in whichfragmentation is dealt with in announcements is similar to that encountered for interroagtion interactions.We will again just give the schemas and comment only where major di�erences exist.15.1 Accepting the CAST and sending the �rst fragment
35

ClientLargeCastRequest�RexServerInfo�RexClientInforequest? : Requestmessage! : DataMessagetimer update! : TimerUpdateclient state = IDLErequest?:type = CAST ^ request?:dest = REX CLIENTrequest?:data size > max data sizeclient state 0 = CAST SENDINGclient seqno 0 = new seqnoclient bu�er 0 =fragment(request?:data; new seqno;CAST FRAG)message! 2 client bu�er 0message!:o�set = 1request frags map 0 = initialized map � f(1;OK)gtimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = FLOWwherenew seqno = client seqno + 1initialized map =f i : FragIndex ; f :MapFlag jf = NOT OK ^91m : DataMessage �m 2 client bu�er 0 ^ i = m:o�setg15.2 Transmission of the other CAST fragmentsThe situation in this case is not analogous to the the one encountered in interrogation interactions.When the REX-server entity has sent all the fragments of the CAST request, the timer is not activatedand it changes to the IDLE state. This is because the protocol entity would not be expecting to receiveany response or acknowledgment.
36

ClientCastSendingRemainingFragmentsTimeout�RexServerInfo�RexClientInfotimeout? : Timeoutmessage! : DataMessagetimer update! : TimerUpdateclient state = CAST SENDINGtimeout?:dest = REX CLIENTNOT OK 2 ran request frags mapmessage! 2 client bu�ermessage!:o�set = next frag to sendrequest frags map 0 =request frags map � f(next frag to send ;OK)gNOT OK 2 ran request frags map 0)client state 0 = client state ^timer update!:type = START ^timer update!:source = REX CLIENT ^timer update!:period = FLOWNOT OK 62 ran request frags map 0)client state 0 = IDLE ^timer update!:type = NO UPDATEclient seqno 0 = client seqnoclient bu�er 0 = client bu�erwherenext frag to send =min f i : FragIndex ji 2 domrequest frags map ^request frags map(i) = NOT OKg15.3 Receipt of the �rst fragment of CAST requestServerReceiveFirstFragmentOfCast�RexClientInfo�RexServerInfomessage? : DataMessagetimer update! : TimerUpdateserver state 62f ASKED ;REPLYING ;SENDING ;CALL RECEIVINGgmessage?:type = CAST FRAGmessage?:dest = REX SERVERmessage?:seqno > server seqnoserver state 0 = CAST RECEIVINGserver seqno 0 = message?:seqnoserver bu�er 0 = fmessage?gtimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = CHECK 37

15.4 Receipt of other CAST request fragmentsServerReceiveNonFinalFragmentOfCast�RexClientInfo�RexServerInfomessage? : DataMessagetimer update! : TimerUpdateserver state = CAST RECEIVINGmessage?:type = CAST FRAGmessage?:dest = REX SERVERmessage?:seqno = server seqno8m : DataMessage �m 2 server bu�er) m:o�set 6= message?:o�set9 i : 1 : :max o�set � i 62 fragments receivedserver bu�er 0 = server bu�er [fmessage?gtimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = CHECKserver state 0 = server stateserver seqno 0 = server seqnowheremax o�set = message?:total sizefragments received =f i : FragIndex j91m : DataMessage �m 2 server bu�er 0 ^ i = m:o�setg

38

ServerReceiveFinalFragmentOfCast�RexClientInfo�RexServerInfomessage? : DataMessagetimer update! : TimerUpdaterequest ! : Requestserver state = CAST RECEIVINGmessage?:type = CAST FRAGmessage?:dest = REX SERVERmessage?:seqno = server seqno8m : DataMessage �m 2 server bu�er) m:o�set 6= message?:o�set8 i : 1 : :max o�set � i 2 fragments receivedserver bu�er 0 = server bu�er [fmessage?gserver state 0 = IDLEtimer update!:type = STOPtimer update!:source = REX SERVERrequest ! = build(server bu�er 0; SERVER)server seqno 0 = server seqnowheremax o�set = message?:total sizefragments received =f i : FragIndex j91m : DataMessage �m 2 server bu�er 0 ^ i = m:o�setgThis di�ers from the corresponding situation for interrogation interactions in that no reponse will haveto be sent back to the REX-client entity. Therefore the REX-server entity changes back to the IDLEstate on submitting the complete CAST request to the server entity.15.5 Receipt of overtaken CAST request fragmentsWe have seen in section 13.3 that non-fragmented CAST request messages may be overtaken by anotherrequest message. This also applies to fragment messages of CAST requests. We make it clear belowthat these will be ignored when they eventually arrive at the REX-server entity.ServerReceiveOvertakenFragmentOfCast�SessionInfomessage? : DataMessagetimer update! : TimerUpdatemessage?:type = CAST FRAGmessage?:dest = REX SERVERmessage?:seqno < server seqnotimer update!:type = NO UPDATE15.6 Delays when receiving fragments of CAST request39

ServerCastReceivingTimeout�SessionInfotimeout? : Timeoutmessage! : ControlMessagetimer update! : TimerUpdatetimeout?:dest = REX SERVERserver state = CAST RECEIVINGmessage!:type = FRAG NACKmessage!:dest = REX CLIENTmessage!:seqno = server seqnomessage!:frags map =f i : FragIndex j91m : DataMessage �m 2 server bu�er ^ i = m:o�setgtimer update!:type = STARTtimer update!:source = REX SERVERtimer update!:period = CHECKThe protocol requires the REX-server entity to seek corrective action (by sending a FRAG NACKmessage) when an expected fragment is not received within a time CHECK.However, REX does not require the REX-client entity (which is sending a fragmented CAST request) totake any explicit action on receiving a FRAG NACK message. Therefore, we have not given a schemato represent this.16 Final details on fragmentationThe receipt of a repeat of the �rst fragment of a response, eliciting acknowledgment for the response:ClientReceiveRepeatReplyFragment�SessionInfomessage? : DataMessagemessage! : ControlMessagemessage?:type = REPLY FRAGmessage?:dest = REX CLIENTmessage?:seqno = client seqnoclient state = IDLEmessage?:o�set = 1message!:type = REPLY ACKmessage!:dest = REX SERVERmessage!:seqno = message?:seqnoThe receipt of a repeat of the �rst fragment of a CALL request eliciting acknowledgment for the request:40

ServerReceiveRepeatCallFragment�SessionInfomessage? : DataMessagemessage! : ControlMessagemessage?:type = CALL FRAGmessage?:dest = REX SERVERmessage?:seqno = server seqnoserver state = ASKEDmessage?:o�set = 1message!:type = CALL ACKmessage!:dest = REX CLIENTmessage!:seqno = message?:seqnoWe now extend the speci�cations given for the receipt of explicit acknowledgments given in section 12.4and in section 12.6, to take into account that the request or response may be fragmented:ServerReceiveReplyAckMessage B�RexClientInfo�RexServerInfomessage? : ControlMessagetimer update! : TimerUpdatemessage?:type = REPLY ACKmessage?:dest = REX SERVERmessage?:seqno = server seqnoserver state = SENDINGserver state 0 = IDLEtimer update!:type = STOPtimer update!:source = REX SERVERserver seqno 0 = server seqnoserver bu�er 0 = server bu�erresponse frags map 0 = response frags mapServerReceiveReplyAckMessage b=ServerReceiveReplyAckMessage A_ServerReceiveReplyAckMessage BClientReceiveCallAckMessage D�RexServerInfo�RexClientInfomessage? : ControlMessagetimer update! : TimerUpdatemessage?:type = CALL ACKmessage?:dest = REX CLIENTmessage?:seqno = client seqnoclient state = CALL SENDINGclient state 0 = PROBINGtimer update!:type = STARTtimer update!:source = REX CLIENTtimer update!:period = PROBE 41

ClientReceiveCallAckMessage b=ClientReceiveCallAckMessage C_ClientReceiveCallAckMessage D17 Schema Decompostion of REXRequestEvent b= ClientCallRequest_ClientCastRequest_ClientLargeCallRequest_ClientLargeCastRequestReplyEvent b= ServerCallReply_ServerLargeCallReplyReceptionOfControlMessage b=ClientReceiveCallAckMessage_ClientReceiveFragNackMessageForCall_ServerReceiveReplyAckMessage_ServerReceiveProbeMessage_ServerReceiveFragNackMessageReceptionOfDataMessage b= ClientReceiveReplyMessage_ClientReceiveRepeatReplyMessage_ClientReceiveFirstFragmentOfReply_ClientReceiveNonFinalFragmentOfReply_ClientReceiveFinalFragmentOfReply_ClientReceiveRepeatReplyFragment_ServerReceiveCallMessage_ServerReceiveRepeatReplyMessage_ServerReceiveCastMessage_ServerReceiveFirstFragmentOfCall42

_ServerReceiveNonFinalFragmentOfCall_ServerReceiveFinalFragmentOfCall_ServerReceiveFirstFragmentOfCast_ServerReceiveNonFinalFragmentOfCast_ServerReceiveFinalFragmentOfCast_ServerReceiveOvertakenFragmentOfCast_ServerReceiveRepeatCallFragmentTimeoutEvent b= ClientCallingTimeout_ClientProbeTimeout_ClientCallSendingRemainingFragmentsTimeout_ClientCallSendingNoReplyTimeout_ClientReplyReceivingTimeout_ClientCastSendingRemainingFragmentsTimeout_ServerReplyingTimeout_ServerCallReceivingTimeout_ServerReplySendingRemainingFragmentsTimeout_ServerReplySendingNoAckTimeout_ServerCastReceivingTimeoutRexEvent b= ReceptionOfControlMessage_ReceptionOfDataMessage_TimeoutEvent_RequestEvent_ReplyEvent
43

18 ConclusionA lot of work on formal speci�cations is in the context of systems design. The task involved is usuallythat of identifying the desirable properties of the required system and expressing these in an abstractform, from which an implementation can be derived.By contrast, preparing this formal speci�cation involved taking the implementation-oriented detailsavailable to us, such as those on data-structures and algorithms used, and working towards a functionaldescription at a higher level of abstraction.The requirement was that of providing a precise, clear and unambiguous view of the basic functionalityof the REX protocol. We are con�dent of having ful�lled this requirement and feel that the Z notationwas the important tool that enabled us to do so.Working with a formal notation systemized the way in which we derived the speci�cation. It also madeus study the protocol in more detail and thus, a more precise description was produced.Furthermore, use of the Z notation did not constrain us in the way the information was ordered andstructured. We were able to introduce aspects of the protocol in a logical manner and to do this intutorial form.And �nally of course, the possibility of misinterpretation, which is a great pitfall of natural-languagespeci�cations, was also avoided by adopting the formal notation.19 AcknowledgmentsThe work on this project was carried out in liaison with Alastair Tocher and Ed Oskiewicz of theANSA project team, and Ben Potter, formerly of STC Technology. Their help and support is greatlyappreciated.

44

References[ANSA 90] Testbench Implementation Manual (Cambridge: Advanced Networked Systems Architec-ture, 1990).[Birr 84] A.D.Birrel, B.J.Nivat `Implementing remote procedure calls' ACM Transactions on Com-puter Systems 2, 1 (February 1984) 39-59.[Grim 89a] A.Grimley Formal Speci�cation Using Z (UKC, July 89)[Grim 89b] A.Grimley Formal Speci�cation of Mail System (UKC, April 89)[Hayes 87] I.J.Hayes (Ed.) Speci�cation Case Studies (Prentice-Hall International, 1987).[Herb 87] A.J.Herbert, J.Monk (Editors) The ANSA Reference Manual: release 00:03 (draft) (Cam-bridge: Advanced Networked Systems Architecture, 1987).[Lin 90] P.F.Linington Networked Systems (Lecture Notes - UKC, 1990)[Mull 89] S.J.Mullender (Ed.) Distributed Systems (Addison-Wesley, 1989).[Pott 91] B.Potter, J.Sinclair, D.Till An Introduction to Formal Speci�cation and Z (Prentice-HallInternational, 1991).[Shriv 82] S.K.Shrivastava, F.Panzieri `The design of a reliable remote procedure mechanism' IEEETransactions on Computers C-31, 7 (July 1982) 692-697.[Spec 82] A.Z.Spector `Performing remote operations e�ciently on a local computer network' Com-mun. ACM 25, 4 (April 1982) 246-260.[Spiv 88] J.M.Spivey The Z Notation: a Reference Manual (Cambridge University Press, 1988).[Till 87] D.Till, B.Potter The Speci�cation in Z of Gateway Functions within a CommunicationsNetwork (October 1987).[Wood 89] J.C.P.Woodcock `Structuring speci�cations in Z' Software Engineering Journal (January1989) 51-66.

45

A Appendix - Auxiliary functionsIn this document we have assumed existence of functions fragment and build.fragment : DataType � SeqNo �MessageType ! PDataMessageThe fragment function takes some data and breaks it down into a number of fragment messages.The function must also be given the values to be assigned to the seqno and type components of thefragment messages.If the type component is CALL FRAG or CAST FRAG the dest component of the messges will be setto REX SERVER. If the type is REPLY FRAG the dest component will be set to REX CLIENT .The o�set component of each fragment message is generated automatically by the function so as tore
ect the o�set of the data contained within that fragment. So, an o�set of 1 will be generated for the�rst fragment, 2 for the second, etc..build : PDataMessage �NonProtocolEntity ! P(Request [Response)The build function takes a number of fragment messages and returns a Request if the NonProtocolEntityspeci�ed is CLIENT, or a Response if the NonProtocolEntity speci�ed is SERVER.The data component of the request or response returned will be the concatenation of all the datacontained in the fragment messages, in the order of their o�sets.

46

