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Abstract

REX is a protocol supporting a client/server style of interaction between a number of entities in a
distributed system. Within this interaction paradigm, client entities may request services supplied
by server entities, by interacting with intermediate protocol entities. This paper presents a 7
specification of part of the REX protocol.
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1 Introduction

REX is a protocol supporting a client/server style of interaction between a number of entities in a
distributed system. Within this interaction paradigm, client entities may request services supplied by
server entities, by interacting with intermediate protocol entities.

A significant part of the protocol deals with interactions that take place between a pair of client and
server entities. Such a sequence of interactions shall be referred to as a session.

In this paper we will make use of the Z notation to describe how a session is supported by two REX
protocol entities. Familiarity with the Z notation [Spiv 88, Pott 91] is assumed.

2 The REX Protocol

2.1 ANSA and the ODP Reference Model

The origins of REX lie within the ANSA project. The Advanced Networked Systems Architecture
(ANSA) was an Alvey project jointly sponsored by eight major IT companies. Staff from these industrial
partners were amongst the members of the team that worked together on this project.

ANSA is a major contributor to the work being carried out by ISO to set-up a Reference Model of
Open Distributed Processing (ODP). The objectives of this model is to provide a framework for
the standardization of distributed systems. Publicly agreed standards are needed to support the design,
implementation, operation and evolution of distributed systems where the various components that make
up the systems come from different vendors.

Rather than attempt to directly model the full complexity of a distributed system, ANSA and ODP
adopt the idea of taking viewpoints, each of which represents a different abstraction of the original
system with emphasis on a specific design concern. Each viewpoint has the following properties:

e comparatively simpler to model;
e self-contained and complete;

e bears constraints that are imposed by the fact that all projections relate to some hypothetical
model of the complete system.

Five viewpoints are identified. The Enterprise viewpoints captures the role that the distributed com-
puter system has within the organization - the objectives; activities; policy constraints, all at the organi-
zation level. The Information viewpoint establishes an overall view of all the items of information and
of the information processing activities in the system. The Computational viewpoint is a view of the
distributed system as a set of linked program modules and hence gives a breakdown of the functionality
of the system. The Engineering viewpoint is a description of the actual mechanisms used to support
the required functionality. Finally, the Technology viewpoint is used to describe the actual hardware
and software components of the distributed system.

2.2 The ANSA Testbench

The ANSA Testbench is a reference implementation of the engineering model, over a variety of operating
systems each of which constitutes a technology model. It has served as a vehicle for technology transfer
back to the sponsors and for demonstrating the use of ANSA principles.



The Testbench provides a suite of mechanisms and tools to simplify the task of writing distributed
applications. The computational model supported has the constraint that all interactions between
components are confined to a client/server interaction paradigm; a client requests a specific function to
be performed by a server which performs it at some later time, possibly returning a result.

The form of client/server style of interaction implemented in the Testbench is based on remote procedure
calls - remote access to functions is provided via a local procedural interface. Two forms of remote
invocation are supported:

Interrogation:- The client is blocked until the server performs the operation and returns any results.

Announcement:- The client does not wait for the server to perform the requested action.

Communication between nodes in the engineering model is implemented in terms of three protocol layers:

e The bottom layer provides a message-passing service. This manages connection and discon-
nection, and the transmission and receipt of messages between individual nodes.

e The top layer is a session service, providing end-to-end synchronization of the dialogue.

e The middle layer is the execution protocols layer. This maps computational model interactions
onto message exchanges, by making use of the message-passing service.

2.3 REX

REX (Remote EXecution) is one of the protocols currently included in the Testbench. Tt is a protocol
for single-endpoint to single-endpoint communication. GEX or Group EXecution which is a protocol
for multi-endpoint to multi-endpoint communication, has been implemented in the ANSA Testbench
version 4.2.

The REX protocol is a set of rules which governs how interactions in the engineering model realize the
end-to-end interaction apparent within the computational model. An interaction, as seen in the compu-
tational viewpoint, involves merely two entities - the client and the server entities. In the engineering
viewpoint however, two other intermediate entities come into the picture - these are the REX-client and
the REX-server entities. The client entity interacts only with the REX-client entity and the server entity
only with the REX-server entity. The REX-client and the REX-server entities communicate with each
other on behalf of the client and the server entities, making use of a lower-layer message-passing service.

One can classify the set of rules constituting the REX protocol by separating rules for mapping interro-
gation style of computational model interaction - CALLs, from mapping rules for announcement style
of computational model interaction - CASTs.

A detailed description of the rules that define REX is beyond the scope of this paper. The categorization
made above will merely be used to outline the sequence of operations that take place under ideal
conditions:

1. a client entity submits a CALL to a REX-client entity and is then blocked waiting for a reply;
2. the REX-client entity sends the CALL to the REX-server entity;

3. when the REX-server entity receives the CALL, this i1s passed on to the server entity;

4. the server entity performs the required operation and eventually returns a reply;

5. the REX-server entity sends the reply back to the REX-client entity;



6. when the REX-client entity receives the reply, it passes it on the client entity which can now
continue to operate.

CASTs are dealt with similarly. However, in this case the client entity does not elicit a response from
the server entity.

In practice the REX protocol has also to deal with cases such as client requests and server replies getting
lost or delayed. Another layer of complexity is due to the fact that requests and replies may be too
large to be sent as single messages over the network. For this reason the REX protocol also defines a
fragmentation strategy by which large requests and replies may be conveyed as a number of smaller
component parts.

3 Preliminaries
The set DataType whose elements represent all possible data that may need to be communicated between
the client entity and the server entity.
[ DataType |
Any data of type DataType will have a size, for which we define a type:
DataSize = N
The variable maz_data_size will denote, for the particular network on which the distributed system 1is

installed, the maximum size of data that can be transmitted as a single unit. If this limit is exceeded,
the data would have to be sent in fragments.

| maz_data_size : N

4 Entities

Two REX protocol entities are involved in maintaining a session of communication between the client
entity and the server entity. The client entity interacts with the REX-client entity; the server entity
interacts with the REX-server entity.

Entity = REX_CLIENT | REX_SERVER | CLIENT | SERVER

ProtocolEntity == {REX_CLIENT, REX_SERVER}
NonProtocolEntily == {CLIENT, SERVER}

We shall assume that the protocol entities’ task is confined to supporting one session.

5 Requests and Responses

The client entity makes requests to the REX-client entity. When the REX-server entity receives a
request from the REX-client entity, it will pass it on to the server entity which will process the request.
A request may be a CALL or a CAST. Occasionally, we will need to indicate an absence of a request
and so we also introduce a null request.



RequestType ::= CALL| CAST | NO_REQUEST

The client entity submits a CALL request when the invocation required is an interrogation, i.e. the
client entity 1s to be blocked until the server entity performs the operation asked for and its response is
received. Note that throughout this paper the words response and reply shall be used interchangeably.

The client entity submits a CAST request when the invocation required is an announcement, i.e. the
client entity does not wait for the server entity to perform the requested action.

The server entity is therefore only expected to send a response in the case of an interrogation. We shall
also need to represent an absence of a response.

ResponseType ::= RESPONSE | NO_RESPONSE

We can now define request and response schemas as follows:

Request Response

type : RequestType type : ResponseType
dest : Entity dest : Entity

data : DataType data : DataType
data_size : DataSize data_size : DataSize

The components are:

a type identifying the request or response type;
e a dest identifying the destination entity;
e data which is the actual data-content of the request or response;

o data_size which is the size of this data-content.

6 Messages

To communicate with each other, the REX-client and the REX-server entities utilize a message-passing
service. Various types of messages are defined:

MessageType := CALL

| CALL_FRAG

| CALL_ACK

| PROBE

| REPLY

| REPLY_FRAG
| REPLY_ACK
| CAST

| CAST_FRAG
| FRAG_NACK
|

NO_MESSAGE

CALL, CAST:- messages sent by the REX-client entity and convey client entity requests of the respec-
tive type.

CALL_FRAG, CAST_FRAG, REPLY_FRAG:- similar messages but these only convey a fragment of a

request or response.



REPLY :- messages sent by the REX-server entity and convey server entity responses.

PROBE:- probe messages sent by the REX-client entity to check that the REX-server entity is still
active.

CALL_ACK:- messages used to explicitly acknowledge the receipt of a CALL or a PROBE message.
REPLY_ACK:- explicit acknowledgment messages for REPLY messages.

FRAG_NACK:- explicit negative acknowledgment messages for a fragmented transmission of a request
or response.

NO_MESSAGE:- we will use this type of message to indicate an absence of a message.

Messages which convey some data-content of a request or a response, will be distinguished from those
which contain no data. The former will be called data messages and the latter, control messages.
We will conveniently assume the NO_MESSAGE type to fall under both of these categories.

We are not concerned with how the message-passing service operates. However, we need to be aware of
the limitations of this service. In particular, messages can get delayed, or lost, and there is no guarantee
that they will be received in the order sent. Hence all messages bear a sequence number.

We define the set SeqNo from which all message sequence numbers are drawn.

SeqNo = N

Sequence numbers are assigned to messages by the protocol entities from which they originate. The
protocol entities keep a record of the highest data message sequence number that has been sent or
received. When a protocol entity is to send a new request or response message, the increment of this
number is used as the sequence number. When a data message is received, it is identified as referring
to a new request, or response, if the sequence number of the message 1s greater than that held by the
protocol entity.

Control messages convey control information about data messages. The sequence number of a control
message 1s set to that of the data message which it refers to.

Messages conveying a fragment of a particular request or response will have the same sequence number.
However, each fragment contains an offset identifying its relative position within the complete request
or response. The total number of fragments that compose the request or reply is also stored in each
fragment message. The offset and the totalsize of the request or response will be drawn from the set
Fragindex.

Fragindex := Ny

We now give the schemas for data and control messages.

MessageHeader
type : Message Type
dest : ProtocolEntity
seqno : SeqNo




—_DataMessage
MessageHeader

data : DataType
offset : Fraglndex
total_size : Fragindex

type €
{ CALL, CALL_FRAG, CAST, CAST_FRAG,
REPLY, REPLY_FRAG, NO_MESSAGE
}

— ControlMessage
MessageHeader
frags_map : P Fraglndex

type €
{ CALL_ACK, REPLY_ACK, PROBE,
FRAG_NACK, NO_MESSAGE
}

We will only be considering message transfers between the two protocol entities. Therefore, we need
only specify the destination of the message to be either the REX-client or the REX-server.

The offset and total_size components of data messages are only relevant in the case of messages which
convey fragments of some complete request or response.

The frags_map component of control messages i1s only relevant for FRAG_NACK message types. The
protocol entity sending a FRAG_NACK message uses this component to provide information as to which
fragments have been successfully received.

7 Timers

The protocol entities each make use of a timer-service. A timer can be STARTed or STOPped. We
shall assume that if two consecutive STARTs are performed on a timer, the effect of the second START
shall be that of a STOP followed by a START. We shall use the NO_UPDATE operation to represent
the absence of an update of the timer, by a protocol entity.

TimerUpdate Type ::= START | STOP | NO_UPDATE

The timers used by the REX-client and the REX-server entities are independent of each other, i.e. an
update of one timer will not affect the other timer.

When a timer is STARTed a timeout period is set.

TimeoutPeriod ::= REPLY | PROBE | FLOW | CHECK

REPLY:- timeout period 1s used to establish a limit on the time a protocol entity waits for an expected
acknowledgment. If this time expires, the protocol entity would suspect that something has gone
wrong, and would take some appropriate action.

PROBE:- timeout period is the interval at which the REX-client entity probes the REX-server entity.
The concept of probing is explained in a later section.
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When a request or reply is too large to be transmitted as a single unit, it is fragmented and the fragments
are transmitted separately. Transmission of these fragments is rate-controlled, i.e. transmission is
throttled so as to maintain a comfortable average arrival rate.

FLOW:- timeout period is the time a protocol entity waits between transmission of fragments.

CHECK:- timeout period is the the time a protocol entity waits for a next fragment, before suspecting
that something has gone wrong.

We now give schemas for the update of timers by the protocol entities, and for the occurrence of timeouts.

— TimerUpdate
type : TimerUpdate Type
source : ProtocolEntity
period . TimeoutPeriod

_Timeout
dest : ProtocolEntity

We are only concerned with a single session of interaction between two protocol entities. Therefore,
identification of initiators of timer updates and of destination of timeouts, is only a matter of stating
whether the protocol entity 1s the REX-client or the REX-server.

8 Protocol entity states

The REX-client entity may only exist in one of the following states:

RexClientState ::= IDLFE
| CALLING

| PROBING

| CALL_SENDING
| CAST_SENDING
|

RECEIVING

IDLE:- No outstanding requests to be sent and no outstanding responses or acknowledgments to be

received. New client entity CALL and CAST requests may only be accepted while the REX-client
entity is in this state.

CALLING:- A non-fragmented CALL request has been sent and no response has been received for it.
Furthermore, it is not yet known whether the REX-server entity has received the CALL request.

PROBING:- A fragmented or non-fragmented CALL request has been sent and its successful and com-
plete receipt by the REX-server entity has been acknowledged. However, the response is still
outstanding. Whilst in this state, the REX-client entity will keep on probing the REX-server
entity by sending PROBF messages. This assures the REX-client entity that the REX-server en-
tity is still active and that no serious communication failure has occurred. Provided these probes
continue to be acknowledged, the REX-client will remain in this state indefinitely.

CALL_SENDING:- The REX-client entity is in this state if, either a fragmented CALL request is being
transmitted, or, a fragmented CALL request has been transmitted and no response or acknowl-
edgment has been received for it. The REX-client entity remains in this state until the response
or an acknowledgment is received.
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CAST_SENDING:- A fragmented CAST request is being transmitted.

RECEIVING:- A fragmented response, to an outstanding CALL request, is being received.

Similarly, the REX-server entity may be in one of the following states:

RexServerState ::= IDLE

| ASKED

| REPLYING
| CALL_RECEIVING
| CAST_RECEIVING
|

SENDING

IDLE:- No outstanding responses to be sent and no outstanding acknowledgments or request fragments
to be received.

ASKED:- A non-fragmented CALL request or a complete fragmented CALL request has been received,
but, the response is still outstanding.

REPLYING:- There is no outstanding response to be sent, but, the last response that was sent has not
been acknowledged.

CALL_RECEIVING:- A new fragmented CALL request is being received; there are still more fragments
to be received.

CAST_RECEIVING:- A new fragmented CAST request is being received; there are still more fragments
to be received.

SENDING:- The REX-server entity is in this state if either, a fragmented response is being transmitted,
or, a fragmented response has been transmitted and no acknowledgment has been received for it.
The REX-server entity remains in this state until an acknowledgment is received. The acknowl-
edgment can be an explicit REPLY_ACK message; it can also be implicit on the arrival of a new
request.

9 Maintaining session information
In this section we describe the information that needs to be maintained by each of the protocol entities.
But first another definition is needed:

MapFlag = OK | NOT_OK

The information maintained by the REX-client entity:

RezClientInfo
client_state : RexClientState
client_seqno : SeqNo
client_buffer : P DataMessage
request_frags_map : seq[MapFlag]

client_state:- The state of the protocol entity, as one of the distinct states mentioned above, in which it
can be.

client_seqno:- A record of the largest data message sequence number that has been sent or received.
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client_buffer:- If the protocol entity is in one of the states CALLING, PROBING, CALL_SENDING,
or CAST_SENDING, then a copy of the last request sent, or which is being sent, is maintained.
If the protocol entity is in the state RECEIVING, a copy of the last response being received is
maintained. Note that if the request or response concerned is fragmented then the buffer will
consist of a set of message fragments, whereas if the request is non-fragmented then the the buffer
will consist of a singleton set containing the corresponding message for the complete request.

request_frags_map:- If the protocol entity is in state CALL_SENDING or in state CAST_SENDING,
it needs to know which of the message fragments still need to be transmitted. For the abstract
representation of this information, we have chosen to use a sequence. The sequence will consist of a
term for every fragment message of the request being sent. The domain of this sequence corresponds
to the fragments’ offsets. If a fragment still needs to be transmitted, the term corresponding to
this fragment will be NOT_OK; otherwise the term will be OK.

The information maintained by the REX-server entity:

RezServerInfo
server_state : RexServerState
server_seqno : SeqNo

server_buffer : P DataMessage
response_frags_map : seq[MapFlag]

server_state:- The state of the protocol entity, as one of the distinct states mentioned above, in which
it can be.

server_seqno:- A record of the largest data message sequence number that has been sent or received.

server_buffer:- If the protocol entity is in state REPLYING or in state SENDING, then a copy of
the last response sent, or which is being sent, is maintained. If the protocol entity is in state
CALL_RECEIVING or in state CAST_RECEIVING, then a copy of the last request being received
is maintained. Note that if the request or response concerned is fragmented then the buffer will
consist of a set of message fragments, whereas if the response is non-fragmented then the the buffer
will consist of a singleton set containing the corresponding message for the complete response.

response_frags_map:- If the protocol entity is in state SENDING, it needs to know which of the message
fragments still need to be transmitted. A sequence is used to represent this information, as in the
case of the REX-client entity.

We also consider the information that needs to be maintained on the session as a whole:

Sesstonlnfo
RezClientInfo
RezServerInfo

10 The initial state of the session

Initially, the session will be in some defined state. We will assume that nothing has happened yet.
Therefore, both protocol entities will be in state IDLE.

__ InitialiseSession

ASessioninfo

client_state’ = IDLE
server_state’ = IDLE

server_seqno’ < client_seqno’

13



We can choose to start with any values for the sequence numbers, so long as the value for the REX-client
entity is not smaller than the one for the REX-server entity. The reason for this will become apparent
in the next section.

11 A simple interrogation

We will first consider an interrogation interaction, involving no timeouts and no fragmentation. An
interrogation of this form will involve the following four stages:

1. The REX-client entity accepts a CALL request and sends it as a single message to the REX-server
entity.

2. The REX-server entity receives this message and submits it as a request to the server entity.

3. When the server entity returns a response, the REX-server entity sends it as a single message to
the REX-client entity.

4. The REX-client entity receives this message and passes it on to the waiting client entity.

We now take a look at each of these stages in turn.

11.1 A simple interrogation - stage 1

The acceptance of a CALL request by the REX-client entity, as part of a simple interrogation, is described
by the following schema:

— ClientCallRequest
Z RexServerlnfo

A RexClientInfo
request? : Request
message! : DataMessage
timer_update! : TimerUpdate

client_state = IDLFE
request? . type = CALL A request?.dest = REX_CLIENT
request?.data_size < mar_data_size

client_state’ = CALLING
clienl_seqno’ = new_seqno

messagel.type = CALL N\ message!.dest = REX_SERVER
messagel.seqno = new_seqno
message!.data = request?.data

client _buffer’ = {message!}
timer_update!.type = START

timer_update!.source = REX_CLIENT
timer_update!.period = REPLY

where
new_seqno = client_seqno + 1

New CALL requests from the client entity will only be accepted if the REX-client entity is in the IDLFE
state. Furthermore, since for the time-being we are assuming that no fragmentation is required, only
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requests which are not greater than maz_data_size are considered here. On accepting a request, the
REX-client entity will:

e change to the CALLING state, thus ensuring that no further client entity requests are accepted
before a response has been issued;

e transmit the CALL request as a message to the REX-server entity;
e keep a copy of this message;

e start the timer with a REPLY timeout period.

The REX-client will also increment the value of the sequence number held. This value is then used for
the sequence number of the outgoing message.

11.2 A simple interrogation - stage 2

For this stage of the interrogation we describe the conditions under which the REX-server entity should
receive the message, and the actions that it should take.

__ServerReceiveCallMessage
ZERexClientInfo

A RezServerInfo

message? . DataMessage
request! : Request
timer_update! : TimerUpate

message?.type = CALL A message?.dest = REX_SERVER
message?.seqno > server_seqno

server_seqno’ = message?.seqno

server_state ¢ {ASKED, CALL_RECEIVING}
server_state = SENDING =
NOT_OK & ran request_frags_map

server_state € {REPLYING,SENDING, CAST_RECEIVING} =
timer_update!.type = STOP A
timer_update!.source = REX_SERVER

server_state = IDLE =
timer_update!.type = NO_UPDATE
server_state’ = ASKED

request!.type = CALL A request!.dest = SERVER
request!. data = message?.data

On receiving the message, the sequence number of the incoming data message will be greater than that
currently held by the REX-server entity. The protocol entity will therefore update its sequence number
to that of the incoming message.

A protocol error will exist if the REX-server entity is in an ASKED or CALL_RFECFEIVING state, or, if
it is in state SENDING and there are still some fragments of a response (to a previous request) to be
sent. This i1s because such a condition would imply that the REX-client entity is waiting for more than
one response message; violating our definition of an interrogation.

Prior to the arrival of this data message, the REX-server might still not know whether a previously sent

response has arrived at the REX-client entity. If this is the case, the REX-server would not be in the
IDLE state and a timer would have been previously STARTed.
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The arrival of this message implicitly acknowledges the receipt of any response sent by the REX-server
entity. (The reason for this again being that the REX-client entity is only allowed to have one outstanding
response.) The REX-server entity might therefore need to issue a STOP to its timer.

Finally, we also point out that the data_size component need not be specified when a request is made to
the server entity.

11.3 A simple interrogation - stage 3

The server entity may take an indefinite amount of time to process the request and to return a response.
On the eventuality of an arrival of a response, the REX-server entity will then transmit this as a message
to the REX-client entity.

— ServerCallReply
ZERexClientInfo
A RezServerInfo
response? : Response
message! : DataMessage
timer_update! : TimerUpdate

server_state = ASKED
response?.type = RESPONSE A response?.dest = REX_SERVER

response?.data_size < maxr_data_size

server_state’ = REPLYING
server_seqno’ = new_seqno
server_buffer’ = {message!}

messagel.type = REPLY A message!.dest = REX_CLIENT
messagel.seqno = new_seqno
message!.data = response?.data

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = REPLY

where
new_seqno = server_seqno + 1

The situation is analogous to the one encountered in stage 1 of the interrogation; hence we do not
comment any further.

11.4 A simple interrogation - stage 4

The final stage of the interrogation deals with the receipt of the response message by the REX-client
entity, and its delivery to the waiting client entity.

16



— ClientReceiveReplyMessage
Z RexServerlnfo
A RexClientInfo
message? . DataMessage
response! : Response
timer_update! : TimerUpdate

message?.type = REPLY A message?.dest = REX_CLIENT
message?.seqno > client_seqno

client_seqno’ = message?.seqno
client_state & {IDLE, RECEIVING, CAST_SENDING}

client_state’ = IDLE
response!l.type = RESPONSE A responsel.dest = CLIENT

response!.data = message?.dala

timer_update!.type = STOP
timer_update!.source = REX_CLIENT

This stage is analogous to stage 2. In this case, however, the REX-client entity will always need to issue
a STOP to its timer.

We again make it clear that the protocol entity may have only one outstanding response by restricting
the set of states in which it may be in.

12 Interrogations involving timeouts

In this section we start looking at how the REX protocol tackles the problem of delays in message
transfers. Delays can in fact be infinite, as in the case of messages getting lost.

12.1 Timeouts

We saw in the first stage of an interrogation that on transmitting a CALL message, the REX-client
would activate the timer. Now suppose that the message does not reach the REX-server entity at all.
After a time REPLY, the timeout will occur. The REX-client entity will assume that the message got
lost. It will therefore re-transmit the request message and re-activate the timer.

— ClientCallingTimeout
ESesstonInfo
timeout? : Timeout
message! : DataMessage
timer_update! : TimerUpdate

client_state = CALLING
timeout?.dest = REX_CLIENT

message! € client_buffer

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = REPLY

The situation 1s virtually identical in the case of a response message getting lost.
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__ ServerReplying Timeout
ESesstonInfo

timeout? : Timeout
message! : DataMessage
timer_update! : TimerUpdate

server_state = REPLYING
timeout?.dest = REX_SERVER

message! € server_buffer

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = REPLY

12.2 Repeat response messages

Even if a response message is received by the REX-client entity, the REX-server entity may still time-
out and perform the operations represented in the schema ServerReplyingTimeout given above. This
might happen because the next request message (sent by the REX-client entity) that would implicitly
acknowledge the response, might get delayed or lost.

We therefore have the possibility of the REX-client entity receiving a repeat of a response message.

_ ClientReceiveRepeat ReplyMessage
ESesstonInfo
message? . DataMessage
message! . ControlMessage

message?.type = REPLY A message?.dest = REX_CLIENT
message?.seqno < client_seqno

message?.seqno = client_seqno =
client_state = IDLE N
messagel.type = REPLY _ACK A
messagel.dest = REX_SERVER N

message!l.seqno = message?.seqno

message?.seqno < clieni_seqno =
messagel.type = NO_MESSAGE

When a repeat response message is received, the REX-client entity would decide whether or not to send
an explicit acknowledgment on the following basis:

e if the sequence number of the repeat response message is equal to that currently held by the protocol
entity, then the REX-client entity should be in the IDLF state and an explicit acknowledgment is
sent.

e if however the sequence number of the message is less; the protocol entity would have issued a new
request message; therefore, it may assume that the response would be implicitly acknowledged by
the new request.

12.3 Repeat request messages

Similarly, even if a request message is received by the REX-server entity, the REX-client entity may still
timeout and perform the operations described by the schema ClientCallingTimeout given in section 12.1.
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This might be due to:

e the response messages being delayed or lost, or

e the REX-server entity taking longer than expected to process the request and issue a reply.

Therefore, the REX-server entity may also receive repeated CALL requests.

_ServerReceweRepeatCallMessage
ESesstonInfo
message? . DataMessage
message! . ControlMessage

message?.type = CALL A message?.dest = REX_SERVER
message?.seqno < server_seqno

message?.seqno = server_seqno =
server_state = ASKED A
messagel.type = CALL_ACK A
message!.dest = REX_CLIENT A
message!l.seqno = message?.seqno

message?.seqno < server_seqno =
messagel.type = NO_MESSAGE

In this case, the explicit acknowledgment might be sent to inform the REX-client entity that the request
had in fact been received and that 1t is being processed.

12.4 Explicit response acknowledgments - REPLY_ACKs

Control messages are subject to the same delay problems that we considered earlier for data messages.
In particular, explicit acknowledgments may take any period of time to reach their destination protocol
entity. This may therefore lead to a situation where the REX-client entity has sent more than one
explicit acknowledgment for a particular response.

Bearing the above consideration in mind, we now give a schema which deals with the arrival of an explicit
acknowledgment at the REX-server entity.
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— ServerReceive ReplyAckMessage_A
ZERexClientInfo

A RezServerInfo

message? : ControlMessage
timer_update! : TimerUpdate

message?.type = REPLY _ACK
message?.dest = REX_SERVER

message?.seqno < server_seqno

message?.seqno < Server_seqno = ignore

message?.seqno = SeTvEr_seqno =
(server_state = REPLYING = awaited_ack_received) A
(server_state = IDLE = ignore) A
server_state ¢

{ASKED, CALL_RECEIVING, CAST_RECEIVING}

server_seqno’ = server_seqno
server_buffer’ = server_buffer
response_frags_map’ = response_frags_map

where

ignore = (
server_state’ = server_state A
timer_update!.type = NO_UPDATE)

awatted_ack_received = (
server_state’ = IDLE A
timer_update!.type = STOP A
timer_update!.source = REX_SERVER)

The sequence number of the acknowledgment will be equal to the sequence number of the response
message which it refers to. Hence, it may not be greater than the sequence number currently held by
the REX-server entity.

If the sequence number of the acknowledgment is less than that held by the REX-server entity, this shall
indicate that the response in question had already been acknowledged at some prior stage. So, in this
case the acknowledgment can be ignored.

If the sequence numbers are equal then:

e the acknowledgment can only be ignored if the protocol entity is in the IDLE state.

e if not in the IDLFE state, the protocol entity would be anxiously awaiting the acknowledgment, i.e.
the response in question would not have been acknowledged and the timer would still be active.

e we restrict the set of states in which the protocol entity may be in to reaffirm that the REX-client
entity may only have one outstanding CALL request.

12.5 Explicit request acknowledgments - CALL_ACKs

The receiving of CALL_ACKs by the REX-client entity is analogous to the receiving of REPLY_ACKs
by the REX-server entity discussed above. The significant difference is that when the REX-client entity
receives the first explicit acknowledgment for an outstanding CALL request, it will then start probing
the REX-server entity. Probing is discussed in the next section.
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_ ClientReceiveCallAckMessage A
Z RexServerlnfo
A RexClientInfo
message? : ControlMessage
timer_update! : TimerUpdate

message?.type = CALL_ACK
message?.dest = REX_CLIENT
message?.seqno < client_seqno

message?.seqno < client_seqno = ignore

message?.seqno = client_seqno =
(client_state = CALLING = start_probing) A
client_state ¢
{IDLE, RECEIVING, CAST_SENDING, PROBING}

client_seqno’ = client_seqno
client_buffer’ = client_buffer
request_frags_map’ = request_frags_map

where

ignore = (
client_state’ = client_state N\
timer_update!.type = NO_UPDATE)

start_probing = (
client_state’ = PROBING A
timer_update!.type = START A
timer_update!.source = REX_CLIENT A
timer_update!.period = PROBE)

12.6 The PROBIN(G state

The REX-client entity will be in the PROBING state when:

e it 1s known that a transmitted CALL request has been received by the REX-server entity, and

e the response has not yet been received.

While in the PROBING state, the REX-client entity periodically sends a PROBE message. The message
will carry the sequence number of the outstanding request.

— ClientProbe Timeout
ESesstonInfo
timeout? : Timeout
message! . ControlMessage
timer_update! : TimerUpdate

client_state = PROBING
timeout?.dest = REX_CLIENT

messagel.type = PROBE N message!.dest = REX_SERVER
message!.seqno = client_segno

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = PROBE

When a PROBE message is received by the REX-server entity:
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e the PROBE is ignored if the sequence number of the message refers to a CALL request for which
the response has already been sent.

o the protocol entity (which should be in the ASKED state) will send a CALL_ACK message explic-
itly acknowledging the PROBE message, if the request has not been replied to.

__ ServerReceweProbeMessage
ESesstonInfo
message? : ControlMessage
message! . ControlMessage

message?.type = PROBE A message?.dest = REX_SERVER
message?.seqno < server_seqno

message?.seqno < server_seqno =
messagel.type = NO_MESSAGE

message?.seqno = server_seqno =
server_state = ASKED A
messagel.type = CALL_ACK A
message!.dest = REX_CLIENT A
message!l.seqno = message?.seqno

When a PROBING REX-client entity receives a CALL_ACK message it is assured that the REX-server
entity is still active and that no serious communication failure has occurred. Provided these probes
continue to be acknowledged and no response arrives, the REX-client will remain in the PROBING
state indefinitely.

We therefore extend our description of the receiving of explicit request acknowledgments (given in
Section 12.5) as follows:

— ClientReceiveCallAckMessage B
ESesstonInfo
message? : ControlMessage
timer_update! : TimerUpdate

message?.type = CALL_ACK
message?.dest = REX_CLIENT
message?.seqno = client_seqno

client_state = PROBING
continue_probing

where
continue_probing = (
timer_update!.type = START A
timer_update!.source = REX_CLIENT A
timer_update!.period = PROBE)

ClientReceive CallAckMessage C =
ClientReceive CallAckMessage_A
\
ClientReceiveCallAckMessage B

13 Announcement interactions

In this section we turn our attention to the announcement style of interaction. We again start by looking
at announcements that do not involve fragmentation.
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Announcements do not elicit any sort of response. Therefore, a simple announcement will only involve
the following two stages:

1. The REX-client accepts a CAST request and sends it as a single message to the REX-server entity.

2. The REX-server entity receives this message and delivers it as a request to the server entity.

13.1 A simple announcement - stage 1

The receipt of a CAST request by the REX-client entity, as part of a simple announcement, is described
by the following schema:

— ClientCastRequest
Z RexServerlnfo
A RexClientInfo
request? : Request
message! : DataMessage

client_state = IDLFE
request? . type = CAST A request?.dest = REX_CLIENT
request?.data_size < mar_data_size

client_state’ = client_state
clienl_seqno’ = new_seqno

messagel.type = CAST A message!.dest = REX_SERVER
messagel.seqno = new_seqno
message!.data = request?.data

where
new_seqno = client_seqno + 1

This stage is similar to the first stage of a simple interrogation. However, the following differences are
worth pointing out:

e The protocol entity does not need to keep a copy of the request message that is sent. For announce-
ments the protocol does not require the REX-client entity to confirm that a request message has
reached the REX-server entity. So, it will never need to re-transmit a request message.

e Since no response is expected, the protocol entity does not need to activate the timer, and no state
change 1s involved.

e Hence the protocol entity will still be in the IDLE state after the C'AST request has been sent,
and the client entity may make a new request if it so wishes.
13.2 A simple announcement - stage 2

This stage is analogous to stage 2 of a simple interrogation. The only significant difference 1s that when
a CAST message is received, the protocol entity will return to the IDLFE state - since no response is to
be sent back to the REX-client entity.
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_ ServerReceiveCastMessage_A
ZERexClientInfo
A RezServerInfo
message? . DataMessage
request! : Request
timer_update! : TimerUpdate

message?.type = CAST A message?.dest = REX_SERVER
message?.seqno > server_seqno

server_state ¢ {ASKED, CALL_RECEIVING}

server_state = SENDING =
NOT_OK & ran request_frags_map
server_state € {REPLYING,SENDING, CAST_RECEIVING} =
timer_update!.type = STOP A
timer_update!.source = REX_SERVER
server_state € {IDLE} =
timer_update!.type = NO_UPDATE

server_state’ = IDLE
server_seqno’ = message?.seqno

request!.type = CAST
request!.dest = SERVER

request!. data = message?.data

13.3 Delayed CAST request messages

We have seen in section 13.1 that after sending a CAST message, the REX-client entity does not have
to wait before starting another interaction by sending a new request message. This might lead to the
following sequence of events happening:

1. a CAST message is sent and gets delayed;
2. the REX-client entity sends another request message;
3. the latter request message arrives at the REX-server entity;

4. the CAST message then arrives at the REX-server entity;

In these situations, where a CAST message is overtaken by another request message, the CAST will be
ignored when it eventually arrives at the REX-server entity.

To take this into account we extend the schema given in section 13.2 as follows:

__ServerReceiveCastMessage_B
ESesstonInfo
message? . DataMessage
request! : Request
timer_update! : TimerUpdate

message?.type = CAST A message?.dest = REX_SERVER
message?.seqno < server_seqno

request!.type = NO_REQUEST
timer_update!.type = NO_UPDATE

24



ServerReceiveCastMessage =
ServerReceive CastMessage_A

\
ServerRecewveCastMessage_B

14 Fragmentation in interrogation interactions

In this section we introduce the fragmentation aspects of the REX-protocol. This is done in the context
of interrogation interactions.

An interrogation interaction may involve fragmentation in two ways:

o The CALL request may be too large for the REX-client entity to send as a single message. So it
is broken down into a number of fragments which are sent as separate fragments.

e Similarly, the response may be too large to be transmitted in the opposite direction.

We will now take the former case and describe 1t in detail.

14.1 Fragmented CALL requests

14.1.1 Accepting the CALL and sending the first fragment

_ ClientLargeCallRequest
Z RexServerlnfo

A RexClientInfo
request? : Request
message! : DataMessage
timer_update! : TimerUpdate

client_state = IDLE
request? . type = CALL A request?.dest = REX_CLIENT

request?.data_size > maz_data_size

client_state’ = CALL_SENDING
client_seqno’ = new_seqno
client _buffer’ =
fragment(request?.data, new_seqno, CALL_FRAG)

message! € client_buffer’
message!.offset = 1

request_frags_map’ = initialized_map & {(1, OK)}

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = FLOW

where
new_seqno = client_seqno + 1
mitialized_map =
{ i: Fraglndex; f: MapFlag |
f=NOT_OK A
3, m : DataMessage o
m € client_buffer’ A 1 = m.offset
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The Rex-client entity will store all fragment messages returned by the fragment' function.

The protocol entity will send the first of the fragment messages. It will record that the first fragment
has been sent and also that all the remaining ones are still to be transmitted. The timer is activated
with a FFLOW timeout period.

14.1.2 Transmission of the other CALL fragments

After a time FLOW from the transmission of the first fragment, a timeout will occur and the next
fragment is transmitted. The REX-client entity will also re-activate the timer on the following basis:

o If still more fragments remain to be transmitted, the timer is activated with the FLOW timeout
period again; so that on the next timeout another fragment is transmitted.

e But, if all fragments are now marked as OK, then the protocol entity would have sent the complete
request; in this case the timer is activated with the REPLY timeout period.

This represented by the following schema:

— ClientCallSendingRemaining Fragments Timeout
Z RexServerlnfo
A RexClientInfo
timeout? : Timeout
message! : DataMessage
timer_update! : TimerUpdate

client_state = CALL_SENDING
timeout?.dest = REX_CLIENT
NOT_OK € ran request_frags_map

message! € client_buffer
message!.offsel = nexi_frag_to_send
request_frags_map’ =

request_frags_map & {(next_frag_to_send, OK)}

timer_update!.type = START
timer_update!.source = REX_CLIENT
NOT_OK ¢ ran request_frags_map’ =
timer_update!.period = REPLY
NOT_OK € ran request_frags_map’ =
timer_update!.period = FLOW

client_state’ = client_state
client_seqno’ = client_seqno
client_buffer’ = client_buffer

where
next_frag_to_send =
min { i: Praglndex |
1 € dom request_frags_map A
request_frags_map(i) = NOT_OK

If a timeout occurs and there are no more fragments to send, then this would mean that a time REPLY
has passed from the transmission of the complete request. The protocol entity would therefore suspect
that something went wrong and it will re-transmit the first fragment.

1 The fragment function is described in Appendix A.
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— ClientCallSendingNoReply Timeout
ESesstonInfo
timeout? : Timeout

message! : DataMessage
timer_update! : TimerUpdate
client_state = CALL_SENDING
timeout?.dest = REX_CLIENT
NOT_OK ¢ ran request_frags_map

message! € client_buffer
message!.offset = 1

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = REPLY

14.1.3 Receipt of the first CALL fragment

The first fragment CALL that is received by the REX-server entity will have a sequence number which
is greater than that held by the REX-server entity.

The fragment will be stored and the protocol entity will wait for more fragments to arrive. It knows
that there are more fragments to come since a fragmented request will always consist of more than one
fragment message. As a precaution, the timer is also started. The action taken on timeouts will be
described later.

__ServerRecewe FirstFragmentOfCall
ZERexClientInfo
A RezServerInfo
message? . DataMessage
timer_update! : TimerUpdate

server_state ¢ {ASKED, CALL_RECEIVING}
message?.type = CALL_FRAG
message?.dest = REX_SERVER

message?.seqno > server_seqno

server_state’ = CALL_RECEIVING
server_seqno’ = message?.seqno
server_buffer’ = {message?}

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = CHECK

It is worth also pointing out that we have left open the question of whether the first fragment received
is actually the first one sent by the REX-client entity. This may well not be the case.

14.1.4 Receipt of other CALL fragments

Subsequent fragment messages that are received will have the same sequence number as that held by
the REX-server entity. We first consider the arrival of a fragment which does not complete the CALL
request.
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— ServerReceiwve NonFinalFragmentOfCall
ZERexClientInfo

A RezServerInfo

message? . DataMessage

timer_update! : TimerUpdate

server_state = CALL_RECFEIVING

message?.type = CALL_FRAG
message?.dest = REX_SERVER

message?.seqno = server_seqno

fragment_is_not_repeat
fragment_is_not_final

server_buffer’ = server_buffer U {message?}

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = CHECK

server_state’ = server_state
server_seqno’ = server_seqno

where

fragment_is_not_repeat =

V¥V m : DataMessage o

m € server_buffer = m.offset # message?.offset

fragment_is_not_final =

di:1.. maz_offset o i & fragments_received
maz_offset = message?.total_size
fragments_received =

{ i: Praglndex |

3, m : DataMessage o
m € server_buffer’ A i = m.offset

When the fragment which is received does complete the set of message fragments, the REX-server entity
will build® the complete request again and delivers it to the server entity.

2The build function is described in Appendix A.
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_ ServerReceweFinalFragmentOfCall
ZERexClientInfo
A RezServerInfo
message? . DataMessage
timer_update! : TimerUpdate
request! : Request

server_state = CALL_RECFEIVING

message?.type = CALL_FRAG
message?.dest = REX_SERVER

message?.seqno = server_seqno

V¥V m : DataMessage o
m € server_buffer = m.offset # message?.offset

Vi:1..maz_offset i € fragments_recerved
server_buffer’ = server_bujffer U {message?}
server_state’ = ASKED

timer_update!.type = STOP
timer_update!.source = REX_SERVER

request! = build(server_buffer’, SERVER)
server_seqno’ = server_seqno

where
maz_offset = message?.total_size
fragments_received =
{ i: Praglndex |
3, m : DataMessage o
m € server_buffer’ A i = m.offset

14.1.5 Delays when receiving CALL fragments

The REX-server entity will suspect that fragments have been lost if a time CHECK passes without a
fragment being received. It would then try to correct the situation by sending a negative acknowledgment
message informing the REX-client entity of the fragments that have been received so far.

The following schema describes this situation:
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_ ServerCallReceiving Timeout
ESesstonInfo
timeout? : Timeout
message! . ControlMessage
timer_update! : TimerUpdate

timeout?.dest = REX_SERVER
server_state = CALL_RECFEIVING

messagel.type = FRAG_NACK
messagel.dest = REX_CLIENT
messagel.seqno = server_seqno
messagel.frags_map =
{ i: Praglndex |
3, m : DataMessage o
m € server_buffer A 1 = m.offset

1

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = CHECK

When the REX-client entity receives a negative acknowledgment message, it uses the information con-
tained in this message to update its list of fragments to be sent. In this way any fragments which are
lost will eventually be re-transmitted.

_ ClientReceveFragNackMessageForCall
Z RexServerlnfo
A RexClientInfo

message? : ControlMessage

message?.type = FRAG_NACK
message?.dest = REX_CLIENT
message?.seqno = client_seqno

client_state = CALL_SENDING
request_frags_map’ =
{ i: Fraglndex; f: MapFlag |
1 < maz_offset A
(i € message?.frags_map = f = OK) A
(i & message?.frags_map = f = NOT_OK)

1

client_state’ = client_state
client_seqno’ = client_seqno
client_buffer’ = client_buffer

where
maz_offset = #request_frags_map

14.2 Fragmented responses

As we stated earlier, the interrogation may also involve fragmentation if the response is too large to send
back as a single message. This is very similar to the transmission of a fragmented CALL request, so we
will just give the schemas and comment only if there are any major differences.

14.2.1 Accepting the response and sending the first fragment
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— ServerLargeCallReply

ZERexClientInfo

A RezServerInfo

response? : Response
message! : DataMessage
timer_update! : TimerUpdate

server_state = ASKED

response?.type = RESPONSE
response?.dest = REX_SERVER

response?.data_size > maz_data_size

server_state’ = SENDING
server_seqno’ = new_seqno

server_buffer’ =
fragment(response?.data, new_seqno, REPLY _FRAG)

message! € server_buffer’ A message!.offset = 1

response_frags_map’ = initialized_map & {(1, OK)}
timer_update!.type = START

timer_update!.source = REX_SERVER
timer_update!.period = FLOW

where
new_seqno = server_seqno + 1
mitialized_map =
{ i: Fraglndex; f: MapFlag |
f=NOT_OK A
3, m : DataMessage o
m € server_buffer’ A i = m.offset

14.2.2 Transmission of the other response fragments
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__ServerReplySendingRemainingFragmentsTimeout
ZERexClientInfo
A RezServerInfo
timeout? : Timeout
message! : DataMessage
timer_update! : TimerUpdate

server_state = SENDING
timeout?.dest = REX_SERVER
NOT_OK € ran response_frags_map

message! € server_buffer
message!.offsel = nexi_frag_to_send

response_frags_map’ =
response_frags_map & {(next_frag_to_send, OK)}

timer_update!.type = START
timer_update!.source = REX_SERVER
NOT_OK ¢ ran response_frags_map’ =
timer_update!.period = REPLY
NOT_OK € ran response_frags_map’ =
timer_update!.period = FLOW

server_state’ = server_state
server_seqno’ = server_seqno
server_buffer’ = server_buffer

where
next_frag_to_send =
min { i: Praglndex |
1 € dom response_frags_map A
response_frags_map(i) = NOT_OK

The REX-server entity timing-out and no more fragments of response to send:

— ServerReplySendingNoAckTimeout
ESesstonInfo
timeout? : Timeout
message! : DataMessage
timer_update! : TimerUpdate

server_state = SENDING
timeout?.dest = REX_SERVER
NOT_OK ¢ ran response_frags_map

message! € server_buffer
message!.offset = 1

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = REPLY

The REX-server entity will re-transmit the first fragment of the response to re-assert that it requires an
acknowledgment.

14.2.3 Receipt of the first fragment of response
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_ ClientReceiveFirst FragmentOfReply

Z RexServerlnfo

A RexClientInfo

message? . DataMessage
timer_update! : TimerUpdate

client_state & {IDLE, RECEIVING, CAST_SENDING}

message?.type = REPLY _FRAG
message?.dest = REX_CLIENT
message?.seqno > client_seqno

client_state’ = RECEIVING
client_seqno’ = message?.seqno
client _buffer’ = {message?}

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = CHECK

14.2.4 Receipt of other response fragments

— ClientRecetveNonFinalFragmentOfReply

Z RexServerlnfo

A RexClientInfo

message? . DataMessage
timer_update! : TimerUpdate

client_state = RECEIVING

message?.type = REPLY _FRAG
message?.dest = REX_CLIENT
message?.seqno = client_seqno

V¥V m : DataMessage o
m € client_buffer = m.offset £ message?.offset

Ji:1.. maz_offset o i & fragments_received
client_buffer’ = client_buffer U {message?}

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = CHECK

client_state’ = client_state
client_seqno’ = client_seqno

where
maz_offset = message?.total_size
fragments_received =
{ i: Praglndex |
3, m : DataMessage
m € client_buffer’ A 1 = m.offset
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— ClientReceiveFinalFragmentOfRReply

Z RexServerlnfo

A RexClientInfo

message? . DataMessage
timer_update! : TimerUpdate
response! : Response

client_state = RECEIVING

message?.type = REPLY _FRAG
message?.dest = REX_CLIENT
message?.seqno = client_seqno

V¥V m : DataMessage o
m € client_buffer = m.offset £ message?.offset

Vi:1..maz_offset i € fragments_recerved
client_buffer’ = client_buffer U {message?}
client_state’ = IDLE

timer_update!.type = STOP
timer_update!.source = REX_CLIENT

response! = build(client _buffer’, CLIENT)
client_seqno’ = client_seqno

where
maz_offset = message?.total_size
fragments_received =
{ i: Praglndex |
3, m : DataMessage o
m € client_buffer’ A 1 = m.offset

14.2.5 Delays when receiving fragments of response

_ ClientReplyReceiving Timeout

ESesstonInfo

timeout? : Timeout

message! . ControlMessage
timer_update! : TimerUpdate

timeout?.dest = REX_CLIENT
client_state = RECEIVING

messagel.type = FRAG_NACK
messagel.dest = REX_SERVER
messagel.seqno = client_seqno
messagel.frags_map =
{ i: Praglndex |
3, m : DataMessage o
m € client_buffer N\ 1 = m.offset

}
timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = CHECK
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__ServerReceweFragNackMessage
ZERexClientInfo

A RezServerInfo

message? : ControlMessage

message?.type = FRAG_NACK
message?.dest = REX_SERVER

message?.seqno = Server_seqno
server_state = SENDING

response_frags_map’ =
{ i: Fraglndex; f: MapFlag |
1 < maz_offset A
(i € message?.frags_map = f = OK) A
(i & message?.frags_map = f = NOT_OK)
}

server_state’ = server_state
server_seqno’ = server_seqno
server_buffer’ = server_buffer

where
maz_offset = #response_frags_map

15 Fragmentation in announcements

Announcements do not involve any responses. Hence the only way an announcement may involve
fragmentation is when the CAST request is too large to send as a single message. The way in which
fragmentation is dealt with in announcements is similar to that encountered for interroagtion interactions.
We will again just give the schemas and comment only where major differences exist.

15.1 Accepting the CAST and sending the first fragment
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— ClientLargeCastRequest
Z RexServerlnfo
A RexClientInfo
request? : Request
message! : DataMessage
timer_update! : TimerUpdate

client_state = IDLFE

request? . type = CAST A request?.dest = REX_CLIENT
request?.data_size > maz_data_size

client_state’ = CAST_SENDING
client_seqno’ = new_seqno
client _buffer’ =
fragment(request?.data, new_seqno, CAST_FRAG)

message! € client_buffer’
message!.offset = 1

request_frags_map’ = initialized_map & {(1, OK)}

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = FLOW

where
new_seqno = client_seqno + 1
mitialized_map =
{ i: Fraglndex; f: MapFlag |
f=NOT_OK A
3, m : DataMessage o
m € client_buffer’ A 1 = m.offset

15.2 Transmission of the other CAST fragments

The situation in this case is not analogous to the the one encountered in interrogation interactions.
When the REX-server entity has sent all the fragments of the C'AST request, the timer is not activated
and it changes to the IDLE state. This is because the protocol entity would not be expecting to receive
any response or acknowledgment.
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_ ClientCastSendingRemainingFragmentsTimeout

Z RexServerlnfo

A RexClientInfo

timeout? : Timeout

message! : DataMessage
timer_update! : TimerUpdate

client_state = CAST_SENDING
timeout?.dest = REX_CLIENT
NOT_OK € ran request_frags_map

message! € client_buffer
message!.offsel = nexi_frag_to_send
request_frags_map’ =
request_frags_map & {(next_frag_to_send, OK)}
NOT_OK € ran request_frags_map’ =
client_state’ = client_state N\
timer_update!.type = START A
timer_update!.source = REX_CLIENT A
timer_update!.period = FLOW

NOT_OK ¢ ran request_frags_map’ =
client_state’ = IDLE A
timer_update!.type = NO_UPDATE

client_seqno’ = client_seqno
client_buffer’ = client_buffer

where
next_frag_to_send =
min { i: Praglndex |
1 € dom request_frags_map A
request_frags_map(i) = NOT_OK

15.3 Receipt of the first fragment of CAST request

_ ServerRecewe FirstFragmentOfCast
ZERexClientInfo
A RezServerInfo
message? . DataMessage
timer_update! : TimerUpdate

server_state ¢
{ ASKED, REPLYING,
SENDING, CALL_RECEIVING
}

message?.type = CAST_FRAG
message?.dest = REX_SERVER

message?.seqno > server_seqno

server_state’ = CAST_RECEIVING
server_seqno’ = message?.seqno
server_buffer’ = {message?}

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = CHECK
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15.4 Receipt of other CAST request fragments

_ServerRecetve NonFinalFragmentOfCast

ZERexClientInfo

A RezServerInfo

message? . DataMessage
timer_update! : TimerUpdate

server_state = CAST_RECEIVING

message?.type = CAST_FRAG
message?.dest = REX_SERVER

message?.seqno = server_seqno

V¥V m : DataMessage o
m € server_buffer = m.offset # message?.offset

Ji:1.. maz_offset o i & fragments_received
server_buffer’ = server_buffer U {message?}

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = CHECK

server_state’ = server_state
server_seqno’ = server_seqno

where
maz_offset = message?.total_size
fragments_received =
{ i: Praglndex |
3, m : DataMessage o
m € server_buffer’ A i = m.offset
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__ ServerReceweFinalFragmentOfCast
ZERexClientInfo
A RezServerInfo
message? . DataMessage
timer_update! : TimerUpdate
request! : Request

server_state = CAST_RECEIVING

message?.type = CAST_FRAG
message?.dest = REX_SERVER

message?.seqno = server_seqno

V¥V m : DataMessage o
m € server_buffer = m.offset # message?.offset

Vi:1..maz_offset i € fragments_recerved
server_buffer’ = server_bujffer U {message?}
server_state’ = IDLE

timer_update!.type = STOP
timer_update!.source = REX_SERVER

request! = build(server_buffer’, SERVER)
server_seqno’ = server_seqno

where
maz_offset = message?.total_size
fragments_received =
{ i: Praglndex |
3, m : DataMessage o
m € server_buffer’ A i = m.offset

This differs from the corresponding situation for interrogation interactions in that no reponse will have
to be sent back to the REX-client entity. Therefore the REX-server entity changes back to the IDLE
state on submitting the complete CAST request to the server entity.

15.5 Receipt of overtaken CAST request fragments

We have seen in section 13.3 that non-fragmented CAST request messages may be overtaken by another
request message. This also applies to fragment messages of CAST requests. We make it clear below
that these will be ignored when they eventually arrive at the REX-server entity.

_ ServerReceive Qvertaken FragmentOfCast
ESesstonInfo
message? . DataMessage
timer_update! : TimerUpdate

message?.type = CAST_FRAG
message?.dest = REX_SERVER

message?.seqno < server_seqno

timer_update!.type = NO_UPDATE

15.6 Delays when receiving fragments of CAST request
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_ ServerCastReceiving Timeout
ESesstonInfo
timeout? : Timeout
message! . ControlMessage
timer_update! : TimerUpdate

timeout?.dest = REX_SERVER
server_state = CAST_RECEIVING

messagel.type = FRAG_NACK
messagel.dest = REX_CLIENT
messagel.seqno = server_seqno
messagel.frags_map =
{ i: Praglndex |
3, m : DataMessage o
m € server_buffer A 1 = m.offset

1

timer_update!.type = START
timer_update!.source = REX_SERVER
timer_update!.period = CHECK

The protocol requires the REX-server entity to seek corrective action (by sending a FRAG_-NACK
message) when an expected fragment is not received within a time CHECK.

However, REX does not require the REX-client entity (which is sending a fragmented CAST request) to
take any explicit action on receiving a FRAG_NACK message. Therefore, we have not given a schema
to represent this.

16 Final details on fragmentation

The receipt of a repeat of the first fragment of a response, eliciting acknowledgment for the response:

_ ClientReceive Repeat ReplyFragment
ESesstonInfo

message? . DataMessage

message! . ControlMessage

message?.type = REPLY _FRAG
message?.dest = REX_CLIENT
message?.seqno = client_seqno

client_state = IDLE
message?.offset = 1

messagel.type = REPLY _ACK
messagel.dest = REX_SERVER

message!l.seqno = message?.seqno

The receipt of a repeat of the first fragment of a CALL request eliciting acknowledgment for the request:
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__ ServerRecewveRepeat CallFragment
ESesstonInfo
message? . DataMessage
message! . ControlMessage

message?.type = CALL_FRAG
message?.dest = REX_SERVER

message?.seqno = server_seqno

server_state = ASKED
message?.offset = 1

messagel.type = CALL_ACK
messagel.dest = REX_CLIENT
message!.seqno = message?.seqno

We now extend the specifications given for the receipt of explicit acknowledgments given in section 12.4
and in section 12.6, to take into account that the request or response may be fragmented:

_ ServerRecewveReplyAckMessage_B
ZERexClientInfo
A RezServerInfo
message? : ControlMessage
timer_update! : TimerUpdate

message?.type = REPLY _ACK
message?.dest = REX_SERVER

message?.seqno = Server_seqno
server_state = SENDING

server_state’ = IDLE

timer_update!.type = STOP
timer_update!.source = REX_SERVER

server_seqno’ = server_seqno
server_buffer’ = server_buffer
response_frags_map’ = response_frags_map

ServerReceive ReplyAckMessage =
ServerReceive ReplyAckMessage_A
\
ServerRecewveReplyAckMessage_B

— ClientReceiveCallAckMessage D
Z RexServerlnfo
A RexClientInfo
message? : ControlMessage
timer_update! : TimerUpdate

message?.type = CALL_ACK
message?.dest = REX_CLIENT
message?.seqno = client_seqno

client_state = CALL_SENDING

client_state’ = PROBING

timer_update!.type = START
timer_update!.source = REX_CLIENT
timer_update!.period = PROBE
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ClientReceive CallAckMessage =

ClientReceiveCallAckMessage_C
\
ClientReceiveCallAckMessage D

17 Schema Decompostion of REX

Request Event =

ClientCallRequest
\
ClientCastRequest
\
ClientLargeCallRequest
\
ClientLargeCastRequest

ReplyFvent =
ServerCallReply
\
ServerLargeCallReply

ReceptionOfControlMessage =

ClientReceiveCallAckMessage
ClientReceiveFmg]\\f/ackMessageForCall
ServerReceiveR\gplyAckMessage
ServerReceive\/ProbeMessage
ServerReceiveF\;agNackMessage

ReceptionOfDataMessage =
ClientReceive ReplyMessage

ClientReceiveRe;/eatReplyMessage
ClientReceiveFirs\;FmgmentOfReply
ClientReceiveNonFleFmgmentOfReply
ClientReceiveFin;/lFragmentOfReply
ClientReceiveRep\éatReplyFmgment
ServerReceiv\éCallMessage
ServerReceiveReZeatReplyMessage
ServerReceiv\e/CastMessage
\

ServerRecewve First FragmentOfCall
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ServerReceiveNonF\gnalFragmentOfCall
ServerReceiveFin\fllFmgmentOfCall
ServerReceiveFir\;tFragmentOfCast

ServerReceiveNonF\;nalFragmentOfCast
ServerReceiveFin\;lFmgmentOfCast

ServerReceiveOvert:t/kenFmgmentOfCast
ServerReceiveRe\]jeatCallFragment

TimeoutBvent =

ClientCallingTimeout
\
ClientProbe Timeout
\
ClientCallSendingRemainingFragments Timeout
\
ClientCallSendingNoReply Timeout
\
ClientReplyRecerving Timeout
\
ClientCastSendingRemainingFragmentsTimeout
\
ServerReplying Timeout
\
ServerCallReceiving Timeout
\
ServerReplySendingRemainingFragments Timeout
\
ServerReplySendingNoAckTimeout
\

ServerCastRecerving Timeout

RexEvent =

ReceptionOfControlMessage
Vv
ReceptionOfDataMessage
Vv
Timeout Event
Vv
RequestEvent
Vv
ReplyFEvent
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18 Conclusion

A lot of work on formal specifications is in the context of systems design. The task involved is usually
that of identifying the desirable properties of the required system and expressing these in an abstract
form, from which an implementation can be derived.

By contrast, preparing this formal specification involved taking the implementation-oriented details
available to us, such as those on data-structures and algorithms used, and working towards a functional
description at a higher level of abstraction.

The requirement was that of providing a precise, clear and unambiguous view of the basic functionality
of the REX protocol. We are confident of having fulfilled this requirement and feel that the Z notation
was the important tool that enabled us to do so.

Working with a formal notation systemized the way in which we derived the specification. It also made
us study the protocol in more detail and thus, a more precise description was produced.

Furthermore, use of the Z notation did not constrain us in the way the information was ordered and
structured. We were able to introduce aspects of the protocol in a logical manner and to do this in

tutorial form.

And finally of course, the possibility of misinterpretation, which is a great pitfall of natural-language
specifications, was also avoided by adopting the formal notation.
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A Appendix - Auxiliary functions

In this document we have assumed existence of functions fragment and build.

fragment : DataType x SeqNo x Message Type — PP DataMessage

The fragment function takes some data and breaks it down into a number of fragment messages.

The function must also be given the values to be assigned to the seqno and type components of the
fragment messages.

If the type component is CALL_FRAG or CAST_FRAG the dest component of the messges will be set
to REX_SERVER. If the type is REPLY _FRAG the dest component will be set to REX_CLIENT.

The offset component of each fragment message is generated automatically by the function so as to

reflect the offset of the data contained within that fragment. So, an offset of 1 will be generated for the
first fragment, 2 for the second, etc..

build . P DataMessage x NonProtocolEntity — P(Request U Response)

The buzld function takes a number of fragment messages and returns a Request if the NonProtocolEntily
specified 18 CLIENT, or a Response if the NonProtocolEntity specified is SERVER.

The data component of the request or response returned will be the concatenation of all the data
contained in the fragment messages, in the order of their offsets.
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