
Kahrs, Stefan (1993) Compilation of combinatory reduction systems. In:
Heering, Jan and Meinke, Karl and Möller, Bernhard and Nipkow, Tobias,
eds. Higher-Order Algebra, Logic, and Term Rewriting: First International
Workshop. Lecture Notes in Computer Science . Springer, Berlin, Germany,
pp. 169-188. ISBN 978-3-540-58233-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21097/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/3-540-58233-9_9

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21097/
https://doi.org/10.1007/3-540-58233-9_9
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

C om p ila t io n o f C om b in a t o r y R e d u c t io n Sy s t em sStefan Kahrs?University of EdinburghLaboratory for Foundations of Computer ScienceAbstract. Combinatory Reduction Systems generalise Term RewritingSystems. They are powerful enough to express �-reduction of �-calculusas a single rewrite rule. The additional expressive power has its price |CRSs are much harder to implement than ordinary TRSs.We propose an abstract machine suitable for executing CRSs. We de�newhat it means to execute an instruction, and give a translation from CRSrules into sequences of instructions. Applying a rewrite rule to a term isrealised by initialising the machine with this term, and then successivelyexecuting the instructions of the compiled rule.1 IntroductionCombinatory Reduction Systems were introduced by Klop in 1980 [9]. CRSs intheir original form generalise applicative TRSs [10]. We shall concentrate here onfunctional CRSs, as de�ned by Kennaway in [8]; they generalise ordinary TRSs.The techniques of this paper can easily be adapted to applicative CRSs.Functional CRSs extend TRSs in two respects. Firstly, they support a notionof variable binding. Substitution has to respect variable bindings: it is not allowedto capture bound variables. Thus, if a rewrite rule contains a subterm �x:y, wherey is a free variable, then no instance of the rewrite rule can substitute anything fory which contains x freely. However, this excludes rules such as the S-combinatorintroduction rule in the translation from �-calculus into Combinatory Logic:Lambda([x]App(y; z)) ! App(App(S;Lambda([x]y));Lambda([x]z))For the S-combinator introduction rule, it is necessary that the terms substitutedfor y and z may contain x freely, but this is not possible with ordinary �rst-ordersubstitutions. To overcome this restriction, CRSs have another extension: theysupport second-order variables and second-order substitutions. For �rst-orderterms, the application of a substitution to a term and the computation of amatching substitution are rather simple operations. Thus, a rewriting step itselfis a rather simple operation. This is not longer true in the second-order world, i.e.if the terms contain second-order variables; see [4] where Huet and Lang presentan algorithm to compute all principal matches for the second-order case. Forsecond-order variables, substitution application incorporates �-reduction, andconsequently matching may involve �-expansion.? The research reported here was partially supported by SERC grant GR/J07303.

Combinatory Reduction Systems support second-order rewriting only in a re-stricted way that uniquely determines the necessary �-expansions during match-ing. Nevertheless, �-expansion and �-reduction remain rather expensive opera-tions | it would be nice to compile CRSs and to statically perform as muchof the expansion/reduction process as possible. This is our goal. We de�ne anabstract machine, suitable for executing CRSs, and we give a translation fromrewrite rules into instruction sequences for this machine.We do not address the problems arising from considering CRSs as a pro-gramming language; we look at rewriting in the (very) small, not in the large.Apart from the problem of sheer size, the main reason for concentrating onthis issue is the close similarity to corresponding problems in related systems.A CRS operates by performing the same set of elementary actions when check-ing the applicability of a rule as a �rst-order TRS with some notion of variablebinding does. There is only one elementary action that does not exist in the�rst-order case, the equality check corresponding to a non-initial occurrence ofa second-order variable, but even this is not too di�erent.I wrote the implementation originally in C (for applicative CRSs), but forthe sake of presentation I use Standard ML in this paper, see [16, 17]. To shortenthe code I shall treat several functions as prede�ned, i.e. I use | without furtherexplanation | several functions which are not primitive in Standard ML, butare standard in the Functional Programming community. De�nitions for all thesefunctions can be found in [17], appendix 2. However, I rede�ne select n to behd o (drop n), i.e. I index lists starting from 0 (instead of from 1). The ML codefor these functions can be obtained by anonymous ftp from ftp.dcs.ed.ac.uk,directory pub/smk/CRS, �le reade.ml; the �le compile.ml contains an extendedversion of the ML implementation presented in this paper.2 Preliminaries: Combinatory Reduction SystemsFirst, we recall the basic de�nitions for Combinatory Reductions Systems. In-stead of giving the usual \mathematical textbook" style de�nitions, we expressthese de�nitions in ML. Another di�erence from the usual presentation [8] isthat we consider CRS terms in \de Bruijn style" [2] with variable names beingreplaced by natural numbers.The alphabet of a CRS is determined by two types mvar and symbol, the ele-ments of which we call metavariables and symbols, respectively. For the purposesof this paper, we take them to be strings of characters, i.e. we �x a (su�cientlylarge) CRS alphabet.type mvar = string and symbol = stringGiven a CRS alphabet A, we can de�ne the terms over it as the values of typeterm:datatype term =Var of int | Sym of symbol * term list |Meta of mvar * term list | Abst of term;

Usually, symbols and metavariables come equipped with an arity function, suchthat a term of the form Sym(s,ts) is only well-formed if the arity of s is equal tothe length of ts. We do not impose this restriction here and allow overloading ofsymbols and metavariables. CRS theory traditionally [9, 8] distinguishes a sub-class of terms not containing the constructor Meta, restricting the word \terms"for them and calling terms which may contain metavariables \metaterms". Thisdistinction is not essential and we avoid it here.The following notion of substitution supports replacement of more than onevariable at a time. A substitution is determined by a function from naturalnumbers (de Bruijn indices) to terms.fun subst f (Var x) = f x| subst f (Sym(s,ts)) = Sym(s,map (subst f) ts)| subst f (Meta(s,ts)) = Meta(s,map (subst f) ts)| subst f (Abst t) = Abst (subst (fn n =>if n=0 then Var 0 else lift (f(n-1))) t)and lift t = subst (fn x => Var(x+1)) tThis de�nition is slightly unusual and also rather ine�cient, but it is more generalthan the usual de�nition (see [3], for example) which uses two recursive functionsinstead of one. The added generality enables us to easily state the substitutionlemma of �-calculus [1]:Proposition 1. Let t be a term and f and g functions of type int->term. Then:subst f (subst g t) = subst ((subst f) o g) tThis proposition does not even require totality of f and g, in the sense thata = b holds i� either the expressions a and b are both unde�ned or both arede�ned and denote equal values. Based on substitution, �-reduction and n-fold�-reduction are de�ned as follows:fun beta arg (Abst b) = subst (fn 0 => arg | k => Var (k-1)) b| beta _ _ = error "no beta-redex"val betas = foldright betaUsing betas for multiple argument �-reduction is rather ine�cient, as each argu-ment requires its own �-reduction including (repeated) adjustments of de Bruijnindices. We can characterise the e�ect of n-fold �-reduction more concisely:Proposition 2. Let t be a term and ts be a list of terms. If k=length ts then:betas (repeat Abst k t) ts =subst (fn x => if x<k then select x ts else Var(x-k)) tThe functional repeat is function iteration: repeat f n is the function f com-posed with itself n times. Proposition 2 is typical for the kind of bene�t we canexpect from a compilation of CRSs: the expression on the right-hand side of the

equation uses much less adjustments of variable indices, e.g. the terms from tsare not adjusted at all.We have a second notion of substitution, the substitution of metavariables.A metavariable substitution is determined by a valuation, a function from pairsof metavariables and their arities to terms. Notice that a valuation is de�nedhere on pairs, because we allow overloaded metavariables. A valuation has tosatisfy a further condition: each pair (z,n) has to be mapped to a term (itssubstitute) of the form (repeat Abst n t) for some t, i.e. it \starts" with atleast n abstractions. The reason for this restriction is the de�nition of betas:an application betas t xs is only well-de�ned if t starts with at least as manyabstractions as the list xs is long.fun metasubst v (Var x) = Var x| metasubst v (Sym(s,ts)) = Sym(s,map (metasubst v) ts)| metasubst v (Meta(z,ts)) =betas (v (z,length ts)) (map (metasubst v) ts)| metasubst v (Abst t) = Abst (metasubst (lift o v) t)The de�nitions of metavariable substitution in the literature [9, 8] do not mentionthat there is a danger of name capture for metavariable substitution | but thereis one; in the above version, this is re
ected by the presence of lift in the lastclause.For the de�nition of \CRS rule" we need several auxiliary functions, e.g. forextracting the free/meta- variables of a term.val freevars =let fun fv n (Var k) = if k<n then [] else [k-n]| fv n (Sym(_,ts)) = foldright (append o fv n) [] ts| fv n (Meta(_,ts)) = foldright (append o fv n) [] ts| fv n (Abst t) = fv (n+1) tin fv 0 end;fun metas (Var _) = []| metas (Sym(_,ts)) = foldright (append o metas) [] ts| metas (Meta(z,ts)) =(z,length ts)::foldright (append o metas) [] ts| metas (Abst t) = metas t;Left-hand sides of CRS rules obey a strong syntactic restriction, the so-calledsimplicity condition. Dale Miller coined this name [12] for arbitrary terms in �� ,but the corresponding condition for CRS rules was already present in Klop'sthesis [9]; Nipkow [14] calls terms satisfying this property \higher-order pat-terns". The absence of third-order variables from CRSs simpli�es the de�nitionof simplicity for CRS terms. Second-order uni�cation of simple terms is decid-able and has most general solutions [12] and so has second-order matching ofarbitrary terms against simple terms.

fun simple (Var _) = true| simple (Sym(_,ts)) = all simple ts| simple (Meta(_,ts)) =all (fn Var _ => true | _ => false) ts andalsolet fun isset [] = true| isset (x::xs) = not(member xs x) andalso isset xsin isset (foldright (append o freevars) [] ts) end| simple (Abst t) = simple t;A CRS rule is a pair of terms p satisfying the predicate crs rule, i.e. such thatcrs rule p evaluates to true.fun crs_rule (left,right) =contains (metas right) (metas left) andalso(fn Sym _ => true | _ => false) left andalsofreevars left = [] andalso freevars right = [] andalsosimple left;The conditions in the �rst two lines (of crs_rule) are typical restrictions forrewrite systems. CRS rules are required to contain no free variables. This restric-tion is a consequence of the slightly arti�cial distinction between metavariablesand variables. We could indeed identify variables and metavariables in terms,using de Bruijn indices instead of mvar for metavariables etc. For the purposesof this paper, it is useful to keep the distinction.Assume a �xed CRS alphabet and terms over this alphabet. A CombinatoryReduction System consists of a set R of CRS rules. The rewrite relation associatedwith a CRS is (as usual for rewrite systems) obtained from the set of rules, byinterpreting the set of rules as a relation (set of pairs) and closing it under certainproperties.De�nition 3. A binary relation ! on terms is called a rewrite relation, if wehave the following (for arbitrary t, z, k etc.):metas t = [(z,k)] ^ a! b ^context = fn x => metasubst (fn => repeat Abst k x) t)context a! context bNotice that any rewrite relation is substitutive and compatible (in the usualsense). Notice also that \rewrite relation" only refers to substitution of variables ,while CRS rules also contain metavariables. We therefore need another property:De�nition 4. A binary relation ! on terms is called meta-substitutive, if forarbitrary total functions g (of the right type) we have:a! b) metasubst g a! metasubst g bThe rewrite relation associated with a CRS R is the smallest rewrite relationcontaining the meta-substitutive closure of R.

3 Compilation of a CRSIn the following, we restrict our e�orts on implementing the meta-substitutiveclosure of a single rule, i.e. applying a CRS rule at the root of a term. Thereasons for this limited e�ort are:{ A na��ve, non-e�cient extension to the general case is straightforward (seethe ftp source). Working with de Bruijn indices makes it unnecessary totreat rewriting within abstractions in any special way; there is no need to\freeze" variables or to adjust indices.{ Eliminating most the ine�ciencies of the na��ve approach requires techniquesknown from the implementation of �rst-order TRSs. However, when I appliedsuch techniques in an implementation of �-rewriting (see [5]; �-rewriting sys-tems also require the right-hand sides of rules to be simple), the second-orderpatterns had no impact on the approach at all. This observation generalisesto arbitrary CRSs.{ We are interested in the rewrite relation of a CRS as such, not just in therelation that relates terms to their normal forms. Thinking of CRSs as thekernel of a programming language would be a slightly di�erent undertaking,e.g. it would be worthwhile then to allow conditional CRS rules and to requirea constructor discipline.The implementation of a CRS rule we shall develop is based on the compil-ation of the rule. The CRS rule (the pair of terms) is translated into a di�erentrepresentation, which is more suitable for the computation of CRS matchingand metavariable substitution. This representation is an instruction sequencefor modifying the state of an abstract machine; the abstract machine is espe-cially designed for the execution of CRS rules.4 Abstract MachineThe chosen abstract machine for the execution of compiled CRS rules is a stack-based machine, very much in the spirit of abstract machines for term rewriting,or Landin's SECD machine [11] for the �-calculus.The most signi�cant di�erence to the SECD machine is the omission of adump, a stack of states of the machine. The dump is super
uous, because ruleapplication does not depend on other rule applications. Even if we had such adependency (e.g. conditional CRS rules) and needed a dump, it would not benecessary to store the entire state, as most components are stack-like.4.1 Machine ComponentsInstead of carrying the state of the Abstract Machine (the tuple of its com-ponents) around, we use the Standard ML state for this purpose. Therefore, allcomponents of the abstract machine are given as references, that is: as update-able pointers to values.The components of the machine are the following:

{ The stack of current terms, which contains (subterms of) the term the ruleis applied to. We call the top of this stack \the current term".val CURR = ref ([]:term list);{ The environment, which represents the matching valuation.val ENV = ref ([]:term list);Notice that the environment is not an association list; the compilation re-places metavariables by relative addresses w.r.t. this environment. Also,entries in the environment are not (necessarily) k-fold abstractions when as-sociated with k-ary metavariables. For the precise correspondence betweenthe environment and the valuation it represents, see section 5.{ The stack which is used to create the instance of the right-hand side of therule. After successfully executing all instructions corresponding to a rule, thestack contains only one term, the instance of the right-hand side.val STACK = ref ([]:term list);{ An o�set to adjust de Bruijn indices for free variables.val OFFSET = ref 0;{ A stack of numbers to adjust de Bruijn indices for bound variables of theright-hand side of a rule. This is a bit delicate when they occur as argumentsof a metavariable.val NSTACK = ref ([]:int list);The rôles of OFFSET and in particular of NSTACK are rather subtle. The ideabehind these components is to allow nested substitutions like t[u[s=y]=x] to becomputed outside-in rather than inside-out. This minimises adjustments of vari-able indices and term traversals. However, there is a problem with implementingoutside-in: s may contain a bound variable whose �-binding is in t and the newindex for this variable depends on the occurrences of x and y in t and u. NSTACKis used to keep track of such occurrences.OFFSET and NSTACK represent a substitution, a certain variable lifting. In anygiven state of the abstract machine, we can retrieve it as follows:fun offset () =let val off = !OFFSET and nst = !NSTACKin subst (fn x=>if x < length nst then Var(x+select x nst)else Var(x+off))endInitially, OFFSET is set to 0 and NSTACK is empty, making offset() the identityon terms.

The abstract machine also has an implicit component: the control, the list ofinstructions that have yet to be executed. The instructions do not modify them-selves, thus it is not necessary to include the control as an explicit componentof the machine.The failure of matching is expressed using the exception mechanism of Stand-ard ML. The function test is used to check Boolean expressions that have tobe true when matching succeeds.exception failure;fun test p = if p then () else raise failure;4.2 Machine InstructionsThe abstract machine has instructions for matching a term against the left-hand side of a rule and instructions for applying the resulting valuation to theright-hand side. The instructions are the following:datatype instruction =IS of string*int | NEXT | ISABST | CHECK of int list | SET |EQVAR of int | EQI of int*int*((int*int)list) | EQIMM of int |PUSHI of int*int*((int*(instruction list)) list) |PUSHIMM of int | PUSHVAR of int | CELL of string*int |LAMBDA | ADBMALIf s is an instruction then exec s changes the state of the abstract machine.Because of its size (14 alternatives), the de�nition of exec below is divided intoseveral parts. Execution and compilation are de�ned independently.Matching Instructions The instructions in the �rst two lines of the de�nitionof type instruction are used for computing the matching valuation. Matchingmanipulates two objects: the stack of current terms and the environment (valu-ation).fun exec (IS(s,n)) =(case !CURR of Sym(s',bs)::ps =>(test (s=s' andalso length bs = n); CURR := bs @ ps)| _ => raise failure)| exec ISABST =(case !CURR of Abst t::ps => CURR:=t::ps| _ => raise failure)| exec NEXT = CURR := tl (!CURR)IS(s,n) checks that the current term is an application of the symbol s to narguments and replaces it by its argument list. ISABST is the correspondinginstruction for abstractions. Matching fails if the current term does not have therequired form. NEXT is used to select the next argument. In Higher-Order Rewrite

Systems [13, 6], an ISABST instruction would not have to check anything, as thetype system already guarantees that the current term is an abstraction. In acertain sense, ISABST checks for the presence of the symbol � introduced by thetranslation from CRSs into HRSs, see [6, 15].| exec (CHECK vs) =let fun check n (Var k) = k<n orelse not(member vs (k-n))| check n (Sym(_,bs)) = all (check n) bs| check n (Abst t) = check (n+1) t| check n (Meta(_,bs)) = all (check n) bsin test (check 0 (hd(!CURR))) endThe instruction CHECK vs checks that the current term does not contain any ofthe variable indices in vs. These checks are necessary because of the presence ofbound variables, not because of the presence of higher-order variables.| exec SET = ENV := hd(!CURR) :: !ENVSET stores the current term on top of the environment. Since the current term isalways a subterm of the original current term, the environment does not directlycontain the substitutes of k-ary metavariables, but rather the substitutes withoutthe k abstractions and modulo some change of bound variables.| exec (EQVAR n) = (case hd(!CURR) of Var m => test (m=n)| _ => raise failure)The instruction (EQVAR n) corresponds to a \positive" occurrence of a boundvariable with index n in the left-hand side of a rule. Only bound variables outsidemetavariable applications correspond to EQVAR instructions.| exec (EQI(n,d,vvs)) =let fun equal k (Var x, Var y)=if x<k then x=yelse assoc vvs (fn a=>a+d) (x-k) = y-k| equal k (Sym(s,bs), Sym(t,at)) =s=t andalso eqlist k bs at| equal k (Abst a, Abst b) = equal (k+1) (a,b)| equal k (Meta(z,bs), Meta(y,at)) =z=y andalso eqlist k bs at| equal _ _ = falseand eqlist k xs ys = length xs=length ys andalsoall(equal k)(pairlists xs ys)in test (equal 0 (select n (!ENV),hd(!CURR))) end| exec (EQIMM n) = test (hd(!CURR) = select n (!ENV))EQI instructions are used for non-left-linear CRS rules to match non-initial oc-currences of metavariables. EQIMM n is a cheap version that compares the cur-rent term with the term stored earlier at the n-th place in the environment.

EQI(n,d,xs) does the same, but in a more di�cult setting when the variablescannot be compared one-to-one; xs is an association list for translating boundvariables, and d has to be added to the indices corresponding to free variables.The instruction EQIMM is redundant in the sense that all that it does canbe done with EQI as well. But it cannot be done quite so well, e.g. if terms areuniquely represented (using a cache; see [7]) then the execution of the instructionEQIMM takes constant time, while EQI is linear in the size of the term to whichthe rule is applied.Instantiating the Right-Hand Side The instructions in the last three linesof the de�nition of type instruction are used for generating the instance of theright-hand side of the rule. In particular, they manipulate the STACK which will�nally contain this instance.| exec (CELL (s,n)) =let val (args,rest) = split n (!STACK)in STACK := Sym(s,rev args)::rest endCELL(s,n) pops n elements t1; � � � ; tn from the stack (n may be 0) and replacesthem by the term s(t1; � � � ; tn).| exec LAMBDA = NSTACK := 0 :: !NSTACK| exec ADBMAL = let val t::ts = !STACK inSTACK := Abst t :: ts; NSTACK := tl(!NSTACK) endThe instructions LAMBDA and ADBMAL are used to create abstractions. The changesto NSTACK are very often insigni�cant, but they do matter if the code executedbetween a LAMBDA and an ADBMAL involves PUSHVAR instructions.| exec (PUSHI(n,d,acs)) = push (select n (!ENV)) d acs| exec (PUSHIMM n) = STACK := select n (!ENV) :: !STACKPUSHI(n,d,acs) pushes the term stored at the n-th place of the environmentonto the stack, or more precisely: a substitution instance of this term. The sub-stitution is the one corresponding to the k-fold �-reduction that occurs whena k-ary metavariable is meta-substituted; the function push, which creates thesubstitution instance is de�ned below. For each occurrence of a free variable, dhas to be added to its index. Each occurrence of a (non-local) bound variableinvokes an instruction sequence from acs producing a term, i.e. acs associatesbound variables to instruction sequences. PUSHIMM is a cheap version of PUSHI,analogous to EQIMM for EQI.| exec (PUSHVAR x) =STACK := Var(x+ select x (!NSTACK)) :: !STACKPUSHVAR(x) pushes the variable with index x onto the stack. We have to addthe x-th component of !NSTACK to that index to adapt it to the context in which

it occurs. This will always be 0 if no metavariable intervenes between bindingand using occurrence of that variable. For the same reason, the correspondingmatching instruction EQVAR does not have to bother about NSTACK | EQVAR isonly generated for variables outside metavariable applications.The evaluation of push t d acs pushes a term subst f t to the stack,where the substitution function f is determined by d, acs and the state of theabstract machine. The state of the abstract machine is important, because pushmay execute instructions (push and exec are mutually recursive) from acs,including accesses to the environment. This is the above mentioned outside-instrategy of computing nested substitutions.and push t d acs = letfun push' n (t as Var x) =if x<n then STACK := t::(!STACK)else let val bs=(assoc acs (fn k =>[])(x-n));in if bs=[] thenSTACK:= Var(x+d+ !OFFSET)::(!STACK)else (NSTACK := map (fn y=>y+n) (!NSTACK);OFFSET := !OFFSET + n;map exec bs;OFFSET:= !OFFSET - n;NSTACK := map (fn y=>y-n) (!NSTACK))end| push' n (Abst t) = (push'(n+1) t;let val b::rs= !STACK in STACK:=(Abst b)::rs end)| push' n (Sym(s,bs)) =(map (push' n) bs; exec(CELL(s,length bs)))| push' n (Meta(z,bs)) = (map (push' n) bs;let val (args,rest) = split (length bs) (!STACK)in STACK:= Meta(z,rev args) :: rest end)in push' 0 t end;The most interesting part of push is the treatment of variables. Local boundvariables (x<n) are pushed unchanged. Free variables (not found in the associ-ation list) are pushed with a slight change, their variable index is increased byd. This is the statically known di�erence in number of surrounding abstractionsof the �rst and the current occurrence of the metavariable corresponding to thiscall of push. Other bound variables are associated with an instruction sequencebs from acs. For the execution of such an instruction sequence, all entries ofNSTACK have to be increased by the number of abstractions that surround theoccurrence of this bound variable in t.A CRS rule corresponds to a sequence of instructions. To apply a CRS ruleto a term we push the term onto CURR and execute the instructions:fun run t cs = (CURR := t :: !CURR; map exec cs;case !STACK of r::rs => (STACK:=rs; [r]))handle failure => [];

The function run returns a singleton list containing the rewrite result if ruleapplication succeeds and the empty list otherwise | the exception failureindicates the non-existence of a matching substitution.It is not always meaningful to apply run t to an instruction sequence, be-cause several instructions (e.g. CELL(s,n)) assume the abstract machine to bein a certain state. However, execution and compilation should �t together in thesense that they implement the meta-substitutive closure of a CRS rule. For thecompilation function compile we are going to de�ne, the following propositionshould hold: Let l! r be a CRS rule, t and u be CRS terms, then9f: metasubst f l = t ^ metasubst f r = u)run t (compile(l,r))= [u]:This is the completeness of compilation, i.e. the ability to rewrite each redex.We also want a soundness property, the non-ability to rewrite any non-redex::9f: metasubst f l = t) run t (compile(l,r))= []Complete code is almost by default sound; the only likely sources of a soundnessviolation are overly weak CHECK instructions or a wrong treatment of non-left-linear rules, and indeed for certain CRS rules completeness implies soundness.5 Symbol TableThe compilation function presented later uses a symbol table for the metavari-ables of a rule. It has a similar purpose as the symbol table (for identi�ers) usedin an implementation of a programming language. The symbol table is a list ofentries, each entry having the following form:type entry = { MV: mvar*int, BV: int,LOC: int ref, ARG: int list };fun lookup z (e::es : entry list) =if #MV(e)=z then e else lookup z es| lookup z [] = error "internal error"Type entry is an SML record type; each entry corresponds to a metavariablein a CRS rule. MV is its name plus arity, BV is the number of abstractions at its�rst occurrence, which is essential because of the representation of variables asde Bruijn indices. LOC is the location of the metavariable in the environment.ARG represents the list of arguments of the �rst occurrence | it can be givenas an integer list, because the restrictions for CRS rules ensure that it is a listof bound variables, hence a list of de Bruijn indices. For each element e of typeentry we assume that the arity and the length of the argument list are equal,i.e. #2(#MV e) = length(#ARG e).val unvar = map (fn (Var x) => x | _ => error "lhs not simple");

fun update n t (Var x) = t:entry list| update n t (Sym(s,ts)) = foldleft (update n) t ts| update n t (Abst m) = update (n+1) t m| update n t (Meta(z,ts)) =let val mv = (z,length ts)fun enter [] =[{LOC=ref 0, MV=mv, BV=n, ARG=unvar ts}]| enter (tab as (e as {MV=y, ...})::es) =if mv=y then tab else e::enter esin foldleft (update n) (enter t) ts end;The function update traverses a simple term t and updates the symbol table,storing all initial occurrences of metavariables in t that are not already in thetable. If the local function enter is applied to an empty symbol table, then wehave an initial occurrence of a metavariable and we create a new entry. By therestrictions on CRS rules it is guaranteed that the argument list ts of an initialoccurrence is always a list of variables, i.e. the error in unvar does not arise.fun create_table l =let fun locations rn ({LOC=rl, ...}:entry) =(rl:= !rn; rn:= !rn+1);val tab = update 0 [] lval no = ref 0in map (locations no) (rev tab); (tab,no) endThe function create_table generates the symbol table for a CRS rule l! r. Ittraverses the left-hand side of the rule, and then assigns a relative address to eachmetavariable. A symbol table for a CRS rule l ! r contains all metavariablesoccurring in the rule, because they all have to occur in the left-hand side l;each metavariable in a symbol table of length n is associated with a uniquelocation between 0 and n� 1. This location is the relative address (in !ENV) ofthe substitute of the metavariable after matching has succeeded.The combination of a symbol table, which uses locations between 0 and k�1,and an environment !ENV of length at least k represents a valuation de�ned onthe entries of the symbol table.fun getval tab = fn z =>let val e = lookup z tabval k = length(#ARG e)val su = assoc(pairlists (#ARG e)(map Var (0 upto (k-1))))(fn m => Var(m + k - #BV e))in repeat Abst k (subst su (select (!(#LOC e)) (!ENV)))end;The environment always carries subterms of the initial current term. This issimpler than to replace them by the proper substitutes of metavariables. But

this means that we always make an assumption about the connection betweensymbol table and environment:De�nition 5. Let tab be a symbol table. An environment ENV covers a pair(mv,n) of a metavariable mv with its arity n i�1. (lookup (mv,n) tab) is de�ned (call it e);2. (select (!(#LOC e))(!ENV)) is de�ned (call it a) and3. the free variables of a are all either greater or equal than #BV e or occur in#ARG e.We say that an environment covers a term if it covers all metavariables occurringin it.Similarly as in proposition 2, we can characterise the n-fold �-reduction thatcorresponds to substitution of metavariables:Lemma 6. Let tab be a symbol table, mv be a metavariable, and ts be a listof terms, such that (mv,length ts) is covered by ENV. For arbitrary naturalnumbers n we have then:metasubst (repeat lift n o getval tab) (Meta(mv,ts)) =subst (assoc(pairlists(#ARG e)ts')(fn m=>Var(m + n - #BV e))) (select(!(#LOC e))(!ENV))where ts' abbreviates map (metasubst(repeat lift n o getval tab)) ts.Proof. metasubst (repeat lift n o getval tab) (Meta(mv,ts))= betas (repeat lift n (repeat Abst k(subst su (select(!(#LOC e))(!ENV)))) ts'= f fun lift' n k = subst (fn x=>if x<k then Var x else Var(x+n)) gbetas (repeat Abst k (lift' n k(subst su (select(!(#LOC e))(!ENV)))) ts'= subst (fn x=>if x<k then select x ts' else Var(x-k))(lift' n k (subst su (select (!(#LOC e))(!ENV))))= subst(fn x=>if x<k then select x ts' else Var(x+n-k))(subst su (select (!(#LOC e))(!ENV)))= f fun f' x = if x<k then select x ts' else Var(x+n-k) gsubst ((subst f') o su) (select(!(#LOC e))(!ENV))We now simplify the substitution function:subst f' o su= assoc(pairlists(#ARG e)(map (subst f')(map Var(0 upto(k-1)))))(subst f' o (fn m=>Var(m+k-#BV e)))= assoc(pairlists(#ARG e)(map f' (0 upto (k-1)))))(fn m=>f'(m+k-#BV e))= assoc(pairlists(#ARG e)ts')(fn m=>f'(m+k-#BV e))We can restrict any substitution function to the free variables of the term it isapplied to. By the \cover" assumption about the environment, we know that mis greater or equal than #BV e whenever assoc uses its default function. Thisallows us to simplify f'(m+k-#BV e) to Var(m+n-#BV e). ut

The natural number n in repeat lift n corresponds to the number of abstrac-tions that surround a metavariable occurrence. This number is statically known:the component d in an instruction PUSHI(k,d,acs) is the di�erence (n-#BV e).This static information is useful to detect the case in which the substitution thelemma describes is the identity substitution; see the section on optimisation.The components OFFSET and NSTACK of the abstract machine are used for adi�erent variable lifting, the o�sets of which are not statically known. The ideais not to compute the list ts' in advance and then to lift its variable indiceswhenever the substitution of the lemma is applied to an abstraction, but ratherto collect all lifting information before instantiating ts.6 Generating CodeCode generation for left-hand and right-hand sides of a rule are fairly independ-ent | the only dependency between the two is the symbol table, since it givesrelative addresses of metavariable substitutes in the environment.6.1 Generating Match CodeThe generated match code is very similar to how an interpretative implementa-tion of CRS rewriting would operate.fun bvset n ts = filter (not o member (unvar ts)) (0 upto (n-1));fun lhs tab n k =let fun lhs' (Sym(s,ts)) = IS(s,length ts) ::foldleft(fn cs=>fn t => cs @ lhs' t) [] ts| lhs' (Var x) = [EQVAR x, NEXT]| lhs' (Abst t) = ISABST::lhs tab (n+1) k t| lhs' (Meta(z,ts)) =let val {LOC=ref l, ARG=ns, BV=no, ... } =lookup (z,length ts) tabin if !k>l then(k:= !k-1; [CHECK(bvset n ts),SET,NEXT])else [EQI(l - !k,n-no,pairlists ns (unvar ts)),NEXT]endin lhs' end;The code for the initial occurrence of a metavariable checks for illegal namecapture (CHECK) and stores the current term in the environment (SET); the CHECKestablishes the precondition for environment components used in lemma 6. Ata non-initial occurrence, the earlier stored term has to be compared with thecurrent one. Which occurrence is considered to be the initial one depends on theterm traversal | we traverse the term from left to right (for no good reason).Executing (successfully) the code of lhs tab n k means to remove one termfrom the stack of current terms.

Lemma 7. Let t be a simple and closed term.Let (tab,rn)=create table t. Let f be a valuation de�ned on the metavari-ables in t. Then f is pointwise the same as(CURR:=metasubst f t :: !CURR;map exec (lhs tab 0 rn t);getval tab)and the environment ENV covers t w.r.t. tab after the evaluation of this expres-sion.Proof. By induction on the structure of t. Sketch: we have to prove a moregeneral lemma, because most of the required properties are not closed undertaking subterms. In particular: t is simple and does not contain free variablesgreater or equal than n; tab is a symbol table containing all metavariables of t;rn refers to a natural number, such that for all entries e in tab of metavariablesoccurring in t the following holds: either !(#LOC e)<!rn, or the environmentcovers #MV e. To get the right valuation using getval, we have to composegetval tab with repeat lift n, and we also have to place !rn arbitrary termson top of the environment after executing the code from (lhs tab n rn t);after evaluating this expression to an instruction sequence containing k SETinstructions, !rn is reduced by k. utLemma 7 states the completeness of our matching procedure. We can also claima soundness property (with a very similar proof), i.e. that execution raises theexception failure, if the current term is not a valuation instance of t.6.2 Generating Code for the Right-hand SideCode generation for the right-hand side is slightly simpler, because we do nothave to distinguish between initial and non-initial occurrences of metavariables.The complications concerning possible nesting of metavariable applications ariseat run-time, not at compile-time.fun rhs tab n =let fun rhs' (Sym(s,ts)) =foldright append [CELL(s,length ts)] (map rhs' ts)| rhs' (Var x) = [PUSHVAR x]| rhs' (Abst t) = [LAMBDA] @ rhs tab (n+1) t @ [ADBMAL]| rhs' (Meta(z,ts)) =let val {LOC = ref l, ARG=ns, BV=m, ...}= lookup (z,length ts) tabin [PUSHI(l,n-m,pairlists ns (map rhs' ts))]endin rhs' endFor code generation with rhs, we can make the following claim:

Lemma 8. Let r be a term and tab be a symbol table such that the environmentcovers r. Let n be the length of !NSTACK. If all free variables in r are smallerthan n, then the evaluation of map exec (rhs tab n r) puts a term r' on topof STACK and leaves all other components of the abstract machine unchanged,where r' is equal tooffset()(metasubst (repeat shift n o getval tab) r):Proof. By induction over the term structure of r. Sketch: Symbol applicationsand variables are trivial; for abstractions notice that offset()(Abst t) is equi-valent to Abst(#2(exec LAMBDA, lift(offset() t), exec ABDMAL)), see thede�nition of subst. For metavariables we can use lemma 6 and proposition 1 tocharacterise the metasubst application and its composition with offset() as asingle substitution. It then remains to show that the evaluation of the expres-sion (push t d (pairlists ns (map (rhs tab n) ts))) stores the term weobtain from (subst(assoc(pairlists ns us)(fn m=>Var(m+d+!OFFSET)))t)on top of STACK; in this expression, us is shorthand for pointwise applyingoffset() o (metasubst ...) to the list ts. This requires again an inductiveproof on the term structure of t; notice here that the evaluation of(OFFSET:=!OFFSET+k; NSTACK:=map(fn x=>x+k)(!NSTACK);map exec (rhs tab n u);OFFSET:=!OFFSET-k; NSTACK:=map(fn x=>x-k)(!NSTACK))is equivalent to(map exec (rhs tab n u);STACK:=repeat lift k(hd(!STACK)) :: tl(!STACK))Notice further that rhs never returns an empty list; therefore, using (fn x=>[])as default function for assoc (see the de�nition of push) is a proper way todistinguish free variables. utThe proof requires two nested inductions, because I have chosen a lazy com-pilation scheme for outside-in computation of nested substitutions. An eagercompilation scheme for computing them inside-out would generate the instancesof the argument list ts of a metavariable on the stack.6.3 Full CompilationCompiling a rule simply involves of compiling its parts and concatenating thecode afterwards.fun compile (l,r) =let val (tab,rn) = create_table lin lhs tab 0 rn l @ rhs tab 0 rend;Completeness of compilation is now easily established:

Theorem 9. Let (l,r) be a CRS rule and f be a valuation de�ned on the meta-variables in l. Let !NSTACK=[] and !OFFSET=0. Then:run(metasubst f l)(compile(l,r))= [metasubst f r]:Proof. Immediate by distributivity of map over @ and lemmas 7 and 8, takingn = 0. utSimilarly, soundness of compilation follows from the soundness of matching.6.4 An ExampleTo get a feeling for the code the compilation produces, let us look at an example.Here is the chain rule of symbolic derivation, for the sake of legibility representedas a nameful CRS rule, i.e. with variable names instead of de Bruijn indices.D([x]App(f; g(x))) ! M(D([x]g(x)); B(D(f); [x]g(x)))Explanation: x is the only variable, f and g are metavariables, and the symbolsD, B, App, and M can be interpreted as follows: D is the derivation operator,B is function composition, App is function application, and M is multiplicationof functions (pointwise). The substitute for f cannot contain x freely; this is theusual side-condition of the chain rule, which is here implicit, as f is a nullarymetavariable. Applying the function compile to the above rule (after convertingit to a pair of CRS terms, of course) we obtain the code in �gure 1.1 IS(D,1) 10 LAMBDA2 ISABST 11 PUSHI(0,0,[(0,[PUSHVAR 0])])3 IS(App,2) 12 ADBMAL4 CHECK [0] 13 CELL(D,1)5 SET 14 PUSHI(1,-1,[])6 NEXT 15 CELL(D,1)7 CHECK [] 16 LAMBDA8 SET 17 PUSHI(0,0,[(0,[PUSHVAR 0])])9 NEXT 18 ADBMAL19 CELL(B,2)20 CELL(M,2)Fig. 1. Code of a compiled ruleThe �rst 9 instructions (left column) were generated by lhs, i.e. their purposeis to match the left-hand side of the rule; the remaining 11 instructions are forthe creation of an instance of the right-hand side. The code mimics exactly whatan interpreted rule application would do, only the term structure of the left-handand right-hand sides of the rule has been
attened into a list of instructions andthe names of metavariables have been replaced by relative addresses.

7 OptimisationThe code generated by the na��ve compilation can be improved in many ways.Most of these improvements are minor, they allow to compactify the code, some-times requiring extensions to the instruction set to make better use of the re-sources of the abstract machine. We do not have the space here to elaborate onthat; several optimisations can be found in the ftp source.One kind of optimisation has a major e�ect: it would be nice to \compileaway" as many second-order substitutions as possible. An important observationhere is that the (named) term (�x:t)x can be �-reduced to t, but that it is awaste of resources to perform this �-reduction in the standard way. This waste ofresources is the di�erence between the complexities O(n) and O(1) of executinga PUSHI and PUSHIMM instruction, respectively.Such wasteful �-reductions typically occur in �-rewriting systems, i.e. inCRSs which only move bound variables around rather than replacing them,e.g. symbolic derivation, translation of �-calculus into Combinatory Logic, etc.Similarly to the way in which any HRS can be translated into a CRS plus �-reduction (see [15]), any CRS can be translated into a �-rewriting system plus�-reduction; however, �-reduction is expressible within CRSs but not within�-rewriting systems.fun single (c as EQI(n,0,xs)) =if all (op =) xs then EQIMM n else c| single (c as PUSHI(n,0,acs)) =if all (fn (m,xs)=> xs=[PUSHVAR m]) acsthen PUSHIMM n else c| single c = cThe function single maps an instruction to an equivalent instruction, beingexactly the mentioned detection of trivial �-redexes. Notice that the d com-ponent, the di�erence in surrounding abstractions between the current and ini-tial occurrence of the metavariable these instructions correspond to, is requiredto be 0 | otherwise we need a term traversal to adjust indices of free vari-ables. But even with d = 0 we also need OFFSET to be set to 0 for the samereason, and NSTACK to contain only zeros for a similar one. We can say thatexec c and exec(single c) have the same e�ect on the state of the abstractmachine, provided !OFFSET=0 and all(fn x=>x=0)(!NSTACK). Initially, OFFSETand NSTACK satisfy these conditions; moreover they are only ever locally violatedwithin the function push. Thus, we can apply single to all instructions on theoutermost level, i.e. to those that do not occur within a PUSHI instruction.This optimisation is applicable to the example in �gure 1; instructions 11 and17 can both be replaced by PUSHIMM 0. These instructions correspond to right-hand side occurrences of the second-order metavariable g. The correspondingoptimisation for f (instruction 14) is not possible, for we have to decrease deBruijn indices of free variables in its substitute by 1.

8 ConclusionWe have de�ned an abstract machine for executing Combinatory Reduction Sys-tems and a compiler for translating CRS rules into instructions of that machine.The correctness of this translation has been established. Nearly all importantactions of the system are performed on the low level of instructions | the onlyexception being the function push which provides an interaction between an in-terpretative term traversal and the execution of code. The code can be seen as alinearisation of the actions one would perform in a similar way when interpretingthe rewrite rule.References1. Hendrik P. Barendregt. The Lambda-Calculus, its Syntax and Semantics. North-Holland, 1984.2. N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool forautomatic formula manipulation. Indagationes Mathematicae, 34:381{392, 1972.3. T. Hardin. How to get con
uence for explicit substitutions. In M.R. Sleep, M.J.Plasmeijer, and M.C.J.D. van Eekelen, editors, Term Graph Rewriting, chapter 3,pages 31{45. John Wiley & Sons, 1993.4. G�erard Huet and Bernard Lang. Proving and applying program transformationsexpressed with second-order patterns. Acta Informatica, 11:31{55, 1978.5. Stefan Kahrs. �-rewriting. PhD thesis, Universit�at Bremen, 1991. (in German).6. Stefan Kahrs. Context rewriting. CTRS'92, pages 21{35. LNCS 656.7. Stefan Kahrs. Unlimp { uniqueness as a leitmotiv for implementation. PLILP'92,pages 115{129. LNCS 631.8. J.R. Kennaway. Sequential evaluation strategies for parallel-or and related reduc-tion systems. Annals of Pure and Applied Logic, 43:31{56, 1989.9. Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Centrum voorWiskunde en Informatica, 1980.10. Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbai, andT. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume 2,pages 1{116. Oxford University Press, 1992.11. P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308{320, 1964.12. Dale Miller. A logic programming language with lambda-abstraction, functionvariables, and simple uni�cation. Extensions of Logic Programming, pages 253{281, 1991. LNCS 475.13. Tobias Nipkow. Higher order critical pairs. LICS'91, pages 342{349.14. Tobias Nipkow. Functional uni�cation of higher-order patterns. LICS'93.15. Vincent van Oostrom and Femke van Raamsdonk. Comparing combinatory reduc-tion systems and higher-order rewrite systems. HOA'93. (This volume).16. Laurence C. Paulson. ML for the Working Programmer. Cambridge UniversityPress, 1991.17. Chris Reade. Elements of Functional Programming. Addison-Wesley, 1989.This article was processed using the LaTEX macro package with LLNCS style

